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Theoretical error performance analysis for variational
quantum circuit based functional regression
Jun Qi 1,2✉, Chao-Han Huck Yang 2, Pin-Yu Chen 3✉ and Min-Hsiu Hsieh4✉

The noisy intermediate-scale quantum devices enable the implementation of the variational quantum circuit (VQC) for quantum
neural networks (QNN). Although the VQC-based QNN has succeeded in many machine learning tasks, the representation and
generalization powers of VQC still require further investigation, particularly when the dimensionality of classical inputs is concerned.
In this work, we first put forth an end-to-end QNN, TTN-VQC, which consists of a quantum tensor network based on a tensor-train
network (TTN) for dimensionality reduction and a VQC for functional regression. Then, we aim at the error performance analysis for
the TTN-VQC in terms of representation and generalization powers. We also characterize the optimization properties of TTN-VQC by
leveraging the Polyak-Lojasiewicz condition. Moreover, we conduct the experiments of functional regression on a handwritten digit
classification dataset to justify our theoretical analysis.
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INTRODUCTION
The imminent of quantum computing devices opens up
possibilities for exploiting quantum machine learning (QML)1–3

to improve the efficiency of classical machine learning algorithms
in many scientific domains like drug discovery4 and efficient solar
conversion5. Although the exploitation of quantum computing
devices to carry out QML is still in its early exploratory states, the
rapid development in quantum hardware has motivated advances
in quantum neural network (QNN) to run in noisy intermediate-
scale quantum (NISQ) devices6–9, where not enough qubits could
be spared for quantum error correction and the imperfect qubits
have to be directly employed at the physical layer10–12. Even
though, a compromised QNN is proposed by employing a
quantum-classical hybrid model that relies on an optimization of
the variational quantum circuit (VQC)13,14. The resilience of the
VQC to certain types of quantum noise errors and the high
flexibility concerning coherence time and gate requirements
admit VQC to apply to many promising applications on NISQ
devices15–22.
Although many empirical studies of VQC for quantum machine

learning have been reported, its theoretical understanding
requires further investigation in terms of representation and
generalization powers, particularly when the non-linear operator is
employed for dimensionality reduction. This work introduces a
tensor-train network (TTN) on top of the VQC model to implement
a TTN-VQC. The TTN is a non-linear operator mapping high-
dimensional features into low-dimensional ones. Then, the
resulting low-dimensional features go through the framework of
VQC. Compared with a hybrid model where the operation of
dimensionality reduction is constituted by a classical neural
network (NN)23, TTN can be realized by utilizing universal
quantum circuits18,24,25, and an end-to-end quantum neural
network can be setup.
In this work, we discuss the theoretical performance of TTN-VQC

in the context of functional regression. Functional regression
refers to building a vector-to-vector operator such that the

regression output can approximate a target operator. In more
detail, given a Q-dimensional input vector space RQ and a
measurable U-dimensional output vector space RU , the TTN-VQC-
based vector-to-vector regression aims to find a TTN-VQC operator
f : RQ ! RU such that the output vectors of f can approximate a
desirable target one.
In particular, this work concentrates on the error performance

analysis for TTN-VQC-based functional regression by leveraging
the error decomposition technique26 to factorize an expected loss
over the TTN-VQC operator into the sum of the approximation
error, estimation error, and training error. We separately upper
bound each error component by harnessing statistical machine
learning theory. More specifically, we define FTV as the TTN-VQC
hypothesis space which represents a collection of TTN-VQC
operators. Then, given a data distribution D, assuming a smooth
target function h�D and a set of N training data drawn independent
and identically distributed from a data distribution D, for a loss
function ℓ and an optimal TTN-VQC operator f �D 2 FTV, an
expected loss is defined as:

LDðf �DÞ :¼ Ex�D ℓðh�DðxÞ; f
�
DðxÞÞ

� �
; (1)

which can be minimized by using an empirical loss as:

LSðf �DÞ :¼
1
N

XN
n¼1

ℓðh�DðxnÞ; f
�
DðxnÞÞ: (2)

Since the mean absolute error (MAE)27 is a 1-Lipschitz
continuous28, the loss function ℓ is set as the MAE. Furthermore,
we separately define f �D, f �S and f S as an optimal TTN-VQC
operator, an empirical optimal operator, and a returned operator.
Then, as shown in Fig. 1, the error decomposition technique26

factorizes the expected loss LDðf SÞ into three error components

1Department of Electronic Engineering, School of Information Science and Engineering, Fudan University, Shanghai 200438, China. 2Electrical and Computer Engineering, Georgia
Institute of Technology, Atlanta, GA 30332, USA. 3IBM Research, Yorktown Heights, NY 10598, USA. 4Hon Hai Quantum Computing Research Center, Taipei 114, Taiwan.
✉email: jqi41@gatech.edu; pin-yu.chen@ibm.com; minhsiuh@gmail.com

www.nature.com/npjqi

Published in partnership with The University of New South Wales

1
2
3
4
5
6
7
8
9
0
()
:,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-022-00672-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-022-00672-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-022-00672-7&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-022-00672-7&domain=pdf
http://orcid.org/0000-0001-7533-2630
http://orcid.org/0000-0001-7533-2630
http://orcid.org/0000-0001-7533-2630
http://orcid.org/0000-0001-7533-2630
http://orcid.org/0000-0001-7533-2630
http://orcid.org/0000-0003-2879-8811
http://orcid.org/0000-0003-2879-8811
http://orcid.org/0000-0003-2879-8811
http://orcid.org/0000-0003-2879-8811
http://orcid.org/0000-0003-2879-8811
http://orcid.org/0000-0003-1039-8369
http://orcid.org/0000-0003-1039-8369
http://orcid.org/0000-0003-1039-8369
http://orcid.org/0000-0003-1039-8369
http://orcid.org/0000-0003-1039-8369
https://doi.org/10.1038/s41534-022-00672-7
mailto:jqi41@gatech.edu
mailto:pin-yu.chen@ibm.com
mailto:minhsiuh@gmail.com
www.nature.com/npjqi


as:

LDðf SÞ ¼ LDðf �DÞ|fflfflfflffl{zfflfflfflffl}
Approximation Error

þLDðf �SÞ � LDðf �DÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Estimation Error

þLDðf SÞ � LDðf �SÞ|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Training Error

� LDðf �DÞ þ 2 sup
f2FTV

jLDðf Þ � LSðf Þj þ LDðf SÞ � LDðf �SÞ

� LDðf �DÞ þ 2R̂SðFTVÞ þ ν;

(3)

where LDðf �DÞ is associated with the approximation error, R̂SðFTVÞ
is an empirical Rademacher complexity29 over the family FTV, and
ν refers to the training error that results from the optimization bias
of gradient-based algorithms. The Rademacher complexity R̂ðFTVÞ
can measure the model complexity and is particularly used for the
regression problem26. In this work, our theoretical results
concentrate on the error analysis by upper-bounding each error
component, and our empirical results are illustrated to corroborate
our theoretical analysis.
Our derived theoretical results in this work and the significance

of TTN-VQC-based functional regression are summarized as
follows:

● Representation power: our upper bound on the approxima-

tion error is derived as Θð1Þffiffiffi
U

p þ O 1ffiffiffi
M

p
� �

, where U and M

separately denote the number of qubits and the count of
quantum measurement. The result suggests that the expres-
sive capability of TTN-VQC can be mainly determined by the
number of qubits, and the quality of the expressiveness is also
affected by the count of quantum measurements. Larger U
and M correspond to the fact that more algorithmic qubits
and a longer decoherence time are necessarily required to
ensure stronger representation power of TTN-VQC. Further-
more, since more qubits are more likely to result in the
problem of Barren Plateaus of VQC during the training
process, the introduction of PL condition is significant to
handle the problem.

● Generalization power: we derive an upper bound on the
estimation error concerning the empirical Rademacher com-
plexity R̂SðFTVÞ, which is further upper bounded by a constant

as 2Pffiffiffi
N

p ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1 Λ
2
k

q
þ Λ0Þ. Here, P, N, and K separately denote

the input power, the amount of training data, and the order of
multi-dimensional tensor; Λk and Λ refer to the upper bounds
on the Frobenius norm of TTN parameters. The result of the
generalization power suggests that given the training data
and model structure, the additive noise corresponds to a
larger value of P which results in an upper bound on a weaker
generalization capability.

● Optimization bias: the PL condition is employed to initialize
the TTN-VQC parameters and the training error can be
exponentially converged to a small loss value. The problem
of barren plateau is a serious issue in the training process of
the quantum neural network30, especially for a randomized
QNN architecture, the variance of gradients exponentially
vanishes with the increase of qubits. In this work, we claim
that the model setting based on the PL condition could be
beneficial to the improvement of the TTN-VQC training.

Besides, our empirical results of functional regression are
designed to corroborate the corresponding theoretical results of
representation and generalization powers, and the analysis of
optimization performance.
The related work comprises theoretical and technical aspects.

As for the theoretical point, Du et al.31 analyzes the learnability of
quantum neural networks with parameterized quantum circuits
and gradient-based classical optimizer. A theoretical comparison
between this work and Du et al.31 is shown in Table 1, where our
theoretical results mainly follow the error decomposition
method26,32. More specifically, in this work, we factorize an
expected loss based on MAE over a TTN-VQC operator into three
error components: approximation error, estimation error, and
training error. We separately derive upper bounds on each error
component and the results are summarized in Table 1.
Besides, the techniques of this work rely on the TTN and VQC

models. The TTN, also known as matrix product state (MPS)33, was
first put forth by Alexander et al.34 in the applications of machine
learning. Chen et al.25 employs MPS to extract low-dimensional
features for VQC. Although this work leverages the TTN for
dimensionality reduction, we rebuild the TTN as parallel neural
network architecture, where the sigmoid activation function is
separately imposed upon each neural network. In this work, we
choose the TTN for dimensionality reduction for the reason that
although the hybrid quantum-classical model may take more
resources while simulating a quantum computer, it can be
implemented on actual quantum hardware. Whereas, the classical
models cannot be put on quantum hardware. Moreover, since the
VQC models have been widely used in the domains of quantum
machine learning35–37, we follow the standard VQC pipeline such
that our theoretical results can be employed for the general
VQC model.

RESULTS
Preliminaries
Before we delve into the detailed architecture of the TTN-VQC, we first
introduce the basic components of TTN and VQC, which have been
previously proposed and widely used in quantum machine learning.
As shown in Fig. 2, we first introduce a VQC which is composed

of three components: (a) Tensor Product Encoding (TPE); (b)
Parametric Quantum Circuit (PQC); (c) Measurement.

Fig. 1 An illustration of error decomposition technique. h�D is a
smooth target function in a family of all functions YX over a data
distribution D; FTV denotes the family of TTN-VQC operators as
shown in the dashed square; f �D represents the optimal hypothesis
from the space of TTN-VQC operators over the distribution D; f �S
denotes the best empirical hypothesis over the set of training
samples S; f S is the returned hypothesis based on the training
dataset S.

Table 1. A comparison of learning theory for VQC between this work
and Du et al.31.

Category This work Du et al.31

Learning problem Regression Classification

Dimensionality reduction TTN N/A

Representation power Θð1Þffiffiffi
U

p þO 1ffiffiffi
M

p
� �

N/A

Generalization power 2Pffiffiffi
N

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1 Λ
2
k

q
þ Λ0

� 	
N/A

Conditions for
optimization bias

μ-PL+ 1-Lipschitz μ-PL+ β-smooth
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The TPE model was proposed in38 and it aims at converting a
classical data x into a quantum state xj i by adopting a one-to-one
mapping as:

xj i ¼ �U
i¼1RY

π

2
xi

� �� �
0j i�U ¼

cos π
2 x1

 �

sin π
2 x1

 �" #

�
cos π

2 x2

 �

sin π
2 x2

 �" #

� � � � �
cos π

2 xU

 �

sin π
2 xU

 �" #

;

(4)

where each xi can be strictly restricted in the domain of [0, 1] such
that the conversion between x and xj i is a reversely one-to-one
mapping.
The PQC framework consists of U quantum channels corre-

sponding to currently accessible U qubits on NISQ devices. Here,
the controlled-NOT (CNOT) gates realize the quantum entangle-
ment, and the single rotation gates RX, RY, and RZ compose the
PQC model with model free parameters α= {α1, α2, . . . , αU},
β= {β1, β2, . . . , βU} and γ= {γ1, γ2, . . . , γU}. The PQC model corre-
sponds to a linear operator T θvqc that transforms the quantum
input state xj i into the output one zj i. The PQC model in the
green dash square is repeatably copied to compose a deeper
architecture.
The measurement framework outputs the expectation values

concerning the Pauli-Z operators, namely hσð1Þ
z i, hσð2Þ

z i, ..., hσðUÞ
z i

which results in the output vector z ¼ ½hσð1Þ
z i; hσð2Þ

z i; :::; hσðUÞ
z i�

T
.

The expectation vector z refers to the classical data and it is
connected to the operation of functional regression.
Then, we briefly introduce the formulation of TTN. A TTN refers

to a tensor network aligned in a 1-dimensional array and is
generated by repetitively singular value decomposition (SVD)39 to
a many-body wave function24. To utilize the TTN for dimension-
ality reduction, in this work, we first define the tensor-train
decomposition (TTD) for a 1-dimensional vector and a tensor-train
representation for a 2-dim matrix. More specifically, given a vector
x 2 RD where D ¼

QK
k¼1 Dk , we reshape the vector x into a K-

order tensor X 2 RD1 ´D2 ´ ��� ´DK . Then, given a set of tensor-train
ranks (TT-ranks) {R1, R2, . . . , RK+1} (R1 and RK+1 are set as 1), all

elements of X can be represented by multiplying K matrices X½k�
dk

based on the TT-format as:

Xd1;d2 ;:::;dK ¼ X½1�
d1
X½2�

d2
� � � X½K �

dK
¼

YK
k¼1

X½k�
dk
; (5)

where the matrices X½k�
dk

2 RRk ´ Rkþ1 , ∀ dk ∈ [Dk]. The ranks R1 and

RK+1 are set as 1 to ensure the term
QK

k¼1 X
½k�
dk

is a scalar.
Next, we are concerned with the TTD for a 2-dim matrix. A feed-

forward neural network with U neurons has the form:

yðuÞ ¼
XD
d¼1

Wðd; uÞ � xðdÞ; 8u 2 ½U�: (6)

If we assume that U ¼
QK

k¼1 uk , then we can reshape the
2-order matrixW as a D-order double-indexed tensorW and it can
be factorized into the TT-format as:

Wðd1;u1Þ;ðd2 ;u2Þ;:::;ðdK ;uK Þ ¼ W½1�
d1;u1

W½2�
d2 ;u2

� � �W½K �
dK ;uK

; (7)

where W½k� 2 RRk ´Dk ´Uk ´ Rkþ1 is a 4-order core tensor, and each
element W½k�

dk ;uk
2 RRk ´ Rkþ1 is a matrix. Then, we can reshape the

input vector x and the output one y into two tensors of the same
order: X 2 RD1 ´D2 ´ ��� ´DK , Y 2 RU1 ´U2 ´ ��� ´UK , and we build the
mapping function between the input tensor Xd1;d2;:::;dK and the
output one Yu1;u2;:::;uK as:

Yu1;u2;:::;uK ¼
XD1

d1¼1

XD2

d2¼1

� � �
XDK

dK¼1

Wðd1;u1Þ;ðd2;u2Þ;:::;ðdK ;uK ÞXd1;d2;:::;dK : (8)

Then, by employing the TTD for the K-order tensor element
Xd1;d2;:::;dK and Wðd1;u1Þ;ðd2;u2Þ;:::;ðdK ;uK Þ separately defined in Eq. (5)
and (7), we attain that

Yu1 ;u2;:::;uK ¼
PD1

d1¼1

PD2

d2¼1
� � �

PDK

dK¼1
Wðd1;u1Þ;ðd2;u2Þ;:::;ðdK ;uK ÞXd1 ;d2;:::;dK

¼
PD1

d1¼1

PD2

d2¼1
� � �

PDK

dK¼1

QK
k¼1

W½k�
dk ;uk

	
QK
k¼1

X½k�
dk

¼
QK
k¼1

PDk

dk¼1
W½k�

dk ;uk
	 X½k�

dk

¼
QK
k¼1

Y½k�
uk ;

(9)

where W½k�
dk ;uk

	 X½k�
dk

refers to an element-wise multiplication of the

two matrices, and
PDk

dk¼1 W
½k�
dk ;uk

	 X½k�
dk

results in a matrix Y½k�
uk

in

RRk ´ Rkþ1 . The ranks R1= RK+1= 1 ensures the
QK

k¼1 Y½k�
uk

is a scalar.

Fig. 2 An illustration of three components in the VQC model. The TPE employs a series of RYðπ2 xiÞ to transform classical data into quantum
states. The PQC is composed of CNOT gates and single-qubit rotation gates RX, RY, RZ with free model parameters α, β, and γ. The CNOT gates
impose the operation of quantum entanglement among qubits, and the gates RX, RY, and RZ can be adjustable during the training stage. The
PQC model in the green dash square is repeatably copied to build a deeper model. The measurement converts the quantum states
jz1i; jz2i; :::; jzUi into the corresponding expectation values hσð1Þz i; hσð2Þz i; :::; hσðUÞz i. The outputs hσð1Þz i, hσð2Þz i, ..., hσðUÞz i are connected to a loss
function and the gradient descent algorithms can be used to update VQC parameters.
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Based on the framework of TTN, two requirements need to be met
as follows: (a) given an input vector x 2 RD , we need D ¼

PK
k¼1 Dk ,

dk= [Dk] and R1= RK+1= 1; (b) Given the output vector in RU , we
have U ¼

QK
k¼1 Uk , where uk= [Uk], and R1= RK+1= 1. In particular,

this work’s output dimension U corresponds to the number of
qubits.

Theoretical results
This section first exhibits the architecture of TTN-VQC, and then
we analyze the upper bounds on the representation and
generalization powers and the optimization performance.
The TTN-VQC pipeline is shown in Fig. 3, where (a) denotes the

framework of TTN, (b) is associated with the VQC model, and (c)
represents the operation of functional regression. The VQC model
is based on the standard architecture as shown in Fig. 2, and the
TTN is designed according to the framework in Section
“Preliminaries”. To introduce the non-linearity to the TTN model,
a sigmoid activation function Sigm(⋅) is taken for each YkðjkÞ such
that

Ŷðj1; j2; :::; jK Þ ¼
YK
k¼1

Sigm Yk jkð Þð Þ; (10)

which introduces the non-linearity to the TTN features and
corresponds to a parallel neural network structure.
The parallel DNN structure is illustrated in Fig. 4, where a K-

order tensor Xd1;d2;:::;dK is first decomposed into 2-dim matrices

X½1�
d1
, X½2�

d2
, ..., X½K�

dK
and each X½k�

dk
goes through W½k�

dk ;uk
. The resulting

Y½1�
u1 , Y

½2�
u2 , ..., Y

½K�
uK are non-linearly activated by applying the sigmoid

activation function before multiplying them together into a K-
order tensor Ŷu1;u2;:::;uK . By iterating uk ∈ [Uk] and fixing other
indices u1, u2, . . . , uk−1, uk+1, . . . , uK, we separately collect a vector
associated with the kth order of Y.
More significantly, the non-linearity introduced by the sigmoid

function sets up a parallel DNN structure for TTN and helps to
build a one-to-one mapping in the TPE framework because the
sigmoid function compresses the functional values in the domain
of (0, 1). Proposition 1 suggests the sigmoid activation function
ensures a one-to-one mapping from the classical data to the
quantum state.

Proposition 1. The sigmoid activation function applied to the TTN
ensures the TPE as a linear unitary operator yj i ¼ T yð 0j i�UÞ such
that a quantum state yj i can be generated from a classical vector y.
On the other hand, the classical vector y can be exactly deduced
based on the operator T y .

Fig. 3 An illustration of the TTN-VQC architecture. T θttn and T θvqc represent the TTN and VQC operators with trainable parameters θttn and
θvqc, respectively. T y refers to a reversible classical-to-quantum mapping. The VQC model in the green dash square can be repeatably copied
to generate a deep parametric model. The framework of functional regression outputs loss values and evaluates gradients of loss functions to
update model parameters θvqc and θttn. T lr refers to a fixed regression matrix.

Fig. 4 Reformulating the TTN model in a parallel structure. Each element of the input K-order tensor Xd1 ;d2 ;:::;dK is factorized into K matrices

Xdk by utilizing TTD. Each X½k�
dk

goes through the TTN associated with model parameters W½k�. The sigmoid function is imposed upon the

output Y½k�
uk
, and all Y½k�

uk
are all multiplied to form the output Ŷu1;u2 ;:::;uK .
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Proposition 1 can be justified based on Eq. (4), where cosðπ2 xiÞ
and sinðπ2 xiÞ are reversible one-to-one functions because of each
xi∈ (0, 1). Then, we can deduce the original classical vector y given
the quantum state yj i.
The VQC outputs a classical vector z ¼ ½hσð1Þ

z i; hσð2Þz i; :::; hσðKÞ
z i�

T
,

and then z is connected to the framework of functional regression,
where a fixed linear regression operator T lr further transforms z
into the output vector. The MAE is taken to measure the loss value
and the related gradients of the loss function, which are used to
update the parameters of both VQC and TTN models.
To analyze the representation power, Theorem 1 shows an upper

bound on the approximation error. The upper bound on the
approximation error relies on the theoretical analysis of the inherent
parallel structure for the TTN model and the universal approximation
theory utilized for neural networks40–42. Theorem 1 suggests that the
representation power of linear operator M
 T θvqc 
 T y is strength-
ened by applying a non-linear operator T θttnðxÞ.

Theorem 1. Given a smooth target function h�D : RQ ! RU and a
classical data x, there exists a TTN-VQC gðx; θvqc; θttnÞ ¼ M 
 T θvqc

T y 
 T θttnðxÞ, we obtain

LDðf �DÞ ¼ kh�DðxÞ � T lr E gðx; θvqc; θttnÞ
� �
 �

k1 �
Θð1Þffiffiffiffi

U
p þO 1ffiffiffiffi

M
p

� 	
;

(11)

where U and M separately refer to the number of qubits and the
count of quantum measurement, and E½gðx; θvqc; θttnÞ� represents
an expectation value of the output measurement.

The upper bound in Eq. (11) implies that the number of qubits U
and the count of measurement M jointly decide the representa-
tion power of TTN-VQC, and larger values of U and M are expected
to lower the upper bound. However, a larger value U requires an
advanced quantum computer with more logic qubits, but more
qubits are likely to degrade the optimization performance
because of the problem of Barren Plateaus. To strike a balance
between a large number of qubits and low optimization bias, the
PL condition is introduced to initialize the TTN-VQC model.
Moreover, as for the analysis of the generalization power,

Theorem 2 suggests the upper bounds of the estimation error. The
upper bound on the estimation error can be derived based on the
empirical Rademacher complexity R̂SðFTVÞ, which is defined as:

R̂SðFTVÞ :¼ Eϵ sup
f2FTV

1
N

XN
n¼1

ϵnf ðxnÞ
" #

; (12)

where N samples S= {x1, x2, . . . , xN}, and ϵ= {ϵ1, ϵ2, . . . , ϵN} refers
to a set of N Rademacher random variables taking on values 1
and− 1 with an equal likelihood. The empirical Rademacher
complexity measure how well the functional family FTV correlates
with random noise ϵ on the dataset S, and it describes the richness
of the family FTV: a richer family FTV can generate more functions f
that better correlates with the random noise on average.

Theorem 2. Based on the TTN-VQC setup in Theorem 1, the
estimation error is upper bounded by the empirical Rademacher
complexity 2R̂SðFTVÞ, which is

2R̂S FTVð Þ � 2R̂S FTTNð Þ þ 2R̂S FVQCð Þ � 2Pffiffiffi
N

p

ffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1

Λ2
k

s
þ 2PΛ0ffiffiffi

N
p

s:t:; kxnk2 � P; 8n 2 ½N�;
kW T θvqc


 �
kF � Λ0; kW½k� T θttnð ÞkF � Λk ; k 2 ½K �;

(13)

where FTTN and FVQC separately denote the family of TTN and
VQC, P, Λ0 and Λk are constants, WðT θvqc Þ refers to a matrix
associated with the operator T θvqc , and W½k�ðT θttn Þ corresponds to

a 4-order tensor of TTN, ∥W∥F and kW½k�kF represent the
Frobenius norm of a matrix and a tensor, respectively.

The upper bound on the estimation error in Eq. (13) shows
when an input x and an initialized TTN-VQC model are given, a
sufficiently large amount of training data N is needed to lower the
related upper bound. On the other hand, the noise perturbation
associated with the noisy power Pnoise imposed upon the input
corresponds to a larger total power P= Pin+ Pnoise, which
corresponds to a larger upper bound on the estimation error
and accordingly weakens the generalization power.
The optimization error of VQC is associated with the training

problem of Barren Plateaus30 that stems from optimizing a non-
convex objective function and the gradients may vanish almost
everywhere in the training stage. To alleviate the problem of
Barren Plateaus, we introduce an initialization strategy based on
the Polyak-Lojasiewicz (PL) condition43–45. More specifically, given
the set of model parameters θ= {θttn, θvqc} for TTN-VQC, if an
empirical loss function LS satisfies μ-PL, the L2-norm of the first-
order gradient ∇LS concerning θ should satisfy the following
inequality as:

1
2
k∇LSðθÞk22 � μLSðθÞ: (14)

Theorem 3. If a 1-Lipschitz loss function L over the set of TTN-
VQC parameters θ satisfies the PL condition, the gradient descent
algorithm with a learning rate of 1 can lead to an exponential
convergence rate. More specifically, at epoch T, we have

LSðθT Þ � exp �μTð ÞLSðθ0Þ; (15)

where θ0 and θT separately denote the parameters at the initial
stage and the epoch T. Furthermore, given a radius r ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2LSðθ0Þ

p
μ�1 for a closed ball B(θ0, r), there exists a global

minimum hypothesis θ*∈ B(θ0, r) such that the optimization error
becomes sufficiently small.

Furthermore, we show a necessary condition in Proposition 2
for a TTN-VQC operator f 2 FTV to satisfy the μ-PL setup of LSðθÞ,
which is related to the tangent kernel of the operator f.

Proposition 2. For a TTN-VQC operator f 2 FTV, we define the
tangent kernel Kf as∇ f(θ)∇ f(θ)T. If a 1-Lipschitz loss function
LSðθÞ satisfies the μ-PL condition, λminðKf Þ represents the smallest
eigenvalue of Kf and meets the condition as:

λmin Kfð Þ � μ: (16)

Theorem 3 suggests that the μ-PL condition for the TTN-VQC
ensures an exponential convergence rate and the training loss can
reach as low as 0. Proposition 2 can check if the μ-PL condition can
be met by calculating its tangent kernel. Our theorems suggest
that the TTN-VQC model meeting the PL condition can better deal
with the problem of Barren Plateaus, but we cannot guarantee
that the model with a low optimization bias has to meet the PL
condition. In other words, the PL condition is one of the potential
approaches to ensure the VQC handles the optimization issue.
Based on the derived upper bound, under the setup of μ-PL

condition, the upper bounds on the error components can be
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combined into an aggregated upper bound as:

LDðf SÞ � LDðf �DÞ þ 2R̂SðFTVÞ þ ν

� Θð1Þffiffiffi
U

p þ O 1ffiffiffi
M

p
� �

þ 2Pffiffiffi
N

p

ffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1

Λ2
k

s
þ 2PΛ0ffiffiffi

N
p

s:t:; kxnk2 � P; n 2 ½N�;
kWðT θvqc ÞkF � Λ0; kW½k�ðT θttnÞkF � Λk ; k 2 ½K �:

(17)

The aggregated upper bound in Eq. (17) shows that the
training error ϵ can be reduced to closely 0 with the setup of μ-
PL condition, and the expected loss is mainly determined by
the upper bounds on the approximation and estimation errors.

Empirical results
To separately corroborate our theoretical analysis of the TTN-VQC,
our experiments are composed of two groups: (1) to evaluate the
representation power, the training and test datasets are set in the
same clean environment; (2) to assess the generalization power of
TTN-VQC, the test data are separately mixed by additive Gaussian
and Laplacian noises, where the SNR levels are set as 8dB and
12dB, respectively. Our baseline system is a linear PCA-VQC model
where the technique of principal component analysis (PCA)46 is
employed. PCA is a standard method to reduce data dimension-
ality by applying a linear transformation in an unsupervised
manner. Our experiments compare the performance of the TTN-
VQC and PCA-VQC models, and particularly aim at verifying the
following points:

1. The TTN-VQC can lead to better performance than PCA-VQC
in both matched and unmatched environmental settings.

2. Increasing the number of qubits can improve the repre-
sentation power of TTN-VQC.

3. Exponential convergence rates demonstrate our configura-
tions of the TTN-VQC satisfy the μ-PL condition.

We evaluate the performance of TTN-VQC on the standard MNIST
dataset47. The MNIST dataset aims at the task of handwritten 10 digit
classification, where there are 60,000 examples for training and 10,000
data for testing. In our experiments, we randomly sample 10,000 in
training data and 2000 in test data. Both training and test data are
corrupted with noisy signals at different SNR levels, and the generated
noisy data are taken as the input to the quantum-based models. The
target of the models is set as the clean data during the training stage,
where the model-enhanced data are expected to be as close as the
target one. We measure the model performance in the test stage by
calculating the L1-norm loss between enhanced data and target one.
As the experimental baseline, a hybrid PCA-VQC model is

conducted, where PCA serves as a simple feature extractor followed
by the VQC as the classifier. The PCA-VQC represents a linear VQC
model which is in contrast to a non-linear one based on the TTN-VQC
model. We include 4 PQC blocks in the VQC employed in the
experiments. As for the experiments of TTN-VQC, the image data are

reshaped into a 3-order 7 × 16 × 7 tensors. Given a set of ranks
R= {1, 3, 3, 1}, we can set 3 trainable tensors as: W1 2 R1 ´ 7 ´U1 ´ 3,
W2 2 R3 ´ 16´U2 ´ 3, and W3 2 R3 ´ 7 ´U3 ´ 1, where U ¼

Q3
k¼1 Uk is

associated with the number of qubits. In particular, we separately
assess the models with 8 qubits and 12 qubits, and the parameters
(U1, U2, U3) are set as (2, 2, 2) for the 8 qubits and (2, 3, 2) for the 12
qubits. The stochastic gradient descent (SGD)48 with an Adam
optimizer49 is utilized in the training process, where a mini-batch of 50
and a learning rate of 1 are configured. The 1-Lipschitz continuous
function based on MAE is taken to meet the PL condition.
To corroborate the Theorem 1 for the representation power

of TTN-VQC, both training and test data are mixed with the
Gaussian noise of the 15dB SNR level, and we compare the
performance of TTN-VQC with PCA-VQC on the generated noisy
settings. Figure 5 demonstrates the related empirical results,
where TTN-VQC_8Qubit and TTN-VQC_12Qubit separately
represent the TTN-VQC models with 8 and 12 qubits and
PCA-VQC_8Qubit and PCA-VQC_12Qubit denote that the PCA-
VQC models with 8 and 12 qubits, respectively. Our experi-
ments show that the TTN-VQC can significantly outperform the
PCA-VQC counterparts in terms of lower training and test loss
values. Moreover, our results also suggest that more qubits can
improve the empirical performance of both TTN-VQC and PCA-
VQC models. Table 2 presents the final results of the test
dataset. The TTN-VQC_12Qubit model owns more parameters
than the TTN-VQC_8Qubit model (0.636 Mb vs. 0.452 Mb), but
the former one attains better empirical performance in terms
of lower MAE scores (0.0156 vs. 0.0597) on the test dataset.
To assess the generalization power of TTN-VQC, the test data

are separately mixed with additive Gaussian and Laplacian
noises with 8 dB and 12 dB SNR levels. Based on the well-
trained TTN-VQC and PCA-VQC models with eight qubits, we
further assess their performance on the test data with Gaussian
and Laplacian noisy conditions related to the evaluation of
their generalization power. Based on the upper bound of the
generalization power in Theorem 2, given the input dataset, a
more noisy setting corresponds to a larger Pnoise, which results
in a larger total power P= Pin + Pnoise. Thus, we corroborate our
theorem in the experiment by evaluating the empirical
performance under different noisy conditions. In the

Fig. 5 Empirical results of the vector-to-vector regression on the MNIST dataset to evaluate the representation power of TTN-VQC. aMAE
loss values on the training data. b MAE loss values on the test data. TTN-VQC_8Qubit and TTN-VQC_12Qubit represent the TTN-VQC models
with 8 and 12 qubits, respectively; PCA-VQC_8Qubit and PCA-VQC_12Qubit separately denote the PCA-VQC models with 8 and 12 qubits.

Table 2. Empirical results of TTN-VQC and PCA-VQC models on the
test dataset.

Models Qubits Params (Mb) MAE

TTN-VQC_8Qubit 8 0.452 0.0597

TTN-VQC_12Qubit 12 0.636 0.0156

PCA-VQC_8Qubit 8 0.080 0.3847

PCA-VQC_12Qubit 12 0.120 0.2939

J. Qi et al.

6

npj Quantum Information (2023)     4 Published in partnership with The University of New South Wales



meanwhile, to highlight the advantage of non-linearity for TTN-
VQC, we also compare the experimental results of both TTN-
VQC and PCA-VQC.
For one thing, Fig. 6 suggests that the TTN-VQC models

significantly outperform the PCA-VQC counterparts in the two
noisy settings, and Table 3 shows the MAE scores of TTN-VQC and
PCA-VQC models, where the TTN-VQC models achieve much
better performance than the PCA-VQC ones in terms of lower MAE
scores under all kinds of noisy environments. For another, we
observe that the experimental performance of the TTN-VQC
models under more adverse Gaussian and Laplacian noisy settings
is degraded because of higher MAE scores, which corresponds to
our theoretical analysis.
Moreover, our derived upper bound on the estimation error is

also associated with the amount of training data. To test the effect
of training data for the generalization capability, the number of
training data is gradually incremented from a subset of data to a
whole set. In Table 4, we observe that a larger amount of training
data leads to lower MAE scores which correspond to better
generalization power.

DISCUSSION
This work focuses on the theoretical error performance analysis
for VQC-based functional regression, particularly when the TTN
is employed for dimensionality reduction. Our theoretical
results provide upper bounds on the representation and
generalization powers of TTN-VQC. Our theoretical results
suggest that the approximation error is inversely proportional
to the square root of qubits, which means that the increase of
qubits can lead to better representation power of TTN-VQC. The
estimation error of TTN-VQC is related to its generalization
power, which is upper bounded based on the empirical

Rademacher complexity. The optimization error can be lowered
to a small score by leveraging the PL condition to realize an
exponential convergence based on the SGD algorithm. To our
best knowledge, no prior works, such as a complete error
characterization, have been delivered.
Our experiments of vector-to-vector regression on the MNIST

dataset are designed to corroborate the theoretical results. We first
compare the representation power of the TTN-VQC models with the
PCA-VQC counterparts. We observe that more qubits and the non-
linear property for TTN-VQC can improve the empirical performance
that matches our theoretical analysis. Further, we assess the
generalization power of TTN-VQC by taking different noisy inputs
into account, and we demonstrate that more mismatched and
noisy inputs can worsen the generalization power. Besides, the non-
linear TTN-VQC models outperform the linear PCA-VQC models in
terms of representation and generalization powers. That implies
that the non-linearity of TTN-VQC can greatly contribute to the
improvement of VQC performance.
We also note that the TTN-VQC models attain exponential

convergence rates. The optimization error is eventually reduced
to 0 in the training process, which corresponds to the PL
condition in our theoretical analysis. Moreover, the empirical
results on the test dataset consistently exhibit a decreasing trend.
The empirical results imply that the model setup for TTN-VQC
meets the PL condition and thus it can handle the problem of
Barren Plateaus. Our future work will discuss how to initialize the
VQC model based on the PL condition to minimize the
optimization bias.
Furthermore, our theoretical results are built upon the Lipschitz

loss function utilized for the regression problem, and the
theoretical contributions can be certainly generalized to the
classification tasks where the loss functions like hinge loss and
cross-entropy are data-dependent Lipschitz continuity and the
Lipschitz constant does not keep the same value on different
datasets.

METHODS
This section aims at providing detailed proof of our theoretical
results. We first present the upper bound on the representation
power, and then we derive another upper bound on the

Fig. 6 Empirical results of the vector-to-vector regression on the MNIST dataset to evaluate the generalization power of TTN-VQC and
PCA-VQC with 8 qubits. a MAE loss values on the training data. b MAE loss values on the test data. There are two noisy settings on the test
dataset to evaluate the performance of the TTN-VQC and PCA-VQC models: Gauss-8dB and Gauss-12dB separately denote the Gaussian noisy
conditions of 8 dB and 12 dB SNR levels; Laplace-8dB and Laplace-12dB refer to the Laplacian noisy settings of 8dB and 12dB SNR levels,
respectively.

Table 3. Empirical results of TTN-VQC and PCA-VQC models on the
test dataset with either Gaussian or Laplacian noise with 8 dB or 12 dB
SNR levels.

Models Noise type Params (Mb) MAE

TTN-VQC_8Qubit Gaussian (8dB) 0.452 0.1703

TTN-VQC_8Qubit Gaussian (12dB) 0.452 0.1078

PCA-VQC_8Qubit Gaussian (8dB) 0.080 0.5151

PCA-VQC_8Qubit Gaussian (12dB) 0.080 0.4546

TTN-VQC_8Qubit Laplacian (8dB) 0.452 0.1684

TTN-VQC_8Qubit Laplacian (12dB) 0.452 0.1327

PCA-VQC_8Qubit Laplacian (8dB) 0.080 0.4651

PCA-VQC_8Qubit Laplacian (12dB) 0.080 0.4396

Table 4. Empirical results of TTN-VQC on datasets of different sizes.

Models Noise type Num. data MAE

TTN-VQC_8Qubit Gaussian (12dB) 20,000 0.2941

TTN-VQC_8Qubit Gaussian (12dB) 40,000 0.1853

PCA-VQC_8Qubit Gaussian (12dB) 60,000 0.1078
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generalization power. The analysis of optimization performance is
also conducted based on the PL condition.

Proof for Theorem 1
The derivation of Theorem 1 is mainly based on the classical universal
approximation theorem40–42 and a parallel structure of TTN. We first
assume gm(x; θvqc, θttn) as the m-th measurement for the TTN-VQC
operator g(x; θvqc, θttn), and

PM
m¼1 gmðx; θvqc; θttnÞ is defined as:PM

m¼1
gmðx; θvqc; θttnÞ ¼

PM
m¼1

Mm 
 T θvqc 
 T y 
 T θttnðxÞ

¼ M0 
 T θvqc 
 T y 
 T θttnðxÞ
¼ M0 
 H 
 T θttnðxÞ;

(18)

where the operator H ¼ T θvqc 
 T y refers to a unitary matrix, and
Mm denotes the m-th measurement and M0 ¼

PM
m¼1 Mm.

Moreover, H�1 is a reversely linear unitary operator of H, and
gm refers to the function after the quantum measurement. Next,
we can further derive that

kf̂ ðxÞ � T lr E gðx; θvqc; θttnÞ
� �
 �

k1

�
���f̂ ðxÞ � T lr

1
M

PM
m¼1

gmðx; θvqc;θttnÞ
� 	���

1
(Triangle Ineq.)

þ
���T lr

1
M

PM
m¼1

gmðx; θvqc; θttnÞ
� 	

� T lr E½gðx; θvqc; θttnÞ�

 ����

1

¼ kT lr T �1
lr ðf̂ ðxÞÞ � 1

M

PM
m¼1

gmðx; θvqc; θttnÞ
� 	���

1

þ
���T lr

1
M

PM
m¼1

gmðx; θvqc;θttnÞ �E½gðx;θvqc; θttnÞ�
� 	

k1

�
���T lr M0 
 H 
 H�1 
 T �1

lr ðf̂ ðxÞÞ �M0 
 H 
 T θttn ðxÞ
� ����

1

þO 1ffiffiffi
M

p
� �

� kT lrð1Þk1 (Central Limit Theorem)

�
QK
k¼1

1ffiffiffi
U

p
k
� kT lr 
M0 
 Hð1Þk1 þO 1ffiffiffi

M
p

� �
� kT lrð1Þk1 ðUniversal Approx. Þ

¼ Θð1Þffiffiffi
U

p þ O 1ffiffiffi
M

p
� �

c:f:
QK
k¼1

Uk ¼ U

� 	
:

(19)

Proof for Theorem 2
Based on Eq. (9) and Fig. 4, the kth channel is equivalent to a feed-
forward layer of a neural network with the sigmoid function. More
specifically, the input X½k� 2 RRk ´Dk ´ Rkþ1 is reshaped into a high-
dimensional vector x½k� 2 RRkRkþ1Dk , which further goes through
the feed-forward layer with the weight matrix W

½k� 2 RUk ´ RkRkþ1Dk .
After the operation of the sigmoid function, we have an output
vector y½k� 2 RUk .
As for the upper bound for the TTN-VQC model on the

estimation error, we separately upper bound each term of the
TTN and VQC families by leveraging the empirical Rademacher
complexity. Moreover, we define R̂SðF½k�

TTNÞ as the functional family
for the kth channel associated with Fig. 7. Thus, based on the
Rademacher identities, we attain that R̂S FTTNð Þ �

PK
k¼1 R̂S F½k�

TTN

� �
.

R̂S F½k�
TTN

� �
¼ 1

NEϵ sup
jjw½k�

u jj2�Λ

PN
n¼1

ϵn
PU
u¼1

σ w½k�
u � x½k�n


 �2
4

3
5

¼ 1
NEϵ sup

jjw½k�
u jj2�Λ

PU
u¼1

PN
n¼1

ϵnσ w½k�
u � x½k�n


 �2
4

3
5

¼ 1
NEϵ sup

jjw½k�
u jj2�Λ;u2½1;U�

PN
n¼1

ϵnσ w½k�
u � x½k�n


 �










2
4

3
5

¼ 1
NEϵ sup

jjw½k�
u jj2�Λ;u2½1;U�

sup
s2f�1;þ1g

s
PN
n¼1

ϵnσ w½k�
u � x½k�n


 �2
4

3
5:
(20)

Furthermore, we upper bound R̂SðF½k�
TTNÞ by utilizing Talagrand

inequality50 and we obtain

R̂SðF½k�
TTNÞ � 1

NEϵ sup
jjw½k�

u jj2�Λ;u2½1;U�
sup

s2f�1;þ1g
s
PN
n¼1

ϵnw½k�
u � x½k�n

2
4

3
5

¼ 1
NEϵ sup

jjw½k�
u jj2�Λ;u2½1;U�

w½k�
u �

PN
n¼1

ϵnx½k�n












2
4

3
5

¼ Λk
N Eϵ

PN
n¼1

ϵnx½k�n






















2

� �

� Λk
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Eϵ k

PN
n¼1

ϵnx½k�n k22
� �s

ðJensen's inequalityÞ

¼ Λk
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i;j¼1

Eϵ½ϵiϵj� x½k�i � x½k�j

� �s

¼ Λk
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i;j¼1

1i¼j x½k�i � x½k�j

� �s

¼ Λk
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
n¼1

kx½k�n k22

s
jjx½k�n jj22 � P2k

� �
� ΛkPkffiffiffi

N
p ;

(21)

where we assume jjx½k�n jj2 � Pk and accordingly
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

n¼1 jjx
½k�
n jj22

q
�ffiffiffiffi

N
p

Pk .
Finally, we utilize the Cauchy–Schwarz inequality and obtain the

result that

R̂SðFTTNÞ �
XK
k¼1

R̂SðF½k�
TTNÞ ¼

XK
k¼1

ΛkPkffiffiffiffi
N

p �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1 Λ

2
k

q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k¼1 P

2
k

q
ffiffiffiffi
N

p ;

(22)

where P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1 P
2
k

q
and jjxnjj2 �

PK
k¼1 x

½k�
n ¼

PK
k¼1 Pk �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1 P
2
k

q
¼ P. Hence, we attain the inequality as follows:

R̂SðFTTNÞ �
P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK

k¼1
Λ2
k

q
ffiffiffi
N

p ;

s:t:; jjxnjj2 � P; n 2 ½N�; jjW½k�ðT θttn ÞjjF � Λk ; k 2 ½K �:
(23)

Similarly, we can also obtain the result that R̂SðFV QCÞ � PΛ0ffiffiffi
N

p with
the constraint that jjWðT θvqcÞjjF � Λ0. Then, we complete the
proof for Theorem 2.

Proof for Theorem 3
Assume the gradient descent algorithm runs around the closed
ball B(θ0, R) with R= 2μ−1 and the loss function LSðθÞ has the
following properties as (1) The loss LSðθÞ is μ-PL; (2) The loss LSðθÞ
is 1-Lipschitz; (3) The norm of Hessian H is bounded by 1.
Then, we need to prove the following properties: (a) There

exists a global minimum θ* ∈ B(θ0, R); (b) The algorithm of gradient

Fig. 7 The kth channel of TTN is equivalent to a feed-forward
layer of neural network with the sigmoid function. The input x½k� is
derived from the reshape of X½k� and goes through the feed-forward

neural network with the weight matrix W
½k�

and sigmoid function.
The output y½k� corresponds to the array for the kth order of Ŷ.
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descent converges with an exponential convergence rate:
LSðθtþ1Þ � ð1� ημÞtþ1LSðθ0Þ. By applying the Taylor expansion,
we obtain

LSðθtþ1Þ
¼ LSðθtÞ þ ðθtþ1 � θtÞT∇f ðθtÞ þ 1

2 ðθtþ1 � θtÞTHðθ0Þðθtþ1 � θtÞ
¼ LSðθtÞ þ ð�ηÞ∇LSðθtÞT∇LSðθtÞ þ 1

2 ð�ηÞ∇LSðθtÞTHðθ0Þð�ηÞ∇LSðθtÞ
¼ LSðθtÞ � ηk∇LSðθtÞk22 þ

η2

2 ∇LSðθtÞTHðθ0Þ∇LSðθtÞ
� LSðθtÞ � ηð1� η

2Þk∇LSðθtÞk22 (by Assumption 3)

� LSðθtÞ � ηð2� ηÞμLSðθtÞ ðby μ� PL Assumption Þ
¼ 1� 2ημþ η2μð ÞLSðθtÞ
� 1� 2ημþ η2μð Þtþ1LSðθ0Þ:

(24)

Next, we show that θt does not leave the ball B. Based on
assumption 4, we have LðθtÞ � Lðθtþ1Þ � η

2 k∇LðθtÞk
2
2, which

leads to k∇LðθtÞk22 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2βðLðθtÞ � Lðθtþ1ÞÞ

p
. Then, we further

derive that

jjθtþ1 � θ0k22 ¼ ηk
Pt
τ¼0

∇LðθτÞk22

� η
Pt
τ¼0

k∇LðθτÞk22

� η
Pt
τ¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 LðθτÞ � Lðθτþ1Þð Þ

p
(by Continuity)

� η
Pt
τ¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2LðθτÞ

p
� η

ffiffiffi
2

p Pt
τ¼0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� 2ημþ η2μÞτLðθ0Þ

p
(by Geometric Convergence)

¼ η
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lðθ0Þ

p Pt
τ¼0

ð1� 2ημþ η2μÞτ=2

¼ η
ffiffiffiffiffiffiffiffiffiffi
2Lðθ0Þ

p

1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2ημþη2μ

p

¼
ffiffiffiffiffiffiffiffiffiffi
2Lðθ0Þ

p
ð1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2ημþη2μ

p
Þ

μð2�ηÞ

� 2
ffiffiffiffiffiffiffiffiffiffi
2Lðθ0Þ

p
μ ð By Setting η ¼ 1Þ:

(25)

The inequality kθtþ1 � θ0k22 � 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lðθ0Þ

p
μ�1 represents the

gradient descent algorithm ensures the updated point in a ball
with a radius of 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Lðθ0Þ

p
μ�1, and a larger μ leads to larger

updates and faster convergence rate over a smaller ball.

DATA AVAILABILITY
The MNIST dataset can be simply downloaded via our released codes and accessed at
http://yann.lecun.com/exdb/mnist/.

CODE AVAILABILITY
Our codes consist of two parts: the implementation of TTN models at the website https://
github.com/uwjunqi/Pytorch-Tensor-Train-Network; the experiments of TTN-VQC and PCA-VQC
can be accessed at the website https://github.com/uwjunqi/TTN-VQC.
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