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Abst rac t .  Achieving an effective gait locus for legged robots is a chal- 
lenging task. It is often done manually in a laborious way due to the 
lack of research in automatic gait locus planning. Bearing this prob- 
lem in mind, this article presents a gait locus planning method using 
inverse kinematics while incorporating genetic algorithms. Using quadruped 
robots as a platform for evaluation, this method is shown to generate a 
good gait locus for legged robots. 

1 I n t r o d u c t i o n  

Legged robots have a wide range of applications, and are used for many tasks 
that  cannot be accomplished by wheeled ones. A legged robot is a typical multi- 
variable, tight coupling, non-linear and time-variant kinetic system, subjected to 
the gravitational field. The sophisticated structure necessary for flexible gaits and 
the dynamic balance required by stable gaits, make the design and realization 
of real-time robotic walking control systems a highly challenging and complex 
task. Currently, one of the main challenges is that  legged robots are typically 
controlled by multiple motors and therefore have a very high degree of freedom, 
which increases the difficulty of gait design even further. 

Theoretically, optimal gait design can be achieved through dynamics analysis 
if a legged robot can be described using dynamical models. However, legged 
robots'  dynamical states are often too complex. In particular, when dealing with 
the whole robot not just the individual parts it becomes a high-dimensional 
gait locus planning problem. Such problems are exceedingly difficult to solve 
for most robots, except for extremely simple ones. Therefore, current practical 
legged robots generally resort to Inverse Kinematics [1] for gait design; converting 
legged robot 's  walking design into a gait locus plan. Normally, robotic gait design 
is inspired by and borrows from animal behaviors and walking patterns, including 
both static and dynamic gaits. However, for a specific robotic platform, not much 
research has been done to investigate how to select a particular gait locus, and 
which gait locus is more appropriate, feasible and suitable to the robot 's  physical 
structure and the specific recognition problem. In reality, expert  experience is 
often used to compensate the gait imperfection due to incomplete information. 
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Furthermore, a lot of testing and adjustment are needed before some reasonable 
gaits can be generated. However, when walking conditions change (e.g. mass 
focus variation due to the change of postures, raised requirement on walking 
speed and flexibility), a new round of tedious manual testing needs to be carried 
out. The problem becomes acute when key motor information affecting the gaits 
for the specific robot platform is not available, such as motor operation and 
feedback parameters, since it is impossible to verify if the motor is following 
the designed gait locus and taking the appropriate moves. Kohl and Stone [2], 
Diiffert and Hoffman [3] report strategies for such situations. However, their 
work does not consider how to generate the gait loci, instead it is based on fixed 
gaits. Our work in this paper, in contradistinction, considers how to obtain the 
optimal gait locus under various conditions. 

In this paper, we propose a Genetic Algorithm based approach for legged 
gait locus generation; in particular the situations when the physical structure 
and motor information of the robots are missing. In such situations, robot kine- 
matics is no longer applicable, therefore, our approach uses the geometric anal- 
ysis based inverse kinematics, using genetic algorithms to adaptively generate 
stable gait loci. Experiments show that our approach can achieve reasonably 
effective results, and also reduce the testing and adjustment phase, which makes 
it applicable to practical legged robot motion analysis and control. 

The rest of the paper is organised as follows: in Section 2, we propose the idea 
of legged robot gait locus generation based on inverse kinematics; in Section 3, we 
develop a Genetic Algorithm based gait locus generation algorithm; in Section 4, 
the Sony AIBO 1 ERS-7 a quadrupled legged robot, is used as the experimental 
platform to compare the proposed approach with the commonly used rectangular 
gait. Experiment results are presented in this section as well. Section 5 concludes 
the paper with some outlook to the future work. 

2 G e n e r a t i n g  G a i t  L o c u s  fo r  L e g g e d  R o b o t s  

2.1 Robo t  Inverse  K inema t i c s  

Robot inverse kinematics calculate the joint parameters when given the limbs' 
geometric parameters and the posture of the limbs relative to the robot's co- 
ordinate system. An inverse kinematics problem may have many, unique or no 
solutions. To illustrate some features of the inverse kinematics, consider the sim- 
ple manipulator with only two joints as shown in Figure l(a). 

According geometric analysis, we have, 

x = ll cos01 +/2 cos(01 + 82) (2.1) 

y = 11 sin01 + 12 sin(01 + 82) (2.2) 

An inverse kinematics problem is: given x and y to determine 81 and 02.The 
solution is illustrated in Figure l(b), 02in the figure can be calculated according 

1 Sony AIBO Robots. http://www.aibo.com 
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(a) (b) 

/ 

Fig. 1. Inverse kinematics of a manipulator with 2 joints 

to r = V / ~  + y2 and the Law of Cosines, 

02 = 7r :t: o~ where o~ = arccos( 2~12 ) (2.3) 

When a # 0, 02 has two different values. The dotted line in Figure l(b) shows 
the other value.Then we can work out 01 according to every possible value of 02. 
Now we have 

01 = a tan 2(y, x) =t=/~ /3 = arccos( r2 + l~ - l~ ) (2.4) 
211r 

where the sign before f~ is in accordance with that  of a. 
Typically, inverse kinematics problems can be classified into two categories, 

closed-form solutions and numerical solutions.Most robots have closed-form so- 
lutions.Interested readers are referred to Craig [4] for some common ways of 
solving such problems. 

2.2  I d e a  o f  G e n e r a t i n g  C u r v e  for  G a i t  L o c u s  

A legged robot 's  gait locus is the limb movement from one position to another 
with certain speed and acceleration, in a specific space within a certain time 
frame. According to robot inverse kinematics, we know that  the joint parameters 
can be determined so long as the expected posture of the limbs is given,therefore, 
robot gait locus can be planned based on inverse kinematics in Cartesian coor- 
dinate space.When Cartesian coordinate space is used for gait locus planning, 
it is often assumed that  the motors can generate enough power for joints accel- 
eration and deceleration,simple planning can lead to great differences between 
the real-time response of the motor controlled limb and the designed trajectory. 
Stronger and Stone[5] have shown that  such differences greatly affect the robot 's  
real-time performance Figure 2. 

Through experiments, we can see that  the gait locus in Cartesian Space is 
a curve made of discrete points of the limb position. Very often the curve is of 
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(a) (b) 

Fig. 2. The contrast between the AIBO locus planning curve (dashed) and actuator 
response curve (solid line) 

irregular shape. Mathematically, interpolation and curve f i t t ing are two domi- 
nant approaches in describing irregular curves. During the gait locus planning, 
the real concern is the robot 's  operating performance rather than the actual gait 
shape, since the smnpling points may not be exactly on the optimal gait locus, 
there are certain errors. Interpolation that  requires the curve to go through every 
data  point will not work well, the use of a more general curve fitting method that  
approximates all sampling points may avoid such errors through optimization so 
long as the sampling points are close to the optimal gait locus. 

The general principle of a curve fitting method is to obtain a group of sam- 
pling points through manual observation, assume the points {(xi,yi)}~m__0 are 
for fitting curve y = f(x) .Here,  the analytical expression of y = f ( x )  is not 
available beforehand.Meanwhile, no mat ter  how the discrete set of data  is ob- 
tained, be it through observation, testing or generation,errors are inevitable. 
Therefore, eventually rather than asking the curve ¢(x) to exactly go through 
these points,we need to minimize ~ ' ~ 0 ( ¢ ( x i )  - y i ) 2 , t h e  squared error between 
the discrete points {(xi, ¢(xi))}~=0 on the curve ¢(x) and the sampling points 

X m {( i, Yi)}~=0 obtained through observation. The ¢(x) so obtained is then called 
the fitting curve y = f ( x )  on 4~.The most commonly used fitting curve is ob- 
tained on 4~ = Pn ,where Pn is a n degree polynomial, where the n-th term's  
coefficient is non-zero.Curves obtained on Pn are known as polynomial fitting 
curves. 

Given a set of discrete points {(x~, ¢(x~))}~=o, take a P~ with coefficients 
1, x, x 2 , . . . ,  x n, the polynomial function is then 

P ( x )  = ao + a l x  + a2x 2 -1- ' "  + anX n (2.5) 

To minimize the squared error, 

m m 

q ( a 0 , a l , . . . , a n )  = E ( P ( x i )  - yi) 2 = E ( a o  + n l x i  + ' "  + anx~ -- yi) 2 
i = 0  i = 0  

onPm a0, a l , . . . ,  an should meet 

m 

OQ _ 2 E @ ( a o + d l x i + . . . + a n x ~ _ y i ) = o  ( k = O ,  1 . . . . .  n) 
Oak ~=o 
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After simplifying the above, we have 

m ~ ~ m 

a ° E x ~ + a l ~ " x k + l + ' " + a n E  , = E x i k Y i  ( k = O ,  1 , . . . , n )  (2.6) 
i = 0  i = 0  i = 0  i = 0  

Formula (2.6) is a group of n + 1 degree linear equations on a0, a l , . . . ,  an. The 
matrix presentation for the linear equations is 

~ i = 0  i fL +I 
m 2 / Ei=0xi Ei=0 xi 

m 2 m 3 
~i:O. . Xi ~ i = 0 . . .  Xi 

~-.~m xn+l 

In (2.7), m is 
curve• Let 

z?_0 x; E 0xr a0 
~ = 0  x/3 " "  ~ = 0  x~ +1 al 2..~i=o xiyi  | 
~ : 0  X~ I l l  ~i:O~"~m xn+2i a2 = ~ = 0  x~yi 

. . . . . . . . .  i 
~i=oX~ ~+2 ~ m  X 2" ~ m  X" I I  

• ' " L. . , , i=0 i n Z-..~'i=0 i Y~/ 
( 2 . 7 )  

the number of discrete data  points, n is the degree of the fitting 

{ ~ + i  E,%oX, ETLoXf . . .  

m = ~ i = 0  Xi 

A=| E?=o ET=o ELo xf 
I X-.~m xn ~-.~m xn+l m 
\ 4 - , i = 0  i Z . , d = 0  i ~ i = 0  X~ +2 

~ T _  xn+l ~ | ~ i = o x i y i  I al 
~ :U  Z / / m 2 / 

$ :U  l ~ .~--..¢i=0 ~ i  ~ i  / n 

Then 2.7 can be expressed as a n degree linear algebra equations A X  = B.  
Solving this group of linear equations will give use the coefficients ao, a l , . . . ,  an 

of the fitting polynomial flmction P(x )  = ao + a l x  + a2x 2 -t- " "  + anx  n. This 
is the fitting curve for the give set of discrete data  points which belongs to the 
unshaped gait locus. 

2.3 G a i t  Locus  G e n e r a t i o n  

At first, to generate the gait locus of a legged robot based on its physical form 
and structure, the relation between joint angles and limb stance is established 
by Inverse Kinematics. Given a legged robots walking speed (or velocity) V 
and the duration of the operation cycle, T, the expected walking distance can 
be calculated according to this simple formula S = V x T. Therefore, we can 
work out the possible limb movement space during a walking cycle, which is a 
rectangular prism, as shown in Figure 3. 

Now, we can get the sample points for the gait locus from the space and 
classify them according to the movement phases of robot limb, and obtain the 
fitting curve for each points group. The generated curve is a possible gait locus. 
Due to the inability to conduct verification, each point in space may be on the 
optimization gait locus. Based on this idea, we must generate a curve aggregate q5 
which could include an infinite number of elements and then select an optimized 
gait locus which is virtually impossible to realize. Bearing this problem in mind, 
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/ 

Fig. 3. The limb movement space of legged robot 

traditional optimization methods can be adopted, however using traditional op- 
timization methods(analysis optimization, enumeration optimization etc.) gives 
rise to many potential problems such as local optima traps, difficulties if the 
objective function is not continuous and differentiable, and low efficiency etc. 
The optimization methods of machine learning such as Reinforcement Learning 
and Genetic Algorithms are more efficient. 

The generated fitting curve of a gait locus can not be evaluated before being 
applied on the robot, the fitting curve aggregate is infinite, and the generated fit- 
ting curve needs to be evaluated in time to help optimize the gait locus globally. 
Therefore, a global optimization method is needed to avoid local optima traps. 
In addition, it needs to be efficient and stable, especially in the face of incom- 
plete information. Genetic Algorithms (GA) [6, 7] are based on natural selection 
and genetic mechanisms. The mechanism of biological evolution is simulated 
in computer algorithms for optimization. The search space (solution domain) is 
mapped to a genetic space (i.e. candidate solutions are represented as a vector of 
chromosomes). A population consists of n so chTvmosomes. Every chromosome is 
evaluated according to a predefined function, i.e. the fitness function. According 
to the "survival of the fittest" principle, the best candidate is selected and the 
less fit are abandoned in the next generation so that gradually the population 
converges to the optimal solution. 

As an optimization nmthod, GA exhibits the following features: 

(1) It has "memory" during searching. 
(2) It has fewer requirements on the objective function. The objective function 

only needs to be defined, but need not necessarily be continuous or differen- 
tiable. 

(3) It can simultaneously search many solution domains thereby greatly reducing 
the chance of being trapped by local optimum. 

(4) It has the potential of running in parallel, and is therefore suitable for opti- 
mizing large scale problems. 

According to Suzuki (1995)'s[8] analysis using Markov chains, Simple Genetic 
Algorithm(SGA) can stochastically converge to the optimal solution. Therefore, 
GA is suitable for solving the optimization problem we described above. Because 
GA obtains the optimization solution stochastically, in this paper we use SGA 
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guided by the "survival of the fittest" strategy, that  is, during selection, the SGA 
with the best solution is kept. Using this method, we can get a suboptimal solu- 
tion surely and still obtain the optimization solution efficiently using stochastic 
methods. 

3 Gait Locus  Generat ing  M e t h o d  Based  on Genet i c  
Algor i thms  

3.1 I n d i v i d u a l s  of  G e n e r a t e d  C u r v e  

The limb's movement space is 3 dimensional (3D), and therefore, the gait locus 
generation should be carried out in a 3D space. According to the projection 
theory in 3D space, we first carried out gait locus generation on the limb and the 
projection plane, respectively, and then synthesize the results to obtain the 3D 
curve. This effectively avoids a direct description of a 3D curve. In addition, it is 
very easy to change the locus on one plane without affecting the other. The actual 
gait locus of a legged robot can be very complex. Therefore, in order to ensure 
the generated curve is as close to the real locus as possible, the generated curve 
and each section must be able to adapt flexibly in and only in the limb movement 
space. If we directly apply genetic manipulation on parameters of the generated 
curves, the results may not be in the movement space. Therefore, we program 
genetic operations directly on the discrete data  points instead. Moreover, because 
the 3D curve is synthesized from the projections on 2D planes, we only need to 
sample and process the corresponding data points ~ on the two 2D planes Y -  Z 
and X - Z separately: 

OOO O ~  O 

Fig. 4. Illustration of discrete data points 

As shown in Figure 4, it is required that  all data  points p(x, y) C k~ are in the 
2D projection planes of the limb movement space. Therefore, in the genetic al- 
gorithm, an individual representing the information about a gait locus is the dis- 
crete data  points for the curve generation. The length of an individual is then de- 
termined by the number of data  points. The initial point set ~i = {pl, p2,. • • , Pn } 
can be obtained randomly from a uniform distribution, where n is the number 
of data  points, i is the number of individuals in the genetic algorithm. 
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3.2 Indiv idual  Encoding ,  Genet ic  Operators,  Fi tness  Funct ion  
Des ign  and Convergence  

According to Holland's  modeling theory Genetic  Algori thms,  the  shor ter  the  
encoding b inary  string, the  more global the  informat ion mainta ined.  However, 
the  parameters  for the  gait  locus generat ion are relatively independent ,  have 
different value ranges in the  Real Number  space, and  vary in the  requirement  
on the  accuracy and  the  d is t r ibut ion  of the  da ta  points  on the  2D plane. As a 
result  we use real numbers  for the  encoding of individuals.  

Our  crossover opera tor  is shown as Formula 3.1 

child_val = f ather_val × f ather_f  ac + mother_val × (1 - f ather_f  ac) + noise 
(3.1) 

where father_val and mother_val are the  values for the  parents  respectively, 
f ah te r_ fac  is the  fa ther ' s  gene's  rat io  t h a t  will pass on to the  children according 
to the  pa ren t ' s  fitness calculation. The  mother ' s  rat io  is (1 - fa ther_fac) ,  and 
noise is a uniformly d is t r ibuted  error  compensa t ing  the  numerical  difference 
between the  parents ,  as shown in the  formula below: 

noise = (random - 0.5) × 2 × Ifather_val - mother_val I 

random is a r a n d o m  value between 0 and  1. The  main  purpose of is to reduce 
the  effects of errors in the  evaluat ion of the  parents '  fitness. 
There  are two types of mu ta t ion  operators,  one based on uniform dis t r ibut ion  
and  the  other  based on Gauss ian dis t r ibut ion.  

The  muta t ion  opera tor  based on uniform dis t r ibut ion  is: 

value = value + (random - 0.5) × fac tor  × (max_value - min_value) (3.2) 

The  muta t ion  operator  based on Gauss ian  d is t r ibut ion  is: 

value=value+ fac tor×(max_value-min_value)× X / - 2  × log(random) (3.3) 

x sin(2~ × random) 

random is a r andom value between 0 and  1, fac tor  is the  coefficient taking 
into account  the  effect of the  different value ranges,max_value and min_value 
are the  m ax i m um  and min imum of value respectively.The uniform dis t r ibut ion  
based muta t ion  is more applicable when all individuals are obta ined  randomly. 
Therefore, no init ial  values are required in this  case. The  Gauss ian d is t r ibut ion  
based muta t ion ,  on the  other  hand,  is more useful when there  are be t t e r  init ial  
wdues. 

In addi t ion to walking speed, s tabi l i ty  is also a requirement  for developing 
all effective walk for legged robots.  Therefore, the  fitness function is defined as: 

Fi tness  = V - ¢ - (p - 5 (3.4) 

where Fi tness  is the  fitness value, V is the  average linear velocity on the  specified 
trajectory,  ¢ is the  error dur ing walking ~p is the  v ibra t ion  factor, 5 is the  factor 
t h a t  accounts  for the  influence on the  robust  opera t ion of o ther  equipments.  
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Convergence: According to the traditional GA convergence conditions, we set 
our convergence conditions as a fitness threshold, the number of iterations and 
the changing ratio of the current fittest individuals, when one of these conditions 
is met, the convergence of algorithm has been achieved. 

3.3 The  P r o g r a m  Flow of the  Algor i thm 

The algorithm is composed of the following steps: 

Step 1: Determine the range of the limb movement space; 
Step 2: Given the experimental data, determine the fitness function; 
Step 3: Randomly obtain the parameters for describing the key points at dif- 

ferent walking stages in n individuals; 
Step 4: Apply gait locus generation for every individual in order to obtain the 

gait locus function in Step 5; Use mutation on the individuals that cannot 
generate a gait locus to ensure that all individuals can generate a gait locus; 
initialize the selection pool of the fitter individuals; 

Step 5: Use inverse kinematics such that the robot follows every individual's 
gait locus under the same initialization in the same environment. Data ob- 
tained during these experimental walking are used to find the individual's 
fitness according to the fitness flmction; 

Step 6: Evaluate the convergence conditions, when one of them has been achieved, 
turn to Step 8, otherwise, go to Step7; 

Step 7: Compare the fitness values of the individuals in this generation with 
the ones in the selection pool, keep the fitter ones or record the no change 
frequency of it; then apply cloning, crossover, and mutation to obtain the 
new generation, go to Step 3; 

Step 8: The program terminates, the optimal gait locus under the current ini- 
tialization and the specified convergence conditions is therefore obtained. 

Since the stability of the gaits during gait locus generation must be taken into 
account, the gait locus generation problem itself is a constraint based optimiza- 
tion problem. Many ways of dealing with constraints are available in Genetic 
Algorithms. In this paper, the main issues of concern are the generation of the 
initial population and the selection from the children generation. In the above 
algorithm, the key points for describing the gait locus of each individual is ob- 
tained through random generation first, and then the individual is tested to 
see if it can generate a valid gait locus. The same testing on individuals is also 
necessary during crossover and mutation. 

4 E x p e r i m e n t s ,  R e s u l t  A n a l y s i s  a n d  A p p l i c a t i o n  

4.1 The  E x p e r i m e n t  P l a t fo rm and  E n v i r o n m e n t  

The standard robot platform of the RoboCup[9] 4-legged League - Sony AIBO 
ERS-7 (as shown in Figure 5) is used in our experiments to test and evaluate 



60 Kai Xu et al. 

the gait locus generation algorithm proposed in this paper. The experimental 
environment adopted is that used by Diiffert and Hoffmann [3], which is also 
shown in Figure 5. 

Fig.  5. Quadruped robot - Sony AIBO ERS7 and the experiment environment 

4.2 E x p e r i m e n t  Des ign  and Resu l t s  

F ixed Rectangular  Gait  Loci vs. G e n e r a t e d  Gai t  Loci. While keeping all 
other parameters consistent, we compared the common rectangular gaits with 
the proposed adaptive gaits. According to its own sense of distance, the same 
robot is used on a straight line walking for distances between 100cm and 300cm. 
Over a 3 hour period we obtained the results given in Table 1, and we also car- 
ried out the same experiments on the official carpet used in RoboCup 4 Legged 
League, and those results are shown in Table 2. 

Common Carpet Initial Speed Finishing Speed 
Rectangular Gait 250mm/s 306mm/s 
Generated Gait 250mm/s 350mm/s 

Table  1. The straight walking experiment results of AIBO on common carpe 

Official Carpet Initial Speed Finishing Speed 
Rectangular Gait 250mm/s 310mm/s 
Generated Gait 250mm/s 370mm/s 

Table 2. The straight walking experiment results of AIBO on official carpet 

The results demonstrate that the GA generated curve gait can achieve higher 
finishing speeds than the rectangular gait. 

Deta i led  Ex pe r i ment s  for Generated  Gait  Locus We increase the sections 
of the generated curve to 8, to repeat the above experiments. The result is shown 
below in Table 3. 
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Official Carpet Initial Speed Finishing Speed 
Generated Gait(4 Sections of Quadratic Curves) 250mm/s 
Generated Gait(8 Sections of Quadratic Curves) 250mm/s 

392mm/s 
475mm/s 

Table 3. The straight walking experiment results of AIBO on official carpet 

The experiment shows that by increasing the number of sections, we can get 
closer fitted gait locus to ensure stable and fast walking for legged robots. In 
addition, we also tried to use more sections for the experiment. However due to 
the limitation of Sony AIBO ERS-7's computation power and mechanical parts, 
experiments on using more sections are not conducted. 

Expe r imen t s  on the  adapt iveness  of  the  Gai t  Locus In this section, 
we will apply the algorithm on side-way and multi-direction moves. The multi- 
direction moves followed the experimental design in [2] and the results are: 

Official Carpet 
Initial Speed of Side-way Move 

Finishing Speed of Side-way Move 
Initial Speed of Multi-direction Move 

Finishing Speed of Multi-direction Move 

Rectangular Gait Generated Gait 
152mm/s 152mm/s 
302mm/s 346mm/s 
250mm/s 250mm/s 
350mm/s 410mm/s 

Table 4. The straight walking experiment results of AIBO on official carpet 

During side moves, although AIBO's legged movement direction changed 
from forward to horizontal, the proposed algorithm is still applicable. As we 
can see, faster walking speed is again achieved as compared to the rectangu- 
lar gait.During multi-direction movement, AIBO is no longer just following one 
fixed direction. Instead, it combines forward, side-way moves with rotation con- 
currently. The experiment results indicate that the generated curve gaits again 
outperforms the rectangular ones. 

4.3 Resul t s  S u m m a r y  

From the above three sets of experiments, the proposed algorithm for gait locus 
generation has better performance for different movement in different environ- 
ment, because it does generate the gait loci in global and the designed fitness 
function includes not only velocity but also other realtime information about 
walking which help itself to be convergence efficiently. The results also show 
the algorithm is adaptive and robust under various circumstances for relatively 
stable and fast walking of legged robots. 

The researchers of UNSW also used the AIBO to work in the same field 2 
They optimize the gait locus by relative fixed gait. In 2004, they got 340ram~s, 
and achieved 430mm/s in 2005. This suggests that our algorithm which can gen- 
erate gait loci globally and find the optimal gaits stochastically is more effective 

2 RobocupThesis2005 _weiming.pdf. 
http://www.cse.unsw.edu.au/-robocup/2OO5site/reports05/ 
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and efficient. Using this algorithm, the WrightEagle team of the University of 
Science and Technology of China successfully entered the quarter finals of the 
RoboCup 2006 competition. During the competition, it took the robots 40 mins 
to achieve a very good 450mm/s walking speed. 

5 Conclus ion  and Future work 

Bearing how to describe the walking gait locus of legged robot in mind, this 
article proposes the idea of using curve fitting to generate gait locus through 
inverse kinematics. Based on Genetic Algorithms, it can find the optimal so- 
lution in the curve aggregate that  approaches an infinite number of elements. 
As demonstrated by experiments, the algorithm can be used by legged robots 
to generate gait loci autonomously, after i terated optimization, the optimal or 
suboptimal gait locus is obtained. 

In future, we will investigate the gait distribution in the 3D movement space 
for searching the optimal gait locus and look for methods that  will reduce the 
computat ion cost during the optimization. Moreover, we will analyze more op- 
t imization methods to determine those that  will lead to even better  results. 
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