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Abstract 

With applications ranging from biomedicine to high-power microelectronics, nanothermometry 

has become a powerful tool for monitoring and controlling temperature at the nanoscale. Most of 

the nanothermometry techniques developed to date utilize secondary nanothermometers that 

require the calibration of each individual nanosensor prior to use, ideally both off- and in-situ. 

Here, we propose an alternative method that addresses this practical limitation. The method 

utilizes fluorescent nanodiamonds co-hosting germanium-vacancy and silicon-vacancy centers, 

and is based on a machine learning, multi-feature regression algorithm. The technique is 

attractive for practical scenarios where the calibration of each nanothermometer before 

deployment is difficult or unfeasible. The algorithm has also the merit to be general and suitable 

for any nanothermometry technique that utilizes nanosensors with at least two temperature-

dependent observables.              

 

1. Introduction 

With its ability to measure and control temperature at the nanoscale, nanothermometry has 

become a powerful tool for the characterization and understanding of submicrometric systems 

whose dynamics and performance are heavily influenced by temperature. The access to this 

knowledge has fostered a wide range of applications in fields such as nano-medicine,1–8 

microfluidic9 and nanoelectronics,10 with fundamental and practical realizations ranging, from 

thermally-driven gene expression11,12 and cancer therapy13,14 to temperature management in high-

power microelectronics.15 

The number of available nanothermometry techniques is large. This is mainly due to the 

widespread variety of existing and engineered nanomaterials that display physico-chemical 

properties highly sensitive to thermal variations, and that are suitable to operate at specific 

regimes and temperature ranges. Nanoscale thermal probes include organic dyes, fluorescent 

proteins, polymers, and inorganic nanoparticles such as quantum dots, gold nanostructures, 

upconversion nanoparticles and color centers in nanodiamonds.1,2,16–20 

Most of these temperature probes are secondary nanothermometers. They are relative rather 

than absolute and require calibration against a reference system or known set of temperatures. 

This is a key aspect—and a rather time-consuming one—as performing practical measurements 



requires the direct calibration of every individual nanothermometer. Also—ideally—said 

calibration should be performed both off- and in-situ as the environment surrounding the 

nanothermometers can significantly affect their optical properties and result in so-called thermal 

equivalent noise (TEN).16,21 Here we propose an all-optical nanothermometry technique that 

addresses these limits. The technique utilizes fluorescent nanodiamonds and is based on a 

machine learning (ML) multi-feature regression (MFR) algorithm. Whilst a similar method based 

on the multiparametric analysis of fluorescent nanodiamonds has already been demonstrated,22 

our technique bears a few key differences. We use fluorescent nanodiamonds that are co-doped 

to host both germanium-vacancy (GeV) and silicon-vacancy (SiV) centers, in high 

concentrations.23 This allows for the monitoring of potentially twice as many temperature-

dependent physical quantities or features (intensity, zero-phonon line emission wavelength and 

linewidth) as the GeV and SiV centers are excited simultaneously. We also show that once the 

algorithm has been trained with as few as five nanodiamonds and at as few as three reference 

calibration temperatures, the ML-MFR algorithm can make temperature determinations with a 

resolution ~1 K ∙ Hz−1 2⁄  on any uncalibrated nanodiamond. This is a modest value, yet the main 

advantage of our approach is that it overcomes the need for calibrating every specific 

nanothermometer prior to use. Also, we show that the resolution and accuracy of the algorithm 

can be improved by increasing the number of nanodiamonds and calibration temperatures used 

in the training phase, and that the algorithm can be customized to automatically select any subset 

of features to minimize uncertainty. This matters in practical scenarios where control over these 

parameters can be directly leveraged to streamline the calibration process and the execution of 

temperature measurements. Finally, in this work we deliberately deviate from traditional 

investigations that characterize the performance of a nanothermometry technique via the 

resolution, accuracy and sensitivity of the nanothermometers on which the calibration was carried 

out. Instead, we estimate their generalized values—determined from uncalibrated 

nanothermometers. The resulting generalized resolution, accuracy and sensitivity are thus not 

best-case-scenario values, but rather lowest-bound limits that are realistic in practical applications 

where it is difficult—or unfeasible—to calibrate each specific nanosensor before use.  

 

2. Results and Discussion 

For our experimental characterization, we use nanodiamonds (NDs) containing both germanium-

vacancy (GeV) and silicon-vacancy (SiV) color centers in high concentration (cf. Methods, §4.1 

and Figure 1a). We monitor their photoluminescence and spectral properties via a custom-built 

confocal microscope integrated with an open-loop, temperature-controlled cryostat (cf. Methods, 

§4.2). Briefly, the nanodiamonds are dropcasted on a silicon dioxide substrate mounted on the 

scanning piezo-stage of the cryostat. A single continuous-wave laser at 532 nm, focused through 

a high numerical aperture objective (𝑁𝐴 = 0.9), is used to optically excite the nanodiamonds. The 

photoluminescence from the GeV and SiV centers is then back-collected through the same 

objective and sent to a spectrometer that measures the centers’ photoemission intensity and 

spectra (Figure 1b) and their change as the temperature of the sample is adjusted to several 

target values.24,25    



 
Figure 1. Photoluminescence properties of diamond particles used as nanothermometers. a) Schematic of 

diamond nano/microparticles containing both germanium-vacancy (GeV) and silicon-vacancy (SiV) centers. 

The GeV and SiV centers are co-excited by the same 532-nm laser and emit photons at ~602 nm and 

~739 nm, respectively. b) Spectrum of a typical nanodiamond acquired at 80 ℃ using the 532-nm excitation 

laser with 150 μW of power and an integration time of 1 s. The zero-phonon line (ZPL) and phonon-sideband 

(PSB) of both the GeV at ~603.5 nm and ~631.2 nm and of the SiV centers at ~739.7 nm and ~761.4 nm, 

respectively, are clearly distinguishable.      

 

Note that because the nanodiamonds in our experiment host GeV and SiV centers, a total of up 

to 12 physical quantities can be monitored, simultaneously, as temperature is varied. These are: 

intensity, position and linewidth of the zero-phonon line (ZPL) wavelength and of the phonon-

sideband (PSB), for both the GeV and SiV centers. Desirably, the emission lines of the two centers 

are well separated in wavelength—which simplifies the data extraction and fitting procedures. For 

reference, figures 2a–d show the measured shifts in the photoemission ZPL wavelength and full-

width at half maximum (FWHM) of the GeV and SiV centers of a representative nanodiamond as 

temperature is varied in the range 25 − 80 ℃.      



 

Figure 2. Temperature-dependence of the SiV and GeV photoluminescence spectral properties. a–d) 

Temperature-dependent changes of the zero-phonon line (ZPL) emission wavelength (a, b) and of the full-

width at half-maximum (FWHM) linewidth (c, d) for the SiV (green traces) and GeV (red traces) centers, 

respectively, for a representative nanodiamond. Raw data points are fitted with the line of best fit; error bars 

are given as standard deviation of the measurement for each temperature.  e) Accuracy of the multi-feature 

regression model shown as the difference between the true (i.e., measured) value of the temperature (x-

axis) and the value predicted by the model (y-axis). The straight line is the line of ‘perfect’ accuracy. Note 

that whilst the error bars in (e) seem greater that those in (a)–(d), they are a factor ~1.2 × smaller: the 

relative errors are, in fact, ~3.3% in (e) vs. ~3.9% in (a)–(d).     

 

The ability to simultaneously monitor such a large number of temperature-dependent quantities 

—from here on referred to as features—makes multi-feature regression an attractive strategy to 

determine the temperature of the sample.  The hypothesis is that a multi-feature model could be 

less prone to correlations between fitting parameters and to (experimental) fluctuations or errors—

thanks to averaging—especially if such fluctuations affect just one or a few features.22 

Our multi-feature regression (MFR) model, is based on classical machine-learning (ML) multiple 

linear regression (cf. Methods, §4.3).26,27 Briefly, a sets of known spectroscopy-vs-temperature 

data from the GeV-SiV co-doped nanodiamonds is used to train and test the MFR algorithm, 

which can then be used to determine the temperature of any nanodiamond. It is worth noting that 

the ML strategy of building a predictive model based on training datasets inherently mirrors that 

of nanothermometry measurements based on calibration datasets—making ML-based MFR a 

natural way of approaching the task. Expectedly, one of our goals is to determine how the ML-

MFR-based algorithm fares against traditional all-optical nanothermometry methods based on 

monitoring the change of a single parameter (e.g., ZPL wavelength or FWHM) as a function of 

temperature.1,2,16–19 We specifically focus on a few aspects of the algorithm, mainly, on its 

generalized resolution, accuracy and sensitivity (cf. Methods, §4.4), and on how its performance 



can be tuned by choosing the optimal subset of features, number of training/test data, as well as 

number of temperature calibration steps. 

Beyond the traditionally quoted values of resolution, accuracy and sensitivity, in this work we are 

interested in determining their generalized values, which take into account the results of 

uncalibrated nanothermometers (see below and §4.4). This is motivated by a series of 

observations. First, the traditional resolution and sensitivity of our technique are comparable to 

those of any other all-optical nanothermometry approach. This follows from the fact that we are 

monitoring the thermal dependence of the same physical observables (Intensity, ZPL, FWHM, 

etc.)—simply more of them, simultaneously. Notably, the resolution of our ML-MFR model shows 

a modest improvement, by factors ~1.2– 8.3 ×, compared to methods that monitor the 

temperature-related changes of a single observable. This is consistent with previous reports and 

is attributed to the multi-feature model suppressing the correlations between fitting parameters 

and to noise averaging.22 Second, the standard resolution, accuracy and sensitivity are optimized 

figures of merit that are only partially suitable to the scenario we are interested in—one where the 

temperature calibration is performed on nanosensors (the training set) that are not the ones used 

as the actual nanothermometers. When the temperature calibration is done on the same 

nanothermometer, its sensitivity and resolution can simply be extracted from the noise/standard 

deviation of the individual measurements (cf. Methods, §4.4). Yet, this overlooks the fact that the 

overall fitting model might have a larger error, i.e., a larger deviation from the ‘true’ value, which 

can become even larger when the model is applied to the data of uncalibrated nanosensors. This 

instead matters when the aim is to determine a universal algorithm that works on any 

nanothermometer, even those that were not utilized for calibration. 

Our intent is deliberately practical. We want to measure how accurately any nanothermometer 

can determine a certain temperature value, given that the only information we have is a 

temperature-calibration measurement obtained—once—from a reference training set of 

nanothermometers. The generalized values of resolution, accuracy and sensitivity that include 

the data of uncalibrated nanosensors are therefore the figures of merit we are mostly interested 

in.  

Figure 3a shows a comparison between the resolutions, accuracies and sensitivities of the various 

methods. In the heatmap, better (i.e., smaller) values of resolution and accuracy are indicated by 

darker colors, whilst better (i.e., higher) values of sensitivity are indicated by lighter colors. Note 

that to highlight the difference in resolution, accuracy and sensitivity of the various models, the 

intensity color scale of the heatmap is logarithmic. 

In the heatmap of figure 3a, there are two values reported for the resolution, 𝑅𝑁=1 and 𝑅𝑁=5, the 

accuracy, 𝐴𝑁=1 and 𝐴𝑁=5, and the sensitivity, 𝑆𝑁=1 and 𝑆𝑁=5, for each model (cf. Methods, §4.4). 

The 𝑅𝑁=1 and 𝐴𝑁=1 values are obtained by calibrating (or ‘training’) each model on a single 

nanodiamond and determining how well—i.e., with what resolution and accuracy—it predicts the 

temperature of the remaining five (test) uncalibrated nanodiamonds. The values of 𝑅𝑁=1 and 𝐴𝑁=1 

thus set the lowest limit for the resolution and accuracy of each model, for these are obtained 

from a single calibration curve done on a single training nanodiamond that is not one of the test 

nanodiamonds. Conversely, 𝑅𝑁=5 and 𝐴𝑁=5, are obtained by calibrating (or ‘training’) each model 

on 𝑁 = 5 nanodiamonds and determining how well—i.e., with what resolution and accuracy—it 

predicts the temperature of the remaining (test) uncalibrated nanodiamond. To estimate the 



values of 𝑅𝑁=5 and 𝐴𝑁=5 we average all the six possible combinations of 5-training/1-test sets of 

nanodiamonds. Notably, as the size 𝑁 of the training set increases, the values of the resolution 

and accuracy improve (i.e., they get smaller). Similarly, 𝑆𝑁=1 and 𝑆𝑁=5 are the values of 

sensitivities estimated for each model trained on a single nanodiamond or on five nanodiamonds, 

respectively (more details can be found in the Methods section, §4.4). 

 

From the analysis of these generalized figures of merit, our ML-MFR model displays the best 

resolution, 𝑅𝑁=1 = 1.35 K ∙ Hz−1 2⁄  and 𝑅𝑁=5 = 1.09 K ∙ Hz−1 2⁄ , and accuracy, 𝐴𝑁=1 = 1.96 K and 

𝐴𝑁=5 = 1.54 K. It is followed in performance, in our measurements, by the single-feature model 

that tracks the temperature dependence of the GeV’s ZPL, for which 𝑅𝑁=1 = 1.63 K ∙ Hz−1 2⁄ , 

𝑅𝑁=5 = 1.46 K ∙ Hz−1 2⁄ , 𝐴𝑁=1 = 2.34 K and 𝐴𝑁=5 = 2.09 K. 

   



 
 



Figure 3. Performance of the tested nanothermometry models. a) Heatmap of the generalized accuracy, 

resolution and sensitivity of the tested models: each column in the heatmap corresponds to a different 

model. The label ML-MFR indicates the values for our multi-feature regression model and is compared to 

a selection of other single-feature models based on monitoring the temperature dependence of observables 

such as the intensity, 𝐼, linewidth, ∆𝜆, and wavelength, 𝜆, of the zero-phonon line (ZPL) and phonon 

sideband (PSB) of either GeV or SiV centers. In the heatmap, darker colors indicate better (i.e., smaller) 

accuracies and resolutions while lighter colors indicate better (i.e., higher) sensitivities. To better highlight 

the difference in performance of the various models the color scale of the heatmap is logarithmic. For each 

model two values of accuracy (𝐴𝑁=1 and 𝐴𝑁=5), resolution (𝑅𝑁=1 and 𝑅𝑁=5) and sensitivity (𝑆𝑁=1 and 𝑆𝑁=5) 

are listed (see main text). The ML-MFR model displays the best accuracy and resolution of all models, and 

the second-highest sensitivity; its sensitivity is only inferior to that of the model based on monitoring the 

intensity of the SiV’s ZPL, which however has some of the worst resolution and accuracy.  b, c) Accuracy 

(b) and resolution (c) of the top five performing models as a function of the number of temperatures used 

for their calibration. As expected, a higher number of calibration points for the temperature results in better 

(i.e., smaller) accuracy and resolution. However, and interestingly, as few as 3 calibration temperatures 

already produce relatively good values for both figures of merit, with only a small improvement as the 

number of calibration temperatures is increased to 4 or more.           

 

Analysis of the overall accuracy heatmap reveals a few key points. First, in general a multi-feature 

approach produces higher accuracies by factors ~1.3– 10.1 ×, which is likely a consequence of 

the averaging effect affecting the noise. It however warrants an important caveat. A MFR 

algorithm intrinsically assumes a linear relationship between the label (i.e., the temperature) and 

the features (i.e., the GeV’s and SiV’s photoluminescence intensities, ZPLs and FWHMs). Over 

the relatively small temperature range considered in this study (25 − 80 ℃) the assumption of 

linearity is reasonable—yet it would not necessarily hold for larger temperature ranges for which 

the spectral features of diamond color centers are known to depend non-linearly on 

temperature.24,28 From a practical standpoint, the nonlinearity would result in lowered accuracy. 

Fortunately, this problem can be mitigated by pre-linearizing the data through their functional 

dependence with temperature, provided that this dependence is known (which is usually the case 

for the spectroscopy features of diamond color centers and, in general, of other optical 

nanothermometers). Also—commonly to ML—one should be wary of the ability of the algorithm 

to make reliable, generalized predictions beyond the range spanned by the training set. 

Second, during the training-test phase of the models, one can select the subset of features that 

gives the highest resolution, accuracy and sensitivity simply verifying all possible combinations of 

features. In our case for instance, we found that the best values for 𝑅𝑁=1, 𝐴𝑁=1 and 𝑆𝑁=1 were 

obtained by choosing the combination of the following 3 features: FWHM of the SiV, and ZPL and 

FWHM of the Gev. At the same time, the best values for 𝑅𝑁=5, 𝐴𝑁=5 and 𝑆𝑁=5 were obtained by 

choosing the combination of the following 5 features: FWHM of the SiV, and intensity, ZPL, FWHM 

and PSB of the GeV.  

Importantly, and third, while this process of multiple-feature selection might seem time-

consuming, it is completely automated, and it needs to be done only once. In fact, and from a 

practical standpoint, our analysis shows that even just training the ML-MFR model on a few 

nanodiamonds produces a general predictive model that can be applied to any other 

nanodiamond. For reference, in this study we tested over 103 possible combinations of features 

to find the MFR model with the highest resolution and accuracy, but this was done automatically, 



running a simple script. It is worth noting that the achieved resolution and accuracy on 

uncalibrated nanodiamonds are not a merit, solely, of the MFR algorithm. Rather, they underscore 

how the spectral properties of color centers in diamond are, remarkably, only marginally affected 

by inhomogeneities in the local environment of the solid-state host nanoparticle. 

Fourth, and again typical of ML approaches, the algorithm has the desirable draw of becoming 

more accurate over time, i.e., as more data is processed by the algorithm (figures 3b, c).      

 

Finally, we are interested in determining the relationship between accuracy and number of 

calibration points. In other words, we want to determine how many target temperatures the 

calibration should be performed at to achieve a desired level of accuracy and resolution. Again, 

this is motivated by the fact that acquiring calibration curves is a time-consuming step for many 

nanothermometry methods in practical settings. Figure 3b shows the accuracy of the best five 

models (our MFR model and the four next best ones) as a function of the number of calibration 

temperatures utilized to train the model. As one expects, in general, increasing the number of 

temperatures at which the various features are measured, results in a higher overall accuracy of 

each model. However—and interestingly for practical cases—for the best-performing models the 

accuracy does not increase significantly when they are trained over more than 3 target calibration 

temperature values. In our ML-MFR model the accuracy increases significantly by ~33% going 

from 2 to 3 calibration temperatures, but the improvement drops to a much more modest ~5% 

going from 3 to 6 calibration temperatures. Therefore, calibrating the nanothermometers against 

more than a few target temperatures might be an avoidable endeavor in practical scenarios for 

which time and efficiency are key. A similar conclusion can be obtained for the resolution analysis, 

which is shown in figure 3c. Again, in our ML-MFR model the resolution increases by ~38% going 

from 2 to 3 calibration temperatures, but the improvement drops to much more modest ~11% 

going from 3 to 6 calibration temperatures. 

 

3. Conclusions 

To conclude, we have shown an all-optical nanothermometry technique that utilizes fluorescent 

nanodiamond co-hosting GeV and SiV centers as thermosensors. The technique utilizes a 

classical machine-learning (ML), multi-feature regression (MFR) algorithm. The motivation for our 

work is mostly practical with focus on determining the best combination of observable/features 

and, simultaneously, the smallest number of calibration temperatures one can rely on to 

determine the temperature of a diamond nanosensor within a desired level of accuracy and 

resolution. We find that using a subset of 3-5 features we can train the ML-MFR algorithm with as 

few as 3 calibration temperatures on a set of 5 nanodiamonds and produce a model that can 

predict the temperature of any other diamond nanosensor with 1.5 K accuracy and 1.1 K ∙ Hz−1 2⁄  

resolution. The method is also appealing as it is general and, besides nanodiamonds, can be 

applied to any nanothermometer possessing at least two temperature-dependent observables or 

features.       

 

4. Materials and Methods 

In this work we focus on fluorescent nanodiamonds as our test system—specifically 

nanodiamonds containing both germanium-vacancy (GeV) and silicon-vacancy (SiV) centers. We 

perform nanothermometry measurements based on detecting temperature-dependent changes 



in the centers’ photoluminescence spectra including for instance changes of the zero-phonon line 

(ZPL) wavelength and full width at half maximum (FWHM).22,24,25,29,30 Note however, that our ML-

MFR model can be generalized to other nanothermometry techniques, including those based on 

other nanoprobes as well as non-all-optical ones. 

 

4.1 Sample preparation 

The diamond micro- and nanoparticles co-doped with germanium and silicon were produced via 

high pressure and temperature in a C-H-Si(0.19 at%)-Ge(0.2 at%) growth system. Microdiamonds 

were synthesized at a pressure of 8 GPa and at temperatures in the range 1800 − 2000 ℃, while 

nanodiamonds at a pressure of 9 GPa and at temperatures in the range 1500 − 1600 ℃, for about 

60 s. For the synthesis, Adamantane C10H16 (300 mg, > 99%, Sigma-Aldrich), 

Tetraphenylgermane C24H20Ge (15 mg, 96%, Aldrich) and Tetraphenylsilane C24H20Si (18 mg, 

96%, Aldrich) were mixed with a jasper mortar and pestle for about 5 minutes, pressed into a 

pellet (65 mg) and placed inside a titanium capsule (6 mm in diameter, 4 mm in height, with a 

0.2 mm wall thickness). A toroid-type, high-pressure chamber was used to generate the target 

pressure and temperature in the reaction cell.31 After the treatment, samples were quenched 

under pressure to room temperature. The concentration of diamond SiV and GeV centers 

obtained by this synthesis process is estimated to be ~p.p.b. 

For characterization, the nanodiamonds (sizes ~300 − 500 nm) were then dispersed in 

isopropanol (IPA) at the concentration of 0.1% (w/w), dropcast on a clean 0.5 × 0.5 cm2 silicon 

substrate and left to dry on a hotplate at 60 ℃ to remove the residual solvent.   

 

4.2 Experimental setup 

The photoluminescence properties of the nanodiamonds were investigated using a lab-built 

confocal setup described elsewhere.30 Briefly, the sample was mounted on a three-dimensional 

piezo-stage (ANPx series; Attocube Inc.) inside an open-loop cryostat (custom-adapted from a 

ST500 cryostat; Janis) with flowing liquid nitrogen. Temperature was controlled via a cryogenic 

temperature controller (335; Lakeshore) and optical access to the sample was achieved through 

a thin quartz window. The excitation laser (CW at 532 nm) was focused via a high-numerical 

aperture air objective (NA = 0.90; 100 ×; TU Plan Fluor; Nikon). The emitted light was back-

collected through the same objective, spectrally filtered, and sent to a spectrometer (QEPro, 

Ocean Optics). 

 

4.3 Machine learning multi-feature regression model 

The philosophy of most machine learning approaches is to predict certain outcomes based on 

past observations. This can be done by using a so-called training dataset to devise a predictive 

model and a test dataset to verify its accuracy. Note that both the training and the test sets contain 

known data, so the accuracy of the model can be determined quantitatively before it is applied to 

an unknown dataset. The ML approach we use in this work is a simple multi-feature regression 

model, where the value of the temperature 𝑇 is predicted based on the simultaneous 

measurement of 𝑛 features 𝒙𝑖 = [𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛] that all vary with temperature. These can include 

observables such as photoluminescence intensity, zero phonon line (ZPL) wavelength and full 

width at half maximum (FWHM) of color centers in nanodiamonds. The predicted temperature 

ersatz 𝜏 is thus given by: 



𝜏𝑖(1, 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛) = ∑ 𝑤𝑖𝑗𝑥𝑖𝑗
𝑛
𝑗=0 = 𝑤𝑖0 + 𝑤𝑖1𝑥𝑖1 + 𝑤𝑖2𝑥𝑖2 + ⋯ + 𝑤𝑖𝑛𝑥𝑖𝑛        (1) 

Which is a generalization of the slope-intercept linear regression for 𝑛 > 1 features. The term 

‘ersatz’ here is used to indicate that 𝜏𝑖 is the function defined by equation (1) to predict the true 

temperature as measured by the cryostat sensor. Note that we use the extended vector 𝒙𝑖 =

[1, 𝑥𝑖1, 𝑥𝑖2, … , 𝑥𝑖𝑛], whose first element is ‘1,’ to account for the bias or intercept value 𝑤0. The 

index 𝑖 = 1, 2, … , 𝑁 runs over the total number 𝑁 of observations. The values of the weight 

coefficients 𝒘𝑖 = [𝑤𝑖0, 𝑤𝑖1, … , 𝑤𝑖𝑛] are extracted from the training dataset via minimization of a 

defined cost function. A standard cost function is the least squares error (𝐿𝑆𝐸), or L2-norm loss 

function: 

𝐿𝑆𝐸 = ∑ (𝒘𝑖𝒙𝑖 − 𝜏𝑖)2𝑁
𝑖=1            (2)  

Alternatively, the L1-norm loss function or least absolute deviations (𝐿𝐴𝐷) can be used: 

𝐿𝐴𝐷 = ∑ |𝒘𝑖𝒙𝑖 − 𝜏𝑖|𝑁
𝑖=1             (3) 

We used both 𝐿𝑆𝐸 and 𝐿𝐴𝐷 in this work. The former is one of the most common ways of rating 

how well a model fits the data, but the latter has the advantage of being a direct measure of a 

model’s overall accuracy to predict the temperature from the measured feature(s). Note that in 

equations (1)–(3), each coefficient 𝑤𝑖𝑗, with 𝑗 =  1, 2, … , 𝑛, has its specific units determined by the 

corresponding feature 𝑥𝑖𝑗. Also, in our analysis, the range over which each feature can vary as a 

function of temperature is normalized to the interval [0, 1] to avoid over- or under-weighting the 

contributions of features with larger or smaller absolute values, respectively.     

     

4.4 Data analysis 

In this section we discuss the figures of merit—namely resolution, accuracy and sensitivity—used 

to assess the performance of the various techniques. Our characterization is based on a series 

of key elements. 

i) In order to compare the performance of our ML-MFR algorithm to that of any other established 

single-feature method we use our own measurements for all methods, rather than using the 

literature values. This is so that we can make a relative comparison, independent of a particular 

measurement system’s detection efficiency, signal to noise ratio, resolution, etc. 

ii) The values we report for resolution, accuracy and sensitivity are what we refer to as generalized 

values. This so-called generalized approach follows a few steps. We first build a model using data 

from known calibration, training dataset(s)—this is both the case for the ML-MFR algorithm and 

for any of the single-feature comparative models. We then feed to each model values of features 

(ZPL, intensity, FWHM, etc.) from unseen (yet known) test nanothermometry datasets, and 

measure with what resolution, accuracy and sensitivity the model can predict the true temperature 

(see point (iv) below). The difference from many traditional approaches is that this ‘generalized’ 

figure of merits are not estimated from the data used to determine the fitting model itself. 

iii) As explained in the Results and Discussion section of the paper, for each model we quote two 

values for the accuracy, 𝐴𝑁=1 and 𝐴𝑁=5, resolution, 𝑅𝑁=1 and 𝑅𝑁=5, and sensitivity, 𝑆𝑁=1 and 

𝑆𝑁=5. The subscripts 𝑁 = 1 and 𝑁 = 5 distinguish each corresponding figure of merit based on 

how the predictive model is determined. The subscript 𝑁 = 1 indicates that the model is extracted 

fitting the data (of any feature of interest vs. temperature) of a single nanodiamond (ND). In our 



study, we have six NDs so each value for 𝑅𝑁=1, 𝐴𝑁=1 and 𝑆𝑁=1 listed in the heatmap of figure 3a 

is an average over the six sets of available data. Conversely, for 𝑁 = 5 the model is extracted by 

fitting, simultaneously, the data from five nanodiamonds. The dataset from the sixth ND is then 

used to measure the accuracy and resolution of each model, as per point (ii) above.         

iv) In measuring the resolution and accuracy of each technique we compare the temperatures 

predicted by the various models to the ‘true’ temperatures. We consider ‘true’ the values of 

temperature measured by the cryostat. The rigorous—albeit impractical—definition would require 

absolute knowledge of the temperature rather than its values measured by a reference 

instrument.  

Resolution. The resolution of a nanothermometry technique is usually defined as 𝜎 ∙ √𝑡𝑚 where 

𝜎 is the standard deviation of the measured observable or feature 𝑥𝑖𝑗 (Intensity, ZPL, FWHM, etc.) 

and 𝑡𝑚 is the measurement integration time. In this work, we measure the resolution as the 

standard deviation of the absolute differences between the true temperatures and the 

temperatures predicted by the model, as per points (ii), (iii) above. This standard deviation is then 

multiplied by the integration time 𝑡𝑚 (for convenience, 𝑡𝑚 = 1 s in most of our acquisitions). Also, 

in the heatmap in figure 3a, the listed resolutions of any single-feature method are determined 

from the average standard deviation 𝜎 obtained at the various temperatures (note, e.g., that in 

figure 2a–d the error bars are different at different temperatures). In similar studies, the resolution 

is often determined by selecting the worst (i.e., the largest) or the best (i.e., the smallest) standard 

deviation 𝜎 amongst all the surveyed temperatures. 

Accuracy. Accuracy is commonly defined as the absolute difference between the measured 

(average) value and the ‘true’ value of an observable—temperature in this case. In this work, the 

measured value is the value determined by a model, for the model itself is obtained from fitting 

the experimental data. To determine the accuracy (figure 3a), we therefore directly compare the 

true temperatures with the ones predicted by each model, as per point (ii) above.  

Sensitivity. The relative sensitivity of a nanothermometry technique is defined as |(𝜕𝑂 𝜕𝑇⁄ ) 𝑂⁄ | 

where 𝑂 is the measured observable and 𝑇 is the temperature. The values of sensitivity for each 

single-feature model listed in figure 3a are obtained using this definition, and as per point (iii) 

above. The value of the sensitivity for our ML-MFR model, is obtained instead as a weighted linear 

combination of the single-feature sensitivities used by the model. Specifically, as in our model we 

use up to 𝑛 = 5 features 𝑥𝑖𝑗 (FWHM of the SiV, and intensity, FWHM, ZPL and PSB of the GeV), 

we calculate the sensitivity 𝑆𝑀𝐹𝑅,𝑖 for each 𝑖-th dataset as: 

𝑆𝑀𝐹𝑅,𝑖 = ∑ 𝛼𝑖𝑗 (
𝜕𝑥𝑖𝑗

𝜕𝑇
) 𝑥𝑖𝑗⁄𝑛

𝑗=0            (4) 

   

where the individual sensitivities for each feature, 𝑠𝑖𝑗 = (𝜕𝑥𝑖𝑗 𝜕𝑇⁄ ) 𝑥𝑖𝑗⁄ , are each weighted by the 

corresponding coefficient 𝛼𝑖𝑗. These coefficients 𝛼𝑖𝑗 are obtained from the coefficients 𝑤𝑖𝑗 in 

equation (1), via normalization: 𝛼𝑖𝑗 = 𝑤𝑖𝑗 ∑ 𝑤𝑖𝑗
𝑛
𝑗=1⁄ . Note that the index 𝑗 runs over the number of 

features (from 1 to 5) used in the ML-MFR model, while the index 𝑖 refers to a dataset (performed 

on the corresponding 𝑖-th nanodiamond and up to 𝑁 = 5).  
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