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Abstract
One of the mechanisms viruses use in hijacking host cellular machinery is mimicking Short Linear Motifs (SLiMs) in host 
proteins to maintain their life cycle inside host cells. In the face of the escalating volume of virus-host protein–protein inter-
actions (vhPPIs) documented in databases; the accurate prediction of molecular mimicry remains a formidable challenge 
due to the inherent degeneracy of SLiMs. Consequently, there is a pressing need for computational methodologies to predict 
new instances of viral mimicry. Our present study introduces a DMI-de-novo pipeline, revealing that vhPPIs catalogued in 
the VirHostNet3.0 database effectively capture domain-motif interactions (DMIs). Notably, both affinity purification coupled 
mass spectrometry and yeast two-hybrid assays emerged as good approaches for delineating DMIs. Furthermore, we have 
identified new vhPPIs mediated by SLiMs across different viruses. Importantly, the de-novo prediction strategy facilitated 
the recognition of several potential mimicry candidates implicated in the subversion of host cellular proteins. The insights 
gleaned from this research not only enhance our comprehension of the mechanisms by which viruses co-opt host cellular 
machinery but also pave the way for the development of novel therapeutic interventions.
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Introduction

Viruses, as obligatory pathogens, depend on host cellular 
machinery for replication, establishing intricate interactions 
with host proteins throughout their life cycle. These interac-
tions involve hijacking cellular components and countering 
host defences, posing challenges in the timely identification 
of targeted viral and host proteins (Rampersad and Tennant 
2018; Sumbria et al. 2020; Bhutkar et al. 2022). Molecular 
mimicry by viruses, particularly through Short Linear Motifs 
(SLiMs) (Glavina et al. 2018; Venkatakrishnan et al. 2020; 
Idrees and Paudel 2023a; Idrees et al. 2023), has become 
an intriguing area of study, allowing viruses to effectively 

replicate, colonise host cells, and evade detection (Benedict 
et al. 2002; Finlay and McFadden 2006; Hraber et al. 2020; 
Goswami et al. 2023; Mihalič et al. 2023). In recent years, 
different computational studies have been conducted to 
study the host–pathogen interactions (Dyer et al. 2008). For 
example, Wadie et al. have leveraged viral motif mimicry to 
enhance the discovery of human linear motifs. This approach 
identified numerous putative linear motifs, with proteins 
engaged in motif-based interactions being more likely to 
be essential. Notably, these motif-based interactions are 
promising targets for addressing viral infections and asso-
ciated diseases (Wadie et al. 2022). While computational 
studies on host–pathogen interactions have made significant 
strides, many have focused on specific pathogens (Barnes 
et al. 2016; Becerra et al. 2017). For instance, Castilla et al. 
utilized computational methods to explore molecular mim-
icry between the SARS-CoV-2 Spike protein and known 
epitopes, revealing key hotspots with potential autoimmune 
implications (Nunez-Castilla et al. 2022).

Despite this progress, the challenge remains in targeting 
Domain Motif Interactions (DMIs), known for their tran-
sient, complex, and promiscuous nature (Corbi-Verge and 
Kim 2016). The recent advancements in Protein–Protein 
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Interaction (PPI) detection techniques, such as yeast two-
hybrid (Y2H) and affinity purification coupled mass spec-
trometry (AP-MS), have provided large-scale virus-host 
PPI(vhPPI) data (de Chassey et al. 2014a). Y2H has been 
pivotal in 15 high-throughput screens for genome-wide viral 
interactomes, with initial genome-wide vhPPI screens for 
Hepatitis C Virus (de Chassey et al. 2008) and Epstein Barr 
virus (Calderwood et al. 2007). Y2H has been employed 
for targeted vhPPI identification, as exemplified by a study 
using ~ 12,000 human proteins and 10 influenza virus pro-
teins (Shapira et al. 2009). Tandem affinity purification 
(TAP), a variation of AP-MS, is widely utilized for its effi-
cacy in identifying numerous vhPPIs, boasting low contami-
nation and a reduced rate of false positives (Pichlmair et al. 
2012; Rozenblatt-Rosen et al. 2012). Approximately 30% 
of human proteins contain intrinsically disordered regions 
(IDRs) where SLiMs reside, showcasing the functional sig-
nificance of these disordered regions (Idrees et al. 2023). 
SLiMs often mediate transient interactions because of their 
evolutionary plasticity and low-affinity interaction (Elkha-
ligy et al. 2021). Understanding SLiM-based interactions 
requires sophisticated methods, both experimental and com-
putational. Tools like SLiMFinder (Edwards et al. 2007) and 
QSLiMFinder (Palopoli et al. 2015) contribute to de-novo 
SLiM discovery, helping to identify functional SLiMs in 
protein networks. Despite the challenges, studying vhPPIs 
offers valuable insights into viral pathogenesis. These inter-
actions are transient, with few viral proteins targeting mul-
tiple host proteins to regulate their functions (De Chassey 
et al. 2014b). Identifying and understanding SLiMs in net-
work biology contribute to deciphering dynamic processes 
in protein networks, offering clues about modes of binding 
and stability of interactions. In this study, our primary objec-
tives were to evaluate the enrichment of SLiM-mediated 
interactions within vhPPI data. We aimed to compare the 
efficacy of two PPI capturing methods, namely two-hybrid 
and affinity purification, in investigating SLiM-mediated 
interactions in viruses. Furthermore, our study sought to pre-
dict novel DMIs and identify potential mimicry candidates.

Methods

Data acquisition and pre‑processing

A comprehensive virus-host PPI (vhPPI) database, i.e., 
Virus-Host Network 3.0 (VirHostNet3.0) (Guirimand 
et al. 2015) [retrieved on: 2023-01-02] was downloaded. It 
was also split into well-known high throughput methods, 
Y2H and AP-MS, by pulling out interactions using “two 
hybrids” and “affinity” as keywords. vhPPIs were restricted 
to reviewed UniProt IDs only. Known SLiM data was down-
loaded from the Eukaryotic Linear Motif (ELM) database 

[http:// www. elm. eu. org/], which contains manually curated 
and experimentally validated SLiM data from the literature, 
making it a highly reliable SLiM resource (Kumar et al. 
2022). 327 ELM classes (e.g., distinct SLiMs) with experi-
mentally validated motif instances (2278 specific protein 
occurrences) and associated interacting domain data (200 
ELM interacting domains) were downloaded from [http:// 
www. elm. eu. org/] on 2023-06-23.

DMI prediction and enrichment analysis

The downloaded ELM data was used to evaluate DMI 
enrichment and to predict DMIs using vhPPI data. The sites 
for post-translational modification (MOD) and Proteolytic 
cleavage sites (CLV) ELM classes, which tend to be low 
complexity (Edwards and Palopoli 2015) were excluded for 
the analysis. These classes were excluded from the analysis 
to reduce the false discovery rate and focus on DMIs that 
are more likely to be true positive by reducing noise in the 
network. Enrichment differences were evaluated using our 
previously published method i.e., SLiMEnrich version 1.5.1 
(Idrees et al. 2018) which explores a protein–protein inter-
action (PPI) network to identify pairs of proteins engaged 
in interaction, with the first protein either known or pre-
dicted to interact with the second protein through a DMI. 
Through permutation tests, it assesses the count of known/
predicted DMIs against the anticipated distribution under 
random association of the two protein sets. This analysis 
yields an estimation of DMI enrichment within the dataset 
(Idrees et al. 2018). Enrichment was first evaluated using 
the ELMi-Protein strategy, which works based on known 
DMIs in ELM database. The DMI enrichment (E-score) 
was calculated as the ratio of predicted DMI (number of 
predicted DMIs from real PPI data) to the mean (μ) random 
DMI (number of predicted DMIs identified from random PPI 
data from permutation test) as follows.

ELM instance and domain information were further 
incorporated to increase the size of the network and to dis-
cover new DMIs. To predict new DMIs, new SLiM instances 
of known ELMs were predicted using SLiMProb v2.5.1 
(Davey et al. 2010) with the disordered masking feature 
(IUPred score >  = 0.2) (Dosztanyi et al. 2005). The predicted 
SLiMs were then used to predict DMIs using SLiMEnrich 
v1.5.1 (Idrees et al. 2018) through the ELMc-Protein (pre-
dicted SLiMs mapped to known human partner proteins via 
ELMs) and ELMc-Domain (predicted SLiMs mapped to 
Pfam-domain-containing human partner proteins) stringen-
cies (Idrees et al. 2018). A False Discovery Rate (FDR) for 
individual DMIs is also estimated as the proportion of the 

Escore =
DMIpred

�DMIrand

http://www.elm.eu.org/
http://www.elm.eu.org/
http://www.elm.eu.org/


Archives of Microbiology          (2024) 206:94  Page 3 of 12    94 

predicted DMIs explained on average by random associa-
tions, using the mean random DMI count. Moreover, gene 
ontology pathway analysis of targeted human proteins was 
done using gProfiler (Kolberg et al. 2023) webserver and 
pathways with FDR < 0.05 were selected.

De‑novo prediction of human SLiMs mimicked 
by viruses.

To further explore and see if PPIs having significant DMI 
enrichment could be used for de-novo SLiM predictions, we 
selected a high-throughput dataset i.e., the HI-II-14 (Rolland 
et al. 2014) dataset which is based on a Y2H experiment, 
previously shown to be effective in terms of capturing DMIs 
(Blikstad and Ivarsson 2015). The vhPPIs (Durmus Tekir 
et al. 2013) and hPPIs (HI-II-14) (Rolland et al. 2014) were 
integrated by mapping protein partners of each viral protein 
in vhPPIs to their respective interactors in the human inter-
actome. A total of 682 datasets were generated where each 
dataset contained a single viral protein and all the human 
interactors of the viral protein’s human interaction partner. 
FASTA sequences for each dataset were retrieved from 
the UniProt database and were fed to QSLiMFinder v2.30 
(Palopoli et al. 2015), [ambiguity = T and cloudfix = F] with 
the viral protein in each dataset treated as the query sequence 
for the de-novo discovery of SLiMs. QSLiMFinder looks for 
any sequence motifs in this query sequence that are enriched 
in the rest of the dataset (e.g., viral protein motifs enriched 
in the human interaction partner). The P-value of each SLiM 
returned was estimated using default QSLiMFinder “Sig” 
values. Multiple testing correction for the QSLiMFinder 
predictions was performed by calculating the estimated 
approximate FDR based on the expected number of false 
positives, using: 

Where p represents the returned p-value, N represents 
the total number of datasets, np represents number of results 
returned with significance p-value. Note that, unlike a tradi-
tional statistical test, a single dataset might return multiple 
true and/or false positive SLiM predictions.

Simulation of poor‑quality SLiM predictions.

Two control groups were generated to simulate alternative 
versions of the integrated dataset:

1- Random Viral Protein ("randomvProtein"): The vhPPI 
network underwent disruption through the shuffling 
of viral proteins. This resulted in the pairing of each 

FDR =

pN

np

viral protein with the human interactors of a randomly 
selected human protein.

2- Random Human Interactor ("randomInteractor"): Dis-
ruption of the human–human PPI network was achieved 
by shuffling human proteins. This led to the effective 
pairing of each viral protein with a randomly selected 
set of human proteins.

Datasets that were too small (too few unrelated protein 
clusters (UPC) were disregarded from the analysis. As 
per QSLiMFinder default settings (Palopoli et al. 2015), 
only datasets that had 3 + unrelated proteins (UPCs) were 
included in the analysis and the analysis was focused on 
significant datasets (QSLiMFinder default, p-value < 0.1).

Reliability assessment of predictions using 
previously known ELMs

CompariMotif v3.14.1 (Edwards et al. 2008) was utilized 
to assess the identified motifs in comparison to previously 
published motifs from ELM, aiming to determine the extent 
of overlap and relationships between them. The classifica-
tion of motifs followed the benchmarking criteria outlined 
in the QSLiMFinder paper (Palopoli et al. 2015). Specifi-
cally, a motif was deemed a true positive (TP) match if it 
satisfied the minimum match criteria of MatchIC ≥ 1.5 and 
normalized IC ≥ 0.5, and if the hub protein was confirmed 
to interact with the corresponding ELM. On the other hand, 
a motif was considered off-target (OT) if its pattern matched 
an ELM with greater stringency (MatchIC ≥ 2.5 or Nor-
mIC ≥ 1.0), but the associated ELM was not known to inter-
act with the hub protein. Hits falling below the minimum 
match criteria were treated as spurious and disregarded. 
Motifs lacking any matches meeting the specified criteria 
were identified as false positive (FP) predictions if origi-
nating from control datasets, or as potential novel motifs if 
identified in the actual data.

Results

In this study, we introduce a computational pipeline to iden-
tify potential domain-motif interactions (DMIs) and poten-
tial human short linear motifs (SLiMs) mimicked by viruses. 
For this purpose, we used our previously published method 
i.e., SLiMEnrich v1.5.1. SLiMEnrich has three main strate-
gies/stringencies (ELMiProtein, ELMcProtein and ELMc-
Domain) to identify DMIs from the interaction data and can 
work with known and predicted viral SLiMs. ELMi-Protein, 
characterized by the highest stringency, directly associates 
motif proteins with domain protein partners without utiliz-
ing motif and domain information; ELMc-Protein, with 
a medium stringency, establishes connections between 
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motif classes and known domain protein partners, exclud-
ing domain information; and ELMc-Domain, is the lowest 
stringency, establishes connections between motif classes 
and known interacting domains. First, SLiM-Enrich iden-
tifies all possible DMI links and then potential DMIs are 
overlaid onto the PPIs to identify predicted DMIs within 
the PPI data (Fig. 1).

Viral‑human PPIs capture SLiM‑mediated 
interactions.

It was of interest to examine whether vhPPI data can effec-
tively capture DMIs and to what extent vhPPIs are enriched 
in capturing these interactions. For this purpose, the ELMi-
Protein strategy of SLiMEnrich v1.51 was employed to iden-
tify known DMIs captured by vhPPIs available inVirHost-
Net3.0 (Guirimand et al. 2015). A total of 4 known DMIs 
were captured, with ~ 28 × enrichment compared to random 

(FDR < 0.05). This showed that vhPPI data was indeed cap-
turing DMIs and thus, can be used in studying molecular 
mimicry in viruses. We also assessed whether high-through-
put screens can capture DMIs in vhPPIs. For this purpose, 
we filtered affinity and two-hybrid interactions from the 
VirHostNet3.0 dataset and looked for known DMIs. Both 
methods showed significant enrichment (FDR < 0.05) in 
terms of capturing DMIs (Table 1). However, the number 
of known DMIs in this data was quite low, the reason could 
be only a few known viral DMIs have been reported to date 
(~ 132 in ELM database) and this emphasizes the need to 
identify new DMIs that can help in studying molecular mim-
icry by viruses.

Once it was established that vhPPI data was capturing 
DMIs, our next aim was to use the noisier ELMc-Protein 
strategy (medium stringency) where known viral mim-
icry instances were used to predict DMIs. This was done 
to increase the number of DMIs and to predict new DMIs 

Fig. 1  General schema of the pipeline. Firstly known interactions 
were recovered from virus-host interactions (vhPPIs) using ELMiPro-
tein strategy where the vhPPIs is compared with the known interac-
tion (virus-human protein pairs) data available in ELM database and 
evaluated enrichment (Kumar et  al. 2022), then employed second 
strategy known as ELMcProtein that incorporates the Eukaryotic 
Linear Motif (ELM) information in the network, and finally applied 

ELMcDomain strategy which further expands the network through 
adding domain information in the network. Both ELMcProtein and 
ELMcDomain strategies were run with known and then predicted 
viral SLiMs (SLiMProb predictions). Next, de-novo prediction of 
SLiMs was done using QSLiMFinder v2.3.0 through integrating vhP-
PIs and a publicly available human PPI dataset
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mediated by known mimicry candidates. The ELMc-Pro-
tein stringency of SLiMEnrich was used to link known viral 
instances to their potential human partners. A total of 9 non-
redundant DMIs were predicted with an enrichment score 
of 33.32 (FDR < 0.05), of which only three are known in 
the ELM database. The high enrichment (FDR < 0.05) of 
additional predicted DMIs suggests their likelihood of being 
real (Table 2).

Ultimately, the more stringent SLiMEnrich setting 
(ELMcDomain) was employed to augment the predicted 
DMI count. In this context, established viral instances were 
associated with Pfam domains containing human proteins 
through ELMs. This led to identifying 42 non-redundant 
(NR) DMIs where 6 unique ELMs of 10 viral sequences 
interacted with 6 distinct domains of 23 host proteins 
(FDR = 0.0862) (Fig.  2B). The number of vhPPIs, and 
DMIs identified from different stringencies is shown in 
Fig. 2A. Gene ontology analysis revealed that viral proteins 

Table 1  DMI enrichment in vhPPI data available VirHostNet3.0 data-
bases

** P-value < 0.001
1 Non-redundant vhPPIs
2 Non-redundant observed DMI
3 FDR by SLiMEnrich

Stringency Method vhPPI1 DMI2 Enrichment FDR

ELMiProtein All 10,736 4 28.37** 0.035
Affinity 5,755 2 32.26** 0.031
Y2H 1,970 1 83.3** 0.012

ELMcProtein All 10,736 9 33.32** 0.033
Affinity 5,755 5 44.25** 0.022
Y2H 1,970 4 125** 0.008

Table 2  Known and predicted 
DMIs using known viral 
instances

Known/Validated DMIs are shown in bold

vProtein Virus Motif hProtein

E6 Human papillomavirus type 16 LIG_PDZ_Class_1 DLG2
E6 Human papillomavirus type 16 LIG_PDZ_Class_1 MAGI1
Polyprotein Semliki forest virus (SFV) LIG_G3BP_FGDF_1 G3BP2
E6 Human papillomavirus type 18 LIG_PDZ_Class_1 DLG2
E6 Human papillomavirus type 18 LIG_PDZ_Class_1 MAGI1
Segment-10 Bluetongue virus 10 (isolate USA) (BTV 10) LIG_WW_1 ITCH
Segment-10 Bluetongue virus 10 (isolate USA) (BTV 10) LIG_PTAP_UEV_1 TSG101
gag Human spumaretrovirus (SFVcpz (hu)) (Human 

foamy virus)
LIG_PTAP_UEV_1 TSG101

gag Human immunodeficiency virus type 2 subtype A 
(isolate BEN) (HIV-2)

LIG_PTAP_UEV_1 TSG101

Fig. 2  Known ELM mediated DMIs, A Number of DMIs predicted 
using known DMI/ELM information at different stringencies, B 
DMI network of known and predicted DMIs. DMIs resolved at the 
PPI level. Purple rectangles, viral proteins. Yellow rectangles, human 
proteins. Thick solid black lines, DMIs captured using ELMi-Protein 

strategy. Thin solid black lines, DMIs captured using ELMc-Protein 
strategy. Black dotted lines, DMIs captured using ELMc-Domain 
strategy, C Proportion of interacting proteins, motifs and domains 
captured by each stringency strategy



 Archives of Microbiology          (2024) 206:94    94  Page 6 of 12

were hijacking human proteins involved in downregulation 
of ERBB4 signalling pathway. On a general note, the pre-
dicted DMIs had fewer viral proteins interacting with the 
higher number of (~ 2x) human proteins, suggesting that few 
viral proteins can mimic different human proteins and can 
hijack host cellular machinery to mediate different functions 
(Fig. 2C).

DMI prediction using predicted viral instances 
of known ELMs.

To predict new candidates for molecular mimicry, SLiM 
instances of known ELMs were predicted in all viral pro-
teins using SLiMProb v2.5.1 (Edwards and Palopoli 2015) 
with the disordered masking feature (IUPred score >  = 0.2) 

(Hagai et al. 2011). The predicted SLiMs were then used to 
predict DMIs using the ELMc-Protein strategy. A total of 23 
DMIs were predicted where 11 unique motifs of 13 viral pro-
teins were interacting with 12 host proteins with an enrich-
ment of 4.46 (FDR = 0.22) (Table 3, Fig. 3). All identified 
DMIs were mostly associated with ligand (LIG) ELMs. 
The approximately 3% FDR for these predictions suggests 
a likelihood that the newly discovered DMIs could be genu-
ine; however, it is imperative to conduct further validation. 
Within these DMIs, two were facilitated by LIG_WW_1, a 
WW domain binding motif known across various species 
(Traweger et al. 2002), including humans and viruses such 
as Human herpesvirus and Ebola virus. Among the identi-
fied DMIs, one was documented in ELM, while one was not 
annotated in ELM (considered predicted DMIs) (Table 3). 

Table 3  Predicted DMIs using predicted viral SLiMs using ELMcProtein stringency

The UniProt Ids of viral and human proteins were converted to their gene names

Viral Protein Virus Motif Human UniProt Human Gene Symbol

E2 Human papillomavirus 3 DEG_APCC_DBOX_1 Q9UM11 FZR1
Vpu Human immunodeficiency virus type 1 group M subtype B 

(HIV-1)
DEG_SCF_TRCP1_1 Q9UKB1 FBXW11

EBNA1 BKRF1 Epstein-Barr virus (strain B95-8) (HHV-4) (Human herpes-
virus 4)

DOC_ANK_TNKS_1 Q9H2K2 TNKS2

P1234 Semliki forest virus (SFV) LIG_G3BP_FGDF_1 Q9UN86 G3BP2
M Influenza A virus LIG_LIR_Gen_1 Q9GZQ8 MAP1LC3B
EBNA2 BYRF1 Epstein-Barr virus (strain AG876) (HHV-4) (Human 

herpesvirus 4)
LIG_MYND_1 Q15326 ZMYND11

E6 Human papillomavirus type 16 LIG_PDZ_Class_1 Q15700 DLG2
E6 Human papillomavirus type 18 LIG_PDZ_Class_1 Q15700 DLG2
E6 Human papillomavirus 33 LIG_PDZ_Class_1 Q96QZ7 MAGI1
E6 Human papillomavirus type 18 LIG_PDZ_Class_1 Q96QZ7 MAGI1
E6 Human papillomavirus type 16 LIG_PDZ_Class_1 Q96QZ7 MAGI1
E6 Human papillomavirus 31 LIG_PDZ_Class_1 Q96QZ7 MAGI1
gag Rous sarcoma virus subgroup C (strain Prague) (RSV-Pr-C) LIG_PDZ_Class_1 Q96QZ7 MAGI1
UL38 Human cytomegalovirus (strain Merlin) (HHV-5) (Human 

herpesvirus 5)
LIG_PDZ_Class_2 Q96RT1 ERBIN

gag Human immunodeficiency virus type 1 group M subtype B 
(isolate HXB2) (HIV-1)

LIG_PTAP_UEV_1 Q99816 TSG101

gag Human spumaretrovirus (SFVcpz(hu)) (Human foamy 
virus)

LIG_PTAP_UEV_1 Q99816 TSG101

gag Human immunodeficiency virus type 2 subtype A (isolate 
BEN) (HIV-2)

LIG_PTAP_UEV_1 Q99816 TSG101

gag Human T-cell leukemia virus 1 (isolate Caribbea HS-35 
subtype A) (HTLV-1)

LIG_PTAP_UEV_1 Q99816 TSG101

ORF21 Human herpesvirus 8 (HHV-8) (Kaposi's sarcoma-associ-
ated herpesvirus)

LIG_SH3_1 Q9Y5X1 SNX9

rep 1a-1b Human coronavirus HKU1 (isolate N1) (HCoV-HKU1) LIG_SH3_1 Q9Y5X1 SNX9
rep 1a-1b Human coronavirus OC43 (HCoV-OC43) LIG_SH3_1 Q9Y5X1 SNX9
UL42 Human cytomegalovirus (strain Merlin) (HHV-5) (Human 

herpesvirus 5)
LIG_WW_1 Q96J02 ITCH

LMP2 Epstein-Barr virus (strain AG876) (HHV-4) (Human 
herpesvirus 4)

LIG_WW_1 Q96J02 ITCH
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Overall, in total, seven of these were new DMIs, not previ-
ously annotated in ELM.

Finally, predicted viral SLiMs were linked to human 
proteins via ELM-binding Pfam domains. This introduction 
of noise in the DMI network drastically increased the DMI 
number while lowering the overall enrichment. It returned 
635 (393 NR) DMIs, where 44 unique motifs of 160 viral 
sequences interacted with 27 distinct domains of 154 host 
proteins, with 1.315 enrichment. However, the FDR of these 
predictions was quite high 0.76 (Table S1, Fig. 3). Gene 
ontology pathway analysis revealed that the targeted human 
proteins (141 unique proteins) hijacked by these viruses were 
involved in the downregulation of ERBB4 signalling, pro-
tein polyubiquitination, negative regulation of NF-kb activ-
ity and cell communication (FDR < 0.05). The human pro-
teins targeted by viral SLiMs (ELMcProtein) were mainly 
located in envelope and cytoplasmic regions while targeted 
proteins identified using ELMcDomain were in cell junction 

and plasma membrane (Fig. 4A). Numerous DMIs were 
observed among Human Herpesvirus 5 (HHV-5), Severe 
Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), 
Influenza A Virus (H1N1), and Zika Virus based on interac-
tions available in VirHostNet3.0 database (Fig. 4B).

De‑novo SLiM prediction reveals new mimicry 
candidates.

Since the viral-human interactome revealed significant 
enrichment in domain-motif interactions (DMIs), we opted 
to utilize it for the discovery of de-novo SLiMs. For each 
viral protein, we generated 682 datasets, each comprising a 
single viral protein and all human interactors of its human 
interaction partner. These datasets were then input into 
QSLiMFinder, treating viral proteins as queries to predict 
SLiMs. Following the SLiM discovery criteria, datasets with 
insufficient or excessive Unrelated Protein Clusters (UPCs) 

Fig. 3  Domain-motif resolved network of predicted DMIs. Purple, viral proteins. pink, human proteins. Thick solid black lines, DMIs captured 
using ELMc-Protein strategy. Thin dashed black lines, DMIs captured at highest stringency i.e., ELMcDomain
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were excluded from the analysis (Palopoli et  al. 2015) 
(Fig. 4C). Out of the initial datasets, 87 were deemed signifi-
cant (p-value < 0.1), yielding 720 motifs in the real group. 
Considering the abundance of datasets and recognizing 
QSLiMFinder's lower stringency compared to SLiMFinder 
(Palopoli et al. 2015), we focused on results with a more 
stringent significance threshold (P ≤ 0.05). This refinement 
resulted in 50 datasets returning motifs (62 clouds, 54 motif 
patterns) at P ≤ 0.05. To validate the efficacy of the pipeline 
in de-novo viral SLiM mimicry discovery, we simulated two 
random control groups with one having randomized viral 
proteins and the other randomized human interactor pro-
teins. The significant randomvProtein datasets returned 188 

individual motifs (383 clouds, 52 motif patterns) at P ≤ 0.05 
and 73 at P-value 0.1. On the other hand, only 16 significant 
random Interactor datasets returned 44 individual motifs (24 
clouds, 9 motif patterns) at P ≤ 0.05 and 27 at P-value 0.1 
(Fig. 4D).

Subsequently, the discovered SLiMs were compared with 
those available in the ELM database to identify overlapping 
motifs. CompariMotif v3.3.1 was employed for this purpose, 
considering a motif as a true positive (TP) if the hub protein 
was known to interact with or contain a domain interacting 
with the identified ELM. In the real data, 15 motifs were 
identified as TP, while in the randomvProtein group, there 
were 2 TP motifs, and in the randomInteractor group, there 

Fig. 4  de-novo SLiM discovery, A Biological pathways targeted by 
predicted SLiMs, B Number of interactions by different viruses pre-
dicted at different stringencies, C Illustration of the process for de-
novo SLiM discovery and data generation. The virus-human interac-
tome is consolidated with the human interactome by associating each 
human partner protein (hProtein) with its respective human interac-
tion partners (Interactors) in the HI-II-14 dataset. Subsequently, these 
human interactors are appended to the corresponding viral protein 
(vProtein) to create a dataset for QSLiMFinder v2.2, enabling the de-
novo discovery of SLiMs with the vProtein serving as the query. To 
establish control groups, two sets were generated: the first involved 

randomized viral proteins, while the second involved randomized 
human interactor proteins. D Analysis of de-novo SLiM mimicry 
prediction was conducted using QSLiMFinder and CompariMotif. 
The graph illustrates the comparison between the number of datasets 
returning SLiMs and the significant p-values calculated by SLiM-
Chance. The x-axis represents the P-value cut-off, while the y-axis 
depicts the number of datasets returning SLiMs with the respective 
cut-off P-values. Maroon bars represent real datasets, blue bars rep-
resent control group 1 with randomized viral proteins, and green bars 
represent control group 2 with randomized human interactors
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were none. Additionally, 378 motifs in the randomvPro-
tein group were classified as overlapping motifs (OTs) but 
did not match ELM patterns based on specific criteria. No 
OTs were identified in the real or randomInteractor groups. 
Finally, a total of 979 motifs meeting certain criteria and 
lacking a known hub in ELM were considered new potential 
mimicry candidates across 15 viral species (Table S3).

Discussion

Among the Domain-Motif Interactions (DMIs) catalogued 
in the ELM database (Gouw et al. 2017), only a subset is 
presently documented in the human interactome, under-
scoring the ongoing discovery of numerous DMIs within 
viral-human Protein–Protein Interactions (vhPPIs). So far 
only a few DMIs (i.e., 132 vhDMIs) have been reported 
in ELM, which highlights that many DMIs are yet to be 
discovered in vhPPIs. In our initial analysis, we identified 
four known DMIs: the interaction of the oncogenic E6 pro-
tein from HPV-16 with MAGI-1. The oncogenic protein E6 
from HPV-16 interacts with MAGI-1 by binding its protein 
binding motif to the PDZ1 domain of MAGI-1, leading to 
MAGI-1 degradation and disruption of its role in regulat-
ing cellular signalling pathways (Araujo-Arcos et al. 2022). 
Interaction between Sindbis virus (SINV) polyprotein and 
G3BP2 was also identified, which has previously been 
identified in different studies (Cristea et al. 2006; Cristea 
et al. 2010). Third interaction was between segment 10 of 
Bluetongue virus 10 (BTV 10) and TSG101, which has also 
been demonstrated previously (Wirblich et al. 2006). Final 
interaction was between polyprotein of Semliki Forest virus 
(SFV) and G2BP2. SFV nsP3 captures G3BP, preventing the 
formation of stress granules on viral mRNAs (Panas et al. 
2012).

Utilizing the SLiMEnrich methodology on known SLiMs 
within the ELM database has the potential to forecast novel 
mimicry candidates, revealing instances where viral pro-
teins exploit host functions. In general, the application of 
this approach resulted in the rediscovery of only a small 
fraction of the known vhDMIs, approximately 3%, within 
the database. The limited representation of known vhDMIs 
in vhPPI datasets suggests the existence of numerous uni-
dentified DMIs that are not present in these datasets. Upon 
establishing the enrichment of viral interactomes in terms 
of capturing DMIs, we further investigated the comparative 
efficacy of high-throughput methods, namely yeast two-
hybrid (Y2H) and affinity purification coupled with mass 
spectrometry (AP-MS), in predicting DMIs. The primary 
goal of this analysis was to assess the proficiency of these 
methods in capturing DMIs from vhPPIs. Both AP-MS 
and Y2H vhPPI screens demonstrated substantial enrich-
ment in terms of capturing DMIs. Given the relatively low 

proportion of known vhDMIs captured by vhPPIs, a medium 
stringency [ELMc-Protein] filtering was implemented 
to augment the network (Idrees 2020; Idrees and Paudel 
2023b) and discover new vhDMIs. The ELMc-Protein 
strategy contributed additional DMIs to the results, thereby 
increasing the likelihood of identifying novel DMIs. Both 
high-throughput methods continued to exhibit significant 
enrichment. While our investigation suggests the potential 
of both Y2H and AP-MS screens in capturing vhDMIs, it 
is crucial to acknowledge that the current results may not 
conclusively establish their efficacy. These intriguing find-
ings warrant further research and validation to bolster their 
reliability. Our analysis revealed instances where a few 
known viral proteins interacted with multiple human pro-
teins, orchestrating the hijacking of host cellular machin-
ery to mediate diverse functions. This phenomenon may be 
attributed to the viruses' compact and intricate genomes, 
which feature multifunctional, convergently evolved SLiMs. 
These SLiMs play a pivotal role in facilitating numerous 
DMIs, allowing viruses to effectively mimic and co-opt the 
host cellular machinery. In a broader context, the limited 
genomic resources of viruses exert significant evolutionary 
pressure, compelling them to mediate a specific number of 
DMIs with their host to sustain their life cycle. Notably, a 
study indicated that viral proteins, involved extensively in 
DMIs, possess a greater abundance of SLiMs compared to 
human proteins, mimicking various human proteins for their 
survival (Garamszegi et al. 2013).

The ELMc-Domain strategy demonstrated a modest False 
Discovery Rate (FDR), implying that even in the presence of 
noisier DMI predictions, a substantial number of them might 
still be genuine. In an effort to expand the pool of potential 
novel DMIs, the mapping stringency was further relaxed. 
SLiM occurrences predicted by SLiMProbv2.5.1 (Edwards 
and Palopoli 2015) were utilized instead of relying on known 
viral instances from ELM. The SLiMProb-ELMc-Protein 
strategy estimated approximately 21 real vhDMIs, suggest-
ing the prediction of interactions not identified by more 
stringent approaches. However, the FDR for these DMIs 
was notably high (~ 0.2), signifying that around 20% of pre-
dicted DMIs might be false positives. Caution is advised in 
interpreting individual DMI predictions from this strategy. 
Further relaxation of the strategy to incorporate SLiMProb 
predictions and permit DMI predictions based on interac-
tions between ELM classes and Pfam domain classes (i.e., 
SLiMProb-ELMc-Domain) substantially increased the num-
ber of predicted DMIs but drastically reduced the observed 
enrichment for predicted SLiM occurrences. It is important 
to note that, when using predicted SLiMs, the estimated 
false positive rate for individual DMI predictions was very 
high (~ 0.7). This underscores the need for caution when 
interpreting large-scale predictions of this nature. In sum-
mary, both strategies (ELMc-Protein and ELMc-Domain) 
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using predicted SLiMs generated numerous DMIs, but the 
FDR was higher than that of known instances, necessitating 
careful consideration of potential false positive DMIs. This 
highlights the imperative to validate these new predictions 
rigorously, distinguishing true positives from false posi-
tives. Overall, there is a pressing need to reduce the FDR to 
enhance the power and reliability of such analyses. One way 
to improve this analysis is to have more PPI data for under-
represented subtypes or categorize viral proteins based on 
their roles in life cycles. Implementing filtration steps for 
predicted DMIs to decrease the FDR could result in fewer 
predictions but a higher proportion of genuine ones. It was 
crucial, however, to first explore PPIs to answer the broader 
question of whether viral-human PPIs can effectively pre-
dict mimicry. Once assured that PPIs capture DMIs with 
significant enrichment, this knowledge could be leveraged to 
investigate the authenticity of predicted mimicry candidates. 
SLiMEnrich offers an advantage in finding DMIs by utiliz-
ing various SLiM predictions, such as SLiMFinder, which 
is more tolerant to noise and can be used in conjunction 
with SLiMEnrich to identify DMIs without significant loss 
of signal.

We merged the viral and human interactomes to uncover 
new motifs using QSLiMFinder. For control analysis, we 
generated two random groups to assess how dataset qual-
ity might influence motif detection. In the first control 
group (randomvProtein), we disrupted the viral-human 
interactome by shuffling viral proteins. This aimed to test 
the impact of randomizing viral proteins on motif search, 
anticipating that predicted motifs would likely be off tar-
get. In the second control group (randomInteractor), we 
shuffled human proteins, disrupting the hPPI network, 
effectively pairing each viral protein with a random set of 
human proteins. Since the hPPI network was disrupted, 
motifs needed to be more prevalent to be detected. A sub-
stantial number of datasets in each group returned motifs 
at SLiMChance P-value ≤ 0.1, indicating effective motif 
prediction. However, the number of datasets returning 
motifs varied among the groups. While the real group out-
performed control groups at p-value < 0.1, this trend was 
not consistent at more stringent p-values (< 0.05). This 
discrepancy may suggest potential over-prediction or the 
dominance of false positives by QSLiMFinder. To assess 
prediction accuracy, we compared all returned motifs from 
real data with known ELMs, classifying them as true posi-
tives (TPs) or off-targets (OTs). OTs may represent generic 
recurring motifs or specific motifs enriched by chance or 
shared interactors (Edwards et al. 2012). However, OTs 
shouldn't strictly be considered false positives, as many 
are likely real SLiMs with biological significance. The 
best way to see how good are the predictions and how 
likely it is to return real motifs is to recover known/TPs 
from the realistic biological data (Edwards et al. 2012). A 

motif was considered a true positive only if the hub protein 
was known for interaction in ELM database. This analysis 
identified 15 known interaction motifs in the real group 
and 2 in the randomvProtein group. Given the low number 
of known vhDMIs in databases like ELM, the recovery of 
a few TPs is expected. In addition to known motifs, we 
identified potential mimicry candidates that could be true 
positives. Experimental validation of these candidates is 
essential for screening true positives and understanding 
their role in viral mimicry.

Overall, there are various strengths of this study. For 
instance, we proposed a computational pipeline for predict-
ing new DMIs between viral and human proteins as well as 
for predicting new potential mimicry candidates. Our DMI 
and de-novo pipeline has resulted in various new DMIs and 
mimicry candidates. However, further experimental valida-
tion of these predictions needs to be conducted. We also 
present the first study to assess whether the two well-known 
high-throughput methods Y2H and AP-MS capture DMIs. 
Some caveats are also worth mentioning. This study was 
based on one vhPPI database, and in future it would be inter-
esting to compare different vhPPI databases to identify more 
DMIs. Moreover, the de-novo prediction analysis relied on 
the integration of two datasets, namely VirHostNet3.0 and 
HI-II-14. The human PPI data utilized in this analysis was 
constrained in size compared to the comprehensive PPI data-
bases. Consequently, enhancing the analysis by incorporat-
ing more extensive datasets holds the potential to augment 
predictions of new SLiMs by providing a larger pool of 
proteins for consideration. Additionally, previous research 
has demonstrated that employing masking techniques based 
on evolutionary conservation can enhance the sensitivity 
of human SLiM prediction (Davey et al. 2009). Therefore, 
future investigations should explore the application of such 
masking strategies in the context of viral mimicry to further 
refine and improve predictive analyses.

Conclusion

The imitation of host protein Short Linear Motifs (SLiMs) 
by viruses often involves establishing low-affinity domain-
motif interactions (DMIs) through these mimicked motifs. In 
this study, we delved into virus-host interactions as a valu-
able resource for capturing DMIs and observed a notable 
enrichment of DMIs within the vhPPI dataset. Both yeast 
two-hybrid (Y2H) and affinity purification coupled with 
mass spectrometry (AP-MS) screens demonstrated promise 
in identifying these interactions. Our study unveiled new 
host–pathogen interactions and identified new candidates for 
viral mimicry, warranting further exploration through both 
computational and experimental methodologies.
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