
Pei et al. Cybersecurity (2023) 6:34
https://doi.org/10.1186/s42400-023-00165-w

RESEARCH

An efficient confidentiality protection
solution for pub/sub system
Jinglei Pei1, Yuyang Shi1, Qingling Feng1, Ruisheng Shi1,2*   , Lina Lan1,2, Shui Yu3, Jinqiao Shi1,2 and
Zhaofeng Ma1,2 

Abstract 

Publish/subscribe(pub/sub) systems are widely used in large-scale messaging systems due to their asynchronous and
decoupled nature. With the population of pub/sub cloud services, the privacy protection problem of pub/sub sys-
tems has started to emerge, and events and subscriptions are exposed when executing event matching on untrust-
worthy cloud brokers. However, as the number of subscriptions increases, the effectiveness of the previous confiden-
tiality protection approaches declines drastically. In this paper, we propose SBM (scalable blind matching), an effective
confidentiality protection scheme for pub/sub systems. To the best of our knowledge, SBM is the first scheme that
applies order-preserving encryption algorithm to protect the system’s confidentiality and ensure its scalability. In this
scheme, SBM-I is highly effective in subscription matching but is unable to achieve ideal security IND-OCPA, whereas
SBM-II is suggested to ensure system security and SGX is used to reduce interaction and boost ciphertext matching
performance. The experiment demonstrates that this method has better matching performance compared to others:
the average matching time of SBM-I is 3–4 orders of magnitude faster than the matching algorithm MP and SGX-
based algorithm SCBR when the number of subscriptions is 500,000, and the average matching time of SBM-II is 40
times faster than MP and 24 times than SCBR.

Keywords  Pub/sub, Confidentiality, Privacy protection, SGX, Scalability

Introduction
Publish/subscribe (pub/sub) communication architecture
has been widely used in large-scale information
transmission systems, such as smart buildings (Kumar
et al. 2019), e-health systems (Ion et al. 2012), intelligent
traffic monitoring systems (Nabeel et al. 2013), and
stock monitoring systems Ding et al. (2020), due to its
ability to provide complete decoupling in time, space,

and synchronization between communication entities
(Eugster et al. 2003).

Pub/sub cloud services (Amazon 2022; Google 2022;
Microsoft 2022) are widely used with the advent of cloud
computing. As shown in Fig. 1, an increasing number of
developers choose to externalize services, such as event
matching and routing, to public infrastructures, rather
than build services themselves. This strategy accelerates
time-to-market, lowers operational costs, and brings
huge economic advantages to developers.

A pub/sub system usually consists of three participants:
(1) publishers which publish events to the system; (2)
subscribers that register interested subscriptions to the
system; (3) brokers that serve as pub/sub middleware and
are responsible for subscription storage, event matching
and routing. The system workflow is shown in Fig. 2.

Open Access

© The Author(s) 2023. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this
licence, visit http://creativecommons.org/licenses/by/4.0/.

Cybersecurity

*Correspondence:
Ruisheng Shi
shiruisheng@bupt.edu.cn
1 Beijing University of Posts and Telecommunications, Beijing 100876,
China
2 Key Laboratory of Trustworthy Distributed Computing and Service
(BUPT), Ministry of Education, Beijing, China
3 School of Computer Science, University of Technology Sydney, Sydney,
NSW, Australia

http://orcid.org/0000-0003-2490-6934
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s42400-023-00165-w&domain=pdf

Page 2 of 12Pei et al. Cybersecurity (2023) 6:34

1.	 As app clients, publishers and subscribers send
subscriptions and events to the app server
respectively.

2.	 Subscriptions and events are encrypted on the app
server and then sent to the untrustworthy broker.

3.	 The broker performs event matching and routing,
then return matched events to the app server.

4.	 The server decrypts matched events and then returns
them to the corresponding subscriber.

However, the development of pub/sub cloud service is
accompanied by serious data privacy issues. Cloud ser-
vices deployed in the public domain are unreliable and
attackable, which can lead to the disclosure of sensitive
user data and even significant financial losses. To solve
the problem, some privacy protection schemes (Kumar
et al. 2019; Ion et al. 2012; Raiciu and Rosenblum 2006;
Shikfa et al. 2009; Choi et al. 2010; Pal et al. 2012; Tariq
et al. 2013; Pires et al. 2016; Barazzutti et al. 2015; Arnau-
tov et al. 2018) have been proposed. Some of the current
approaches are based on the security of cryptographic
algorithms, while many researchers utilize SGX to safe-
guard the system’s confidentiality.

With the increasingly widespread use of pub/sub
systems, the number of subscriptions is growing to
tens of millions. However, none of current approaches
can meet the performance requirements of a large-
scale pub/sub system. Their performance degrades
significantly when the number of subscriptions grows.
The underlying reason is that these methods must
compare the events with encrypted subscriptions item

by item when performing event matching. So it is vital
to design an efficient privacy protection scheme for
large-scale pub/sub systems so that the broker can
provide effective event matching and routing while only
knowing the events and subscription ciphertexts.

In plaintext matching of events, subscriptions are
usually stored by an efficient data structure (Qian
et al. 2014; Ji and Jacobsen 2018; Qian et al. 2014) and
the mismatched ones are filtered out directly, thus
greatly reducing the number of subscriptions should
be compared and decreasing the time complexity of
the algorithm. Inspired by it, we propose an efficient
ciphertext matching scheme, Scalable Blind Matching
(SBM).

In particular, we first propose SBM-I based on
an order-preserving encryption (OPE) algorithm
without index structure. In this scheme, the event and
subscription ciphertexts retain the order of original
plaintexts, so the efficiency of matching is consistent
with that of plaintext matching. But if the plaintexts are
evenly distributed, the attacker can obtain at least half
of the plaintext bit letters and cannot reach the ideal
security IND-OCPA, which denotes indistinguishability
under ordered chosen plaintext attacks. To solve
the security problems of SBM-I, we update the OPE
algorithm used in the scheme and choose the more
secure index-based OPE algorithm, MOPE. However,
the frequent interaction between client and server
in this scheme will reduce the matching efficiency, so
SBM-II introduces SGX to reduce the interaction and
improve the matching performance. In general, SBM-II
performs ciphertext storage and query by MOPE
algorithm, and SGX is responsible for decrypting the
ciphertext, to offer effective secrecy protection.

The contributions of our work are summarized as
follows:

1.	 We first apply OPE algorithm to the SBM-I to
narrow the range of subscription sets that should be
compared and make the system scalable.

2.	 SBM-II is proposed to satisfy the ideal security IND-
OCPA. It is based on OPE with index structure to
ensure confidentiality and uses SGX to improve the
performance of the scheme. In addition, in SBM-II,
we construct a new encoding algorithm for the
subscription cipher stored in the balanced binary
tree to support the matching of subscriptions with
different constraint types.

3.	 Experiments are designed to evaluate the two
schemes, and the experimental results show that
SBM has higher performance than the matching
algorithm based on Paillier homomorphic encryption
MP and SGX-based algorithm SCBR.

Fig. 1  The evolution of pub/sub application architecture

Fig. 2  Pub/sub cloud service privacy protection schemes

Page 3 of 12Pei et al. Cybersecurity (2023) 6:34 	

The rest of the paper is organized as follows. Section
“Related work” gives the related work to the paper. System
and threat models are described in “Preliminaries”
section. Section “Efficient confidentiality protection
schemes” illustrates the design and implementation of
our schemes SBM-I and SBM-II. Section “Evaluation”
shows the results of our experiments. Finally, conclusion
and outlook are given in “Conclusion” section.

Related work
Confidentiality protection schemes
The security requirements for pub/sub systems were
first proposed by Wang et al. (2002), who defined these
requirements as authentication, integrity, confidentiality,
and availability. Despite their detailed definition of event
confidentiality and subscription confidentiality, they did
not propose a method to achieve them.

Current research on confidentiality protection schemes
can be divided into two categories. One is ciphertext
matching schemes based on cryptographic algorithms
to enable brokers to perform event matching without
decrypting events and subscriptions. The other is to
use the trusted execution environment SGX (software
guard extensions) provided by Intel. SGX encapsulates
the application’s security operations in an Enclave
container, where the confidentiality and integrity of code
and data are guaranteed, and events and subscriptions
are matched in the Enclave created for execution. The
following are described separately.

Cryptographic‑based schemes
Choi et al. (2010) used an asymmetric scalar-product
preserving encryption (ASPE) algorithm for ciphertext
matching. ASPE was proposed by Wong et al. (2009)
based on the k-nearest neighbor(KNN) algorithm
over an encrypted database. The core idea of the
scheme is to represent the event attribute values and
subscription constraint values as coordinates of points
on a multidimensional space, then encrypt the event
and subscription coordinates with the ASPE algorithm
and determine whether the event and subscription
match only by comparing the distance between the
encrypted subscription coordinates and the encrypted
event coordinates. This method enables complicated type
subscriptions, including equal-value, non-equal-value,
and interval subscriptions (aside from strings), but its
security is weak and can only withstand ciphertext-only
attacks.

Ion et al. (2012) proposed to use a multi-user
searchable data encryption (SDE) (Dong et al. 2011)
algorithm to encrypt events and subscriptions. Before
subscription encryption, numerical subscription
constraints are represented as access trees (Bethencourt

et al. 2007). The access tree consists of leaf nodes and
non-leaf nodes. Each leaf node is represented by an
attribute and the value of the attribute constraint after
SDE encryption. Each non-leaf node is a threshold
gate, consisting of a threshold value and its children
nodes. The threshold value indicates the minimum
number of children nodes needed to satisfy this non-
leaf node when matching. If each attribute value in the
encrypted event satisfies the access tree corresponding
to the same attribute in the subscription, the event
matches the subscription. This scheme is based on the
ElGmal algorithm, which is more secure than the ASPE
algorithm, but less efficient in event matching.

Nabeel et al. (2013) proposed to implement ciphertext
matching in a context-based pub/sub system with a
modified Paillier homomorphic encryption scheme
(Paillier 1999). First, the security parameters encrypted
with the modified Paillier algorithm are distributed by
the context manager for publishers and subscribers.
Then the event and subscription are encrypted under
their respective security parameters, and the matching
is performed by simply multiplying the subscription
ciphertext with the event ciphertext, at which time the
homomorphic additive nature of the Paillier algorithm
is used to eliminate some security parameters. Finally,
the modified Paillier algorithm is used to decrypt the
remaining result and determine whether the event and
subscription match according to the final result. The
solution is theoretically secure and has good matching
performance, but it cannot support matching of string
type subscriptions, which greatly limits its practical
use.

Barazzutti et al. (2015) proposed to use Bloom
filters (Bloom 1970) to alleviate the performance
problem of ciphertext matching and improving the
matching efficiency by reducing the subscription space.
However, their scheme can only filter out mismatched
subscriptions containing equivalence types, other than
that, other types of subscriptions still need to perform
ciphertext matching with the ASPE scheme.

Borcea et al. (2017) propose PICADOR, which applies
a lattice encryption-based proxy re-encryption scheme
that is capable of resisting adversary attacks with
quantum computing devices. The Proxy Re-Encryption
(PRE) scheme can convert encrypted events into
subscriptions that can only be decrypted by approved
subscribers.

Gaballah et al. (2021) proposed 2PPS, which introduced
distributed point function (DPF) based secret sharing on
top of a searchable encryption mechanism, distributing
the function of the broker across multiple servers so
that privacy is guaranteed as long as at least one server
does not collude with the adversary. However, once a

Page 4 of 12Pei et al. Cybersecurity (2023) 6:34

malicious server refuses to reply, the protocol execution
cannot be continued and is less available.

The basic strategy behind the cryptography-based
privacy protection scheme is to implement a ciphertext
matching scheme that first encrypts events and
subscriptions and then performs matching for each
encrypted event with subscriptions one by one. The time
complexity of matching is proportional to the number of
subscriptions in the system, and matching is not scalable.
As the number of subscriptions in the system increases,
the performance of the system gets worse.

SGX‑based schemes
In 2016, Pires et al. (2016) proposed using SGX to
implement secure routing in pub/sub systems. The main
idea is to encrypt events and subscriptions outside the
Enclave, decrypt them inside the Enclave with the help of
TEE provided by the Enclave, and then construct efficient
indexes for subscriptions to achieve fast matching.
However, the subscriber in this scheme must first send
the subscription to the publisher, which violates the
decoupling property of the pub/sub system.

In 2018, Arnautov et al. (2018) proposed PUBSUB-
SGX. It consists of two main components: the Load
Balancer/Proxy and the Matcher. The Load Balancer is
responsible for sending events and subscriptions to the
Matcher in a balanced manner, and the Matcher deploys
multiple broker nodes to perform the matching of
events and subscriptions. Thus, PubSub-SGX (Amazon
2022) expands on the capabilities of SCBR by allowing
for parallelization and scalability. In this scheme, the
balancer and matcher should run different enclaves, but
this paper does not describe how they securely interact.

In 2021, Wang et al. (2021) proposed MagikCube,
which consists of four components: publisher, subscriber,
broker, and authentication service. The scheme also
leverages the isolation feature of SGX enclave to ensure
that all sensitive operations are agnostic to the adversary.
And the certificate service will periodically authenticate
the broker to ensure that it is running on a trusted
SGX platform. The solution does not require direct
communication between subscribers and publishers,
ensuring the decoupling property.

Experimental results show that the SGX-based scheme
(Pires et al. 2016) performs more efficiently than the
scheme using cryptographic algorithms (ASPE Wong
et al. (2009)) because the plaintext matching is performed
inside SGX and does not require complex operations
like ciphertext matching. However, due to the limited
memory of Enclave container, when the amount of stored
data is large or the occupied memory is large (more than
90 MB) (Pires et al. 2016), page misses and cache misses
are prone to occur, and then Enclave needs to interact

with system memory to transfer in and out cache or
pages, which will increase the overhead additionally.
The matching performance of the SGX-based scheme is
closely related to the existing hardware performance and
is currently not applicable to the processing of large-scale
subscriptions.

Order preserving encryption
In the study of order-preserving encryption algorithms
(OPE), the existing schemes can be classified into
schemes without index structure and schemes based
on index structure (Guo et al. 2018). The OPE scheme
without index structure means that the encrypted
ciphertext directly retains the original plaintext order. An
index-based OPE scheme encrypts plaintext data using a
common encryption scheme (e.g., AES, DES) and creates
an order-preserving index structure that can be used to
compare the order of ciphertexts with each other.

The security of existing OPE schemes without index
structure is not high, and many of them cannot achieve
the desired security of OPE. For example, Agrawal et al.
(2004) constructed the first OPE scheme OPES, which
is based on the idea of randomly selecting P data in the
global space with the target distribution provided by the
user and then sorting these data to obtain the key table
T. The ciphertext of data di in the data fetching space D
is ci = T [i] . Since the data in the key table T are sorted,
the ciphertext retains the plaintext order. However, this
mechanism needs to model the plaintext first when
encrypting, so the user has to know all the plaintexts in
advance. Besides, Agrawal et al. do not define security for
OPE schemes, nor do they give a strict security analysis
of their OPES schemes.

Boldyreva et al. (2009) constructed the first provably
secure OPE scheme. It was constructed based on the
natural relationship between random order-preserving
function(ROPF) and the hypergeometric metric
probability distribution. Subsequently, it is shown to
satisfy ROPF security but does not achieve ideal security.

Index structure-based OPE schemes that can
achieve ideal security usually require multiple rounds
of interaction between the client and the server.
For example, Popa et al. (2013) constructed the first
OPE scheme that can achieve ideal security. It uses
deterministic encryption techniques such as AES and
other symmetric encryption algorithms to encrypt the
data, a mutable order-preserving encoding (MOPE)
algorithm to encode the plaintext, and stores the
ciphertext data and the plaintext encoding in the OPE
table, and the ciphertext data are also stored in the OPE
tree according to the encoding size. When inserting new
data, it requires O(log n) rounds of interaction between
the user and the server to determine the position of

Page 5 of 12Pei et al. Cybersecurity (2023) 6:34 	

the data in the tree and insert the data into the tree,
generating its order-preserving index. When querying
the data, it is necessary to insert and then compare its
index value. In general, this frequent interaction reduces
the efficiency of the system in terms of insertion and
querying. In addition, this scheme is only suitable for
single-user scenarios.

Liang et al. (2020) constructed MSOPE based on Popa
et al.’s idea for multi-user scenarios, which can provide
a higher security guarantee than the ideal security, like
indistinguishability under multi-source ordered chosen
plaintext attack (IND-MSOCPA), which can achieve
resistance to privacy leakage attacks(guaranteeing that
the ciphertext will not reveal information other than
the order), frequency analysis attacks, and equivalence
speculation attacks. The insertion and query idea is
similar to Popa et al.’s scheme, which requires multiple
interactions between users and the server.

Preliminaries
In this section, we focus on the pub/sub system model
and the threat model.

System model
In the pub/sub system, the events matched are forwarded
by the broker node to the corresponding subscribers.
To represent the matching and routing of events and
subscriptions, we define the data model in the pub/sub

Events An event e published by a publisher consists
of several attributes A. For example, an event
e = {A1,A2, . . . ,Ak} with k attributes. Each attribute
is represented by a triple (type, name, value) Carzaniga
et al. (2001), where type represents the type of data; name
represents the name of the attribute; and value represents
the value taken on the attribute. For example, in the stock
quotation system, IBM publishes an event containing two
attributes e1 = {(string , name, “IBM′′), (int, price, 128)} ,
then the event indicates that the current stock price of
IBM is $128.

Subscriptions A subscription s registered by a
subscriber consists of the conjunction of several
constraints P. For example, a subscription s containing
j constraints s = {P1,P2, . . . ,Pj} . Each constraint is
represented by a triple (name, Op, value), where name
denotes the name of the constraint attribute; Op denotes
the operator, which includes operations of equal,
unequal, and interval types for numeric attributes and
operations of prefix and suffix types for string attributes;
and value denotes the value on the constraint attribute.
For example, an investor sends a subscription s1 with
two constraints s1 = {(name,=, “IBM′′), (price,≤, 128)} ,
which notifies the investor of the current stock

information of IBM when the stock price of the company
is not greater than $128.

The event and subscription will match if and only if
each constraint in the subscription matching property
and corresponding value can be found in the event. It can
be seen that for subscription s1 , the event e1 satisfies the
subscription with the values of the attributes name and
price, so e1 matches s1.

Threat model
In this scenario, there are three main parties involved:
App client, App server, and pub/sub cloud service. App
clients and servers are considered trusted in the system
while the cloud service is provided by an untrustworthy
external infrastructure provider and is in a different
management domain from the app. In accordance with
the most of pub/sub system privacy protection literature,
we apply an “honest but curious” threat model. In this
model, while the pub/sub cloud service honestly handles
event matching and routing, it also has an interest in
learning about the content of events and subscriptions.

Efficient confidentiality protection schemes
In this section, we mainly introduce the proposed
confidentiality protection schemes SBM-I and SBM-II
and give the security analysis of the schemes respectively.

SBM‑I
Approach overview
Unlike previous cryptographic-based confidentiality
protection schemes, SBM-I is based on an index-
free OPE algorithm. It guarantees the orderliness of
ciphertexts by sacrificing the order information of
plaintexts. Since the ciphertext is ordered, the event
matching algorithm is similar to the plaintext matching
scheme at this time, and there is no need to match with
the encrypted subscriptions item by item.

We present the construction of SBM-I with an exam-
ple of the index-free structure-preserving encryption
algorithm proposed by Boldyreva et al. The algorithm is
based on the natural relationship between the random
order-preserving function (ROPF) and the hypergeo-
metric metric probability distribution. The value space
of plaintext is [inrangeStart, inrangeEnd], the value
space of ciphertext is [outrangeStart, outrangeEnd],
and the size of ciphertext space is larger than the size of
plaintext space. The encryption scheme associates the
plaintext space with the ciphertext space, each plain-
text value is eventually mapped to a subinterval in the
ciphertext space, and then a value is randomly selected

Page 6 of 12Pei et al. Cybersecurity (2023) 6:34

from this subinterval as the corresponding ciphertext
value. In Fig. 3, the plaintexts m1 and m2 are mapped to
subintervals [o1, o2] and [u1,u2] in the ciphertext space,
and then c1 and c2 are selected from [o1, o2] and [u1,u2]
as the ciphertexts of m1 and m2 respectively. And for
m1 , m2 , if m1 < m2 , then c1 < c2 holds, and vice versa.

In SBM-I, events and subscriptions are encrypted
at the app server and then sent to the broker. After
receiving the subscription cipher, the broker stores
the encrypted subscriptions in an orderly manner
by constructing an efficient index structure. When
performing the comparison of events and subscriptions,
the mismatched subscriptions are filtered out in the
index structure, which greatly reduces the subscriptions
to be compared. Take the index structure H-tree for
example, the algorithmic complexity of both insertion
and query is O(log n).

Security analysis
The confidentiality of the SBM-I scheme is guaranteed
by the key (KEnc,KH) , where KEnc is a key for a normal
encryption scheme and KH is a key for an order-
preserving hash function H. And the encryption key is
known only to the trusted APP server and clients.

In the application scenario studied in this paper,
the pub/sub cloud service is considered to be
untrustworthy. Attackers can only get information from
the broker of the pub/sub cloud service and try to break
the system’s confidentiality with this information. In the
process of subscription insertion and event matching
performed by the broker, the only information available
to the attacker is the event ciphertext and subscription
ciphertext which can reflect the plaintext sequential
information. Thus, it is clear that the cryptographic
attack on this scheme is a ciphertext-only attack(COA).

Since both event and subscription ciphertexts are
encrypted using the OPE algorithm proposed by
Boldyreva et al. In their subsequent paper Boldyreva
et al. (2011), they state that when the plaintexts are
uniformly distributed, the attacker will not obtain the
exact value of the plaintexts when encrypting them by
appropriately selecting the parameter values, but the
attacker can obtain at least half of the plaintext bits.
The constructed OPE scheme only satisfies the ROPF

security and does not achieve the ideal security of the
OPE algorithm IND-OCPA.

SBM‑II
Approach overview
The SBM-I algorithm above is less secure due to the
leakage of plaintext bits of event and subscription
information. In this section, we construct a more
secure ciphertext matching algorithm SBM-II based
on the MOPE (Popa et al. 2013) algorithm. Although it
can guarantee the desired security, the existing MOPE
scheme requires frequent interactions during insertion
and query between the OPE client and server, which
are the App server and the broker at the pub/sub cloud
service in our case respectively. This greatly increases the
cost of maintaining indexes and queries.

To solve the problem that the broker in the pub/sub
system has to interact with the App server frequently to
determine the insertion position of ciphers during the
insertion and query process, we use the trusted execution
environment SGX at the broker (assuming the broker
supports Intel’s SGX environment). The decryption
of ciphertext during insertion and query is performed
in the Enclave created by SGX, which eliminates this
frequent interaction while achieving the desired security.
In addition, SBM-II solves the problem that the original
MOPE does not support multi-dimensional conditional
queries by adopting balanced binary trees to encode
objects in each dimension so that the insertion, encoding,
and querying of objects in different dimensions can be
performed simultaneously in a multi-threaded manner.

Compared to Pires et al. (2016) and Wang et al. (2021),
which perform matching directly inside the Enclave,
SBM-II only utilizes SGX to perform decryption
operations, which does not lead to frequent page
misses or cache misses due to the memory limitation
of SGX itself when there is a large-scale subscription
in the system. Although the PUBSUB-SGX system
proposed by Arnautov et al. (2018) in 2018 evenly
divides the subscriptions into individual broker nodes
by Load Balancer, which makes the number of stored
subscriptions at each broker node decrease and thus
reduces the Enclave memory usage, it also doesn’t
fundamentally solve the problem of SGX memory
limitation.

Besides, Intel release the second generation SGX
called SGX2 with larger enclave memory to decrease
page or cache misses. SGX2 gives software the ability to
dynamically add and remove pages from an enclave and
to manage the attributes of enclave pages. In our paper,
we focus on SGX1 for three reasons. First, SGX1 is the
most recent and popular variant of SGX. As a hardware
component, SGX1 cannot be easily upgraded to SGX2.

Fig. 3  Correspondence between plaintext and ciphertext

Page 7 of 12Pei et al. Cybersecurity (2023) 6:34 	

So it’s expected that SGX1 will remain the dominant
version for a while. Second, our solution achieves unity in
efficiency and cost compared to SGX2. The expansion of
enclave memory in SGX2 comes with a certain efficiency
cost. Initializing and adding memory to the EPC for an
enclave is much more complex than a simple memory
allocation in a regular application. Third, our SBM-II is
designed to work with SGX, programs that use it can
operate without any changes in SGX2.

SBM-II consists of five main algorithms, initial state
generation, key generation, subscription insertion,
subscription encoding, and event matching.

Initial state generation As in Algorithm 1, there are b
attributes in the pub/sub system, and empty balanced
binary tree Ti is generated at the broker of the pub/sub
cloud service for each attribute ai as the initial state.

Key generation As in Algorithm 2, the symmetric key sk
for AES is generated by the App server, which only shares
sk with the Enclave created at the pub/sub cloud service
broker.

Subscription insertion As in Algorithm 3, subscription
sj = {(a1,≥, v1j), (a2,≥, v2j), . . . , (ab,≥, vbj)} . App server
encrypts the constraint values corresponding to attribute
ai with sk to get cij . Then the subscription ciphertext
s′j = {(a1,≥, c1j), (a2,≥, c2j), . . . , (ab,≥, cbj)} is sent to the
pub/sub cloud service. The broker in the pub/sub cloud
service inserts each constraint ciphertext cij into the tree
Ti corresponding to different attributes ai , where ri is the
root node of tree Ti and nj is the node with the same value
of cij when cij in tree Ti.

Subscription encoding As in Algorithm 4, subscription
encoding is building indexes for subscriptions. To
ensure that the improved OPE scheme can achieve
the desired security, the tree Ti needs to update the
encoding at the broker after each insertion of constraint
values. In order to support the matching of equal-
value, non-equal-value and interval-type subscriptions
in the pub/sub system, a new encoding method is
reconstructed in this paper.

Event matching As in Algorithm 5, the event
ek = {(a1, v1k), (a2, v2k), . . . , (ab, vbk)} , each
attribute value vik is encrypted with sk at the App
server to get cik , and then the event ciphertext
e′k = {(a1, c1k), (a2, c2k), . . . , (ab, cbk)} is sent to the pub/
sub cloud service. The broker in the pub/sub cloud
service performs event matching and finds the list of
subscription IDs matching the event.

Page 8 of 12Pei et al. Cybersecurity (2023) 6:34

Implement of SBM‑II
We give examples of subscription insertion and event
matching to describe our scheme.

Table 1 gives the subscription information in the
system and the process of insertion is as follows.

(1)	 The subscription information sent by the user is
encrypted at the APP server and then sent to the
broker in the pub/sub cloud service.

(2)	 Take subscription s1 as an example, first find the
corresponding OPE trees T1 and T2 for attributes
a1 and a2 in subscription s1 . Take attribute a1 and
tree T1 as an example, then determine whether the
constraint ciphertext on attribute a1 exists in tree
T1 . If it does, directly add the subscription ID of s1
to the Id chain table of the equivalent node, and the
insertion process is finished. If it does not exist, the
constraint ciphertext corresponding to attribute a1
needs to be ciphertext is inserted into the tree.

(3)	 If the tree T1 is empty, the constraint cipher on a1 is
directly inserted into the root node of tree T1 , and
the subscription ID is stored in the Id chain table of
the root node.

(4)	 If the tree T1 is not empty at the time of insertion,
the ciphertext at the root node is sent to the Enclave

created by the broker along with the ciphertext
of the node to be inserted if the constraint values
of these subscriptions on attribute a1 do not exist
in tree T1 . Conversely, if the constraint value of
attribute a1 exists in tree T1 , then it is processed as
described in (2).

(5)	 Decrypt the two ciphertexts in the Enclave,
compare the corresponding plaintext sizes, and
return the comparison result.

(6)	 If the value to be inserted is smaller than that of
the root node, the left child node of the root is
selected and compared with the ciphertext value
to be inserted. If the left child node is empty, the
ciphertext is directly inserted into the left child
node, and the subscription ID is stored in the ID
chain table of the left child node. Otherwise, the
left child node is used as the root node, and the
execution starts back to (4).

(7)	 If the cipher to be inserted is larger than the cipher
value of the root node, the right child node of the
root is selected and compared with the cipher value
to be inserted. If the right child node is empty,
the cipher is directly inserted into the right child
node, and the subscription ID is stored in the Id
chain table of the right child node. Otherwise, the
right child node is used as the root node, and the
execution starts back to (4).

(8)	 When the insertion of the constraint ciphertext on
attribute a1 is completed, the tree T1 is rebalanced
and the encoding algorithm is invoked to re-encode
the tree to generate the order-preserving ciphertext.

Figure 4 shows the state of the tree after the insertion
of s1 − s6 . In the OPE tree T1 corresponding to attribute
a1 , the encoded values of each constraint cipher (order
preserving cipher) are {1, 3, 1, 5, 4, 6} , and in the OPE tree
T2 corresponding to attribute a2 , the encoded values of
each constraint cipher are {0, 3, 5, 0, 2, 1} . The OPE tree
corresponding to an attribute must be rebalanced each
time a value for that attribute is inserted. Therefore, the
generated order-preserving ciphertext changes with
the position of the node, and the variability of the OPE
ciphertext is a necessary condition for the OPE algorithm
to achieve the desired security.

This case gives the case when the subscription
constraint is non-equal ( ≥ ). When constructing an
OPE tree, the number of trees constructed depends not
only on the number of attributes but also on the type
of constraints. For example, if all the constraints in the
system are of interval type, then for each attribute,
the system will build two trees to store the ciphertext
at the low and high values of the attribute set by

Table 1  The Subscriptions in our system

Sub-list ID Sub

s1 1 [(a1,≥, 10) ∧ (a2,≥, 19)]

s2 2 [(a1,≥, 13) ∧ (a2,≥, 55)]

s3 3 [(a1,≥, 10) ∧ (a2,≥, 85)]

s4 4 [(a1,≥, 23) ∧ (a2,≥, 19)]

s5 5 [(a1,≥, 17) ∧ (a2,≥, 32)]

s6 6 [(a1,≥, 75) ∧ (a2,≥, 22)]

Page 9 of 12Pei et al. Cybersecurity (2023) 6:34 	

each subscription. When performing matching, for a
subscription, if the constraint values in both trees for
each attribute satisfy the attribute values of the event on
the same attribute, then it matches the event; otherwise,
it does not match.

The event information in the system is given in Table 2,
and the event matching process is as follows:

(1)	 Events published by publishers are encrypted at the
App server and sent to the broker in the pub/sub
cloud service.

(2)	 For the attributes a1 , a2 in the event, find the
corresponding OPE trees T1 and T2 , respectively,
and determine whether the attribute value on a1
exists in tree T1 and the attribute value on a2 exists
in tree T2 . If it exists, get the OPE code of the
equivalent node. For example, if the value of event
e1 on attribute a2 exists in the tree, return code 6.

(3)	 If it does not exist, insert the event ciphertext
into the tree according to Algorithm 3, and then
rebalance the tree to find its order-preserving
encoding. For example, the attribute values of event
e1 and e2 on attribute a1 , and event e2 on a2 will be
inserted into T1 and T2 respectively.

(4)	 When matching, find the subscription nodes in T1
and T2 corresponding to codes less than or equal to
the event mapped to on a1 and a2 , respectively, and
take the intersection of the ID chains corresponding
to these nodes. The remaining set of IDs is the ID
corresponding to the subscription matching the
event.

Figure 5 gives the state of the trees T1 and T2 when
matching is performed. It can be seen that for e1 , the

subscription IDs satisfied on attribute a1 are {1, 2, 3, 5}
and on attribute a2 are {1, 4} . The corresponding codes
of these subscriptions in the tree are less than or equal
to the codes of the event on the same attribute, and
the intersection of the two is taken to be {1} , which
is the matching subscription ID. Similarly, the set of
subscription IDs for matching e2 is obtained as {1, 4, 5}.

Security analysis
Before subscription insertion, there is only an empty
OPE tree, since the attacker does not have the AES
encryption key, the original subscription plaintext cannot
be recovered from the subscription ciphertext encrypted
using AES symmetric encryption algorithm.

In the subscription insertion process in Algorithm 3,
the decryption of the subscription is performed under
the trusted execution environment SGX, and the
attacker does not get the subscription plaintext. After
the subscription insertion is completed, the encoding of
the subscriptions in the tree can be obtained from the
generated OPE tree, and the encoding only exposes the
order relationship between the subscriptions.

When performing event matching, the event code is
first inserted into the tree to get the event code. Then we
search for the node with the matching event code. Similar
to the subscription insertion, the event insertion and the
process of getting the matching node only compare the
codes and do not expose the event ciphertext.

Since the attacker does not have access to the AES
symmetric key, the SBM-II implementation exposes
the event and subscription encoding, but not the event
and subscription plaintext information. In addition, the
attacker can get no information from the encoding other
than the order of events and subscriptions.

Fig. 4  The state of OPE tree after inserting subscriptions

Page 10 of 12Pei et al. Cybersecurity (2023) 6:34

Evaluation
Workload
During the experiment, the broker is running on a Win10
host with Intel(R) Core(TM) i5-1035G1 CPU and 16GB
RAM, and the APP server is running on a Win10 host
with Intel(R) Core(TM) i5-6200U CPU and 8 GB RAM.
SGX is developed using the SDK provided by Intel.

The number of events and subscriptions are
uniformly random integers generated on [0,1000], and
the subscriptions generated in the experiment are all
interval-type subscriptions, the number of events is
1000 when matching is performed, the number of event
attributes and subscription constraints is 4, and the size
of the subscription set is between 100,000 and 500,000. In
SBM-I, the security length of the encryption key is chosen
to be 256bits when encrypting events and subscriptions
using the OPE algorithm proposed by Boldyreva et al. We
use the tree index structure of H-Tree (Qian et al. 2014)
as a representative to verify our algorithm.

Approach
Event matching time is the most important metric
for matching algorithms. Matching time is defined
as the time taken by a broker to find a matching set of
subscriptions when an event arrives. In our experiments,
we measure the average matching time for a single event.

To measure the speed of the proposed matching
algorithm by indexing subscriptions and the existing

ciphertext matching algorithms, we select one from each
of the cryptography-based and SGX-based algorithms as
comparisons. The matching algorithm based on Paillier
homomorphic encryption(MP) proposed by Nabeel et al.
(2013) and the SGX-based SCBR algorithm proposed by
Pires et al. (2016) are chosen, and the length of the secu-
rity key is set to 1024 bits. We measured the impact of
the number of subscriptions on the average matching
time using SBM-I, SBM-II, MP, and SCBR.

Furthermore, to assess the impact of frequent
interactions on the matching performance of SBM-II, we
analyzed the average matching time when the Enclave
container is generated at the broker and when it is not
produced respectively. The broker must communicate
with the APP server if an Enclave container has not yet
been formed.

Results and analysis
Impact of the matching algorithm
Figure 6 shows the variation of event matching time with
the increasing number of subscriptions, and the vertical
coordinate displays the result of the operation after tak-
ing log 10 . Although the average matching time of four
algorithms increases with the number of subscriptions,
the matching performance of SBM-I and SBM-II is sig-
nificantly better than MP and SCBR. When the number
of subscriptions is 500,000, SCBR matches roughly twice
as fast as MP, the matching time of SBM-I is 3–4 orders
of magnitude faster than MP and SCBR, and the match-
ing time of SBM-II is 24 times faster than SCBR and 40
times faster than MP.

The reason is that the use of the index structure
directly filters out the mismatched subscriptions, which
greatly reduces the number of subscriptions to be
matched. In cryptographic algorithm-based ciphertext

Fig. 5  The state of OPE tree when matching events

Table 2  The events in our system

Pub-list Pub

e1 [(a1, 20), (a2, 19)]

e2 [(a1, 33), (a2, 44)]

Page 11 of 12Pei et al. Cybersecurity (2023) 6:34 	

matching schemes, events need to be compared with
the subscriptions one by one, so its performance is lower
than that of the SBM scheme. In SGX-based schemes, the
increase in the number of subscriptions causes frequent
page transfers in and out, and the system disk will run
out of resources. Additionally, it demonstrates that while
the security of SBM-II is higher than that of SBM-I its
efficiency is lower than that of SBM-I.

Effect of elimination of frequent interactions
To measure the improvement of SBM-II over the origi-
nal MOPE, we measure the average matching time with
and without interaction between the APP server and the
broker in the published subscription cloud service when
performing matching as the number of subscriptions
increases. The two hosts communicate in the LAN when
there is interaction.

As can be seen from Fig. 7, when the number of
subscriptions is 500,000 and there is no interaction,
SBM-II improves the average matching time by 23% over

that with interaction. It verifies that the elimination of
frequent interactions reduces the overhead of the system
when inserting subscriptions and performing matching,
and improves the performance of the system in general.

Conclusion
In this paper, we propose an efficient confidentiality
protection scheme SBM for a content-oriented pub/
sub system. SBM uses OPE algorithms to ensure the
confidentiality of the system while achieving orderly
storage of cipher text and constructs indexes for
subscription ciphertexts to achieve efficient matching of
large-scale subscriptions. SGX is applied to the algorithm
SBM-II to improve the performance of encrypted event
matching by indexing subscription ciphertexts, and
eventually meet the need for efficient matching of large-
scale pub/sub system. The experiment results show that
the indexing of subscriptions has better performance
than the traditional cryptography-based matching
methods. While SBM-I is more efficient than SBM-II
matching, SBM-II is more secure. There are still areas
that can be improved for SBM-II, though the scheme
SBM-II can achieve the desired security of the OPE
algorithm, solve the original interaction problem, and
reduce the cost of insertion and query. For example, we
do not consider the handling of equivalence speculation
attacks and frequency analysis attacks in our scheme,
which can be further explored in later studies.

Acknowledgements
We thank Prof. Juan Wang and Dr. Jie Wang of Wuhan University for their
guidance and support in the SGX experiment.

Author Contributions
All authors have contributed to this manuscript and approve of this
submission. JP, YS and QF participated in the experiment and drafting the
article. Prof. RS has made a decisive contribution to the technical route,
designing research, and revising the article critically. LL, SY, JS, and ZM
have made many contributions on revising the article. All authors read and
approved the final manuscript.

Funding
This work was supported by the Natural Science Foundation of Beijing
Municipality (M21037), Key Technologies Research and Development Program
(2022YFF0902701), 2022 Industrial Internet Public Service Platform - Industrial
Internet Oriented Virtual Currency Mining Governance Public Service Platform
Project by the Ministry of Industry and Information Technology of PRC, Major
Research and Application Project for the Supervision Platform of Virtual
Currency Mining Behavior by the Ministry of Education of PRC, and the 111
Project (Grant No. B21049).

Availability of data and materials
The authors confirm that the data supporting the findings of this study are
available within the article.

Declarations

Competing interests
The authors declare that they have no competing interests.

Fig. 6  The effect of the number of subscriptions on the average
matching time

Fig. 7  The effect of elimination of frequent interactions on the
average matching time

Page 12 of 12Pei et al. Cybersecurity (2023) 6:34

Received: 11 March 2023 Accepted: 6 June 2023

References
Agrawal R, Kiernan J, Srikant R, Xu Y (2004) Order preserving encryption for

numeric data. In: Proceedings of the 2004 ACM SIGMOD international
conference on management of data, pp 563–574

Amazon (2022) Pub/Sub messaging. https://​aws.​amazon.​com/​pub-​sub-​messa​
ging

Arnautov S, Brito A, Felber P, Fetzer C, Gregor F, Krahn R, Ozga W, Martin A,
Schiavoni V, Silva F et al (2018) Pubsub-sgx: exploiting trusted execution
environments for privacy-preserving publish/subscribe systems. In: 2018
IEEE 37th symposium on reliable distributed systems (SRDS), pp 123–132.
IEEE

Barazzutti R, Felber P, Mercier H, Onica E, Riviere E (2015) Efficient and confi-
dentiality-preserving content-based publish/subscribe with prefiltering.
IEEE Trans Dependable Secure Comput 14(3):308–325

Bethencourt J, Sahai A, Waters B (2007) Ciphertext-policy attribute-based
encryption. In: 2007 IEEE symposium on security and privacy (SP’07), pp
321–334 . IEEE

Bloom BH (1970) Space/time trade-offs in hash coding with allowable errors.
Commun ACM 13(7):422–426

Boldyreva A, Chenette N, Lee Y, O’neill A (2009) Order-preserving symmetric
encryption. In: Annual international conference on the theory and appli-
cations of cryptographic techniques, pp 224–241. Springer

Boldyreva A, Chenette N, O’Neill A (2011) Order-preserving encryption
revisited: improved security analysis and alternative solutions. In: Annual
cryptology conference, pp 578–595 (2011). Springer

Borcea C, Polyakov Y, Rohloff K, Ryan G et al (2017) Picador: end-to-end
encrypted publish-subscribe information distribution with proxy re-
encryption. Future Gener Comput Syst 71:177–191

Carzaniga A, Rosenblum DS, Wolf AL (2001) Design and evaluation of a
wide-area event notification service. ACM Trans Comput Syst (TOCS)
19(3):332–383

Choi S, Ghinita G, Bertino E (2010) A privacy-enhancing content-based pub-
lish/subscribe system using scalar product preserving transformations. In:
International conference on database and expert systems applications,
pp 368–384. Springer, Berlin

Ding T, Qian S, Cao J, Xue G, Li M (2020) Scsl: optimizing matching algorithms
to improve real-time for content-based pub/sub systems. In: 2020 IEEE
international parallel and distributed processing symposium (IPDPS), pp
148–157. IEEE

Dong C, Russello G, Dulay N (2011) Shared and searchable encrypted data for
untrusted servers. J Comput Secur 19(3):367–397

Eugster PT, Felber PA, Guerraoui R, Kermarrec A-M (2003) The many faces of
publish/subscribe. ACM Comput Surv (CSUR) 35(2):114–131

Gaballah SA, Coijanovic C, Strufe T, Mühlhäuser M (2021) 2PPS—publish/sub-
scribe with provable privacy. In: 2021 40th international symposium on
reliable distributed systems (SRDS), pp 198–209. IEEE

Google (2022) Pubsub. https://​cloud.​google.​com/​pubsub/​docs/​overv​iew
Guo J, Miao M, Wang J (2018) Research and progress of order preserving

encryption. J Cryptol Res 5:182–195
Ion M, Russello G, Crispo B (2012) Design and implementation of a confidenti-

ality and access control solution for publish/subscribe systems. Comput
Netw 56(7):2014–2037

Ji S, Jacobsen H-A (2018) Ps-tree-based efficient Boolean expression match-
ing for high-dimensional and dense workloads. Proc VLDB Endow
12(3):251–264

Kumar S, Hu Y, Andersen MP, Popa RA, Culler DE (2019) {JEDI}: {Many-to-Many}
{End-to-End} encryption and key delegation for {IoT}. In: 28th USENIX
security symposium (USENIX Security 19), pp 1519–1536

Liang J, Qin Z, Xiao S, Zhang J, Yin H, Li K (2020) Privacy-preserving range
query over multi-source electronic health records in public clouds. J
Parallel Distrib Comput 135:127–139

Microsoft (2022) Publisher-subscriber pattern. https://​learn.​micro​soft.​com/​zh-​
cn/​azure/​archi​tectu​re/​patte​rns/​publi​sher-​subsc​riber

Nabeel M, Appel S, Bertino E, Buchmann A (2013) Privacy preserving context
aware publish subscribe systems. In: International conference on network
and system security, pp 465–478. Springer, Berlin

Paillier P (1999) Public-key cryptosystems based on composite degree residu-
osity classes. In: International conference on the theory and applications
of cryptographic techniques, pp 223–238. Springer

Pal P, Lauer G, Khoury J, Hoff N, Loyall J (2012) P3s: a privacy preserving
publish-subscribe middleware. In: ACM/IFIP/USENIX international confer-
ence on distributed systems platforms and open distributed processing,
pp 476–495. Springer, Berlin

Pires R, Pasin M, Felber P, Fetzer C (2016) Secure content-based routing using
intel software guard extensions. In: Proceedings of the 17th international
middleware conference, pp 1–10

Popa RA, Li FH, Zeldovich N (2013) An ideal-security protocol for order-
preserving encoding. In: 2013 IEEE symposium on security and privacy,
pp 463–477. IEEE

Qian S, Cao J, Zhu Y, Li M, Wang J (2014) H-tree: an efficient index structure for
event matching in content-based publish/subscribe systems. IEEE Trans
Parallel Distrib Syst 26(6):1622–1632

Qian S, Cao J, Zhu Y, Li M (2014) Rein: a fast event matching approach for
content-based publish/subscribe systems. In: IEEE INFOCOM 2014-IEEE
conference on computer communications, pp 2058–2066. IEEE

Raiciu C, Rosenblum DS (2006) Enabling confidentiality in content-based
publish/subscribe infrastructures. In: 2006 securecomm and workshops,
pp 1–11. IEEE

Shikfa A, Önen M, Molva R (2009) Privacy-preserving content-based publish/
subscribe networks. In: IFIP international information security conference,
pp 270–282. Springer, Berlin

Tariq MA, Koldehofe B, Rothermel K (2013) Securing broker-less publish/sub-
scribe systems using identity-based encryption. IEEE Trans Parallel Distrib
Syst 25(2):518–528

Wang C, Carzaniga A, Evans D, Wolf AL (2002) Security issues and require-
ments for internet-scale publish-subscribe systems. In: Proceedings of
the 35th annual hawaii international conference on system sciences, pp
3940–3947. IEEE

Wang S, Pan D, Feng R, Zhang Y (2021) Magikcube: securing cross-domain
publish/subscribe systems with enclave. In: 2021 IEEE 20th international
conference on trust, security and privacy in computing and communica-
tions (TrustCom), pp 147–154. IEEE

Wong WK, Cheung DW-l, Kao B, Mamoulis N (2009) Secure kNN computa-
tion on encrypted databases. In: Proceedings of the 2009 ACM SIGMOD
international conference on management of data, pp 139–152

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://aws.amazon.com/pub-sub-messaging
https://aws.amazon.com/pub-sub-messaging
https://cloud.google.com/pubsub/docs/overview
https://learn.microsoft.com/zh-cn/azure/architecture/patterns/publisher-subscriber
https://learn.microsoft.com/zh-cn/azure/architecture/patterns/publisher-subscriber

	An efficient confidentiality protection solution for pubsub system
	Abstract
	Introduction
	Related work
	Confidentiality protection schemes
	Cryptographic-based schemes
	SGX-based schemes

	Order preserving encryption

	Preliminaries
	System model
	Threat model

	Efficient confidentiality protection schemes
	SBM-I
	Approach overview
	Security analysis

	SBM-II
	Approach overview
	Implement of SBM-II
	Security analysis

	Evaluation
	Workload
	Approach
	Results and analysis
	Impact of the matching algorithm
	Effect of elimination of frequent interactions

	Conclusion
	Acknowledgements
	References

