Proceedings of the Thirteenth Australasian Computing Education Conference (ACE 2011), Perth, Australia

Concrete and Other Neo-Piagetian Forms of Reasoning in the Novice
Programmer

Raymond Lister
Faculty of Engineering and Information Technology
University of Technology, Sydney
Sydney,
NSW, Australia

Raymond.Lister@uts.edu.au

Abstract

This paper brings together a number of empirical research
results on novice programmers, using a neo-Piagetian
theoretical framework. While there already exists
literature connecting programming with classical
Piagetian theory, in this paper we apply neo-Piagetian
theory. Using that neo-Piagetian perspective, we offer an
explanation as to why attempts to predict ability for
programming via classical Piagetian tests have yielded
mixed results. We offer a neo-Piagetian explanation of
some of the previously puzzling observations about
novice programmers, such as why many of them make
little use of diagrams, and why they often manifest a non-
systematic approach to writing programs. We also
develop the relatively unexplored relationship between
concrete operational reasoning and programming, by
exploring concepts such as conservation and reversibility.

Keywords: Neo-Piagetian, Novice Programmer.

1 Introduction

After 30 years of teaching computer science and software
engineering, at elite institutions like London’s Imperial
College, Kramer (2007) articulated a common lament of
computing academics everywhere:

Why is it that some software engineers and computer
scientists are able to produce clear, elegant designs
and programs, while others cannot? Is it possible to
improve these skills through education and training?

(. 37).

Kramer went on to claim that critical to these questions is
the notion of abstraction. In his Turing Award Lecture,
Dijkstra (1992) offered an explanation as to why the
ability to abstract is important for programmers:

. the only mental tool by means of which a very
finite piece of reasoning can cover a myriad cases is
called ‘abstraction’; as a result the effective
exploitation of his powers of abstraction must be
regarded as one of the most vital activities of a
competent programmer. (p. 864).

Copyright © 2011, Australian Computer Society, Inc. This
paper appeared at the 13th Australasian Computer Education
Conference (ACE 2011), Perth, Australia. Conferences in
Research and Practice in Information Technology (CRPIT),
Vol. 114. J. Hamer and M. de Raadt, Eds. Reproduction for
academic, not-for profit purposes permitted provided this text is
included.

Both Kramer and Dijkstra were expressing a widespread
belief in the computing community. For example, the
ACM’s Computing Curricula 1991 (Turner, 1991)
includes the statement that “... the process of abstraction
will normally be prominent in all undergraduate
curricula”.

In his paper, Kramer drew upon the work of Jean
Piaget, who developed a theory about the different levels
of abstract reasoning exhibited by people, especially as
they mature from child to adult. To perform the
abstractions that Kramer and Dijkstra describe, a person
must achieve the most abstract of Piaget’s levels, which is
called formal operational reasoning, but Kramer cites
well known research claiming that only 30-35% of
adolescents have achieved that stage, and some adults
never achieve that stage. Kramer went on to advocate that
students who apply to study computing at university
should be tested for abstraction ability, and those students
who test poorly should be refused admission to
computing.

In this paper, we further explore the link between
Piagetian theory and programming. Unlike most of the
earlier work that has also explored that link, our
perspective is not based upon classical Piagetian theory
(i.e. as articulated by Piaget), but instead is based upon
neo-Piagetian theory. The distinction between classical
and neo-Piagetian theory is described in the next
subsection of the introduction.

In section 2, we describe formal operational reasoning,
the most abstract type of Piagetian reasoning, and the
type most commonly discussed in the literature that
connects programming with classical Piagetian theory.
We review and re-evaluate that literature from a neo-
Piagetian perspective.

In section 3, we describe preoperational reasoning,
which is the least abstract type of Piagetian reasoning
discussed in this paper. We reinterpret, in preoperational
terms, some of the existing literature on novice
programmers, which has not previously been linked to
Piaget.

In section 4, we look at concrete operational
reasoning, the middle level of the three Piagetian levels
discussed in this paper, which is more abstract than
preoperational reasoning but less abstract than formal
operational reasoning. The relationship between
programming and concrete operational reasoning has not
yet been well explored, especially from a neo-Piagetian
perspective, and the primary novel contribution of this
paper is to explore that relationship.

CRPIT Volume 114 - Computing Education 2011

1.1 Classical Piagetian vs. Neo-Piagetian
Classical Piagetian theory is focussed wupon the
intellectual development of the child. In Piaget’s view,
children exhibit increasingly abstract forms of reasoning
because of the biological maturation of the brain. Thus, in
Piaget’s view, a child who exhibits a certain level of
abstract reasoning on a given problem will tend to exhibit
that same level of abstract reasoning on many other
problems. Subsequent work in psychology, however, has
shown that children (and adults) exhibit different levels of
abstract reasoning on different problems. Some other
aspects of classical Piagetian theory have also been cast
into doubt (Smith, 1992).

This paper is based upon neo-Piagetian theory. While
the types of abstract reasoning are broadly the same in
classical and neo-Piagetian theory, the principle
difference in neo-Piagetian theory is that people,
regardless of their age, are thought to progress through
increasingly abstract forms of reasoning as they gain
expertise in a specific problem domain. Thus a person
who is a novice in one domain (e.g. chess) will exhibit
less abstract forms of reasoning than that same person
will exhibit in a domain where he/she is expert (e.g.
calculus). For a comprehensive review of neo-Piagetian
theories, see Morra et al. (2007).

Most neo-Piagetian theorists argue that the increase in
abstraction is not a consequence of biological maturity,
but instead is due to an increase in the effective capacity
of working memory. It is well known that working
memory has a very small capacity — seven plus or minus
two is the popularly known estimate (Miller, 1956).
Despite this severe working memory limitation, people
can routinely handle more data because of ‘chunking’.
That is, if a set of associated data items are already stored
in long term memory, they may be retrieved and used in
working memory as if they were a single item. For
example, remembering a new telephone number for a few
seconds will consume working memory capacity, as each
digit forms one data item to be stored in working
memory. However, once a specific phone number has
been committed to long term memory, then it only counts
as one data item when it is brought back into working
memory. Thus, the well known limitations of working
memory do not apply to all data, but just to data that has
not yet been learnt.

In classical Piagetian theory, it is customary to talk of
a person as being in a particular Piagetian developmental
stage of reasoning. Many neo-Piagetians (e.g. Biggs and
Collis 1982) prefer to describe a person as exhibiting a
particular level of abstract reasoning as he/she works on a
specific problem — as we will do in this paper.

1.2 The SOLO taxonomy

Our motivation for exploring the implications of neo-
Piagetian theory stems from the use of the SOLO
taxonomy (Biggs and Collis, 1982) in the BRACElet
project. The SOLO taxonomy was inspired by neo-
Piagetian theory, so we thought it might be useful to
explore the relationship between neo-Piagetian theory and
programming.

One of the earliest BRACEIlet papers to use the SOLO
taxonomy (Whalley et al., 2006) reported on the

performance of students in an end—of—first—semester
exam. As part of that exam, the students were given a
question that began “In plain English, explain what the

following segment of Java code does”. Whalley et al.

found that some students responded with a correct,
line—by—line description of the code while other students
responded with a correct summary of the overall
computation performed by the code (e.g. “the code checks
to see if the elements in the array are sorted’). A
line—by—line description is a SOLO multistructural
response, while a correct summary of the overall
computation is a SOLO relational response. A relational
response is more abstract than a multistructural response.

In another BRACElet study, Lopez et al. (2008)
analysed the performance of students in an
end—of-semester programming exam. They found that
the combination of student scores on tracing tasks and
“explain in plain English” tasks accounted for 46% of the
variance on a code writing task. Three subsequent studies
have reported similar results (Lister, Fidge and Teague,
2009; Venables, Tan and Lister, 2009; and Lister et al.,
2010).

2 Formal Operational Reasoning

Formal operational reasoning is the most abstract of the
Piagetian types of reasoning. We describe this type of
reasoning first because (1) it is how expert programmers
reason, and (2) in the literature connecting Piaget and
programming, formal operational reasoning has received
more attention than other forms of Piagetian reasoning.

2.1

A person reasoning at this level exhibits the thinking
characteristics traditionally emphasized at university (or
at least we academics like to think so). A person thinking
formally can reason logically, consistently and
systematically. Piaget nominated sixteen combinatorial
outcomes of binary propositions (e.g. “p or q”, “p
implies q”, “p is equivalent to q”) that he felt were used
in formal reasoning, even when the formal reasoning is
expressed implicitly in natural language, and not
expressed explicitly in propositional logic. Formal
operational reasoning also requires a reflective capacity —
the ability to think about one’s own thinking. Formal
operational thinking can involve reasoning about
hypothetical situations, or at least reasoning about
situations that have never been directly experienced by
the thinker. It also involves an awareness of what is
known for certain, and what is known with some
probability of being true, which in turn allows someone
who is thinking formally to perform hypothetico-
deductive reasoning — that is, the making of a tentative
inference from incomplete data, then actively,
systematically seeking further data to confirm or deny the
tentative inference. For a more detailed description of
formal operational reasoning, see Brainerd (1978) or
Flavell (1977).

General Description

2.2 Formal Reasoning in Programming

Writing programs is frequently referred to as an exercise
in problem solving. McCracken et al. (2001) defined
problem solving as a five step process: (1) abstract the

Proceedings of the Thirteenth Australasian Computing Education Conference (ACE 2011), Perth, Australia

problem from its description, (2) generate subproblems,
(3) transform subproblems into subsolutions, (4)
recompose, and (5) evaluate and iterate. Similarly,
Fischer (1986) nominated top down design as requiring
formal operational reasoning:

The student must be able to see a problem as a
Statement summarizing a set of inter—related but
unstated components, some of which are given,
others probable, and still others are merely possible
. one must be able to conceive of all the possible
steps or parts of each module or problem, and be
able to determine in what order they must occur.

2.2.1 Predictors of Programming Ability

Almost all the literature that connects Piaget and

programming does so in the context of attempting to

develop a predictor of programming ability, by using a

Piagetian test of reasoning. Various authors have

reported mixed results:

e Kurtz (1980) constructed a 15 item test of Piagetian
reasoning, where each item was taken from a
previously published study. He compared the
performance of 23 students on that test with their
final grade in an introductory programming course,
and reported an R” of 0.63, which we regard as very
high. However ...

e When Barker and Unger (1983) carried out a similar
experiment to Kurtz, using 11 of the items from
Kurtz’s test, their results for a larger population of
353 students “failed to produce the spectacular ...
correlation” (p. 156) found by Kurtz.

e Fischer (1986) used a previously published test of
Piagetian reasoning and found that 91% of students
from an introductory programming course who
received a course grade of B+ or higher were
classified as “formal operational thinkers”.

e Cafolla (1988) performed a linear regression between
student performance on a previously published test of
formal operational reasoning and their performance
in the final exam of an introductory programming
course. He reported an R? of 0.35, which we regard
as low.

e As a binary measure of successful/unsuccessful in
learning to program, Hudak and Anderson (1990)
used a criterion of a final course grade of 80% or
higher in a CS1 course. They were able to correctly
classify 72% of successful/unsuccessful students,
using a previously published test of formal
operational reasoning.

e Bennedsen and Caspersen (2006) used a classic
Piagetian experiment — the pendulum test — to
estimate the formal operational reasoning capacity of
programming students, but they found that this
estimate did not correlate well with the students’
final CS1 grade.

The mixed results reported in the above works may be
due to the classical Piagetian perspective adopted in those
works. Recall that the neo-Piagetian perspective is that
the level of abstract reasoning an individual manifests
varies between problem domains. From that neo-
Piagetian perspective, there is no reason to expect that a

person’s ability on a non-programming test of abstract
reasoning should correlate with that person’s ability at
programming.

2.2.2

In the above reported mixed results, while several of the
Piagetian tests used by those authors had been previously
validated, the authors made no attempt to validate (and in
some cases, did not even describe) the methods used to
produce the student grades. Therefore, one possible
explanation of the above mixed results is that the grading
approaches used are measuring different programming
skills, possibly skills at different levels of Piagetian
reasoning. (As an aside, we express surprise at the
confidence most academics have in their respective
grading schemes).

One grading issue is the relative weighting given to
assignments and exams. The code students are required to
write in assignments is generally more complicated than
the code they write in exams. Therefore, in general, the
demands placed upon a novice’s problem solving skills
are greater for assignments than for exam questions — that
is, formal operational reasoning may be tested by
assignments more than exams.

On the other hand, sometimes a process that combines
quasi-random code changes and copious trial runs (a
process which is decidedly not formal operational
reasoning) can produce a poor but passing assignment
solution, while the student writing code in a paper-based
exam does not have that luxury. On the other hand again,
exam marking can be generous. Sometimes a student’s
code is well rewarded even though it bears only a
superficial appearance to correct code. For example,
Traynor, Bergin, and Gibson (2006) provided an
illuminating extract from an interview with a student,
where the student described his approach to answering
coding questions in an exam, when he didn’t really know
the answer:

Grading: Assignments and Exams

... you usually get the marks by making the answer
look correct. Like, if it’s a searching problem, you
put down a loop and you have an array and an if
statement. That usually gets you the marks ... not all
of them, but definitely a pass”.

Dressel (1983) described the grades we give students (in
any discipline) as

“.. an inadequate report of an inaccurate judgement
by a biased and variable judge of the extent to which
a student has attained an undefined level of mastery
of an unknown proportion of an indefinite material.”

To summarize this brief discussion on grading, it is
difficult to infer that a student has used formal
operational reasoning to produce a piece of code, when
the only supporting evidence is the code itself — or worse,
a non-validated grade. Formal operational reasoning is
more about the mental process rather than the final
product.

223 Testing and Debugging

The process of programming involves a great deal of
testing and debugging. As part of advocating that novice

CRPIT Volume 114 - Computing Education 2011

programmers should be discouraged from a trial and error
approach to programming, and instead encouraged to
adopt a reflection—in—action approach, Edwards (2004)
recommended that novice programmers needed...

“.. practice in hypothesizing about the behavior of
their programs and then experimentally verifying (or
invalidating) their hypotheses. ... These activities are
at the heart of sofiware testing.” (p. 27)

What Edwards was describing is hypothetico-deductive
reasoning, a signature skill of formal operational
reasoning.

In a book entitled simply “Debugging”, Agans (2006)
describes a number of approaches to debugging,
including “Make it Fail” and “Divide and Conquer”. A
programmer who is thinking in a formal operational
manner routinely applies general debugging principles
like these. Furthermore, while these approaches are
applicable to programming, Agans’ book is about
debugging anything (e.g. an electrical appliance) and thus
his book illustrates another aspect of formal operational
thinking — the ability to choose the most appropriate
abstract concept to use in a specific case.

2.3 A Closing Remark

Formal operational reasoning is how we would like our
students to go about writing programs, and how they
eventually may go about writing programs, but neo-
Piagetian theory tells us that most novices will not
immediately begin to think this way about programs.
Instead, novices progress toward formal operational
reasoning, via less sophisticated forms of reasoning. In
the next section, we consider how novices first think
about programs.

3 Preoperational Reasoning

Preoperational reasoning is the least abstract form of
Piagetian reasoning discussed in this paper. From a neo-
Piagetian perspective, most novices in any problem
domain begin with this type of reasoning. Therefore, even
though some novice programmers may progress quickly
to more sophisticated forms of reasoning, we should
expect to see preoperational reasoning from most novices
when they first begin to program.

3.1 General Description

A person who is thinking in a preoperational mode tends
not to form many abstractions from the objects in the
problem environment. Their thinking reflects the direct
manipulations they could make to that environment.
There is little thinking about the relationships between the
objects. To the limited extent that preoperational thinking
abstracts beyond the actual objects, the thinking is not
systematic. Also, the thinking tends to focus on only one
abstract property at any given moment in time, and when
more than one abstract thought occurs over time those
abstractions are not coordinated, and may be
contradictory. For a more detailed description of classical
preoperational reasoning, see Brainerd (1978) or Flavell
1977).

From the neo-Piagetian perspective, the low level of
abstraction in preoperational thinking, on a particular

problem, is a consequence of the novice’s working
memory being overwhelmed, since the novice has not yet
learnt to chunk knowledge and information in that
problem domain.

3.2 Preoperational Reasoning in Programming

In this section, we will describe novice programmer
behaviours that are the staple diet of conversations among
academics who teach programming — often exasperated
and incredulous conversations.

An attractive quality of neo-Piagetian theory is that it
makes dealing with these behaviours less exasperating for
the teacher. Neo-Piagetian theory allows us to see that
these behaviours are not the manifestation of cognitive
dysfunction by a student, nor are the behaviours due to
mental laziness. Instead these behaviours are a normal
stage of cognitive development.

3.2.1 Tracing Without Abstracting Meaning
Preoperational students can trace code. That is, they can
manually execute a piece of code and determine the
values in the variables when the execution is finished.
Research suggests that novices need to be able to trace
with >50% accuracy before they can begin to understand
code (Philpott, Robbins and Whalley, 2007; Lister, Fidge
and Teague, 2009; Venables, Tan and Lister, 2009).
Students who trace code with less than 50% accuracy are
operating at a lower Piagetian level than preoperational,
which is called the sensorimotor level, but we do not
discuss that level any further in this paper.

A defining characteristic of preoperational reasoning
in programming is that, while such a novice can reliably
trace code, that novice does not routinely abstract from
the code to see a meaningful computation performed by
that code. If pressed by their teacher to offer a meaningful
computation performed by a piece of code, the novice
who is thinking preoperationally may make a reasonable
inductive guess, based upon the input/output behaviour
they observe from tracing the code, but that novice will
not infer the computation deductively, from the code
itself. For the novice who is thinking preoperationally,
the lines in a piece of code are only weakly related.

The ITiCSE 2004 “Leeds” working group (Lister et
al., 2004) collected data from some end—of—first—
semester students, using a think—out—loud protocol.
Eight of those students could trace code reliably, and
answer questions about what values were in the variables
after the code had finished executing, but...

“.. While working out their answer, none of these
students volunteered any realization of the intent of
the code, to count the number of identical elements in
the two arrays ...” (p. 138)

In contrast, when Lister et al. (2006) gave the same
problem to several expert programmers, those experts
tended to avoid tracing. Instead the experts first read the
code to deduce what it did — the code, as indicated in the
above quote, counted the number of identical elements in
two sorted arrays. Having deduced what the code did, the
experts then simply counted the number of common
elements in the two arrays, and did not hand execute the
code.

Proceedings of the Thirteenth Australasian Computing Education Conference (ACE 2011), Perth, Australia

3.2.2 Diagrams

Since novice programmers who reason preoperationally
tend not to abstract, and when they do abstract they tend
to not be systematic, these novices struggle to make
effective use of diagrammatic abstractions of code.
Thomas, Ratcliffe, and Thomasson (2004) wrote
despairingly of their frustrations at trying to get their
novices to make effective use of diagrams:

. when they might appropriately use [diagrams]
themselves, weaker students fail to do so. They are
often impatient when the instructor resorts to
drawing a diagram, then amazed that the approach
works. ... [also] providing [students] with what we
considered to be helpful diagrams did not
significantly appear to improve their understanding
.... This was completely unexpected. We thought that
we were ‘practically doing the question for them'...

Lister (2007) reported a related experience. He identified
a group of students in his class who were adept at tracing
code, but who could not make use of diagrams.
Specifically, in the end—of-first—semester exam, he
provided the students with code that implemented
algorithms that the class had studied during the semester.
One or two lines of code were omitted from each piece of
code, and the students had to choose the missing lines in
multiple choice questions. He provided diagrams of each
algorithm tested, but the “middle novice programmers”
(as he called them in the paper) struggled to use the
diagrams to choose the correct answer.

3.2.2.1 Doodling

The ITiCSE 2004 “Leeds” working group (Lister et al.,
2004) collected “doodles” from their end—of—first—
semester students. Doodles are, as Lister ef al. defined the
term, the diagrams and other annotations that
programmers make as they reason about a piece of code.
They looked at the types of doodles generated by their
novices on two questions. For one of those questions, one
fifth of the students made no doodles at all. For the other
question, more than one half of the students made no
doodles at all. Lister et al. were surprised, but their
finding makes sense from a neo-Piagetian perspective,
since novices who are reasoning preoperationally lack the
mental abstractions to make doodling useful to them.

3.23 Code Explanation
The neo-Piagetian perspective, and in particular what is
known about preoperational reasoning, provides an
explanation as to why the BRACElet project has found
(as reported in the introduction) that some students
struggle with “explain in plain English” tasks. The
explanation is based around the neo-Piagetian idea that
the working memory of these novices is easily
overloaded, as they lack the knowledge structures to
“chunk” the code.
First, let us consider a particularly easy piece of code
to understand, which increments all elements of an array:
for (int i=0 ;

i<x.length ; ++i)

x[1] = x[1] + 1;

The preoperational novice need only understand two
things about that code: (1) that the variable “i” will take
on a set of values which map to all elements of the array
“x”, and (2) the single line of code in the body of the loop
will increment an element of the array. This code has two
critical features that make it an example of the simplest
type of iterative/array code that a novice can be called
upon to understand, because: (1) each iteration of the loop
performs the same process as the other iterations, but
each iteration performs that process on a unique element
of the array, and (2) no iteration affects what happens on
any other iteration. This code is an example of
iterative/array code that places low demands on the
novice’s working memory.

Second, consider the code below, which sums the
elements of an array:

int sum = 0;
for (int i=0 ; i<x.length ; ++1i)
sum = sum + x[i];

As in the first example, the preoperational novice needs
to understand that the variable “i” will take on a set of
values which map to all elements of the array “x”. The
remaining code in this second example is slightly harder
to grasp than the code in the first example. The novice
must understand that the single line of code in the body of
the array will accumulate values in a single variable,
“sum”. However, this second example is still relatively
simple code to understand because, like the first example,
each iteration of the loop performs the same process.
There is an additional burden on the novice in this second
example, and that is the line of code that initializes
“sum”. In total, however, this second example is only
slightly harder for the novice to understand than the first
example.

Third, and finally, consider the classic BRACElet
“explain in plain English” problem (Whalley et al., 2006;
Lister et al., 2006), which is shown below:

bool bValid = true;

for (int 1 = 0 ;

{

i < iMAX-1 ; 1i++)

if (iNumbers[i] > iNumbers[i+1])

bvalid = false;

}

That code checks to see if the array is sorted. As reported
in several BRACElet papers, students have some
difficulty with explaining this code. There are two aspects
of this code that make it more difficult to understand for
the novice programmer: (1) the novice needs to reason
about two different array elements in each loop iteration,
and that (2) once the “bValid” variable changes its value,
it cannot get its original value back again.

There is another factor in why pre-operational novices
find it hard to explain the above classic BRACElet
question — they lack the capacity for transitive inference.
That type of inference is a form of concrete operational
reasoning, which we describe and discuss later in this

paper.

CRPIT Volume 114 - Computing Education 2011

3.3 A Closing Remark

Programming teachers want their students to develop
beyond these preoperational behaviours as quickly as
possible, but currently many of our students do not
develop beyond these behaviours. While this lack of
development may be a failing of some of the students, it
may also be due to our existing pedagogical practices. We
teachers admonish students for their preoperational
behaviours, but we do not offer them learning
experiences targeted at moving them beyond these
preoperational behaviours. By the end of the next section
of the paper, on concrete operational reasoning, we will
have identified learning and assessment activities that
could be used to encourage the novice to move beyond
preoperational reasoning.

4 Concrete Operational Reasoning

Concrete operational reasoning is the middle level of the
three Piagetian levels discussed in this paper — more
abstract than preoperational reasoning but less abstract
than formal operational reasoning.

4.1 General Description

As is often the case with intermediate levels in many
hierarchies, concrete thinking is frequently defined in
terms of how it differs from the other two levels of
Piagetian thinking. Unlike preoperational thinking,
concrete thinking does involve routine reasoning about
abstractions from the objects in the environment.
However, a defining characteristic of concrete thinking is
that the abstract thinking is restricted to familiar, real
situations, not hypothetical situations (hence the name
“concrete”). Consequently, the hypothetico-deductive
reasoning of formal operational reasoning tends not to be
manifested in concrete reasoning. For a more detailed
description of classical concrete operational reasoning,
see Brainerd (1978) or Flavell (1977).

4.1.1 Conservation and Reversing

The archetypal manifestation of concrete thinking is the
ability to reason about quantities that are conserved, and
processes that are reversible. In Piaget’s own work, the
famous illustration of concrete reasoning is the
conservation of liquid task. This task involves three
glasses, two of which are identical in shape, with both of
those glasses initially containing an equal amount of
water. When studying children, Piaget would (1) ask the
child to agree that the two identical glasses contained the
same amount of water; (2) pour the water in one of the
glasses into the empty third glass, which had a different
width from the other two glasses; and finally (3) Piaget
would ask the child if the third glass contained less, more,
or the same amount of water as the other glass that
contained water. Younger children, who are thinking in a
preoperational mode, will give different answers
depending on the height of the water in the two glasses.
Older children (and adults) who are thinking in a concrete
mode will immediately claim that the amount of liquid is
the same in both glasses. If pressed to justify that claim,
the child (or adult) may argue that, although the liquid is
at different heights in the two containers, the effect of the
differing container widths compensates for the differing
heights. If pressed further, the child (or adult) may argue

that if the liquid was poured back into the glass from
which it came, then the liquid will reach the same level as
it did initially.

Before dismissing the incorrect preoperational
reasoning of a small child on this conservation of liquid
task as merely being a manifestation of a biologically
immature mind, the reader might consider the more
sophisticated but incorrect “commonsense beliefs” of
adults. For example, research has demonstrated that many
university students who commence study in physics have
“commonsense beliefs” about motion and force that are
incompatible with Newton (Halloun and Hestenes,
1985). A child’s incorrect thinking on the conservation
of liquid task highlights the same sort of incorrect
thinking that adults can also make, but on more
sophisticated tasks. (Indeed, Piaget saw the development
of thinking in children as a recapitulation of the historical
development of scientific thinking.) Later in this section
of the paper on concrete operational thinking (i.e. in
4.2.3), we will nominate programming tasks that also
involve the principles of reversibility and conservation.

The neo-Piagetian explanation for the conservation of
liquid task, which generalizes to other conservation tasks,
is as follows. A child who reasons preoperationally (and
incorrectly) does so because of their limited working
memory capacity. That limited capacity only allows such
a child to focus on a single measure of the quantity of
liquid in a glass — the height of the water. A child (or
adult) who reasons concretely (and correctly) first begins
to do so when an increase in working memory capacity
(due to chunking) allows them to consider two measures
of the quantity of liquid in a glass — both the height and
the width of the water. When a child is able to
simultaneously appreciate the relationship between height
and width, the child is then open to learning that the
effect of height and width can sometimes cancel each
other out, and from there the child can learn the more
abstract concept that the quantity of liquid is conserved.

4.1.2 Transitive Inference

Transitive inference is another important characteristic of
concrete operational reasoning. It is the type of reasoning
where, in general terms, if a certain relationship holds
between object A and object B, and if the same
relationship holds between object B and object C, then
the same relationship also holds between object A and
object C. For example, Piaget would sometimes ask a
child a question like, “If Adam is taller than Bob, and
Bob is taller than Charlie, who is the tallest?”

From the neo-Piagetian perspective, the reason why a
novice may not be able to perform transitive inference is
that the working memory of the novice is overloaded by
other information, because the novice has not yet learnt to
chunk information in this problem domain. Consequently,
the novice cannot hold simultaneously in working
memory all the information about the relationships
between A, B and C required to perform the transitive
inference.

4.2
There is small amount of classical Piagetian literature on
concrete operational reasoning in programming, which
describes how young children learn to program (e.g.

Concrete Reasoning in Programming

Proceedings of the Thirteenth Australasian Computing Education Conference (ACE 2011), Perth, Australia

Huber, 1985). However, we are not aware of any
literature that explicitly connects programming with neo-
Piagetian literature on concrete operational reasoning.
There is some literature, however, that does describe
some of the behaviours of novice programmers that are
concrete operational, without making the connection to
neo-Piagetian literature. In the next two subsections on
concrete reasoning, we describe two examples of that
literature.

4.2.1 Ginat: Hasty design, futile patching
Recall from the general description of concrete
operational reasoning that any reasoning about

abstractions is restricted to familiar, real situations, and
that hypothetico-deductive reasoning is not part of
concrete operational reasoning. Ginat (2007) observed
concrete reasoning, with the absence of hypothetico-
deductive reasoning, in novice programmers:

A hasty design may be based on some simplistic
application of a familiar design pattern ... The design
pattern’s invocation may be relevant. Yet, its
utilization may not be based on sufficient task
analysis and thorough examination of diverse input
cases, but rather on some premature association that
seems relevant. Errors are not always discovered, as
the test cases on which the program is tested are very
limited. The devised program is batched, and “seems
correct”. Then, an outside source (e.g., a teacher)
points out a falsifying input. A patch is offered.
Sometimes the patch is sufficient for yielding
correctness, but more often than not, the patch is
insufficient. An additional patch is offered; and the
cycle of batch—&—patch continues.

The following quotation from Flavell, Miller and Miller
(2002) is about concrete reasoning in children. We
highlight the similarity between what Flavell et al. wrote,
and what Ginat wrote, by striking through Flavell et al.’s
references to the elementary school child and replacing it
with references to the novice programmer:

The [concrete operational novice programmer’s]
elementary-school-child’s characteristic approach to
many conceptual problems is to burrow right into the
problem data as quickly as possible.... His is an
earthbound, concrete, practical minded sort of
problem solving approach, one that persistently
fixates on the perceptible and inferable reality right
there in front of him. His conceptual approach is
definitely not unintelligent and it certainly generates
solution attempts that are more rational and
task—relevant than the preoperational [novice
programmer] ekitd is likely to produce. It does,
however, hug the ground of detected empirical reality
rather closely, and speculations about other
possibilities ... occur only with difficulty and as a last
resort. An ivory—tower theorist the [concrete
operational novice programmer] efementary—schood
ehild is not. ... For the concrete operational thinker,
the realm of the abstract possibility is seen as an
uncertain and only occasional extension of the safer
and surer realm of palpable reality (p. 146)

The purpose in providing the above quote is not to
suggest that novice programmers behave like school
children. Instead, the purpose is to highlight the
behaviour of novices, at any age, in any problem domain,
including programming, when their reasoning is concrete
operational.

4.2.2 Hazzan: Reducing Abstraction

Although Hazzan (2008) did not describe her work in
neo-Piagetian terms, she described how novices simplify
programming tasks from formal operational to concrete
operational reasoning:

students, when facing the need to cope
meaningfully with concepts that are too abstract for
them, tend to reduce the level of abstraction in order
to make these abstract concepts meaningful and
mentally accessible by dealing with specific
examples instead of with a whole set defined in
general terms.

4.2.3 Concrete Operational Tasks

In the remainder of this section on concrete operational
reasoning, we propose and explore some examples of
formative and/or summative tasks that could be given to
students to develop and/or test their concrete operational
reasoning.

4.2.3.1 Reversing

As discussed in the general description of concrete
operational reasoning, the archetypal manifestation of
concrete thinking is the ability to reason about quantities
that are conserved, and processes that are reversible.
What follows is a task that requires the student to reason
about reversing.

The purpose of the following code is to move all
elements of the array x one place to the right,
with the rightmost element being moved to the
leftmost position:

int temp = x[x.length-1];

for (int 1 = i>=0; --1)

x[1+1] =

x.length-2;

x[1]1;

x[0] = temp;

Write code that undoes the effect of the above
code. That is, write code to move all elements of
the array x one place to the left, with the leftmost
element being moved to the rightmost position.

An important feature of a solution written by someone
using concrete reasoning is the reversal of the direction of
the loop. A novice who reasoned preoperationally might
miss that change, at least until that novice had a chance to
run their initial solution and discover the error.

Note, however, that we cannot conclude that a novice
has performed concrete operational reasoning if the only
evidence we have is the novice’s final, correct solution,
and the novice used a computer. A novice might solve
this reversing problem by a process that combines quasi-
random code changes and copious trial runs, which is the

15

CRPIT Volume 114 - Computing Education 2011

behaviour of someone reasoning preoperationally. In
contrast, the novice who solves this problem by applying
concrete operational reasoning will, after inspecting the
given code, produce a correct solution almost
immediately (apart, perhaps, from trivial syntax errors).
To be confident that the novice performed concrete
operational reasoning, we must either: (1) observe the
novice as they work on the problem, (2) use software to
monitor, or limit, the number of edit—compile—run cycles,
or (3) have the student write the solution on paper.

4232

Cases of conservation in programming systems are more
abstract than conservation in physical systems, such as
the conservation of the volume of a liquid as it is poured
from one container to another. One case in programming
is the conservation of a specification when the underlying
implementation is changed. Consider the following
question:

Below is incomplete code for a method which
returns the smallest value in the array “x”. The code
scans across the array, using the variable “minsofar”
to remember the smallest value seen thus far. There
are two ways to implement remembering the
smallest value seen thus far: (1) remember the
actual value, or (2) remember the value’s position in
the array. Each box below contains two lines of
code, one for implementation (1), the other for
implementation (2). First, make a choice about
which implementation you will use (it doesn’t matter
which). Then, for each box, draw a circle around the
appropriate line of code so that the method will
correctly return the smallest value in the array.

Conservation

public int min(int x[]) {

int minsofar = ;

for (int i=1 ; ++1i)

{

i<x.length ;

(c) minsofar
x[1] <)

i f
* ¢ (d) x[minsofar]

(e) 1i
minsofar =) ;
(f) x[1i]

return (g) minsofar .

(h) x[minsofar]

}

An alternative version of this question would provide
the code for one of the implementations, and then ask the
student to provide the other implementation.

The ability to make simple transformations between
implementations, while conserving the specification, is an
underappreciated skill in programming pedagogy. The
novice who can easily perform simple implementation
transformations is then less preoccupied Dby
implementation minutiae, and can then focus upon higher
abstractions about a program. Current pedagogical

practice, however, does not ensure that novices have this
concrete operational skill before giving them tasks that
require formal operational reasoning.

4233
Consider the following question:

In one sentence, describe the purpose of the
following code. Assume that the variables y1, y2
and y3 contain integer values. In each of the three
boxes that contain sentences beginning “Swap the
values in assume that appropriate code is
provided — do NOT write that code.

if (yl < y2)

Transitive Inference (1)

Swap the wvalues in yl and y2.

if (y2 < y3)

Swap the wvalues in y2 and y3.

if (yl1 < y2)

Swap the wvalues in yl and y2.

A suitable answer to this question would be “It sorts the
three values so that yl > y2 > y3”. To make such a
deduction, the novice must perform transitive inference.

While some readers may at first be sceptical that any
novice could have difficulty answering the above
question, we report in another paper in these same
proceedings (Corney, Lister and Teague, 2011) how we
used this question in a class test, in the fifth week of an
introductory course, and found that half of our students
could not answer the question.

4.2.34 Transitive Inference (2)

Here again is the code for the classic BRACElet “explain
in plain English” problem (Whalley et al., 2006; Lister et
al., 2006):

bool bValid =

true;

for (int i = 0; 1 < iMAX-1; i++)

{

if (iNumbers[i] > iNumbers[i+1])

bvalid = false;

}

If a novice is to offer an explanation like “/¢ checks to see
if the array is sorted’, then the novice must perform
transitive inference. That is, the novice must recognize
(albeit not necessarily in the mathematical notation used
here) that if bvalid is still true at a given value of 1,
then forallp,gsuchthat 0 < p < g < i+1 ..

iNumbers[p] < iNumbersI[q]

4.3 A Closing Remark

Today, not only do we expect programming students to
move beyond preoperational reasoning quickly, but we
also expect them to go directly from preoperational
reasoning to formal operational reasoning. However,
Piagetian theory indicates that such a transition is

Proceedings of the Thirteenth Australasian Computing Education Conference (ACE 2011), Perth, Australia

difficult, that instead novices tend to move to formal
operational reasoning via the concrete operational level.
The primary weakness of today’s pedagogy of
programming, with its heavy emphasis on writing large
amounts of code, on problem solving and on top down
design, is that it doesn’t provide an opportunity for the
novice to develop concrete operational skills, via the
types of exercises we have described in this section of the
paper. Consequently, the novice who is unable to bridge
for themself the gap between preoperational reasoning
and formal operational reasoning remains stuck in
preoperational reasoning.

5 Conclusion

In the CS1 classroom, our students can exhibit three
broad forms of neo-Piagetian reasoning. When we lecture
to our class, we tend to talk about programs in terms of
formal operational reasoning, the most abstract of the
three forms of neo-Piagetian reasoning — it is only natural
that we would do so, since we who lecture are
accomplished programmers. However, many of our
students have not yet reached a point (not in CS1) where
they comfortably follow a discussion of a program in
formal terms — for those students, we may as well be
lecturing in a foreign language, and in a sense we are.

Some of our students tend to reason in a
preoperational form, where they can trace the changing
values in specific code, but do not reason in terms of
abstractions of the code. Some other students tend to
reason in a concrete operational form, where they can see
some abstractions of specific code, but they can only see
those abstractions in the context of that specific code.
Most students who tend to reason at the preoperational
and concrete operational levels will not spontaneously
become more accomplished at the formal operational
level simply by being exposed to learning materials
couched in formal operational terms.

It is often said CS1 students need to practice more, by
writing more programs. Students who tend to reason
formally about code, and perhaps also students who tend
to reason concretely about code, may indeed benefit from
writing more code. However, students who tend to reason
preoperationally about code will gain little from being
forced to write large quantities of code. Such students
can only write code by quasi-random mutation. For
students who are predominately reasoning at the
preoperational level, and perhaps also for students who
are predominately reasoning at the concrete level, we
need to develop new types of learning experiences that
develop their abstract reasoning without requiring them to
write a lot of code.

In computing, there has long been a debate about
whether programming skill is innate, or acquired. The
neo-Piagetian perspective may afford a means of
transcending that dialectic. There may indeed be people
who will never learn to reason in a formal operational
way about programs, but today’s high failure rates in
introductory programming courses probably overstates
the percentage of people who could never learn to
program. Just because a particular individual does not
spontaneously manifest formal operational reasoning
about programs does not mean that the individual cannot
possibly learn to do so, given the right tuition. Perhaps,

with a pedagogical approach informed by neo-Piagetian
theory, a pedagogical approach that recognizes
preoperational and concrete operational reasoning as
legitimate developmental phases, which works at
increasing the sophistication of how a student reasons
about code, via learning experiences that do not require
the student to write copious quantities of code, then
perhaps such a student can learn to reason in a formal
operational way about programs.

While students who aspire to be professional software
engineers must eventually develop formal operational
programming skills, perhaps it is unrealistic to expect
most of those students to do so in their first semester of
programming. Perhaps, in that first semester, we teachers
should set our sights on getting the bulk of our students to
the point where they can consistently reason at the
concrete operational level.

Acknowledgements

The author’s work was partially funded by an Associate
Fellowship awarded by the Australian Learning and
Teaching Council. The author’s thinking about neo-
Piagetian theory stems from the empirical results of the
BRACEIet project. He thanks his many collaborators on
that project, especially Tony Clear and Jacqui Whalley.

References

Agans, D. (2006) Debugging New York: Amacom

Barker, R. and Unger, E. (1983) A predictor for success
in an introductory programming class based upon
abstract reasoning development. SIGCSE Bull. 15, 1
(Feb.), 154-158. DOI=10.1145/952978.801037

Bennedsen, J. and Caspersen, M. (2006) Abstraction
ability as an indicator of success for learning object-
oriented programming? SIGCSE Bull. 38, 2 (June),
39-43. http://doi.acm.org/10.1145/1138403.1138430

Biggs, J. B. and Collis, K. F. (1982): Evaluating the
quality of learning: The SOLO taxonomy (Structure of
the Observed Learning QOutcome). New York:
Academic Press.

Brainerd, C. (1978) Piaget's theory of intelligence.
Englewood Cliffs, N.J.: Prentice-Hall.

Cafolla, R. (1988) Piagetian Formal Operations and Other
Cognitive Correlates of Achievement in Computer
Programming. Journal of Educational Technology
Systems, vol. 16, no. 1, p45-55.

Corney, M., Lister, R. and Teague, D. (2011) Early
Relational Reasoning and the Novice Programmer:
Swapping as the “Hello World” of Relational
Reasoning. The 13th Australasian Computer
Education Conference (ACE 2011), Perth, Australia.
Conferences in Research and Practice in Information
Technology (CRPIT), Vol. 114. J. Hamer and M. de
Raadt, Eds. http://crpit.com/index.html

Dijkstra, E. 1979. The humble programmer. In Classics in
Software Engineering, E. N. Yourdon, Ed. ACM
Classic Books Series. Yourdon Press, Upper Saddle
River, NJ, 111-125.

Dressel, P. (1983) Grades: One More Tilt at the
Windmill, in A. W. Chickering (ed.), Bulletin,
Memphis State University, Center for the Study of
Higher Education, Memphis, December.

CRPIT Volume 114 - Computing Education 2011

Edwards, S. (2004) Using software testing to move
students from trial-and-error to reflection-in-action.
SIGCSE ~ Bull. 36, 1 (March), 26-30.
http://doi.acm.org/10.1145/1028174.971312

Fischer, G. (1986) Computer Programming: A Formal
Operational Task. 16th Annual Symposium of the
Piaget Society, Philadelphia, PA, USA.
http://www.eric.ed.gov/PDFS/ED275316.pdf

Flavell, J. (1977) Cognitive development. Englewood
CIliffs, N.J.: Prentice-Hall

Flavell, J., Miller, P. and Miller, A. (2002) Cognitive
development. (4th edition) Upper Saddle River, N.J.:
Prentice-Hall.

Ginat, D. (2007). Hasty design, futile patching and the
elaboration of rigor. SIGCSE Bull. 39, 3 (June), 161-
165. http://doi.acm.org/10.1145/1269900.1268832

Halloun, I. and Hestenes, D. (1985) The initial knowledge
state of college physics students, Am. J. Phys. 53(11),
1043-1055.

Hazzan, O. (2008). Reflections on teaching abstraction
and other soft ideas. SIGCSE Bull. 40, 2 (June), 40-
43. http://doi.acm.org/10.1145/1383602.1383631

Huber, L. (1985) Computer Learning Through Piaget's
Eyes. Classroom Computer Learning, Vol. 6, No. 2
(Oct), pp. 39-43.

Hudak, M., and Anderson, D. (1990) Formal Operations
and Learning Style Predict Success in Statistics and
Computer Science Courses. Teaching of Psychology,
17(4) 231-234.

Kramer, J. (2007) Is abstraction the key to computing?
Communications of the ACM, Vol. 50, 4 (April), 36-
42. http://doi.acm.org/10.1145/1232743.1232745

Kurtz, B. (1980) Investigating the relationship between
the development of abstract reasoning and
performance in an introductory programming class.
SIGCSE Bull. 12(1), 110-117.
http://doi.acm.org/10.1145/953032.804622

Lister R., Adams, E. S., Fitzgerald, S., Fone, W., Hamer,
J., Lindholm, M., McCartney, R., Mostréom, E.,
Sanders, K., Seppild, O., Simon, B., and Thomas, L.
(2004) A Multi-National Study of Reading and
Tracing Skills in Novice Programmers. A multi-
national study of reading and tracing skills in novice
programmers. SIGCSE Bull. 36, 4 (June), 119-150.
http://doi.acm.org/10.1145/1041624.1041673

Lister, R., Simon, B., Thompson, E., Whalley, J. L., and
Prasad, C. (2006) Not seeing the forest for the trees:
novice programmers and the SOLO taxonomy.
SIGCSE Bull. 38, 3 (June), 118-122.
http://doi.acm.org/10.1145/1140123.1140157

Lister, R. (2007): The Neglected Middle Novice
Programmer: Reading and Writing without
Abstracting. 20th Annual Conference of the National
Advisory Committee on Computing Qualifications
(NACCQ'07), Nelson, New Zealand, Mann, S. and
Bridgeman, N., Eds, 133-140.
http://www.naccq.ac.nz/conferences/2007/133.pdf

Lister, R., Fidge C. and Teague, D. (2009) Further
evidence of a relationship between explaining, tracing
and writing skills in introductory programming.
SIGCSE Bull. 41, 3 (July), 161-165.
http://doi.acm.org/10.1145/1595496.1562930

Lister, R., Clear, T., Simon, Bouvier, D. J., Carter, P.,
Eckerdal, A., Jackova, J., Lopez, M., McCartney, R.,
Robbins, P., Seppild, O., and Thompson, E. (2010).
Naturally occurring data as research instrument:
analyzing examination responses to study the novice
programmer. SIGCSE Bull. 41, 4 (Jan), pp. 156-173.
http://doi.acm.org/10.1145/1709424.1709460

Lopez, M., Whalley, J., Robbins P. and Lister, R. (2008)
Relationships between reading, tracing and writing
skills in introductory programming. Fourth
international Workshop on Computing Education
Research (ICER). pp. 101-112.
http://doi.acm.org/10.1145/1404520.1404531

McCracken, M., Almstrum, V., Diaz, D., Guzdial, M.,
Hagen, D., Kolikant, Y., Laxer, C., Thomas, L.,
Utting, 1., and Wilusz, T. (2001) A Multi-National,
Multi-Institutional ~ Study of Assessment of
Programming Skills of First-year CS Students.
SIGCSE Bull., 33(4). pp 125-140.

Miller, G. A. (1956). The magical number seven, plus or
minus two: Some limits on our capacity for
processing information. Psychological Review, 63,
81-97.

Morra, S., Gobbo, C., Marini, Z. and Sheese, R. (2007)
Cognitive Development: Neo-Piagetian Perspectives.
Psychology Press.

Philpott, A, Robbins, P., and Whalley, J. (2007)
Accessing the Steps on the Road to Relational
Thinking. 20th Annual Conference of the National
Advisory Committee on Computing Qualifications
(NACCQ'07), Port Nelson, New Zealand, Mann, S.
and Bridgeman, N., Eds, p. 286.

Smith, L. (Ed.) (1992) Jean Piaget : critical assessments.
London ; New York : Routledge.

Thomas, L., Ratcliffe, M., and Thomasson, B. (2004
Scaffolding with object diagrams in first year
programming classes: some unexpected results.
SIGCSE Bull. 36, 1 (March), 250-254.
http://doi.acm.org/10.1145/1028174.971390

Traynor, D., Bergin, S., and Gibson, J. P. (2006):
Automated assessment in CSI. 8th Australian
Conference on Computing Education (ACE), Hobart,
Australia, ACM International Conference Proceeding
Series, 165: 223-228.
http://crpit.com/confpapers/CRPITV52Traynor.pdf

Turner, A. (1991) Computing Curricula 1991.
Communications of the ACM, 34(6), pp. 68-84.

Venables, A., Tan, G. and Lister, R. (2009) A Closer
Look at Tracing, Explaining and Code Writing Skills
in the Novice Programmer. Fifth International
Workshop on Computing Education Research
(ICER). pp. 117-128.
http://doi.acm.org/10.1145/1584322.1584336

Whalley, J., Lister, R., Thompson, E., Clear, T, Robbins,
P., and Prasad, C. (2006): An Australasian Study of
Reading and Comprehension Skills in Novice
Programmers, using the Bloom and SOLO
Taxonomies. 8th Australian Conference on
Computing Education (ACE), Hobart, Australia,
ACM International Conference Proceeding Series,
165:243-252.
http://crpit.com/abstracts/CRPITVS52Whalley.html

