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Relational Temporal Graph Reasoning for
Dual-task Dialogue Language Understanding

Bowen Xing and Ivor W. Tsang, Fellow, IEEE

Abstract—Dual-task dialog language understanding aims to tackle two correlative dialog language understanding tasks simultaneously
via leveraging their inherent correlations. In this paper, we put forward a new framework, whose core is relational temporal graph
reasoning.We propose a speaker-aware temporal graph (SATG) and a dual-task relational temporal graph (DRTG) to facilitate relational
temporal modeling in dialog understanding and dual-task reasoning. Besides, different from previous works that only achieve implicit
semantics-level interactions, we propose to model the explicit dependencies via integrating prediction-level interactions. To implement our
framework, we first propose a novel model Dual-tAsk temporal Relational rEcurrent Reasoning network (DARER), which first generates
the context-, speaker- and temporal-sensitive utterance representations through relational temporal modeling of SATG, then conducts
recurrent dual-task relational temporal graph reasoning on DRTG, in which process the estimated label distributions act as key clues in
prediction-level interactions. And the relational temporal modeling in DARER is achieved by relational convolutional networks (RGCNs).
Then we further propose Relational Temporal Transformer (ReTeFormer), which achieves fine-grained relational temporal modeling via
Relation- and Structure-aware Disentangled Multi-head Attention. Accordingly, we propose DARER with ReTeFormer (DARER2), which
adopts two variants of ReTeFormer to achieve the relational temporal modeling of SATG and DTRG, respectively. The extensive
experiments on different scenarios verify that our models outperform state-of-the-art models by a large margin. Remarkably, on the dialog
sentiment classification task in the Mastodon dataset, DARER and DARER2 gain relative improvements of about 28% and 34% over the
previous best model in terms of F1.

Index Terms—Dialog System, Language Understanding, Temporal Relation, Graph Reasoning, Transformer

✦

1 INTRODUCTION

D Ialog language understanding [1] is the fundamental
component of the dialogue system. It includes several

individual tasks, e.g. dialog sentiment classification, dialog
act recognition, slot filling, and (multiple) intent detection. In
recent years, as researchers discover the inherent correlations
among some specific task-pair, the joint task which tackles
two tasks simultaneously has attracted increasing attention.
For example, dialog sentiment classification (DSC) and dialog
act recognition (DAR) are two challenging tasks in dialog
systems [2], while the task of joint DSC and DAR aims to
simultaneously predict the sentiment label and act label for
each utterance in a dialog [3], [4]. An example is shown in
Table 1. To predict the sentiment of ub, besides its semantics,
its Disagreement act label and the Positive sentiment label
of its previous utterance (ua) can provide useful references,
which contribute a lot when humans do this task. This is
because the Disagreement act label of ub denotes it has
the opposite opinion with ua, and thus ub tends to have a
Negative sentiment label, the opposite one with ua (Positive).
Similarly, the opposite sentiment labels of ub and ua are
helpful to infer the Disagreement act label of ub. In this
paper, we term this process as dual-task reasoning, where
there are three key factors: 1) the semantics of ua and ub; 2)
the temporal relation between ua and ub; 3) ua’s and ub’s
labels for another task.
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TABLE 1
A dialog snippet from the Mastodon [3] dataset.

Utterances Act Sentiment

ua: I highly recommend it. Really awe-
some progression and added difficulty

Statement Positive

ub: I never have. Disagreement Negative

In previous works, different models are proposed to
model the correlations between DSC and DAR. [3] propose
a multi-task model in which the two tasks share a single
encoder. [4], [5], [6], [7] try to model the semantics-level
interactions of the two tasks. The framework of previous
models is shown in Fig. 1 (a). For dialog understanding,
Co-GAT [7] applies graph attention network (GAT) [8]
over an undirected disconnected graph which consists of
isolated speaker-specific full-connected subgraphs. Therefore,
it suffers from the issue that the inter-speaker interactions
cannot be modeled, and the temporal relations between
utterances are omitted. For dual-task reasoning, on the one
hand, previous works only consider the parameter sharing
and semantics-level interactions, while the label information
is not explicitly integrated into the dual-task interactions.
Consequently, the explicit dependencies between the two
tasks cannot be captured and previous dual-task reasoning
processes are inconsistent with human intuition, which
leverages the label information as crucial clues. On the other
hand, previous works do not consider the temporal relations
between utterances in dual-task reasoning, in which they
play a key role.
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Fig. 1. Illustration of previous framework and ours.

In this paper, we try to address the above issues by intro-
ducing temporal relations and leveraging label information.
To introduce temporal relations, we design a speaker-aware
temporal graph (SATG) for dialog understanding, and a
dual-task reasoning temporal graph (DRTG) for dual-task
relational reasoning. Intuitively, different speakers’ semantic
states will change as the dialog goes, and these semantic
state transitions trigger different sentiments and acts. SATG
is designed to model the speaker-aware semantic states
transitions, which provide essential indicative semantics
for both tasks. In SATG, there is one group of utterance
nodes and two kinds of temporal relations: previous and
future. Since the temporal relation is a key factor in dual-
task reasoning, DRTG is designed to integrate inner- and
inter-task temporal relations, making the dual-task reasoning
process more rational and effective. In SATG, there are
two parallel groups of utterance nodes and three kinds of
temporal relations: previous, future, and equal.

To leverage label information, we propose a new frame-
work, as shown in Fig. 1 (b). Except for semantics-level
interactions, it integrates several kinds of prediction-level
interactions. First, self-interactions of sentiment predictions
and act predictions. In both tasks, there are prediction-level
correlations among the utterances in a dialog. In the DSC
task, the sentiment state of each speaker tends to be stable
until the utterances from others trigger the changes [9],
[10]. In the DAR task, there are different patterns (e.g.,
Questions-Inform and Directives-Commissives) reflecting
the interactions between act labels [11]. Second, interactions
between the predictions and semantics. Intuitively, the
predictions can offer feedback to semantics, which can
rethink and then reversely help revise the predictions. Third,
prediction-prediction interactions between DSC and DAR,
which model the explicit dependencies. However, since our
objective is to predict the labels of both tasks, there is no
ground-truth label available for prediction-level interactions.
To this end, we design a recurrent dual-task reasoning
mechanism that leverages the label distributions estimated
in the previous step as prediction clues of the current
step for producing new predictions. In this way, the label
distributions of both tasks are gradually improved along
the step. To implement our framework, we propose Dual-
tAsk temporal Relational rEcurrent Reasoning Network1

(DARER) [12], which includes three main components. The
Dialog Understanding module conducts relation-specific graph
transformations (RSGT) over SATG to generate context-,

1The content of DARER was presented as a poster in ACL 2022
conference.

speaker- and temporal-sensitive utterance representations.
The Initial Estimation module produces the initial label
information which is fed to the Recurrent Dual-task Reasoning
module, in which RSGT operates on DRTG to conduct dual-
task relational reasoning. And the RSGTs are achieved by
relational graph convolutional networks [13]. Moreover, we
design logic-heuristic training objectives to force DSC and
DAR to gradually prompt each other in the recurrent dual-
task reasoning process.

Then we further propose Relational Temporal Trans-
former (ReTeFormer) and DARER2. The main difference
between DARER and DARER2 is that in DARER2 the original
RGCNs applied over SATG and DRTG are replaced with our
proposed SAT-ReTeFormer and DTR-ReTeFormer. The core
of ReTeFormer is the Relation- and Structure-Aware Disentan-
gled Multi-head Attention, which can achieve fine-grained
relational temporal modeling. Generally, DARER2 has three
distinguished advantages over DARER: (1) ReTeFormer
integrates dialog structural information, achieving more
comprehensive and fine-grained relational temporal graph
reasoning; (2) the relational temporal attention mechanism of
ReTeFormer can comprehensively and explicitly model the
correlations among dual tasks semantics and predictions; (3)
the relation specific attention maps derived by ReTeFormer
can provide explainable evidence of relational temporal
graph reasoning, making the model more reliable.

In summary, this work has three major contributions.
(1) We propose DARER, which is based on a new frame-
work that for the first time achieves relational temporal
graph reasoning and prediction-level interactions. (2) Our
proposed DARER2 further improves the relational temporal
graph reasoning with our proposed ReTeFormer which is
based on the Relation- and Structure-Aware Disentangled
Multi-head Attention. (3) Experiments prove that DARER
and DARER2 significantly outperform the state-of-the-art
models in different scenarios of dual-task dialog language
understanding.

The remainder of this paper is organized as follows. In
Section 2, the related work of two scenarios of dual-task
dialog language understanding, (1) Joint Dialog Sentiment
Classification and Act Recognition (2) Joint Multiple Intent
Detection and Slot Filling, are summarized, and the differ-
ences of our method from previous studies are highlighted.
Section 3 elaborates on the overall model architecture shared
by DARER and DARER2. Section 4 and 5 describe DARER
and DARER2, respectively. Experimental results are reported
and analyzed in Section 6, and note that the task definition
of Joint Multiple Intent Detection and Slot Filling as well as
the experiments on this task are introduced in Section 6.10.
Finally, we conclude this work and provide some prospective
future directions in Section 7.

2 RELATED WORKS

In recent years, researchers have discovered that some dialog
language understanding tasks are correlative and they can
be tackled simultaneously by leveraging their beneficial
correlations.
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2.1 Joint Dialog Sentiment Classification and Act
Recognition

Dialog Sentiment Classification [9], [14], [15], [16], [17], [18]
and Dialog Act Recognition [19], [20], [21], [22] are both
utterance-level classification tasks. Recently, it has been
found that these two tasks are correlative, and they can
work together to indicate the speaker’s more comprehensive
intentions [5]. With the development of well-annotated
corpora [3], [11], in which both the act label and sentiment
label of each utterance are provided, several models have
been proposed to tackle the joint dialog sentiment classifi-
cation and act recognition task. Cerisara et al., [3] propose
a multi-task framework based on a shared encoder that
implicitly models the dual-task correlations. Kim and Kim
[5] integrate the identifications of dialog acts, predictors and
sentiments into a unified model. To explicitly model the
mutual interactions between the two tasks, Qin et al., [4]
propose a stacked co-interactive relation layer, and Li et al.,
[6] propose a context-aware dynamic convolution network
to capture the crucial local context. More recently, Qin et
al., [7] propose Co-GAT, which applies graph attention on a
fully-connected undirected graph consisting of two groups
of nodes corresponding to the two tasks, respectively.

This work is different from previous works on three as-
pects. First, we model the inner- and inter-speaker temporal
dependencies for dialog understanding. Second, we model
the cross- and self-task temporal dependencies for dual-task
reasoning; Third, we achieve prediction-level interactions in
which the estimated label distributions act as important and
explicit clues other than semantics.

2.2 Joint Multiple Intent Detection and Slot Filling

It has been widely recognized that intent detection and slot
filling have strong correlations. And a group of models [23],
[24], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35]
have been proposed to leverage the correlations for tackling
the joint task of intent detection and slot filling in the multi-
task framework. However, in real-word scenarios, a single
utterance usually expresses multiple intents, which cannot
be handled by the above models. To this end, Kim et al.,
[36] propose a multi-intent spoken language understanding
model. Besides, Gangadharaiah and Narayanaswamy [37]
propose the first model that utilizes a slot-gate mechanism
to jointly tackle the tasks of multiple intent detection and
slot filling. Furthermore, Qin et al., [38] propose an adaptive
graph-interactive model to model the fine-grained multiple
intent information and integrate it into slot filling task via
GAT. More recently, Qin et al., [39] propose to conduct non-
autoregressive slot decoding in a parallel manner for slot
filling, and the proposed GL-GIN achieves state-of-the-art
performance.

Our work can be generalized to the joint task of multiple
intent detection and slot filling. Existing methods adopt
homogeneous graphs and vanilla GATs to achieve the
interactions between the predicted intents and slot semantics,
ignoring the specific relations among the two tasks’ nodes
and the temporal dependencies among the slot nodes.
Different from them, our method achieves relational temporal
graph reasoning.

3 OVERALL MODEL ARCHITECTURE

Given a dialog consisting of N utterances: D =
(u1, u2, ..., uN ), our objective is to predict both the dialog
sentiment labels Y S = ys1, ..., y

s
N and the dialog act labels

Y A=ya1 , ..., y
a
N in a single run.

The overall network architecture shared by DARER and
DARER2 is shown in Fig. 2. It consists of three modules,
whose details are introduced in this section.

3.1 Dialog Understanding

3.1.1 Utterance Encoding
In previous works, BiLSTM [40], [41] is widely adopted
as the utterance encoder to generate the initial utterance
representation: H = (h0, ..., hN ). In this paper, besides
BiLSTM, we also study the effect of different pre-trained
language model (PTLM) encoders in Sec. 6.3.3.
BiLSTM: We apply the BiLSTM over the word embeddings
of ut to capture the inner-sentence dependencies and tem-
poral relationships among the words, producing a series of
hidden states Hu,i = (h0

u,i, ..., h
li
u,i), where li is the length of

ui. Then we feed Hu,i into a max-pooling layer to get the
representation for each ui.
PTLM: We separately feed each utterance into the PTLM
encoder and take the output hidden state of the [CLS] token
as the utterance representation.

3.1.2 Speaker-aware Temporal RSGT
To capture the inter- and intra-speaker semantic interactions
and the speaker-aware temporal dependencies between
utterances, we conduct Speaker-aware Temporal relation-
specific graph transformations (SAT-RSGT). Now we obtain
the context-, speaker- and temporal-sensitive utterance rep-
resentations: Ĥ = (ĥ0, ..., ĥN ).

3.2 Initial Estimation

To obtain task-specific utterances representations, we sepa-
rately apply two BiLSTMs over Ĥ to obtain the utterance
hidden states for sentiments and acts respectively: H0

s =
BiLSTMS(Ĥ), H0

a = BiLSTMA(Ĥ), where H0
s = {h0

s,i}Ni=1

and H0
a = {h0

a,i}Ni=1. Then H0
s and H0

a are separately fed
into Sentiment Decoder and Act Decoder to produce the
initial estimated label distributions:

P 0
S = {P 0

S,i}Ni=1 P 0
A = {P 0

A,i}Ni=1

P 0
S,i = softmax(W s

dh
0
a,i + bsd)

=
[
p0s,i[0], ..., p

0
s,i[k], ..., p

0
s,i(|Cs| − 1)

]
P 0
A,i = softmax(W a

d h
0
s,i + bad)

=
[
p0a,i[0], ..., p

0
a,i[k], ..., p

0
a,i(|Ca| − 1)

]
(1)

where W ∗
d and b∗d are weight matrices and biases, Cs and Ca

are sentiment class set and act class set.

3.3 Recurrent Dual-task Reasoning

At step t, the recurrent dual-task reasoning module takes
two streams of inputs: 1) hidden states Ht−1

s ∈ RN×d and
Ht−1

a ∈ RN×d; 2) label distributions P t−1
S ∈ RN×|Cs| and

P t−1
A ∈ RN×|Ca|.
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Fig. 2. The overall network architecture of DARER and DARER2. In DARER, SAT-RSGT and DTR-RSGT are achieved by RGCNs, while in DARER2,
they are achieved by SAT-ReTeFormer and DTR-ReTeFormer, respectively. Without loss of generality, the step number T in this illustration is set 2.

3.3.1 Projection of Label Distribution
To achieve the prediction-level interactions, we should repre-
sent the label information in vector form to let it participate in
calculations. We use P t−1

S and P t−1
A to respectively multiply

the sentiment label embedding matrix Me
s ∈ R|Cs|×d and

the act label embedding matrix Me
a ∈ R|Ca|×d, obtaining

the sentiment label representations Et
S = {ets,i}Ni=1 and act

label representations Et
A = {eta,i}Ni=1. In particular, for each

utterance, its sentiment label representation and act label
representation are computed as:

ets,i =

|Cs|−1∑
k=0

pt−1
s,i [k] · vks

eta,i =

|Ca|−1∑
k′=0

pt−1
a,i [k

′] · vk
′

a

(2)

where vks and vk
′

a are the label embeddings of sentiment class
k and act class k′, respectively.

3.3.2 Dual-task Reasoning RSGT
To achieve the self- and mutual-interactions between the
semantics and predictions, for each node in DRTG, we super-
impose its corresponding utterance’s label representations of
both tasks on its hidden state:

ĥt
s,i =ht−1

s,i + ets,i + eta,i

ĥt
a,i =ht−1

a,i + ets,i + eta,i
(3)

Thus the representation of each node contains the task-
specific semantic features and both tasks’ label information,
which are then incorporated into the relational reasoning
process to achieve semantics-level and prediction-level inter-
actions.

The obtained Ĥt
s and Ĥt

a both have N vectors, respec-
tively corresponding to the N sentiment nodes and N act
nodes on DRTG. Then we feed them into the Dual-task
Reasoning relation-specific graph transformations (DTR-
RSGT) conducted on DRTG. Now we get H

t
s and H

t
a.

3.3.3 Label Decoding
For each task, we use a task-specific BiLSTM (TS-LSTM) to
generate a new series of task-specific hidden states:

Ht
s = BiLSTMS(H

t
s)

Ht
a = BiLSTMA(H

t
a)

(4)

Besides, as H
t
s and H

t
a both contain the label information of

the two tasks, the two TS-LSTMs have another advantage of
label-aware sequence reasoning, which has been proven can
be achieved by LSTM [42].

Then Ht
S and Ht

A are separately fed to Sentiment Decoder
and Act Decoder to produce P t

S and P t
A.

3.4 Training Objective
Intuitively, there are two important logic rules in our model.
First, the produced label distributions should be good
enough to provide useful label information for the next step.
Otherwise, noisy label information would be introduced,
misleading the dual-task reasoning. Second, both tasks are
supposed to learn more and more beneficial knowledge
from each other in the recurrent dual-task reasoning process.
Scilicet the estimated label distributions should be gradually
improved along steps. In order to force our model to obey
these two rules, we propose a constraint loss LConstraint

that includes two terms: LEstimate and LMargin, which
correspond to the two rules, respectively.
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Estimate Loss LEstimate is the cross-entropy loss forcing
model to provide good enough label distributions for the
next step. At step t, for DSC task, LS,t

Estimate is defined as:

LS,t
Estimate =

N∑
i=1

|Cs|−1∑
k=0

ysi [k]log
(
pts,i[k]

)
(5)

Margin Loss LMargin works on the label distributions of
two adjacent steps, and it promotes the two tasks gradually
learning beneficial knowledge from each other via forcing
DARER to produce better predictions at step t than step t−1.
Besides, although the model can receive more information at
step t than t− 1, this information is imperfect because there
are some incorrect predictions of the previous step. Therefore,
we use the margin loss to force the model to leverage the
beneficial information to output better predictions. For DSC
task, LS,(t,t−1)

Margin is a margin loss defined as:

LS,(t,t−1)
Margin =

N∑
i=1

|Cs|−1∑
k=0

ysi [k] max(0, pt−1
s,i [k]− pts,i[k]) (6)

If the correct class’s possibility at step t is worse than at
step t-1, mathcalL

S,(t,t−1)
Margin > 0. Then the negative gradient

further force the model to predict better at step t. Otherwise,
the correct class’s possibility at step t is better than or equal
to the one at step t-1. In this case, mathcalL

S,(t,t−1)
Margin = 0.

Constraint loss LConstraint is the weighted sum of
LEstimate and LMargin, with a hyper-parameter γ balancing
the two kinds of punishments. For DSC task, LS

Constraint is
defined as:

LS
Constraint =

T−1∑
t=0

LS,t
Estimate + γs ∗

T∑
t=1

LS,(t,t−1)
Margin (7)

Final Training Objective The total loss for DSC task (LS)
is the sum of LS

Constraint and LS
Prediction:

LS = LS
Prediction + LS

Constraint (8)

where LS
Prediction is the cross-entropy loss of the produced

label distributions at the final step T :

LS
Prediction =

N∑
i=1

|Cs|−1∑
k=0

ys,i log
(
pTs,i[k]

)
(9)

The total loss of DAR task (LA) can be derivated similarly
like eqs. (5) to (9).

The final training objective of our model is the sum of the
total losses of the two tasks:

L = LS + LA (10)

4 DARER

Based on the overall model introduced in Section 3, DARER
achieves SAT-RSGT and DTR-RSGT via applying RGCNs
on the speaker-aware temporal graph (SATG) and dual-task
reasoning temporal graph (DRTG), respectively.

TABLE 2
All relation types in SATG (assume there are two speakers). Is(i)

indicates the speaker node i is from. pos(i, j) indicates the relative
position of node i and j.

rij 1 2 3 4 5 6 7 8

Is(i) 1 1 1 1 2 2 2 2
Is(j) 1 1 2 2 1 1 2 2

pos(i, j) > ≤ > ≤ > ≤ > ≤

u1 u3 u5

u2 u4 r=1

r=2
r=5
r=6

Fig. 3. An example of SATG. u1, u3 and u5 are from speaker 1 while u2

and u4 are from speaker 2. w.l.o.g, only the edges directed into u3 node
are illustrated.

4.1 SAT-RSGT

4.1.1 Speaker-aware Temporal Graph
We design a SATG to model the information aggregation
between utterances in a dialog. Formally, SATG is a com-
plete directed graph denoted as G = (V, E ,R). In this
paper, the nodes in G are the utterances in the dialog, i.e.,
|V| = N,V = (u1, ..., uN ), and the edge (i, j, rij) ∈ E
denotes the information aggregation from ui to uj under
the relation rij ∈ R. Table 2 lists the definitions of all relation
types in R. In particular, there are three kinds of information
conveyed by rij : the speaker of ui, the speaker of uj , and
the relative position of ui and uj . Naturally, the utterances
in a dialog are chronologically ordered, so the relative
position of two utterances denotes their temporal relation.
An example of SATG is shown in Fig. 3. Compared with
the previous dialog graph structure [4], [7], our SATG has
two main advancements. First, as a complete directed graph,
SATG can model both the intra- and inter-speaker semantic
interactions. Second, incorporating temporal information,
SATG can model the transitions of speaker-aware semantic
states as the dialog goes on, which benefits both tasks.

4.1.2 SAT-RGCN
Inspired from [13], we apply SAT-RGCN over SATG to
achieve the information aggregation:

ĥi = W1h
0
i +

∑
r∈R

∑
j∈N r

i

1

|Nr
i |
W r

1 h
0
j (11)

where W1 is self-transformation matrix and W r
1 is relation-

specific matrix.

4.2 DTR-RSGT

4.2.1 Dual-task Reasoning Temporal Graph
Inspired by [43], [44], [45], [46], [47], we design a DRTG
to provide an advanced platform for dual-task relational
reasoning. It is also a complete directed graph that consists
of 2N dual nodes: N sentiment nodes and N act nodes.
The definitions of all relation types in R′ are listed in
Table 3. Intuitively, when predicting the label of a node,
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TABLE 3
All relation types in DRTG. It(i) indicates that node i is a sentiment (S)

node or act (A) node.

r′ij 1 2 3 4 5 6 7 8 9 10 11 12

It(i) S S S S S S A A A A A A
It(j) S S S A A A S S S A A A

pos(i, j) < = > < = > < = > < = >

s1 s2 s3 s4 s5

a1 a2 a3 a4 a5 r'=1

r'=2

r'=3

r'=7

r'=8

r'=9

Fig. 4. An example of DRTG. si and ai respectively denote the node
of DAC task and DAR task. w.l.o.g, only the edges directed into s3 are
illustrated.

the information of its dual node plays a key role, so we
emphasize the temporal relation of ‘=’ rather than merge it
with ‘<’ like SATG. Specifically, the relation r′ij conveys three
kinds of information: the task of ni, the task of nj and the
temporal relation between ni and nj . An example of DRTG is
shown in Fig. 3. Compared with the previous dual-task graph
structure [4], [7], our DRTG has two major advancements.
First, the temporal relations in DRTG can make the DTR-
RSGT capture the temporal information, which is essential
for dual-task reasoning, while this cannot be achieved by the
co-attention [4] or graph attention network [7] operating on
their non-temporal graphs. Second, in DRTG, the information
aggregated into a node is decomposed by different relations
that correspond to individual contributions, rather than
only depending on the semantic similarity measured by
the attention mechanisms.

4.2.2 DTR-RSGT
We apply DTR-RGCN to DRTG to achieve information
aggregation. Specifically, the node updating process of DTR-
RGCN can be formulated as:

h
t

i = W2ĥ
t
i +

∑
r∈R′

∑
j∈N r′

i

1∣∣Nr′
i

∣∣W r
2 ĥ

t
j (12)

where W2 is self-transformation matrix and W r
2 is relation-

specific matrix.

5 DARER2

Based on the overall model introduced in Section 3, DARER2

achieves SAT-RSGT and DTR-RSGT via applying our pro-
posed ReTeFormers on the speaker-aware temporal graph
(SATG) and dual-task reasoning temporal graph (DRTG), re-
spectively. Next, we first introduce the details of ReTeFormer,
then the SAT-RSGT and DTR-RSGT of DARER2.

5.1 Relational Temporal Transformer

The architecture of ReTeFormer is shown in Fig. 5. The
core of ReTeFormer is the Relation- and Structure- Aware

Disentangled Multi-head Attention, which can handle the
Relation Modeling and Temporal Modeling simultaneously.

Relational Modeling The relational graph can be dis-
entangled into different views, each of which corresponds
to a specific relation and has its own adjacency matrix. In
ReTeFormer, each head of Relational Temporal Attention
corresponds to a specific relation and has its own parame-
terization, so as to achieve the relation-specific information
aggregation. To make sure that the information aggregation
of each relation is along the relation-specific structure,
we design the Relation- and Structure-Aware 2-D Mask
which uses the relation-specific adjacency matrix to mask
the correlation matrix. Since the final node representation
receives information along multiple relations, we design the
Dynamic 1-D Mask and Merge module to extract and sum
each node’s sub-representations obtained from multi-head
Relational Temporal Attentions.

Temporal Modeling A dialog can be regarded as a tem-
poral sequence of utterances. ReTeFormer utilizes position
embedding to achieve temporal modeling. The position
embedding is one of the foundations of Transformer [48],
which adds the position embedding to the input represen-
tation. However, recently it has been proven that adding
together the position embeddings and word embeddings
at input harms the attention and further limit the model’s
expressiveness because this operation brings mixed correla-
tions between the two heterogeneous information resources
(semantics and position) and unnecessary randomness in the
attention [49]. To this end, Ke et al. (2021) [49] propose to
model word contextual correlation and positional correlation
separately with different parameterizations and then add
them together. And our ReTeFormer follows this manner.

Next, we introduce the details of Relation- and Structure-
Aware Disentangled Multi-head Attention, which is the core
of our ReTeFormer2.

5.1.1 Relation-Specific Scaled Dot-Product Attention

For the head corresponding to relation r, the correlation
score α̂r

ij between every two nodes is obtained via relational
modeling and temporal modeling:

α̂r
ij =

1√
d
(Qr

[h,i])(K
r
[h,j])

T +
1√
d
(Qr

[p,i])(K
r
[p,j])

T

Qr
[h,i] = hiW

r
Q, Kr

[h,j] = hjW
r
K

Qr
[p,i] = pjU

r
Q, Kr

[p,j] = pjU
r
K

(13)

where h∗ p∗ denote the input hidden state and position
embedding, respectively; W r

Q and W r
K denote the relation-

specific projection matrix for the hidden states; Ur
Q and

Ur
K denote the relation-specific projection matrix for the

position embeddings;
√
d is the scaling term for retaining the

magnitude of α̂r
ij .

Now we obtain the relation-specific correlation matrix
Mr for each relation r, which represents each two nodes’
correlation along the specific relation.

2In this section, we omit the introduction of the residual connection,
the layer normalization, and the feed-forward layers, whose details are
the same as vanilla Transformer [48].
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Relation- and Structure-
Aware Disentangled 
Multi-head Attention

Add & Norm

Feed Forward

Add & Norm

Input Hidden States 

Position Embeddings

Output Hidden States 

(a)

Sub-Representations Summing

Relational Temporal AttentionRelational Temporal Attention

Linear Linear Linear Linear Linear

Linear
MatMul

SoftMax

Relation- and Structure-
Aware 2-D Mask

MatMul MatMul

Scale & Add

(b) (c)

Fig. 5. (a) Illustration of ReTeFormer. (b) Illustration of Relation- and Structure-Aware Disentangled Multi-head Attention. (c) Illustration of Relational
Temporal Attention corresponding to the i-th relation. Qh,Kh and Vh denote the query matrix, key matrix and value matrix of input hidden states.
Qp and Kp denote the query matrix and key matrix of the absolute position embeddings. Nr denotes the number of relations.

5.1.2 Relation- and Structure-Aware 2-D Mask

Although we obtain the relation-specific correlation scores
of all node pairs, a specific relation has its own adjacent
structure which is crucial for information aggregation. And
the attention score between two nodes should also be calcu-
lated regarding the relation-specific neighbors. To achieve
this, we design the relation- and structure-aware 2-D mask
to introduce the relation-specific structure into the attention
mechanism. Specifically, the relational graph can derive Nr

relation-specific adjacency matrice via disentangling. And
for each relation r, its adjacency matrix Ar is used to mask
its correlation matrix Mr. Finally, the normalized relation-
specific attention score αr

ij is obtained as follows:

αr
ij = softmax

(
f2D
mask(α

r
ij , A

r
ij)

)
f2D
mask =

{
α̂r
ij Ar

ij = 1

−∞ Ar
ij = 0

(14)

where f2D
mask denotes the function of the relation- and

structure-aware 2-D mask.

5.1.3 Output Node Representation

For the attention head corresponding to relation r, the
updated sub-representation of node i (or the information
that node i should receive along relation r) is:

ĥr
i =

∑
j∈N r

i

αijV
r
[h,j]

V r
[h,j] = hjW

r
V

(15)

A node is always connected to other nodes along different
relations. Therefore, the final updated representation node i
is the sum of its sub-representations of all attention heads:

ĥi =
∑
r∈R

ĥr
i (16)

SP1 to SP2

SP1 to SP1
SP2 to SP1
SP2 to SP2

u1 u3

u2 u4

Fig. 6. An example of the speaker-aware graph for SAT-ReTeFormer and
its four disentangled views. Assuming there are four utterances: u1 and
u3 (in green color) are from the speaker 1 (SP1); u2 and u4 (in blue
color) are from the speaker 2 (SP2). Each view has its own adjacency
matrix for the corresponding head of relational temporal attention.

5.2 SAT-ReTeFormer

In DARER2, the speaker-aware temporal RSGT (Sec. 3.1.2)
is achieved by the SAT-ReTeFormer rather than the RGCN
used in DARER. And the speaker-aware graph for SAT-
ReTeFormer is shown in Fig. 6. The input of SAT-ReTeFormer
is the sequence of the initial utterance representations
H = (h0, ..., hN ). In the SAT-ReTeFormer’s speaker-aware
graph, each node corresponds to an utterance, whose rep-
resentation hi corresponds to its position embedding pi.
Compared with RGCN, our SAT-ReTeFormer can explicitly
model the correlations among the utterances, integrating
both the speaker information and the fine-grained temporal
information. After SAT-ReTeFormer, we obtain the context-,
speaker- and temporal-sensitive utterance representations:
Ĥ = (ĥ0, ..., ĥN ).

5.3 DTR-ReTeFormer

In DARER2, the dual-task reasoning RSGT (Sec. 3.3.2) is
achieved by DTR-ReTeFormer rather than the RGCN used
in DARER. And the dual-task reasoning graph for DTR-
ReTeFormer is illustrated in Fig 7.
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Sentiment to Act

Sentiment to Sentiment
Act to Sentiment
Act to Act

s1 s2

a1 a2

Fig. 7. An example of the dual-task reasoning graph for SAT-ReTeFormer.
W.l.o.g, the dialog includes two utterances. s1 and s2 (in green color)
denote the sentiment nodes corresponding to the first and second
utterances; a1 and a2 (in red color) denote the act nodes of the first
and second utterances. The graph can be disentangled into four views
along the four relations, and each view has its own adjacency matrix
used in the corresponding head of relational temporal attention.

The input of DTR-ReTeFormer is the concatenation of Ĥt
s

and Ĥt
a: Ĥt

s ∥ Ĥt
a = [ĥt

s,1, ..., ĥ
t
s,N , ĥt

a,1, ..., ĥ
t
a,N ]. Since ĥt

s,i

and ĥt
a,i corresponds to the same utterance (ui), they have

the same position embedding pi.
Here we demonstrate the details of the semantics- and

prediction-level interactions achieved by DTR-ReTeFormer.
Assuming that node i is sentiment node and node j is act
node, the correlative score between i and j is calculated as
follows (bringing Eq. 4 into Eq. 13):

α̂r′,t
ij =

1√
d
(ĥt

s,iW
r
Q)(ĥ

t
a,jW

r
K)T +

1√
d
(pjU

r
Q)(pjU

r
K)T

=
1√
d

(
(ht−1

s,i + ets,i + eta,i)W
r
Q

)(
(ht−1

a,j + ets,j + eta,j)W
r
K

)T

+
1√
d
(piU

r
Q)(pjU

r
K)T

=
1√
d
ht−1
s,i W r

Q(W
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K)T (ht−1

a,j )
T +
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Q(W
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K)T (ets,j)

T

+
1√
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s,i W r

Q(W
r
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T +
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d
ets,iW

r
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+
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Q(W

r
K)T (ets,j)
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1√
d
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r
Q(W
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K)T (eta,j)

T

+
1√
d
eta,iW

r
Q(W

r
K)T (ht−1
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T +
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eta,iW

r
Q(W
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K)T (ets,j)
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+
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Q(W
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r
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(17)
In α̂r′,t

ij , r′ denotes the relation of Act to Sentiment and t
denotes the time step of recurrent dual-task reasoning. We
can observe that finally, there are 10 terms in Eq. 17. The 1st
term models the semantics-level interaction between node
i and node j. The 2nd-9th terms model the prediction-level
interactions. Specifically, the 2nd, 3rd, 4th and 7th terms
model the semantics-prediction interactions; the 5th, 6th and
9th terms model the prediction-prediction interactions. The
10th term achieves relation-specific temporal modeling.

Therefore, our proposed DTR-ReTeFormer can explicitly
and comprehensively model the semantics- and prediction-
level interactions. And relational modeling achieves the self-
task and cross-task interactions. Besides, in this process,
the relation-specific temporal information is considered,

facilitating dual-task reasoning.

6 EXPERIMENTS

6.1 Datasets and Metrics
Datasets. We conduct experiments on two publicly available
dialogue datasets: Mastodon [3] and Dailydialog [11]. The
Mastodon dataset includes 269 dialogues for training and
266 dialogues for testing. And there are 3 sentiment classes
and 15 act classes. Since there is no official validation set,
we follow the same partition as [7]. Finally, there are 243
dialogues for training, 26 dialogues for validating, and 266
dialogues for testing. As for Dailydialog dataset, we adopt
the official train/valid/test/ split from the original dataset
[11]: 11,118 dialogues for training, 1,000 for validating, and
1,000 for testing. And there are 7 sentiment classes and 4 act
classes.
Evaluation Metrics. Following previous works [3], [4], [7],
on Dailydialog dataset, we adopt macro-average Precision
(P), Recall (R), and F1 for the two tasks, while on Mastodon
dataset, we ignore the neutral sentiment label in DSC task
and for DAR task we adopt the average of the F1 scores
weighted by the prevalence of each dialogue act.

6.2 Implement Details and Baselines
Both of DARER and DARER2 are trained with Adam
optimizer with the learning rate of 1e−3 and the batch size
is 16. We exploit 300-dimensional Glove vectors for the word
embeddings. And the epoch number is 100 for Mastodon and
50 for DailyDialog. Next, we introduce the different settings
of other hyper-parameters for DARER and DARER2

DARER The dimension of hidden states (label embed-
dings) is 128 for Mastodon and 256 for DailyDialog. The
step number T for recurrent dual-task reasoning is set to
3 for Mastodon and 1 for DailyDialog. The coefficient γs
and γa are 3 for Mastodon and 1e−4 for DailyDialog. To
alleviate overfitting, we adopt dropout, and the ratio is 0.2
for Mastodon and 0.3 for DailyDialog.

DARER2 The dimension of hidden states (label embed-
dings) is 256 for Mastodon and 300 for DailyDialog. The
step number T for recurrent dual-task reasoning is set to 5
for Mastodon and 3 for DailyDialog. For Mastodon dataset,
the coefficients γs and γa are 10 and 1. For DailyDialog, the
coefficients γs and γa are 0.1 and 1e−6. The dropout ratio is
0.4 for both Mastodon and DailyDialog.

For all experiments, we pick the model performing best
on the validation set and then report the average results on
the test set based on three runs with different random seeds.
All computations are conducted on NVIDIA RTX 6000.

We compare our model with: JointDAS [3], IIIM [5], DCR-
Net (Co-Attention) [4], BCDCN [6] and Co-GAT [7].

6.3 Main Results
6.3.1 Comparison with Baselines
Table 4 lists the experiment results on the test sets of the two
datasets. We can observe that:
1. Our models significantly outperform all baselines, achiev-
ing new state-of-the-art (SOTA). In particular, over Co-GAT,
the existing SOTA, DARER achieves an absolute improve-
ment of 13.1% in F1 score on DSC task in Mastodon, a
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TABLE 4
Experiment results. ∗ denotes we reproduce the results using official code. † denotes that our DARER and DARER2 significantly outperforms the
previous best model Co-GAT with p < 0.01 under t-test and ‡ denotes p < 0.05. ↑ denotes the improvement achieved by our model over Co-GAT.

Models
Mastodon DailyDialog

DSC DAR DSC DAR
P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%) P(%) R(%) F1(%)

JointDAS [3] 36.1 41.6 37.6 55.6 51.9 53.2 35.4 28.8 31.2 76.2 74.5 75.1
IIIM [5] 38.7 40.1 39.4 56.3 52.2 54.3 38.9 28.5 33.0 76.5 74.9 75.7

DCR-Net [4] 43.2 47.3 45.1 60.3 56.9 58.6 56.0 40.1 45.4 79.1 79.0 79.1
BCDCN [6] 38.2 62.0 45.9 57.3 61.7 59.4 55.2 45.7 48.6 80.0 80.6 80.3
Co-GAT [7] 44.0 53.2 48.1 60.4 60.6 60.5 65.9 45.3 51.0 81.0 78.1 79.4
Co-GAT∗ 45.40 48.11 46.47 62.55 58.66 60.54 58.04 44.65 48.82 79.14 79.71 79.39

DARER 56.04† 63.33† 59.59† 65.08‡ 61.88† 63.43† 59.96‡ 49.51† 53.42† 81.39† 80.80‡ 81.06†
↑23.4% ↑31.6% ↑28.2% ↑4.0% ↑5.5% ↑4.8% ↑3.3% ↑10.9% ↑9.4% ↑2.8% ↑1.4% ↑2.1%

DARER2 58.53† 67.06† 62.38† 68.26† 67.15† 67.70† 65.58† 48.28† 54.34† 81.41† 81.79‡ 81.60†
↑28.9% ↑39.4% ↑34.2% ↑9.1% ↑14.5% ↑11.8% ↑13.0% ↑8.1% ↑11.3% ↑2.9% ↑2.6% ↑2.8%

relative improvement of over 28%. And DARER2 achieves
even larger improvements: over 34% improvement in F1
score on DSC task in Mastodon dataset. The satisfying
results of DARERs come from (1) our framework integrates
not only semantics-level interactions but also prediction-
level interactions, thus capturing explicit dependencies other
than implicit dependencies; (2) our SATG represents the
speaker-aware semantic states transitions, capturing the
important basic semantics benefiting both tasks; (3) our
DRTG provides a rational platform on which more effective
dual-task relational reasoning is conducted. (4) the advanced
architecture of our DARER models allows DSC and DAR
to improve each other in the recurrent dual-task reasoning
process gradually.
2. DARER and DARER2 show more prominent superiority
on DSC task than DAR task. We surmise the probable reason
is that generally, the act label is more complicated to deduce
than the sentiment label in dual-task reasoning. For instance,
it is easy to infer ui’s Negative label on DSC given ui’s
Agreement label on DAR and ui−1’s Negative label on DSC.
Reversely, given the label information that ui and ui−1 are
both negative on DSC, it is hard to infer the act label of ui

because there are several act labels possibly satisfying this
case, e.g., Disagreement, Agreement, Statement.
3. Our models’ improvements on DailyDialog are smaller
than those on Mastodon. We speculate this is caused by
the extremely unbalanced sentiment class distribution in
DailyDialog. As shown in Fig. 8, in DailyDialog dataset,
over 83% utterances do not express sentiment, while the
act labels are rich and varied. This hinders DARER from
learning valuable correlations between the two tasks.

6.3.2 Comparison of DARER and DARER2

From Table 4, we can find that DARER2 outperforms
DARER, further improving the performance. This can be
attributed to the fact that the proposed SAT-ReTeFormer and
DTR-ReTeFormer in DARER2 can more effectively model
the relational and temporal interactions than the RGCNs
adopted in DARER. Especially, in DTR-ReTeFormer, since
the input hidden state is superimposed with both tasks’ label
representation of the corresponding utterance, the relation-
and structure-aware disentangled multi-head attention can
explicitly and sufficiently model the relation-specific dual-
task interactions, including semantics-semantics interactions,

Fig. 8. Illustration of class distributions on Mastodon and DailyDialog
datasets.

semantics-prediction interactions, and prediction-prediction
interactions.

6.3.3 Effect of Pre-trained Language Model

In this section, we study the effects of three PTLM encoders:
BERT [50], RoBERTa [51], and XLNet [52], which replace the
BiLSTM utterance encoder in the state-of-the-art model Co-
GAT and our DARER models. We adopt the base versions
of the PTLMs implemented in PyTorch by [53]. In our
experiments, the whole models are trained by AdamW
optimizer with the learning rate of 1e−5 and the batch size
is 16. And the PTLMs are fine-tuned in the training process.
Results are listed in Table 5. We can find that since single
PTLM encoders are powerful in language understanding,
they obtain promising results even without any interactions
between utterances or the two tasks. Nevertheless, stacking
DARER on PTLM encoders further obtains around 4%-
10% absolute improvements on F1. This is because our
DARER models achieve relational temporal graph reasoning
prediction-level interactions, which complement the high-
quality semantics grasped by PTLM encoders. In contrast,
Co-GAT only models the semantics-level interactions, whose
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Fig. 9. Illustration of confusion matrices and F1 score on each class on
Mastodon and DailyDialog test sets. Note that on Mastodon test set,
following previous works, the F1 score of the Neutral class is not counted
for the final F1 score.

TABLE 5
Results comparison based on different PTLM encoders.

Models
Mastodon

DSC DAR
P(%) R(%) F1(%) P(%) R(%) F1(%)

BE
R

T

+ Linear 61.79 61.09 60.60 70.20 67.49 68.82
+ Co-GAT 66.03 58.13 61.56 70.66 67.62 69.08
+ DARER 65.98 67.39 66.42 73.82 71.67 72.73
+ DARER2 64.47 71.10 67.61 75.34 73.04 74.17

R
oB

ER
Ta + Linear 57.83 60.54 57.83 62.49 61.93 62.20

+ Co-GAT 61.28 57.25 58.26 66.46 64.01 65.21
+ DARER 61.36 67.27 63.66 70.87 68.68 69.75
+ DARER2 63.78 71.44 66.49 73.86 72.87 73.36

X
LN

et

+ Linear 61.42 67.80 63.35 67.31 63.04 65.09
+ Co-GAT 64.01 65.30 63.71 67.19 64.09 65.60
+ DARER 68.05 69.47 68.66 72.04 69.63 70.81
+ DARER2 67.20 74.24 70.42 72.45 71.47 71.96

advantages are diluted by the powerful PTLMs. Conse-
quently, based on PTLM encoders, Co-GAT brings much
less improvement than our DARER models.

TABLE 6
Results (in F1 score) of ablation experiments on DARER.

Variants
Mastodon DailyDialog

DSC DAR DSC DAR

DARER 59.59 63.43 53.42 81.06
w/o Label Embeddings 56.76 62.15 50.64 79.87

w/o Lconstraint 56.22 61.99 49.94 79.76
w/o SAT-RSGT 57.37 62.96 50.25 80.52
w/o DTR-RSGT 56.69 61.69 50.11 79.76
w/o TS-LSTMs 56.30 61.49 51.61 80.33

w/o Tpl Rels in SATG 58.23 62.21 50.99 80.70
w/o Tpl Rels in DRTG 57.22 62.15 50.52 80.28

TABLE 7
The comparison of DARER2 and Lconstraint on the performances of

each single step.

Model metric
step

0 1 2 3 4 5

DARER2
F1 57.34 59.41 61.70 62.30 62.38 62.53
P 59.24 59.94 59.35 58.08 57.48 57.00
R 55.65 59.29 64.96 67.19 68.36 69.41

w/o Lconstraint

F1 54.15 58.66 58.89 59.51 58.54 58.75
P 58.56 62.04 55.33 57.83 55.57 55.46
R 51.73 62.04 62.95 61.36 61.88 62.45

6.4 Ablation Study

Our DARER and DARER2 share the same overall model
architectures, which include label embeddings, constraint
loss, SAT-RSGT, DTR-RSGT, TS-LSTMs, SATG and DRTG.
To study the effectiveness of each component, we conduct
ablation experiments on DARER and Table 6 lists the results.

From Table 6, we have the following observations:
(1) Removing label embeddings causes prediction-level
interactions not to be achieved. The sharp drops in results
prove that our method of leveraging label information to
achieve prediction-level interactions effectively improves
dual-task reasoning via capturing explicit dependencies.
(2) Without constraint loss, the two logic rules can hardly be
met, so there is no constraint forcing DSC and DAR to grad-
ually prompt each other, resulting in the dramatic decline of
performances. (3) As the core of Dialog Understanding, SAT-
RSGT captures speaker-aware semantic states transitions,
which provides essential basic task-free knowledge for both
tasks. Without it, some essential indicative semantics would
be lost, then the results decrease.
(4) The worst results of ‘w/o DTR-RSGT’ prove that DTR-
RSGT is the core of DARER, and it plays a vital role in
conducting dual-task relational reasoning over the semantics
and label information.
(5) The significant results decrease of ‘w/o TS-LSTMs’ prove
that TS-LSTMs also plays an important role in DARER by
generating task-specific hidden states for both tasks and have
some capability of sequence label-aware reasoning.
(6) Removing of the temporal relations (Tpl Rels) in SATG
or DRTG causes distinct results decline. This can prove the
necessity and effectiveness of introducing temporal relations
into dialog understanding and dual-task reasoning.

To further study the necessity of Lconstraint, we compare
DARER2 and the variant w/o Lconstraint on the detailed
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DARER    DARER2

Fig. 10. Performances of DARER and DARER2 over different T .

TABLE 8
Results (in F1 score) of different settings of ReTeFormers. × denotes

the corresponding ReTeFormer is replaced with the RGCN counterpart
used in DARER.

Variants
-ReTeFormer Mastodon DailyDialog
SAT DTR DSC DAR DSC DAR

DARER2 ✓ ✓ 62.38 67.70 54.34 81.60
M1 × ✓ 61.85 66.57 54.16 81.54
M2 ✓ × 60.25 64.23 53.98 81.22

DARER × × 59.59 63.43 53.42 81.06

performances of each single step, as shown in Table 7. We
can observe that the Lconstraint in DARER2 can make the
model generate better predictions at each step than w/o
Lconstraint. Besides, thanks to the margin loss, DARER2 can
generate better and better predictions along the time step.
However, removing Lconstraint leads to fluctuations and
significant drops in performance. The reason is that without
the estimate loss and margin loss, the two rules cannot be
integrated into the training process. Only relying on the
cross-entropy loss at the final step cannot effectively improve
the predictions of the previous step nor make the model
generate better and better predictions along the step.

6.5 Superiority of ReTeFormer
In DARER2 the SAT-RSGT and DTR-RSGT are achieved
by our proposed SAT-ReTeFormer and DTR-ReTeFormer
respectively, rather than RGCNs. To verify the superiorities
of the two ReTeFormers over their RGCN counterparts in
DARER, we change the setting of the two ReTeFormers and
show the performances in Table 8.

We can observe that for both SATG and DTRG, our
ReTeFomer shows significant superiority over RGCN. There
are two main reasons. First, our proposed ReTeFormer can
conduct fine-grained relational temporal modeling, while
RGCN can only handle the coarse-grained relative temporal
relations. Intuitively, fine-grained relational temporal model-
ing can better model the latent structures of the dialog than
coarse-grained one, further benefiting dual-task reasoning.
Second, the Relation- and Structure-Aware Disentangled
Multi-head Attention in our proposed ReTeFormer can ex-
plicitly model the correlations between the nodes. Especially,

our DTR-ReTeFormer can explicitly and comprehensively
model the self-task and cross-task interactions that are of
both semantics- and prediction-level.

6.6 Impact of Step Number T
The performances of DARER and DARER2 over different
T are plotted in Fig. 10. T = 0 denotes the output of the
Initial Estimation module is regarded as final predictions.
We can find that appropriately increasing T brings results
improvements. Particularly, with T increasing from 0 to
1, the results increase sharply. This verifies that the Initial
Estimation module can provide useful label information for
dual-task reasoning. Furthermore, DARER can learn benefi-
cial mutual knowledge from recurrent dual-task reasoning in
which DSC and DAR prompt each other. Generally, when T
surpasses a certain point, the performances decline slightly.
The possible reason is that after the peak, more dual-task
interactions cause too much deep information fusion of the
two tasks, leading to the loss of some important task-specific
features and overfitting.

6.7 Case Study
To better understand how our model works well, we compare
the final predictions of Co-GAT and our DARER2, as shown
in Fig. 11 (a). We can find that our DARER2 can correctly
predict all labels of both tasks, while there are some errors
in Co-GAT’s predictions: the act label of u3 is incorrectly in-
ferred as Answer, and the sentiment label of u4 is incorrectly
inferred as Negative. We suppose there are two reasons:
(1) Co-GAT works on a homogeneous fully-connected dual-
task graph, losing the intra- and cross-task dependencies
and temporal information among the nodes; (2) Co-GAT
only achieves semantics-level to implicitly models the dual-
task dependencies, without incorporating prediction-level
interactions.

To show how our DARER2 conducts the dual-task re-
lational temporal graph reasoning, we illustrate the dual-
task reasoning process in Fig. 11 (b). At step 0, the initial
estimation module produces the initial label distributions.
In the first step of dual-task reasoning, some errors in
the previously estimated labels are corrected through the
intra-task interactions of act recognition task and sentiment
classification task. Specifically, in act nodes, the semantics
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u1: My face?

u3: It's more likely than you think

u2: Ugly?

u4: Very wrong

Final Predictions of Co-GAT Final Predictions of DARER2

Act Sentiment (Senti) Act Sentiment (Senti)
U1 Question (Q) Neutral (Neu) Question (Q) Neutral (Neu)
U2 Question (Q) Negative (Neg) Question (Q) Negative (Neg)
U3 Answer (A) Negative (Neg) Statement (S) Negative (Neg)
U4 Disagreement (D) Negative (Neg) Disagreement (D) Positive (Pos)

t=0
Act Senti

U1 Q Neu
U2 Q Neg
U3 A Neu
U4 D Neg

t=1
Act Senti

U1 Q Neu
U2 Q Neg
U3 S Neg
U4 D Neg

t=3
Act Senti

U1 Q Neu
U2 Q Neg
U3 S Neg
U4 D Pos
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s4

a1

a2

a3

a4

Q

Q

S

D

Neu

Neg

Neg

Neg

s1

s2

s3

s4

a1

a2

a3

a4

Q

Q

A

D

Neu

Neg

Neu

Neg

In
iti

al
 E

st
im

at
io

n

......

Step 0 Step 1 Step 3...

(a)

(b)

Fig. 11. Case study. (a) The example dialog and the final predictions of Co-GAT and our DARER2. The red color denotes error. (b) Illustration of the
estimated labels at each time step and the reasoning process. For simplification, we only list the highest probability label rather than the whole label
distribution. The dashed box denotes the label estimated at the previous step. ai and si denote the act node and sentiment node of ui, respectively.
The blue solid arrows denote the edges between act nodes. The green solid arrows denote the edges between sentiment nodes. The blue dashed
arrows denote the edges from act nodes to sentiment nodes. Deeper color denotes a larger attention weight.

and label information of node a4 is assigned a large weight
and aggregated into node a3. The Disagreement label of
a4 can indicate the Statement label of a3. This is because in
the dataset, if an utterance has a Disagreement act label, in
most cases, its previous utterance has a Statement act label,
which is also consistent with the real-world scenarios. In
sentiment nodes, s2 is assigned large weight and aggregated
into node s3. Combining the semantics ‘more’ of s3 and
the Negative label of s2, the Negative label of s3 can
be correctly inferred. Then in the third step of dual-task
reasoning, the wrong label of s4 node is fixed. Specifically,
node a3, a4 and s3 are assigned relatively large attention
weights for s4. Regarding the labels of a3 and a4, u4 disagrees
u3, indicating s3 and s4 may have opposite sentiments. And
further considering the Negative label of s4, our model can
produce the correct Positive sentiment label for u4. In this
way, our model can gradually generate better labels through
recurrent relational temporal graph reasoning.

6.8 Computation Efficiency
In practical application, in addition to the performance, the
number of parameters, the time cost, and GPU memory
required are important factors. Taking Mastodon as the
testbed, we compare our DARER models with the up-to-date
SOTA (Co-GAT) on these factors, and the results are shown
in Table 9. Avg. F1 denotes the average of the F1 scores on
the two tasks. We can find that although our DARER models
surpass SOTA by a large margin, they do not significantly
cost more computation resources. Especially, DARER is even
more efficient than Co-GAT. As for DARER2, although it
has some more parameters and costs more training time,
this is acceptable considering that it can save about 22%
GPU memory and improve 21% performance. Therefore,

TABLE 9
Comparison with SOTA on model parameters, training time, GPU

memory required, and performance.

Models
Number of
Parameters ↓

Training Time
per Epoch ↓

GPU ↓
Memory

Avg. F1↑

Co-GAT 3.61M 1.86s 1531MB 53.66%

DARER 2.50M 1.81s 1187MB 61.51%
Improve -30.7% -2.7% -22.4% +14.6%

DARER2 3.83M 2.16s 1191MB 65.04%
Improve +6.1% +16.1% -22.2% +21.2%

our DARER models are relatively efficient for practical
application.

6.9 Experiment on joint Multiple Intent Detection and
Slot Filling

To verify the generality of our method, we further conduct
experiments on the task of joint multiple intent detection and
slot filling.

6.9.1 Task Definition
The input is an utterance that can be denoted as U = {ui}n1 .
Multiple intent detection can be formulated as a multi-label
classification task that predicts multiple intents expressed in
the input utterance. And slot filling is a sequence labeling
task that maps each ui into a slot label.

6.9.2 Model Architecture
We apply our relational temporal graph reasoning to the
state-of-the-art model GL-GIN [39], forming DARER and
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DARER2GL-GIN

Fig. 12. Visualizations of slot hidden states generated by GL-GIN and our DARER2.

DARER2 in this joint task scenario. In GL-GIN, the dual-task
graph is a semantics-label graph, which is a homogeneous
graph including two groups of nodes: predicted intent
label nodes and slot semantics nodes. And vanilla GAT
is utilized for graph reasoning. In our DARER, the dual-
task graph is a relational temporal graph, in which there
are (1) intra- and cross-task relations among the two tasks’
nodes; (2) coarse-grained temporal relations among the
slot semantics nodes. And RGCN is utilized for relational
temporal graph reasoning In our DARER2, the dual-task
graph is also a relational temporal graph, including intra-
and cross-task relations. And our proposed DTR-ReTeFormer
is used for relational temporal graph reasoning. Since DTR-
ReTeFormer can achieve the fine-grained temporal modeling,
compared with GL-GIN and DARER, DARER2 can capture
the dependencies between B- slot labels and their I- slot
labels, and this advantage is proven in Fig. 12.

6.9.3 Datasets and Metrics
Datasets.Following previous works, the two benchmarks:
MixATIS and MixSNIPS [38], [54], [55] are used as testbeds
for evaluation. In MixATIS, the split of train/dev/test set
is 13162/756/828 (utterances). In MixSNIPS, the split of
train/dev/test set is 39776/2198/2199 (utterances).
Evaluation Metrics. Following previous works, multiple
intent detection is evaluated by accuracy (Acc); slot filling
is evaluated using F1 score; sentence-level semantic frame
parsing is evaluated using overall Acc. Overall Acc denotes
the ratio of utterances for which both intents and slots are
predicted correctly.

6.9.4 Implement Details and Baselines
Following GL-GIN [39], the word and label embeddings
are randomly initialized and trained with the model. The
dimension of the word/label embedding is 128 on MixATIS
and 256 on MixSNIPS. The dimension of the hidden state is
200. We adopt Adam [56] optimizer for model training with
the default setting. For all experiments, we select the best
model on the dev set and report its results on the test set.

We compare our model with Attention BiRNN [57], Slot-
Gated [25], Bi-Model [58], SF-ID [27], Stack-Propagation [29],
Joint Multiple ID-SF [37], AGIF [38] and GL-GIN [39]

TABLE 10
Results comparison. † denotes our model significantly outperforms

baselines with p < 0.01 under t-test.

Models MixATIS MixSNIPS
Overall
(Acc)

Slot
(F1)

Intent
(Acc)

Overall
(Acc)

Slot
(F1)

Intent
(Acc)

Attention BiRNN [57] 39.1 86.4 74.6 59.5 89.4 95.4
Slot-Gated [25] 35.5 87.7 63.9 55.4 87.9 94.6
Bi-Model [58] 34.4 83.9 70.3 63.4 90.7 95.6
SF-ID [27] 34.9 87.4 66.2 59.9 90.6 95.0
Stack-Propagation [29] 40.1 87.8 72.1 72.9 94.2 96.0
Joint Multiple ID-SF [37] 36.1 84.6 73.4 62.9 90.6 95.1
AGIF [38] 40.8 86.7 74.4 74.2 94.2 95.1
GL-GIN [39] 43.0 88.2 76.3 73.7 94.0 95.7

DARER 44.7† 88.4 76.7† 74.7† 94.4† 96.5†

DARER2 49.0† 89.2† 77.3† 76.3† 94.9† 96.7†

6.9.5 Results and Analysis

The results comparison is shown in Table 10. We can observe
that our DARER models significantly outperform the state-of-
the-art model GL-GIN on all datasets. In particular, DARER2

significantly surpasses GL-GIN on MixATIS dataset in terms
of Overall Acc, achieving 14% relative improvement. The
superior performances of our DARER models verify the
advantages of our proposed relation temporal graph reason-
ing. On one hand, relation temporal graph reasoning can
effectively model the intra- and cross-task relation-specific
interactions. On the other hand, it can model the temporal
information among the slot semantics nodes. Especially, the
DTR-ReTeFormer in DARER2 can comprehensively model
the fine-grained temporal information, capturing the slot
dependencies. To further verify this, we visualize the slot
hidden state generated by DARER2 and GL-GIN, as shown
in Fig. 12 We can observe that DARER2’s clusters are clearer
than GL-GIN’s. Besides, the B- slot clusters of DARER2 and
their corresponding I- slot clusters are separated clearly.
In contrast, some GL-GIN’s generated B- slot clusters and
their corresponding I- slot clusters even overlap. The high
quality of our DARER2’s generated hidden states can be
attributed to three facts. First, GL-GIN uses the vanilla
GAT for information aggregation, leading to a disadvantage:
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for each slot node, the different information of the intent
label nodes and other slot nodes are directly fused to it.
Differently, the DTR-ReTeFormer in DARER2 can achieve
relation-specific information aggregation, which can better
leverage the beneficial information via discriminating the
contributions of the two tasks’ nodes. Second, the GAT
in GL-GIN cannot model the temporal information, losing
the dependencies among slot nodes. Since each slot node
corresponds to a word in utterance, the group of slot nodes
can be regarded as a sequence, where there are temporal
dependencies (e.g. I-Singer can only occur behind B-Singer).
And our DARER models can achieve the relational temporal
modeling, then capture the beneficial slot dependencies.

7 CONCLUSION AND FUTURE WORK

In this paper, we present a new framework, which for the
first time achieves relational temporal graph reasoning and
integrates prediction-level interactions to leverage estimated
label distribution as explicit and important clues other
than implicit semantics. We design the SATG and DRTG
to facilitate relational temporal graph reasoning of dialog
understanding and dual-task reasoning. To achieve our
framework, we first propose a novel model named DARER
to model the relational interactions between temporal infor-
mation, label information, and semantics to let two tasks
gradually promote each other, which is further forced by the
proposed logic-heuristic training objective. Then we propose
DARER2, which further enhances relational temporal graph
reasoning by adopting our proposed SAT-ReTeFormer and
DTR-ReTeFormer. Experimental results demonstrate the
superiority of our DARER models, which surpasses previous
models by a large margin in different dual-task dialog
language understanding scenarios.

Our work brings two insights for dialog understanding
and multi-task reasoning in dialog systems: (1) exploiting
the relational temporal information of the dialog for graph
reasoning; (2) leveraging estimated label distributions to
capture explicit correlations between the multiple tasks. In
the future, we will apply our method to other multi-task
learning scenarios in dialog systems.
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