
Information Processing and Management 61 (2024) 103683

A
0

I
e
X
Y
a

b

c

d

A

K
I
H
S
D

1

2
t
o
W
C
L

c

h
R

Contents lists available at ScienceDirect

Information Processing and Management

journal homepage: www.elsevier.com/locate/ipm

nfluence maximization on hypergraphs via multi-hop influence
stimation
ulu Gong a, Hanchen Wang b,∗, Xiaoyang Wang c, Chen Chen d, Wenjie Zhang c,
ing Zhang a,b

Zhejiang Gongshang University, Hangzhou, 310014, China
University of Technology Sydney, Ultimo, 2007, NSW, Australia
University of New South Wales, Kensington, 2052, NSW, Australia
University of Wollongong, Wollongong, 2522, NSW, Australia

R T I C L E I N F O

eywords:
nfluence maximization
ypergraphs
ocial networks
ata mining

A B S T R A C T

Influence Maximization (IM) has promising applications in social network marketing and has
been extensively researched over the past years. However, previous IM studies mainly focus
on ordinary graphs rather than hypergraphs, where edges cannot accurately describe group
interactions or relationships. To model group interactions, we investigate the IM problem on
hypergraphs under the Susceptible–Infected spreading model with Contact Process dynamics
(SICP) in this paper. In this paper, we proposed a probability distribution-based method, called
Multi-hop Influence Estimation (MIE), which can accurately estimate the rank of influence
expectation of nodes, to solve the IM problem on hypergraphs. Specifically, we compute
the influence score for each node through a constrained Depth First Search (DFS) under a
probability model, and then select seed node according to the influence score. In addition,
by analysing the characteristics of the influence diffusion model, we find that the influence
of a node is significantly related to its neighbourhood structure. Based on the observation, we
propose a term named neighbourhood coefficient to describe the neighbourhood structure of
a node. Further, an efficient and effective method, called Adaptive Neighbourhood Coefficient
Algorithm (Adeff ), is proposed to solve the IM problem on hypergraphs. Extensive experiments
on real-world datasets demonstrate the effectiveness and efficiency of our proposed methods.
Compared with the state-of-the-art approach, our proposed methods can achieve up to 450%
improvement in terms of effectiveness.

. Introduction

In recent years graph data has a wide range of applications in social networks and data mining (Fan et al., 2010; Li, Qin, et al.,
020; Ma et al., 2020), of which Influence Maximization (IM) is a popular one. IM aims to find a set of individuals who can maximize
he influence spread under a certain diffusion model in a social network. This problem is proved to be NP-hard and has a wide range
f applications in social networks, e.g., virtual marketing, and has been extensively studied (Cai et al., 2020; Chen et al., 2015; Chen,
ang, & Yang, 2009; Gomez-Rodriguez, Song, Du, Zha, & Schölkopf, 2016; Kumar, Mallik, Khetarpal, & Panda, 2022; Li, Bhowmick,

ui, Gao, & Ma, 2015; Li, Cai, et al., 2020; Morone & Makse, 2015; Wang, Zhang, Zhang, & Lin, 2016a, 2016b; Wang, Zhang, Zhang,
in & and Chen, 2016; Yan, Huang, Gao, Lu, & He, 2017).
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However, existing studies mainly focus on ordinary graphs, whose interactions are only between pairwise individuals. While in
ome real-world scenarios, interactions or relationships among individuals may exist in a groupwise format instead of a pairwise
ormat. For example, in the co-authorship network where the node represents the author, multiple researchers may contribute
o one publication commonly. In such scenarios, one edge in an ordinary graph can only model the co-authorship between two
esearchers and thus fails to capture the group interactions among all authors in a publication. Hypergraphs are able to capture
igh-order interactions among individuals where one hyperedge can connect more than two entities, and it is beneficial for modelling
he groupwise interactions or relationships among multiple individuals. Therefore, the study of IM on hypergraphs is of great
mportance. Nevertheless, only a few works focus on this problem which has not been explored sufficiently yet. Hypergraphs have
istinguished structural features compared with ordinary graphs, thus the widely used influence diffusion model on original graphs
s not applicable on hypergraphs, e.g., the IC model and LT model. Further, methods used in ordinary graphs cannot be adapted

directly into hypergraphs, thus leaving the IM problem on hypergraphs as a challenging issue.
In this paper, we focus on the IM problem on hypergraphs under the Susceptible–Infected spreading model with Contact Process

dynamics (SICP) model. In the SICP model, at each time step, each node in the infected state will attempt to diffuse its information to
its neighbours through the hyperedges it belongs to. Specifically, infected node 𝑣 will first select one of its hyperedges it belongs to,
hen attempt to infect each susceptible node on this hyperedge with a given infection probability 𝛽. This diffusion process terminates
hen a given time step threshold 𝑇 is reached. The purpose of this problem is to detect a set of individuals (seed nodes) with size

ess than a given constraint 𝐾, such that the number of nodes in infected state is maximized when the diffusion process ends. This
roblem is first studied by Xie et al. and is NP-hard (Xie, Zhan, Liu & Zhang, 2023). Xie et al. assumed that node with larger
egree has larger influence and developed a method, HADP namely, which selects node with the maximal degree as the seed node
daptively. However, since the high complexity of the SICP model, degree cannot be used as a metric of node’s influence, in other
ords, the assumption of node with higher degree tends to have higher influence cannot hold (More detailed analysis is presented

n Section 4.2.1). Thus HADP failed to detect high quality seed node.

ur solutions. In this paper, we designed a novel probability distribution based approach and a neighbourhood coefficient based
pproach to solve the IM problem on hypergraphs under the SICP model. In this diffusion model, there are two important factors, i.e.,
he infection probability 𝛽 and time step threshold 𝑇 . These two factors determine the information diffusion process of an infected
ode, especially 𝑇 determines the depth of information diffusion. It is intuitive that the optimal seed node sets are different under
ifferent combinations of 𝛽 and 𝑇 . Therefore, an effective method is supposed to take 𝛽 and 𝑇 into account when detecting seed node
et. To this end, we consider the diffusion process to follow a probability distribution, and the distribution is specific when 𝛽 and

are both given. Further, the influence expectation of a node is specific and can be worked out. Thus we can develop a method to
alculate the influence expectation for each node and then select seed node according to the rank of influence expectation. However,
his method is not practical because of its high time complexity. Therefore, we proposed an efficient and effective method to estimate
he rank of influence expectation, which can take 𝛽 and 𝑇 into account jointly, namely Multi-hop Influence Estimation (MIE).
pecifically, we first analysed the probability diffusion of the SICP model. Based on our analysis we transformed the hypergraph
nder the SICP model into a directed weighted graph under a SICP-variant diffusion model, where the weight on each edge represents
he corresponding infection probability. We use a constrained Depth First Search (DFS) to estimate the rank of influence expectation
or all nodes based on probability distribution, which is used for the downstream seed node selection. On the other hand, we analysed
he properties and characteristics of the SICP model and proposed a neighbourhood coefficient based approach for this problem,
amely Adaptive Neighbourhood Coefficient Algorithm (Adeff ). Specifically, we found that node with more neighbours on each
yperedge tends to have higher influence. We defined a new term named neighbourhood coefficient to describe the characteristics
f node’s neighbourhood structure, and higher neighbourhood coefficient indicates more average neighbours on each hyperedge for
node. The seed node is selected with the neighbourhood coefficients for the nodes. Furthermore, to alleviate the influence overlap
mong seed nodes and increase the overall influence, we propose an effective pruning method.

We conduct experimental study to compare our proposed methods with the newest approach currently, i.e., HADP (Xie, Zhan,
iu & Zhang, 2023), in terms of effectiveness and efficiency. It is shown that our proposed algorithms improve the effectiveness by
p to 450% compared with HADP and achieve new state-of-the-art performance.

ontributions. We summarized the contributions of this paper as follows:

• We proposed a method to transform the hypergraph under SICP model into a directed weighted graph under a SICP-variant
model. We proved node has the same influence expectation under the SICP model and SICP-variant model. Thus, the IM
problem on hypergraphs under SICP model can be transformed into the problem of IM on directed weighted graphs under the
SICP-variant model, which is easier to handle.

• We proposed a probability distribution-based method, namely Multi-hop Influence Estimation (MIE), which iteratively selects
the seed nodes according to the influence expectation for each node computed by a constrained DFS considering the infection
probability 𝛽 and time step threshold 𝑇 .

• We design a novel neighbourhood coefficient that captures the key structural information of the hypergraph, based on which
we develop an efficient and effective method named Adaptive Neighbourhood Coefficient Algorithm (Adeff ) to solve the IM
problem on hypergraphs.

• Extensive experiments on 8 real-world datasets demonstrate the superiority (up to 4.5×) of our proposed algorithms compared
with existing methods.
2
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Table 1
Notations.
Notations Description

𝐻(𝑉 ,𝐸) An hypergraph with node set 𝑉 and hyperedge set 𝐸
𝑁(𝑣,𝐻) The neighbours of 𝑣 in 𝐻
|𝑒𝑖| The number of nodes hyperedge 𝑒𝑖 contains
𝐸𝑣 The set of hyperedges which contain node 𝑣
𝑑𝑒𝑔(𝑣) The degree of node 𝑣
𝐻𝑑𝑒𝑔(𝑣) The hyperdegree of node 𝑣
 The influence diffusion model
𝑆 A selected seed node set 𝑆 ⊆ 𝐴
𝜎𝐻 (𝑆)∕𝜎(𝑆) The influence of seed node set 𝑆 in 𝐻
𝑓𝑙(𝑆)∕𝑓𝑙(𝑣) The node set infected by seed set 𝑆∕ seed node 𝑣

Organization. The rest of the paper is organized as follows. Section 2 introduces the related works. Section 3 introduces the
preliminaries, including the definition of hypergraph, the diffusion model we used and the problem definition. Our proposed
algorithms MIE and Adeff are introduced in Section 4. We report the experimental result in Section 5. Section 6 concludes the
aper.

. Related works

nfluence Maximization. The goal of Influence maximization problem is to detect a set of individuals who play import roles in
ocial networks marketing. Kempe, Kleinberg, and Tardos (2003) first proposed this problem in 2003. They propose two widely used
iffusion models for this problem, i.e., the independent cascade (IC) and linear threshold (LT) diffusion models and provide a greedy
ramework with (1 − 1∕𝑒) approximation ratio. Borgs, Brautbar, Chayes, and Lucier (2014) propose a near-linear time method, the
everse influence sampling framework, for the IC model. Tang, Xiao, and Shi (2014) propose TIM/TIM+ algorithm to improve the
ampling efficiency. Tang, Shi, and Xiao (2015) further improve the sampling efficiency based on martingales. Recently extensive
fforts have been made to solve the influence maximization problem (Cai et al., 2020; Kumar et al., 2022; Wang et al., 2016b), and
re surveyed in Aghaee, Ghasemi, Beni, Bouyer, and Fatemi (2021), Banerjee, Jenamani, and Pratihar (2020) and Singh, Srivastva,
erma, and Singh (2022).

nfluence Maximization on Hypergraphs. Modelling social networks as hypergraphs is considered to be able to capture high-order
nteractions between individuals, however the problem of influence maximization on hypergraphs caught little attentions in recent
ears. Amato et al. propose to model social media networks by hypergraphs, which can represent ‘‘user-to-multimedia’’ relationships
y hyperedges (Amato, Moscato, Picariello, & Sperlí, 2017). Zhu et al. propose the social IM problem in hypergraph under IC model,
nd prove the NP-hard property of this problem (Zhu, Zhu, Ghosh, Wu, & Yuan, 2018). In addition, authors propose an algorithm
or general weighted social influence maximization problem which preserves (1 − 1∕𝑒 − 𝜖) approximation. Antelmi et al. generalize

the LT diffusion model to hypergraphs and design a greedy algorithm based on a subtractive approach, and they adopt a pruning
strategy to remove unnecessary nodes or edges from the original hypergraph (Antelmi, Cordasco, Spagnuolo, & Szufel, 2021). MA
and Rajkumar (2022) study the IM problem on hypergraph under the HyperCascade diffusion model and generalize a ranking based
algorithm for IM problem on ordinary graphs, IMRANK (Cheng, Shen, Huang, Chen, & Cheng, 2014) to hypergraphs. Aktas et al.
study the influential hyperedge detection problem, which aims to detect critical, hyperedges (Aktas, Jawaid, Gokalp, & Akbas,
2022). Su et al. study the IM problem on hypergraphs with a novel causal objective (Su & Zhang, 2023). Authors consider each
individual carries specific attributes with individual treatment effect (ITE), and the sum of ITEs of the infected is a more reasonable
objective for influence spread. Besides, authors develop an algorithm, CauIM, to solve this problem, which can extract approximately
optimal seed sets. Xie et al. is the first work of studying the problem of IM on hypergraphs under the SICP model and they propose a
degree-based heuristic i.e., HADP, to solve this problem (Xie, Zhan, Liu & Zhang, 2023). However, degree cannot model the complex
hypergraph structure and influence diffusion process well, thus HADP fails to detect seed nodes with high influence.

3. Preliminaries

In this paper, we focus on the influence maximization problem on hypergraphs. In this section, we introduce the preliminaries.
The frequently used notations are summarized in Table 1.

3.1. Hypergraph

Let 𝐻(𝑉 ,𝐸) denote a hypergraph, 𝑉 and 𝐸 denote set of nodes and hyperedges respectively, 𝑁 = |𝑉 | and 𝑀 = |𝐸| denote the
number of nodes and hyperedges of 𝐻 respectively. Different from ordinary graphs, in a hypergraph 𝐻 each hyperedge 𝑒 contains
3
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Fig. 1. An example of hypergraph.

two or more nodes. We use |𝑒𝑖| to denote the number of nodes 𝑒𝑖 contains. We use 𝐸𝑣 = {𝑒𝑖 ∈ 𝐸|𝑣 ∈ 𝑒𝑖} to denote the set of
hyperedges which contains node 𝑣. The hypergraph 𝐻 can be denoted by an incidence matrix 𝐶 ∈ R|𝑉 |×|𝐸|, where

𝐶𝑖𝑘 =

{

1 if 𝑖 ∈ 𝑒𝑘
0 if 𝑖 ∉ 𝑒𝑘

(1)

The adjacency matrix of hypergraph 𝐻 is represented as 𝐴 ∈ R𝑁×𝑁 , where 𝐴𝑖𝑗 is the number of common hyperedges 𝑣𝑖 and 𝑣𝑗 both
belong to. We present an example of hypergraph in Fig. 1.

The degree of a node 𝑣𝑖 (𝑑𝑒𝑔(𝑣𝑖)) is defined as the number of neighbours 𝑣𝑖 has, and node 𝑢 is the neighbour of node 𝑣 iff there
exists at least one hyperedge which 𝑢 and 𝑣 both belong to. It can be formulated as follows:

𝑑𝑒𝑔(𝑣𝑖) =
𝑁
∑

𝑗=1
𝑖𝑗 , (2)

where  ∈ R𝑛×𝑛, 𝑖𝑗 = 1 if 𝐴𝑖𝑗 > 0 and 𝑖𝑗 = 0 else.
We use 𝐻𝑑𝑒𝑔(𝑣𝑖) to denote the hyperdegree of 𝑣𝑖. It means the number of hyperedges which contain 𝑣𝑖 and can be computed

as follows:

𝐻𝑑𝑒𝑔(𝑣𝑖) =
𝑀
∑

𝑗=1
𝐶𝑖𝑗 . (3)

For example, the degree of node 𝑣4 in Fig. 1(a) is 𝑑𝑒𝑔(𝑣4) = 4, and the hyperdegree of 𝑣4 is 𝐻𝑑𝑒𝑔(𝑣4) = 3.

3.2. Diffusion model

In this work, we use the Susceptible–Infected spreading model with Contact Process dynamics (SICP) (Xie, Zhan, Liu &
Zhang, 2023) as the diffusion model to quantify the influence of a set of seed nodes. In this diffusion model, there exists two node
states, i.e., susceptible (S) state or infected (I) state, and each node can only be in one of them at any time step. The influence
diffusion process on hypergraphs of a seed set 𝑆 can be described as:

• Step 1: In the beginning, all nodes in seed node set 𝑆 are in I state, and the remaining nodes are in S state.
• Step 2: At each time step 𝑡, each infected node 𝑣𝑖 will first randomly select one hyperedge 𝑒𝑘 it belongs to. For each susceptible

node 𝑣𝑗 in 𝑒𝑘, 𝑣𝑖 attempts to infect it with infection probability 𝛽.
• Step 3: Repeat Step 2 until 𝑡 reaches a preset value 𝑇 , where 𝑇 is a control parameter.

3.3. Problem definition

Definition 1 (Influence). Given a hypergraph 𝐻(𝑉 ,𝐸), a seed set 𝑆 ⊆ 𝑉 , and a diffusion model . The influence of 𝑆, represented
by 𝜎𝐻 (𝑆), is defined as the expected number of infected nodes in 𝐻 at the end of the diffusion process when only the nodes in 𝑆
are infected initially, and we call the node set infected by 𝑆 followers, denoted by 𝑓𝑙(𝑆), where |𝑓𝑙(𝑆)| = 𝜎𝐻 (𝑆). When the context
is clear, for simplicity we also use 𝜎(𝑆) to denote 𝜎𝐻 (𝑆).

Definition 2 (Influence Maximization on Hypergraph). Given a hypergraph 𝐻(𝑉 ,𝐸), an positive integer 𝐾 for the size of seed set and
a diffusion model , the problem of influence maximization on hypergraphs is to find a seed set 𝑆∗ of 𝐾 nodes in 𝐻 , such that
the expected number of infected nodes is maximized:

𝑆∗ = argmax 𝜎(𝑆)
4
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Fig. 2. An example of equivalent probability transformation.

In this paper, we study the IM problem on hypergraph (HyperIM) when  is set as the SICP model, and this problem is
NP-hard (Xie, Zhan, Liu & Zhang, 2023; Zhu et al., 2018).

4. Algorithms

In this section, we introduce the algorithms we proposed, i.e., the Multi-hop Influence Estimation (MIE) and Adaptive
Neighbourhood Coefficient Algorithm (Adeff ).

4.1. Multi-hop influence estimation

In this subsection we introduce the MIE algorithms. Specifically, we first transform the hypergraph under the SICP model into
a directed weighted graph under a SICP-variant diffusion model. Then we estimate the rank of influence expectation for all nodes
based on probability distribution with a constrained DFS. Finally, we select seed nodes iteratively according to the estimated rank
of influence expectation, and the rank is updated in each iteration.

4.1.1. Hypergraph to directed weighted graph
In this subsection, we discuss to transform the HyperIM problem under the SICP diffusion model to a directed weighted graph

IM problem under a SICP-like diffusion model by equivalent probability transformation. From the diffusion process of SICP model,
we can find that the diffusion of this model is highly stochastic. One of the key factors causing the high diffusion stochasticity
is the random selection to the hyperedge of a infected node at each time step 𝑡. A infected node 𝑣 may belong to more than
one hyperedge simultaneously, i.e., |𝐸𝑣| > 1, and different hyperedges 𝑒 ∈ 𝐸𝑣 may contain significantly different neighbourhood
structure (including number of neighbours and neighbours’ topological features), which means that different hyperedge selections
have different influence diffusion results. Therefore, it is important to take the stochasticity of hyperedge selection into account
when selecting a seed node.

To better describe and handle the stochasticity of hyperedge selection, we propose to transform the selection of hyperedge to
selection on nodes according to an equivalent probability. To explain the equivalent probability transformation, we take the
hypergraph 𝐻 in Fig. 1 as an example. Node 𝑣4 belongs to 3 hyperedges (𝑒2, 𝑒3, 𝑒4), it has 4 neighbours (𝑣2, 𝑣3, 𝑣5, 𝑣6). Initially only
𝑣4 is infected. If 𝑣4 wants to infect 𝑣3 by at step one, it has to select hyperedge 𝑒2 in the first phase (with probability 1∕3) and then
infect 𝑣3 with probability 𝛽. Thus the probability of 𝑣4 infects 𝑣3 by one time step is 1∕3 ∗ 𝛽. See another example of 𝑣4 infects
𝑣5: as 𝑣4 and 𝑣5 have 2 common hyperedges (𝑒3, 𝑒4), the probability of 𝑣4 infects 𝑣5 via hyperedge 𝑒3 and 𝑒4 are both 𝛽∕3, thus
the probability of 𝑣4 infects 𝑣5 by time step one is 2∕3 ∗ 𝛽 (see Fig. 2). We formulate the definition of equivalent probability
transformation as follows:

Definition 3 (Equivalent Probability Transformation). Given a hypergraph 𝐻(𝑉 ,𝐸), the equivalent probability transformation on 𝐻
is to transform 𝐻 to a directed weighted graph ( ,  ,), where  = 𝑉 is the node set, 𝗏𝗂 ∈  is the transformed version of node
𝑣𝑖 ∈ 𝑉 ,  is the directed edge set, 𝑖𝑗 = < 𝑣𝑖, 𝑣𝑗 > is a directed edge from node 𝑣𝑖 to node 𝑣𝑗 , 𝑖𝑗 ∈  iff there exists at least one
hyperedge 𝑒 ∈ 𝐸 and 𝑒 contains both 𝑣𝑖 and 𝑣𝑗 ,  is the weight matrix and 𝑖𝑗 ∈  is the weight on directed edge < 𝑣𝑖, 𝑣𝑗 >. The
𝑖𝑗 is computed by follows:

𝑖𝑗 =
|𝐸𝑖 ∩ 𝐸𝑗 |

|𝐸𝑖|
𝛽, (4)
5

where 𝐸𝑖 and 𝐸𝑗 denote the set of hyperedges which 𝑣𝑖 and 𝑣𝑗 belongs to respectively.
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By the equivalent probability transformation we can transform the hypergraph 𝐻(𝑉 ,𝐸) under the SICP diffusion model to a
irected weighted graph ( ,  ,), thus the stochasticity of hyperedge selection is denoted by infection probability distribution

over nodes. Then we need to define a new diffusion model applying on ( ,  ,), which is similar with the SICP model. We denote
the new diffusion model as SICP-variant, and it works as follows:

• Step 1: In the beginning, all nodes in 𝑆 are in I state, and the remaining nodes are in S state.
• Step 2: At each time step 𝑡, each infected node 𝑣𝑖 will attempt to infect each of its susceptible neighbour 𝑣𝑗 with infection

probability 𝑖𝑗 .
• Step 3: Repeat Step 2 until 𝑡 reaches a preset 𝑇 .

emma 1. Given a hypergraph 𝐻(𝑉 ,𝐸), number of independent repeated experiments 𝜃 ∈ N, infection probability 𝛽, {𝑣𝑖, 𝑣𝑗} ∈ 𝑉 is an
djacent node pair. Initially only node 𝑣𝑖 is infected, in each independent experiment, 𝑣𝑖 will first randomly select one hyperedge 𝑒𝑘 it belongs
o, then for each susceptible node 𝑢 in 𝑒𝑘, 𝑣𝑖 attempts to infect it with probability 𝛽. Conducting the independent experiments above 𝜃 times,
𝑐𝑛𝑡𝜃(𝑣𝑖 → 𝑣𝑗 ) denotes the number of independent experiments where 𝑣𝑖 infected 𝑣𝑗 successfully during the 𝜃 times of independent repeated
xperiments. Then:

lim
𝜃→+∞

𝑐𝑛𝑡𝜃(𝑣𝑖→𝑣𝑗 )
𝜃

=
|𝐸𝑖 ∩ 𝐸𝑗 |

|𝐸𝑖|
𝛽, (5)

here 𝐸𝑖 denotes the set of hyperedges 𝑣𝑖 belongs to.

roof. Let 𝑚 = |𝐸𝑖|, 𝑛 = |𝐸𝑖 ∩ 𝐸𝑗 |(𝑛 ≥ 1) and {𝑒′1, 𝑒
′
2,… , 𝑒′𝑛} = 𝐸𝑖 ∩𝐸𝑗 denotes the set of hyperedges 𝑣𝑖 and 𝑣𝑗 both belong to. In one

independent experiment, for each hyperedge 𝑒′𝑘 ∈ 𝐸𝑖 ∩𝐸𝑗 , the probability of 𝑣𝑖 select 𝑒′𝑘 is 1
𝑚 , then for susceptible node 𝑣𝑗 in 𝑒′𝑘, the

probability of 𝑣𝑖 infects 𝑣𝑗 by 𝑒′𝑘 successfully is 1
𝑚 𝛽, i.e.,

lim
𝜃→+∞

𝑐𝑛𝑡𝜃(𝑣𝑖→𝑣𝑗 |𝑒′𝑘)
𝜃

= 1
𝑚
𝛽,

where 𝑐𝑛𝑡𝜃(𝑣𝑖→𝑣𝑗 |𝑒′𝑘) represents the number of independent experiments where 𝑣𝑖 infected 𝑣𝑗 by 𝑒′𝑘 successfully during the 𝜃 times
of independent repeated experiments. Further,

lim
𝜃→+∞

𝑐𝑛𝑡𝜃(𝑣𝑖→𝑣𝑗 )
𝜃

=
𝑛
∑

𝑘=1
lim

𝜃→+∞

𝑐𝑛𝑡𝜃(𝑣𝑖→𝑣𝑗 |𝑒′𝑘)
𝜃

=
𝑛
∑

𝑘=1

1
𝑚
𝛽

= 𝑛
𝑚
𝛽

=
|𝐸𝑖 ∩ 𝐸𝑗 |

|𝐸𝑖|
𝛽 □

heorem 1. Given a hypergraph 𝐻(𝑉 ,𝐸), rational number 𝛽 ∈ [0, 1] and positive integer 𝑇 for the SICP diffusion model, ( ,  ,) is
a directed weighted graph obtained by the equivalent probability transformation on 𝐻 described on Definition 3, for node 𝑣𝑖 ∈ 𝑉 and node
𝗏𝗂 ∈  , E(𝜎𝐻 (𝑣𝑖)) denote the expectation of the influence of 𝑣𝑖 under the SICP diffusion model and E(𝜎(𝗏𝗂)) denote the expectation of the
influence of 𝗏𝗂 under the SICP-variant diffusion model. Then, E(𝜎𝐻 (𝑣𝑖)) = E(𝜎(𝗏𝗂)).

Proof. E(𝜎𝐻 (𝑣𝑖)) = lim𝜃→+∞

∑𝜃
𝑘=1 𝜎

(𝑘)
𝐻 (𝑣𝑖)

𝜃 and E(𝜎(𝗏𝗂)) = lim𝜃→+∞

∑𝜃
𝑘=1 𝜎

(𝑘)
 (𝗏𝗂)

𝜃 , 𝜃 ∈ Z+, 𝜎(𝑘)𝐻 (𝑣𝑖) and 𝜎(𝑘) (𝗏𝗂) denotes the number of
infected nodes in 𝑘th diffusion process under SICP model and SICP-variant model with only node 𝑣𝑖 and 𝗏𝗂 is infected initially
respectively. For each node 𝑣𝑗 ∈ 𝑉 satisfying the shortest path length between 𝑣𝑗 and 𝑣𝑖 is no more than 𝑇 , ∃ 𝑝𝑖𝑗 ∈ Q and 𝑝𝑖𝑗 ∈ (0, 1],
s.t., 𝑝𝑖𝑗 is the probability of 𝑣𝑖 infected 𝑣𝑗 under the SICP model, where Q represents the rational number set. During the 𝜃 times of
diffusion process, the expectation of the times of 𝑣𝑗 infected by 𝑣𝑖 is 𝑝𝑖𝑗 ⋅ 𝜃, when 𝜃 → +∞, 𝑝𝑖𝑗 ⋅ 𝜃 → +∞. Thus, for each node 𝑣𝑙 ∈ 𝑉
satisfying the shortest path length between 𝑣𝑙 and 𝑣𝑖 is no more than 𝑇 − 1, when 𝜃 → +∞, the number of times 𝑣𝑖 infected 𝑣𝑙 goes
to +∞, and the number of times 𝑣𝑙 attempt to infect each of its 1-hop neighbours under SICP model within one time step (denoted
by 𝜃′) goes to +∞ also. From Lemma 1, lim𝜃′→+∞

𝑐𝑛𝑡𝜃′ (𝑣𝑙→𝑣𝑝)
𝜃′ = |𝐸𝑙∩𝐸𝑝|

|𝐸𝑙 |
𝛽, where 𝑣𝑝 ∈ 𝑁(𝑣𝑙 ,𝐻). Therefore, when 𝜃 → +∞, for each

ode 𝑣𝑙 ∈ 𝑉 satisfying the shortest path length between 𝑣𝑙 and 𝑣𝑖 is no more than 𝑇 −1, for each node 𝑣𝑝 ∈ 𝑁(𝑣𝑙 ,𝐻), the probability

f 𝑣𝑙 infects 𝑣𝑝 within one time step is equal to |𝐸𝑙∩𝐸𝑝|

|𝐸𝑙 |
𝛽. Thus lim𝜃→+∞

∑𝜃
𝑘=1 𝜎

(𝑘)
𝐻𝑇 (𝑣𝑖 )

(𝑣𝑖)

𝜃 = lim𝜃→+∞

∑𝜃
𝑘=1 𝜎

(𝑘)
𝑇 (𝗏𝗂 )

(𝗏𝗂)

𝜃 holds, where 𝐻𝑇 (𝑣𝑖) is
he subgraph of 𝐻 by removing each node in 𝐻 whose shortest path length away from 𝑣𝑖 is larger than T, and the same with 𝑇 (𝗏𝗂).

nder the time step threshold 𝑇 , 𝜎(𝑘)𝐻 (𝑣𝑖) = 𝜎(𝑘)
𝐻𝑇 (𝑣𝑖)

(𝑣𝑖) and 𝜎(𝑘) (𝗏𝗂) = 𝜎(𝑘)
𝑇 (𝗏𝗂)

(𝑣𝑖) hold. Hence, lim𝜃→+∞

∑𝜃
𝑘=1 𝜎

(𝑘)
𝐻 (𝑣𝑖)

𝜃 = lim𝜃→+∞

∑𝜃
𝑘=1 𝜎

(𝑘)
 (𝗏𝗂)

𝜃
holds. Further, E(𝜎𝐻 (𝑣𝑖)) = E(𝜎(𝗏𝗂)), Theorem 1 holds. □

By Theorem 1 we can know that the expectation of the influence of a node 𝑣 ∈ 𝑉 keep unchanged after the equivalent probability
transformation. Hence the node with the maximal influence on ( ,  ,) under the SICP-variant model also has the maximal
influence on 𝐻(𝑉 ,𝐸) under the SICP model, and we can develop methods applying on  to find the node with the maximal influence
on 𝐻 indirectly and then obtain the seed node set incrementally.
6
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4.1.2. Motivation and basic algorithm framework
As discussed in sub Section 4.1.1, a hypergraph 𝐻(𝑉 ,𝐸) under the SICP model can be transformed to a directed weighted graph

( ,  ,) under the SICP-variant model. Intuitively, the influence of a node 𝗏 ∈ , 𝜎(𝗏), is a random variable and follows a certain
robability distribution (𝑥). Theoretically, (𝑥) is explicit when 𝛽 and 𝑇 is given explicitly. Further the expectation of 𝜎(𝗏) can be

computed exactly. We formulate such claim as Theorem 2.

Theorem 2. Given a directed weighted graph ( ,  ,), rational number 𝛽 ∈ [0, 1] and positive integer 𝑇 for the SICP-variant diffusion
model, for node 𝗏 ∈  , E(𝜎(𝗏)) is the expectation of 𝜎(𝗏). Then, ∃ 𝛺 ∈ R s.t. E(𝜎(𝗏)) = 𝛺.

Motivated by this theorem, we develop an algorithm to compute E(𝜎(𝗏)) exactly. Considering the high time complexity of exact
algorithm, we propose a method to estimate the rank of E(𝜎(𝗏)) with high accuracy and acceptable time consuming. We summarize
the general framework of our proposed algorithm as Algorithm 1, and we name it as Multi-hop Influence Estimation (MIE).

Algorithm 1 Basic Algorithm Framework (MIE)
Input: Hypergraph 𝐻(𝑉 ,𝐸), infection probability 𝛽, time step threshold 𝑇 , seed set size 𝐾, number of simulations 𝜃, path length

constraint 𝖫.
Output: Set of seed node 𝑆.

1: ( ,  ,) ← equivalent probability transformation on 𝐻(𝑉 ,𝐸)
2: 𝑆 = ∅
3: (0) ← 
4: while |𝑆| < 𝐾 do
5: 𝑘 ← |𝑆|
6: 𝛥[⋅] ← MultihopInfluenceScore((𝑘), 𝛽, 𝑇 ,𝖫)
7: 𝑠 ← argmax𝗏∈ (𝑘) 𝛥[𝗏]
8: 𝑆 ← 𝑆 ∪ {𝑠}
9: (𝑘+1) ← InfluenceOverlapAlleviation((𝑘),𝐻, 𝑠, 𝜃)

10: end while
11: return 𝑆

4.1.3. Theoretical computation of influence expectation
In graph ( ,  ,), for a node 𝗏𝗂 ∈  , its influence expectation can be computed as the sum of probability 𝗏𝗂 infects each of the

rest nodes in  . Let only node 𝗏𝗂 is infected initially, and 𝑇 (𝗂 → 𝗃) denotes the probability of 𝗏𝗃 is in infected state at time step 𝑇
under the SICP-variant model, then

E(𝜎(𝗏𝗂)) =
∑

𝗏𝗃≠𝗏𝗂 ,𝗏𝗃∈
𝑇 (𝗂→𝗃). (6)

Note that 𝑇 (𝗂→𝗃) = 0 for each node 𝗏𝗃 which does not lie within the 𝑇 -hop neighbourhood of 𝗏𝗂. Given path length constraint 𝑇 , it
exists multiple paths from 𝗏𝗂 to 𝗏𝗃 (multi-path infection). Using 𝗉𝖺𝗍𝗁𝗂→𝗃 = {𝗉𝗍1, 𝗉𝗍2,… , 𝗉𝗍𝐿} to denote all the paths from 𝗏𝗂 to 𝗏𝗃 where
each path’s length is no more than 𝑇 and does not contain circle. Using 𝑇 (𝗂→ 𝗃 | 𝗉𝗍𝑙) to denote the probability of 𝗏𝗃 is in infected
state at time step 𝑇 and is infected by 𝗏𝗂 through path 𝗉𝗍𝑙. Then,

𝑇 (𝗂→𝗃) = 1 −
∏

𝗉𝗍𝑙 ∈ 𝗉𝖺𝗍𝗁𝗂→𝗃

(1 − 𝑇 (𝗂→𝗃 | 𝗉𝗍𝑙)) (7)

We explain Eq. (7) by an example illustrated in Fig. 3. There exists multiple paths from 𝗏𝗂 to 𝗏𝗃. For each path 𝗉𝗍𝑙, the probability
of 𝗏𝗃 is in infected state at time step 𝑇 and is infected by 𝗏𝗂 through path 𝗉𝗍𝑙 is 𝑇 (𝗂→𝗃 | 𝗉𝗍𝑙), then the probability of 𝗏𝗃 is not infected
by 𝗏𝗂 through 𝗉𝗍𝑙 when time step reaches 𝑇 is 1 − 𝑇 (𝗂→ 𝗃 | 𝗉𝗍𝑙). Further, the probability of 𝗏𝗃 is not in infected state at time step 𝑇
is the product of probability of each path fails to infect 𝗏𝗃 when time step reaches 𝑇 , i.e., ∏𝗉𝗍𝑙 ∈ 𝗉𝖺𝗍𝗁𝗂→𝗃

(1 − 𝑇 (𝗂→ 𝗃 | 𝗉𝗍𝑙)). Further we
have Eq. (7).

4.1.4. Computation of the infection probability over one path
In the subsection, we discuss how to compute the infection probability over one path, i.e., 𝑇 (𝗂→ 𝗃 | 𝗉𝗍𝑙) in Eq. (7). In Fig. 4 we

illustrate several infection paths with different lengths, 𝛽𝑖 ∈ [0, 1) on the directed edge represents corresponding infection probability
between two nodes. Initially, only node 1 is in infected state. We use ̃𝑇 (𝑛) to represent the probability of node 𝑛 is in infected state
at time step 𝑇 . We use 𝑛(𝑗) to represent the probability of node 𝑛 is not in infected state before time step 𝑗 and is infected at time
step 𝑗. We discuss the computation of infection probability under time step threshold 𝑇 in the 4 cases respectively:

• Case 1 (Fig. 4(a)): the path length between source node and target node is 1. The probability of node 2 is not in infected state
𝑇 ̃ 𝑇
7

in time step 𝑇 is (1 − 𝛽1) , then 𝑇 (2) = 1 − (1 − 𝛽1) .
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Fig. 3. An example of multi-path infection.

Fig. 4. Infection paths with different length.

• Case 2 (Fig. 4(b)): the path length between source node and target node is 2. Then,

̃𝑇 (3) =
𝑇
∑

𝑖=2
3(𝑖). (8)

Assuming 𝑗 (𝑗 < 𝑖) is the time step when node 2 is infected, in this scenario the probability of node 3 is infected at time step 𝑖
(is not in infected state before time step 𝑖) is 2(𝑗)(1 − 𝛽2)𝑖−1−𝑗𝛽2. Then,

3(𝑖) =
𝑖−1
∑

𝑗=1
2(𝑗)(1 − 𝛽2)𝑖−1−𝑗𝛽2 (9)

Specifically, 2(𝑗) = (1 − 𝛽1)𝑗−1𝛽1. Then, we have

̃𝑇 (3) =
𝑇
∑

𝑖=2
3(𝑖)

=
𝑇
∑

𝑖=2

𝑖−1
∑

𝑗=1
2(𝑗)(1 − 𝛽2)𝑖−1−𝑗𝛽2

=
𝑇
∑

𝑖=2

𝑖−1
∑

𝑗=1
(1 − 𝛽1)𝑗−1𝛽1(1 − 𝛽2)𝑖−1−𝑗𝛽2

(10)

• Case 3 (Fig. 4(c)): the path length between source node and target node is 3. Similar with case 2, we have

̃𝑇 (4) =
𝑇
∑

𝑖=3
4(𝑖). (11)

Assuming 𝑗 (2 ≤ 𝑗 < 𝑖) is the time step when node 3 is infected, in this scenario the probability of node 4 is infected at time
step 𝑖 (is not in infected state before time step 𝑖) is 3(𝑗)(1 − 𝛽3)𝑖−1−𝑗𝛽3. Then,

4(𝑖) =
𝑖−1
∑

3(𝑗)(1 − 𝛽3)𝑖−1−𝑗𝛽3. (12)
8

𝑗=2



Information Processing and Management 61 (2024) 103683X. Gong et al.

O

e

a

4

Algorithm 2 MultihopInfluenceScore
Input: Directed weighted graph ( ,  ,), infection probability 𝛽, time step threshold 𝑇 , path length constraint 𝖫.

utput: 𝖫-hop Influence score 𝛥[⋅].
1: 𝛥[⋅] ← 0
2: for each node 𝗏𝗂 ∈  do
3: 𝗉𝖺𝗍𝗁𝗂→⋅ ←ConstrainedDFS(, 𝗏𝗂,𝖫) //Searching for all paths starting from 𝗏𝗂 that do not exceed 𝖫 in path length and do

not contain loops
4: 𝑒𝑛𝑑 ← All end nodes in 𝗉𝖺𝗍𝗁𝗂→⋅
5: for each node 𝗏𝗃 ∈ 𝑒𝑛𝑑 do
6: 𝑇 (𝗂→𝗃) ← Estimate the probability of 𝗏𝗃 is in infected state at time step 𝑇 by Eqs. (7), (16) and (17)
7: 𝛥[𝗂] ← 𝛥[𝗂] + 𝑇 (𝗂→𝗃)
8: end for
9: end for

10: return 𝛥[⋅]

Therefore, we have

̃𝑇 (4) =
𝑇
∑

𝑖=3
4(𝑖)

=
𝑇
∑

𝑖=3

𝑖−1
∑

𝑗=2
3(𝑗)(1 − 𝛽3)𝑖−1−𝑗𝛽3

=
𝑇
∑

𝑖=3

𝑖−1
∑

𝑗=2

𝑗−1
∑

𝑘=1
2(𝑘)(1 − 𝛽2)𝑗−1−𝑘𝛽2(1 − 𝛽3)𝑖−1−𝑗𝛽3

=
𝑇
∑

𝑖=3

𝑖−1
∑

𝑗=2

𝑗−1
∑

𝑘=1
(1 − 𝛽1)𝑘−1𝛽1(1 − 𝛽2)𝑗−1−𝑘𝛽2(1 − 𝛽3)𝑖−1−𝑗𝛽3

(13)

• Case 4 (Fig. 4(d)): the path length between source node and target node is 𝑛 (2 ≤ 𝑛 ≤ 𝑇 ). Similarly, we have

̃𝑇 (𝑛) =
𝑇
∑

𝑖=𝑛−1
𝑛(𝑖). (14)

Similar with Eqs. (9) and (12), we have

𝑛(𝑖) =
𝑖−1
∑

𝑗=𝑛−2
𝑛−1(𝑗)(1 − 𝛽𝑛−1)𝑖−1−𝑗𝛽𝑛−1, (𝑛 ≥ 3, 𝑖 ≥ 𝑛 − 1). (15)

In summary, we can compute 𝑇 (𝗂 → 𝗃 | 𝗉𝗍𝑙) as follows. Using (𝛽1, 𝛽2,… ..., 𝛽𝑛) to denote the infection probability on each of the
dges in infection path 𝗉𝗍𝑙 respectively, where 𝑛 is the path length, 𝑛 = |𝗉𝗍𝑙|. Then,

𝑇 (𝗂→𝗃 | 𝗉𝗍𝑙) =
𝑇
∑

𝑖=𝑛−1
𝑛(𝑖), (16)

nd,

𝑛(𝑖) =

⎧

⎪

⎨

⎪

⎩

𝑖−1
∑

𝑗=𝑛−2
𝑛−1(𝑗)(1 − 𝛽𝑛−1)𝑖−1−𝑗𝛽𝑛−1 𝑛 ≥ 3

(1 − 𝛽1)𝑖−1𝛽1 𝑛 = 2.

(17)

.1.5. Influence expectation rank estimation
In sub Section 4.1.3 and 4.1.4 we discussed how to compute the influence expectation E(𝜎(𝗏𝗂)) for node 𝗏𝗂 ∈  theoretically.

To compute E(𝜎(𝗏𝗂)), a critical procedure is to search all the paths from 𝗏𝗂 (source node) to 𝗏𝗃 (target node) where each path’s
length is no more than 𝑇 and does not contain circle for each node 𝗏𝗃 lie within the 𝑇 -hop neighbourhood of 𝗏𝗂. However we cannot
find all the paths above with polynomial time complexity. Thus it is necessary to develop a method which can estimate E(𝜎(𝗏𝗂))
with high accuracy and acceptable time consuming. In fact, for greedy-based approaches we do not need to estimate the influence
expectation itself while we only need to estimate the rank of influence expectation such that we can select the node in the top
of the rank as a seed node. To this end, we propose an approach to estimate the rank of influence expectation. Specifically, we
constrain the infection path length as 𝖫 by constrained Depth First Search (DFS) when searching all the path from source node to
target node. For each infection path, we compute its corresponding infection probability from source node to target node. Then
9
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Algorithm 3 ConstrainedDFS
Input: Directed weighted graph ( ,  ,), starting node 𝗏𝗂 ∈  , path length constraint 𝖫.

utput: 𝗉𝖺𝗍𝗁𝗂→⋅ ∶ All paths starting from 𝗏𝗂 that do not exceed 𝖫 in path length and do not contain loops.
1: 𝗉𝖺𝗍𝗁𝗂→⋅ ← ∅
2: 𝑠𝑡𝑎𝑐𝑘 = [] ← Initial an empty stack; 𝗉𝗍 = [] ← Initial an empty stack
3: 𝗉𝗍.push(𝗏𝗂)
4: END = False
5: while 𝗉𝗍 is not empty do
6: if !END then
7: if 𝗉𝗍.length() ≤ 𝖫 then
8: 𝗏𝗃 ← 𝗉𝗍.top()
9: 𝑠𝑡𝑎𝑐𝑘.push(‘&’)

10: for each node 𝗏𝗄 ∈ N(𝗏𝗃, ) and 𝗏𝗄 not in 𝗉𝗍 do
11: 𝑠𝑡𝑎𝑐𝑘.push(𝗏𝗄)
12: end for
13: else
14: 𝗉𝗍.pop()
15: end if
16: end if
17: 𝗏𝗊 = 𝑠𝑡𝑎𝑐𝑘.pop()
18: END = False
19: if 𝗏𝗊 != ‘&’ then
20: 𝗉𝗍.push(𝗏𝗊)
21: 𝗉𝖺𝗍𝗁𝗂→⋅ ← 𝗉𝖺𝗍𝗁𝗂→⋅ ∪ {𝗉𝗍}
22: else
23: 𝗉𝗍.pop()
24: END = True
25: end if
26: end while
27: return 𝗉𝖺𝗍𝗁𝗂→⋅

we estimate the probability that target node is in infected state at time step 𝑇 by Eqs. (7), (16) and (17) . Finally, the estimated
robability of all target nodes starting from the same source node is summed up to represent the influence score of the source node.
fter the influence scores of all nodes are obtained, we estimate the rank of influence expectation by the rank of influence scores,
.e., we consider the node with the maximal influence score has the maximal influence expectation. The multi-hop influence score
omputation algorithm is presented in Algorithm 2, and the constrained DFS algorithm is presented in Algorithm 3. Note that 𝖫 ≪ 𝑇
nd 𝛥[𝗏𝗂] < E(𝜎(𝗏𝗂)) generally for node 𝗏𝗂, if 𝖫 = 𝑇 , 𝛥[𝗏𝗂] = E(𝜎(𝗏𝗂)). In practice, we set 𝖫 as 1,2 and 3.

.1.6. Influence overlap alleviation
By Algorithm 2 we can compute the influence score for each node, and estimate the rank of influence expectation by the rank of

nfluence score. Intuitively we can develop an approach which selects nodes with the top 𝐾 maximal influence score 𝛥[⋅] as the seed
odes. However, there would be a problem lying in such approach, i.e., the influence overlap problem. We describe the influence
verlap problem as follows, for seed node 𝑢, 𝑣 ∈ 𝑆, 𝜎({𝑢, 𝑣}) < 𝜎({𝑢}) + 𝜎({𝑣}), which means the selected seed nodes 𝑢 and 𝑣 have
any common followers. While a high-quality seed node set {𝑢, 𝑣} is expected to satisfy 𝜎({𝑢, 𝑣}) ≥ 𝜎({𝑢}) + 𝜎({𝑣}). To alleviate this

problem, we propose to select node with the maximal influence score 𝛥[⋅] adaptively by iteration. Specifically, in each iteration we
elect the node with the maximal influence score 𝛥[⋅] and add it into the current seed node set, then we remove it and its main
ollowers from current graph. After selecting a seed node 𝑠, We conduct 𝜃 times of influence diffusion samplings on the original

hypergraph 𝐻 under SICP model. Then we select those nodes which are infected by 𝑠 the most times during the influence diffusion
amplings as the main followers of 𝑠, denoted by 𝑓𝑙(𝑠). 𝛥[⋅] is recomputed in next iteration. We summarize the influence overlap

alleviation algorithm in Algorithm 4.

4.2. Neighbourhood coefficient based heuristic

4.2.1. Analysis
From the diffusion process of SICP model, we can find that the propagation of this model is highly stochastic. Different from

general diffusion models for ordinary graphs like the IC model (Li, Fan, Wang, & Tan, 2018), whose diffusion stochasticity is
induced only by the activation probabilities on edges, the diffusion stochasticity of SICP model is caused by two factors. One is the
stochasticity caused when an infected node 𝑣 randomly choose a hyperedge 𝑒 it belongs to. The another one is the stochasticity
10
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Algorithm 4 InfluenceOverlapAlleviation

Input: Current graph (𝑘), hypergraph 𝐻 , current seed node 𝑠, number of simulations 𝜃.
Output: New graph (𝑘+1) after influence overlap alleviation.

1: 𝑓𝑙(𝑠) = ∅
2: 𝑐𝑛𝑡[⋅] = 0
3: for 𝑟 = 1 to 𝜃 do
4: 𝑓𝑙𝑟(𝑠) ← Nodes infected by 𝑠 under SICP model // Sample the influence of 𝑠
5: for 𝑢𝑞 in 𝑓𝑙𝑟(𝑠) do
6: 𝑐𝑛𝑡[𝑢𝑞] ← 𝑐𝑛𝑡[𝑢𝑞] + 1
7: end for
8: 𝑓𝑙(𝑠) ← 𝑓𝑙(𝑠) ∪ 𝑓𝑙𝑟(𝑠)
9: end for

10: 𝜎(𝑠) = 1
𝜃
∑𝜃

𝑟=1 |𝑓𝑙𝑟(𝑠)| // Estimate the influence of 𝑠 by average
11: 𝑏 = ⌊𝜎(𝑠)⌋
12: 𝑓𝑙(𝑠) ← Top 𝑏 nodes in 𝑓𝑙(𝑠) with the maximal 𝑐𝑛𝑡[⋅]
13: (𝑘+1) ← Remove 𝑠 and it main followers 𝑓𝑙(𝑠) from (𝑘)
14: return (𝑘+1)

Fig. 5. Two different situation with the same degree 300.

caused when 𝑣𝑖 infects its each susceptible neighbour in 𝑒𝑘 with infection probability 𝛽. The hyperedge 𝑒𝑘 chosen by the first step
is crucial to the number of nodes which can be infected by 𝑣𝑖 through 𝑒𝑘 subsequently. Intuitively, more nodes 𝑒𝑘 contains, more
nodes might be infected by 𝑣𝑖 through 𝑒𝑘.

An example is given in Fig. 5 to illustrate such intuition. Red colour refer to infected state and black colour refer to susceptible
state. The red nodes in Fig. 5(a) and Fig. 5(b) both have the same degree 300, but their hyperdegree is different significantly. The
hypergraph in Fig. 5(a) has only 3 hyperedges and each hyperedge contains 100 nodes (except the red node), while the hypergraph
in Fig. 5(b) has 100 hyperedges and each hyperedge contains only 3 nodes (except the red node). In this scenario, The red nodes
in Fig. 5(a) can infect 100 nodes at most within one time step no matter which hyperedge is chosen randomly in the first step. By
contrast, the red nodes in Fig. 5(b) can infect only 3 nodes at most within one time step. The 1-hop expected infected node number
of the red node in Fig. 5(a) is 100 ∗ 𝛽, while that of red node in Fig. 5(b) is only 3 ∗ 𝛽, under the infection probability 𝛽. These two
red nodes have the same node degree but have very different 1-hop expected infected node number. It shows that it is unreasonable
to select seed nodes only according to the maximal node degree.

We can conclude that node with more neighbours on each hyperedge tends to have larger influence. For node 𝑣 ∈ 𝑉 , we name
the mean value of number of nodes each its connecting hyperedge contains as Neighbourhood Coefficient, denoted by 𝛼(𝑣), where

𝛼(𝑣) = 1
|𝐸𝑣|

∑

𝑒𝑖∈𝐸𝑣

|𝑒𝑖| =
𝑑𝑒𝑔(𝑣)
𝐻𝑑𝑒𝑔(𝑣)

. (18)

To validate the above observation, for each node 𝑣𝑖 ∈ 𝑉 , we calculate the neighbourhood coefficient 𝛼(𝑣𝑖) and influence 𝜎({𝑣𝑖}),
and analyse whether there exists significant correlation between 𝛼(𝑣𝑖) and 𝜎({𝑣𝑖}). In practice, we estimate 𝜎({𝑣𝑖}) by the average of
𝑅 times of diffusion results, where 𝑅 is set to 500. We set 𝛼(𝑣𝑖) and 𝜎({𝑣𝑖}) of each node 𝑣𝑖 as coordinates respectively and plot them
in the axes, as illustrated in Fig. 6. Besides, we use the Spearman’s rank correlation coefficient (𝜌) (Spearman, 1987) to conduct
quantitative analysis for the correlation between these two statistics. The Spearman’s rank correlation coefficient is a measure of the
monotonicity of the relationship between two statistics. It varies from −1 to 1 with 0 implying no correlation, 1 implies exact positive
monotonic relationship. And the more 𝜌 approaches to 1, the stronger the positive monotonic relationship between the variables. We
give the corresponding 𝜌 over each dataset in Fig. 6. From Fig. 6, we can observe that nodes have larger neighbourhood coefficient 𝛼
tends to have larger influence. Especially, on datasets Algebra, Restaurants-Rev, Geometry, Bars-Rev and iAF1260b, the node which
has the maximal influence is the node with the maximal neighbourhood coefficient. Thus we can conclude that there exists significant
11
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Fig. 6. Correlation analysis between nodes’ influence and neighbourhood coefficient on 8 datasets.

ositive monotonic relationship between the neighbourhood coefficient and influence. Therefore, we can develop a neighbourhood
oefficient based method to solve the IM problem on hypergraph under the SICP model.

Algorithm 5 Adaptive Neighbourhood Coefficient (Adeff )
Input: Hypergraph 𝐻(𝑉 ,𝐸), infection probability 𝛽, time step threshold 𝑇 , seed set size 𝐾, number of simulations 𝜃.
Output: Set of seed node 𝑆.

1: 𝐻 (0)(𝑉 (0), 𝐸(0)) ← 𝐻(𝑉 ,𝐸)
2: |𝑆| = ∅
3: while |𝑆| < 𝐾 do
4: 𝑘 ← |𝑆|
5: 𝑑𝑒𝑔(𝑘) ← Degree of each node in 𝐻 (𝑘)(𝑉 (𝑘), 𝐸(𝑘))
6: H𝑑𝑒𝑔(𝑘) ← Hyperdegree of each node in 𝐻 (𝑘)(𝑉 (𝑘), 𝐸(𝑘))
7: 𝛼(𝑘) ← 𝑑𝑒𝑔(𝑘)

H𝑑𝑒𝑔(𝑘)

8: 𝑠 ← argmax𝑣∈𝑉 (𝑘) 𝛼(𝑘)(𝑣)
9: 𝑆 ← 𝑆 ∪ {𝑠}

10: 𝑐𝑛𝑡[⋅] = 0
11: 𝑓𝑙(𝑠) = ∅
12: for 𝑟 = 1 to 𝜃 do
13: 𝑓𝑙𝑟(𝑠) ← Nodes infected by 𝑠 in 𝐻 (𝑘)(𝑉 (𝑘), 𝐸(𝑘)) under diffusion model (𝛽, 𝑇 )
14: for 𝑢𝑞 in 𝑓𝑙𝑟(𝑠) do
15: 𝑐𝑛𝑡[𝑢𝑞] ← 𝑐𝑛𝑡[𝑢𝑞] + 1
16: end for
17: 𝑓𝑙(𝑠) ← 𝑓𝑙(𝑠) ∪ 𝑓𝑙𝑟(𝑠)
18: end for
19: 𝜎(𝑠) = 1

𝜃
∑𝜃

𝑟=1 |𝑓𝑙𝑟(𝑠)| // Estimate the influence of 𝑠 by average
20: 𝑏 = ⌊𝜎(𝑠)⌋
21: 𝑓𝑙(𝑠) ← Top 𝑏 nodes in 𝑓𝑙(𝑠) with the maximal 𝑐𝑛𝑡[⋅]
22: 𝐻 (𝑘+1)(𝑉 (𝑘+1), 𝐸(𝑘+1)) ← Remove 𝑠 and it main followers 𝑓𝑙(𝑠) from 𝐻 (𝑘)(𝑉 (𝑘), 𝐸(𝑘))
23: end while
24: return 𝑆

4.2.2. Adaptive neighbourhood coefficient algorithm
Given a hypergraph 𝐻(𝑉 ,𝐸), we can obtain the degree 𝑑𝑒𝑔(𝑣𝑖) and hyperdegree 𝐻𝑑𝑒𝑔(𝑣𝑖) for each node 𝑣𝑖 and computed the

eighbourhood coefficient 𝛼(𝑣𝑖) very quickly. It is intuitive to develop an approach which selects nodes with the top 𝐾 maximal
eighbourhood coefficient 𝛼(𝑣𝑖) as the seed nodes. However, there would be a problem lying in such approach, i.e., the influence
verlap problem described in sub Section 4.1.6. To alleviate this problem, we select node with the maximal neighbourhood
12

oefficient 𝛼 adaptively by iteration. Specifically, in each iteration we select the node with the maximal neighbourhood coefficient
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Table 2
Statistics of datasets. |𝑉 | and |𝐸| represent the number of nodes and hyperedges respectively. < 𝑑𝑒𝑔 > and
< 𝐻𝑑𝑒𝑔 > represent the average degree and hyperdegree. < |𝑒| > represents the average number of nodes each
hyperedge contains.

Datasets |𝑉 | |𝐸| < 𝑑𝑒𝑔 > < 𝐻𝑑𝑒𝑔 > < |𝑒| >

Algebra 423 1268 78.9 19.5 6.5
Restaurant-Rev 565 601 79.7 8.1 7.7
Geometry 580 1193 164.8 21.6 10.5
Music-Rev 1106 694 167.9 9.5 15.1
NDC-classes 1161 1088 10.7 5.6 5.9
Bars-Rev 1234 1194 174.3 9.6 9.9
iJO1366 1805 2546 16.9 5.6 5.9
email-Enron 4423 15,653 25.3 14.6 4.1

𝛼 and add it into the current seed node set, then we remove it and its main followers from the current hypergraph. 𝛼 is recomputed
in next iteration.

We name this method as adaptive neighbourhood coefficient algorithm (Adeff ) and the details is presented in Algorithm 5:

• Step 1: At the beginning, with the input hypergraph 𝐻 , we calculate the initial neighbourhood coefficient 𝛼(0) by the ratio of
degree to hyperdegree.

• Step 2: At step 𝑘, computing the adaptive neighbourhood coefficient 𝛼(𝑘) under current hypergraph 𝐻 (𝑘). Node 𝑣 which has
the maximal 𝛼(𝑘) is chosen as current seed node 𝑠 and added to the seed node set 𝑆. Estimating the influence 𝜎(𝑠) of node 𝑠
by the average of 𝜃 times of diffusion sampling results, and selecting the nodes infected by 𝑠 the most times during diffusion
sampling as the main followers of 𝑠, denoted by 𝑓𝑙(𝑠). Then removing 𝑠 and its main followers 𝑓𝑙(𝑠) from 𝐻 (𝑘), obtaining
𝐻 (𝑘+1).

• Step 3: The algorithm terminates when |𝑆| = 𝐾.

. Experiments

.1. Experiment setup

Datasets. We use 8 real-world datasets, which are derived from different website12 (Amburg, Kleinberg, & Benson, 2021; Benson,
bebe, Schaub, Jadbabaie, & Kleinberg, 2018). Algebra & Geometry: nodes represent users on MathOverflow website and a set
f nodes will form a hyperedge if they answered the same type of question. Restaurant-Rev: nodes represent Yelp users and a set
f nodes will form a hyperedge if they reviewed the same type of restaurant within a month. Music-Rev: nodes denote Amazon
eviewers and a set of nodes will form a hyperedge if they reviewed the same type of blues music within a month. NDC-classes:
odes represent drug class labels, a set of labels will form a hyperedge if they consist the same drug. iJO1366: nodes are metabolics,
nd a set of nodes will form a hyperedge if they are applied to a certain reaction. email-Enron: nodes are email addresses, and a
et of nodes will form a hyperedge if they are used in the same email simultaneously. Table 2 summarizes the statistics of these
eal-world hypergraphs, < ⋅ > denote the average.

Baseline. To verify the performance of our proposed methods (MIE and Adeff), we compare our methods with several baselines:
1) HADP. HADP algorithm is proposed in Xie, Zhan, Liu and Zhang (2023) and is the newest algorithm for this problem currently.
t selects node with the maximal adaptive degree iteratively as the seed node set. (2) HyperIMRANK (MA & Rajkumar, 2022).

ranking based algorithms for the HyperCascade diffusion model (Gangal, Ravindran, & Narayanam, 2016) on hypergraphs with
iven influence diffusion probabilities i.e., 𝑝1 and 𝑝2. It updates nodes’ influence rank iteratively until the influence rank converges
uring iterations, then nodes in the top of rank are collected as the seed node set. In our experiments, we set 𝑝1 and 𝑝2 as 0.01 both,
hich is the same with that in Xie, Zhan, Liu and Zhang (2023) and collect the top 𝐾 nodes in the convergent rank as the seed
ode set. (3) Greedy. Greedy selects one node with the maximal influence in each iteration until all seed nodes are selected in 𝐾
terations. In practice, to obtain the influence of a node we need to conduct many simulations and we set the times of simulations
s 500. Due to the time complexity of the Greedy algorithm is extremely high, we constrain its running time within 48 hours in
xperiments. The details is presented in Algorithms 6. (4) H-RIS. Reverse influence sampling (RIS) (Borgs et al., 2014) algorithm is
opular and has shown good performance in IM problem on ordinary graphs. Xie, Zhan, Liu and Zhang (2023) extended RIS from
rdinary graph to hypergraph, H-RIS namely, and regard it as one of the baselines. In this work, we follow the same experimental
onfigures in Xie, Zhan, Liu and Zhang (2023). (5) Degree. It selects top 𝐾 nodes with the maximal node degree as the seed node
et. (6) HDegree. It selects top 𝐾 nodes with the maximal node hyperdegree as the seed node set.

1 https://www.cs.cornell.edu/~arb/data/
2 http://bigg.ucsd.edu/
13
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Fig. 7. Expected influence spread comparison by varying 𝐾 for each algorithm on real-world datasets.
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Algorithm 6 Greedy
Input: Hypergraph 𝐻(𝑉 ,𝐸), infection probability 𝛽, time step threshold 𝑇 , seed set size 𝐾, number of simulations 𝜃.
Output: Set of seed node 𝑆.

1: 𝑆 = ∅
2: while |𝑆| < 𝐾 do
3: 𝑘 ← |𝑆|
4: for each node 𝑣 ∈ 𝑉 do
5: for 𝑖 = 1 to 𝜃 do
6: 𝜎𝑖(𝑆 ∪ {𝑣}) ← number of nodes infected by 𝑆 ∪ {𝑣} under diffusion model (𝛽, 𝑇 )
7: end for
8: 𝜎(𝑆 ∪ {𝑣}) = 1

𝜃
∑𝜃

𝑖=1 𝜎𝑖(𝑆 ∪ {𝑣}) // Estimate the influence of 𝑣 by average
9: end for

10: 𝑠 = argmax𝑣∈𝑉 , 𝑣∉𝑆 𝜎(𝑆 ∪ {𝑣})
11: 𝑆 ← 𝑆 ∪ {𝑠}
12: end while
13: return 𝑆

Implementation. Following the previous works (Xie, Zhan, Liu & Zhang, 2023), we aim to find up to 25 seed nodes, i.e., 𝐾 ≤ 25.
We compare our methods, i.e., MIE (𝖫 = 1), MIE (𝖫 = 2) and Adeff with baselines above in terms of effectiveness and efficiency. For
infection probability 𝛽 and time step threshold 𝑇 , we set 3 different configures, e.g., (𝛽 = 0.01, 𝑇 = 25), (𝛽 = 0.015, 𝑇 = 15) and
𝛽 = 0.02, 𝑇 = 10) and conduct experiments respectively, which is the same with that in Xie, Zhan, Liu and Zhang (2023). All
ethods including our proposed methods and baselines are coded with Python and all experiments are conducted on a Linux server
ith single Intel(R) Xeon(R) Silver 4208 @2.10 GHz CPU.

.2. Effectiveness on real-world datasets

To validate the effectiveness of our proposed approaches, we conduct extensive experiments on real-world hypergraph datasets.
pecifically, we compare the influence (number of infected nodes) of seed node sets generated by our proposed approaches and
aselines respectively, and we set various configuration for infection probability 𝛽 and time step threshold 𝑇 . For a seed node set,
e conduct 500 times of influence diffusion under SICP model and we report the average of results. For the size of seed set, 𝐾,
e vary it from 1 to 25. The overall experimental results are illustrated in Fig. 7. Specially, due to the high time complexity of the
reedy algorithm, it cannot work out all the 25 seed nodes within 48 hours, and we report the results of it within 48 hours running

ime. Note that HRIS do not finish running within 48 hours in email-Enron, thus we do not report its results for email-Enron dataset.
From Fig. 7, we have several observations. Firstly, our proposed approaches MIE (𝖫 = 1), MIE (𝖫 = 2) and Adeff outperform all

aselines except Greedy on all datasets by a significant margin, and our proposed approaches have similar performance compare
o Greedy. Secondly, MIE (𝖫 = 2) has the best effectiveness comprehensively and can acquire about 450% improvement maximally
ompared to HADP, e.g., in Fig. 7(h) when 𝐾 = 10, and MIE (𝖫 = 1) outperforms 𝐴𝑑𝑒𝑓𝑓 in some cases, especially on datasets
DC-classes and email-Enron. Besides, MIE (𝖫 = 1) and MIE (𝖫 = 2) can always find the best seed node when 𝐾 = 1 while 𝐴𝑑𝑒𝑓𝑓
annot in some cases, e.g., in dataset NDC-classes. Another noticeable phenomenon is that MIE (𝖫 =1) and MIE (𝖫 =2) have the same
ffectiveness sometimes, e.g., in Fig. 7(a) when 𝐾 varies from 1 to 9, this is because in some scenarios only by 1-hop estimation MIE
lgorithm is sufficient to estimate the rank of influence expectation accurately, especially for the node with the maximal influence
xpectation, such that both MIE (𝖫 = 1) and MIE (𝖫 = 2) can find the node with the maximal influence expectation with respect to
urrent seed node set and they output the same seed node set. Take an observation on results of baselines, intuitive methods like
egree and HDegree algorithm are very ineffective, which means that this problem cannot be solved by selecting seed nodes simply
ccording to node degree and hyperdegree. Besides, extended method from ordinary graph IM problem like H-RIS and method
pplying on different diffusion model on hypergraphs like HyperIMRANK also failed to find high quality seed nodes. This shows
hat approaches applied on other domains cannot be used in this problem directly and also confirms the professionalism of our
roposed methods.

In addition, we also compute the AUC (Area Under the Curve) value to comprehensively compare each method’s effectiveness.
e take 𝛽 = 0.02, 𝑇 = 10 and 𝐾 = 25 as an example setup to compute the AUC metric. We report the AUC results and the performance

oosts of our proposed methods w.r.t the best of baselines (except Greedy) in Table 3. From this table we can see that our proposed
ethods achieved significant performance boost (13.1% at least and 279.9% at most). On the other hand, each of our proposed
ethods are able to achieve SOTA effectiveness in different datasets. In general, MIE (𝖫 = 2) has the best performance.

5.3. Ablation study

In this subsection, we investigate the effectiveness of our proposed influence overlap alleviation technique, which we both used in
our proposed methods MIE and 𝐴𝑑𝑒𝑓𝑓 . We take 𝐴𝑑𝑒𝑓𝑓 and MIE (𝖫 = 1) as examples to compare them with their variants without
influence overlap alleviation respectively with infection probability 𝛽 = 0.02, 𝑇 = 10. In the variants without influence overlap
15
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Fig. 8. Ablation study on influence overlap alleviation, 𝛽 = 0.02, 𝑇 = 10.

Table 3
AUC value computed by each curve from Fig. 7(q) to Fig. 7(x). Note that we have divided the original area value by 10,000 for clear
presentation. 𝛽 = 0.02, 𝑇 = 10. The maximal AUC value among all methods is shown in bold and the maximal AUC value among baselines
is shown with ∗.
Datasets Our proposed methods Baselines Boost

MIE (𝖫 = 1) MIE (𝖫 = 2) Adeff HADP HyperIMRANK HRIS Degree Hdegree

Algebra 5.17 5.13 5.04 4.00∗ 2.00 2.85 2.00 1.82 29.3% ↑

Restaurant-Rev 5.51 5.48 5.46 3.77∗ 3.43 3.59 3.46 3.07 46.2% ↑

Geometry 11.18 11.17 11.22 9.26∗ 8.01 8.93 7.81 7.74 21.2% ↑

Music-Rev 21.50 21.91 21.58 17.52∗ 14.34 16.83 16.18 14.34 25.0% ↑

NDC-classes 1.85 1.88 1.57 1.31∗ 1.25 1.13 1.17 1.13 43.5% ↑

Bars-Rev 1.81 1.80 1.79 1.60∗ 1.58 1.53 1.60 1.57 13.1% ↑

iJO1366 3.46 3.45 3.47 2.48∗ 1.89 1.74 1.12 0.97 39.9% ↑

email-Enron 5.05 5.28 4.92 1.31 1.39∗ / 1.21 1.06 279.9% ↑

Table 4
Running time of each method. 𝛽 = 0.02, 𝑇 = 10 and 𝐾 = 15. 48ℎ+ means the corresponding method did not finish running within 48
hours.

Datasets Running time (seconds)

MIE (𝖫 = 1) MIE (𝖫 = 2) Adeff HADP Greedy HyperIMRANK HRIS Degree Hdegree

Algebra 25.93 99.01 15.04 7.91 83 044.94 8.35 217.30 0.9 0.1
Restaurant-Rev 28.40 192.88 14.03 4.26 85 315.26 26.52 88.92 0.68 0.13
Geometry 108.80 358.16 52.92 16.02 48ℎ+ 18.89 384.98 1.38 0.14
Music-Rev 138.78 702.16 39.41 11.88 48ℎ+ 104.27 605.43 1.69 0.27
NDC-classes 9.31 36.51 11.35 3.11 82 231.84 20.99 1518.79 1.23 0.28
Bars-Rev 225.92 1129.28 49.31 12.77 48ℎ+ 191.73 1282.21 1.82 0.28
iJO1366 38.61 179.60 34.67 8.46 48ℎ+ 65.62 8438.90 2.02 0.47
email-Enron 144.12 1260.12 104.41 36.26 48ℎ+ 442.99 48ℎ+ 10.46 1.00

alleviation we directly select nodes with the top 𝐾 corresponding values as the seed nodes. Specifically, for 𝐴𝑑𝑒𝑓𝑓 , we compute the
neighbourhood coefficient 𝛼 for each node, then the top 𝐾 nodes with the maximal 𝛼 are selected as the seed node set. We name
this variant as 𝐴𝑑𝑒𝑓𝑓 -without. Similarly, for MIE (𝖫 = 1), we compute the influence score (𝖫 = 1) for each node, then the top 𝐾
nodes with the maximal influence score are selected as the seed node set. We name this variant as MIE (𝖫 =1)-without. Experimental
results are shown in Fig. 8. We can observe that methods with influence overlap alleviation outperform their corresponding variants
significantly both for 𝐴𝑑𝑒𝑓𝑓 and MIE (𝖫 =1), and the performance can be improved by up to 119%, e.g., in Fig. 8(d) when 𝐾 = 24.
Therefore we can conclude that our proposed influence overlap alleviation technique is effective significantly.

5.4. Efficiency

In this subsection we investigate the efficiency of our proposed algorithms. We vary 𝐾 from 5 to 15 and compare the time cost
of outputting seed nodes for our proposed algorithms and HADP with 𝛽 = 0.02, 𝑇 = 10. We also test the running time of each

ethod by setting 𝐾 = 15. The experimental results are presented in Fig. 9 and Table 4. Among 3 algorithms this paper proposed,
𝑑𝑒𝑓𝑓 has the best efficiency thus achieves the best trade-off between effectiveness and efficiency. By compare the time cost of
IE (𝖫 = 1) and MIE (𝖫 = 2), we can find that the time cost of MIE algorithm increase sharply with the increase of search path

ength constraint 𝖫. This phenomenon is intuitive since the number of infection path increases exponentially as 𝖫 grows so that the
ime cost for searching all the infection paths also grows exponentially. However, in later subsection, we analysed 𝖫 = 1 and 𝖫 = 2

is sufficient for most cases to estimate the influence expectation rank and there is no need to use deeper path length, thus avoiding
unacceptable time consuming of this algorithm. Finally, we can conclude that the 3 algorithms this paper proposed have different
16
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Fig. 9. Comparison on efficiency, 𝛽 = 0.02, 𝑇 = 10.

Table 5
Influence spreads comparison when varying parameters 𝛽 or 𝑇 respectively. 𝐾 = 25. Fixing 𝑇 = 15, varying 𝛽 from
{0.01, 0.02, 0.03, 0.04, 0.05} and fixing 𝛽 = 0.03, varying 𝑇 from {5, 10, 15, 20, 25} in MIE (𝖫 = 2). The influence spreads of all
seed sets are tested under 𝛽 = 0.03, 𝑇 = 15, and results is averaged by 500 times of spread simulations.

Datasets 𝛽 𝑇

0.01 0.02 0.03 0.04 0.05 5 10 15 20 25

Restaurant-Rev 389 422 423 410 377 386 424 423 412 374
NDC-classes 168 201 201 198 187 167 202 201 197 188
email-Enron 911 942 918 901 858 899 936 918 896 851

Table 6
Mean effectiveness score over 𝐾 seed nodes detected by MIE (𝖫 = 1) and MIE (𝖫 = 2). The effectiveness score of seed node 𝑠𝑘 in (𝑘) is
computed by 𝜎(𝑠𝑘 )

𝜎(𝑠∗𝑘 )
, where 𝑠∗𝑘 denotes the best seed node in (𝑘). 𝐾 = 25, 𝛽 = 0.02, 𝑇 = 10.

Mean effectiveness score ↑

Algebra Restaurant-Rev Geometry Music-Rev NDC-classes Bars-Rev iJO1366 email-Enron

MIE (𝖫 = 1) 0.983 0.987 0.950 0.871 0.966 0.967 0.982 0.884
MIE (𝖫 = 2) 0.992 0.988 0.980 0.964 0.976 0.986 0.989 0.952

effectiveness level and efficiency level, and algorithm with better effectiveness also have lower efficiency inevitably, 𝐴𝑑𝑒𝑓𝑓 and
MIE (𝖫 = 1) achieve good trade-off between effectiveness and efficiency.

5.5. Parameters sensitivities

In this subsection we investigate the parameters sensitivities of MIE about infection probability 𝛽 and time step threshold 𝑇 .
In practice, we set 𝛽 = 0.03, 𝑇 = 15 as the uniform setup when evaluating the influence spread of seed nodes. We investigate the
sensitivity in terms of 𝛽 and 𝑇 respectively: fixing 𝑇 = 15, varying 𝛽 from {0.01, 0.02, 0.03, 0.04, 0.05} and fixing 𝛽 = 0.03, varying
𝑇 from {5, 10, 15, 20, 25}. The number of seed nodes 𝐾 is set as 25. We feed different setups of 𝛽 and 𝑇 mentioned above in MIE
(𝖫 =2) algorithm to obtain different seed sets, and then test their influence spreads results under the same setup, i.e., 𝛽 = 0.03, 𝑇 = 15.
The comparison results on 3 datasets are reported in Table 5. From Table 5 we can find that when 𝛽 or 𝑇 deviate from the test
value (0.03 for 𝛽, 15 for 𝑇 ) to a large extent, the influence spread will also fluctuate greatly. For example, in Restaurant-Rev dataset,
when 𝛽 changed from 0.03 to 0.05, the influence spread dropped from 423 to 377. In addition, generally the influence spread is less
sensitive relatively when 𝛽 or 𝑇 changes slightly. For example, in NDC-classes dataset, when 𝑇 changed from 15 to 20, the influence
spread changed only from 201 to 197. A surprising result is that, the influence spread increased from 918 to 942 when 𝛽 changed to
0.02 in email-Enron dataset and similar phenomenon can also be observed when varying 𝑇 . By further analysis in email-Enron we
find that the influence spread of the first seed node selected by MIE (𝖫 = 2, 𝛽 = 0.02) is only 70, which is smaller than that of MIE
(𝖫 = 2, 𝛽 = 0.03), i.e., 83. However, MIE (𝖫 = 2, 𝛽 = 0.02) can outperform MIE (𝖫 = 2, 𝛽 = 0.03) gradually with the growth of 𝐾. This
phenomenon shows the common drawback of greedy frameworks: greedy algorithms will easily fall into local optimum thus fail to
reach global optimum, and also shows solving the HyperIM problem well is challenging.

5.6. Rank correlation analysis

In this subsection we investigate to what extent multi-hop influence score can accurately estimate the rank of influence
expectation. Similar with Section 4.2, we use Spearman’s rank correlation coefficient (Spearman, 1987), denoted by 𝜌, to conduct
17
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Fig. 10. Correlation analysis between nodes’ influence expectation and multi-hop influence score.

on 4 datasets, 𝛽 = 0.01, 𝑇 = 25. The influence expectation is computed by the average of 500 times of diffusion results. We visualize
the experimental results and illustrate them in Fig. 10. We have several observations. Firstly, it shows significant positive monotonic
relationship between influence expectation and 𝖫-hop influence score. Secondly, for the same dataset deeper path length constraint
𝖫 brings higher correlation coefficient and 𝜌 can reach 0.99, which is very close to 1., e.g., 𝜌 grows from about 0.879 to 0.982 with
the path length constraint 𝖫 grows from 1 to 3 in iJO1366. Besides, we can see that node with the maximal 𝖫-hop influence score
lso has the maximal influence expectation even when 𝖫 = 1 or 𝖫 = 2 in dataset Algebra, NDC-classes and JO1366. Thus we can
ay that 𝖫 = 1 and 𝖫 = 2 is sufficient to estimate the rank of influence expectation in most cases.

Further, we also conduct experiments to investigate to what extent multi-hop influence score can accurately estimate the rank
f influence expectation when 𝖫 = 𝑇 . We set three different combinations of 𝛽 and 𝑇 : (𝛽 = 0.5, 𝑇 = 1), (𝛽 = 0.2, 𝑇 = 2) and
𝛽 = 0.1, 𝑇 = 3). For each combination, we set 𝖫 = 𝑇 and we compute the influence expectation of each node by the average of
0,000 times of diffusion results. We illustrate the experimental results in Fig. 11. We can see the correlation coefficient 𝜌 is very
lose to 1, e.g., 𝜌 = 0.99993 in Fig. 11(d). This supports what we claim in this paper earlier, i.e., for node 𝗏𝗂, if 𝖫 = 𝑇 , 𝛥[𝗏𝗂] = E(𝜎(𝗏𝗂)).

Furthermore, we conduct more detailed experiments to verify the choice of 1-hop and 2-hop estimation in MIE is effective and
ufficient. In MIE algorithm, the input hypergraph 𝐻 is firstly transformed to a directed weighted graph (0). Then MIE computes
nfluence score 𝛥[⋅] and updates current graph (𝑘) iteratively until 𝐾 seed nodes are obtained during iterations. To verify the
ffectiveness of each seed node 𝑠𝑘 obtained by MIE (𝖫 = 1 or 2) in each iteration graph (𝑘), we further find the best seed node 𝑠∗𝑘
node with the maximal influence spread) in (𝑘) and compare their influence spread in (𝑘), i.e., 𝜎(𝑠𝑘) and 𝜎(𝑠∗𝑘). We set 𝐾 = 25, thus
e have 𝐾 seed nodes obtained by MIE (𝖫 = 1 or 2), 𝑆 = {𝑠1, 𝑠2,… , 𝑠𝐾}, and 𝐾 best seed nodes 𝑆∗ = {𝑠∗1 , 𝑠

∗
2 ,… , 𝑠∗𝐾}. We evaluate

he effectiveness score of each seed node 𝑠𝑘 by 𝜎(𝑠𝑘)
𝜎(𝑠∗𝑘)

. The mean values over 𝐾 effectiveness scores, 1
𝐾
∑𝐾

𝑘=1
𝜎(𝑠𝑘)
𝜎(𝑠∗𝑘)

, on 8 datasets are
shown in Table 6. We can find that MIE (𝖫 = 1) can reach 0.95 in most datasets and MIE (𝖫 = 2) can achieve that in all datasets.
Besides, MIE (𝖫 = 2) are able to achieve up to 10.7% improvement by comparing with MIE (𝖫 = 1), e.g., in Music-Rev. Such results
justified the choices of 1-hop and 2-hop estimation in MIE.
18
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Fig. 11. Correlation analysis between influence expectation and multi-hop influence score when 𝖫 = 𝑇 .

5.7. Discussion of ethics

This paper focuses on maximizing the influence or information spread in social networks, e.g., advertisement putting and public
pinion propagation. Some ethical problems probably come with that are privacy disclosure and rumour spread. Note that our
roposed algorithms (MIE and 𝐴𝑑𝑒𝑓𝑓 ) achieve influence maximization only by utilizing graph structural information and are
gnostic to users’ privacy like gender and occupation. Thus, there are no privacy issues with our proposed algorithms. On the other
and, we can mitigate the risks of rumour spread by blocking the seed nodes detected by our proposed methods, if we find our
roposed methods are misused. There are positive and negative information simultaneously in social networks, while information
pread problem can also be categorized into influence maximization and influence minimization. Influence maximization studies like
his paper aims to enhance positive information spread, while influence minimization studies aims to prevent negative information
e.g., rumour) spread. Influence minimization achieves its goal mainly by blocking a part of nodes or edges in a network, and in
ecent years there are many excellent works studying this problem (Manouchehri, Helfroush, & Danyali, 2021; Medya, Silva, &
ingh, 2020; Teng, Xie, Zhang, Wang, & Zhang, 2023; Xie, Zhang, Wang, Lin, Zhang & Wenjie, 2023; Yang, Li, & Giua, 2019; Zareie
Sakellariou, 2021). Specially, existing influence minimization algorithms are beneficial and helpful when influence maximization

lgorithms like MIE and 𝐴𝑑𝑒𝑓𝑓 are misused for rumour spread.

. Conclusion

Influence maximization on hypergraphs is of great research significance for social network marketing. In this paper, we study
his problem under the SICP model. By theoretical analysis we transform the hypergraph under SICP model to a directed weighted
rdinary graph under a SICP-variant model. Further we proposed a method applied on the transformed graph under SICP-variant
odel, i.e., MIE. Specifically, MIE estimates the rank of influence expectation for all nodes via computing influence scores by means

f probability distribution model. We analysed the existence of influence expectation for a node, and we provided the method of
omputing influence expectation exactly. In addition, We proposed an simple but effective degree and hyperdegree based approach
n terms of the characteristics of the SICP diffusion model, i.e., Adeff. Extensive experiments on 8 real-world datasets verify that our
roposed MIE and Adeff algorithms significantly outperform the newest method.
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