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Abstract

Style is an ordering principle by which to structure artifacts in a design domain. The application of a visual order entails
some explicit grouping property that is both cognitively plausible and contextually dependent. Central to cognitive–
contextual notions are the type of representation used in analysis and the flexibility to allow semantic interpretation.
We present a model of visual style based on the concept of similarity as a qualitative context-dependent categorization.
The two core components of the model are semantic feature extraction and self-organizing maps ~SOMs!. The model
proposes a method of categorizing two-dimensional unannotated design diagrams using both low-level geometric and
high-level semantic features that are automatically derived from the pictorial content of the design. The operation of the
initial model, called Q-SOM, is then extended to include relevance feedback ~Q-SOM:RF!. The extended model can be
seen as a series of sequential processing stages, in which qualitative encoding and feature extraction are followed by
iterative recategorization. Categorization is achieved using an unsupervised SOM, and contextual dependencies are
integrated via cluster relevance determined by the observer’s feedback. The following stages are presented: initial per
feature detection and extraction, selection of feature sets corresponding to different spatial ontologies, unsupervised
categorization of design diagrams based on appropriate feature subsets, and integration of design context via relevance
feedback. From our experiments we compare different outcomes from consecutive stages of the model. The results
show that the model provides a cognitively plausible and context-dependent method for characterizing visual style in
design.
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1. INTRODUCTION

In the design domain, an analysis of visual similarity leads
to the concept of style. The term style is polysemous and in
design literature refers to different ideas concerning the arti-
fact, modality, society, culture, period, and so forth. In devel-
oping a model of visual style, we approach the problem
from an “object” viewpoint, where an artifact’s common
physical characteristics are primary ~Edwards, 1945; Ack-
erman, 1967!. A useful and well-accepted definition of this
view expresses style as a principle by which to provide

order, allowing a set of artifacts to be structured according
to some set of criteria ~Knight, 1994!.

An object view of style essentially relies on the assess-
ment criteria derived from a group of artifacts, its canonical
rerepresentation, and a measure that enables comparison.
Assessment criteria can be specified on a number of differ-
ent dimensions. These dimensions can include structural or
behavioral attributes and may be represented either quanti-
tatively or qualitatively. The utility of qualitative rerepre-
sentation is evident in its ability to derive design semantics
~Gero & Park, 1997; Ding & Gero, 1998!. However, because
of the complexity of deriving semantics relevant to the
domain, this approach is less prominent in models of visual
style. A further restriction typical of such models is their
inability to handle important cognitive properties of simi-
larity assessment such as when the perception of a feature
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or its semantic interpretation is influenced by the designer’s
context. As a result, computational models of style have
inherited an emphasis on linear analysis, which focuses on
distance measures that maintain a static world assump-
tion in which style is treated as unrelated to its locus of
application.

These limitations are critical to a digital characterization
of visual style in design because designers are capable of
analyzing artifacts using a number of different dimensions.
The perception of features can be influenced by the design
task, the designer’s intentions, and their goals. In this way,
interpreting a design and distinguishing some visual style
can be dependent on a feature’s relevance relative to con-
text. Judging the visual similarity of design artifacts and
identifying styles therefore depends on context. In Tversky
~1977! and Tversky and Gati’s ~1982! investigations on the
concept of similarity, they describe aspects of context in
mathematical properties of similarity including asymmetry,
minimality, and triangle inequality. These properties are sig-
nificant in visual and spatial reasoning in design yet have
largely been ignored in modeling an object view of style.

In exploring the deficiencies of current approaches to
digital characterizations of visual style we ask, how can
high-level semantic dimensions be derived efficiently from
low-level structural ones and how may we compare them to
provide a cognitively plausible and contextually dependent
model of style? To address this two-part question we look
to qualitative modeling and clustering techniques.

Spatial information directly available to human observ-
ers is typically qualitative in nature ~Cohn, 1997!. The ben-
efits of utilizing qualitative encoding lie in the description
of attributes that are significant to the preservation of salient
design qualities. Encoding a design corpus qualitatively can
provide meaningful data sets that can then be utilized by
any clustering approach. However, in modeling style as qual-
itative and context-relevant similarity assessments ~relative
to the observer and the design task!, two basic problems
arise: the gap between high-level semantics used by design-
ers to understand design content and low-level structural
features extracted from the design artifact; and their rele-
vance or significance relative to the design context. In pro-
viding a possible solution to this gap, three research issues
are addressed here:

• qualitative rerepresentation of the design diagram’s pic-
torial content,

• semantic feature mappings and feature salience, and

• context-sensitive0user-relevant similarity measures.

The approach to visual style presented here explores each
of these issues and utilizes the application area of two-
dimensional ~2-D! architectural diagrams to develop a model
and test its implementation. The system is based on an exist-
ing qualitative representation schema capable of describing
a hierarchy of spatial ontologies ~Jupp & Gero, 2004, 2006!

and self-organizing maps ~SOMs! as a method for design
comparison. The model described in the remainder of this
article is capable of automatically structuring a design cor-
pus according to selected feature semantics as an iterative
process, which adapts to an observer’s requirements and
preferences. Adaptation is based on the relevance of clus-
ters that are judged in relation to some design task. This
approach is commonly used in text classification and retrieval
systems and is known as relevance feedback ~RF; Salton &
McGill, 1983!. Although it is a well-established technique
in text categorization and retrieval systems, there appears
to be no model of similarity in design that integrates RF in
this way. Applied here, the implementation of SOM and RF
in conjunction with qualitative feature-based rerepresen-
tation presents the main contribution of this work. This
flexible, open-ended approach to visual style automates qual-
itative rerepresentations, learns from the data set unsuper-
vised, and modifies assessments according to design context.
We posit that the creation of a model of qualitative context-
dependent similarity assessment can provide a cognitively
plausible and contextually relevant characterization of the
visual style of design artifacts.

2. STYLE, SIMILARITY, AND VISUOSPATIAL
REASONING

Identifying a visual style is a judgment process that requires
an artifact to be decomposed into elements in which they
are the same and elements in which they are different. Design
artifacts can be described as belonging to the same style to
the degree that they have a particular dimension in common
and are not differentiated by any distinctive one. Human
observers are able to recognize, interpret, and search for
salient features in diagrams in order to detect visual simi-
larities and ultimately identify members of a style. The last
40 years of research surrounding the concept of similarity
has provided a variety of insights on both theoretical and
empirical levels ~see Tversky, 1977; Tversky & Gati, 1982;
Love & Sloman, 1995; Sloman, 1996!.

In design research, there is still a lack of understanding
of how designers classify, form concepts, and make deci-
sions based on the similarity perceived between two or more
designs. In related research, Tversky ~1999! has shown in
cognitive experiments that in reasoning about design dia-
grams, individuals are able to make comparisons across a
variety of dimensions intuitively using abstraction, approx-
imation, aggregation, and other techniques to generate man-
ageable spatial descriptions. Other recent cognitive studies
in design research have shown that during designing, ad
hoc visual sorting of complex diagrams largely depends on
intuitive similarity assessments that are later revised after
the initial assessment ~Jupp & Gero, 2005!. Such cognitive
investigations are difficult because similarity assessments
in design typically involve comparisons that rely on a vari-
ety of dimensions, and often when designers judge the sim-
ilarity of two diagrams the dimensions themselves or even
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the number of dimensions are not known and what might
appear intuitively to be a single dimension may be a com-
plex of several ~Jupp, 2006!. In this regard, the high-level
semantic content contained in design diagrams frequently
results in the initial assessment being revised a number of
times in light of the design context and design requirements.

Despite the lack of cognitive studies on similarity and
visual style, a variety of computational models have been
developed ~Gross & Do, 1995; Park & Gero, 2000; Davies
& Goel, 2001; Gero & Kazakov, 2001; Forbus et al., 2003;
Burns, 2004!. In general, these models are based on a rerep-
resentation of either 2-D or 3-D design artifacts and some
function of similarity that allows those artifacts to be com-
pared and ordered. Many models have been developed as
design support systems to aid in the perception of Gestalts,
as well as decision making and analogy. Most have directly
applied or adapted similarity functions from other fields of
research, such as psychology and cognitive science as well
as information analysis and retrieval systems. Yet, most of
the existing approaches to visual style are limited because a
comparison ultimately depends on quantifying common ele-
ments independent of their context. It is necessary to refor-
mulate the approach to measuring design content by moving
away from the idea of style as the outcome of a direct
comparison and moving toward the idea that it is a process
whose outcome can only be reported in a post hoc fashion.

We use the concept of similarity as the grouping princi-
ple ~Wertheimer, 1977! by which 2-D design diagrams can
be ordered. However, we assume that similarity is also related
to the way information is processed and that the reporting
of similarity judgments is a metacognitive process ~Thomas
& Mareschal, 1997! requiring explicit comparison of design
information both prior and subsequent to processing by the
system.

2.1. Toward a model of style

The visual style of a design may be described as transient,
where the perceived similarities can depend on the corpus
in question; the amount of a priori information available;
and the order of design comparison. When considered in
relation to a task-specific context, it may also depend on
design objectives and requirements. The problem of mod-
eling visual style largely reflects these different levels of
complexity. For example, a rather simple assessment prob-
lem occurs when the design corpus in question consists of
diagrams from a strongly restricted set. From the perspec-
tive of the application domain being tested here, this level
of complexity translates to categorizing only a single
architect’s designs that encompass only residential dia-
grams. This level of complexity enables a relatively straight-
forward assessment based on the automatic segmentation
of the pictorial content of the diagram. In the other extreme
lies the problem of categorizing a design corpus that encom-
passes a variety of the following:

1. design domains ~arts, architecture, engineering, indus-
trial design, etc.!;

2. design artifacts, taking the architectural domain as an
example, which could refer to the kinds of building
typologies such as residential, commercial, industrial,
religious, and so forth;

3. design descriptions, for example, plans, sections, ele-
vations, and so forth;

4. design rerepresentations, that is, the type and number
of dimensions; and

5. design contexts, which can include perceptual con-
straints, such as the order of the diagrams being com-
pared ~to more task-specific related requirements, such
as the design brief ! to broader contextual aspects such
as society, culture, region, and period.

The criteria by which a set of design diagrams are distin-
guished as similar carry with them important contextual
dependencies. Cognitive studies have demonstrated that sim-
ilarity processing often depends on context ~Medin et al.,
1993! and an increasing consensus regards similarity as a
dependent property that extends the focus of inquiry to
include contextual aspects ~Sloman, 1996; Thomas & Mare-
schal, 1997!. This view is particularly relevant in design
because the designer operates within a context and his or
her perception and judgment of design similarities are influ-
enced by it.

In view of such complexities, similarity as a measure of
visual style is defined here not as a fixed and irreducible
concept, but as a process, which takes place over some
more or less open and variable dimensions of the designs
being compared. Under this definition, similarity is treated
as contextually dependent because the attributes that the
process uses as input can change according to certain cri-
teria. This view gives less explanatory force to similarity
because it demands analysis of the design attributes whose
similarity it computes in relation to context. In addition,
unannotated diagrams require rich rerepresentations at suc-
cessive levels of abstraction ~Marr & Nishihara, 1978!. In
cognition, this type of information processing is not only
sensitive to context but is also typically intuitive and sub-
jective and is not a function of strict mathematical models.
In considering these aspects of visual style, a similarity
measure should be capable of both incorporating design
semantics and operating in relation to the design task and
its requirements. Our approach therefore highlights the
importance of both a qualitative and contextually depen-
dent assessment.

2.1.1. Qualitative rerepresentation

Qualitative approaches to representation are a common
analysis paradigm in design reasoning applications. There
are multiple dimensions that could be modeled qualita-
tively, resulting in a variety of data sets. Here, we consider
as essential two general criteria distinguished by Schapiro
~1961! as being significant to the characterization of style:
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shape elements and attributes and their spatial relation-
ships. Using these criteria as our foundation, the objective
of the qualitative schema used here is to provide a rich set
of structural attributes ~for open and closed shapes! as well
as spatial relations incorporating adjacency and connected-
ness ~for shape aggregations!.

A canonical description of a corpus of design diagrams
should also be capable of mapping on to a variety of design
semantics. By encoding a diagram using multiple spatial
ontologies, a variety of feature semantics can be obtained
via pattern matching techniques to derive meaningful design
concepts. This approach to representation plays an impor-
tant role in simulating cognitively plausible comparisons
because the use of common-sense descriptors supports the
identification of designs that are not only structurally or
spatially close but also conceptually close, while not being
identical.

2.1.2. Method of comparison

In treating visual style as a multidimensional similarity
measure we propose to utilize artificial neural networks.
The underlying mathematical properties of most neural net-
works used in categorization are scalar distance-based algo-
rithms. Of these, the SOM is a typical representative. SOMs
can be used in a variety of ways, with a number of different
configurations being available ~Kohonen, 1995!.

The main advantage of using SOMs in design compari-
son is that they do not require target values for their outputs
and learning occurs unsupervised. Because there is no abso-
lute definition of the commonalities between design arti-
facts in terms of their spatial descriptions, there is no single
definitive exemplar to establish reliable target outputs that
can be used to train a supervised network. For this reason,
SOMs are commonly used to find and construct classifiers
and hence provide a continuous topological mapping between
the feature space and the 2-D space. This is an important
property of SOMs because they are able to represent a map-
ping, which preserves relations in the input space while
simultaneously performing a dimensionality reduction onto
the 2-D mesh of neural units in the competitive layer. The
competitive learning process in the SOM produces weight
vectors that correspond to distinct clusters of the input vec-
tors. The weight vectors can be considered to be the cluster
centers of the probability density function of the input data.

Although extensively used in other fields of research such
as text and image retrieval, SOMs have not been widely
utilized in design categorization systems. One application
known to us is a model proposed by Colagrossi et al. ~2003!
for categorizing works of art. Colagrossi and colleagues
measured the similarity of Mondrian’s Neoplasticist paint-
ings according to a selection of features. By consolidating
algebraic functions, a variety of parameters were processed
with only a few neurons in both input and output of the
SOM. Those parameters considered useful by the authors
included line type, line weight, and color. However, the
application of the SOM by Colagrossi et al. does not address

the complexities identified in Section 2.1. This is partly
attributable to its restricted application domain ~i.e., dis-
tinct design corpus!, as well as the lack of semantics and
contextual relevancies. Under this and other existing
approaches to similarity assessment in design, contextually
relevant categorizations ~e.g., relevant to the design task!
cannot be identified. SOMs as a measure of design simi-
larity can be improved by utilizing both qualitative de-
scriptions and contextual input. By describing designs
qualitatively using a number of different spatial ontologies
and treating the designer as an inseparable part of the assess-
ment process, it is possible to provide categorizations rela-
tive to some design task. The remainder of this paper presents
a model capable of identifying the visual style of diagrams
relative to a designer’s context.

3. MODELING QUALITATIVE
CONTEXT-DEPENDENT STYLE

The model of qualitative context-dependent visual style
~Q-SOM:RF! has three main components: qualitative feature-
based rerepresentation, SOMs, and RF. The framework pre-
sented in Figure 1 relies on the following consecutive stages:

1. recognition, extraction, and encoding of three differ-
ent levels of spatial attributes;

2. initial per feature selection of encoded spatial attributes
and a combination of feature lists;

3. categorization via unsupervised learning of design dia-
grams based on available features;

4. positive and negative feedback processes via the
observer’s input; and

5. resulting weight adjustment and recategorization of
design diagrams.

In the first stage of the framework in Figure 1, each dia-
gram in the design corpus is encoded using a qualitative
schema capable of describing sets of higher level semantics
corresponding to three prescribed spatial ontologies. Dur-
ing the second stage, feature sets undergo a selection pro-
cess as part of input preprocessing. A feature subset is
produced using either principal component analysis or
manual feature selection by the observer. The third stage
utilizes the feature subset as input to the SOM and catego-
rization occurs via unsupervised learning. The manner in
which distances in various feature spaces are weighted and
combined to form a scalar suitable for minimization creates
an opportunity to integrate contextual dependencies in the
architecture of the SOM. The fourth stage continues as an
interactive process that moves from unsupervised categori-
zation to one that is guided by the observer. The final stage
recategorizes diagrams that are similar to the observer’s
target diagram, meeting some set of target criteria, by order-
ing those diagrams whose distance to the target is minimal
in any or all feature sets.
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3.1. Rerepresenting multiple spatial ontologies

In utilizing SOMs for categorization, the homogeneity of a
category is enforced by the appropriate choice of feature
vectors. Because design diagrams are an explicit represen-
tation of the artifact’s geometry, it is reasonable to expect
that categorization be based on criteria that incorporate prop-
erties of 2-D geometry and have the following attributes:

• generic so that they have applicability over a wide
spectrum of application domains;

• characterize as many physical dimensions of the dia-
gram as possible, including orientation, distance, and
topology;

• have both local and global support, that is, they should
be computable on shape primitives and spatial rela-
tions around a landmark of significance;

• provide descriptions capable of higher level semantic
mappings;

• stable and invariant over large ranges of viewpoints
and scales; and

• reliable, robust, and readily detectable by procedures
that are computationally stable.

To satisfy these requirements the process of encoding
follows from physicality to symbol to regularity to feature.
Physicality refers to the graphic descriptions of diagrams
indicating the geometric information, and it is the prerep-
resentation upon which a process of information reduction
is applied successively over three levels of abstraction. Sym-

bol refers to the unrefined symbolic encoding of graphic
information; spatial attributes are recognized and con-
verted into qualitative symbol values. Regularity is the syn-
tactic matching stage in which regular or repetitious patterns
of encodings are identified and grouped, where the detec-
tion of characteristics relies on “chunking” ~Brown et al.,
1995!. Feature involves matching predetermined syntactic
patterns with meaningful design semantics. In the follow-
ing section we present a summary of the hierarchical encod-
ing method used in the model. The ensuing sections present
a summary of the encoding schema. For a more detailed
account refer to our other work ~Jupp & Gero, 2004, 2006!.

3.1.1. Morphology

Sign values for specifying specific qualities of isolated
shape structures are based on a description of attributes
encoded at a landmark vertex ~intersection! where proper-
ties for line contours are divided into two separate codes.
The first is a primary code and represents the relative angle.
The second is an auxiliary code and represents the relative
distance. The formal definitions of primary and auxiliary
codes are presented in Table 1 ~Gero & Park, 1997!.

Where an angular change occurs, landmarks are initially
set to P, separating convex and concave angles. The scan-
ning order for each vertex is set to a counterclockwise direc-
tion and the magnitude of the vertex is also measured in
this direction. The two primary codes L and I– represent a
vertex so that individual shapes can be described qualita-
tively. For complete descriptions and definitions of L and I–,
refer to Jupp and Gero ~2006!. The addition of codes cap-

Fig. 1. The Q-SOM:RF stages of unannotated 2-D diagram categorization.
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turing the relative length of contours provides a description
capable of distinguishing between shapes without increas-
ing the number of primitives unnecessarily.

Encoding results in a symbol string and a syntactic han-
dling method that employs a simple pattern recognition tech-
nique are used to group structural information in order to
identify semantic aspects of regularities. The descriptions
of patterns are based on the recognition of meaningful
structural features and patterns that reflect basic repeti-
tions; convexities can then be detected including indenta-
tion, protrusion, iteration, alternation, and symmetry.

Patterns of symbol sequences denoting specific catego-
ries of features are then identified that are familiar in con-
tour or identify some particular shape semantic. There are
two classes of defined semantics: simple and complex. Sim-
ple semantics include primary shape types that can be rec-
ognized and classed into subsequent labels such as rectangle,
square, L-shape, U-shape, T-shape, and cruciform. Com-
plex semantics incorporate domain-specific knowledge capa-
ble of mapping design concepts to features, for example,
architectural design concepts such as chambers and niches.
Because the patterns are derived from low-level structural
primitives, they are defined as local shape features ~LSFs!.
All LSFs are recognized by matching symbols with an exist-
ing database of features.

3.1.2. Topology

At the point of contact of two or more shapes there are
specific extraction and embedding relationships for the inter-
section of line contours ~Gero & Jupp, 2003!. Where this
occurs there is a transformation in representation that extends
the encoding of two line intersections to include multiple
lines. A distinction is made between the strictly morpholog-
ical descriptions and topological ones, that is, L and I– codes
and T, ⊥, and C codes. T, ⊥, and C codes carry information

regarding the diagram’s topology and describe a point of
contact of more than two contours. For complete descrip-
tions and definitions of T, ⊥, and C codes, refer to Jupp and
Gero ~2006!. To encode multiple line attributes, graph dia-
grams derived from the original contour representation are
used as the means by which to parse information in a con-
sistent manner. In this way, graphs provide a notion of hier-
archy and support bottom-up development.

The symbols used to describe edges of graphs concern
the disposition of physical intersections of lines that have
been used to generate the polygon fields that are sub-
sequently analyzed as graphs. Edges are labeled according
to the intersection type of the two vertices belonging to
the line contour it crosses, creating a “dyad” symbol. Dyad
symbols are collapsed and later augmented by values
describing the relative area of the shapes they bound. The
specification method provides a description of spatial
attributes in terms of shape adjacencies and area descrip-
tors. The formal definitions of dyad symbols are presented
in Table 2.

The representation of dyad symbols reveals distinctive
topological characteristics that are recognized from syntac-
tic regularities. Unlike morphological features, topological
ones contain variations based on a reference frame. Using
the dyad symbols in conjunction with a reference point,
three types of adjacency semantics can be defined includ-
ing complete adjacency, partial adjacency, and offset.

The regularities identified in dyad symbols produce fea-
ture semantics that are deemed intermediary shape features
~ISFs!, because the “neighborhood” of the description is
based on local attributes as well as information describing
topological properties. Like LSFs, ISFs are identified by
matching an existing feature database.

3.1.3. Mereotopology

The dual graph diagram is used to derive composite sym-
bol values in order to describe part–whole relations. Abstract-
ing the initial graph to its corresponding dual graph ensures
that unambiguous mappings can be derived. Once all map-
pings have been established, the dual graph is used to derive
feature semantics. This results in transformations that are
much clearer and easier to understand while still based,
by virtue of the mapping, on the original 2-D representa-
tion. The dual graph allows further derivation of spatial
relationships.

Table 1. Qualitative syntax for morphology

Angle Codes Length Codes

Numeric value range 0 � u � 2P �` � l � `
Landmark set $0, P% $�`, 0, `%
Interval set $~0, P!, ~P, 0!% $~�`, 0!, @0, 0# , ~0, �`!%
Q-code set $L, I–% $L, I–% ∧∨ $�, �, �%

Table 2. Dyad symbols: Qualitative syntax for topology

Angle Codes Area Codes

Numeric value range 0 � u � 2P �` � l � `
Landmark set $0, P% $�`, 0, `%
Interval set $@0, 0# , ~0, P!, @P, P# , ~P, 0!% $~�`, 0!, @0, 0# , ~0, �`!%
Q-code set $L, I–, T, ⊥, C% $L, I–, T, ⊥, C% ∧∨ $�, �, �%
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By labeling the new dual edges, “tuples” composed of
dyads ~defined at the previous level of topology! are cre-
ated. For each edge of the dual graph, labels are derived
from the symbol values identified at the previous level.
Labeled dual edges allow the identification of regularities
and feature semantics describing part–whole relationships
between two or more shapes. Because dual graphs are
undirected, regularities are identified from within the tuple
itself and not from a string. Formal definitions of dyads are
presented in Table 3.

The semantic features identified at this level account more
thoroughly for mereotopology. The regularities defined here
are similar to Allen’s 13 interval relations for the temporal
domain ~Allen, 1984!. Mereotopological feature semantics
include meets0met-by, overlaps0overlapped-by, starts0
finishes, contains0contained-by, equals, and during. Allen’s
interval calculus has previously been extended to other visual
domains ~Güsgen, 1989; Mukerjee, 1989!, unlike previous
approaches. Here, it is not restricted to rectangles and,
although it is strictly based on orthogonal shapes, it is still
capable of handling arbitrary multisided forms.

Like the features identified for morphology and topol-
ogy, spatial semantics derived from visual patterns are iden-
tified and domain semantics are integrated using design
concepts that map onto spatial features. Continuing with
the example application of the architectural domain, spatial
concepts relating to the use or behavior of a space such as a
corridor, quadrangle, and courtyard are mapped to patterns
detected in each tuple.

Because all features are derived from higher level spatial
primitives, they are defined as global shape features ~GSFs!.
The three-level schema summarized here is characterized
by the class aspect of handling and labeling design con-
cepts, and it is useful when dealing with different design
categorization scenarios. The concession of the approach is
that it is essential to have a large database of concept to
feature mappings. Despite this requirement, it is still an
efficient and robust method of rerepresentation.

3.1.4. Example encoding

Figure 2 shows an example of an encoded design dia-
gram labeled according to the qualitative encoding sche-
mata. The example chosen is a simple 2-D residential plan
drawing of the Farnsworth House, which was designed and
completed by Mies van der Rohe. The figure illustrates four

stages, where the initial representation of the design dia-
gram is transformed into vectorial format and is then fol-
lowed by three consecutive stages of encoding. The mapping
from physicality to symbol to regularity to feature involves
detecting regularities and matching features from the geo-
metric information so that specific patterns correspond to
topologies of known feature semantics ~Brown et al., 1995!.

3.2. Categorization using SOMs

SOMs follow a process in which each neuron is assigned a
pattern to which it is sensitive. Appearance of the same or a
similar pattern on the input results in a high activation of
that neuron. Thus, similarity is therefore considered as the
opposite of distance. The architecture of a typical SOM
consists of two layers, a layer of input nodes and a compet-
itive layer consisting of neural units or Kohonen’s units
~Kohonen, 1982!. A weight vector is associated with each
connection from the input layer to a neural unit. The neural
units in the competitive ~and cooperative! layer are orga-
nized in a regular geometric and the units are intercon-
nected with their local neighbors.

In the case of identifying styles, SOMs are useful because
they are able to adapt neurons in such a way that they serve
as good prototypes of the input data for which they are
sensitive. Using a winner-take-all network, the input vector
is broadcast in parallel to all neurons and for each input
vector the most responsive neuron is located. The weights
of this neuron and those within a neighborhood around it
are adapted to reduce the distance between its weight vec-
tor and the current input vector. Thus, the competitive phase
of the learning algorithm employed in the SOM determines
a winning neural unit whereas the cooperative phase of the
learning algorithm updates the weights of the winner and
the neural units in its neighborhood. The SOM is able to
learn to recognize different patterns in the input data and
allocate them to appropriate “bins” ~styles! in the output
array, each bin representing a specific pattern. Therefore,
we see the output as an array of “classification bins” ~each
representing a specific pattern in the input data! that are
arranged in an ordered way such that near neighbors repre-
sent similar styles and distant neighbors represent different
styles.

However, because no one single “correct” answer exists
or will ever exist to the central issue of a definition of visual

Table 3. Tuple symbols: Qualitative syntax for mereotopology

Adjacency Codes

Numeric value range 0 � u � 2P ∧∨ 0 � u � 2P ∧∨ �` � l � `
Landmark set $0, P% ∧∨ $0, P % ∧∨ $�`, 0, `%
Interval set $@0, 0# , ~0, P!, @P, P# , ~P, 0!% ∧∨ $~�`, 0!, @0, 0# , ~0, �`!%
Q-code set $L, I–, T, ⊥, C% ∧∨ $L, I–, T, ⊥, C% ∧∨ $ �, �, �%
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Fig. 2. An example of a qualitative abstraction: physical, symbol, regularity, and feature mapping for Mies van der Rohe’s Farnsworth House.
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design style, the ability to combine the distances calculated
in different feature spaces provides the critical point where
RF can be incorporated. The SOM’s matching process can
therefore also be driven by contextual considerations, where
the observer is able to determine the relative importance of
distinguishing features by adjusting their weights. When
contextual information is used for determining the impor-
tance of distinguishing features, the correlation between the
designer’s requirements and the styles identified can there-
fore increase.

3.2.1. RF approach

RF is the iterative refinement of an initial SOM catego-
rization. It is provided using dynamic weight adjustments
that allow the SOM to learn the optimal correspondence
between the high-level concepts that the observer uses and
the feature semantics automatically derived from 2-D dia-
grams. In text and image-based research, RF is an estab-
lished approach that enables contextual dependencies to be
integrated for document and image retrieval. This approach
has been adopted recently by researchers using SOMs to
retrieve information from large databases. The WebSOM
~Honkela et al., 1998! and PicSOM ~Oja et al., 1999! sys-
tems have implemented RF by adjusting the weights of
different textual terms when matching text with the docu-
ments or images of a database.

In an analogous manner, we sought to integrate RF with
a SOM in the design domain, by treating this process as a
form of learning that moves from unsupervised learning to
being partially supervised. The model tries to learn the
observer’s visual preferences by adjusting the feature weights
accordingly. Feature weights in subsequent categorizations
are adjusted using the information gathered from the
observer’s feedback. The observer’s feedback guides the
system in the following rounds of the assessment process to
better approximate their present design requirements and
preferences.

The task of assigning specific weights that coincide with
the observer’s perception of each feature set is not feasible.
Therefore, the initial results from the unsupervised cluster-
ing are displayed using the topographic map so that weights
can be derived from user input. It is crucial that the results
from the initial round are categorized in a manner such that
a level of visual similarity is evident to the observer, this
being the primary objective of integrating qualitative encod-
ing. The observer is not required to explicitly specify weights
for different features, and instead weights can be formed
implicitly from the positive and negative values assigned
to a diagram or cluster of diagrams. This process follows,
whereby

1. an unsupervised SOM categorizes a design corpus,
2. the first round of results are displayed and stored to

avoid the system entering a loop,
3. the observer indicates which diagrams are to some

extent relevant to the present design context and which

are not and assigns positive and negative values
accordingly,

4. the adjusted weights are utilized in a reinitialized SOM
and the design corpus is recategorized,

5. the second and any subsequent round of results are
displayed to the user and stored, and

6. the process continues until the observer is satisfied.

4. IMPLEMENTATION OF Q-SOM:RF

Q-SOM:RF is implemented as five separate modular com-
ponents: automated encoding and feature extraction, pre-
processing and identification of feature subsets, unsupervised
categorization, observer feedback, and weight adjustment
and updating for recategorization. The following sections
describe each of the five stages.

4.1. Decomposition and representation (DeREP)
and abstraction and representation (AbREP)
operations

DeREP divides the problem into smaller more tightly con-
strained subproblems by partitioning shapes into vertices
and contours. To achieve this, the process eliminates the
primary source of complexity by separating unrelated vari-
ables into distinct shapes. This process results in a compact
and easily understandable description of the structure of the
diagram.

The sequence of vertex labeling occurs as an iterative
process: contour traversal, vertex detection, value assign-
ment, contour traversal, and so forth until circuit comple-
tion ~shape closure!. The problem of computing all possible
circuits in the diagram so that each circuit contains all ver-
tices exactly once is achieved by finding all Hamiltonian
circuits ~Garey & Johnson, 1983!. A contour cycle ~i.e.,
closed loop! algorithm is implemented in which the agent
starts the cycle from each point in the diagram and visits
each adjacent vertex exactly once until a closed shape is
generated or until a maximum branch limit is reached. This
process iterates until all possible shapes are found. Once all
closed shapes are found starting from all points in the dia-
gram, the final set is filtered to eliminate shapes containing
other shapes so that the resulting set contains only the small-
est shape units. The perimeter shape is then found as the
sum of all of the smallest shape units.

As line contours are scanned vertex by vertex, the angle
and length magnitudes of the previous line segment become
the landmark point for the following segment; that is, land-
marks and intervals are set each time a new contour is com-
pared. A landmark is set to the numeric value of the
magnitude of the previous segment angle or length and a
ratio is provided to distinguish the relative difference. Fig-
ure 3 provides a sample diagram and the resulting closed
shapes that are detected.

The pattern recognition system analyzes, locates, and reg-
isters specified sequences ~chunks! of syntactic structures.
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A systematic search for every possible pattern is necessary
for the given shape or spatial description. Features already
stored in a database identify syntactic patterns via the search
and matching process examination of the type and occur-
rence of chunks, and their structure as a sequence is then
labeled ~Section 3.1.1, LSF!.

The DeREP process is followed by AbREP, which auto-
mates the encoding of all subsequent graph representations.
The systematic processing of topological and mereotopo-
logical attributes requires the mapping from physicality to
symbol to follow a similar conversion process from the
graphic state to the symbolic state as implemented in DeREP:
contour traversal, vertex detection, value assignment, con-

tour traversal, and so forth. AbREP uses an array of sym-
bols describing intersections of line contours, and labeling
relies on the data structures built from the previous stage of
encoding.

An important aspect of AbREP is that sets of shape-
describing arrays are analyzed based on the relationship
between each shape. Shape adjacencies are captured using
a description of vertex arrays. An “abstract landmark”
~Fig. 4a! is created as an array and labeled according to a
vertex’s specific characteristics. This is achieved by iterat-
ing each set of vertices ~shared by one line! one at a time
and traversing every pair. Because this stage of encoding
rerepresents shape adjacencies, arrays are checked, so that
if the vertex belongs to only one closed shape, it is ignored
~i.e., the external perimeter!. If the vertex is shared by two
or more shapes, then the vertex label is determined based
on the number and direction of lines that compose the ver-
tex as shown in Figure 4b. This is a reduction process
whereby some structural information about the shape is lost.

Fig. 3. An original diagram of a Hamiltonian circuit and the resulting
closed shapes.

Fig. 4. Shape encoding for ~a! an abstract landmark and ~b! shape adja-
cency relations.
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Once the new arrays are derived and labeled, a representa-
tion of adjacencies is captured. At this level, arrays consti-
tute an approximate representation of the topology of shapes.

The next stage of AbREP is a pattern matching process.
The mapping from symbol to regularity to feature involves
detecting regularities and matching features from the spa-
tial relations so that sets of symbols correspond to specific
adjacency relations ~Section 3.1.2, ISF!. At the implemen-
tation level the pattern recognition system locates and reg-
isters specified dyad symbol values stored in a database by
a set of conditional or if–else rules. The details of these
algorithms are available in previous work ~Jupp & Gero,
2006!. A dyad symbol value is assigned to each set deriving
a new label.

Once the new set is formed, the area of a shape is calcu-
lated and compared to the area of the adjacent shape to
obtain a description of the relative area. As a result, the list
of area magnitudes combined with their adjacency types is
created for each abstract landmark. From the dyad of sym-
bol values, specific mereotopological relations can be iden-
tified that produce another set of codes: tuple symbol values.
The system iterates through the set of tuples inspecting their
type and, like the previous stage, specified features stored
in a database are located and registered by a set of condi-
tional or if–else rules ~see Jupp & Gero, 2006!. Order out-
side the tuple itself is not considered and regularities in
repetition are no longer determined via chunking because
each symbol value has significance ~Section 3.1.3, GSF!.
Using this schema, qualitative descriptions of three differ-
ent spatial ontologies are represented as distinctive charac-
teristics at the categorical level.

4.2. Preprocessing feature sets

Each type of feature representation identified using the
DeREP and AbREP operations ~morphological, topologi-
cal, or mereotopological! can be used to create a meaning-
ful subset of features. At this level of implementation the
Q-SOM:RF model has two approaches to preprocessing of
feature sets: dimensionality reduction can be undertaken
manually by the user or by using a statistical approach.

In manual selection of feature sets, subsets can be cre-
ated directly by selecting those features of interest to cat-
egorization. These may also be based on the features sets
derived from a target diagram ~if known!. For example, an
observer may wish to identify the visual style of design
precedents based on certain topological relationships, such
as having complete adjacency, and in conjunction with cer-
tain morphological constraints, such as an external or bound-
ing cruciform shape and containing all internal rectangular
shapes.

Using the statistical approach, feature subsets can be cre-
ated automatically using correlation-based feature selec-
tion ~CFS; Hall, 2000!. CFS provides a filter-based feature
selection algorithm that uses correlation among features to
select the best features for the given subset. CFS evaluates

the worth of a set of attributes by considering the individual
predictive ability of each feature along with the degree of
redundancy. Here, the CFS algorithm is used in conjunction
with a best-first search method.

4.3. Unsupervised categorization

To interpret, categorize, and visualize the multidimensional
data sets obtained from the previous stages, a SOM is imple-
mented. The SOM learns unsupervised and initially catego-
rization begins with a corpus of reference diagrams. This
can be expressed by the following.

Let the design corpus, DC containing k number of refer-
ence diagrams, d, to be categorized be equal to:

DC � $d1, d2 {{{ dk % � C1, ~1!

where CI denotes the initial categories found by the network.
By denoting each design diagram as dn, n � 1, 2, . . . , k,

a feature vector fi is associated with each unit i . If there are
j different feature representations for each diagram, then,

f m~dk ! � fi
m , m � 1, 2, 3, . . . , j. ~2!

The map consists of a regular “city-block” grid of neu-
rons and categorization ~to obtain CI! follows three steps:

1. the distances between the input vector x and all refer-
ence vectors ~i.e., weight vectors! are computed using
a Euclidean distance measure,

2. a winner ~i.e., a neural unit for which the correspond-
ing weight vector is at a minimum distance from the
input vector! is determined, and

3. the weight vectors corresponding to the winner and
the neural units in its topological neighborhood are
updated to align them toward the input vector.

Thus, the SOM then attempts to represent the corpus of
diagrams with optimal accuracy using the selected subset
of features.

4.4. Distinguishing relevant visual styles

The correspondence between high-level concepts and design
features can often depend on the context of the observer,
and every design categorization is different because of the
hidden conceptions in the relevance of diagrams and their
mutual similarity. This is the rationale behind the fourth
stage where, if the design clusters selected by the observer
map closely to each other on the SOM, then the correspond-
ing feature performs well on the present categorization and
the relative weight of its opinion is increased.

By marking on the map the categories the observer deems
relevant, we are able to adjust each unit or node assigned a
positive and negative value, depending on whether the
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observer has selected or rejected the corresponding design
classification. The marking operation indicates correctly clas-
sified design clusters as positive. Diagrams are accumu-
lated into two sets during the categorization process and
weights are adjusted in succeeding iterations, moving from
an unsupervised SOM to one that is partially supervised or
guided.

4.4.1. Positive and negative feedback

The selected and rejected diagrams result in positive and
negative values on the best-matching units. Positive and
negative responses are normalized so that their sum equals
zero ~Laaksonen et al. 2000!. Because initial categorization
clusters diagrams as an unsupervised process, as soon as
the observer’s feedback produces positive values, the dia-
grams are classified according to those feature subsets cor-
responding to the positive feedback. The design diagrams
associated with these units are then deemed to be good
candidates for the next categorization.

This stage can be formalized by the corpus’ nonintersect-
ing positive d� and negative d� diagrams, and the initial
categories @labeled in Eq. ~1! as CI# are defined by

CI

d~d� � d�!
, ~3!

and categorization of the design corpus most similar to the
positive marked designs is then defined as

min!

CI

c � (
k�1

K

(
m�1

M

(
n�1

N�

wm cm~fm~dI!fm~dn
� !!, ~4!

where wm are the weights of individual features and cm~{{{!
is the Euclidean distance function with feature type fm . Fit-
ting of feature vectors is carried out by a sequential regres-
sion process, where s � 1, 2, . . . , n is the step index such
that for x~s!, the first index i � i ~x! of the best-matching
unit and all feature vectors or a subset of them that belong
to those nodes centered around node i � i ~x! are updated
~Laaksonen et al., 2000!.

5. EXPERIMENTS

Two classes of experiments were carried out to assess the
utility of the model. The first experiment tested the discrim-
inatory power of qualitative schema combined with the
SOM’s ability to categorize encoded diagrams using spe-
cific feature sets ~i.e., Q-SOM without RF!. The second
experiment tested the complete system ~i.e., Q-SOM:RF!
in which the relevance of categorizations is provided in an
observer’s feedback in the context of a design scenario.

5.1. Design corpus

The design corpus used in all experiments consists of 2-D
architectural design diagrams. The corpus is relatively large,

totaling 131 diagrams and representing six architects: Pal-
ladio, Frank Lloyd Wright, Mies van der Rohe, Le Cor-
busier, Louis Kahn, and Mario Botta. The level of complexity
of the corpus is considered to be relatively high because,
although all diagrams are from a single domain ~architec-
ture!, the corpus consists of designs from a number of archi-
tects and several different building typologies including
small- and large-scale residential, as well as public buildings.

The two studies undertaken used networks that have been
trained using 36 diagrams, which comprises six designs
randomly selected from each of the six architects. Exem-
plar diagrams from each architect and a sample of the fea-
ture sets extracted ~as raw unprocessed data! are provided
in Table 4.

There were 37,367 features extracted from the design
corpus and an average of 287 features from 59 sets associ-
ated with each diagram. The characteristics of the feature
sets in relation to each architect are shown in Table 5.

5.2. Experiment 1: Q-SOM

The first experiment is designed to evaluate the effective-
ness of the derivation of semantic features and ascertain the
benefits of dimensionality reduction in diagram categoriza-
tion. We trained, tested, and evaluated networks using a
variety of network topologies and different feature subsets.

5.2.1. Preprocessing

Preprocessing of input data was undertaken using the
statistical feature selection method outlined in Section 4.2,
and we utilized CFS to evaluate subsets of features by the
correlation among them. In the first study we used only a
rerepresentation of morphology ~i.e., LSF! extracted from
the corpus for dimensionality reduction and eight LSFs were
identified as significant by CFS: protrusion-0, protrusion-3,
iteration-2, alternation-1, symmetry, square, cruciform, and
niche. From this point, we refer to all networks created
using this subset as SOML.

In the second study, dimensionality reduction included
all feature sets extracted using the DeREP and AbREP oper-
ations. In addition to the eight LSFs identified above, four
GSFs ~contains0contained-by, overlaps0overlapped-by,
equals, and courtyard! were evaluated as an optimal subset
of attributes for clustering. It is interesting that no ISFs
were identified. Categorization therefore relies on a combi-
nation of feature classes in which the ratio of local to global
features is 2:1. We refer to all created networks using this
subset as SOML�G.

5.2.2. Training

For all Q-SOM experiments, two different feature vector
models were constructed using the subsets identified in the
previous section. In all SOML networks each diagram had
an average of 35 features and the final vector model con-
tained 1239 feature instances, which created a unique fea-
ture vector for each 2-D plan diagram. In SOML�G networks
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each diagram contains an average of 50 features and the
final vector model contained 1812 feature instances com-
prising feature vectors from 1239 LSF and 573 GSF
instances.

In addition to the two different feature vector models,
training was also varied in terms of the topology of the
network and the number of cycles, where 500, 1000, and
1500 training cycles were used. Table 6 presents the train-
ing variables for each Q-SOM.

Neither SOML nor SOML�G utilize any other informa-
tion about the diagram, such as the architect, building type,
period, and so forth. Because there is no access to prior
knowledge regarding the number of clusters in the data, the
SOM proceeds unsupervised.

Based on a visual inspection, the 5 � 5 SOML trained for
500 cycles performed the best and resulted in the clusters

shown in the topographic map in Figure 5. The results dem-
onstrate that categorization of diagrams can be roughly linked
to the architect as indicated by the map and labeled key in
Figure 5, which shows each architect represented by a sin-
gle letter label. A node may represent more than one dia-
gram, but with different activation values. In some cases
the node contains two architects ~approximately 20%! and
each label has been assigned on the basis of the dominant
feature vector. It was also observed from the map that the
network appears to have clusters distributed separately and
corresponding to the same architect, including Wright ~B!,
Kahn ~E!, and Botta ~F!.

The 5 � 5 SOML�G trained for 500 cycles also resulted
in well-defined clusters, as shown in Figure 6. Like the
results obtained for the 5 � 5 SOML, the results observed in
the topographic map show that categorization of diagrams

Table 4. Exemplar diagrams based on Architect

Exemplar Diagram
Exemplar

LSF
Exemplar

ISF
Exemplar

GSF Architect
Building
Typology Period

Alternation, symmetry,
square, rectangle,
chamber, niche

Complete adjacency,
partial adjacency

Meets0met-by,
contains0contained-by,
overlaps0overlapped-by,
starts0finished-by,
corridor, portico

Palladio Residential,
public

1528–1580

Indentation, protrusion,
iteration, alternation,
square, rectangle,
L-shape, T-shape,
niche, stepped
forward, hearth

Complete adjacency,
partial adjacency,
offset

Meets0met-by,
contains0contained-by,
overlaps0overlapped-by,
starts0finished-by,
equals, corridor, portico

Frank Lloyd
Wright

Residential 1888–1959

Indentation, protrusion,
iteration, alternation,
symmetry, rectangle,
U-shape

Complete adjacency,
partial adjacency

Contains0contained-by,
overlaps0overlapped-by,
starts0finished-by, during,
equals, corridor, veranda

Mies
van der Rohe

Residential,
public
~religious,
library,
theatre!

1912–1958

Indentation, protrusion,
iteration, alternation,
symmetry, square,
rectangle, U-shape,
L-shape, niche,
stepped backward

Complete adjacency,
partial adjacency

Contains0contained-by,
overlaps0overlapped-by,
starts0finished-by, during,
equals, portico, courtyard

Le Corbusier Residential,
public
~religious!

1908–1965

Indentation, protrusion,
iteration, alternation,
symmetry, square,
rectangle, U-shape,
chamber, locked
space, niche,
gallery, hearth

Complete adjacency,
partial adjacency,
offset

Meets0met-by,
contains0contained-by,
overlaps0overlapped-by,
starts0finished-by, equals,
courtyard, quadrangle

Louis Kahn Residential,
public
~religious,
library,
theatre!

1951–1969

Indentation, protrusion,
iteration, alternation,
symmetry, square,
rectangle, L-shape,
chamber, locked
space

Complete adjacency,
partial adjacency,
offset

Meets0met-by,
contains0contained-by,
overlaps0overlapped-by,
starts0finished-by,
equals, courtyard

Mario Botta Residential 1969–1996
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can be linked to the architect. The topological ordering of
the diagrams in the 5 � 5 SOML�G shows a better result
than obtained for the 5 � 5 SOML training. This is evident
from the separate clusters and the distinctive change of clus-
ters across the map, where Kahn’s diagrams ~E! are located
in the upper left-hand corner of the map and the architect
gradually changes toward the bottom-right corner to Le Cor-
busier ~D!. Although the 5 � 5 SOML�G also distributed
two clusters for Wright’s designs ~B!, clustering is more
consistent across individual architects.

Significantly, in the 5 � 5 SOML�G all nodes except for
the node marked X contain input vectors from the same
architect. This can also be observed from the activation
weights given to each individual input vector. The SOML

input vectors also have much lower activations when com-
pared to the SOML�G ones. Testing was carried out to eval-
uate the clustering effectiveness of the trained networks.
The objective of testing was to evaluate the success of each
trained network using the two different approaches to con-
structing feature vectors ~i.e., manual versus CFS selection!.

5.2.3. Testing

The SOML and SOML�G networks were tested and their
clustering ability was observed. As in training, the 3 � 3,
5 � 5, and 10 � 10 maps were all tested.

To analyze the results of categorization between the topo-
graphic maps, we utilized techniques from conventional
text-based categorization analysis including Precision
~Slonim et al., 2002!, the Jacaard ~JAC! method ~Downton
& Brennan, 1980!, and the Fowlkes–Mallows ~FM!method
~Fowlkes & Mallows, 1983!. Because classification was
unsupervised, it was not possible to apply these evaluation
methods directly as would be the case for supervised learn-
ing. To analyze the results of testing unsupervised SOMs, it
is necessary to utilize the most dominant label of each clus-
ter ~obtained during training! for all diagrams. For this rea-
son, the labels ~architects! identified from training were
maintained in order to assign categories. The “microaver-
aged” precision matrix method ~Slonim et al., 2002! was
first used to evaluate each network:

Table 5. Characteristics of each feature set based on Architect

Type
~Architect!

Ave. No.
Features

Total No.
Features

No.
Diagrams

Palladio 254 3,810 15
Frank Lloyd Wright 306 18,360 61
Mies van der Rohe 268 4,288 16
Le Corbusier 221 1,547 7
Louis Kahn 327 6,213 19
Mario Botta 243 3,159 13

Fig. 5. Training results for SOML clustering.

Table 6. Characteristics of different Q-SOM networks used in
diagram classification

Vector Models
Network Characteristics

Feature
Subset

No. Input
Nodes Topology Training Cycles

SOML 8 3 � 3, 5 � 5, 10 � 10 500, 1000, 1200
SOML�G 12
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P~D! �
(
c '
a~CI, d!

(
c '
a~CI, d!� b~CI, d!

, ~5!

where for each category CI � DC , a~CI, d! is defined by
the number of diagrams correctly assigned to CI, and
b~CI, d! defines the number of diagrams incorrectly assigned
to CI.

The well-established JAC and FM methods were also
used to evaluate cluster quality:

JAC �
TP

TP � FP � FN
~6!

and

FM �
TP

M~TP � FP!� ~TP � FN!
, ~7!

where TP is equal to the number of diagrams that the clas-
sifier correctly classified as belonging to a category ~i.e.,
true positive!, FP is the number of diagrams that the clas-
sifier classified as belonging to that category ~i.e., true pos-
itives and false positives!, and FN is the pairwise number of
false negatives.

The three topologies of SOML were tested and each
network’s ability to categorize the entire design corpus was
analyzed. The 5 � 5 map was found to have the best results
for all evaluation techniques measured, as shown in Table 7,
with Precision and JAC results being comparable. The FM
results also showed how the 5 � 5 map outperformed both
the 3 � 3 and the 10 � 10 maps.

Then, we tested Q-SOML�G. Again the 5 � 5 map had
the best results for all evaluation techniques measured. As
expected, 5 � 5 SOML�G produced better results for preci-
sion, JAC, and FM than SOML ~see Table 8!.

5.2.4. Cluster evaluation

The nature of the categories produced by the two best
performing networks ~5 � 5 SOML and SOML�G! are dif-

Fig. 6. Training results for SOML�G clustering.

Table 7. Clustering ability of different map topologies trained
on SOML feature subsets

Study 1: Q-SOM Precision JAC FM

SOML 3 � 3 0.49 0.29 0.37
SOML 5 � 5 0.62 0.38 0.45
SOML 10 � 10 0.53 0.32 0.30

Table 8. Clustering ability of different map topologies trained
on SOML�G feature subsets

Study 2: Q-SOM Precision JAC FM

SOML�G 3 � 3 0.61 0.46 0.42
SOML�G 5 � 5 0.74 0.53 0.50
SOML�G 10 � 10 0.60 0.46 0.39
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ficult to evaluate, except via visual ~subjective! processes.
Recently, conventional clustering techniques ~e.g., K-means,
EM, hierarchical, etc.! have been used to resolve this prob-
lem. Ahmad and Vrusias ~2004! demonstrate the effective-
ness of using conventional statistical clustering techniques
in evaluating the output of maps of unsupervised networks.
Such sequential clustering, which is first clustering using
an unsupervised network and then clustering the output map,
facilitates visualizing clusters that are otherwise implicit in
the output map.

We used a sequential clustering method, Q-SOM fol-
lowed by K-means, to examine the categories obtained. An
application of K-means clustering on the output of the 5 �
5 SOML and SOML�G maps shows how they found data in
the proximate types that are approximately defined by both
architect and building type. Table 9 compares K-means clus-
tering of all 131 plan diagrams for the 5 � 5 SOML and
SOML�G networks. The table shows the distribution of plan
diagrams where the feature vector models can be used to
cluster diagrams according to an architect and their residen-
tial or public building types. Using the sequential clustering
method, Table 9 shows that clustering of the design corpus
based on the LSF subset ~SOML! did not prove to be as
defined. Diagrams associated with both architect and build-
ing type ~represented using the combined LSF and GSF
subset! shown in Table 9 were generally well clustered,
except for Le Corbusier’s designs where no distinct clusters
are distinguishable. It is significant for both SOML and

SOML�G networks that Wright’s designs are distinguished
relative to two periods of Wright’s work, the Prairie and
Usonian houses, where clustering defines 87% of Wright’s
Prairie design diagrams and 84% of his Usonian.

5.3. Experiment 2: Q-SOM:RF

Based on the results obtained from the 5 � 5 SOML�G, the
final experiment trained and tested a network’s ability to
categorize the same corpus using the complete Q-SOM:RF
model to obtain clusters that are relevant to some design
context. Preprocessing was again used in dimensionality
reduction to create feature vectors, and categorization pro-
ceeded as a sequential process based on manual selection of
diagrams. In this experiment, categorization was evaluated
in the context of a design task where the observer ~J.J.!
provided positive and negative values to the units of the
network.

5.3.1. Design context

A simple design task was formulated using a brief spec-
ifying the requirements of a residential plan design for a
family of four. The brief specified alterations and additions
of an existing residential design to increase sleeping and
living spaces, according to the following specifications of
building layout: additional sleeping areas to accommodate
two children; larger lounge, dining, and kitchen areas; and
an outdoor living area.

A conceptual design sketch was then produced using the
systems’ digital drawing interface that constrains sketching
to the orthogonal axis. Figure 7a presents the design sketch
produced as a result of the brief ’s requirements, and Fig-
ure 7b shows the sketch as interpreted by the vectorization
process of the system. The sketch was encoded ~all labels
are ignored! and included in the design corpus with the
other 131 plan diagrams.

5.3.2. Preprocessing

In this experiment, the original ~raw! feature set was pro-
cessed manually. Manual processing was utilized because it
enables the selection of a feature subset relevant to the design
task. Because it was the aim for categorization to be grounded
by the design task, the visual style of diagrams could be
determined based on those features extracted from the design
sketch shown in Figure 7. Therefore, from the 59 possible
feature classes, selection of one or many feature subsets to
create vector models was facilitated from the encoding of
the design sketch. Salient features were identified from the
local, intermediate, and GSFs contained within the design
sketch. The feature classes within the design sketch were
then used to create feature vector models to classify the
design corpus. A total of 31 feature classes were extracted
from the design sketch, which were distributed between
local, intermediate, and global feature classes as 22, 3, and
6, respectively. All features extracted from the design sketch
are provided in Table 10.

Table 9. Distribution of 131 plan diagrams using K-Means
clustering on SOML and SOML�G

Arch. & Bldg. Type A B C D E F G H I J

Clusters by K-Means on SOML

A Palladio res. & pub. 9 2 3 1
B Wright res. ~Prairie! 6 19 2 1 5 1
C Wright res. ~Usonian! 7 14 4
D Mvd Rohe res. 1 2 3 1 1 1
E Mvd Rohe Pub. 1 4 1 2
F Le Corbusier Res. 1 3
G Le Corbusier Pub. 3 0
H Kahn Res. 2 1 8
I Kahn Pub. 1 1 1 5
J Botta Res. 1 2 1 2 7

Clusters by K-Means on SOML�G

A Palladio res. & pub. 12 1 1 1
B Wright res. ~Prairie! 1 25 2 1 5 1
C Wright res. ~Usonian! 4 19 1 2 1
D Mvd Rohe res. 1 1 6 1
E Mvd Rohe pub. 5 1 2
F Le Corbusier res. 1 3
G Le Corbusier pub. 1 2
H Kahn res. 1 10
I Kahn pub. 1 1 7
J Botta res. 2 11

262 J. Jupp and J.S. Gero



Using the reduced feature subset, it is also possible to
identify other feature subsets that may be deemed to be
more salient in relation to design requirements. To demon-
strate the utility of selecting a user-specific subset from the
design sketch, a feature subset is shown in the final column
of Table 10, where 11 feature types have been selected
based on the preferences of the designer. In addition, three
other feature subsets were selected: LSF, ISF, and GSF.

Five feature vector models were then constructed and
network training was also varied in terms of the number of

cycles, where 500, 1000, and 1500 training cycles were
again used. Table 11 shows the final training variables for
each of the five qualitative feature-based SOMs.

5.3.3. Training and testing using RF

All five feature vector models were trained using the 5 �
5 topography. However, before testing could commence it
was necessary to make explicit the targeted categories. In
order to demonstrate and then evaluate the performance of
the five feature vector models in conjunction with RF, a
category of designs had to first be defined within the corpus
as the desired target~s!. We selected two targets: Wright’s
Usonian period and Kahn’s residential designs. The targets
contained 27 and 11 plan diagrams, respectively. Each cat-
egory was selected based simply on observer preferences.
Neither target was necessarily more correct or valid than
any other potential category of designs. However, because
Wright’s Usonian and Kahn’s residential designs could now
be explicitly targeted by the observer using RF, it was then
possible to evaluate how well the system refined sequential
categorization.

Based on positive and negative feedback, each tested SOM
resulted in a recategorization of the corpus where the iter-
ative process continued until the observer was satisfied.
The clustering of each model was produced by returning
the best-scoring diagrams in each iteration step from the
selections of the relevant designs among them. Results from
testing the five networks showed that the SOM that utilized
“All Features” performed the best, and provided well-
defined clusters. The remaining networks also resulted in
well-defined clusters; however, the categorizations observed
~on visual inspection! in these topographic maps did not
appear to be as well defined.

The formal evaluation methods used here rely on JAC
and FM measures to analyze the results of each SOM. The
first map, All Features, returned the highest performance
and the second map, “User Subset,” also produced compa-
rable results for JAC and FM measures. The performance
of the remaining three maps was lower, as shown in Table 12.

The results of the best performing network, the 5 � 5 All
Features, is illustrated in Figure 8, which was trained for a
total of 1000 cycles. The figure shows that the categoriza-

Fig. 7. The design sketch: ~a! an original sketch of a residential dwelling
and ~b! contour vectorization.

Table 10. Reduced feature subset and user subset

Features Extracted by DeREP & AbREP Subset

LSF ~geometry based! Indentation 0, 1, 2, 3 ✘, ✘, �, ✘

Protrusion 0, 1, 2, 3 ✘, ✘, �, �

Iteration 0, 1, 2, 3 ✘, ✘, ✘, ✘

Alternation 0, 1, 2, 3 ✘, ✘, �, ✘

Symmetry 0, 1, 2, 3 ✘, ✘, ✘, ✘

LSF ~domain-based semantics! Stepped forward �

Niche �

ISF ~geometry-based! Complete adjacency ✘

Partial adjacency �

Offset �

GSF ~geometry based! Contains0contained-by �

Overlaps0overlapped-by ✘

Starts finished-by ✘

GSF ~domain-based semantics! Corridor �

Portico �

Stepped ✘

Table 11. Characteristics of different neural network systems
used in diagram classification

Vector Model Network Characteristics

Feature Subset No. Input Nodes Topology Training Cycles

All features 31 5 � 5 500, 1000, 1500
User subset 11
LSF 22
ISF 3
GSF 6
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tion of diagrams can be roughly linked to two architects as
indicated by the map and labeled key.

The labeled key in Figure 8 indicates Wright and Kahn.
It also shows other architects whose dominant feature vec-
tors defined some labels. Unlike previous results shown in
Experiment 1 ~Section 5.2!, there are multiple nodes of the
map that contain input vectors from different architects. It
is significant that only 5% of the nodes where Wright and
Kahn’s diagrams are clustered contain another architect
whereas the majority of the remaining nodes contain more
than one architect ~approximately 50%! and include some
of Wright’s and Kahn’s diagrams.

5.3.4. Cluster and feature subset evaluation

We evaluated the performance of the networks that used
the Q-SOM:RF process using a method that resembles “tar-
get testing” developed by Cox et al. ~1999!. Here, instead
of a single target, testing evaluated the two targeted catego-
ries: Wright’s Usonian and Kahn’s residential designs. To
obtain the performance measure ~t!, the targeted category
~TC! of designs defined by the user’s requirements ~r! is
used. For each diagram in the TC, the total number of dif-
ferent clusters categorized by the network until the final
category is reached was recorded. From these data the aver-
age number of clusters formed before the final correct

response was divided by the total number of diagrams ~k!.
The performance measure of the TC was then given by

t � � w~C, A!

2
, 1 �

w~C, A!

2
c� , ~8!

where w~C, A! is the a priori probability of the TC, given
by TC0k. In general the smaller t is ~,0.5!, the better the
performance.

The results of the performance measures for all five net-
works are provided in Table 13. The two feature subsets
containing All Features and User Subset yielded better results
than the LSF, ISF, or GSF subsets, which can be observed
in the first two rows of the table.

The general trend observed from these results shows that
using a larger set of features yields better results than using a
smaller subset of features. Based on all performance mea-
sures, we observe that using more or all feature classes to
create feature vectors yields better results than any one single
feature class. Thus, a combination of all available morpho-
logical, topological, and mereotopological features in con-
junction with RF resulted in the highest performance measure.

The implicit weight adjustments based on the relative
importance of features contained in the diagrams showed
that the model was capable of categorization using both
geometric and semantic attributes contained in the corpus.
This kind of automatic adaptation was desirable because it
was generally not known which features would perform
best in clustering the complex visuospatial information inher-
ent in architectural diagrams.

The experiments demonstrated that utilizing Q-SOM:RF
as a system for assessing the similarity of design diagrams
to distinguish visual style not only provides a useful method
for initial unsupervised categorization but also provides the
flexibility to overcome a variety of problems resulting from
context. The approach in this experiment provided a robust

Table 12. Clustering ability of
different feature vector models

Experiment 2:
Q-SOM:RF JAC FM

All features 0.53 0.50
User subset 0.46 0.42
LSF 0.46 0.39
ISF 0.38 0.45
GSF 0.32 0.30

Fig. 8. The final categorization formed by All Features for Q-SOM:RF.
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method for defining the visual style based on a feature space
that was capable of adapting to the contextual relevance of
multiple spatial ontologies defined by both lower level geo-
metric and higher level semantic features.

6. CONCLUSION AND FUTURE PLANS

We introduced the Q-SOM:RF approach to assessing visual
styles by incorporating qualitative and contextual aspects
in a formal model. Our approach to visual style focuses on
modeling both a cognitively compatible and task-relevant
clustering method. The model was shown to be capable of
bridging the gap between the low-level visual features
extracted from the design artifact and the high-level and
context-dependent semantics used by designers to under-
stand design content. This flexible approach to identifying
visual styles uses an iterative and interactive process that
enables the SOM to learn the desired categories or clusters.
The results of our experiments showed that the approach of
the system was able to effectively select from sequential
and iterative processing by adjusting weights of a SOM to
coincide with an observer’s conceptual view of diagram-
matic similarity. In this way, initial unsupervised clustering
can become more accurate according to a designer’s inten-
tions as new clusters are formed.

The model’s strength lies in its utilization of a multi-
dimensional qualitative encoding schema and its ability to
simultaneously assess multiple reference diagrams. By pro-
viding a mapping from the physicality of the diagram using
qualitative rerepresentation, geometric and semantic fea-
ture sets were obtained; as a result, meaningful feature sub-
sets could be analyzed as input to the SOM. The RF technique
makes the model differ from other content-based classifi-
cation systems, such as feature-based distance measures of
similarity. Assessment using such measures is based on pro-
cessing only a single reference diagram at a time. Further,
because an individual visual feature or even a class of fea-
tures based on any one spatial ontology may not be suffi-
cient in categorizing complex design diagrams, it is necessary
to extract information from multiple dimensions so that the
adaptation of categories relative to feedback and context
are useful. Using target categories in the final experiment
demonstrated that when contextual information was inte-

grated to determine the relative importance of features, the
correlation between the system’s results and the observer’s
assessments increased. It was significant that this correla-
tion resulted from the detailed definition, detection, and
extraction of feature classes and user feedback determining
feature salience.

The approach provided a method to overcome the diffi-
culties that arise from perceptual biases in the design domain.
In other words, it becomes possible to integrate contextual
dependencies where a visual style detected by a designer is
influenced by his or her design objectives and intentions. A
potential implication is that the isolated characteristics of fea-
tures appear to be insufficient to formulate conclusions about
the nature and distinctions of visual styles during designing.
Instead, causality can also be attributed to context-dependent
factors that influence the perception and judgment of a fea-
ture, a diagram, and, as a result, a design corpus.

It is such complex aspects of context in relation to visuo-
spatial information and cognition that also require further
exploration in modeling visual style in design. Further, quan-
titative evaluation of the Q-SOM:RF model’s performance
are problematic because of human subjectivity and prefer-
ence during the classification process. Although the results
obtained thus far are promising ~in terms of the potential of
the model as a cognitively plausible classification system!,
additional studies are required in a variety of design scenar-
ios and based on multiple users. We anticipate that in human-
subject experiments the Q-SOM:RF system should perform
equally well using either expert or novice designers. The per-
formance of the model should not differ substantially between
these two groups because their unique similarity assess-
ments will be reflected by the model’s flexibility to adapt to
feedback. In such future studies, the model must also undergo
further testing so that the subsets used to create feature vec-
tor models can be inspected relative to historically defined
design styles.Therefore, the initial objective of future research
is to increase the performance of the Q-SOM:RF model to
find a set of well-balanced features, which on average, per-
form as well as possible. In this way, feature centrality can be
investigated in the design domain relative to the effects of
context as well as existing historically defined styles.
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