
World Wide Web (2023) 26:3795–3814
https://doi.org/10.1007/s11280-023-01205-8

FPGN: follower prediction framework for infectious
disease prevention

Jianke Yu1 · Xianhang Zhang2 · Hanchen Wang1 · Xiaoyang Wang2 ·
Wenjie Zhang2 · Ying Zhang1,3

Received: 25 June 2023 / Revised: 15 August 2023 / Accepted: 26 August 2023 /
Published online: 16 September 2023
© The Author(s) 2023

Abstract
In recent years, how to prevent the widespread transmission of infectious diseases in commu-
nities has been a research hot spot. Tracing close contact with infected individuals is one of
the most severe problems. In this work, we present a model called Follower Prediction Graph
Network (FPGN) to identify high-risk visitors, which is known as follower prediction. The
model is designed to identify visitors who may be infected with a disease by tracking their
activities at the exact location of infected visitors. FPGN is inspired by the state-of-the-art
temporal graph edge prediction algorithm TGN and draws on the shortcomings of existing
algorithms. It utilizes graph structure information based on (α, β)-core, time interval statis-
tics by using the statistics of timestamp information, and a GAT-based prediction module
to achieve high accuracy in follower prediction. Extensive experiments are conducted on
two real datasets, demonstrating the progress of FPGN. The experimental results show that
FPGN can achieve the highest results compared with other SOTA baselines. Its AP scores
are higher than 0.46, and its AUC scores are higher than 0.62.

Keywords Follower prediction · Temporal bipartite graphs · Graph neural networks

B Hanchen Wang
hanchen.wang@uts.edu.au

Jianke Yu
jianke.yu@student.uts.edu.au

Xianhang Zhang
xianhang.zhang@unsw.edu.au

Xiaoyang Wang
xiaoyang.wang1@unsw.edu.au

Wenjie Zhang
wenjie.zhang@unsw.edu.au

Ying Zhang
ying.zhang@uts.edu.au

1 University of Technology Sydney, Sydney, Australia

2 University of New South Wales, Sydney, Australia

3 Zhejiang Gongshang University, Hangzhou, China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-023-01205-8&domain=pdf

3796 World Wide Web (2023) 26:3795–3814

1 Introduction

In recent years, the outbreak of infectious diseases has caused great harm to human health
and social stability. To prevent and control the spread of infectious diseases, it is necessary
to predict and control the high-risk population accurately. In this regard, graph analysis has
become an essential tool for epidemiologists [14, 32]. Temporal bipartite graphs represent the
relationships between two sets of verticeswhile tracking their evolution over time. As a result,
this structure is particularly useful in analyzing infectious disease transmission patterns. By
analyzing these temporal bipartite graphs, we can identify gaps and clusters that may indicate
potential transmission.

This paper focuses on identifying high-risk visitors whomay be infected with a disease by
tracking their activities at the same location as infected visitors. The identification allows pub-
lic health authorities to take proactive measures to prevent the spread of infectious diseases.
The objective is to predict the likelihood that two visitors (i.e., a follower and a leader) will
visit the same location within a specific time window. This challenge is called the follower
prediction problem.
Example An example of the following behavior is shown in Figure 1. We assume that the
timewindow to identify the following behavior in this figure is half an hour, i.e., if two visitors
visit the same venue within half an hour, the second visitor is identified as the follower of
the first visitor. We also assume that Bob (u1) is an infected visitor. We can see that Bob
went to the cafe (v1) at 8 o’clock in the morning, and another visitor Sam (u2) arrived within
ten minutes after Bob’s arrival. Therefore, we consider Sam to be one of Bob’s followers.
Although Lisa (u3) and Bob also arrived at Gym(v2) within ten minutes of each other, Lisa
arrived at the venue before Bob did. Jack(u4) arrived at the restaurant(v4) three hours after
Bob did. Therefore, neither Lisa nor Jack is a follower of Bob.

8:00

13:008:10

9:50 20:0010:00

17:00

Figure 1 An Example of Following Behavior

123

World Wide Web (2023) 26:3795–3814 3797

Challenge The difficulty in solving this problem lies in two aspects: on the one hand, due
to the special nature of the bipartite graph structure, there will be no connections between
vertices of the same type in the dataset, while the goal of follower prediction is precisely
to predict connections between vertices of the same type. On the other hand, the conditions
for constituting the following behavior are strict. They require simultaneous consideration
of both cases where two vertices are connected to the same vertex and their time difference
for connecting.

To the best of our knowledge, there is no existing method proposed to solve the follower
prediction problem.One possible solution is to use a high-performenceGNNmodel [4, 15, 19,
42, 49] trained on datasets for this problem. However, these generic models do not effectively
utilize timestamp information and have limited accuracy. A related problem of the follower
prediction problem is edge prediction in temporal graphs, which has been addressed by
various algorithms [3, 20, 33, 40, 47]. These methods accurately predict edges on temporal
graphs but either rely solely on timestamps as sampling criteria or only learn individual
activity information for each vertex. Consequently, models designed for other purposes may
struggle with this specific follower prediction problem and even perform worse than general
GNN models due to being misled by their original goals.

In order to better solve the problem of follower prediction, inspired by the state-of-the-
art temporal graph edge prediction algorithm TGN [33] and drawing on the shortcomings of
existing algorithms, we propose a model called Follower Prediction Graph Network (FPGN).
TGN significantly contributes to preserving temporal information by learning the memory
of vertices. Therefore, the vertex memory obtained by TGN can help us solve the problem
of predicting connections between same-type vertices on bipartite graphs. However, TGN
cannot be directly applied to this problem. When TGN updates the memory of a vertex, it
refers to its previousmemories, allowing for sampling train sets based on chronological order.
In other words, TGN updates vertex memories while sampling based on downstream task
requirements. On the other hand, to predict followers accurately, it is necessary to anticipate
the connections between same-type vertices in the bipartite graph that have been updated
after all timestamps in the training set. This makes it impossible for TGN to be directly used
for solving follower problems. Motivated by TGN and learned from his shortcomings, we
design our model by optimizing the structure of TGN to let it update memories of all vertices
beforehand and then train according to downstream needs.

Besides, FPGN can also consider the correlation information between vertex activities to
enhance the model’s ability to solve follower prediction problems. Specifically, in addition to
learning which vertices will be followers of their leaders, FPGNwill further analyze the time
window in which these following behaviors occur, allowing the model to grasp the degree
of association or closeness between these followers and their leaders. This strategy can help
FPGN achieve the ability to predict the following behaviors whose conditions are strict.

Moreover, when some followers often follow several other fixed leaders, the density of the
graph composed of them will be relatively high. Therefore, information about the structure
of the graph, especially the density, is essential in the follower prediction problem. A typical
way to find dense subgraphs on a bipartite graph is biclique [1, 58].More specifically, biclique
aims to find subgraphs on a bipartite graph where any vertex connects to all of the vertices
belonging to another class. Thus, it can be assumed that any vertex in the biclique is closely
related to all other vertices in this subgraph. However, on the one hand, biclique is an NP-hard
problem that is difficult to obtain quickly by conventional ways [26, 27, 31]. On the other
hand, biclique is too strict to provide richer structural information for the model. Therefore,

123

3798 World Wide Web (2023) 26:3795–3814

we choose to use the more flexible (α, β)-core [23] to extract the structural information
of the graph. The advantage of using (α, β)-core is that it allows the size of α and β to
be controlled according to actual needs so that the model can flexibly obtain the required
structural information while reducing computational costs. With the help of (α, β)-core and
time interval statistics, combined with the mapping method based on UniMP [37], FPGN
can effectively solve the problem of difficult-to-predict relationships between vertices of the
same type on temporal bipartite graphs, obtain highly accurate follower prediction results.

Contributions The contributions of this paper are summarized as follows:

• As far as we know, FPGN is the first model proposed to solve the problem of follower
prediction.

• By relying on improvements to TGN and carefully designed modules that make good use
of temporal statistical information and graph structure information, FPGN has achieved
extremely high accuracy in follower prediction.

• Extensive experiments are carried out on two real datasets, and the results proved the
effectiveness of FPGN.

2 Background

2.1 Preliminaries

The temporal bipartite graph is denoted as G = (U , V , T , A), where U = {u1, u2, . . . } is a
visitor set; V = {v1, v2, . . . } is a location set; T = {t(u1,v1), t(u2,v1), . . . } is a set of timeswhen

a visitor arrives at a location, where t(u1,v1) = {t (1)(u1,v1)
, t (2)(u1,v1)

, . . . } is a set of timestamps
to record each timestamp of a visitor arriving at the exact location; A = {At1 ,At2 , . . . } is
the set of adjacency matrix, where At1 denotes all visitor records for at time t1. If u and v

connect with each other at time t , then At
u,v = 1, otherwise At

u,v = 0.

Definition 1 (Minimum Following Time Interval) Given a leader u, a follower u′, and a loca-
tion v that the follower follows the leader to reach, the definition of the minimum following
time interval:

�(u, u′, v) = min{t − t ′|t ∈ t(u,v), t
′ ∈ t(u′,v), t

′ − t ≥ 0} (1)

Definition 2 ((α, β)-core) Given a bipartite graphG = (U , V) and two integers α and β, the
(α, β)-core of G is made up of two subsets of vertices: U ′ ∈ U and V ′ ∈ V . These subsets
induce a bipartite subgraph g that is the largest subgraph of G where all vertices in U ′ have
a degree of at least α and all vertices in V ′ have a degree of at least β.

2.2 Problem statement

Given a temporal bipartite graph G, the task of follower prediction is to predict whether u′
will go to the location v where u has visited in a certain time window τt > 0. That is, for
visitor u and u′, if {0 ≤ �(u, u′, v) ≤ τt |v ∈ V } �= φ, then u′ is a follower of leader u.

123

World Wide Web (2023) 26:3795–3814 3799

Generally speaking, graph neural networks can be summarized by the following formula:

h(k)
u = COM(k)(h(k−1)

u ,AGG(k){h(k)
u′ ; u′ ∈ N (u)}), (2)

where h(k)
u represents the hidden representation of vertex u at layer k, this vector captures

important information about the vertex and its relationships with other vertices in the graph;
h(k−1)
u refers to the hidden representation of vertex u at the previous layer (k − 1). In other

words, it is the input to the current layer k; AGG(k){h(k)
u′ ; u′ ∈ N (u)} is the aggregation

function, which combines the hidden representations of neighboring vertices u′ ∈ N (u) to
produce a summary of their information. The specific function used can vary (e.g.,mean,max,
sum, etc.); COM(k)(·) is the update function, which takes the aggregated information and the
previously hidden representation of the vertex and produces a new hidden representation for
the vertex at the current layer k. This function allows the vertex to incorporate information
from its neighbors into its own representation. The core of the graph neural network model
consists of these elements, which allow vertices to acquire representations that encompass
both the structure and features of the graph.

3 Model

3.1 Overview

The overall framework of the model is shown in Figure 2. FPGN is mainly composed of
two parts, the information recording module, and the prediction module. In more detail, the
role of the information recording module is to obtain the memory of each vertex and record
the most recent neighbors with each vertex based on the information in a temporal bipartite
graph. And relying on graph neural networks and multilayer perceptrons (MLP), and using

Time Interval

Statistics

Temporal Bipartite Graph

Batches

Update Memory

Insert Neighbor

Information Recording Module

Neighbor Loader

Embedding

Get Memory
Last Neighbors

Relationship

Predict

Persons

Followers

Prediction Module

Figure 2 Overview

123

3800 World Wide Web (2023) 26:3795–3814

the memory of vertices and themost recent neighbors of these vertices, the predictionmodule
can predict followers. The model is described in detail in this section.

3.2 Pre-processing stage

FPGN aims to solve the follower prediction problem on featureless temporal bipartite graphs.
With embedding, the ID of each vertex can be mapped to a vector ro ∈ Ro. We take this
vector as the initial feature of the vertex. However, the features generated in this way can
only help the model distinguish vertices but cannot provide more information to help the
model perform better. In order to enable the model to mine better vertex representations, we
also need to obtain more information in the graph.

3.2.1 Graph structure information

To be able to help the model extract information about the graph structure, we compute (α,
β)-core for each vertex. More specifically, we compute whether each vertex exists with a
certain set of subgraphs satisfying (α, β)-core and treat that graph structure information as
a part of the vertex features. Thanks to the graph structure information, FPGN can produce
more precise results. Given an upper threshold and a lower threshold forα andβ, respectively:
α−

τ ≤ α ≤ α+
τ , and β−

τ ≤ β ≤ β+
τ , and then determine whether each vertex is within these

(α, β)-core subgraphs to obtain the graph structure characteristic matrixRs ∈ R
(|U |+|V |)×ds),

where ds = (α+ − α− + 1) × (β+ − β− + 1) equals the number of (α, β)-core queried.
Each vertex’s graph structure feature rs ∈ {0, 1}ds is a part of Rs . If the value of a dimension
of the feature is 0, it means that the vertex does not exist in the (α, β)-core corresponding to
that dimension, and vice versa.

In the end, the characteristic matrix of the vertices used by FPGN is:

R = Ro||Rs, (3)

where || is concatenation operation. Generating the vertex features by using the above way
can provide rich graph structure information for FPGN while avoiding increasing its time
complexity. For convenience in the description, we representR(u) as a characterization of u.

3.2.2 Time interval statistics

It is crucial for the follower prediction problem to get information on the time interval between
the follower’s journey to a certain location and that of the leader. This information can help
the model discover the following behavior and solve the follower prediction problem. Firstly,
the number of times the same follower and leader travel to the same location sequentially
can reveal the correlation between them. This information can be obtained statistically using
the following formula:

Sn,(u,u′) =
∑

v∈V
[�(u, u′, v) ≤ τt], (4)

where [·] is Iverson bracket. It is a useful tool for mapping any statement to a function of
the free variables in that statement. This bracket serves as a kind of truth-value indicator to
assign a value of 1 to any true statement and 0 to any false statement:

[P] =
{
1 if P is true;
0 otherwise.

(5)

123

World Wide Web (2023) 26:3795–3814 3801

And Sn,(u,u′) denotes the number of locations where the follower u′ arrives to follow the
leader u. Sn can record the frequency of follow-up between two visitors very well, which
can play a significant role in the following prediction.

Then we count the closeness of the following actions for each follower, i.e., the time
interval between two visitors arriving at the same location. The smaller the time interval, the
closer that follower is to that leader. However, the follower can follow the leader in multiple
locations. To better inform the model, we calculated the average and variance of their time
intervals. Given a leader u, a follower u′, We can get the average statistics and variance
statistics of �:

Stm,(u,u′) =
∑

v,�(u,u′,v)≤τt

�(u, u′, v)

[�(u, u′, v) ≤ τt] ,

Stv,(u,u′) =
∑

v,�(u,u′,v)≤τt

(�(u, u′, v) − Stm,(u,u′))2

[�(u, u′, v) ≤ τt] ,

(6)

Using this statistical information, it is possible to help the model gain a better understand-
ing of the relationship between visitors. This information can be used to build features that
highlight the relationship between leaders and followers:

S(u,u′) = Norm(Sn,(u,u′))||Norm(Stm,(u,u′))||Norm(Stv,(u,u′)), (7)

where Norm is the normalization operation. The features S obtained will help the model
optimize the parameters during the training process. The details of the training process will
be explained in Section 3.5.

3.3 Information update stage

Motivated by TGN, FPGN extracts memory and saves the last neighbors for each vertex so
that FPGNcan build the subgraph of target vertices and achieve follower prediction.However,
TGN can only train for the samples in each batch separately. In follower prediction, there is
no guarantee that each round of batch can provide the prediction module with features for
the vertices that need to be predicted. To solve the problem, we design the module of FPGN
based on TGN. More specifically, FPGN updates only the memory and neighbors of each
vertex in each batch. The prediction module and back-propagation will only be done after
these updates are completed.

3.3.1 Memory update

Tobetter learn the temporal graph information, FPGNmines the vertexmemorywith temporal
information. Given a visitor record triplet (u, v, t), which means that the visitor u arrives at
the location v at timestamp t with messageM(u,v) = R(u)||R(v). The memory of time t for
u is defined as Fu(t), and Fu(0) = {0}1×d where d is the dimension of the memory. The
memory of u and v is calculated separately. For the sake of description, we only describe the
process of updating u’s memory.

To better explore the historical activity message of vertices, all activity timestamps Tu(t)
of u earlier than time t will be extracted and synthesized into vectors Tu(t) ∈ R

1×|Tu(t)|.
And memoriesMu(t) of u at those times are also involved in the vertex memory update task.
FPGN first encodes the activity of u:

Xt,u = cos(Wt × (Tu(t) − tu · I(t,u)) + bt), (8)

123

3802 World Wide Web (2023) 26:3795–3814

where cos(·) is the cosine function;Wt is amatrix of trainable parameters and bt is a trainable
parameter; tu is the timestamp of the last activity of u; I(t,u) ∈ R

1×|Tu(t)| is a vector whose
elements are all 1 with dimensions 1× |Tu(t)|. It should be noted that tu is initialized with a
value of 0.

In order to extract information about the past activities ofu, we need to extract all neighbors
of u before time t from the adjacency matrix set A. This can be done by defining the set of
neighbors of u at time t as follows:

N t
u = {(v′, t ′)| At ′

u,v′ = 1, 0 ≤ t ′ < t}, (9)

where At is the adjacency matrix at time t , and At
u,v = 1 if u and v connected with each

other at time t . After obtaining these neighboring vertices, we can then get the message
between u and them, these neighbors’ memories at that time, and the past memories of u at
all timestamps before t :

MN t
u

=
⋃

v′,∃(v′,t ′)∈N t
u

M(u,v′),

XN t
u

=
⋃

v′,∃(v′,t ′)∈N t
u

Fv′(t ′),

Xu =
⋃

t ′,∃(v′,t ′)∈N t
u

Fu(t
′),

(10)

then, concatenate Xu , XN t
u
and MN t

u
, as well as Xt,u to obtain the initial memory of u:

Xini t
t,u = Xu ||XN t

u
||MN t

u
||Xt,u, (11)

where Xini t
t,u is the initial memory of u at timestamp t .

Because early activity records should not have too much influence on the present, and
each vertex memory at every moment contains activity information before that moment, to
make FPGN pay more attention to recent activity information and reduce its computational

cost, we only keep the latest K sets of initial memory X̄
ini t
u (t) in Xini t

u (t).
LSTM is a widely used recurrent neural network architecture that is particularly suited to

processing sequential data, such as speech and text [35, 38]. There aremanyworks that handle
temporal graphs using LSTM and have achieved good performance [6, 50] nowadays. How-
ever, recent research has found that the newer Gated Recurrent Unit (GRU) [10] architecture
offers comparable performance to LSTM while being more computationally efficient [5, 5,
51], making it an attractive alternative for processing temporal graph datasets. Therefore, in
this work, we chose to use GRU to obtain vertex memories.

To bemore precise, during each time step, a GRUunit utilizes the initial memories X̄
ini t
u (t)

and the most recent memories of u, denoted as Fu(t ′), to compute the reset gate pt and update
gate qt in the following manner:

pt = σ(Wpx X̄
ini t
u (t) + Wp f Fu(t

′) + bp)

qt = σ(Wqx X̄
ini t
u (t) + Wq f Fu(t

′) + bq),
(12)

where σ is non-linear activation functions, Wpx , Wp f and Wqx , Wq f are weight matrices,
and bp , bq are bias vectors. The reset gate controls how much of the previous memories
should be ignored, while the update gate controls how many new memories should be added
to the initial memories. The candidate memory F̃u(t) is then computed as follows:

F̃u(t) = σ(Wx X̄
ini t
u (t) + W f (pt � Fu(t

′)) + b f) (13)

123

World Wide Web (2023) 26:3795–3814 3803

where� denotes the element-wise product,Wx andW f are weight matrices and b f is a bias
vector. Finally, the new memory of u Fu(t) is calculated as a linear interpolation between
the previous memory and the candidate memory, controlled by the update gate:

Fu(t) = (1 − qt) � Fu(t
′) + qt � F̃u(t). (14)

GRU’s mechanism allows it to process temporal graphs by selectively retaining or discarding
information as time passes. This feature enables GRU to store and analyze data over an
extended period, making it an effective tool for handling dynamic and evolving datasets.
After completing the training of all data through the above method, we can obtain the final
vertex memories:

F =
⋃

n∈U∪V
Fn(�n), (15)

where �n is the last timestamp of vertex n.

3.3.2 Neighbors update

Each round of memory update for each vertex requires tracing the vertices that were pre-
viously connected to it. Therefore, after each round of vertex memory update for a triplet
(u, v, t), the edges involved in that round of update need to be saved into the adjacencymatrix
At , that is to say, At

u,v = 1.
Additionally, after acquiring F, utilizing all the connection information for improved

follower predictions is imperative. Thus, amalgamating all the adjacency matrices from each
time step into a single matrix becomes necessary:

Aa = T
max
t=1

{At } (16)

3.4 Predictionmodule

Given a visitor u, by utilizing Aa , we can extract all the locations u have visited, represented
asNa(u). It should be noted that to ensure FPGN can retain thememory of each vertex during
the learning process, vertex u will be included inNa(u). Then, FPGN can use the memories
of these vertices (e.g., the memory of u is Fu) as their features to further learn about the
characteristics of these two visitors through GNNs.

In FPGN, we use Graph Attention Network (GAT) [42] for vertex representation learn-
ing. GAT is a multi-head attention mechanism-based GNN model that enables efficient and
effective vertex and edge relationship modeling in graph-structured data. One of the key
advantages of the GAT model is that it can learn to dynamically assign different weights
to different vertices and edges in the graph while considering the neighborhood and global
information. This is achieved using a self-attention mechanism that allows the model to
selectively attend to different subsets of vertices and edges based on their relevance to the
target vertex or subgraph. With the attention mechanism of GAT, FPGN can better determine
which locations are more important for determining the relationship between two visitors.
Moreover, using multiple attention heads allows the model to learn diverse representations
of the graph, thereby improving the robustness and generalization capabilities of the model.

GAT in FPGN can be mathematically formulated as follows: Given a visitor vertex u with
memory Fu , and the locationsNa(u) visited by u, the output features of the l-th layer can be

123

3804 World Wide Web (2023) 26:3795–3814

computed as:

h(l)
u = ‖Kk=1σ

(
[

∑

v∈Na(u)

a(l)
k,uvW

(l)
k h(l−1)

v]
)

, (17)

where K is the number of attention heads, σ is a non-linear activation function (e.g., ReLU),
W(l)

k is the weight matrix for the k-th attention head at the l-th layer, and a(l)
k,uv is the attention

weight assigned to the edge from vertex u to vertex v by the k-th attention head at l-th layer,
h(l)
u is l-th layer representation of u, and h(0)

u = Fu , h(0)
v = Fv .

Follow prediction problem involves bipartite graph datasets. However, the conventional
GATmodel is inefficient in distinguishing between different types of vertices on the bipartite
graph and cannot handle edge messages. To overcome these limitations, we drew inspiration
from UniMP [37] and mapped different types of vertices differently while utilizing edge
information. More specifically, for the c-th head in layer l, the representations of u, v, and
their edge, aswell as the attentionweight between them, can be calculated using the following
method:

h(l)
c,u = W(l)

c,uh
(l)
u + bc,u

h(l)
c,v = W(l)

c,vh
(l)
v + bc,v

hc,uv = W(l)
c,mhm,uv + bc,m

a(l)
c,uv = < h(l)

c,u,h
(l)
c,v + hc,uv >

∑
v′∈Na(u) < h(l)

c,u,h
(l)
c,v′ + hc,uv′ >

,

(18)

where a(l)
c,uv is the new attention weight, < h1,h2 >= exp(

hT1 h2√
dh

) is exponential scale dot-

product function and dh is the hidden size of each head, W(l)
c,u , W

(l)
c,v , and W(l)

c,m represent
weight matrices, while bc,u , bc,v , and bc,m are bias vectors at the l-th layer. Additionally,
the variables h(l)

c,u and h(l)
c,v represent the l-th layer representations of u, v; hm,uv and hc,uv

represent the message and hidden representation of their edge. It is important to note that for
the initial layer, we have h(0)

c,u = Fu , h
(0)
c,v = Fv , and each layer of hm,uv can be generated as

follows:
hm,uv = cos(Wt × (t − tu) + bt)||M(u,v), (19)

where timestamp t indicates the occurrence of the current connection, allowing the model to
leverage user activity information.

After the above adjustments, corresponding adjustments also need to be made to the
mapping function for different types of vertices. For example, the process of mapping u is
as follows:

h(l)
η,u = W(l−1)

η,u h(l−1)
u + b(l)

η,u

h(l)
η,v = W(l−1)

η,v h(l−1)
v + b(l)

η,v

ĥ
(l)
u = ‖Cc=1[

∑

v∈Na(u)

a(l)
c,uvW

(l)
c h(l−1)

v]

h̃
(l)
u = σ(W(l)

g (ĥ
(l)
u ||h(l)

η,u ||(ĥ
(l)
u − h(l)

η,u)))

h(l)
u = σ(LayerNorm((1 − h̃

(l)
u)ĥ

(l)
u + h̃

(l)
u h(l)

η,u)),

(20)

where W(l)
η,u , W(l)

η,v , W(l)
c , W(l)

g are weight matrices and b(l)
η,u , b(l)

η,v are bias vectors,
LayerNorm(·) is layer normalization function.

123

World Wide Web (2023) 26:3795–3814 3805

Given two visitor vertices u and u′, their memories are processed through GAT, and the
final output of the last layer h(L)

u and h(L)

u′ can be used to predict their relationship with the
help of the following module:

hp
uv = σ(Wp1(h

(L)
u) + bp1 + Wp2(h

(L)

u′) + bp2)

ŷu,u′ = σ(Wyh
p
uv + by),

(21)

whereWp1 ,Wp2 ,Wy are weight matrices and bp1 , bp2 , by are bias vectors, ŷu,u′ ∈ [0, 1] is
the probability that u′ follows u predicted by FPGN.

3.5 Training objective

The follower prediction problem can be approached as a binary classification task. As such,
the model can be trained using binary cross-entropy as the loss function. The binary cross-
entropy loss function is commonly used in machine learning to train models for binary
classification tasks. It measures the difference between the predicted and ground truth by
using the logarithmic loss. The formula for it can be written as follows:

Lm = 1

|Dtrain |
∑

(u1,u2)∈Dtrain

yu,u′ log ŷu,u′ + (1 − yu,u′) log(1 − ŷu,u′) (22)

where Dtrain is the training set, |Dtrain | is the size of training set, yu,u′ represents the
ground truth indicating whether u′ is a follower of u. Specifically, if the result is positive,
then yu,u′ = 1; otherwise, it equals 0. ŷu,u′ refers to the predicted probability of a positive
outcome. yu,u′ log ŷu,u′ heavily penalizesmisclassification of positive instances by themodel.
Similarly, (1 − yu,u−2) log(1 − ŷu−11u) penalizes misclassification of negative instances.
Moreover, it is evident that the loss function necessitates the predicted values to be within
the range of 0 and 1, denoted as 0 ≤ ŷu,u′ ≤ 1. As a result, before feeding into this loss
function, the predicted outcomes will undergo a Sigmoid transformation.

Furthermore, as explained in Section 3.2.2, time interval statistics are also important
information that helps the model solve the follower prediction problem. Therefore, FPGN
also uses the following functions during training:

hsuv = σ(Ws1(h
(L)
u) + bs1 + Ws2(h

(L)

u′) + bs2)

ŷsu,u′ = σ(Ws3h
s
uv + bs3)

Ls = 1

|Dtrain |
∑

(u,u′)∈Dtrain

||ŷsu,u′ − Su,u′ ||22,
(23)

whereWs1 ,Ws2 ,Ws3 are weightmatrices and bs1 , bs2 , bs3 are bias vectors, ||·||22 representing
L2 norm.

The final loss function can be represented as:

L = (1 − λ) × Lm + λ × Lc, (24)

where λ is a hyperparameter used to adjust the weights of two sets of loss functions. Since
Lm is the main loss function of FPGN, while Lc mainly plays a supporting role, therefore in
actual training, λ will be adjusted to a relatively small value.

123

3806 World Wide Web (2023) 26:3795–3814

4 Experiment

This section first introduces the experimental setup, then explains the method of generating
the dataset, followed by an introduction to the baselines compared with FPGN, and finally
presents a large number of experimental results. These results demonstrate the excellent
performance of FPGN. In addition, this section also shows the results of ablation experiments,
proving that each part of FPGN plays a positive role in improving model accuracy.

4.1 Experimental setup

In all precision experiments, the hyperparameters of FPGN remain the same. Among them,
epoch is 340, learning rate is 1 × 10−4, batch size is 1 × 104, the number of selected latest
initial memory sets in Xini t

u (t) is K = 10, the number of heads in GAT is C = 2, vertex
ID embedding dimension is 32, α−

τ = α+
τ = 2, β−

τ = 1, β+
τ = 20, all module hidden

layer dimensions are 64, loss function weight λ = 0.05 and Adam optimizer is chosen. The
algorithm we choose to implement (α, β)-core is proposed by work [23]. In order to improve
the efficiency of the model, we use the source code provided by the authors 1, and embed it
into Python code using SWIG 2. The experiment is conducted on a server with two Intel(R)
Xeon(R) Silver 4208 CPUs, one NVIDIA RTX 6000, and 64GB of memory.

In our experiment, we utilize two widely adopted evaluation metrics of edge prediction
on temporal bipartite graphs, namely Average Precision (AP) and AUC, as the metrics of the
follower prediction problem. The definitions of these metrics are as follows:

AP =
N∑

n=1

P(n)�R(n),

P = T P

T P + FP
,

R = T P

T P + FN
,

AUC =
∑m

i=1 ranki − m(m+1)
2

n1 × n0
.

(25)

4.1.1 Dataset

To the best of our knowledge, there is currently no open-source dataset available for predicting
followers. To address this gap, we utilized the widely-used temporal bipartite graph datasets
namedWikipedia and Reddit [16, 21, 33, 47] to create our own dataset. The statistical details
of these two datasets are presented in Table 1.

In the follower prediction problem, we consider all connections to only have the meaning
of “visit,” so the dataset we use does not include edge features. We use 80% of the data in
each dataset as the training set and the remaining 20% as the test set. Additionally, 20% of
the training set is treated as a validation set. It should be noted that in order to ensure that the
model does not test visitors who have not seen before, we remove visitors that only appear
in the test set.

1 https://github.com/boge-liu/alpha-beta-core
2 https://github.com/swig/

123

https://github.com/boge-liu/alpha-beta-core
https://github.com/swig/

World Wide Web (2023) 26:3795–3814 3807

Table 1 Dataset Statistics |U | |V | # Edge

Wikipedia 8,227 1,000 157,474

Reddit 10,000 984 672,358

To generate ground truth, we set a fixed ratio time window. Specifically, assuming the
time span of the dataset is �, two visitors u and u′, and a location v, we consider u and u′ are
leader and follower when �(u, u′, v) ≤ � × 10−4. The negative samples are generated from
samples other than the positive samples, and the number of negative samples is twice that of
the positive samples. In the Wikipedia dataset, the links represent users’ edits to Wikipedia
pages. The obtainedWikidata dataset can help FPGNpredict thosewho followother editors in
editingWikipedia pages. Reddit contains numerous user interaction information in numerous
posts. The Reddit dataset obtained using the above method allows FPGN to predict followers
who engage in reply conversations with specific users.

4.1.2 Compared methods

To the best of our knowledge, there is currently no model specifically optimized for the
follower prediction problem. Therefore, we use six widely used GNN models: GCN [19],
GAT [42], GE [53], SAGE [15], GNN-FiLM [4] and GIN [49] as baselines, where GE is the
general GNN layer adapted from [53]. All of these algorithms have the structure shown in
(2), but differ in the way they aggregate and update the information.

In addition, since the edge prediction problem on temporal graphs is similar to the fol-
lower prediction problem, we also compare with state-of-the-art algorithms JODIE [20] and
NeurTW [16]. JODIE employs two recurrent neural networks to update a visitor’s and a loca-
tion’s embedding at every interaction. In addition, this model has a novel projection operator
that learns to estimate the embedding of the visitor at any time in the future. And to make the
method scalable, a t-Batch algorithm is developed that creates time-consistent batches and
leads to faster training. NeurTW conduct spatiotemporal-biased random walks to retrieve a
set of representative motifs, enabling temporal vertices to be characterized effectively. With
a component based on neural ordinary differential equations, the extracted motifs allow for
irregularly sampled temporal vertices to be embedded explicitly over multiple different inter-
action time intervals. To enrich the supervision signals, a harder contrastive pretext task is
designed for model optimization. It should be noted that TGN is also a state-of-the-art algo-
rithm for solving edge prediction problems on temporal graphs. However, as explained in
Section 1, TGN cannot be directly applied to the follower prediction problem. Therefore,
we do not compare TGN in accuracy evaluation experiments. Instead, we analyze the effec-
tiveness of optimizing TGN for the follower prediction problem in ablation experiments and
show that TGN does not outperform FPGN on this task.

4.2 Prediction accuracy evaluation

Table 2 shows the results of the accuracy experiments. From the table, we observe that FPGN
outperforms all baseline models in terms of both AP and AUC on both datasets. Specifically,
the AP of FPGN is 0.4620 on Wikipedia and 0.5457 on Reddit, which are the highest scores
for both datasets. FIL achieves the second-highest AP score of 0.4180 on Wikipedia, while

123

3808 World Wide Web (2023) 26:3795–3814

Table 2 Effectiveness Evaluation
Results

Wikipedia Reddit
AP AUC AP AUC

GCN 0.3894 0.5491 0.3586 0.5320

GAT 0.4005 0.5549 0.3663 0.5403

GE 0.4050 0.5614 0.3689 0.5420

SAGE 0.3809 0.5331 0.3478 0.5202

GNN-FiLM 0.4180 0.5646 0.3641 0.5398

GIN 0.3957 0.5452 0.3717 0.5283

JODIE 0.3609 0.5397 N/A N/A

NeurTW 0.3559 0.5325 N/A N/A

FPGN 0.4620 0.6250 0.5457 0.7305

GIN obtains the second-highest AP score of 0.3717 on Reddit. In contrast, FPGN was able
to improve by 10.53% on Wikipedia based on FIL, while on Reddit, it improved by 46.81%
based on GIN. Similarly, onWikipedia and Reddit datasets, FPGN outperforms other models
with the highest AUC scores of 0.6250 and 0.7305, respectively. The second-best AUC score
on Wikipedia is achieved by FIL at 0.5646, while GE obtains the second-best AUC score on
Reddit at 0.5403. Compared to them, FPGN respectively increased by 10.70% and 35.20%
based on their performance.

These results indicate that, on the one hand, because these six general GNN baseline
models (i.e., GCN, GAT, GE, GraphSAGE, FIL and GIN) are designed for general graph
structures, they do not perform as well as FPGN, which is specifically optimized for the
follower prediction problem. This demonstrates the importance of problem-specific opti-
mization in graph-based models. On the other hand, compared with two state-of-the-art
temporal graph edge prediction models (i.e., JODIE and NeurTW), FPGN still achieves bet-
ter performance. Due to the heavy emphasis on temporal information processing in these two
baselines, their efficiency is very low. In experiments conducted on the Reddit dataset, both
JODIE and NeurTWwere unable to obtain experimental results within 48 hours. In addition,
because they are unable to fully utilize the time window information during follower and
leader activity processes, they are more easily misled and achieve worse results than general
GNN models. More specifically, the architecture of JODIE and NeurTW makes them more
suitable for utilizing historical information to predict whether a particular event will occur.
However, when it comes to predicting the time difference of future events, their method of
handling timestamp information has a negative effect on prediction.

In summary, the proposed FPGNmodel is highly effective in predicting followers on both
datasets. It outperforms six general GNN models and two state-of-the-art temporal graph
edge prediction models. These results demonstrate the exceptional performance of FPGN on
this task.

4.3 Ablation experiment

In order to better achieve the follower prediction task, FPGN strengthened the utilization
of time interval statistics information and graph structure information. To demonstrate the
advanced nature of these optimizations, we conducted ablation experiments. Specifically,
we compared FPGN with only improved TGN (referred to as FGN), FPGN without graph

123

World Wide Web (2023) 26:3795–3814 3809

FGN FPGN w/o S FPGN w/o T FPGN
0.43

0.44

0.45

0.46

0.47

0.48

A
P

AP

0.610

0.615

0.620

0.625

0.630

A
U

C

AUC

Figure 3 Ablation Experimental Results

structure information (referred to as FPGN w/o S) and FPGN without time interval statistics
information (referred to as FPGN w/o T). The experimental results on Wikipedia are shown
in Figure 3.

After analyzing the experimental results, it can be found that both the AP andAUCmetrics
show that FGN is the worst, and FPGN is the best. This is because TGN can only make good
use of the updated information of each vertex and fully consider the information at different
times for the samevertex, but cannot effectively utilize time informationbetween twodifferent
vertices. Therefore, although FGNperforms better in follower prediction compared to JODIE
and NeurTW, its performance is still worse than FPGN as well as FPGN w/o S and FPGN
w/o T.

By comparing the effects of FPGN w/o S and FPGN w/o T, it can be found that the
accuracy of FPGN w/o T is higher than that of FPGN w/o S. This is because (α, β)-core
can extract the activity information of each vertex very well. There is no doubt that more
active vertices are more likely to exhibit the following behavior. Therefore, the information
extracted by (α, β)-core can better help the model predict future following behavior.

5 Related works

Graph Neural Networks Graph Neural Networks (GNNs) have gained significant attention
in recent years due to their ability to represent and learn from graphs and other informa-
tion [4, 17, 22, 25, 48]. One of the earliest works in the development of GNNs is the Graph
Convolutional Network (GCN) [19]. GCN is a type of neural network that operates directly
on graphs, allowing it to learn representations that capture the underlying structure of the
graph. Another notable work is Graph Attention Networks (GAT) [42]. GAT uses attention
mechanisms to weigh the importance of each vertex’s neighbors, allowing the network to
focus on the most relevant information for each vertex. Other related works in the field of
GNNs include GraphSAGE [15], GIN [49], etc. These approaches have been used in various
applications such as social network analysis, protein function prediction, and knowledge
graph completion [43]. In addition, there are some GNN models that have been specifically

123

3810 World Wide Web (2023) 26:3795–3814

optimized for bipartite graph problems [54, 56, 57]. However, these methods cannot utilize
temporal information and are therefore not suitable for application on temporal bipartite
graphs.

GNNs on Temporal Graphs In recent years, graph neural network models specifically
designed for temporal graphs have been continuously emerging. Early models for temporal
graphs focused on DTDGs. There are two encoding methods for DTDGs: one is to aggregate
graph snapshots and apply static methods [13, 34, 36, 59], and the other is to modify the
behavior of subsequent snapshots through random walks [12, 29, 46]. Based on CTDGs,
several methods have recently been proposed for temporal graphs, including random walk
models [2, 30] and sequence-based methods [20, 28, 39]. What’s more, many temporal graph
architectures focus on updating vertex-wise memory when new interactions occur [3, 20, 33,
40, 47]. These algorithms can fully utilize the connectivity and temporal information and
perform better. However, there is great confusion in predicting follower problems for these
methods because it is difficult to distinguish the order of vertex activity and time difference.
This makes these algorithms even misled by temporal information when making follower
predictions, resulting in low prediction accuracy.

Cohesive Subgraph Mining Many algorithms are now available for finding dense sub-
graphs, such as clique [8, 9], quasi-clique [41], k-core [7, 18], and k-truss [11, 44], etc. At the
same time, there are also many methods specifically designed to search for dense subgraphs
on bipartite graphs, such as biclique [1, 58], k-bitruss [45], bi-triangle [52], (α, β)-core [23],
δ-quasi-biclique [24] and k-biplex [55], etc.

These algorithms cannot utilize temporal information or directly implement edge classi-
fication, so they cannot be directly used to solve the follower prediction problem. However,
followers often exist in denser subgraphs, so these algorithms can provide good auxiliary
support for solving this problem.

6 Conclusion

This paper introduces a novel approach to solving the problem of follower prediction in
temporal bipartite graphs using a model called Follower Prediction Graph Network (FPGN).
The model is designed to accurately predict high-risk visitors by tracking their activities
in the same location as infected visitors. FPGN is inspired by the state-of-the-art temporal
graph edge prediction algorithm TGN and addresses its shortcomings. The high accuracy of
the FPGN is attributed to its well-designed approach to addressing this problem, including
making full use of time windows and global structure information. The results of extensive
experiments conducted on two real datasets demonstrate the effectiveness of FPGN. In con-
clusion, this work represents a significant advancement in the problem of follower prediction
and provides a new and effective approach to solving this challenging problem.

Author Contributions Jianke Yu, Xianhang Zhang, Hanchen Wang, and Xiaoyang Wang wrote the main
manuscript text.Wenjie Zhang andYingZhang provided key ideas of the proposedmodel. All authors reviewed
the manuscript.

123

World Wide Web (2023) 26:3795–3814 3811

Funding Open Access funding enabled and organized by CAUL and its Member Institutions The paper was
supported by ZJNSF LY21F020012.

Availability of data andmaterials The code and data are available at https://github.com/yujianke100/FPGN.

Declarations

Ethical Approval Not applicable since there are no human and/ or animal studies included in this paper.

Competing Interests No, we declare that the authors have no competing interests as defined by Springer, or
other interests that might be perceived to influence the results and/or discussion reported in this paper.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Alexe, G., Alexe, S., Crama, Y., Foldes, S., Hammer, P.L., Simeone, B.: Consensus algorithms for the
generation of all maximal bicliques. Discret. Appl. Math. 145(1), 11–21 (2004). https://doi.org/10.1016/
j.dam.2003.09.004

2. Bastas, N., Semertzidis, T., Axenopoulos, A., Daras, P.: evolve2vec: Learning network representations
using temporal unfolding. In: Kompatsiaris, I., Huet, B., Mezaris, V., Gurrin, C., Cheng, W., Vrochidis, S.
(eds.) MultiMediaModeling - 25th International Conference, MMM2019, Thessaloniki, Greece, January
8-11, 2019, Proceedings, Part I, Lecture Notes in Computer Science, vol. 11295, pp. 447–458. Springer
(2019). https://doi.org/10.1007/978-3-030-05710-7_37

3. Battaglia, P.W., Hamrick, J.B., Bapst, V., Sanchez-Gonzalez, A., Zambaldi, V.F., Malinowski, M., Tac-
chetti, A., Raposo, D., Santoro, A., Faulkner, R., Gülçehre, Ç., Song, H.F., Ballard, A.J., Gilmer, J., Dahl,
G.E., Vaswani, A., Allen, K.R., Nash, C., Langston, V., Dyer, C., Heess, N., Wierstra, D., Kohli, P.,
Botvinick, M.M., Vinyals, O., Li, Y., Pascanu, R.: Relational inductive biases, deep learning, and graph
networks. CoRR (2018) arXiv:1806.01261

4. Brockschmidt,M.: Gnn-film:Graph neural networkswith feature-wise linearmodulation. In: Proceedings
of the 37th International Conference on Machine Learning, ICML 2020, 13–18 July 2020, Virtual Event,
Proceedings of Machine Learning Research, vol. 119, pp. 1144–1152. PMLR (2020) . http://proceedings.
mlr.press/v119/brockschmidt20a.html

5. Cahuantzi, R., Chen, X., Güttel, S.: A comparison of LSTM and GRU networks for learning symbolic
sequences. CoRR (2021). arXiv:2107.02248

6. Chen, G., Hu, L., Zhang, Q., Ren, Z., Gao, X., Cheng, J.: ST-LSTM: spatio-temporal graph based long
short-termmemory network for vehicle trajectory prediction. In: IEEE International Conference on Image
Processing, ICIP 2020, Abu Dhabi, United Arab Emirates, October 25-28, 2020, pp. 608–612. IEEE
(2020). https://doi.org/10.1109/ICIP40778.2020.9191332

7. Cheng, J., Ke, Y., Chu, S., Özsu, M.T.: Efficient core decomposition in massive networks. In: 2011 IEEE
27th International Conference on Data Engineering, pp. 51–62. IEEE (2011)

8. Cheng, J., Ke, Y., Fu, A.W., Yu, J.X., Zhu, L.: Finding maximal cliques in massive networks. ACMTrans.
Database Syst. 36(4), 21:1-21:34 (2011). https://doi.org/10.1145/2043652.2043654

9. Cheng, J., Zhu, L., Ke, Y., Chu, S.: Fast algorithms for maximal clique enumeration with limited memory.
In: Yang, Q., Agarwal, D., Pei, J. (eds.) The 18th ACMSIGKDD International Conference on Knowledge
Discovery andDataMining, KDD ’12, Beijing, China, August 12-16, 2012, pp. 1240–1248. ACM (2012).
https://doi.org/10.1145/2339530.2339724

10. Cho, K., vanMerrienboer, B., Gülçehre, Ç., Bahdanau, D., Bougares, F., Schwenk, H., Bengio, Y.: Learn-
ing phrase representations using RNN encoder-decoder for statistical machine translation. In: Moschitti,

123

https://github.com/yujianke100/FPGN
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.dam.2003.09.004
https://doi.org/10.1016/j.dam.2003.09.004
https://doi.org/10.1007/978-3-030-05710-7_37
http://arxiv.org/abs/1806.01261
http://proceedings.mlr.press/v119/brockschmidt20a.html
http://proceedings.mlr.press/v119/brockschmidt20a.html
http://arxiv.org/abs/2107.02248
https://doi.org/10.1109/ICIP40778.2020.9191332
https://doi.org/10.1145/2043652.2043654
https://doi.org/10.1145/2339530.2339724

3812 World Wide Web (2023) 26:3795–3814

A., Pang, B., Daelemans, W. (eds.) Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing, EMNLP 2014, October 25–29, 2014, Doha, Qatar, Ameeting of SIGDAT, a Special
Interest Group of the ACL, pp. 1724–1734. ACL (2014). https://doi.org/10.3115/v1/d14-1179

11. Cohen, J.: Trusses: Cohesive subgraphs for social network analysis. National security agency technical
report 16(3.1) (2008)

12. Du, L., Wang, Y., Song, G., Lu, Z., Wang, J.: Dynamic network embedding : An extended approach for
skip-gram based network embedding. In: Lang, J. (ed.) Proceedings of the Twenty-Seventh International
Joint Conference onArtificial Intelligence, IJCAI 2018, July 13–19, 2018, Stockholm, Sweden, pp. 2086–
2092. ijcai.org (2018). https://doi.org/10.24963/ijcai.2018/288

13. Fard, A.M., Bagheri, E., Wang, K.: Relationship prediction in dynamic heterogeneous information net-
works. In: Azzopardi, L., Stein, B., Fuhr, N., Mayr, P., Hauff, C., Hiemstra, D. (eds.) Advances in
Information Retrieval - 41st European Conference on IR Research, ECIR 2019, Cologne, Germany, April
14-18, 2019, Proceedings, Part I, Lecture Notes in Computer Science, vol. 11437, pp. 19–34. Springer
(2019). https://doi.org/10.1007/978-3-030-15712-8_2

14. Gu, L., Mukherjee, M., Guo, M., Lloret, J., Matam, R.: Low-cost assistive body temperature screening
system to combat communicable infectious diseases leveraging edge computing and long-range and low-
powerwireless networks. IEEE Internet Things J. 10(5), 4174–4183 (2023). https://doi.org/10.1109/JIOT.
2022.3215484

15. Hamilton, W.L., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Guyon,
I., von Luxburg, U., Bengio, S., Wallach, H.M., Fergus, R., Vishwanathan, S.V.N., Garnett, R. (eds.)
Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information
Processing Systems 2017, December 4–9, 2017, Long Beach, CA, USA, pp. 1024–1034 (2017). https://
proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html

16. Jin, M., Li, Y.F., Pan, S.: Neural temporal walks: Motif-aware representation learning on continuous-time
dynamic graphs. In: Advances in Neural Information Processing Systems (2022)

17. Jin, Y., Ji, W., Shi, Y., Wang, X., Yang, X.: Meta-path guided graph attention network for explainable herb
recommendation. Health Inf. Sci. Syst. 11(1), 5 (2023). https://doi.org/10.1007/s13755-022-00207-6

18. Khaouid, W., Barsky, M., Srinivasan, V., Thomo, A.: K-core decomposition of large networks on a single
pc. Proceedings of the VLDB Endowment 9(1), 13–23 (2015)

19. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: 5th Inter-
national Conference on Learning Representations, ICLR 2017, Toulon, France, April 24–26, 2017,
Conference Track Proceedings. OpenReview.net (2017). https://openreview.net/forum?id=SJU4ayYgl

20. Kumar, S., Zhang, X., Leskovec, J.: Predicting dynamic embedding trajectory in temporal interaction
networks. In: Teredesai, A., Kumar, V., Li, Y., Rosales, R., Terzi, E., Karypis, G. (eds.) Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD
2019, Anchorage, AK, USA, August 4–8, 2019, pp. 1269–1278. ACM (2019). https://doi.org/10.1145/
3292500.3330895

21. Kumar, S., Zhang, X., Leskovec, J.: Predicting dynamic embedding trajectory in temporal interaction
networks. In: Teredesai, A., Kumar, V., Li, Y., Rosales, R., Terzi, E., Karypis, G. (eds.) Proceedings
of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD
2019, Anchorage, AK, USA, August 4–8, 2019, pp. 1269–1278. ACM (2019). https://doi.org/10.1145/
3292500.3330895

22. Li,C., Sun,L., Peng,D., Subramani, S.,Nicolas, S.C.:Amulti-label classification system for anomaly clas-
sification in electrocardiogram. Health Inf. Sci. Syst. 10(1), 19 (2022). https://doi.org/10.1007/s13755-
022-00192-w

23. Liu, B., Yuan, L., Lin, X., Qin, L., Zhang, W., Zhou, J.: Efficient (a,β)-core computation: an index-based
approach. In: Liu, L., White, R.W., Mantrach, A., Silvestri, F., McAuley, J.J., Baeza-Yates, R., Zia, L.
(eds.) The World Wide Web Conference, WWW 2019, San Francisco, CA, USA, May 13–17, 2019, pp.
1130–1141. ACM (2019). https://doi.org/10.1145/3308558.3313522

24. Liu, X., Li, J., Wang, L.: Quasi-bicliques: Complexity and binding pairs. In: International Computing and
Combinatorics Conference, pp. 255–264. Springer (2008)

25. Lu, H., Uddin, S.: Embedding-based link predictions to explore latent comorbidity of chronic diseases.
Health Inf. Sci. Syst. 11(1), 2 (2023). https://doi.org/10.1007/s13755-022-00206-7

26. Lu, Y., Phillips, C.A., Langston, M.A.: Biclique: an r package for maximal biclique enumeration in
bipartite graphs. BMC Research Notes 13(1), 1–5 (2020)

27. Lyu, B., Qin, L., Lin, X., Zhang, Y., Qian, Z., Zhou, J.: Maximum and top-k diversified biclique search
at scale. VLDB J. 31(6), 1365–1389 (2022). https://doi.org/10.1007/s00778-021-00681-6

28. Ma, Y., Guo, Z., Ren, Z., Tang, J., Yin, D.: Streaming graph neural networks. In: Huang, J.X., Chang, Y.,
Cheng, X., Kamps, J., Murdock, V., Wen, J., Liu, Y. (eds.) Proceedings of the 43rd International ACM

123

https://doi.org/10.3115/v1/d14-1179
https://doi.org/10.24963/ijcai.2018/288
https://doi.org/10.1007/978-3-030-15712-8_2
https://doi.org/10.1109/JIOT.2022.3215484
https://doi.org/10.1109/JIOT.2022.3215484
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/5dd9db5e033da9c6fb5ba83c7a7ebea9-Abstract.html
https://doi.org/10.1007/s13755-022-00207-6
https://openreview.net/forum?id=SJU4ayYgl
https://doi.org/10.1145/3292500.3330895
https://doi.org/10.1145/3292500.3330895
https://doi.org/10.1145/3292500.3330895
https://doi.org/10.1145/3292500.3330895
https://doi.org/10.1007/s13755-022-00192-w
https://doi.org/10.1007/s13755-022-00192-w
https://doi.org/10.1145/3308558.3313522
https://doi.org/10.1007/s13755-022-00206-7
https://doi.org/10.1007/s00778-021-00681-6

World Wide Web (2023) 26:3795–3814 3813

SIGIR conference on research and development in Information Retrieval, SIGIR 2020, Virtual Event,
China, July 25–30, 2020, pp. 719–728. ACM (2020). https://doi.org/10.1145/3397271.3401092

29. Mahdavi, S., Khoshraftar, S., An, A.: dynnode2vec: Scalable dynamic network embedding. In: Abe, N.,
Liu, H., Pu, C., Hu, X., Ahmed, N.K., Qiao, M., Song, Y., Kossmann, D., Liu, B., Lee, K., Tang, J., He,
J., Saltz, J.S. (eds.) IEEE International Conference on Big Data (IEEE BigData 2018), Seattle, WA, USA,
December 10–13, 2018, pp. 3762–3765. IEEE (2018). https://doi.org/10.1109/BigData.2018.8621910

30. Nguyen, G.H., Lee, J.B., Rossi, R.A., Ahmed, N.K., Koh, E., Kim, S.: Continuous-time dynamic network
embeddings. In: Champin, P., Gandon, F., Lalmas, M., Ipeirotis, P.G. (eds.) Companion of the The Web
Conference 2018 on The Web Conference 2018, WWW 2018, Lyon , France, April 23–27, 2018, pp.
969–976. ACM (2018). https://doi.org/10.1145/3184558.3191526

31. Peeters, R.: The maximum edge biclique problem is np-complete. Discret. Appl. Math. 131(3), 651–654
(2003). https://doi.org/10.1016/S0166-218X(03)00333-0

32. Podder, P., Das, S.R., Mondal, M.R.H., Bharati, S., Maliha, A., Hasan, M.J., Piltan, F.: Lddnet: A deep
learning framework for the diagnosis of infectious lung diseases. Sensors 23(1), 480 (2023). https://doi.
org/10.3390/s23010480

33. Rossi, E., Chamberlain, B., Frasca, F., Eynard, D., Monti, F., Bronstein, M.M.: Temporal graph networks
for deep learning on dynamic graphs. CoRR (2020). arXiv:2006.10637

34. Sajadmanesh, S., Bazargani, S., Zhang, J., Rabiee, H.R.: Continuous-time relationship prediction in
dynamic heterogeneous information networks. ACM Trans. Knowl. Discov. Data 13(4), 44:1-44:31
(2019). https://doi.org/10.1145/3333028

35. Sak,H., Senior, A.W., Beaufays, F.: Long short-termmemory based recurrent neural network architectures
for large vocabulary speech recognition. CoRR (2014). arXiv:1402.1128

36. Sankar, A., Wu, Y., Gou, L., Zhang, W., Yang, H.: Dysat: Deep neural representation learning on dynamic
graphs via self-attention networks. In: Caverlee, J., Hu, X.B., Lalmas, M., Wang, W. (eds.) WSDM ’20:
The Thirteenth ACM International Conference on Web Search and Data Mining, Houston, TX, USA,
February 3–7, 2020, pp. 519–527. ACM (2020). https://doi.org/10.1145/3336191.3371845

37. Shi, Y., Huang, Z., Feng, S., Zhong, H., Wang, W., Sun, Y.: Masked label prediction: Unified message
passing model for semi-supervised classification. In: Zhou, Z. (ed.) Proceedings of the Thirtieth Interna-
tional Joint Conference on Artificial Intelligence, IJCAI 2021, Virtual Event / Montreal, Canada, 19–27
August 2021, pp. 1548–1554. ijcai.org (2021). https://doi.org/10.24963/ijcai.2021/214

38. Staudemeyer, R.C., Morris, E.R.: Understanding LSTM - a tutorial into long short-termmemory recurrent
neural networks. CoRR (2019). arXiv:1909.09586

39. Trivedi, R., Dai, H., Wang, Y., Song, L.: Know-evolve: Deep temporal reasoning for dynamic knowledge
graphs. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine
Learning, ICML 2017, Sydney, NSW, Australia, 6–11 August 2017, Proceedings of Machine Learning
Research, vol. 70, pp. 3462–3471. PMLR (2017). http://proceedings.mlr.press/v70/trivedi17a.html

40. Trivedi, R., Farajtabar, M., Biswal, P., Zha, H.: Dyrep: Learning representations over dynamic graphs.
In: 7th International Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May
6–9, 2019. OpenReview.net (2019). https://openreview.net/forum?id=HyePrhR5KX

41. Tsourakakis, C.E., Bonchi, F., Gionis, A., Gullo, F., Tsiarli, M.A.: Denser than the densest subgraph:
extracting optimal quasi-cliques with quality guarantees. In: Dhillon, I.S., Koren, Y., Ghani, R., Senator,
T.E., Bradley, P., Parekh, R., He, J., Grossman, R.L., Uthurusamy, R. (eds.) The 19th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD 2013, Chicago, IL, USA,
August 11–14, 2013, pp. 104–112. ACM (2013). https://doi.org/10.1145/2487575.2487645

42. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In:
6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April 30
– May 3, 2018, Conference Track Proceedings. OpenReview.net (2018). https://openreview.net/forum?
id=rJXMpikCZ

43. Wang, H., Yu, J., Wang, X., Chen, C., Zhang, W., Lin, X.: Neural similarity search on supergraph con-
tainment. IEEE Transactions on Knowledge and Data Engineering (2023)

44. Wang, J., Cheng, J.: Truss decomposition inmassive networks. Proc. VLDBEndow. 5(9), 812–823 (2012).
https://doi.org/10.14778/2311906.2311909, http://vldb.org/pvldb/vol5/p812_jiawang_vldb2012.pdf

45. Wang, K., Lin, X., Qin, L., Zhang, W., Zhang, Y.: Efficient bitruss decomposition for large-scale bipartite
graphs. In: 2020 IEEE 36th International Conference on Data Engineering (ICDE), pp. 661–672. IEEE
(2020)

46. Winter, S.D., Decuypere, T., Mitrovic, S., Baesens, B., Weerdt, J.D.: Combining temporal aspects of
dynamic networks with node2vec for a more efficient dynamic link prediction. In: Brandes, U., Reddy, C.,
Tagarelli, A. (eds.) IEEE/ACM 2018 International Conference on Advances in Social Networks Analysis
and Mining, ASONAM 2018, Barcelona, Spain, August 28–31, 2018, pp. 1234–1241. IEEE Computer
Society (2018). https://doi.org/10.1109/ASONAM.2018.8508272

123

https://doi.org/10.1145/3397271.3401092
https://doi.org/10.1109/BigData.2018.8621910
https://doi.org/10.1145/3184558.3191526
https://doi.org/10.1016/S0166-218X(03)00333-0
https://doi.org/10.3390/s23010480
https://doi.org/10.3390/s23010480
http://arxiv.org/abs/2006.10637
https://doi.org/10.1145/3333028
http://arxiv.org/abs/1402.1128
https://doi.org/10.1145/3336191.3371845
https://doi.org/10.24963/ijcai.2021/214
http://arxiv.org/abs/1909.09586
http://proceedings.mlr.press/v70/trivedi17a.html
https://openreview.net/forum?id=HyePrhR5KX
https://doi.org/10.1145/2487575.2487645
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rJXMpikCZ
https://doi.org/10.14778/2311906.2311909
http://vldb.org/pvldb/vol5/p812_jiawang_vldb2012.pdf
https://doi.org/10.1109/ASONAM.2018.8508272

3814 World Wide Web (2023) 26:3795–3814

47. Xu, D., Ruan, C., Körpeoglu, E., Kumar, S., Achan, K.: Inductive representation learning on temporal
graphs. In: 8th International Conference onLearningRepresentations, ICLR2020,AddisAbaba, Ethiopia,
April 26–30, 2020. OpenReview.net (2020). https://openreview.net/forum?id=rJeW1yHYwH

48. Xu, H., Chen, X., Qian, P., Li, F.: A two-stage segmentation of sublingual veins based on compact fully
convolutional networks for traditional chinese medicine images. Health Inf. Sci. Syst. 11(1), 19 (2023).
https://doi.org/10.1007/s13755-023-00214-1

49. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks? In: 7th Interna-
tional Conference on Learning Representations, ICLR 2019, New Orleans, LA, USA, May 6–9, 2019.
OpenReview.net (2019). https://openreview.net/forum?id=ryGs6iA5Km

50. Xu, M., Singh, A.V., Karniadakis, G.E.: Dyng2g: An efficient stochastic graph embedding method for
temporal graphs. CoRR (2021). arXiv:2109.13441

51. Yang, S., Yu, X., Zhou, Y.: Lstm and gru neural network performance comparison study: Taking yelp
review dataset as an example. In: 2020 International Workshop on Electronic Communication and Arti-
ficial Intelligence (IWECAI), pp. 98–101 (2020). https://doi.org/10.1109/IWECAI50956.2020.00027

52. Yang, Y., Fang, Y., Orlowska, M.E., Zhang, W., Lin, X.: Efficient bi-triangle counting for large bipartite
networks. Proceedings of the VLDB Endowment 14(6), 984–996 (2021)

53. You, J., Ying, Z., Leskovec, J.: Design space for graph neural networks. In: Larochelle, H., Ranzato, M.,
Hadsell, R., Balcan, M., Lin, H. (eds.) Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6–12, 2020,
virtual (2020). https://proceedings.neurips.cc/paper/2020/hash/c5c3d4fe6b2cc463c7d7ecba17cc9de7-
Abstract.html

54. Yu, J., Wang, H., Wang, X., Li, Z., Qin, L., Zhang, W., Liao, J., Zhang, Y.: Group-based fraud detection
network on e-commerce platforms. In: Singh, A., Sun, Y., Akoglu, L., Gunopulos, D., Yan, X., Kumar,
R., Ozcan, F., Ye, J. (eds.) Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, KDD 2023, Long Beach, CA, USA, August 6–10, 2023, pp. 5463–5475. ACM (2023).
https://doi.org/10.1145/3580305.3599836

55. Yu, K., Long, C., Liu, S., Yan, D.: Efficient algorithms for maximal k-biplex enumeration. In: Proceedings
of the 2022 International Conference on Management of Data, pp. 860–873 (2022)

56. Zhang, X., Wang, H., Yu, J., Chen, C., Wang, X., Zhang, W.: Polarity-based graph neural network for
sign prediction in signed bipartite graphs. World Wide Web 25(2), 471–487 (2022). https://doi.org/10.
1007/s11280-022-01015-4

57. Zhang, X., Wang, H., Yu, J., Chen, C., Wang, X., Zhang, W.: Bipartite graph capsule network. World
Wide Web (WWW) 26(1), 421–440 (2023). https://doi.org/10.1007/s11280-022-01009-2

58. Zhang, Y., Phillips, C.A., Rogers, G.L., Baker, E.J., Chesler, E.J., Langston, M.A.: On finding bicliques
in bipartite graphs: a novel algorithm and its application to the integration of diverse biological data types.
BMC Bioinform. 15, 110 (2014). https://doi.org/10.1186/1471-2105-15-110

59. Zhu, Y., Li, H., Liao, Y.,Wang, B., Guan, Z., Liu, H., Cai, D.:What to do next:Modeling user behaviors by
time-lstm. In: Sierra, C. (ed.) Proceedings of the Twenty-Sixth International Joint Conference onArtificial
Intelligence, IJCAI 2017, Melbourne, Australia, August 19–25, 2017, pp. 3602–3608. ijcai.org (2017).
https://doi.org/10.24963/ijcai.2017/504

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://openreview.net/forum?id=rJeW1yHYwH
https://doi.org/10.1007/s13755-023-00214-1
https://openreview.net/forum?id=ryGs6iA5Km
http://arxiv.org/abs/2109.13441
https://doi.org/10.1109/IWECAI50956.2020.00027
https://proceedings.neurips.cc/paper/2020/hash/c5c3d4fe6b2cc463c7d7ecba17cc9de7-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/c5c3d4fe6b2cc463c7d7ecba17cc9de7-Abstract.html
https://doi.org/10.1145/3580305.3599836
https://doi.org/10.1007/s11280-022-01015-4
https://doi.org/10.1007/s11280-022-01015-4
https://doi.org/10.1007/s11280-022-01009-2
https://doi.org/10.1186/1471-2105-15-110
https://doi.org/10.24963/ijcai.2017/504

	FPGN: follower prediction framework for infectious disease prevention
	Abstract
	1 Introduction
	2 Background
	2.1 Preliminaries
	2.2 Problem statement

	3 Model
	3.1 Overview
	3.2 Pre-processing stage
	3.2.1 Graph structure information
	3.2.2 Time interval statistics

	3.3 Information update stage
	3.3.1 Memory update
	3.3.2 Neighbors update

	3.4 Prediction module
	3.5 Training objective

	4 Experiment
	4.1 Experimental setup
	4.1.1 Dataset
	4.1.2 Compared methods

	4.2 Prediction accuracy evaluation
	4.3 Ablation experiment

	5 Related works
	6 Conclusion
	References

