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a b s t r a c t

The accuracy and reliability of XAI methods are important to establish their credibility and use in
complex decision-making tasks. Existing XAI methods provide little information about the correctness
and reliability of their outputs. Furthermore, post-hoc explanation approaches explain the outcomes
after producing them, not in a step-by-step glass-box manner to explain how an output is reached.
Our proposed approach addresses these drawbacks by designing a Belief-Rule-Based (BRB) framework
that interprets in a glass-box manner why a particular decision has been reached. It does that by
determining the chance of different output classes occurring for a specific time period by considering
the different possible permutations of the inputs along with their influence. This also assists the user
to determine if the given input dataset is incomplete, vague, imprecise or inconsistent before trusting
the analysis emanating from it. We compare the performance of the proposed BRB approach against
the different eXplainable artificial intelligence (XAI) methods, such as SHAP, LIME and LINDA-BN to
ensure the users of the trustworthiness of its analysis. This also enables users to determine the extent
to which each of the XAI techniques meets the requirements of XAI and the gaps that need to be
addressed.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Motivation of the article

The explainability of ML models is becoming an increasingly
mportant research question. This is especially important in do-
ains such as risk management, health diagnosis, high-stake
usinesses, financial analysis etc., where the accuracy, reliability,
nd stability of the recommended decision outputs is needed
o instil confidence [1,2]. As a result, the number of eXplain-
ble artificial intelligence (XAI) methods that interpret why a
lack-box model has reached a certain conclusion has signifi-
antly increased [3]. LIME [4], SHAP [5], MAPLE [6], Anchors [7],
INDA-BN [8] are examples of such techniques that work by
nterpreting local approximations to the predicted output. These
ethods have been applied to detect false news [9], plan treat-
ents after diagnosing diseases [10–12], credit risk analysis and
itigation [13,14], road and traffic management and control [15,
6], emergency help systems and services [17,18], safety and
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security systems [19,20], disability detection and support ser-
vices [21,22], child care and early education services [23,24],
military and defence protocols and security [25,26] etc. While
these methods provide beneficial analyses, they fail in ensuring
the accuracy, reliability, and stability of a given interpretation in
scenarios when the decision output being interpreted for a time
period is dependent on what happens in previous time periods.
To explain this further, we consider that an ML model’s decision
output can be classified in one of two broad categories, namely
static and progressive. A static decision output is one in which the
input features {f1, f2....fn} that influence the decision output {d} for
time slot {tz} are given manually by the decision maker at the
eginning of the same time slot {tz}. Examples of a static decision
utput are fake news detection [9] or spam classification [27].
n the other hand, a progressive decision output is one in which
he inputs {f1, f2....fn} to the ML model are given at {tz} for it to
recommend a {d} at a future time slot {tz+n}. In such cases, it is
up to the ML model to first determine how each of the {f1, f2....fn}
evolve from {tz} to {tz+n} before determining the {d} at {tz+n}. Ex-
mples of a progressive decision output are risk assessment [28]
r a financial position [29] at a future time period.
Current XAI models are local explanation methods with LIME
30], SHAP [31], Anchors [32], BayesLIME [33], and BayesSHAP
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34] leveraging perturbations of individual instances to construct
nterpretable local approximations whereas LINDA-BN using con-
itional probabilities. This means that the accuracy, reliability,
nd stability of their interpretations will be high and therefore
onfidence will be high when the ML model’s decision output is
tatic. This is because both the inputs and the output relate to the
ame time slot and the inputs are given by the experts, therefore
hey are confirmed as being current. However, when the ML
odel’s decision is progressive, XAI models first need to consider
ow {f1, f2....fn} evolve from {tz} to {tz+n} before interpreting the
d} at {tz+n}. In such scenarios, slight variations to the values
f {f1, f2....fn} in a time slot will result in a different output at
tz+n} and thus a different explanation. Therefore, the explana-
ions given in a progressive type of output may be unstable [35]
s different runs on the same dataset but with slightly changed
nput parameter settings can yield wildly divergent results [36]
ringing the trustworthiness of the interpretations comes into
uestion. To address the aforementioned gaps so that XAI ap-
roaches can be applied on progressive types of decision outputs,
n this paper, we explain our proposed approach which:

1. uses causal links to model how the values of the features
in a progressive decision evolve over time.

2. uses a Belief-Rule-Based (BRB) approach to determine
which input features from the given set are strongly cor-
related to the different types of decision output classes.
This analysis assists the decision maker to confirm if the
interpretation given by an XAI method in a time slot is
consistent with the expected output.

3. compares the output of the proposed approach with three
existing XAI approaches from the literature (SHAP, LIME,
and LINDA-BN). We then use this analysis to determine
how each of the XAI approaches meets the XAI require-
ments discussed in the literature.

The remainder of the paper is structured as follows: Sec-
ion 2 presents the related work from the literature. Section 3
etails the proposed architecture and explains the different mod-
les. This section also presents the results and explains them in
step-by-step interpretable way. It also graphically represents

he optimized output showing the connected features with the
utput. Section 4 compares the proposed BRB approach to an
mproved version of LINDA-BN. This section reports on enhance-
ents to LINDA-BN to enable it to consider changes in the feature
alues over time. Section 5 compares the output of the proposed
RB approach against other XAI approaches in the XAI require-
ents discussed in the literature. Finally, Section 6 summarizes

he research findings and concludes the paper with a discussion
n future work.

. Related works

Core AI models like deep neural networks and ensemble mod-
ls among other mathematical and statistical classifiers have been
pplied as XAI approaches because of their universality [37,38].
or example, regression is used in LIME [39], whereas the Shapley
alue is employed in SHAP [40]. LINDA-BN uses a game theory
oncept, Bayesian network and Markov model [8]. These models
ork on a post-hoc basis and explain the reasoning behind a cer-
ain decision by including visual aids. Because of their usability,
hey have been applied in different domains. For example, Alharbi
t al. [9] interpret false news identification models to identify
hich significant aspects contribute to the prediction of a model

rom an explainable machine learning perspective using Captum,
IME, and SHAP. This sheds light on how detection models work
nd the extent to which they can be relied upon. However,
primary drawback of this system is that post-hoc explainers
2

like LIME and SHAP, despite giving an output, do not explain
how trustworthy their outputs are. Tree-LIME, a model-agnostic
method [41] is a revised LIME technique established on local
interpretation by applying decision tree regression. To illustrate
the significance of fidelity in the regression explanation problem,
mean absolute error (MAE) is used. The methodology can improve
the fidelity of the interpreter which provides more authentic rea-
soning for explicit events and delivers a better visual presentation
of the tree structure in real supply chain forecasting applications.
A drawback of the model is that due to flat features classification
it is unable to prioritize the features with similar values. To
resolve this drawback, designing hierarchical representations that
can prioritize (rank) the features, model the interconnectedness
between them and explain the output in a glass-box way may
be a good choice. Szczepa et al. [27] developed an innovative
explainable method to better understand false information detec-
tion. LIME and Anchors, which are two XAI strategies to explain
fake information, were deployed and assessed on fake tweets or
headline data. A drawback with Anchors as an explainer is that
it is not consistently capable of giving an interpretation. LIME
is a post-hoc explainer and in a dynamic platform like Twitter
or online news, it may not highlight meaningful patterns which
brings into question the trustworthiness and accuracy of the
decision.

Matin et al. [17] proposed an earthquake-induced building-
damage map using a multilayer perceptron (MLP) and SHAP. A
single after-occurrence satellite image was used as the input of
MLP to classify buildings as collapsed or non-collapsed. SHAP
was used to interpret the effect of the components on the model
outcome. To design such a system, it is essential to ensure a
time-series dataset evaluation technique that can connect the
outcomes of all of the time sequences and describe the condition
of the building, the effect of the earthquake, the damage sustained
and how it will propagate over time. However, as discussed in
Section 1, for progressive-based decisions, MLP and SHAP are not
appropriate. Petsis et al. [18] used an expert system and XAI to
predict and analyse the Emergency Department’s (ED) visitors.
As an AI technique, the XGBoost algorithm which uses data from
patient visits, time-based data, dates of holidays, special events,
and weather data was used to anticipate the frequency of ED vis-
its. SHAP was applied to explain the approach’s output. However,
the problem’s inputs are data-driven and strongly connected. This
means that a minor change in a single feature can affect the
entire assessment. To ensure the assessment is trustworthy, there
is a need to design and assess the dependency of the dataset
and use this in further analysis. Northcote et al. [21] designed
an Alzheimer’s disease (AD) patient investigation employing gene
expression and an image dataset. CNN and SpinalNet techniques
predicted the AD categories from an MRI which is an image
of a brain scan. k-nearest neighbours, support vector machines
and XGBoost classifiers were used to classify the AD categories
from the gene analysis dataset. Finally, LIME was used to obtain
a better understanding of the responsible AD genes. However,
gene expression data has a specific pattern and is interconnected.
To capture these interconnections, an explainer that can capture
them (for example, LINDA-BN) is better than those that cannot
(for example, LIME). Adak et al. [42] analysed emotions using
simple and hybrid deep learning (DL) procedures in the food
delivery service discipline and explained the forecasts by em-
ploying LIME and SHAP. The training and testing procedure was
undertaken on the client feedback dataset. The drawback of this
study is that it can misunderstand consumer feedback resulting
in incorrect decisions. A possible resolution to this issue can be
using a glass-box explainer instead of post-hoc explainers so it
explains what the input was, how it was processed, and why
the output was produced. Areti et al. [43] employed machine
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earning, namely the XGBoost algorithm and XAI, namely SHAP,
o predict house prices using open government data. The XGBoost
lgorithm was used to create the predictive model and SHAP was
sed to explain the model’s decisions. House price criteria depend
n many other domain criteria and change if the connected
omain criteria change the impact that they will have on others.
f these dependencies are not captured correctly, the decision will
e biased and will not be trustworthy to the users.
So, from the above summary, while it can be seen that XAI

pproaches have been applied in different domains, they have
imitations as to what type of datasets they can be best applied.
or example, while the XAI approaches work well on static and
rogressive datasets, they are limited in terms of capturing the
ynamic nature of progressive datasets. This means that even
hough they give an output, the trustworthiness of these outputs
s not guaranteed. This needs to be addressed to increase users’
onfidence of using XAI analysis widely in different automated
ystems. In the next section, we propose a BRB approach that
ttempts to interpret why a decision has been reached in a glass-
ox manner. This analysis also assists users to increase their
rustworthiness in the generated output.

. An optimized BRB approach to ensure the trustworthiness
f interpreted outcomes

Fig. 1 shows our proposed BRB framework to ensure the trust-
orthiness of the interpreted decisions. The framework is built on
hree modules, namely Knowledge Graph Module (KGM), Knowl-
dge Propagation Module (KPM), and Feature Evaluation Module
FEM). KGM is a semi-automated module that displays a graph-
cal representation between the input features that lead to the
ecision output in the form of a knowledge graph (KG). KPM
ropagates and updates how the values of the features evolve
ver time based on the interconnections modelled by KGM. KPM
lso considers how changes in the value of each feature in a
ime period impact the other interdependent features and the
esultant output class. FEM uses BRB to ascertain the output
ecision class of a time slot and determine the consistent features
eading to that output class before graphically visualizing them. In
he next sections, we further explain the working of each module.

.1. Knowledge Graph Module (KGM)

KGM creates a KG based on the causal relationship between
he input features. The primary goal of a KG is to find out how dif-
erent features are related and how the interconnection between
hem affects the system. Any two features will have a causal
onnection if due to a change in the first feature, the second
eature also changes [44]. In this case, the first feature is called
he cause for the change and the second feature is called the
ffect of the change. To have a cause-and-effect connection, the
ink should be credible and non-spurious, the cause feature must
ccur before the affected feature is impacted, and the affected
eature is updated after the cause feature changes [45]. Analyzing
he causes and their consequences is the goal of causal analysis.
his technique reveals the facts that lead to a specific situation
hich is different to merely focusing on reasoning the symptoms
hat lead to the cause [46]. KGM collects knowledge about the
eatures and uses this to determine the interconnections between
hem. After establishing the connections between the features, it
nalyzes the relationships to determine the effects of the links on
he interlinked features.

To explain with an example, from here on we consider the
omain of asset maintenance where an asset manager wants to

etermine the chances of an asset failing over a time period.

3

Fig. 1. Working of the BRB approach to interpret the logic of the decision
outputs in a glass-box manner.

We consider time space as the total time period over which the
analysis is done (for example, six months or one year). The time
space is divided into different non-overlapping periods of time
(for example, one month) known as the time slots. In each time
slot, the objective of the asset manager is to determine the risk of
the asset failing in the following four output decision classes, Safe,
Low Risk, Medium Risk and High Risk. This decision is influenced
by 23 input features that are given at the beginning of the time
space. KGM determines the causal links between the features
using the knowledge of the relationships between them as shown
in Fig. 2. Based on this causal relationship, Fig. 3 shows how the
feature ‘‘Efficiency’’ is connected with other features. Fig. 4 shows
the design of a KG based on the causal links between all the
features.

3.2. Knowledge Propagation Module (KPM)

KPM propagates and updates how the values of the features
evolve in the different time slots of the time space based on the
interconnections modelled by KGM. The first step of this module
is to quantify the lower and upper bound ranges of the input
features. This is done by studying the knowledge and information
about the linked features, as shown in Fig. 2. This process iden-
tifies the metrics and the range over which each input feature
spans. This leads to the second step in which the determined
range of the input features is divided into the corresponding
output classes. For example, if we consider five input features,
namely pressure, friction, crushing, shearing and entanglement, as
shown in Table 1, this step represents the range to which each
feature corresponds to each output class. In the third step of this
module, the value of each input feature in each time slot of the
time space is determined. This information is used further in the
next module.
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Fig. 2. Capturing the features and the interconnectedness between them.

Fig. 3. Connection among the features using causal relationship.

4
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Fig. 4. Relationship between features that contribute to the output class.
Fig. 5. Steps of a BRB Network.
Table 1
Feature value distribution among the time slots.
Key features/output
risk classes

Pressure Friction Crushing Shearing Entanglement

Safe 29.6 to 30.2 1 to 70 6 to 5 8 to 10 30 to 20
Low risk 30.3 to 30.6 71 to 75 4.9 to 4 11 to 15 19 to 15
Medium risk 30.7 to 31.2 76 to 84 3.9 to 2 16 to 24 14 to 10
High risk 31.3 to 32 85 to 99 1.9 to 1 25 to 30 09 to 01
3.3. Feature evaluation module (FEM)

FEM builds on the analysis from KGM and KPM using BRB
o ascertain the output decision class of a time slot along with
etermining the features leading to that output class. Fig. 5 shows
he steps of the BRB algorithm. The following are the steps taken
y FEM to achieve this aim:
5

• Step 1: Transform the values of the input features to
referential values in the different time slots

KPM determines the value of each input feature in each time
slot of the time space. In this step, these values are transformed
to referential values. Referential values are fuzzy linguistic values
that show the degree of influence of a feature on the output risk
class in that time slot. To determine the referential value of a
feature, the first task is to determine the linguistic terms across



S.F. Nimmy, O.K. Hussain, R.K. Chakrabortty et al. Knowledge-Based Systems 271 (2023) 110552

p
t
s
t
o
s
f
c
r
t
m
t
t

t

t
o
h
O
t
d
a
a
i
t
c

Fig. 6. Sample BRB Network.

which the influence of an input feature should be mapped. In our
asset management example discussed in Section 3.1, we consider
that the influence of each input feature is mapped across the
three linguistic terms of ‘low’, ‘medium’ and ‘high’, as shown in
Fig. 6. Once these are determined, the next task is to determine
which range of the input features should map to each linguistic
term. Continuing with our example, in this task, we determine
that for the input feature efficiency, if the input is ≥50% and ≤74%,
then it maps to the ‘medium’ referential value. Similarly, if the
input value is ≥1% and ≤49%, then it maps to the ‘low’ referential
value whereas if it is between ≥75% and ≤100%, it maps to the
‘high’ referential value. In the third task, the midpoint of each
linguistic range is determined using Eq. (1):

Mid =
H + L

2
(1)

where, H is the high range value and L is low range value. This is
to determine the influence of each input feature to the output risk
class in that time slot. So, for the input feature efficiency, where,
L = 1, H = 100, Mid =

100+1
2 = 50.5 by applying Eq. (1)

• Step 2: Determine the influence of each input feature to
the output risk class in that time slot

In this step, the influence of each input feature on the output
risk class in that time slot is determined. The aim of this step is
achieved in two tasks. In the first task, the influence or utility of
the highest and the least contributing input feature is determined.
This is determined by considering those features that have the
highest and the lowest values for the fuzzy linguistic terms of
‘high’ and ‘low’, respectively. To calculate the highest and the
least utility for a particular time slot, Eq. (2) is used

Dn = a +

∑
Xnbn (2)

where n = 1 to K (K is the number of features). Here Dn is
regarded as the nth preference value (utility factor). Xn is the
nth referential value of the antecedent X , bn is the subsequent
attribute weight of the antecedent X , and a is an arbitrary value
most of the time neglected as zero. For example, let us consider
that a time slot has two input features, namely efficiency and
stability (Both have feature values in the range of ≥1 to ≤100).
The highest influence of these features on the output class as
determined by Eq. (2) is D1 = 0 + 100 ∗ 1 + 100 ∗ 1 = 200.
Similarly, the lowest influence of these features on the output
class as determined by Eq. (2) is D3 = 0 + 1 ∗ 1 + 1 ∗ 1 = 2. To
measure the intermediate degree of belief (D2), Eq. (3) is used.

Di =
D1 ∗ m + Dk ∗ n

(3)

m + n

6

where i is the number of utilities, m and n are the ratio. Con-
tinuing with the example, D2 with a ratio 1:1 using Eq. (3) is
D2 =

200∗1+2∗1
1+1 = 101

• Step 3: Calculating the degree of belief of each output
class

After determining the influence values of each input feature,
Eq. (4) is used to ascertain the degree of belief of each output risk
class using the RIMER methodology [47].

Yp = a +

∑
XE
p bE (4)

where E = 1, 2, 3, . . . and (Xp
E is the referential value of Eth

antecedent in pth rule). Here Yp is regarded as the input value
for pth rule. Xp

E is the referential value of Eth antecedent for pth
rule and bE is the subsequent attribute weight of the antecedent E,
and a is an arbitrary value most of the time neglected as zero. As
shown in Fig. 6, using Eq. (4) and RIMER [47] input transformation
technique, IF efficiency is high and stability is high (with feature
value 75 for both of them), then output is

Input Y = 0 + 75 ∗ 1 + 75 ∗ 1 = 150 [applying Eq. (4)]
Now, according to the rule of input transformation:

D2(transformed) =
Y − D2(Ref value)

Y − X(Ref value)
(5)

D2 =
150−101
150−75 = 0.65, [Applying Eq. (5)]

Again,

D1 + D2 = 1 (6)

D1 = 1 − 0.65 = 0.35 [Applying Eq. (6)]
To continue with the asset management example discussed

in Section 3.1, we consider that the time space over which the
chances of an asset failing has to be determined is made up of
50 equal non-overlapping time slots (t1 − t50). The values of the
23 input features in each time slot is determined before applying
FEM. The values of the features in t1 are used as its starting
oint and BRB evaluates the values to define the influence on
he occurrence of each output class in each time slot of the time
pace. Fig. 7 provides a snapshot of the BRB output in a specific
ime slot, showing that for a specific time slot, nPr different
utput set is possible where ‘r’ is the options (high, medium, low,
afe) from a group of ‘n’ number of features (for 5 features). The
ormula to find nPr is n!/(n-r)! which represents the different
ombinations of output that will be generated [48]. From this, the
ule which has the highest value for the risk classes is selected as
he output for this time slot. For (t7 − t18), Table 2 shows the
ost probable output risk class occurring along with the features

hat are influencing its occurrence. From that table it can be seen
hat the most probable output class in t7 - t11 is low risk, after
which it moves to medium risk till t17 followed by high risk from
18 onwards.

After evaluating the most probable output in each time slot,
he system graphically represents the output with the influence
f each feature. Fig. 8 represents the low risk, medium risk, and
igh risk output as well as the underlying contributing features.
nce the analysis for each time slot has been undertaken and
he main features associated with a given output risk class are
etermined, Fig. 9 shows the most consistent features towards
n output risk class. This analysis is determined by using the
nalysis of Table 2 which shows the common features influenc-
ng the output risk class. As the figure shows, ten features of
he 23 consistently change their influence as the output class
hanges. These 10 features demonstrate consistent behaviour
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Fig. 7. Optimized output selection using BRB.
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Table 2
Influence of the features on the most probable output risk class in each time
slot.
T-slots Output Influence of the features on the most probable

output risk class.

t7 LR Jamming (Dist), Efficiency, Fumes (PM2.5),
Stability, Fuel Oil, Fumes (PM10), Dust, Workload,
Heat, Radiation, Stabbing, Fatigue, Crushing,
Jamming (Temp), Pressure, Ferromagnetic, Noise.

t8 LR Pressure, Noise, Dust, Crushing, Stability, Fatigue,
Stabbing, Workload, Heat, Efficiency, Jamming
(Dist), Fumes (PM2.5), Radiation, Ferromagnetic,
Jamming (Temp).

t9 LR Pressure, Noise, Dust, Crushing, Stability, Fatigue,
Stabbing, Workload, Heat, Efficiency, Radiation,
Jamming (Temp), Vibration, Entanglement,
Shearing.

t10 LR Pressure, Noise, Dust, Crushing, Stability, Fatigue,
Stabbing, Workload, Heat, Efficiency, Moving
Parts, Vibration, Entanglement, Fumes (PM2.5),
Fuel Oil, Jamming (Temp).

t11 LR Pressure, Noise, Dust, Crushing, Stability, Fatigue,
Stabbing, Workload, Heat, Efficiency, Moving
Parts, Vibration, Entanglement, Fuel Oil, Shearing.

t12 MR Radiation, Stabbing, Stability, Fuel Oil, Crushing,
Noise, Vibration, Entanglement, Heat, Workload,
Moving Parts, Efficiency, Friction, Shearing,
Fatigue, Dust, Pressure.

t13 MR Pressure, Noise, Dust, Crushing, Stability, Fatigue,
Stabbing, Workload, Heat, Efficiency, Jamming
(Temp), Radiation, Entanglement, Jamming (Dist),
Trapping.

t14 MR Pressure, Noise, Dust, Crushing, Stability, Fatigue,
Stabbing, Workload, Heat, Efficiency, Radiation,
Jamming (Dist), Entanglement, Fuel Oil, Trapping,
Jamming (Temp).

t15 MR Pressure, Noise, Dust, Crushing, Stability, Fatigue,
Stabbing, Workload, Heat, Efficiency, Vibration,
Entanglement, Fuel Oil, Trapping, Moving parts.

t16 MR Pressure, Noise, Dust, Crushing, Stability, Fatigue,
Stabbing, Workload, Heat, Efficiency, Vibration,
Jamming (Dist), Fuel Oil, Trapping, Jamming
(Temp), Friction.

t17 MR Pressure, Noise, Dust, Crushing, Stability, Fatigue,
Stabbing, Workload, Heat, Efficiency, Friction,
Shearing, Jamming (Dist), Entanglement,
Vibration, Jamming (Temp).

t18 HR Jamming (Dist), Stabbing, Stability, Trapping,
Crushing, Noise, Vibration, Entanglement, Heat,
Workload, Moving Parts, Efficiency, Friction,
Shearing, Fatigue, Dust, Pressure.
7

with the corresponding output class. To manage the occurrence
of an output risk class, this analysis can help determine which
features are the most significant ones to the output risk class. This
analysis can also be used by the risk manager to determine which
features need to be managed to make the output risk class safe
to minimize the risk.

4. Comparison of the output of the BRB approach with the
modified version of LINDA-BN

To validate the trustworthiness of the interpreted decisions,
we compare the output of our proposed BRB framework with
the output of modified LINDA-BN on the same asset management
dataset on which the BRB framework is applied. The aim is to
compare the output risk class occurring in a time slot and then
determine the trustworthiness of the explained features leading
to that decision as given by these two different approaches. The
reason for using a modified version of LINDA-BN as opposed to
the standard LINDA-BN is that LINDA-BN cannot automatically
process the time-series datasets of a dynamic system. So, to apply
LINDA-BN in a time-series dataset, we used a KG and system
dynamics (SD) as shown in Fig. 10 to capture the relationship
between the features and determine how they evolve over time
to apply it to LINDA-BN. This modified version of LINDA-BN
considers all of the time slots of the time space and gives the
output in the risk classes of low, medium and high. Fig. 11 shows
the output of LINDA-BN for the output risk class of low along
with the contributing features. Similar output is produced for the
output risk classes of medium and high which we do not show in
his paper due to space constraints. These contributing features
o an output risk class for a time slot will be compared with the
utput of the BRB approach. A comparison of the approaches is
s follows:

.1. Ordering among the features has an impact on the output

The interpretable BRB approach produces an output based on
he glass-box interpretation of the impact of the features leading
o it whereas LINDA-BN explains the output after producing them.
o, in LINDA-BN, the sequence in which the features are pre-
ented as input can have an impact on the output being shown in
erms of their influence. For example, Fig. 12 shows that if the or-
ering of the features changes, their influence on the output class
lso changes. Before changing position, the influence of ‘‘stability’’
as 94.2%, and the influence of ‘‘workload’’ was 92.4% on the
utput class (as shown in Fig. 12(a)) whereas it decreased to 92.4%
nd increased to 94.2% respectively after changing the position
as shown in Fig. 12(b)). This brings the trustworthiness of the in-
erpreted decision into question. The interpretable BRB approach
ttempts to address this by the way it presents the outputs. As
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Fig. 8. Low, medium and high outputs of BRB approach.
hown in Fig. 8, the output of the BRB approach shows the possi-
ility of each output class occurring along with the features that
re contributing to them. So, in the model that has 23 features
s input, the BRB model for a time slot determines the nPr =

!/(n-r)! different permutations of the inputs along with their
nfluence values to ascertain the most predictable output risk
lass in that time slot. In the above analysis, n shows the number
f features whereas r shows the number of output classes. When
he problem has 50 different time slots, the approach produces
0626*50 = 531,300 different outputs. For each time slot, the
utput is then optimized according to the maximum possibility
f occurrence of the output risk class before determining which
nput features along with their influence contribute to it. This
ssists the BRB approach to determine the most optimized output
rom the different possible sets as opposed to the one output that
ost-hoc explainers like LINDA-BN produce. By determining this
nalysis for all the time slots, as shown in Fig. 9, the BRB output
epresents the set of features that consistently change along with
he change in the output risk class.
8

4.2. Output depends on what features are present as input to that
time slot

Post-hoc explanation methods such as LINDA-BN commonly
return a value for the relevance of a given feature. These rele-
vance numbers show which features have the most significant
impact on the forecasted output, whether positive or negative.
This analysis is used as the most significant piece of information
when evaluating the outcomes. A drawback here is that if a
differing list of features is given, it will result in a different
output, bringing the trustworthiness of the interpreted decision
into question. For example, in Fig. 13(b), it can be seen that a
number of features influences the output. Fig. 13(a) shows that
when ‘‘pressure’’ is included in the top features, the influence of
‘‘trapping’’ on the output is 74.7%. However, when ‘‘pressure’’ is
excluded from the features in Fig. 13(b), the influence of ‘‘trap-
ping’’ on the output increased to 84.1%. So, the question in terms
of the integrity of the presented output is which one of these
is correct? In other words, LINDA-BN does not guarantee to the
end user that the output it generates considers all the input
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Fig. 10. Using KG to determine the changes in the feature values .

features for a time slot. The proposed BRB approach addresses
this drawback by identifying inconsistencies in both the input
dataset and the output class [49] by finding the most consistent
and inconsistent features, as shown in Figs. 9 and 14 respectively,
which strongly trigger the given output risk class in that time slot.
Using this analysis, the risk manager can determine if the inter-
pretation given by an approach to an output risk class considers
9

the features that are strongly consistent with it. It also assists in
ensuring that the output which is shown captures all the required
inputs for it. This is discussed further in the next point.

4.3. Does not capture if the output shown considers all the required
inputs

A key aspect to guarantee the trustworthiness of an inter-
preted output is to ensure that all the features that lead to that
output are considered. LINDA-BN does not guarantee this and
thus cannot guarantee the trustworthiness of its outputs. The
proposed BRB approach does this by ascertaining if the inputs
that are considered are such that it completes the occurrence
of each output class. In other words, it detects incompleteness
(missed and undefined) in the input dataset [50]. For an ideal
(complete) dataset, the sum of all the output classes is 1 whereas
for an incomplete dataset, it is less than 1. Fig. 8 shows that for
the considered input dataset for the BRB approach, the total value
of the output risk classes is 1. Therefore, the input dataset is said
to be complete, i.e., it considers all the inputs that are required to
make an output. Fig. 15 shows the output of the same time slot of
Fig. 8 (High Risk) in which we do not consider the most consistent
features of that output risk class. As a result, the output shows
that the input dataset is incomplete which assists in producing
(42% + 39% = 81%) of the output and for the rest (100%–81% =

9%), the input features are unknown. The BRB approach can also
dentify and resolve if any feature is vague (value or influence
n confusing) or imprecise (value or influence in undefined) in a
pecific time slot [51,52].

.4. Polarity of the contribution of the input features towards an
utput

The polarity of a feature’s contribution (i.e., whether the fea-
ure contributes positively or negatively to the projected class) is
n essential piece of information to consider while interpreting
he output. LINDA-BN does not show this as it only represents a
ink between the features. The BRB approach addresses this by
epresenting and showing only those features that contribute to
he occurrence of each output risk class in a time slot.



S.F. Nimmy, O.K. Hussain, R.K. Chakrabortty et al. Knowledge-Based Systems 271 (2023) 110552

5
t

a
o
t
u
l
t
f
t
a
l
s
w
c
(
a
K
m
f

Fig. 11. Low risk output of LINDA-BN.
e
a
u

5

m
d
s
b
t
o
s
p
t
t

s
h
t
d

. Comparing the outputs of the different XAI methods against
he expected requirements from XAI approaches

In this section, we compare the outputs of the different XAI
pproaches and their ability to meet the different requirements
f XAI from the users’ perspective. The intention here is to de-
ermine from a human observer’s perspective how well they can
nderstand why the model is explaining a given output that has
ed it to make the judgement (or forecast) [53]. This is important
o gain the users’ trust which will form the primary motivation
or them to use a model [54]. When users have faith in a system,
hey feel more confident and comfortable with it [55]. To have
consistent understanding of interpretability, there are estab-

ished universal and objective requirements that XAI approaches
hould meet [56–58]. In this section, we determine the extent to
hich the proposed BRB framework, SHAP (modified with KG to
onsider changes in the feature values over a time period), LIME
modified with KG to consider changes in the feature values over
time period), LINDA-BN, and Modified LINDA-BN (modified with
G to consider changes in the feature values over a time period)
eets the defined requirements. We evaluate the requirements
rom the perspective of four different categories of users, namely

10
end users (AI novices), data experts, AI experts, and decision mak-
rs. From this analysis, the degree of explainability of a method
nd the requirements to fill the identified gaps will be easily
nderstood.

.1. End users (AI novices)

End users are those who have slight or no familiarity with
achine learning techniques yet still utilize AI products in their
aily lives. Personalized mechanisms, e-commerce websites and
ocial media are some of the most common applications used
y end users. Intelligent and context-aware user interfaces of
hese applications rely on machine learning algorithms for many
f their underlying operations and APIs [30]. Previous work has
hown that end-users’ adoption of technology increases by im-
roving the intuitive interface and interaction design [38]. From
he perspective of XAI, the following requirements (XAIRs) need
o be met:

(XAIR1) Transparency in algorithms: An algorithm’s wide-
pread trust in its ability to behave sensibly [59]. It concerns
ow much of a system’s inner workings can be understood ‘‘in
heory’’. This may also involve making computational models and
ecisions that the user can understand [60]. The confidence in
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Fig. 12. Shows how changing position of the feature can effect the output.

a method is proportional to the clarity with which its decision-
making algorithms are presented.

(XAIR2) Trust and reliance of users: The ability of a method
o choose truly relevant features is measured in terms of explain-
bility [61]. The term ‘‘algorithmic trust’’ describes the general
ublic’s opinion that computers can be relied upon to safely pro-
ess their personal information just as effectively as if a human
ere in charge [62]. Algorithms are well-known to operate within
strict set of codes and programmes, and it can be challenging

o get them to deviate from their intended purposes.
(XAIR3) Bias mitigation: Bias mitigation in an algorithm is that

which causes systematic and recurring errors that can lead to
unfair outcomes, such as giving preference to one random group
of users over others [63]. The conclusions of qualitative research
might be distorted due to the presence of bias, which also leads
to the collection of skewed data, which undermines the validity
and reliability of the systematic study [64].
11
(XAIR4) Privacy and security awareness: The capacity of a
system to achieve a security measure in all conceivable scenar-
ios [65]. The primary focus of security is on keeping information
safe, while the primary focus of privacy is on keeping individual
identities secret [66]. The specific distinctions are, however, more
complex, and there is a possibility for overlap. Specific to data,
‘‘security’’ means ensuring only authorized people can access it.

LIME and SHAP seek to interpret outputs at a local level by
permutating the input and determining which variations are pri-
marily considered to alter the concluded output [67]. The major
drawback of these explainers is that they are post-hoc and it
is not possible to alter or update the influence of the features
automatically in different time periods. So, if these approaches
are applied to progressive systems, they may give biased outputs
if the features and their influence on the outcomes are not ap-
propriately defined at the beginning of the system (input level).
LINDA-BN uses conditional probability to identify the intercon-
nected features [8]. Thus, it may give a biased or inappropriate
output if the features and their conditional dependencies are
not correctly captured. The same logic is applicable to Modified
LINDA-BN as shown in Figs. 12 and 13(b) where biased and wrong
outcomes are generated if the inputs are incorrect. However,
the proposed BRB system produces all possible combinations of
features and their influence for a specific input set by generating
the different BRB rules (Fig. 7). It then selects the one which has
the highest chance of occurrence. Furthermore, it also determines
if the input dataset is complete or not. So, it is unlikely to produce
a biased or wrong output.

5.2. Data experts

Data experts are those who specialize in the data profession
in their respective fields. This category of users employs machine
learning for computation, determination, or analysis [68]. Data
experts explore information in different varieties and disciplines,
such as medicine [69], cybersecurity [70], text [71], business [2]
and image processing [72]. These users may be specialists in
specific domains or specialists in public information technologies.
However, in our classification, we presume that those in the
data expert class have special technical training in AI algorithms
and uses data analytics tools or visual analytic models to obtain
insights into AI. So, the key requirements for the XAI model to
meet to satisfy the needs of data experts are as follows:

(XAIR5) Model Visualization and Inspection: The goal of
odel visualization and inspection is for data experts to identify
nd understand model failures, as well as to increase model trans-
arency and trustworthiness while reducing uncertainty [73].
(XAIR6) Model Tuning: Model tuning allows data analysts to

xamine numerous methods and choose the most appropriate
odel for the desired data [74]. As an example, visual analytics

ools improve the ability of deep neural network builders to
lter networks, provide better training, and compare multiple
etworks [75].
(XAIR7) Model Monotonicity: An increase in the predictor’s

alue creates a change in the probability of an instance belonging
o the class, which in turn changes the relationship between the
redictor and the predicted class [76]. In problems with mono-
onic objective and constraint functions, a monotonicity analysis
an be used as a pre-optimization method. The analysis is used to
btain specific relationships among the decision variables of the
ptimal solutions without actually completing any optimization
ob [77]. Analysis for monotonicity seeks to prevent misleading
nterpretations.

As previously mentioned, LIME, SHAP, LINDA-BN, and Mod-
fied LINDA-BN are post-hoc explainers and provide a single
utput using a single set of inputs. Post-hoc explainers do not
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Fig. 13. Shows the influence of top features on the output.
Fig. 14. Inconsistent influences of the features.

Fig. 15. Output provided by incomplete dataset.

provide any option to question the output, tune the model or
validate it in different circumstances [78]. However, as shown
in Fig. 5, the proposed interpretable BRB system is a glass-box
system which shows the multiple decision options from which
12
it selects one to be recommended. This option gives the advan-
tage of tuning and validating the model, thereby ensuring more
correctness and trust in the system.

5.3. AI experts

Our definition of AI experts includes researchers and engineers
who focus on AI algorithms and interpretable approaches. XAI
methods either produce model interpretations or model illus-
trations and include inherently explainable methods [79], deep
methodology interpretations [80], visualizations of internal sys-
tems [81] etc., in the literature. Tools for interactively inspecting
internal model variables, monitoring, and controlling the training
process also helps AI experts [82]. The XAI requirements of AI
experts are more precise, technical, core, in-depth algorithms and
are as follows:

(XAIR8) Model Explainability: Model explainability provides
transparency, justification, informativeness, and uncertainty esti-
mation, which is the ability of a model to explain how it arrived
at a specific response [83]. The degree of explainability quantifies
the reliability of the prediction [84].

(XAIR9) Model Debugging: Model debugging enables the ex-
planations to be examined to enhance system performance
through different quality engineering techniques, namely detect-
ing dataset bias [85], model failure prediction [86], adversarial
attack detection [87] etc., to provide more accurate and precise
output.

(XAIR10) Post-hoc Explanation: Post-hoc explainers are con-
cerned about explaining the output and may apply the black-box
approach to generate output [88]. Due to the constraints inherent
in post-hoc approaches, they cannot be relied on as the pri-
mary mechanism to ensure the fairness of model outcomes when
high-stakes decisions are being made [89].

As previously explained, LIME, SHAP, LINDA-BN and Modified
LINDA-BN are post-hoc explainers that explain the outputs after
producing them. This means that users will have no access to
how these methods have generated an output nor will they know
whether it is correct or not. Another thing to consider is that
the proposed BRB approach is a glass-box system where users
can see and verify each step from the inputs to the output. This
provides transparency and enhance trust and confidence in the
recommended decision.
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Table 3
XAI requirements and their measures.
Different XAI
approaches/parameters
of XAI

SHAP LIME LINDA-BN Modified LINDA-BN Interpretable BRB

End users (AI Novices)
XAIR1 ✓ ✓ ✓ ✓ ✓
XAIR2 ✓ ✓ ✓ ✓ ✓
XAIR3 × × × × ✓
XAIR4 ✓ ✓ ✓ ✓ ✓

Data experts
XAIR5 ✓ ✓ ✓ ✓ ✓
XAIR6 × × × × ✓
XAIR7 ✓ ✓ ✓ ✓ ✓

AI experts
XAIR8 ✓ ✓ ✓ ✓ ✓
XAIR9 × × × × ✓
XAIR10 ✓ ✓ ✓ ✓ ×

Decision makers
XAIR11 × × × × ✓
XAIR12 × × ✓ ✓ ×

XAIR13 × × ✓(conditional) ✓(conditional) ✓
XAIR14 × × × ✓ ✓
XAIR15 ✓ ✓ ✓ ✓ ✓
XAIR16 × × × × ✓
XAIR17 × × × ✓ ✓
XAIR18 × × × × ✓
5.4. Decision makers

Another important category of users that need XAI systems
s decision makers. Different measures are needed to verify and
alidate explanations so that decision-makers can confidently
ake decisions in different circumstances. XAI evaluations use a
ariety of supervised in-lab and research projects to gather input
rom experts in the field while they undertake high-level cogni-
ive tasks using evaluation tools. [57]. Although this is needed,
ecision makers or users of XAI also need evaluation measures
hat use interpretable algorithms so they can quickly determine
he completeness and precision of explanations. [90]. So the
equirements which XAI approaches need to meet in this category
re as follows:
(XAIR11) Does the system need special hardware and pro-

cessing speed support?: This requirement specifies the degree of
professional and technical skills needed to implement a system.
LIME, SHAP, LINDA-BN and Modified LINDA-BN give a single
output for a single input set. However, the proposed interpretable
BRB approach produces nPr = n!/(n-r)! number of outputs for
a single input set where n denotes the quantity of the input
features. When interpretable BRB is applied in a large dataset,
special hardware and speed support are needed to run the system
smoothly.

(XAIR12) Does the system change its behaviour for datasets
of different sizes and shapes?: This requirement defines the
degree of relevancy of the method in diverse domains and appli-
cations. One of the significant drawbacks of LINDA-BN is that it is
not applicable for a large dataset. Furthermore, an error generated
in a time slot propagates and becomes more prominent over
the time space when applied to a time series dataset [8]. These
drawbacks are addressed by the BRB approach.

(XAIR13) Is it possible to visualize all the features partici-
pating in the assessment (average dataset)?: This requirement
detects the degree of explainability and accuracy in terms of
visualization. LIME and SHAP visualize only the features that
are associated with the output. LINDA-BN can visualize all the
features if the dataset is small (features equal to or less than
30) whereas Modified LINDA-BN does it for features equal to 23.
13
In comparison, the interpretable BRB approach shows all of the
features that are participating in the system.

(XAIR14) Does the system capture the interconnections be-
tween the features that are participating in the output?: This
requirement portrays the degree of accuracy, explainability and
overall acceptability in terms of the data processing capability
of the approach. Modified LINDA-BN and the proposed BRB ap-
proach uses a knowledge graph (causal links) to capture the
interconnections between the features. However, LIME and SHAP
does not do this.

(XAIR15) Does the system visualize all the features respon-
sible for the output?: This requirement describes the degree
of output interpretation of the system. This requirement is one
of the pivotal features of XAI methods. LIME, SHAP, LINDA-BN,
Modified LINDA-BN and the interpretable BRB approach meets
this requirement.

(XAIR16) Does the system have the ability to provide all
the possible output: This requirement determines if the XAI
approaches quantify the different possible outputs in a time slot.
As shown in the workings of LINDA-BN and modified LINDA-BN,
they only show the most probable output occurring in a time slot,
as does SHAP and LIME. However, the proposed BRB approach as
shown in Fig. 7 shows all the possible outputs in a time slot.

(XAIR17) Does the system capture the changes in each step
when applied to a time-series dataset?: This requirement esti-
mates the degree of comprehensive applicability of the approach.
Modified LINDA-BN applies a KG and SD and the proposed BRB
approach employs a knowledge graph (causal links) to capture
the changes in the features in each time slot of the time series
dataset.

(XAIR18) Is the system glass-box?: This requirement depicts
the degree of interpretability, trustworthiness and accuracy of
the entire model. The proposed BRB approach is a glass-box
system but the other approaches are not as they use a post-hoc
explanation of the output.

Table 3 in a tabular form shows how each of the consid-
ered XAI approaches performs against the aforementioned XAI
requirements. As seen from the analysis, the proposed BRB ap-
proach performs better than the other approaches in terms of
meeting the XAI requirements. In doing so, it also better ensures
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he trustworthiness of the given interpretations compared to the
ther approaches.

. Conclusion and future work

In this paper, we proposed a BRB framework that interprets
he associated features along with their influences due to which
decision is reached. We instantiated this framework to obtain a
isk class that pointwise estimates the importance of the features
eading to it and gives an explanation behind the association. To
pply this model to progressive decisions, we designed a knowl-
dge graph that can capture the causal relationships between
he features to estimate the level of influence. BRB was then
pplied to determine the most probable risk class to occur and the
mpact of the contributing features. Compared to popular post-
oc explainers, we demonstrated the advantages of our proposed
ethod and show that it instils confidence in decision makers

n terms of the trustworthiness of the generated outputs. Using
hese characteristics, the proposed BRB approach can detect im-
reciseness, vagueness, incompleteness and inconsistency in the
nput dataset as well as in the outputs generated. In doing so, we
ave also identified one of the critical challenges to using post-
oc explanations in practice. In our future work, we will further
nvestigate this issue so that users can have greater trust in their
ecommended outputs.
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