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Abstract

Achieving a reliable LiDAR-based object detector in au-
tonomous driving is paramount, but its success hinges on
obtaining large amounts of precise 3D annotations. Ac-
tive learning (AL) seeks to mitigate the annotation burden
through algorithms that use fewer labels and can attain
performance comparable to fully supervised learning. Al-
though AL has shown promise, current approaches priori-
tize the selection of unlabeled point clouds with high uncer-
tainty and/or diversity, leading to the selection of more in-
stances for labeling and reduced computational efficiency.
In this paper, we resort to a novel kernel coding rate maxi-
mization (KECOR) strategy which aims to identify the most
informative point clouds to acquire labels through the lens
of information theory. Greedy search is applied to seek
desired point clouds that can maximize the minimal num-
ber of bits required to encode the latent features. To de-
termine the uniqueness and informativeness of the selected
samples from the model perspective, we construct a proxy
network of the 3D detector head and compute the outer
product of Jacobians from all proxy layers to form the em-
pirical neural tangent kernel (NTK) matrix. To accommo-
date both one-stage (i.e., SECOND) and two-stage detectors
(i.e., PV-RCNN), we further incorporate the classification
entropy maximization and well trade-off between detection
performance and the total number of bounding boxes se-
lected for annotation. Extensive experiments conducted on
two 3D benchmarks and a 2D detection dataset evidence the
superiority and versatility of the proposed approach. Our
results show that approximately 44% box-level annotation
costs and 26% computational time are reduced compared to
the state-of-the-art AL method, without compromising de-
tection performance.

1. Introduction
Being a crucial component in the realm of scene under-

standing, LiDAR-based 3D object detection [34, 58, 59, 63]
identifies and accurately localizes objects in a 3D scene
with the oriented bounding boxes and semantic labels. This

technology has facilitated a wide range of applications in
environmental perceptions, including robotics, autonomous
driving, and augmented reality. With the recent advance-
ments in 3D detection models [14, 25, 53], highly accurate
recognition of objects can be achieved through point cloud
projection [64], point feature extraction [34, 57, 59, 66, 67]
or voxelization [13, 58, 63]. However, achieving such per-
formance often comes at the expense of requiring a large
volume of labeled point cloud data, which can be costly and
time-consuming.

To mitigate the labeling costs and optimize the value of
annotations, active learning (AL) [37, 49] has emerged as
a promising solution. Active learning involves iteratively
selecting the most beneficial samples for label acquisition
from a large pool of unlabeled data until the labeling budget
is exhausted. This selection process is guided by the se-
lection criteria based on sample uncertainty [29, 36, 48, 50]
and/or diversity [16, 22, 55, 65]. Both measures are used
to assess the informativeness of the unlabeled samples.
Aleatoric uncertainty-driven approaches search for samples
that the model is least confident of by using metrics like
maximum entropy [62] or estimated model changes [44,68].
On the other hand, epistemic uncertainty based methods at-
tempt to find the most representative samples to avoid sam-
ple redundancy by using greedy coreset algorithms [55] or
clustering based approaches [5].

While active learning has proven to be effective in re-
ducing labeling costs for recognition tasks, its application in
LiDAR-based object detection has been limited [18,30,54].
This is largely due to its high computational costs and in-
volvement of both detection and regression tasks, which
pose significant challenges to the design of the selection
criteria. A very recent work CRB [41] manually designed
three heuristics that allow the acquisition of labels by hier-
archically filtering out concise, representative, and geomet-
rically balanced unlabelled point clouds. While effective,
it remains unclear how to characterize the sample informa-
tiveness for both classification and regression tasks with one
unified measurement.

In this paper, we propose a novel AL strategy called ker-
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nel coding rate maximization (KECOR) for efficient and ef-
fective active 3D detection. To endow the model with the
ability to reason about the trade-off between information
and performance autonomously, we resort to the coding
rate theory and modify the formula from feature selection
to sample selection, by replacing the covariance estimate
with the empirical neural tangent kernel (NTK). The pro-
posed KECOR strategy allows us to pick the most informa-
tive point clouds from the unlabeled pool such that their la-
tent features require the maximal coding length for encod-
ing. To characterize the non-linear relationships between
the latent features and the corresponding box predictions
spending the least computational costs, we train a proxy
network of the 3D detector head with labeled samples and
extract the outer product of Jacobians from all proxy layers
to form the NTK matrix of all unlabeled samples. Empiri-
cal studies evidence that the NTK kernel not only captures
non-linearity but takes the aleatoric and epistemic uncer-
tainties into joint consideration, assisting detectors to rec-
ognize challenging objects that are of sparse structure. To
accommodate both one-stage (i.e., SECOND) and two-stage
detectors (i.e., PV-RCNN), we further incorporate the clas-
sification entropy maximization into the selection criteria.
Our contributions are summarized as below:
1. We propose a novel information-theoretic based crite-

rion KECOR for cost-effective 3D box annotations that
allows for the greedy search of informative point clouds
by maximizing the kernel coding rate.

2. Our framework is flexible to accommodate different
choices of kernels and 3D detector architectures. Empir-
ical NTK kernel used in KECOR demonstrates a strong
capacity to unify both aleatoric and epistemic uncertain-
ties from the model perspective, which helps detectors
learn a variety of challenging objects.

3. Extensive experiments have been conducted on both 3D
benchmarks (i.e., KITTI and Waymo Open) and 2D ob-
ject detection dataset (i.e., PASCAL VOC07), verify-
ing the effectiveness and versatility of the proposed ap-
proach. Experimental results show that the proposed ap-
proach achieves a 44.4% reduction of annotations and up
to 26.4% less running time compared to the state-of-the-
art active 3D detection methods.

2. Related Work
2.1. Active Learning (AL)

Active learning has been widely applied to image clas-
sification and regression tasks, where the samples that
lead to unconfident predictions (i.e., aleatoric uncertainty)
[7, 15, 19, 29, 32, 36, 48, 50, 51, 56, 61, 61, 68] or not resem-
ble the training set (i.e., epistemic uncertainty) [2,16,22,24,
44,45,55,65] will be selected and acquired for annotations.
Hybrid methods [5, 11, 26, 31, 33, 40, 43] unify both types
of uncertainty to form an acquisition criterion. Examples

include BADGE [5] and BAIT [4], which select a batch of
samples that probably induce large and diverse changes to
the model based on the gradients and Fisher information.
AL for Detection. Research on active learning for object
detection [9, 23, 30, 52, 69, 71] has not bee as widespread
as that for image classification, due in part to the chal-
lenges in quantifying aleatoric and epistemic uncertain-
ties in bounding box regression. Kao et al. [30] proposed
two metrics to quantitatively evaluate the localization un-
certainty, where the samples containing inconsistent box
predictions will be selected. Choi et al. [9] predicted the
parameters of the Gaussian mixture model and computes
epistemic uncertainty as the variance of Gaussian models.
Agarwal et al. [1] proposed a contextual diversity measure-
ment for selecting unlabeled images containing objects in
diverse backgrounds. Park et al. [47] determined epistemic
uncertainty by using evidential deep learning along with
hierarchical uncertainty aggregation to effectively capture
the context within an image. Wu et al. [62] introduced
a hybrid approach, which utilizes an entropy-based non-
maximum suppression to estimate uncertainty and a diverse
prototype strategy to ensure diversity. Nevertheless, the ap-
plication of active learning to 3D point cloud detection is
still under-explored due to the high computational costs,
which makes AL strategies such as adding additional de-
tection heads [9] or augmentations [69] impractical. Previ-
ous solutions [6, 18, 20, 54] rely on generic metrics such as
Shannon entropy [61], localization tightness [30] for mea-
suring aleatoric uncertainty. Only a recent work CRB [41]
exploited both uncertainties jointly by greedily searching
point clouds that have concise labels, representative features
and geometric balance. Different from CRB that hierarchi-
cally filters samples with three criteria, in this work, we de-
rive an informatic-theoretic criterion, namely kernel coding
rate, that enables informativeness measurement in a single
step and saves computational costs by 26%.

2.2. Coding Rate
Entropy, rate distortion [8, 12] and coding rate [42] are

commonly used measurements to quantify the uncertainty
and compactness of a random variable Z. They can be in-
terpreted as the “goodness” of the latent representations in
deep neural networks with respect to generalizability [39],
transferability [27] and robustness. Entropy H(Z) calcu-
lates the expected value of the negative logarithm of the
probability, while it is not well-defined for a continuous
random variable with degenerate distributions [70]. To ad-
dress this, rate distortion R(Z, ϵ) is proposed in the con-
text of lossy data compression, which quantifies the min-
imum average number of binary bits required to represent
Z. Given the calculation difficulty of distortion rate, coding
rate R(Z) emerges as a more feasible solution for quanti-
fying random variables from a complex distribution (refer
to Section 3.2). Unlike prior works mentioned above, our
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Figure 1: An illustration of the workflow of the proposed kernel coding rate maximization for active 3D detection. Dotted
boxes indicate the unique components in two-stage 3D detectors (e.g., PV-RCNN), while solid boxes indicate the shared
components in both one-stage (e.g., SECOND) and two-stage detectors.

work explores a new kernel coding rate for sample selec-
tion in active learning rather than feature selection.

2.3. Neural Tangent Kernel
Neural tangent kernel (NTK) [3, 28, 35, 46] is a kernel

that reveals the connections between infinitely wide neural
networks trained by gradient descent and kernel methods.
NTK enables the study of neural networks using theoret-
ical tools from the perspective of kernel methods. There
have been several studies that have explored the properties
of NTK: Jacot et al. [28] proposed the concept of NTK
and showed that it could be used to explain the general-
ization of neural networks. Lee et al. [35] expanded on this
work and demonstrated that the dynamics of training wide
but finite-width NNs with gradient descent can be approxi-
mated by a linear model obtained from the first-order Taylor
expansion of that network around its initialization. In this
paper, rather than exploring the interpretability of infinite-
width neural networks, we explore empirical (i.e., finite-
width) neural tangent kernels to improve linear kernels and
non-linear RBF kernels. The NTK is used to characterize
the sample similarity based on 3D detector head behaviors,
which naturally takes aleatoric and epistemic uncertainties
into consideration.

3. Preliminaries
In this section, we present the mathematical formulation

of the problem of active learning for 3D object detection,
along with the establishment of the necessary notations.

3.1. Problem Formulation

3D Object Detection. The typical approach for detect-
ing objects in an orderless point cloud Pi involves train-
ing a 3D object detector to identify and locate the objects
of interest, consisting of a set of 3D bounding boxes and
their labels Bi = {bk, yk}k∈[Ni], with Ni indicating the
number of bounding boxes in the i-th point cloud. Each

point in Pi = {(x, y, z, r)} is represented by xyz spa-
tial coordinates and additional features such as reflectance
r. The box annotations bk ∈ R7 include the relative cen-
ter xyz spatial coordinates to the object ground planes, the
box size, the heading angle, and the box label yk ∈ RC ,
where C indicates the number of classes. As illustrated
in Figure 1, modern 3D detectors extract latent features
mi = g(Pi;θg) ∈ Rd through projection [64], PointNet en-
coding [34,57,59,66,67] or voxelization [13,58,63], where
dimension d = W × H × F is the product of width W ,
length H , and channels F of the feature map. The detec-
tion head h(·;θh) uses mi as inputs and generates detection
outcomes B̂i = {b̂k, ŷk}:

Pi
g(·;θg)7−−−−→ mi

h(·;θh)7−−−−→ B̂i. (1)

Active Learning Setup. In an active learning setup, a small
set of labeled point clouds DL = {Pi,Bi}i∈L and a large
pool of raw point clouds DU = {Pj}j∈U are given at train-
ing time, where L and U are the index sets corresponding
to DL and DU , respectively, and the cardinality of each set
satisfy that |L| ≪ |U |. During each active learning round
r ∈ {1, . . . , R}, a subset of point clouds D∗

r is selected
from DU based on a defined active learning policy. The la-
bels of 3D bounding boxes for the chosen point clouds are
queried from an oracle Ω : P 7→ B to create a labeled
set DS = {Pj ,Bj}Pj∈D∗

r
. The 3D detection model is pre-

trained with DL for active selection and then retrained with
DS∪DL. The process is repeated until the selected samples
reach the final budget B, i.e.,

∑R
r=1 |D∗

r | = B.

3.2. Coding Rate
As explained in Section 2.2, information theory [12] de-

fines the coding rate R(·, ϵ) [42] as a measure of lossy
data compression, quantifying the achievability of maxi-
mum compression while adhering to a desired error upper
bound. It is commonly used as an empirical estimation of
rate distortion [8, 12] indicating the minimal number of bi-



nary bits required to represent random variable Z with the
expected decoding error below ϵ. Given a finite set of n
samples Z = [z1, z2, ..., zn] ∈ Rd×n, the coding rate [42]
with respect to Z and a distortion ϵ is given by:

R(Z, ϵ) =
1

2
log det(I+

d

ϵ2n
Σ̂), (2)

where I is the d-dimensional identify matrix and Σ̂ =
ZZT ∈ Rd×d is an estimate of covariance. Theoretical jus-
tifications have been provided in [42] that the coding vec-
tors in Z can be explained by packing ϵ-balls into the space
spanned by Z (sphere packing [12]) or by computing the
number of bits needed to quantize the SVD of Z subject to
the precision. As coding rate produces a good estimate of
the compactness of latent features, a few attempts [10, 39]
have been made in the areas of multi-view learning and con-
trastive learning, which select informative features from d
dimensions by maximizing the coding rate.

4. Proposed Approach
4.1. Kernel Coding Rate Maximization

The core task in pool-based active learning is to select
the most informative samples from the unlabeled pool DU ,
which motivates us to replace the covariance estimate of
features with the kernel matrix of samples in the coding
rate formula (see Equation (2)). To each point cloud subset
D = {Pi}ni=1 ⊂ DU of size n, we refer to this new coding
length RK(M, ϵ) as the kernel coding rate, which repre-
sents the minimal number of bits to encode features M:

M = g(D,θg) = [m1,m2, ...,mn] ∈ Rd×n.

The latent features extracted from g(·;θg) can help find the
most informative samples irrespective of the downstream
tasks of classification and/or regression. We mathematically
define the kernel coding rate RK(M, ϵ) as:

RK(M, ϵ) :=
1

2
log det(I+

n

ϵ2d
KM,M), (3)

with the kernel matrix KM,M = [K(mi,mj)] ∈ Rn×n. In
each round r ∈ {1, . . . , R}, we use greedy search to find an
optimal subset D∗

r with size n from the unlabeled pool DU

by maximizing the kernel coding rate:

D∗
r = argmax

D⊂DUwith|D|=n

RK(M, ϵ), (4)

where M = g(D;θg). Notably, in the above equation, we
consider positive semi-definite (PSD) kernel K : m×m→
R, which characterizes the similarity between each pair of
embeddings of point clouds, and hence, helps with avoiding
redundancy. The most basic type of PSD kernel to consider
is linear kernel, which is defined by the dot product between
two features:

KLinear(mi,mj) = ⟨mi,mj⟩ = mT
imj . (5)

This kernel can be computed very quickly yet it has limita-
tions when dealing with high-dimensional input variables,

such as in our case where d = W × L × F . The linear
kernel may capture the noise and fluctuations in the data in-
stead of the underlying pattern, making it less generalizable
to the unseen data. Therefore, while the linear kernel can
be a useful starting point, it may be necessary to consider
other PSD kernels that are better suited to the specific char-
acteristics of the point cloud data at hand. More discussion
on non-linear kernels (e.g., Laplace RBF kernel) is provided
in the supplementary material. In the following subsection,
we explain a more appropriate PSD kernel K to be used in
KECOR, where we can jointly consider aleatoric and epis-
temic uncertainties from the model perspective.

4.1.1 Empirical Neural Tangent Kernel KNTK

Compared with linear kernel, empirical neural tangent ker-
nel (NTK) [28, 46] defined as the outer product of the neu-
ral network Jacobians, has been shown to lead to improved
generalization performance in deep learning models. The
yielded NTK matrix quantifies how changes in the inputs
affect the outputs and captures the relationships between the
inputs and outputs in a compact and interpretable way.

To efficiently compute the NTK kernel matrix, we first
consider a (L + 1)-layer fully connected neural network
f(·;θ) : m 7→ B̂ as a proxy network for the detection head
h(·;θh), as shown in Figure 1. The l-th layer in the proxy
network f has dl neurons, where l ranges from 0 to L. In
the forward pass computation, the output from the l-th layer
is defined as,

f (l)(mi;θ
(l)) = σ(

1√
dl
W (l)f (l−1)(mi) + βb(l)), (6)

where β ≥ 0 is a constant controlling the effect of bias
and f0(mi) = mi. σ(·) stands for a pointwise nonlinear
function. Note that the weight matrix W (l) ∈ Rdl×dl−1 is
rescaled by 1/

√
dl to avoid divergence, which refers to NTK

parameterization [28]. For notation simplicity, we denote
f (l)(mi;θ

(l)) as f
(l)
i . We omit the bias term and rewrite

Equation (6) as

f
(l)
i = W̃ (l)m̃

(l−1)
i , (7)

where W̃ (l) = [W (l), b(l)] ∈ Rdl×(dl−1)+1, m̃
(l−1)
i =

[ σ√
dl
f
(l−1)
i ;σβ] ∈ Rdl−1+1. We denote all parameters in

the proxy network as θ = [W̃ (1), . . . , W̃ (L)]. To endow
the proxy network f with the capability to mimic the be-
havior of the detector head, we train the proxy f with the
labeled data DL by using an empirical regression loss func-
tion L : RdL → R+ e.g., mean squared error (MSE) to
supervise the 3D box and ROI predictions. It is found that
training neural networks using the MSE loss involves solv-
ing a linear regression problem with the kernel trick [28],
where the kernel KNTK is defined as the derivative of the
output of a neural network with respect to its inputs at the
l-th layer, evaluated at the initial conditions:



KNTK(mi,mj) = ⟨∇θf
(l)(mi),∇θf

(l)(mj)⟩. (8)

By incorporating Equation (7) and the chain rule, we obtain
the factorization of derivates as the ultimate form of empir-
ical NTK kernel:

KNTK(mi,mj) =

L∑
l=1

⟨df
(L)
i

df
(l)
i

(
m̃

(l−1)
i

)T
,
df

(L)
j

df
(l)
j

(
m̃

(l−1)
j

)T
⟩F

=

L∑
l=1

〈
m̃

(l−1)
i , m̃

(l−1)
j

〉
·

〈
df

(L)
i

df
(l)
i

,
df

(L)
j

df
(l)
j

〉
,

where ⟨·, ·⟩F indicates the Frobenius inner product. The
above equation demonstrates that the NTK kernel is con-
structed by taking into account the gradient contributions
from multiple layers, which naturally captures the epistemic
uncertainty in the detector’s behavior.

4.1.2 Last-layer Gradient Kernel KLast

To verify the validity of aggregating gradients from multi-
ple layers, we derive a simplified variant of the NTK kernel
KNTK, which only considers the gradients w.r.t the param-
eters from the last layer of the proxy network:

KLast(mi,mj) = ⟨∇W̃ (L)f
(l)(mi),∇W̃ (L)f

(l)(mj)⟩. (9)

We have conducted extensive experiments to compare the
impact of different kernels selected in the kernel coding rate
maximization criteria as shown in Section 5.4.1. Empirical
results suggest that the one-stage detectors generally favor
KLast while two-stage detectors tend to perform better with
KNTK on 3D detection recognition tasks.

4.2. Acquisition Function
As described in Equation (4), our approach selects the

most informative point clouds based on the extracted fea-
tures m and gradient maps and thereby facilitate down-
stream predictions in the detector head. However, for two-
stage detectors like PV-RCNN, the classification prediction
is made in the region proposal network (refer to dotted
boxes and lines in Figure 1) before feeding features into the
detector head. Therefore, the features m alone cannot deter-
mine the informativeness for the box classification task. To
make the proposed KECOR strategy applicable to both one-
stage and two-stage detectors, we introduce the modified
acquisition function by including an entropy regularization
term as below:

D∗
r = argmax

D⊂DUwith|D|=n

RK(M, ϵ) + σentH(Ŷ ), (10)

whereH(·) represents the mean entropy of all classification
logits generated from the classifier. The effect of the hy-
perparameter σent is studied in Section 5.4.2. The overall
algorithm is summarized in the supplementary material.

5. Experiments
5.1. Experimental Setup
3D Point Cloud Detection Datasets. KITTI [21] is one of
the most representative datasets for point cloud based ob-
ject detection. The dataset consists of 3,712 training sam-
ples (i.e., point clouds) and 3,769 val samples. The dataset
includes a total of 80,256 labeled objects with three com-
monly used classes for autonomous driving: cars, pedestri-
ans, and cyclists. The Waymo Open dataset [60] is a chal-
lenging testbed for autonomous driving, containing 158,361
training samples and 40,077 testing samples. The sampling
intervals for KITTI and Waymo are set to 1 and 10, respec-
tively. To fairly evaluate baselines and the proposed method
on KITTI dataset [21], we follow the work of [58]: we
utilize Average Precision (AP) for 3D and Bird Eye View
(BEV) detection, and the task difficulty is categorized to
EASY, MODERATE, and HARD, with a rotated IoU thresh-
old of 0.7 for cars and 0.5 for pedestrian and cyclists. The
results evaluated on the validation split are calculated with
40 recall positions. To evaluate on Waymo dataset [60],
we adopt the officially published evaluation tool for per-
formance comparisons, which utilizes AP and the Average
Precision Weighted by Heading (APH). The respective IoU
thresholds for vehicles, pedestrians, and cyclists are set to
0.7, 0.5, and 0.5. Regarding detection difficulty, the Waymo
test set is further divided into two levels. LEVEL 1 (and
LEVEL 2) indicates there are more than five inside points
(at least one point) in the ground-truth objects.
2D Image Detection Dataset. On the PASCAL VOC 2007
dataset [17], we use 4,000 images in the trainval set for
training and 1,000 images in the test set for testing. For ac-
tive selection, we set 500 labeled images as random initial-
ization. Then n =500 images are labeled at each cycle until
reaching 2,000. The trained SSD [38] detectors are evalu-
ated with mean Average Precision (mAP) at IoU = 0.5 on
VOC07. Unspecified training details are the same as in [9].
Implementation Details. To ensure the reproducibility of
the baselines and the proposed approach, we implement
KECOR based on the public ACTIVE-3D-DET [41] toolbox
that can accommodate most of the public LiDAR detection
benchmark datasets. The hyperparameter σent is fixed to
0.1 and 0.5 on the KITTI and Waymo Open datasets, re-
spectively. The hyperparameter β is set to 0.1, which is
consistent with [42]. For the proxy network, we build two-
layer fully connected networks, with the latent dimensions
d1 and d2 fixed to 256. The source code and other imple-
mentation details of active learning protocols can be found
in the supplementary material for reference.

5.2. Baselines
For fair comparisons, eleven active learning baselines

are included in our experiments: RAND is a random sam-
pling method selecting n samples. ENTROPY [61] is an



Table 1: Performance comparisons on the 3D AP (%) scores with generic AL and applied AL for detection on KITTI val set
with 1% queried bounding boxes. PV-RCNN is used as the backbone architecture for all approaches.

CAR PEDESTRIAN CYCLIST AVERAGE

Method EASY MOD. HARD EASY MOD. HARD EASY MOD. HARD EASY MOD. HARD

G
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er
ic CORESET [55] 87.77 77.73 72.95 47.27 41.97 38.19 81.73 59.72 55.64 72.26 59.81 55.59

BADGE [5] 89.96 75.78 70.54 51.94 46.24 40.98 84.11 62.29 58.12 75.34 61.44 56.55
LLAL [68] 89.95 78.65 75.32 56.34 49.87 45.97 75.55 60.35 55.36 73.94 62.95 58.88

A
L

D
et

ec
tio

n MC-REG [41] 88.85 76.21 73.47 35.82 31.81 29.79 73.98 55.23 51.85 66.21 54.41 51.70
MC-MI [18] 86.28 75.58 71.56 41.05 37.50 33.83 86.26 60.22 56.04 71.19 57.77 53.81
CONSENSUS [54] 90.14 78.01 74.28 56.43 49.50 44.80 78.46 55.77 53.73 75.01 61.09 57.60
LT/C [30] 88.73 78.12 73.87 55.17 48.37 43.63 83.72 63.21 59.16 75.88 63.23 58.89
CRB [41] 90.98 79.02 74.04 64.17 54.80 50.82 86.96 67.45 63.56 80.70 67.81 62.81

KECOR 91.71 79.56 74.05 65.37 57.33 51.56 87.80 69.13 64.65 81.63 68.67 63.42
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Figure 2: 3D mAP (%) of KECOR and AL baselines on the KITTI val split with PV-RCNN.

uncertainty-based approach that selects n samples with
the highest entropy of predicted labels. LLAL [68] is an
uncertainty-based method using an auxiliary network to
predict indicative loss and select samples that are likely
to be mispredicted. CORESET [55] is a diversity-based
method that performs core-set selection using a greedy
furthest-first search on both labeled and unlabeled embed-
dings. BADGE [5] is a hybrid approach that selects in-
stances that are both diverse and of high magnitude in
a hallucinated gradient space. The comparison involved
four variants of deep active learning (MC-MI [18], MC-
REG [41], CRB [41]), and two adapted from 2D detection,
LT/C [30] and CONSENSUS [54]) for 3D detection. MC-
MI used Monte Carlo dropout and mutual information to
determine the uncertainty of point clouds, while MC-REG
used M -round MC-DROPOUT to determine regression un-
certainty and select top-n samples with the greatest variance
for label acquisition. LT/C measures class-specific local-
ization tightness, while CONSENSUS calculates the varia-
tion ratio of minimum IoU value for each RoI-match of 3D
boxes. To testify the active learning performance on the 2D
detection task, we compare KECOR with AL-MDN [9] ap-
proach, which predicts the parameter of Gaussian mixture
model and computes epistemic uncertainty as the variance
of Gaussian modes.

5.3. Results on KITTI and Waymo Open Datasets

To validate the effectiveness of the proposed KECOR, ac-
tive learning approaches were evaluated under various set-
tings on the KITTI and Waymo Open datasets.

Results of PV-RCNN on KITTI. Figure 6 depicts the
3D mAP scores of PV-RCNN trained by different AL ap-
proaches with an increasing number of selected 3D bound-
ing boxes. Specifically, ENTROPY selects point clouds with
the least number of bounding boxes, as higher classifica-
tion entropy indicates less chance of containing objects in
point clouds. To elaborate further, the number of bounding
boxes selected by MC-REG is generally high and of a large
variance, as more instances contained in point clouds will
trigger higher aleatoric uncertainty in the box regression.
It is observed that AL methods KECOR, CRB and BAIT
which jointly consider aleatoric and epistemic uncertain-
ties, effectively balance between annotation costs and 3D
detector performance across all detection difficulty levels.
Among these three methods, the proposed KECOR outper-
forms CRB and BAIT, reducing the number of required an-
notations by 36.8% and 64.0%, respectively, without com-
promising detection performance. A detailed AP score for
each class is reported in Table 1 when the box-level annota-
tion budget is set to 800 (i.e., 1% queried bounding boxes).
It is worth noting that the AP scores yield by KECOR are ob-
served to be higher than all other AL baselines. The BEV
scores and the detailed analysis are provided in the supple-
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Figure 3: 3D mAP (%) of KECOR and AL baselines on the KITTI val split with SECOND.
Table 2: 3D mAP and BEV scores (%) on the KITTI val split with one-stage 3D detector SECOND.

3D Detection mAP BEV Detection mAP

VENUE EASY MODERATE HARD EASY MODERATE HARD

RAND 69.33±0.62 55.48±0.43 51.53±0.33 75.66±1.10 63.77±0.86 59.71±0.95

CORESET [55] ICLR’18 66.86±2.27 53.22±1.65 48.97±1.42 73.08±1.80 61.03±1.98 56.95±1.53

LLAL [68] CVPR’19 69.19±3.43 55.38±3.63 50.85±3.24 76.52±2.24 63.25±3.11 59.07±2.80

BADGE [5] ICLR’20 69.92±2.90 55.60±2.72 51.23±2.58 76.07±2.70 63.39±2.52 59.47±2.49

BAIT [4] NeurIPS’21 69.45±3.53 55.61±2.94 51.25±2.42 76.04±1.75 63.49±2.14 53.40±2.00

CRB [41] ICLR’23 72.33±0.35 58.06±0.30 53.09±0.31 78.84±0.27 65.82±0.07 61.25±0.22

KECOR-LINEAR 70.55±1.17 55.54±1.05 50.91±0.84 77.50±0.44 63.97±0.61 59.55±0.25

KECOR-RBF 73.03±0.49 58.54±0.94 53.70±0.81 79.00±0.67 66.55±0.43 61.92±0.52

KECOR-LAST 74.30±0.42 60.68±0.13 55.26±0.05 80.50±0.39 68.31±0.03 63.26±0.01

KECOR 74.05±0.16 60.38±0.06 55.34±0.23 80.00±0.12 68.20±0.35 63.20±0.25

mentary material.
Results of SECOND on KITTI. We further test the active
learning performance of one-stage detector SECOND on the
KITTI dataset. Table 2 reports the 3D mAP and BEV mAP
scores across different difficulty levels with around 1,400
bounding boxes. A performance gain of KECOR over the
state-of-the-art approach CRB is about 3.5% and 2.8% on
average with respect to 3D and BEV mAP scores. Figure 3
shows a more intuitive trend that KECOR achieves a higher
boost on the recognition mAP at the MODERATE and HARD
levels. This implies that the incorporated NTK kernel helps
capture the objects that are of sparse point clouds and gen-
erally hard to learn, which enhances the detector’s capacity
on identifying challenging objects.
Results of PV-RCNN on Waymo Open. To study the scala-
bility and effectiveness of KECOR, we conduct experiments
on the large-scale Waymo Open dataset, the results of which
are illustrated in Figure 4a and Figure 4b for different dif-
ficulty levels. The proposed approach surpasses all existing
AL approaches by a large margin, which verifies the valid-
ity of the proposed kernel coding rate maximization strat-
egy. Notably, KECOR saves around 44.4% 3D annotations
than CRB when reaching the same detection performance.

5.4. Ablation Study
We conducted a series of experiments to understand the

impact of kernels and the coefficient σent on the perfor-
mance of our approach on the KITTI dataset. The central
tendency of the performance (e.g., mean mAP) and varia-
tions (e.g., error bars) are reported based on outcomes from

the two trials for each variant.
5.4.1 Impact of Kernels
We conducted experiments on KITTI to evaluate the ef-
fect of kernels on the proposed method, and the active
learning results yielded with the PV-RCNN and SECOND
backbones are reported in Figure 5a and Table 2, respec-
tively. We refer the variants of KECOR with the linear
kernel, Laplace RBF kernel, last-layer gradient kernel, and
NTK kernel as to KECOR-LINEAR, KECOR-RBF, KECOR-
LAST and KECOR, respectively. Figure 5a shows that
KECOR achieves the highest mAP scores (68.67%) among
KECOR-LINEAR (66.82%) and KECOR-LAST (68.31%) at
the moderate difficulty level. Regarding the box-level an-
notation costs, KECOR acquires a comparable amount as
KECOR-LAST, while KECOR-LINEAR requires 1.91 times
more bounding boxes. Table 2 shows that KECOR-LAST
and KECOR gain a relative 7.6% and 5.5% improvement,
respectively, over KECOR-LINEAR on the 3D mAP and
BEV mAP scores with the SECOND detector. In particu-
lar, KECOR surpasses the variant KECOR-RBF by 2.5% and
1.9% on 3D mAP and BEV mAP, respectively. The perfor-
mance gains evidence that the applied NTK kernel not only
captures the non-linear relationship between the inputs and
outputs, but also the aleatoric uncertainty for both tasks.
5.4.2 Impact of Coefficient σent

We delve into the susceptibility of our method to var-
ious values of the coefficient σent, which varies in
{0, 0.01, 0.05, 0.1, 0.3}. The performances of different
variants are measured using the mean average precision
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Figure 4: (a-b) Mean APH scores of KECOR and AL baselines on the Waymo Open val split with PV-RCNN at the difficulty
Level 1 and Level 2, respectively. (c) Performance comparison of 2D object detection on PASCAL VOC07 dataset.
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Figure 5: Ablation studies on the (a-b) impact of kernels in KECOR and (c-d) impact of coefficient σent on the KITTI dataset.

(mAP) results on the KITTI dataset. The detection perfor-
mance for the last round and the total amount of queried
3D bounding boxes for each variant are summarized in the
barplot (Figure 5c) and the parallel plot (Figure 5d). The
results show that different values of σent only had a limited
impact on the 3D mAP scores, with variations up to 2.8%,
3.0% and 2.5% across different difficulty levels, which af-
firms the resilience of the proposed method to the selection
of σent. Notably, the variant of KECOR without the classi-
fication entropy term (σent = 0) produces approximately 3
times more bounding boxes to annotate than other variants
as shown in Figure 5c. We infer this was attributed to the
higher entropy of point clouds containing fewer repeated
objects, which regularizes the acquisition criteria and en-
sures a minimal annotation cost. We provide an additional
study on the impact of σent on the Waymo Open dataset in
the supplementary material.

5.5. Analysis on Running Time
To ensure the proposed approach is efficient and repro-

ducible, we have conducted an analysis of the average run-
time yielded by the proposed KECOR and the state-of-the-
art active 3D detection method CRB on two benchmark
datasets, i.e., KITTI and Waymo Open. The training hours
of each approach are reported in Table 3. With different
choices on base kernels, our finding indicates that KECOR
outperforms CRB in terms of running efficiency, achieving a
relative improvement of 5.2% ∼ 6.4% on the KITTI dataset
and of 24.0% ∼ 26.4% on the large-scale Waymo Open
dataset. These results suggest that KECOR is a highly effec-

tive and efficient approach for active 3D object detection,
especially for large datasets, and has the potential to benefit
real-world applications.
Table 3: Running time (hours) comparisons with PV-RCNN.

AL Strategy KITTI Waymo Open Improvement

CRB 11.935 86.595
KECOR-LINEAR 11.170 63.701 +6.4% / +26.4%
KECOR-LAST 11.313 64.741 +5.2% / +25.2%
KECOR 11.313 65.782 +5.2% / +24.0%

5.6. Results on 2D Object Detection
To examine the versatility of the proposed KECOR strat-

egy, we conducted additional experiments on the task of
2D object detection. To ensure a fair comparison with AL-
MDN [9], we adopt the SSD [38] architecture with VGG16
as the backbone. With a fixed budget for acquiring labeled
images, KECOR demonstrates superior performance over
AL-MDN in the early cycles as shown in Figure 4c. As
the green dotted line indicates, KECOR requires only 1,187
box annotations to achieve the same level of mAP scores,
while AL-MDN requires 1,913 annotations, resulting in ap-
proximately 38% savings in labeling costs. These results
evidence that KECOR effectively trades off between anno-
tation costs and detection performance.
6. Conclusion

This paper studies a novel informative-theoretic acqui-
sition criterion for the active 3D detection task, which well
balances a trade-off between the quantity of selected bound-
ing boxes and the yielded detection performance. By max-
imizing the kernel coding rate, the informative point clouds



are identified and selected, which bring in unique and novel
knowledge for both 3D box classification and regression.
The proposed KECOR is proven to be versatile to one-stage
and two-stage detectors and also applicable to 2D object
detection tasks. The proposed strategy achieves superior
performance on benchmark datasets and also significantly
reduces the running time and labeling costs simultaneously.

A. More Discussions on Laplace RBF Kernel
Recall that in Section 4.1, we have discussed that the

linear kernel KLinear can be a useful starting point, it may
be necessary to consider other PSD kernels that are better
suited to the specific characteristics of the point cloud data
at hand. The Laplace Radial Basis Function (RBF) kernel,
also known as the Laplacian kernel, is a popular choice of
kernel in machine learning algorithms. The Laplace RBF
kernel maps the input features into a higher-dimensional
feature space, where non-linear relationships can be more
easily captured. This kernel function for two latent features
mi and mj can be mathematically represented as follows:

KRBF(mi,mj) = exp(−∥mi −mj∥
σ

), (11)

where σ indicates a hyperparameter that controls the width
of the kernel. σ is empirically set to 1.0. The Laplace RBF
kernel has a sharp cutoff beyond a distance of σ, which
makes it less sensitive to outliers than the Gaussian RBF
kernel. More experimental results and analysis can be found
in Section E.

B. The Algorithm of KECOR

In this section, we elaborate on the entire workflow of
the proposed KECOR approach for active 3D detection. As
illustrated in Algorithm 1, the training and selection pro-
cess includes three stages: (I) detection pre-training with
the labeled set (Line 4), (II) active selection (Line 9) from
the unlabeled pool, and (III) detection re-training with the
updated labeled set (Line 19). Notably, in the pretraining
stage, the proxy network is jointly learned to predict the
outputs from the detector head h. The outputs can be ROI
(forground confidence) only for SECOND [63] or with box
regression for PV-RCNN [58]. The training of the proxy net-
work is iterated by 10 and 20 epochs for KITTI and Waymo
Open datasets. When the training of the detection model
and proxy network converges, we move to the next active
selection stage in which n informative point clouds will be
selected based on the kernel coding rate maximization crite-
rion presented in Equation (10). The selected point clouds
are expected to bring novel and unique knowledge for the
following re-training of the detector. The whole process
will be gone through multiple times, until the number of
selected point clouds reaches the pre-defined budget B.

Algorithm 1 THE PSEUDOCODE OF KECOR.

1: Inputs:
DL: a set of labeled point clouds
DU : a set of unlabeled point clouds
Ω: annotators
B: a total budget for selection
g(·;θg): a feature extractor
h(·;θh): a detector head
f(·;θ): a proxy network of detector head
count: a counter of point clouds selected

2: Outputs:
g(·;θg): the trained feature extractor
h(·;θh): the trained detector head

3: count← 0
4: procedure PRE-TRAIN DETECTOR(g,h,f ,DL)
5: Train g and h with detection loss
6: Train f with regression loss L
7: end procedure
8: while count < B do
9: procedure ACTIVE SELECTION(g,f ,DU )

10: Extract features and gradients from g and f
11: Extract classification entropy for P ∈ DU

12: Calculate KNTK for any subset D ⊂ DU

13: Select the optimal subset D∗
r ▷ refer to Eq. (10)

14: end procedure
15: DU ← DU\D∗

r ▷ remove the selected subset
16: DS ← Ω(D∗

r) ▷ query labels from annotators
17: DL ← DL ∪ DS

18: count += n ▷ number of selected data n = |D∗
r |

19: procedure RE-TRAIN DETECTOR(g,h,f ,DL)
20: Train g and h with detection loss
21: Train f with regression loss L
22: end procedure
23: end while

C. Implementation Details

Following the same setting in [41], the batch sizes for
training and evaluation are fixed to 6 and 16 on both KITTI
and Waymo Open datasets. The Adam optimizer is adopted
with a learning rate initiated as 0.01, and scheduled by one
cycle scheduler. The number of MC-DROPOUT stochastic
passes is set to 5.
Active Learning Protocols. For all experiments, we first
randomly select m fully labeled point clouds from the train-
ing set as the initial DL. With the annotated data, the 3D
detector is trained with E epochs, which is then freezed to
select n candidates from DU for label acquisition. We set
the m and n to 2.5 ∼ 3% point clouds (i.e., n = m = 100
for KITTI, n = m = 400 for Waymo Open) to trade-off be-
tween reliable model training and high computational costs.
The aforementioned training and selection steps will alter-
nate for R rounds. Empirically, we set E = 30, R = 6
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Figure 6: 3D mAP (%) of KECOR and AL baselines on the KITTI val split with PV-RCNN.

for KITTI, and fix E = 40, R = 5 for Waymo Open. All
3D detection experiments are conducted on a GPU cluster
with three V100 GPUs and the runs on the VOC07 dataset
are conducted on a server with two NVIDIA GeForce RTX
2080 Ti. The runtime for an active learning experiment on
KITTI and Waymo is around 11 hours and 65 hours, respec-
tively. Note that, training PV-RCNN on the full set typically
requires 40 GPU hours for KITTI and 800 GPU hours for
Waymo.

D. Additional Results on the KITTI Dataset
In this section, we provide an additional study on the

BEV mAP scores on the KITTI dataset across different dif-
ficulty levels. The detector backbone is set to PV-RCNN for
all AL approaches. The results of the compared AL base-
lines and the proposed KECOR are plotted in Figure 6. A
similar trend is observed to the one shown in Figure 2 in the
main body. The proposed KECOR demonstrates a higher
performance boost over the state-of-the-art CRB and BAIT
at the moderate and hard levels.

E. Performance of KRBF on the KITTI Dataset
To study the performance of the non-linear KRBF, we

conducted a series of experiments on the KITTI dataset,
with both one-stage and two-stage detectors. The experi-
mental results are shown in Figure 7, where the top row is
with SECOND and the bottom row is with PV-RCNN, re-
spectively. It can be observed that the Laplace RBF ker-
nel performs better than the linear kernel with SECOND, yet
very similar results with PV-RCNN. It implies that the one-
stage detectors may have a simpler architecture, thus need-
ing the non-linear kernel to help capture the non-linear rela-
tionship among the features. However, the performance of
KECOR equipped with RBF kernel is still inferior to KLast

and KNTK, which evidence that the empirical NTK kernel
can capture not only the non-linear relationship between the
inputs and outputs, but also measure the aleatoric uncer-
tainty, thus helping detectors to identify more challenging
objects.

F. Impact of Kernels on Waymo Open

In addition to the ablation study on KITTI, we also run
experiments on the Waymo Open dataset to examine the im-
pact of kernels. The plots are illustrated in Figure 8. Similar
to what we observed in KITTI, the KECOR and KECOR-
LAST achieve better performance on both APH at different
difficulty levels. However, we also notice that the KECOR-
LINEAR does not select too many bounding boxes while it
selects 2 times more bounding boxes on the KITTI dataset
when reaching the same performance. We reason it is be-
cause, in Waymo datasets, most frames of point clouds are
densely labeled and there are other irrelevant objects (e.g.,
signs) that may trigger high entropy scores. Hence, to trade-
off between the information and annotation costs, KECOR
tends to prefer the point clouds having more information,
yielding a slightly higher number of bounding boxes to an-
notate. How to lower the annotation costs on Waymo will
leave an open question in future work.

G. Impact of σent on Waymo Open

To study the impact of coefficient σent on the Waymo
Open dataset, we depict the results in the last round with
regard to different evaluation metrics in Figure 9. We run
three trials with the values of σent varying in {0.1, 0.5, 0.7}
considering the high computational costs. The variant of
KECOR with the σent = 0.7 achieves the lowest perfor-
mance. We infer this performance drop is caused by the
dominance of the classification entropy regularization term.
To trade-off between the high volume of information by ker-
nel coding rate maximization and the lower costs of box an-
notation by classification entropy regularization, we select
0.5 as the value of σent for the rest of the experiments on
the Waymo Open dataset.
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