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Machine learning to detect the SINEs of cancer  

Abstract 

We previously described an approach called RealSeqS to evaluate aneuploidy in plasma cell-free DNA 
(cfDNA) through the amplification of ~350,000 repeated elements with a single primer. We 
hypothesized that an unbiased evaluation of the large amount of sequencing data obtained with 
RealSeqS might reveal other differences between plasma samples from patients with and without 
cancer. This hypothesis was tested through the development of a novel machine-learning approach 
called Alu Profile Learning Using Sequencing (A-PLUS) and its application to samples from 5108 
individuals, 2037 with cancer and the remainder without cancer. Samples from cancer patients and 
controls were pre-specified into four cohorts used for: 1) model training, 2) analyte integration and 
threshold determination, 3) validation, and 4) reproducibility. A-PLUS alone provided a sensitivity of 
40.5% across 11 different cancer types in the Validation Cohort, at a specificity of 98.5%. Combining A-
PLUS with aneuploidy and 8 common protein biomarkers detected 51% of 1167 cancers at 98.9% 
specificity.  We found that part of the power of A-PLUS could be ascribed to a single feature – the global 
reduction of AluS sub-family elements in the circulating DNA of cancer patients.  We confirmed this 
reduction through the analysis of another independent dataset obtained with a very different approach 
(whole genome sequencing). The evaluation of Alu elements therefore has the potential to enhance the 
performance of several methods designed for the earlier detection of cancer.  

Introduction 

Alu’s are short interspersed nuclear elements (SINEs) of ~ 300 bp, with more than 1 million copies 
spread throughout the genome 1. Their role in biology and evolution is an ongoing area of research, but 
some elements have already been shown to be involved in the regulation of tissue-specific genes. In 
cancer cells, they participate in structural changes, probably through homologous recombination given 
their widespread distribution throughout the genome and highly similar sequences 2 3. Moreover, Alu’s 
are hypomethylated early during tumor progression 4 5 6 7 8 9 10, and this feature has been incorporated 
into methods for the earlier detection of cancer through plasma cell-free DNA (cfDNA ) analysis 11 .  Alu’s 
also reflect the altered fragmentation patterns found in cfDNA in cancer patients:  one of the first 
plasma multi-cancer biomarkers used qPCR to calculate the ratio of short and long Alu segments 12 13 14.   

Whole genome sequencing (WGS) has been widely employed in recent blood-based multi-cancer earlier 
detection assays. WGS should in theory allow evaluation of Alu elements, but predictive algorithms 
often discard them as a result of bioinformatic challenges stemming from their resemblance to each 
other and difficulties in mapping them unambiguously 15. Even with the inclusion of mappable Alu 
elements, shallow WGS is inefficient to optimally evaluate Alu elements because they represent only a 
small fraction of the genome ~11% 1. 

We have previously developed an approach, called RealSeqS, to specifically amplify Alu sequences 16. 
RealSeqS offers advantages over WGS, including a simpler workflow that does not require library 
construction, a reduced requirement for input DNA, faster computational analysis, and higher 
sequencing coverage at individual Alu loci. Specifically, the RealSeqS workflow uses a single-primer pair 
to concomitantly amplify ~350,000 Alu elements. For an equivalent sequencing depth, RealSeqS 
achieves ~28-fold greater coverage of the Alu elements it amplifies than achievable with WGS at an 
equivalent sequencing depth, enabling improved predictive modeling.  
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As noted above, there is much precedent for Alu sequence elements being especially prone to 
epigenetic changes in various cancers. Epigenetic changes include those involving methylation and 
chromatin fragmentation patterns (as reviewed in 17). We therefore hypothesized that the 
representation of specific Alu elements might be different in the cell-free DNA (cfDNA) of plasma of 
patients with cancer than in normal controls. Because there are so many Alu elements in the genome, 
an evaluation of this hypothesis required machine learning tools. Here, we report and test a machine-
learning based approach, called Alu Profile Learning Using Sequencing (A-PLUS), to distinguish 
individuals with cancer from those without cancer on the basis of the representation of Alu elements in 
their cfDNA.  

Main 

Rationale and background of the assay 

During the development and implementation of RealSeqS, we observed substantial differences in read 
depth at specific loci. These loci did not appear to correlate with cancer-specific copy number variations, 
which was the original intent of RealSeqS, or regions of high technical variability in the non-cancer 
controls. We hypothesized that an unbiased supervised machine-learning method might be able to 
select cancer-specific Alu element representations from RealSeqS data and be used to provide a metric 
in addition to aneuploidy for cancer patient classification. 

The detection of cancer in asymptomatic patients, which is the primary goal of multi-cancer earlier 
detection tests, requires very high specificity. Designing a highly specific machine-learning algorithm to 
predict cancer status from the~350,000 features assessed in RealSeqS sequencing data thereby poses 
technical challenges. First, the selected features must be empiric and solely derived from the sequencing 
data. Unlike the evaluation of aneuploidy, or of mutations, methylation, or other epigenetic changes, we 
did not know (and still do not know) why certain Alu elements are more represented than others in the 
cfDNA from cancer patients. Presumably, these differences result from nucleases or chromatin structure 
characteristics that are different in cancer cells from those in normal cells, but this is speculative. We 
also do not know the cell types of origin of differently represented Alu loci in the cfDNA. They could be 
from neoplastic cells, from non-neoplastic cells of the same organ surrounding the cancer cells that have 
been destroyed by the cancer, or from one or more types of leukocytes. Note that leukocytes are the 
major source of cfDNA in patients with or without cancer 18.  

Other challenges facing the development of a highly-specific ML algorithm are more general than those 
noted above. ML models built on thousands of features often unintentionally result in predictions based 
on confounding variables such as ethnicity, sex, sample processing, or batch effects at any one of the 
experimental procedures used to obtain the final data rather than based on attributes of cancer per se 
19. Learning and integrating features optimally requires more training samples than the number of 
available features and this is impossible from a logistical standpoint when there are 350,000 features 
and limited research resources. This problem is often referred to as the curse of dimensionality (d>>n) 
20. Even under the best circumstances, ML models often do not reliably classify samples when tested on 
data from cohorts independent of those used for training, even when the ML model is based on multiple 
folds of cross-validation 21.  

To address the challenges listed above, we incorporated several principles into the development of A-
PLUS, as summarized in Fig. 1. First, we attempted to identify and eliminate confounding loci associated 
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with technical noise, ethnicity, sex, and batch differences. Second, we reduced the number of features 
from 350,000 using Principal Component Analysis (PCA). Third, we used an order of magnitude more 
samples (thousands rather than hundreds) than typically used in initial studies on new tests of cfDNA 
performance. Fourth, we divided samples into four pre-specified and non-overlapping cohorts to avoid 
over-fitting: Cohort 1 was used to choose features and train the ML model; Cohort 2 was used to 
establish thresholds for scoring samples as positive or negative; Cohort 3 was used to independently test 
(validate) the ML model based on Cohort 1 and the thresholds based on Cohort 2; and Cohort 4 was 
used to evaluate reproducibility of the scoring system.  

Technical nuances underlying the development of A-PLUS are detailed in Methods and the code is 
publicly available (add link). In the remainder of this section, we discuss results related to the four 
cohorts described above. 

Cohort 1: A-PLUS Feature selection and model training 

Cohort 1 consisted of 459 samples previously analyzed for aneuploidy 16 using RealSeqS and additional 
250 samples from controls of Vietnamese, Han Chinese, South Asian, and Native American/Inuit 
ethnicities not represented in our previous publications. These additional samples were included 
because inherited polymorphisms within Alu’s could alter alignments and the subsequent red depth 
representation of Alu loci. Of the total 709, 400 samples were from patients without cancer and 309 
from cancer patients (Table 1). The samples from patients included those with cancers of the breast, 
colorectal, esophagus, lung, liver, pancreas, ovary, and stomach. Slightly less cancer than control 
samples were purposefully used because we valued specificity over sensitivity; cancer samples 
erroneously classified as controls were deemed less harmful to performance of the final classifier than 
the reverse. Sample demographics are listed in Supplementary Table 1.  

Important elements of the training included normalization of read depths and the removal of amplicons 
with insufficient coverage, removal of amplicons that were unstable based on T-tests (Methods). After 
these steps, there were 121,197 loci of the original 350,000 that remained. Principal Component 
Analysis (PCA) was then used to reduce dimensionality. Finally, a Support Vector Machine (SVM) was 
used to identify the 60 top PCA components. This feature number (60) was ~10% of the total number of 
unique patients in the training set which we considered a reasonable compromise to cope with the p>>n 
conundrum 20. Performance was not assessed in Cohort 1. The non-cancer samples were used to 
generate a euploid reference panel to for aneuploidy calls (Materials and Methods). Both the cancers 
and non-cancer samples were used to generate and optimize model building.  

A criticism of our prior study that introduced RealSeqS was the use of exclusion criteria. To reduce the 
chance of over-fitting and clearly establish metrics prior to evaluation of samples, we used the 
previously published metrics and thresholds for inclusion. We also assessed the presence of large 
molecular weight DNA as previously described. The metrics excluded 3.1% of Cohort 1 samples. We 
report A-PLUS scores and GAS for all excluded samples (Additional File XX). We felt the use of pre-
analytic metrics is necessary given the numerous providers over the time span of ~6 years. We hope that 
automation in a CLIA laboratory would further reduce the number of samples flagged for consideration.  

Cohort 2: Determination of thresholds 
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Cohort 2 included samples from 707 cancer patients (total of 852 samples) and 1049 controls without 
cancer (total of 1402 samples). The use of more than one independent sample from the same individual 
helped us assess the stability of the assay, as replicates were generally made with different aliquots of 
plasma, different batches of PCR, and different sequencing runs. Cancers included those from colon, 
esophagus, stomach, breast, colorectum, lung, ovary, and pancreas. The A-PLUS score corresponding to 
99% specificity among the control samples was 0.28. At this this threshold, a median sensitivity of 60% 
was observed across the 8 different cancer types.  Samples from patients with cancers of the esophagus 
and stomach had the highest sensitivities (86%) and samples from breast cancer patients had the lowest 
of 33% (Fig 2A).  

We then generated global aneuploidy scores (GAS) for Cohort 2 samples with the same RealSeqS data 
used to generate A-PLUS scores. The GAS uses a different machine learning technique to generate a 
single score that reflects gains or losses of 39 chromosome arms, focusing on those that are typically 
observed in cancers 22. A GAS threshold of >0.64 yielded a 99% specificity in the Cohort 2 control 
samples and a median sensitivity of 19% in the samples from cancer patients . The highest sensitivities 
at 99% specificity were achieved for cancers of the esophagus and liver. In the 687 cancers scoring 
negatively (i.e., below the 99%-specificity threshold) in the GAS assay, 318 (46%) scored positively (i.e., 
above the 99% specificity threshold) in the A-PLUS assay. Conversely, 81% of the cancer samples that 
scored positively in GAS also scored positively in A-PLUS (Fig. 2D) Supplementary Table 2) 

Next, we compared A-PLUS sensitivity to a panel of 8 protein markers previously shown to be useful for 
cancer detection when employed at high thresholds (OPN, HGF, AFP, CA125, CA15-3, CEA, CA19-9, 
TIMP-1; Methods).    

To integrate these 8 protein values into a single score, we used Logistic Regression to generate a protein 
score.   Protein values <98th percentile in the control samples were set to zero to minimize the possibility 
that predictions would be based on technical noise or batch effects and thereby reduce overfitting. 
None of the proteins should be depleted in cancer. Performance for this protein score was assessed 
using 10 fold cross validation and a “protein score” threshold of >0.73 was selected in order to generate 
99% specificity. This protein score produced a sensitivity of 54% in the cancers (Supplementary Table 2). 
The highest sensitivities for proteins were achieved for cancers of the liver and stomach. In the 535 
cancers scoring negatively in the proteins assay, 44% scored positively in A-PLUS (Fig. 2D).  

We used Logistic Regression to integrate A-PLUS and GAS with the proteins into a multi-analyte 
classifier.   Like the protein score, feature values <98th percentile in the control samples were set to zero. 
Performance for this multi-analyte classifier was assessed using 10-fold cross validation and a classifier 
threshold of >0.87 was selected in order to generate 99% specificity. This threshold produced a median 
sensitivity of 72% (Fig XX; Supplementary Table 2). The highest sensitivities were achieved for cancers of 
the esophagus and liver. The performance for the multi-analyte classifier is higher than any individual 
analyte without sacrificing specificity. Using the pre-defined inclusion metrics from above, we flag 117 
samples—5.2% (5.1% cancers and 5.4% non-cancers). These samples were still assessed for protein 
biomarkers without issue and classified in the multi-analyte classifier with the corresponding A-PLUS and 
GAS scores set to 0. All scores are reported in these flagged samples are available in Additional File XXX.  

Cohort 3: Independent validation 
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Cohort 3 samples were from 2960 individuals, including 1167 patients with cancers of eleven types: 
Breast, Colorectum, Esophagus, Head and Neck, Kidney, Lung, Ovary, Pancreas, Prostate, Stomach, and 
Uterus (Table 1 and Supplementary Table 1). None of these patients had been described in prior 
publications. The cohort also included 1793 control samples from patients without known cancers; of 
these, A-PLUS scores were newly derived for all of them but GAS scores and protein scores on these 
patients have been published  

The 99% thresholds defined by Cohort 2 controls were used to assess sensitivities in Cohort 3 for each of 
the assays described above. For A-PLUS alone, a median sensitivity of 27% was achieved in Cohort 3 
(Supplementary Table 1, Supplementary Fig. 1A), while 1.5% of samples from controls were misclassified 
(i.e., specificity of 98.7%).  As with Cohort 2, the highest sensitivity was observed in samples from 
patients with cancers of the esophagus (84%) and the lowest sensitivities were in the cancers not 
represented in Cohort 2—kidney, prostate, uterus, and head and neck. Breast continued to have low 
sensitivity. The sensitivities in the seven cancer types that were evaluated in both Cohorts 2 and 3 were 
similar but did exhibit some notable differences (Fig. 43AA). The specificity observed between the 
retrospectively defined 99% and the observed specificity in Cohort 3 was not statistically significant 
(p>0.05 Two portion Z-test). The sensitivities observed between Cohorts 2 and 3 for breast, esophagus, 
ovarian, pancreatic cancer show statistically no difference (P>0.05 Two proportion Z-test). Colorectal 
and stomach cancers were nominally significant (Lung p=0.046 and Stomach p=0.038—Two proportion 
Z-test). Lung (Cohort 2--54% vs Cohort 3--27%) exhibits very notable differences. The drop in sensitivity 
maybe attributed to histology differences between the cohorts. Cohort 2 lung cancers are 
predominantly squamous lung cancers (XX%) while Cohort 3 lung cancers are almost exclusively 
adenocarcinomas (XX% vs XX%). Other groups have reported higher sensitivities in squamous lung 
cancers compared to adenocarcinoma and squamous cell carcinomas  23.These data confirmed that the 
features and machine learning algorithms used to develop A-PLUS generalized to an independent 
dataset (Fig. 4D).  

Overall, the sensitivities of aneuploidy alone (Fig. 4B) as well as proteins alone (Fig. 4C) were also similar 
in Cohorts 2 and 3 (Supp Fix). The multi-analyte test incorporating A-PLUS, aneuploidy, and proteins 
achieved a median of 37% sensitivity at 98.9% specificity in Cohort 3 using the thresholds determined in 
Cohort 2 (Fig. 4D). Among the cancers common to Cohorts 2 and 3, the median sensitivity was 75%. 
Specificity remains very high in our validation Cohort which is a major concern in screen especially when 
the underlying model uses machine-learning methods and several different analytes. Similar to A-PLUS, 
the multi-analyte classifier sensitivities for colorectal, stomach and lung were statistically significant 
between cohorts (P<0.05 Two proportion Z-test).  

The additional  We graphically depicted the overlap in analytes (A-PLUS, GAS, PROT) at the pre-defined 
threshold as a Venn diagram in (Fig. 3EXX). Notably, A-PLUS made a greater contribution to positive calls 
than aneuploidy or proteins. A-PLUS detected 41@@% of the samples that were not detected by either 
aneuploidy or proteins (Supplementary Fig. 1D).  

The cancers represented in Cohort 3 were relatively early in the sense that none had any distant 
metastatic lesions evident at presentation (i.e., none were Stage IV).  When categorized by stage, the 
sensitivities for all analytes and the muti-analyte classifier increased with stage.  . There were four 
cancer types (derived from Head and Neck, Kidney, Prostate, or Uterus) in Cohort 3 that were not 
represented in either the cohort used for training (Cohort 1) or threshold definition (Cohort 2). Even so, 
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20% to 30% of these cancers could be detected with the multi-analyte test (Supplementary Fig. 4). Using 
the pre-defined inclusion metrics from above, we flag 57 samples—1.9% (0.9% cancers and 3.5% non-
cancers. We note this is lower than the previous Cohorts.  

Cohort 4: Reproducibility 

The technical reproducibility of the A-PLUS and GAS assays (both based on RealSeqS sequencing data) 
were evaluating in 544 individuals (419 Non-cancers and 125 cancers) from Cohort 2 patients and 1142 
individuals (1121 Non-cancers and 21 cancers) from Cohort 3 patients.  

Separate aliquots of purified DNA (i.e., separate template molecules) from the same plasma sample 
were independently amplified using the single RealSeqS primer pair and the PCR products sequenced. In 
all samples, the sequencing was done on different days.   

In this cohort, 54 individuals had at least 1 of the pairs flagged using the pre-defined metrics and 32% 
having both flagged. No flagged samples with either draw 1 or draw 2 were assessed for score 
reproducibility.  

The scores in were highly correlated. Using the thresholds defined by Cohort 2, 95.7% of the 1632 pairs 
scored concordantly (either positively or negatively) for A-PLUS (Supp Fig. 5A). Of the 70 discordant 
samples, 23 scored just below the threshold in one of the two DNA aliquots (i.e., between the scores 
required for 98% and 99% specificity) and above the score required for 99% specificity in the other 
aliquot. Of the 70 discordant pairs, 29 are non-cancer false positive that do not replicate in the other 
draw. With GAS, 99.3% pairs were concordant (Fig. 5B). Of the 11 discordant, 6 are false positives that 
are not observed in the other repeat.  

Alu subsets 

We next asked whether there was a subset of the Alu loci included in the A-PLUS heuristic that were 
particularly important for its success in distinguishing samples from controls and cancer patients. While 
small numbers of AluY loci were enriched in samples from cancer patients, the most striking observation 
was a global reduction in read depth across all AluS loci. There are 686,962 AluS loci distributed 
thoughout the genome, and the AluS sub-family is younger than the AluY subfamily 24 25. Using only a 
single feature - the average normalized read depth of AluS elements (herein dubbed AluS-Rep) from 
RealSeqS data - without any machine learning algorithms samples from cancer patients could be 
distinguished from those of controls (AUC = 0.70; Fig. 6A, B). A-PLUS scores and the proportional 
representation of AluS elements were inversely correlated (-0.19; p<2.2e-16 via Pearson’s).   

We wondered whether the reduced representation of AluS elements in the cfDNA from cancer patients 
was the result of some unknown bias in amplification efficiency or sequencing generated from the 
RealSeqS approach. To answer this question, we evaluated WGS data from a publicly available dataset  
that included 266 cfDNA samples from cancer patients (25 bile duct; 54 breast; 22 colorectum; 27 
stomach; 76 lung; 26 ovary; 35 pancreatic) and 260 samples from controls without cancer 26 
(Supplementary Table 2). Samples from cancer patients indeed had a global reduction of AluS compared 
to controls (p<2.2e-16, one sided t-test; Fig. 6C;). Moreover, this single feature could distinguish samples 
from cancer patients and controls with an AUC of 0.84 in ROC analysis (Supp Fig. XX). 
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Finally, we evaluated whether AluS-Rep in WGS data could be combined with the evaluation of 
aneuploidy in the same dataset. We used the WisecondorX (Materials and Methods) to detect 
aneuploidy and counted the number of aberrant (z>5 or z<-5 WiseCondorX default settings) regions 
throughout the genome in the FinaleDB dataset. We combined scores in a model agnostic fashion with a 
Boolean OR. AluS<0.657 OR Copy Number Alterations >3 was sufficient for a positive call. At a specificity 
of >98%, the addition of AluS analysis enhanced sensitivity of detection of cancers from 38% with 
aneuploidy alone and 36% with AluS alone, to 62% in combination (Supplementary Table 2). Similar to 
our results, liver (84%), stomach (74%), and colorectal (70%) cancers had the highest sensitivities. 

Discussion 

The results described above show that the evaluation of the representation of SINEs can significantly 
add to the power of aneuploidy to detect cancers. In RealSeqS data, the A-PLUS algorithm considerably 
enhanced sensitivity over that achieved for aneuploidy alone at matched specificities (Fig. 4). We 
discovered that part of the power of A-PLUS was derived from the global reduction in one Alu sub-family 
(AluS) (Fig. 6). Though a single feature (AluS-Rep from RealSeqS data) could be used as a stand-alone 
classifier (Fig. 6B), it was not as powerful as A-PLUS, which uses 95,116 AluS features and an additional 
16,702  AluY and 9,373 AluJ features (Additional Data file 1). The under-representation of AluS in cfDNA 
from cancer patients was supported and extended by the evaluation of WGS data (Fig. 6C, D). This single 
feature (AluS-Rep from WGS data) could be used to increase the performance of a classifier based on 
WGS copy number analysis, without any additional wet bench experiments (Fig. 6D). 

One of the strengths of our study was its independent cohort design. Cohort 1 was used for training, 
Cohort 2 to establish thresholds for scoring a sample as positive, and Cohort 3 used to evaluate 
sensitivity at a pre-determined specificity. And Cohort 4 (different experiments from the same 
individuals as Cohort 3) was used to assess reproducibility. Numerous problems with machine-learning 
algorithms that limit their application to other datasets have been highlighted in the literature 19.  
Moreover, it is now generally recognized that cross-validation, though an effective approach when the 
number of samples is limiting, is not as reliable for predicting performance as a completely independent 
dataset 21. It took several years (~6 years) for us to acquire the 7130 samples evaluated in this study, but 
we felt it was critical to have a sufficient number of samples to evaluate performance in independent 
datasets.  

Another strength of our study was that one of its major new findings – the reduced representation of 
AluS elements in the cfDNA of cancer patients - could be independently confirmed using a completely 
independent experimental approach (WGS) performed in a variety of laboratories, on samples distinct 
from those processed in our laboratory (Fig. 6). 

One of the weaknesses of our study is that all RealSeqS experiments were performed in our laboratory. 
We are confident that other, future samples evaluated in our laboratory, using identical methods for 
blood collection, sample storage, DNA purification, PCR-mediated amplification, and sequencing, will 
perform similarly based on the comparison between Cohorts 2 and 3. However, we cannot be confident 
that other laboratories that perform similar experiments will achieve the same performance. It is 
conceivable that small differences in any of the experimental procedures used could impact 
performance, and these can confound analysis. 
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Another weakness of our study is that A-PLUS is empirical. Alu element representation is unequivocally 
different in the cfDNA of cancer patients than in normal individuals, but we don’t know why. The usual 
suspects are differences in chromatin structure or nucleases in neoplastic cells vs non-neoplastic cells. 
However, we are not sure that the observed differences in Alu element representation arise from the 
neoplastic cells themselves or other cells within or outside of tumors, such as WBCs17 27. 

Regardless of mechanism, our study shows that Alu element representations in general, and AluS 
subfamily elements in particular, are altered in the cfDNA of patients with many different cancer types. 
Future investigation of the mechanisms underlying their altered representation will be facilitated by 
their abundance in the genome and their similar secondary structures. At the practical level, it will be 
informative to determine whether Alu representation can add sensitivity to other features obtained 
through WGS data, such as fragment sizes, end motifs, or chromatin accessibility 28 29, as well as to 
assays of mutation or DNA methylation.  

Materials and Methods 

Patient Samples 

This study was approved by the Institutional Review Boards for Human Research at Johns Hopkins 
Medical Institutes in compliance with the Health Insurance Portability and Accountability Act. All 
individuals participating in the study provided written informed consent. Plasma was purified from XXX 
healthy individuals and XXX patients with cancer using a BioChain Cell-free DNA Extraction Kit (Cat X 
K5011625). All patients were de-identified and patients are not known to anyone outside the research 
group. Demographics for the individuals in the study are included in Supplementary Table 1.  

RealSeqS Experimental Protocol 

A detailed experimental protocol for RealSeqS is listed in the Supporting Appendix of Douville et al. 
2020. Briefly, PCR was performed in 25 uL reactions containing 7.25 uL of water, 0.125 uL of each 
primer, 12.5 uL of NEBNext Ultra II Q5 Master Mix (New England Biolabs cat # M0544S), and 5 uL of 
DNA. Eight independent reactions were performed in ~0.1 ng to 0.25 ng of DNA. A second round of PCR 
was then performed to add dual indexes to each PCR product prior to sequencing. The second round of 
PCR was performed in 25 uL reactions containing 7.25 uL of water, 0.125 uL of each primer, 12.5 uL of 
NEBNext Ultra II Q5 Master Mix (New England Biolabs cat # M0544S), and 5 uL of DNA containing 5% of 
the PCR product from the first round. Amplification products from the second round were purified with 
AMPure XP beads (Beckman cat # a63880), as per the manufacturer's instructions, prior to sequencing. 
As noted above, each sample was amplified in eight independent PCRs in the first round. Each of the 
eight independent PCRs was then re-amplified using index primers in the second PCR round. The 
sequencing reads from the 8 replicates were summed for the bioinformatic analysis but could also be 
assessed individually for quality control purposes. All oligonucleotides were purchased from IDT 
(Coralville, Iowa).  

Sequence Analysis 

Massively parallel sequencing was performed using a Hiseq4000. During the first round of PCR, 
degenerate bases at the 5’ end of one of the primers were used as molecular barcodes (unique 
identifiers, UIDs) to uniquely label each DNA template molecule. This ensured that each DNA template 
molecule was counted only once, as described in (2). In all instances in this paper, the term “reads” 
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refers to uniquely identified reads (UIDs). Depending on the experiment, each read was sequenced on 
average 1.1 times. An average of XX million reads per sample (IQR XXXX M to XXX M) was assessed. If 
multiple reads had the same UID, we required at least 50% of the reads to map to the same genomic 
location. Reads with the same UID, but with discordant genomic locations were discarded from analysis. 
The alignment pipeline is available at ((https://zenodo.org/record/3656943). 

Alu Profile Learning Using Sequencing Model Building 

Alu Profile Learning Using Sequencing (A-PLUS) is a supervised machine learning approach to identify 
differences in normalized read depth for RealSeqS loci between non-cancer and cancer cell samples. To 
build A-PLUS, we employed the following steps:  

1. Assemble a diverse and balanced training set of non-cancer and non-metastatic cancer samples. 
Alu SINEs are known to have ethic specific single nucleotide polymorphisms that could 
alignment and potentially alter the normalized read depth representation of various RealSeqS 
loci. We wanted to limit the potential for possible confounders to impact predictions. Our 
training set consisted of XXX previously published non-cancer and XX cancer samples (breast, 
colorectum, esophagus, lung, liver, pancreas, ovary, and stomach). We added XXX non-cancer 
samples not previously published to expand the ethnic representation of samples. The 
additional unpublished samples included XX Vietnamese, XX Han Chinese, XX South Asian, and 
XXX Native American/Inuit samples. Only samples with sufficient read depth were considered. A 
full table of sample demographics is included in XX. 

2. Repeat RealSeqS for samples with sufficient remaining DNA. We performed RealSeqS on XX of 
the XXX total samples.  

3. Normalize read depth for all training samples. To do this, divide a sample’s autosomal loci by its 
total autosomal coverage and multiply by 10,000,000. This normalizing step allows all samples 
to be compared against each other regardless of differences in total coverage.  

4. Perform Amplicon Selection. 
a. Remove loci with insufficient coverage. We only considered loci with an average of XX 

normalized reads in our training set. After applying this filter, only XXX loci remained. 
b. Perform the paired T-test for samples with a second available assay. Loci that were 

statistically significant (p<0.05) were discarded. After applying this filter, only XXX loci 
remained. 

5. Perform principal component analysis (PCA) on the XXX loci. PCA was performed using the 
prcomp function in R version 3.4. 

6. Generate a support vector machine (SVM) using 60 principal components from Step 5 as 
predictive features. The number of components (n=60) was based on ~10% of the total number 
of samples in the Training set (~600). 

Detection of Aneuploidy 

We have previously described our algorithm to detect the presence of aneuploidy in amplicon 
sequencing in Douville et al. 2018 and Douville et al. 2020. Our approach uses the normalized read 
counts of 500-kb intervals across the genome and performs a “within-sample” comparison. Outlier 
intervals and germline copy number variance are filtered. The remaining intervals are aggregated across 
the chromosome arm and a statistical significance is calculated. The 39 non-acrocentric chromosome 
arm statistical significances are then used as predictive features in a supervised machine learning model. 

https://zenodo.org/record/3656943
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A support vector machine (SVM) 30 was trained on XXX normal putatively euploid non-cancer samples 
and XXX aneuploid cancer samples to discriminate between technical and biological noise in the general 
population and the presence of the most common aneuploidies in cancer. The model was built using R 
with the e1071 library 27. The model generates the Global Aneuploidy Score (GAS) which is ranges from 0 
to 1 with the higher the score the higher likelihood that the sample is aneuploid. 

Evaluation of Plasma Proteins 

The Bioplex 200 platform (Biorad, Hercules CA) was used to determine the concentration of multiple 
target proteins in the plasma samples. Luminex bead based immunoassays (Millipore, Bilerica NY) were 
performed following the manufacturers protocols and concentrations were determined using 5 
parameter log curve fits (using Bioplex Manager 6.0) with vendor provided standards and quality 
controls. The HCCBP1MAG-58K panel was used to detect OPN, HGF, AFP, CA125, CA15-3, CEA, and 
CA19-9. The HTMP1MAG-54K panel was used to detect TIMP-1. 

Multi-analyte Classifier 

Using XXX non-cancer samples and XXX cancer samples (Block 2), we generated a multi-analyte classifier 
with A-PLUS, GAS, and 8 proteins (OPN, HGF, AFP, CA125, CA15-3, CEA, CA19-9, TIMP-1) as predictive 
features. To ensure no overlap with the samples used to generate GAS and A-PLUS models samples from 
Block 1 were not used in training. All 10 predictive features are elevated in cancer. Feature values <95th 
percentile in the non-cancer Block 2 samples were set to 0 to ensure the multi-analyte classifier would 
not base predictions from technical noise of batches and reduce possible overfitting. We used logistic 
regression from the XXX R library package. The feature coefficients are listed in Supplementary Table XX. 

Data Availability. 

Concise summaries of sequencing data and predictions are provided in Additional Files 3 and 4. The code 
and sample files used in the study are available at (https://zenodo.org/record/3656943).  

  

https://zenodo.org/record/3656943
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