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Abstract 

Publish/subscribe(pub/sub) systems are widely used in large-scale messaging systems due to their asynchronous and 
decoupled nature. With the population of pub/sub cloud services, the privacy protection problem of pub/sub sys-
tems has started to emerge, and events and subscriptions are exposed when executing event matching on untrust-
worthy cloud brokers. However, as the number of subscriptions increases, the effectiveness of the previous confiden-
tiality protection approaches declines drastically. In this paper, we propose SBM (scalable blind matching), an effective 
confidentiality protection scheme for pub/sub systems. To the best of our knowledge, SBM is the first scheme that 
applies order-preserving encryption algorithm to protect the system’s confidentiality and ensure its scalability. In this 
scheme, SBM-I is highly effective in subscription matching but is unable to achieve ideal security IND-OCPA, whereas 
SBM-II is suggested to ensure system security and SGX is used to reduce interaction and boost ciphertext matching 
performance. The experiment demonstrates that this method has better matching performance compared to others: 
the average matching time of SBM-I is 3–4 orders of magnitude faster than the matching algorithm MP and SGX-
based algorithm SCBR when the number of subscriptions is 500,000, and the average matching time of SBM-II is 40 
times faster than MP and 24 times than SCBR.
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Introduction
Publish/subscribe (pub/sub) communication architecture 
has been widely used in large-scale information 
transmission systems, such as smart buildings (Kumar 
et al. 2019), e-health systems (Ion et al. 2012), intelligent 
traffic monitoring systems (Nabeel et  al. 2013), and 
stock monitoring systems Ding et  al. (2020), due to its 
ability to provide complete decoupling in time, space, 

and synchronization between communication entities 
(Eugster et al. 2003).

Pub/sub cloud services (Amazon 2022; Google 2022; 
Microsoft 2022) are widely used with the advent of cloud 
computing. As shown in Fig. 1, an increasing number of 
developers choose to externalize services, such as event 
matching and routing, to public infrastructures, rather 
than build services themselves. This strategy accelerates 
time-to-market, lowers operational costs, and brings 
huge economic advantages to developers.

A pub/sub system usually consists of three participants: 
(1) publishers which publish events to the system; (2) 
subscribers that register interested subscriptions to the 
system; (3) brokers that serve as pub/sub middleware and 
are responsible for subscription storage, event matching 
and routing. The system workflow is shown in Fig. 2. 
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1.	 As app clients, publishers and subscribers send 
subscriptions and events to the app server 
respectively.

2.	 Subscriptions and events are encrypted on the app 
server and then sent to the untrustworthy broker.

3.	 The broker performs event matching and routing, 
then return matched events to the app server.

4.	 The server decrypts matched events and then returns 
them to the corresponding subscriber.

However, the development of pub/sub cloud service is 
accompanied by serious data privacy issues. Cloud ser-
vices deployed in the public domain are unreliable and 
attackable, which can lead to the disclosure of sensitive 
user data and even significant financial losses. To solve 
the problem, some privacy protection schemes (Kumar 
et al. 2019; Ion et al. 2012; Raiciu and Rosenblum 2006; 
Shikfa et al. 2009; Choi et al. 2010; Pal et al. 2012; Tariq 
et al. 2013; Pires et al. 2016; Barazzutti et al. 2015; Arnau-
tov et al. 2018) have been proposed. Some of the current 
approaches are based on the security of cryptographic 
algorithms, while many researchers utilize SGX to safe-
guard the system’s confidentiality.

With the increasingly widespread use of pub/sub 
systems, the number of subscriptions is growing to 
tens of millions. However, none of current approaches 
can meet the performance requirements of a large-
scale pub/sub system. Their performance degrades 
significantly when the number of subscriptions grows. 
The underlying reason is that these methods must 
compare the events with encrypted subscriptions item 

by item when performing event matching. So it is vital 
to design an efficient privacy protection scheme for 
large-scale pub/sub systems so that the broker can 
provide effective event matching and routing while only 
knowing the events and subscription ciphertexts.

In plaintext matching of events, subscriptions are 
usually stored by an efficient data structure (Qian 
et al. 2014; Ji and Jacobsen 2018; Qian et al. 2014) and 
the mismatched ones are filtered out directly, thus 
greatly reducing the number of subscriptions should 
be compared and decreasing the time complexity of 
the algorithm. Inspired by it, we propose an efficient 
ciphertext matching scheme, Scalable Blind Matching 
(SBM).

In particular, we first propose SBM-I based on 
an order-preserving encryption (OPE) algorithm 
without index structure. In this scheme, the event and 
subscription ciphertexts retain the order of original 
plaintexts, so the efficiency of matching is consistent 
with that of plaintext matching. But if the plaintexts are 
evenly distributed, the attacker can obtain at least half 
of the plaintext bit letters and cannot reach the ideal 
security IND-OCPA, which denotes indistinguishability 
under ordered chosen plaintext attacks. To solve 
the security problems of SBM-I, we update the OPE 
algorithm used in the scheme and choose the more 
secure index-based OPE algorithm, MOPE. However, 
the frequent interaction between client and server 
in this scheme will reduce the matching efficiency, so 
SBM-II introduces SGX to reduce the interaction and 
improve the matching performance. In general, SBM-II 
performs ciphertext storage and query by MOPE 
algorithm, and SGX is responsible for decrypting the 
ciphertext, to offer effective secrecy protection.

The contributions of our work are summarized as 
follows: 

1.	 We first apply OPE algorithm to the SBM-I to 
narrow the range of subscription sets that should be 
compared and make the system scalable.

2.	 SBM-II is proposed to satisfy the ideal security IND-
OCPA. It is based on OPE with index structure to 
ensure confidentiality and uses SGX to improve the 
performance of the scheme. In addition, in SBM-II, 
we construct a new encoding algorithm for the 
subscription cipher stored in the balanced binary 
tree to support the matching of subscriptions with 
different constraint types.

3.	 Experiments are designed to evaluate the two 
schemes, and the experimental results show that 
SBM has higher performance than the matching 
algorithm based on Paillier homomorphic encryption 
MP and SGX-based algorithm SCBR.

Fig. 1  The evolution of pub/sub application architecture

Fig. 2  Pub/sub cloud service privacy protection schemes
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The rest of the paper is organized as follows. Section 
“Related work” gives the related work to the paper. System 
and threat models are described in “Preliminaries” 
section. Section “Efficient confidentiality protection 
schemes” illustrates the design and implementation of 
our schemes SBM-I and SBM-II. Section “Evaluation” 
shows the results of our experiments. Finally, conclusion 
and outlook are given in “Conclusion” section.

Related work
Confidentiality protection schemes
The security requirements for pub/sub systems were 
first proposed by Wang et  al. (2002), who defined these 
requirements as authentication, integrity, confidentiality, 
and availability. Despite their detailed definition of event 
confidentiality and subscription confidentiality, they did 
not propose a method to achieve them.

Current research on confidentiality protection schemes 
can be divided into two categories. One is ciphertext 
matching schemes based on cryptographic algorithms 
to enable brokers to perform event matching without 
decrypting events and subscriptions. The other is to 
use the trusted execution environment SGX (software 
guard extensions) provided by Intel. SGX encapsulates 
the application’s security operations in an Enclave 
container, where the confidentiality and integrity of code 
and data are guaranteed, and events and subscriptions 
are matched in the Enclave created for execution. The 
following are described separately.

Cryptographic‑based schemes
Choi et  al. (2010) used an asymmetric scalar-product 
preserving encryption (ASPE) algorithm for ciphertext 
matching. ASPE was proposed by Wong et  al. (2009) 
based on the k-nearest neighbor(KNN) algorithm 
over an encrypted database. The core idea of the 
scheme is to represent the event attribute values and 
subscription constraint values as coordinates of points 
on a multidimensional space, then encrypt the event 
and subscription coordinates with the ASPE algorithm 
and determine whether the event and subscription 
match only by comparing the distance between the 
encrypted subscription coordinates and the encrypted 
event coordinates. This method enables complicated type 
subscriptions, including equal-value, non-equal-value, 
and interval subscriptions (aside from strings), but its 
security is weak and can only withstand ciphertext-only 
attacks.

Ion et  al. (2012) proposed to use a multi-user 
searchable data encryption (SDE) (Dong et  al. 2011) 
algorithm to encrypt events and subscriptions. Before 
subscription encryption, numerical subscription 
constraints are represented as access trees (Bethencourt 

et  al. 2007). The access tree consists of leaf nodes and 
non-leaf nodes. Each leaf node is represented by an 
attribute and the value of the attribute constraint after 
SDE encryption. Each non-leaf node is a threshold 
gate, consisting of a threshold value and its children 
nodes. The threshold value indicates the minimum 
number of children nodes needed to satisfy this non-
leaf node when matching. If each attribute value in the 
encrypted event satisfies the access tree corresponding 
to the same attribute in the subscription, the event 
matches the subscription. This scheme is based on the 
ElGmal algorithm, which is more secure than the ASPE 
algorithm, but less efficient in event matching.

Nabeel et al. (2013) proposed to implement ciphertext 
matching in a context-based pub/sub system with a 
modified Paillier homomorphic encryption scheme 
(Paillier 1999). First, the security parameters encrypted 
with the modified Paillier algorithm are distributed by 
the context manager for publishers and subscribers. 
Then the event and subscription are encrypted under 
their respective security parameters, and the matching 
is performed by simply multiplying the subscription 
ciphertext with the event ciphertext, at which time the 
homomorphic additive nature of the Paillier algorithm 
is used to eliminate some security parameters. Finally, 
the modified Paillier algorithm is used to decrypt the 
remaining result and determine whether the event and 
subscription match according to the final result. The 
solution is theoretically secure and has good matching 
performance, but it cannot support matching of string 
type subscriptions, which greatly limits its practical 
use.

Barazzutti et  al. (2015) proposed to use Bloom 
filters (Bloom 1970) to alleviate the performance 
problem of ciphertext matching and improving the 
matching efficiency by reducing the subscription space. 
However, their scheme can only filter out mismatched 
subscriptions containing equivalence types, other than 
that, other types of subscriptions still need to perform 
ciphertext matching with the ASPE scheme.

Borcea et al. (2017) propose PICADOR, which applies 
a lattice encryption-based proxy re-encryption scheme 
that is capable of resisting adversary attacks with 
quantum computing devices. The Proxy Re-Encryption 
(PRE) scheme can convert encrypted events into 
subscriptions that can only be decrypted by approved 
subscribers.

Gaballah et al. (2021) proposed 2PPS, which introduced 
distributed point function (DPF) based secret sharing on 
top of a searchable encryption mechanism, distributing 
the function of the broker across multiple servers so 
that privacy is guaranteed as long as at least one server 
does not collude with the adversary. However, once a 
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malicious server refuses to reply, the protocol execution 
cannot be continued and is less available.

The basic strategy behind the cryptography-based 
privacy protection scheme is to implement a ciphertext 
matching scheme that first encrypts events and 
subscriptions and then performs matching for each 
encrypted event with subscriptions one by one. The time 
complexity of matching is proportional to the number of 
subscriptions in the system, and matching is not scalable. 
As the number of subscriptions in the system increases, 
the performance of the system gets worse.

SGX‑based schemes
In 2016, Pires et  al. (2016) proposed using SGX to 
implement secure routing in pub/sub systems. The main 
idea is to encrypt events and subscriptions outside the 
Enclave, decrypt them inside the Enclave with the help of 
TEE provided by the Enclave, and then construct efficient 
indexes for subscriptions to achieve fast matching. 
However, the subscriber in this scheme must first send 
the subscription to the publisher, which violates the 
decoupling property of the pub/sub system.

In 2018, Arnautov et  al. (2018) proposed PUBSUB-
SGX. It consists of two main components: the Load 
Balancer/Proxy and the Matcher. The Load Balancer is 
responsible for sending events and subscriptions to the 
Matcher in a balanced manner, and the Matcher deploys 
multiple broker nodes to perform the matching of 
events and subscriptions. Thus, PubSub-SGX (Amazon 
2022) expands on the capabilities of SCBR by allowing 
for parallelization and scalability. In this scheme, the 
balancer and matcher should run different enclaves, but 
this paper does not describe how they securely interact.

In 2021, Wang et  al. (2021) proposed MagikCube, 
which consists of four components: publisher, subscriber, 
broker, and authentication service. The scheme also 
leverages the isolation feature of SGX enclave to ensure 
that all sensitive operations are agnostic to the adversary. 
And the certificate service will periodically authenticate 
the broker to ensure that it is running on a trusted 
SGX platform. The solution does not require direct 
communication between subscribers and publishers, 
ensuring the decoupling property.

Experimental results show that the SGX-based scheme 
(Pires et  al. 2016) performs more efficiently than the 
scheme using cryptographic algorithms (ASPE Wong 
et al. (2009)) because the plaintext matching is performed 
inside SGX and does not require complex operations 
like ciphertext matching. However, due to the limited 
memory of Enclave container, when the amount of stored 
data is large or the occupied memory is large (more than 
90 MB) (Pires et al. 2016), page misses and cache misses 
are prone to occur, and then Enclave needs to interact 

with system memory to transfer in and out cache or 
pages, which will increase the overhead additionally. 
The matching performance of the SGX-based scheme is 
closely related to the existing hardware performance and 
is currently not applicable to the processing of large-scale 
subscriptions.

Order preserving encryption
In the study of order-preserving encryption algorithms 
(OPE), the existing schemes can be classified into 
schemes without index structure and schemes based 
on index structure (Guo et  al. 2018). The OPE scheme 
without index structure means that the encrypted 
ciphertext directly retains the original plaintext order. An 
index-based OPE scheme encrypts plaintext data using a 
common encryption scheme (e.g., AES, DES) and creates 
an order-preserving index structure that can be used to 
compare the order of ciphertexts with each other.

The security of existing OPE schemes without index 
structure is not high, and many of them cannot achieve 
the desired security of OPE. For example, Agrawal et al. 
(2004) constructed the first OPE scheme OPES, which 
is based on the idea of randomly selecting P data in the 
global space with the target distribution provided by the 
user and then sorting these data to obtain the key table 
T. The ciphertext of data di in the data fetching space D 
is ci = T [i] . Since the data in the key table T are sorted, 
the ciphertext retains the plaintext order. However, this 
mechanism needs to model the plaintext first when 
encrypting, so the user has to know all the plaintexts in 
advance. Besides, Agrawal et al. do not define security for 
OPE schemes, nor do they give a strict security analysis 
of their OPES schemes.

Boldyreva et  al. (2009) constructed the first provably 
secure OPE scheme. It was constructed based on the 
natural relationship between random order-preserving 
function(ROPF) and the hypergeometric metric 
probability distribution. Subsequently, it is shown to 
satisfy ROPF security but does not achieve ideal security.

Index structure-based OPE schemes that can 
achieve ideal security usually require multiple rounds 
of interaction between the client and the server. 
For example, Popa et  al. (2013) constructed the first 
OPE scheme that can achieve ideal security. It uses 
deterministic encryption techniques such as AES and 
other symmetric encryption algorithms to encrypt the 
data, a mutable order-preserving encoding (MOPE) 
algorithm to encode the plaintext, and stores the 
ciphertext data and the plaintext encoding in the OPE 
table, and the ciphertext data are also stored in the OPE 
tree according to the encoding size. When inserting new 
data, it requires O(log n) rounds of interaction between 
the user and the server to determine the position of 
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the data in the tree and insert the data into the tree, 
generating its order-preserving index. When querying 
the data, it is necessary to insert and then compare its 
index value. In general, this frequent interaction reduces 
the efficiency of the system in terms of insertion and 
querying. In addition, this scheme is only suitable for 
single-user scenarios.

Liang et al. (2020) constructed MSOPE based on Popa 
et  al.’s idea for multi-user scenarios, which can provide 
a higher security guarantee than the ideal security, like 
indistinguishability under multi-source ordered chosen 
plaintext attack (IND-MSOCPA), which can achieve 
resistance to privacy leakage attacks(guaranteeing that 
the ciphertext will not reveal information other than 
the order), frequency analysis attacks, and equivalence 
speculation attacks. The insertion and query idea is 
similar to Popa et  al.’s scheme, which requires multiple 
interactions between users and the server.

Preliminaries
In this section, we focus on the pub/sub system model 
and the threat model.

System model
In the pub/sub system, the events matched are forwarded 
by the broker node to the corresponding subscribers. 
To represent the matching and routing of events and 
subscriptions, we define the data model in the pub/sub

Events An event e published by a publisher consists 
of several attributes A. For example, an event 
e = {A1,A2, . . . ,Ak} with k attributes. Each attribute 
is represented by a triple (type,  name,  value) Carzaniga 
et al. (2001), where type represents the type of data; name 
represents the name of the attribute; and value represents 
the value taken on the attribute. For example, in the stock 
quotation system, IBM publishes an event containing two 
attributes e1 = {(string , name, “IBM′′), (int, price, 128)} , 
then the event indicates that the current stock price of 
IBM is $128.

Subscriptions A subscription s registered by a 
subscriber consists of the conjunction of several 
constraints P. For example, a subscription s containing 
j constraints s = {P1,P2, . . . ,Pj} . Each constraint is 
represented by a triple (name,  Op,  value), where name 
denotes the name of the constraint attribute; Op denotes 
the operator, which includes operations of equal, 
unequal, and interval types for numeric attributes and 
operations of prefix and suffix types for string attributes; 
and value denotes the value on the constraint attribute. 
For example, an investor sends a subscription s1 with 
two constraints s1 = {(name,=, “IBM′′), (price,≤, 128)} , 
which notifies the investor of the current stock 

information of IBM when the stock price of the company 
is not greater than $128.

The event and subscription will match if and only if 
each constraint in the subscription matching property 
and corresponding value can be found in the event. It can 
be seen that for subscription s1 , the event e1 satisfies the 
subscription with the values of the attributes name and 
price, so e1 matches s1.

Threat model
In this scenario, there are three main parties involved: 
App client, App server, and pub/sub cloud service. App 
clients and servers are considered trusted in the system 
while the cloud service is provided by an untrustworthy 
external infrastructure provider and is in a different 
management domain from the app. In accordance with 
the most of pub/sub system privacy protection literature, 
we apply an “honest but curious” threat model. In this 
model, while the pub/sub cloud service honestly handles 
event matching and routing, it also has an interest in 
learning about the content of events and subscriptions.

Efficient confidentiality protection schemes
In this section, we mainly introduce the proposed 
confidentiality protection schemes SBM-I and SBM-II 
and give the security analysis of the schemes respectively.

SBM‑I
Approach overview
Unlike previous cryptographic-based confidentiality 
protection schemes, SBM-I is based on an index-
free OPE algorithm. It guarantees the orderliness of 
ciphertexts by sacrificing the order information of 
plaintexts. Since the ciphertext is ordered, the event 
matching algorithm is similar to the plaintext matching 
scheme at this time, and there is no need to match with 
the encrypted subscriptions item by item.

We present the construction of SBM-I with an exam-
ple of the index-free structure-preserving encryption 
algorithm proposed by Boldyreva et al. The algorithm is 
based on the natural relationship between the random 
order-preserving function (ROPF) and the hypergeo-
metric metric probability distribution. The value space 
of plaintext is [inrangeStart,  inrangeEnd], the value 
space of ciphertext is [outrangeStart,  outrangeEnd], 
and the size of ciphertext space is larger than the size of 
plaintext space. The encryption scheme associates the 
plaintext space with the ciphertext space, each plain-
text value is eventually mapped to a subinterval in the 
ciphertext space, and then a value is randomly selected 
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from this subinterval as the corresponding ciphertext 
value. In Fig. 3, the plaintexts m1 and m2 are mapped to 
subintervals [o1, o2] and [u1,u2] in the ciphertext space, 
and then c1 and c2 are selected from [o1, o2] and [u1,u2] 
as the ciphertexts of m1 and m2 respectively. And for 
m1 , m2 , if m1 < m2 , then c1 < c2 holds, and vice versa.

In SBM-I, events and subscriptions are encrypted 
at the app server and then sent to the broker. After 
receiving the subscription cipher, the broker stores 
the encrypted subscriptions in an orderly manner 
by constructing an efficient index structure. When 
performing the comparison of events and subscriptions, 
the mismatched subscriptions are filtered out in the 
index structure, which greatly reduces the subscriptions 
to be compared. Take the index structure H-tree for 
example, the algorithmic complexity of both insertion 
and query is O(log n).

Security analysis
The confidentiality of the SBM-I scheme is guaranteed 
by the key (KEnc,KH ) , where KEnc is a key for a normal 
encryption scheme and KH is a key for an order-
preserving hash function H. And the encryption key is 
known only to the trusted APP server and clients.

In the application scenario studied in this paper, 
the pub/sub cloud service is considered to be 
untrustworthy. Attackers can only get information from 
the broker of the pub/sub cloud service and try to break 
the system’s confidentiality with this information. In the 
process of subscription insertion and event matching 
performed by the broker, the only information available 
to the attacker is the event ciphertext and subscription 
ciphertext which can reflect the plaintext sequential 
information. Thus, it is clear that the cryptographic 
attack on this scheme is a ciphertext-only attack(COA).

Since both event and subscription ciphertexts are 
encrypted using the OPE algorithm proposed by 
Boldyreva et  al. In their subsequent paper Boldyreva 
et  al. (2011), they state that when the plaintexts are 
uniformly distributed, the attacker will not obtain the 
exact value of the plaintexts when encrypting them by 
appropriately selecting the parameter values, but the 
attacker can obtain at least half of the plaintext bits. 
The constructed OPE scheme only satisfies the ROPF 

security and does not achieve the ideal security of the 
OPE algorithm IND-OCPA.

SBM‑II
Approach overview
The SBM-I algorithm above is less secure due to the 
leakage of plaintext bits of event and subscription 
information. In this section, we construct a more 
secure ciphertext matching algorithm SBM-II based 
on the MOPE (Popa et  al. 2013) algorithm. Although it 
can guarantee the desired security, the existing MOPE 
scheme requires frequent interactions during insertion 
and query between the OPE client and server, which 
are the App server and the broker at the pub/sub cloud 
service in our case respectively. This greatly increases the 
cost of maintaining indexes and queries.

To solve the problem that the broker in the pub/sub 
system has to interact with the App server frequently to 
determine the insertion position of ciphers during the 
insertion and query process, we use the trusted execution 
environment SGX at the broker (assuming the broker 
supports Intel’s SGX environment). The decryption 
of ciphertext during insertion and query is performed 
in the Enclave created by SGX, which eliminates this 
frequent interaction while achieving the desired security. 
In addition, SBM-II solves the problem that the original 
MOPE does not support multi-dimensional conditional 
queries by adopting balanced binary trees to encode 
objects in each dimension so that the insertion, encoding, 
and querying of objects in different dimensions can be 
performed simultaneously in a multi-threaded manner.

Compared to Pires et al. (2016) and Wang et al. (2021), 
which perform matching directly inside the Enclave, 
SBM-II only utilizes SGX to perform decryption 
operations, which does not lead to frequent page 
misses or cache misses due to the memory limitation 
of SGX itself when there is a large-scale subscription 
in the system. Although the PUBSUB-SGX system 
proposed by Arnautov et  al. (2018) in 2018 evenly 
divides the subscriptions into individual broker nodes 
by Load Balancer, which makes the number of stored 
subscriptions at each broker node decrease and thus 
reduces the Enclave memory usage, it also doesn’t 
fundamentally solve the problem of SGX memory 
limitation.

Besides, Intel release the second generation SGX 
called SGX2 with larger enclave memory to decrease 
page or cache misses. SGX2 gives software the ability to 
dynamically add and remove pages from an enclave and 
to manage the attributes of enclave pages. In our paper, 
we focus on SGX1 for three reasons. First, SGX1 is the 
most recent and popular variant of SGX. As a hardware 
component, SGX1 cannot be easily upgraded to SGX2. 

Fig. 3  Correspondence between plaintext and ciphertext
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So it’s expected that SGX1 will remain the dominant 
version for a while. Second, our solution achieves unity in 
efficiency and cost compared to SGX2. The expansion of 
enclave memory in SGX2 comes with a certain efficiency 
cost. Initializing and adding memory to the EPC for an 
enclave is much more complex than a simple memory 
allocation in a regular application. Third, our SBM-II is 
designed to work with SGX, programs that use it can 
operate without any changes in SGX2.

SBM-II consists of five main algorithms, initial state 
generation, key generation, subscription insertion, 
subscription encoding, and event matching.

Initial state generation As in Algorithm  1, there are b 
attributes in the pub/sub system, and empty balanced 
binary tree Ti is generated at the broker of the pub/sub 
cloud service for each attribute ai as the initial state.

Key generation As in Algorithm 2, the symmetric key sk 
for AES is generated by the App server, which only shares 
sk with the Enclave created at the pub/sub cloud service 
broker.

Subscription insertion As in Algorithm 3, subscription 
sj = {(a1,≥, v1j), (a2,≥, v2j), . . . , (ab,≥, vbj)} . App server 
encrypts the constraint values corresponding to attribute 
ai with sk to get cij . Then the subscription ciphertext 
s′j = {(a1,≥, c1j), (a2,≥, c2j), . . . , (ab,≥, cbj)} is sent to the 
pub/sub cloud service. The broker in the pub/sub cloud 
service inserts each constraint ciphertext cij into the tree 
Ti corresponding to different attributes ai , where ri is the 
root node of tree Ti and nj is the node with the same value 
of cij when cij in tree Ti.

Subscription encoding As in Algorithm 4, subscription 
encoding is building indexes for subscriptions. To 
ensure that the improved OPE scheme can achieve 
the desired security, the tree Ti needs to update the 
encoding at the broker after each insertion of constraint 
values. In order to support the matching of equal-
value, non-equal-value and interval-type subscriptions 
in the pub/sub system, a new encoding method is 
reconstructed in this paper.

Event matching As in Algorithm  5, the event 
ek = {(a1, v1k), (a2, v2k), . . . , (ab, vbk)} , each 
attribute value vik is encrypted with sk at the App 
server to get cik , and then the event ciphertext 
e′k = {(a1, c1k), (a2, c2k), . . . , (ab, cbk)} is sent to the pub/
sub cloud service. The broker in the pub/sub cloud 
service performs event matching and finds the list of 
subscription IDs matching the event.
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Implement of SBM‑II
We give examples of subscription insertion and event 
matching to describe our scheme.

Table  1 gives the subscription information in the 
system and the process of insertion is as follows.

(1)	 The subscription information sent by the user is 
encrypted at the APP server and then sent to the 
broker in the pub/sub cloud service.

(2)	 Take subscription s1 as an example, first find the 
corresponding OPE trees T1 and T2 for attributes 
a1 and a2 in subscription s1 . Take attribute a1 and 
tree T1 as an example, then determine whether the 
constraint ciphertext on attribute a1 exists in tree 
T1 . If it does, directly add the subscription ID of s1 
to the Id chain table of the equivalent node, and the 
insertion process is finished. If it does not exist, the 
constraint ciphertext corresponding to attribute a1 
needs to be ciphertext is inserted into the tree.

(3)	 If the tree T1 is empty, the constraint cipher on a1 is 
directly inserted into the root node of tree T1 , and 
the subscription ID is stored in the Id chain table of 
the root node.

(4)	 If the tree T1 is not empty at the time of insertion, 
the ciphertext at the root node is sent to the Enclave 

created by the broker along with the ciphertext 
of the node to be inserted if the constraint values 
of these subscriptions on attribute a1 do not exist 
in tree T1 . Conversely, if the constraint value of 
attribute a1 exists in tree T1 , then it is processed as 
described in (2).

(5)	 Decrypt the two ciphertexts in the Enclave, 
compare the corresponding plaintext sizes, and 
return the comparison result.

(6)	 If the value to be inserted is smaller than that of 
the root node, the left child node of the root is 
selected and compared with the ciphertext value 
to be inserted. If the left child node is empty, the 
ciphertext is directly inserted into the left child 
node, and the subscription ID is stored in the ID 
chain table of the left child node. Otherwise, the 
left child node is used as the root node, and the 
execution starts back to (4).

(7)	 If the cipher to be inserted is larger than the cipher 
value of the root node, the right child node of the 
root is selected and compared with the cipher value 
to be inserted. If the right child node is empty, 
the cipher is directly inserted into the right child 
node, and the subscription ID is stored in the Id 
chain table of the right child node. Otherwise, the 
right child node is used as the root node, and the 
execution starts back to (4).

(8)	 When the insertion of the constraint ciphertext on 
attribute a1 is completed, the tree T1 is rebalanced 
and the encoding algorithm is invoked to re-encode 
the tree to generate the order-preserving ciphertext.

Figure 4 shows the state of the tree after the insertion 
of s1 − s6 . In the OPE tree T1 corresponding to attribute 
a1 , the encoded values of each constraint cipher (order 
preserving cipher) are {1, 3, 1, 5, 4, 6} , and in the OPE tree 
T2 corresponding to attribute a2 , the encoded values of 
each constraint cipher are {0, 3, 5, 0, 2, 1} . The OPE tree 
corresponding to an attribute must be rebalanced each 
time a value for that attribute is inserted. Therefore, the 
generated order-preserving ciphertext changes with 
the position of the node, and the variability of the OPE 
ciphertext is a necessary condition for the OPE algorithm 
to achieve the desired security.

This case gives the case when the subscription 
constraint is non-equal ( ≥ ). When constructing an 
OPE tree, the number of trees constructed depends not 
only on the number of attributes but also on the type 
of constraints. For example, if all the constraints in the 
system are of interval type, then for each attribute, 
the system will build two trees to store the ciphertext 
at the low and high values of the attribute set by 

Table 1  The Subscriptions in our system

Sub-list ID Sub

s1 1 [(a1,≥, 10) ∧ (a2,≥, 19)]

s2 2 [(a1,≥, 13) ∧ (a2,≥, 55)]

s3 3 [(a1,≥, 10) ∧ (a2,≥, 85)]

s4 4 [(a1,≥, 23) ∧ (a2,≥, 19)]

s5 5 [(a1,≥, 17) ∧ (a2,≥, 32)]

s6 6 [(a1,≥, 75) ∧ (a2,≥, 22)]
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each subscription. When performing matching, for a 
subscription, if the constraint values in both trees for 
each attribute satisfy the attribute values of the event on 
the same attribute, then it matches the event; otherwise, 
it does not match.

The event information in the system is given in Table 2, 
and the event matching process is as follows: 

(1)	 Events published by publishers are encrypted at the 
App server and sent to the broker in the pub/sub 
cloud service.

(2)	 For the attributes a1 , a2 in the event, find the 
corresponding OPE trees T1 and T2 , respectively, 
and determine whether the attribute value on a1 
exists in tree T1 and the attribute value on a2 exists 
in tree T2 . If it exists, get the OPE code of the 
equivalent node. For example, if the value of event 
e1 on attribute a2 exists in the tree, return code 6.

(3)	 If it does not exist, insert the event ciphertext 
into the tree according to Algorithm  3, and then 
rebalance the tree to find its order-preserving 
encoding. For example, the attribute values of event 
e1 and e2 on attribute a1 , and event e2 on a2 will be 
inserted into T1 and T2 respectively.

(4)	 When matching, find the subscription nodes in T1 
and T2 corresponding to codes less than or equal to 
the event mapped to on a1 and a2 , respectively, and 
take the intersection of the ID chains corresponding 
to these nodes. The remaining set of IDs is the ID 
corresponding to the subscription matching the 
event.

Figure  5 gives the state of the trees T1 and T2 when 
matching is performed. It can be seen that for e1 , the 

subscription IDs satisfied on attribute a1 are {1, 2, 3, 5} 
and on attribute a2 are {1, 4} . The corresponding codes 
of these subscriptions in the tree are less than or equal 
to the codes of the event on the same attribute, and 
the intersection of the two is taken to be {1} , which 
is the matching subscription ID. Similarly, the set of 
subscription IDs for matching e2 is obtained as {1, 4, 5}.

Security analysis
Before subscription insertion, there is only an empty 
OPE tree, since the attacker does not have the AES 
encryption key, the original subscription plaintext cannot 
be recovered from the subscription ciphertext encrypted 
using AES symmetric encryption algorithm.

In the subscription insertion process in Algorithm  3, 
the decryption of the subscription is performed under 
the trusted execution environment SGX, and the 
attacker does not get the subscription plaintext. After 
the subscription insertion is completed, the encoding of 
the subscriptions in the tree can be obtained from the 
generated OPE tree, and the encoding only exposes the 
order relationship between the subscriptions.

When performing event matching, the event code is 
first inserted into the tree to get the event code. Then we 
search for the node with the matching event code. Similar 
to the subscription insertion, the event insertion and the 
process of getting the matching node only compare the 
codes and do not expose the event ciphertext.

Since the attacker does not have access to the AES 
symmetric key, the SBM-II implementation exposes 
the event and subscription encoding, but not the event 
and subscription plaintext information. In addition, the 
attacker can get no information from the encoding other 
than the order of events and subscriptions.

Fig. 4  The state of OPE tree after inserting subscriptions
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Evaluation
Workload
During the experiment, the broker is running on a Win10 
host with Intel(R) Core(TM) i5-1035G1 CPU and 16GB 
RAM, and the APP server is running on a Win10 host 
with Intel(R) Core(TM) i5-6200U CPU and 8 GB RAM. 
SGX is developed using the SDK provided by Intel.

The number of events and subscriptions are 
uniformly random integers generated on [0,1000], and 
the subscriptions generated in the experiment are all 
interval-type subscriptions, the number of events is 
1000 when matching is performed, the number of event 
attributes and subscription constraints is 4, and the size 
of the subscription set is between 100,000 and 500,000. In 
SBM-I, the security length of the encryption key is chosen 
to be 256bits when encrypting events and subscriptions 
using the OPE algorithm proposed by Boldyreva et al. We 
use the tree index structure of H-Tree (Qian et al. 2014) 
as a representative to verify our algorithm.

Approach
Event matching time is the most important metric 
for matching algorithms. Matching time is defined 
as the time taken by a broker to find a matching set of 
subscriptions when an event arrives. In our experiments, 
we measure the average matching time for a single event.

To measure the speed of the proposed matching 
algorithm by indexing subscriptions and the existing 

ciphertext matching algorithms, we select one from each 
of the cryptography-based and SGX-based algorithms as 
comparisons. The matching algorithm based on Paillier 
homomorphic encryption(MP) proposed by Nabeel et al. 
(2013) and the SGX-based SCBR algorithm proposed by 
Pires et al. (2016) are chosen, and the length of the secu-
rity key is set to 1024  bits. We measured the impact of 
the number of subscriptions on the average matching 
time using SBM-I, SBM-II, MP, and SCBR.

Furthermore, to assess the impact of frequent 
interactions on the matching performance of SBM-II, we 
analyzed the average matching time when the Enclave 
container is generated at the broker and when it is not 
produced respectively. The broker must communicate 
with the APP server if an Enclave container has not yet 
been formed.

Results and analysis
Impact of the matching algorithm
Figure 6 shows the variation of event matching time with 
the increasing number of subscriptions, and the vertical 
coordinate displays the result of the operation after tak-
ing log 10 . Although the average matching time of four 
algorithms increases with the number of subscriptions, 
the matching performance of SBM-I and SBM-II is sig-
nificantly better than MP and SCBR. When the number 
of subscriptions is 500,000, SCBR matches roughly twice 
as fast as MP, the matching time of SBM-I is 3–4 orders 
of magnitude faster than MP and SCBR, and the match-
ing time of SBM-II is 24 times faster than SCBR and 40 
times faster than MP.

The reason is that the use of the index structure 
directly filters out the mismatched subscriptions, which 
greatly reduces the number of subscriptions to be 
matched. In cryptographic algorithm-based ciphertext 

Fig. 5  The state of OPE tree when matching events

Table 2  The events in our system

Pub-list Pub

e1 [(a1, 20), (a2, 19)]

e2 [(a1, 33), (a2, 44)]
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matching schemes, events need to be compared with 
the subscriptions one by one, so its performance is lower 
than that of the SBM scheme. In SGX-based schemes, the 
increase in the number of subscriptions causes frequent 
page transfers in and out, and the system disk will run 
out of resources. Additionally, it demonstrates that while 
the security of SBM-II is higher than that of SBM-I its 
efficiency is lower than that of SBM-I.

Effect of elimination of frequent interactions
To measure the improvement of SBM-II over the origi-
nal MOPE, we measure the average matching time with 
and without interaction between the APP server and the 
broker in the published subscription cloud service when 
performing matching as the number of subscriptions 
increases. The two hosts communicate in the LAN when 
there is interaction.

As can be seen from Fig.  7, when the number of 
subscriptions is 500,000 and there is no interaction, 
SBM-II improves the average matching time by 23% over 

that with interaction. It verifies that the elimination of 
frequent interactions reduces the overhead of the system 
when inserting subscriptions and performing matching, 
and improves the performance of the system in general.

Conclusion
In this paper, we propose an efficient confidentiality 
protection scheme SBM for a content-oriented pub/
sub system. SBM uses OPE algorithms to ensure the 
confidentiality of the system while achieving orderly 
storage of cipher text and constructs indexes for 
subscription ciphertexts to achieve efficient matching of 
large-scale subscriptions. SGX is applied to the algorithm 
SBM-II to improve the performance of encrypted event 
matching by indexing subscription ciphertexts, and 
eventually meet the need for efficient matching of large-
scale pub/sub system. The experiment results show that 
the indexing of subscriptions has better performance 
than the traditional cryptography-based matching 
methods. While SBM-I is more efficient than SBM-II 
matching, SBM-II is more secure. There are still areas 
that can be improved for SBM-II, though the scheme 
SBM-II can achieve the desired security of the OPE 
algorithm, solve the original interaction problem, and 
reduce the cost of insertion and query. For example, we 
do not consider the handling of equivalence speculation 
attacks and frequency analysis attacks in our scheme, 
which can be further explored in later studies.
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