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materials to meet global production scenarios for light

electric vehicles (LEV). They conclude that by 2050,
demands for lithium, cobalt and nickel to supply the projected
>200 million LEVs per year will increase by a factor of 15-20.
However, their analysis for lithium-iron-phosphate batteries
(LEP) fails to include phosphorus, listed by the Europen Com-
mission as a “Critical Raw Material” with a high supply risk?. We
outline below that, whilst timely, their analysis is incomplete in
that it does not consider the complexities of the global anthro-
pogenic phosphorus cycle in the context of supply chain resilience
and sustainability for the emerging LEV sector.

It is essential that LFP phosphorus forecasts be contextualised
within the global phosphorus cycle and market to ensure minimal
potential conflict between future energy and food systems. In
2020 alone, about 30 Mt of phosphorus (223 Mt of phosphate
rock) was mined from finite phosphate rock reserves estimated at
71,000 Mt3. This estimate assumes that 30% of the weight of
phosphate rock is P,0s (calculated as a global average). Of this
mined phosphorus, about 85% was used in fertilisers, 10% for
animal feed supplements, and the remainder for other products*.
In the Xu et all. SD-LFP scenario, i.e., the sustainable develop-
ment fleet scenario coupled with the LFP battery scenario, we
estimate that projected global LEV demand will require >3 Mt
phosphorus per year by 2050, representing around 5% of the
current global phosphorus demand. For a 60% market share (128
million vehicles per year) by 2050, we assume, simplistically, that
the projected demand for lithium at 0.72 Mt per year (SD high
electric vehicle stock scenario!) can be converted directly to
phosphorus demand by multiplying the lithium demand by the
mass ratio of LiFePO, at 4.46 (i.e. 30.97/6.94). This equates to
about 25.5kg phosphorus per electric battery (ie., (0.72 Mt
lithium per year/126 M batteries per year) x 4.46).

Most countries are reliant on phosphorus imports to meet their
food demands. Phosphorus demand is currently met by only a few
countries, five of which control 85% of the world’s phosphate rock
reserves (70% by Morocco, alone)®. Phosphorus producing coun-
tries like China and the USA® may seek to protect their domestic
supplies by restricting exports, as was seen in 2008 with China’s

X u et al.! offer an analysis of future demand for key battery

export tariff. Future disruptions to secure access to phosphorus are
likely to be geopolitical and economic in nature, long before global
reserves are exhausted. That is, reliable supply may be insufficient to
meet demand in the short- or long-term due to trade barriers,
political insecurity and other supply chain factors. At the time of
writing, international concern was being raised on the potential
impacts of the Russia-Ukraine conflict on fertiliser market volatility;
this region being a key exporter of food and fertilisers.

Stable, long-term access to economically viable resources is
critical to support a growing LEV sector. Xu et al.! argue that the
advantages of LFP batteries over other batteries include “lower
production costs due to the abundance of precursor materials”.
However, this assumption does not consider historical price fluc-
tuations for phosphorus, for example, including price spikes up to
800% in 2008°. It is noteworthy that surging biofuel production
has been acknowledged as a driver of fertiliser demand and agri-
culture commodity prices despite only accounting for about 3.6%
of global fertiliser demand’. During the COVID-19 pandemic,
global phosphate prices more than doubled as a result of energy
price rises, supply control, and trade policies®. Of course, the direct
impacts of such price spikes on the LEV sector only come to bear
when the cost of phosphorus (in this case) relative to other
minerals in LFP batteries is high. Archived data on commodity
prices for phosphate rock are available from the World Bank
(https://www.worldbank.org/en/research/commodity-markets#3).

Xu et all only model batteries in LEV. However, the real
demand across the energy-sector, for example, including LFP
batteries within heavy-duty vehicles and local network energy
storage infrastructure, will be much greater. Any analysis of
resilience of future materials supply (including phosphorus) for
the LEV sector must include comprehensive economic scenarios
in the context of these wider market stressors® and related
interventions designed to secure long-term phosphorus avail-
ability for national food systems®. Further, phosphorus supply to
the LEV sector may become squeezed by the demand from
agriculture. Phosphorus demand in the agricultural sector could
almost double by 20500 and the fertiliser industry is reporting
investments to increase production capacity to meet growing food
demands in excess of $100 billion’.
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Opportunities for cross-sector circularity are potentially missed
by Xu et al.! in considering only mined materials as the primary
supply to LEVs. To provide clarity on phosphorus, we encourage
Xu et all. to extend their analysis to include detailed and com-
parable future projections, including closed-loop recycling capa-
city within the LEV sector.

Technological advances in phosphorus recovery and recycling
can build resilience within food systems!l, and a similar
approach could be considered for LFP batteries. While techno-
logical and economic barriers may currently prohibit closed-
loop recycling of phosphorus within the LEV sector, phosphorus
recycling and recovery from other sectors may provide an
opportunity to reduce reliance on mined sources. For example,
it is estimated that sewerage connections will increase by 4
billion globally by 2050, and that connections with urine
diversion could lead to a doubling of phosphorus being recycled
to agriculture to 1.3 Mt per year!?. The remaining 3 Mt per year
from conventional sewage connections (e.g., in the form of
vivianite, which is less well suited for agriculture reuse due to its
high iron content) may hold promise for reuse in LFP batteries,
although the technical'®> and economic feasibility requires
development. However, environmental sustainability is cur-
rently the dominant driver for greater recycling of phosphorus,
and not economics.

Finally, Xu et al.! do not present the wider sustainability
benefits associated with LFPs. For phosphorus, any reduction
in the current anthropogenic load to fresh waters (circa 6 Mt
per year'4) may result in significant ecological benefits!>. A
central tenet of the global phosphorus sustainability discussion
is to relieve environmental stress through increased recycling
from cross-sector waste streams!®. We do not propose, here,
that phosphorus emissions from the LEV sector to the envir-
onment are significant. Global anthropogenic phosphorus
emissions remain dominated by agriculture and waste water
discharges!4. However, the logical extension for a sector born
to deliver greater environmental sustainability would be to
provide leadership in sustainable resource use and recycling. In
the LEV sector this should consider mineral recycling from
legacy LFP stock and other waste streams. The economic case
for this may not yet be compelling, but equally, the responsi-
bility of industry to accelerate mineral recycling opportunities
should not be ignored.
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