
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Scaling Up 𝑘-Clique Densest Subgraph Detection
Anonymous Author(s)

ABSTRACT
In this paper, we study the 𝑘-clique densest subgraph problem,

which detects the subgraph that maximizes the ratio between the

number of 𝑘-cliques and the number of vertices in it. The problem

has been extensively studied in the literature and has many applica-

tions in a wide range of fields such as biology and finance. Existing

solutions rely heavily on repeatedly computing all the 𝑘-cliques,

which are not scalable to handle large𝑘 values on large-scale graphs.

In this paper, by utilizing the idea of “pivoting”, we propose the

SCT
∗
-Index to compactly organize the𝑘-cliques. Based on the SCT∗-

Index, our SCTL algorithm can directly obtain the 𝑘-cliques from

the index and efficiently achieve near-optimal approximation. To

further improve SCTL, we propose SCTL∗ that includes novel graph
reductions and batch-processing optimizations to reduce the search

space and decrease the number of visited 𝑘-cliques, respectively. As

evaluated in our experiments, SCTL∗ significantly outperforms ex-

isting approaches by up to two orders of magnitude. In addition, we

propose a sampling-based approximate algorithm that can provide

reasonable approximations for any 𝑘 value on billion-scale graphs.

Extensive experiments on 12 real-world graphs validate both the

efficiency and effectiveness of the proposed techniques.

ACM Reference Format:
Anonymous Author(s). 2018. Scaling Up 𝑘-Clique Densest Subgraph De-

tection. InWoodstock ’18: ACM Symposium on Neural Gaze Detection, June
03–05, 2018, Woodstock, NY. ACM, New York, NY, USA, 13 pages. https:

//doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION
Dense subgraph discovery is a fundamental research topic in graph

mining and has been extensively studied in recent years [2, 3, 7,

34, 40, 47, 49, 51]. The study of dense subgraph discovery benefits

application scenarios in a wide range of fields including biology

[6, 15, 23, 29], finance [19, 28, 52], and social network analysis

[3, 12, 48]. In many of these applications, finding a “near-clique” is

very important since a “near-clique” can be considered as a clique in

the forming stage or one with missing edges due to data corruption.

For example, in a protein-protein-interaction network, an edge

represents a currently known interaction between two proteins [15].

When a near-clique is detected, it is found that the missing edges

are good predictions of new interactions between proteins [33, 50].

In addition, near-clique detection is also used in characterizing new

proteins [15], DNA motif discovery [23], spam link detection [25]

and graph compression [10]. To find such near-cliques, the 𝑘-clique

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-XXXX-X/18/06. . . $15.00

https://doi.org/XXXXXXX.XXXXXXX

densest subgraph problem is studied [22, 37, 41, 45], which aims to

find the subgraph that maximizes the ratio between the number

of 𝑘-cliques and the number of vertices in it. For example, in the

graph shown in Figure 1, the subgraph induced by 𝑣2 ∼ 𝑣7 (in grey

shade) is the 𝑘-clique densest subgraph when 𝑘 = 3. It has a 𝑘-clique

density of
13

6
since there are 13 𝑘-cliques and 6 vertices in it.

𝐾𝑃!

𝑣!	

𝑣#	

𝑣$	

𝑣%	

𝑣&	

𝑣'	
𝑣(

𝑣)	

𝑣*	

𝑣!+	

𝑣!#	 𝑣!!	

𝐾𝑃"

Figure 1: An example of the 𝑘-clique densest subgraph

To solve the 𝑘-clique densest subgraph problem, the classic

binary-search-based approaches suffer from long running time due

to a large number of max-flow calls [22, 37, 45]. Recently, another

line of research focuses on convex-programming-based approaches

[17, 35, 41]. Specifically, the approximate algorithm in [41] adjusts

the solution in each iteration by visiting all 𝑘-cliques, which gradu-

ally converges to the optimal solution. Since it relies on computing

𝑘-cliques online for many rounds, it mainly handles 𝑘 values on

the lower end. In real scenarios, it has been shown that the 𝑘-clique

densest subgraph is more likely to capture useful “near-cliques”

when 𝑘 gets large [16, 45]. Thus, it demands more efficient and

scalable solutions for the 𝑘-clique densest subgraph problem.

State-of-the-arts. There are two state-of-the-art approaches [22,

41] for the 𝑘-clique densest subgraph problem in the literature.

In [22], Fang et al. propose a cohesive subgraph model (𝑘 ′,Ψ)-
core, which is the maximum subgraph where each vertex is con-

tained by at least 𝑘 ′ 𝑘-cliques in the subgraph. They prove that

the (𝑘 ′𝑚𝑎𝑥 ,Ψ)-core is a 1

𝑘
-approximation of the 𝑘-clique densest

subgraph, where 𝑘 ′𝑚𝑎𝑥 is the largest 𝑘 ′ such that the (𝑘 ′,Ψ)-core
exists. Based on this observation, they propose an algorithm to

obtain the (𝑘 ′𝑚𝑎𝑥 ,Ψ)-core as an approximate solution. In addition,

they perform graph reductions using (𝑘 ′,Ψ)-cores and use binary

search to get the exact result.

A recent work [41] formulates the 𝑘-clique densest subgraph

problem as a convex program and proposes the KCL algorithm. KCL
visits all the 𝑘-cliques in 𝐺 for 𝑇 iterations and for each visited

𝑘-clique, it increases the minimum vertex weight in it by one. Af-

ter 𝑇 iterations, KCL returns the top-𝑠 highest weight vertices as

an approximate solution. Note that KCL is proven to converge to

the optimal solution after sufficient iterations. Compared with the

(𝑘 ′,Ψ)-core-based algorithms, KCL can yield near-optimal approx-

imation within limited iterations since it iteratively adjusts the

vertex weights to improve the current solution while the (𝑘 ′,Ψ)-
core-based solution has a fixed approximation ratio of

1

𝑘
. However,

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

KCL is still not scalable for large 𝑘 values and large-scale graphs

since (1) it needs to repeatedly compute the same 𝑘-cliques in each

iteration; and (2) it unavoidably visits many 𝑘-cliques that are not

contained in the optimal solution. In this paper, we focus on design-

ing efficient and scalable convex-programming-based algorithms,

with the following main challenges.

• Challenge 1: How to avoid computing all the 𝑘-cliques from

scratch in each iteration?

• Challenge 2: How to reduce the search space for obtaining

the 𝑘-clique densest subgraph and explore possible com-

putation sharing opportunities when updating the vertex

weights?

• Challenge 3: How to efficiently obtain reasonable approxi-

mations when enumerating all the 𝑘-cliques is not feasible?

Our approaches. To address Challenge 1, we adapt the succinct

clique tree structure [32] and propose the SCT
∗
-Index to organize

the 𝑘-cliques compactly by utilizing the idea of “pivoting” [21, 44].

Based on the SCT
∗
-Index, we propose the SCTL algorithm that

obtains the 𝑘-cliques from the SCT
∗
-Index instead of re-computing

them from scratch as in KCL in each iteration. Moreover, SCTL only

needs to traverse a small fraction of the index as 𝑘 gets large. We

also propose degeneracy-based and out-degree-based pre-pruning

to reduce the space consumption of the index.

To address Challenge 2, we devise effective graph reductions and

batch processing optimizations to speed up SCTL. Firstly, clique-
connectivity-based and clique-engagement-based reductions are

proposed. In clique-connectivity-based reduction, we divide the

graph into 𝑘-clique-isolating partitions and consider the 𝑘-clique

densest subgraph of each partition independently. In each partition,

when its derived upper bound on the maximum 𝑘-clique density

is dominated by the current sub-optimal solution, this partition

can be safely discarded. In clique-engagement-based reduction, we

observe that when a vertex is contained in only a few 𝑘-cliques w.r.t.

some sub-optimal 𝑘-clique density, then it cannot be included in

the optimal solution and can be discarded. In addition, we propose

to handle the 𝑘-cliques and compute the vertex weight updates in

a batch manner instead of processing the 𝑘-cliques individually.

This is made possible by an important structural characteristic of

the SCT
∗
-Index: the paths from the root node to the leaf nodes are

compact representations of 𝑘-cliques. The SCTL∗ algorithm with

the above optimizations runs faster than existing solutions by up

to two orders of magnitude as evaluated in our experiments.

To address Challenge 3, we propose a sampling-based approx-

imate algorithm SCTL∗-Sample which can provide approximate

solutions even for large 𝑘 values on billion-scale graphs. Its good

scalability stems from the fact that it does not need to enumer-

ate all 𝑘-cliques in any step. Initially, when sampling 𝑘-cliques,

SCTL∗-Sample computes the number of 𝑘-cliques needed from dif-

ferent parts of SCT
∗
-Index and only visits these 𝑘-cliques. Then,

we visit the sampled 𝑘-cliques for several iterations to get refined

vertex weights and obtain an approximate solution on the sub-

graph induced by the vertices of the sampled 𝑘-cliques. Note that

clique-engagement graph reduction can be applied to reduce the

number of visited 𝑘-cliques. In the end, we compute the number of

𝑘-cliques of this approximate solution in the input graph by selec-

tively traversing the SCT
∗
-Index. In addition, we propose an exact

algorithm that uses the near-optimal solution from SCTL∗-Sample
for graph reduction.

Contributions. Our contributions are summarized as follows:

• We adapt the succinct clique tree and propose the SCT
∗
-

Index to compactly organize 𝑘-cliques. Based on the index,

the SCTL algorithm is proposed that achieves near-optimal

approximation more efficiently than the state-of-the-art

algorithm KCL. Note that the SCT∗-Index can be built offline

to support querying an arbitrary value of 𝑘 .

• To further accelerate SCTL, we propose effective clique-

connectivity and clique-engagement based graph reduc-

tions. In addition, we propose batch processing optimiza-

tion to avoid always visiting the 𝑘-cliques individually.

• We propose a sampling-based algorithm SCTL∗-Sample that
provides reasonable approximate solutions even for large

𝑘 values on billion-scale graphs. In addition, an exact al-

gorithm SCTL∗-Exact is proposed that prunes the search

space with the solution obtained by SCTL∗-Sample.
• We conduct extensive experiments on 12 real datasets to

evaluate the efficiency and effectiveness of the proposed

algorithms. As evaluated in the experiments, our algorithms

significantly outperform the state-of-the-arts by up to two

orders of magnitude, when the offline construction time

of the SCT
∗
-Index is excluded. Even for only querying a

single 𝑘 value and when the SCT
∗
-Index construction time

is included, our algorithms still achieve a speedup of up to

one order of magnitude compared to the state-of-the-arts.

2 PRELIMINARIES

Table 1: Summary of notations

Notation Definition

𝐺 (𝑉 , 𝐸) an undirected unweighted graph

𝑁 (𝑣,𝐺) the neighbors of 𝑣 in 𝐺

𝑑 (𝑣,𝐺) the degree of 𝑣 in 𝐺

𝐶𝑘 (𝐺) the set of 𝑘-cliques in 𝐺

𝐶𝑘 (𝑣,𝐺) the 𝑘-cliques containing vertex 𝑣 in 𝐺

𝜌𝑘 (𝐺) the 𝑘-clique density of the graph 𝐺

D𝑘 (𝐺) a 𝑘-clique densest subgraph of 𝐺

𝑆𝐶𝑇 (𝐺) the SCT
∗
-Index of graph 𝐺

𝑉𝑝 (P) the pivot vertices under the root-to-leaf path P
𝑉ℎ (P) the hold vertices under the root-to-leaf path P

In this section, we present important notations and the definition

of the 𝑘-clique densest subgraph problem.

2.1 Problem definition
In this paper, we consider an unweighted and undirected graph

𝐺 (𝑉 , 𝐸). 𝑉 and 𝐸 denote the set of vertices and edges in the graph,

respectively. We use 𝑛 = |𝑉 | to denote the number of vertices and

𝑚 = |𝐸 | to denote the number of edges in 𝐺 (𝑚 > 𝑛). The set of

neighbors of a vertex 𝑣 in 𝐺 is denoted by 𝑁 (𝑣,𝐺) and the degree

of 𝑣 is denoted by 𝑑 (𝑣,𝐺) = |𝑁 (𝑣,𝐺) |. Given a vertex set 𝑆 , we use

𝐺 [𝑆] to denote the subgraph of𝐺 induced by 𝑆 . In addition, we use

𝐶𝑘 (𝐺) to represent the set of 𝑘-cliques in 𝐺 . For each vertex 𝑣 ∈ 𝐺 ,
2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Scaling Up 𝑘-Clique Densest Subgraph Detection Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

we use 𝐶𝑘 (𝑣,𝐺) to denote the set of 𝑘-cliques containing 𝑣 in 𝐺

(𝑘 ≥ 3). We define the 𝑘-clique engagement of 𝑣 in𝐺 as the number

of 𝑘-cliques containing 𝑣 in 𝐺 , i.e., |𝐶𝑘 (𝑣,𝐺) |. Here we define the
𝑘-clique density of a graph.

Definition 1. 𝑘-clique density. Given a subgraph 𝐺 ′ ⊆ 𝐺 and
an integer 𝑘 , the 𝑘-clique density of 𝐺 ′ (denoted by 𝜌𝑘 (𝐺 ′)) is the
average number of 𝑘-cliques per vertex in𝐺 ′, i.e., 𝜌𝑘 (𝐺 ′) =

|𝐶𝑘 (𝐺′) |
|𝑉 (𝐺′) | .

Definition 2. 𝑘-clique densest subgraph. Given a graph 𝐺
and an integer 𝑘 , a subgraph 𝐺∗ ⊆ 𝐺 is a 𝑘-clique densest subgraph
if 𝜌𝑘 (𝐺∗) ≥ 𝜌𝑘 (𝐺 ′) for any 𝐺 ′ ⊆ 𝐺 , denoted by D𝑘 (𝐺).

When 𝑘 = 2, D𝑘 (𝐺) is the classic densest subgraph [26] that

maximizes the average number of edges per vertex
|𝐸 (𝐺′) |
|𝑉 (𝐺′) | for any

𝐺 ′ ⊆ 𝐺 . In this work, we focus on the cases when 𝑘 ≥ 3.

Problem Statement. Given a graph 𝐺 and an integer 𝑘 ≥ 3, the

𝑘-clique densest subgraph problem aims to find a 𝑘-clique densest

subgraph D𝑘 (𝐺) in 𝐺 .

Example 1. Consider the graph𝐺 in Figure 1. When 𝑘 = 3,D𝑘 (𝐺)
is the subgraph induced by 𝑣2 ∼ 𝑣7 with a 𝑘-clique density of 13

6
.

When 𝑘 = 4, D𝑘 (𝐺) is the subgraph induced by 𝑣2 ∼ 𝑣12 with a
𝑘-clique density of 1.

3 STATE-OF-THE-ARTS
In this section, we review two state-of-the-art approaches [22, 41]

for the 𝑘-clique densest subgraph problem and discuss their limita-

tions.

3.1 The (𝑘 ′,𝜓)-core-based algorithms
Fang et al. [22] propose a cohesive subgraph model (𝑘 ′,Φ)-core
and devise both approximate and exact algorithms for the 𝑘-clique

densest subgraph problem based on it.

Definition 3 ([22]). (𝑘 ′,Ψ)-core. Given a graph𝐺 , an integer
𝑘 ′, and a 𝑘-clique instance Ψ, the (𝑘 ′,Ψ)-core is the subgraph 𝑅 ⊆ 𝐺
such that (1) |𝐶𝑘 (𝑣, 𝑅) | ≥ 𝑘 ′ for all 𝑣 ∈ 𝑅 and (2) 𝑅 is maximal.

Since (𝑘 ′,Ψ)-core controls the minimum 𝑘-clique engagement

of vertices, its 𝑘-clique density is naturally lower-bounded by 𝑘 ′/𝑘 .
Based on this, it is proven that the (𝑘 ′𝑚𝑎𝑥 ,Ψ)-core itself is a

1

𝑘
-

approximation of the 𝑘-clique densest subgraph, where 𝑘 ′𝑚𝑎𝑥 is the

maximum 𝑘 ′ such that (𝑘 ′,Ψ)-core exists. Consequently, [22] pro-
poses the CoreApp algorithm that iteratively removes the vertices

that are not contained by at least 𝑘 ′ 𝑘-cliques until the (𝑘 ′𝑚𝑎𝑥 ,Ψ)-
core is found. CoreApp runs in𝑂 (𝑛

(𝑑𝑚𝑎𝑥−1

𝑘−1

)
) time and𝑂 (𝑚) space.

Aside from serving as an approximate solution, (𝑘 ′,Φ)-core is
also used to reduce the search scope for D𝑘 (𝐺) in the exact algo-

rithm CoreExact proposed in [22].

Lemma 1 ([22]). Given a graph 𝐺 and a 𝑘-clique instance Ψ,
D𝑘 (𝐺) is contained in the (𝑘 ′,Ψ)-core, where 𝑘 ′ = ⌈𝜌𝑜𝑝𝑡 ⌉ and 𝜌𝑜𝑝𝑡
is the maximum 𝑘-clique density.

Based on the above lemma, CoreExact firstly conducts (𝑘 ′,Φ)-
core decomposition and then reduces the search scope for D𝑘 (𝐺)
to some (𝑘 ′′,Φ)-core. During the search for D𝑘 (𝐺), we use 𝑢 and

𝑙 represent the tightening upper and lower bounds of the maxi-

mum 𝑘-clique density 𝜌𝑜𝑝𝑡 . For each connected component of the

(𝑘 ′′,Φ)-core, a flow network is built to check if it contains a sub-

graph with a 𝑘-clique density at least 𝑙 . If the answer is positive, it

starts a binary search for 𝜌𝑜𝑝𝑡 on this connected component. Oth-

erwise, this connected component is discarded. After all connected

components of (𝑘 ′′,Φ)-core are visited, D𝑘 (𝐺) is found.
Limitations of CoreApp and CoreExact. Since CoreExact adopts
the binary search framework, it relies on building many flow net-

works to verify if an approximate solution is optimal, which under-

mines efficiency. Although it uses (𝑘 ′,Ψ)-core for graph reduction,

the overhead is not negligible because it needs to run the KCList al-
gorithm [16] for many iterations to update the 𝑘-clique engagement

of vertices when computing the (𝑘 ′′,Ψ)-core that contains 𝐷𝑘 (𝐺).
As for the CoreApp algorithm, although it can produce a result

with the approximation ratio of
1

𝑘
, it is hard to yield near-optimal

approximation in practice since it always returns (𝑘 ′𝑚𝑎𝑥 ,Ψ)-core,
which may not highly overlap with D𝑘 (𝐺).

3.2 The convex-programming-based algorithms

Algorithm 1: KCL
Input:𝐺 : the input graph;𝑇 : the number of iterations

Output: G: an approximate solution on𝐺

1 𝑟 (𝑢) ← 0 for each 𝑢 ∈ 𝑉 (𝐺) ;
2 foreach 𝑡 ← 1, 2, 3,𝑇 do
3 foreach 𝑘-clique𝐶 in𝐺 do
4 𝑢∗ ← 𝑎𝑟𝑔 𝑚𝑖𝑛𝑢∈𝑉 (𝐶)𝑟 (𝑢) ;
5 increase 𝑟 (𝑢∗) by one;

6 𝑟 (𝑢) ← 𝑟 (𝑢)/𝑇 for each 𝑢 ∈ 𝑉 (𝐺) ;
7 sort the vertices in non-increasing order of 𝑟 (𝑢) ;
8 𝑦𝑖 ← the number of 𝑘-cliques contained in the subgraph induced

by the first 𝑖 vertices in the order for each 1 ≤ 𝑖 ≤ 𝑛;
9 𝑠∗ ← 𝑎𝑟𝑔 𝑚𝑎𝑥1≤𝑠≤𝑛 1

𝑠

∑𝑠
𝑖=1

𝑦𝑖 ;

10 G ← the subgraph induced by the first 𝑠∗ vertices in the order;

11 return G;

It is discovered that the edge densest subgraph problem can be

formulated as a convex optimization problem and be solved via the

well-known Frank-Wolfe algorithm [17, 31]. Such an algorithm is

extended to solve the 𝑘-clique densest subgraph problem by con-

sidering a hyper-graph with the same vertices and the 𝑘-cliques as

the hyper-edges [41]. To alleviate the memory issue from the large

number of 𝑘-cliques, the KCL algorithm (Algorithm 1) is proposed

that keeps track of the vertex weights and only requires linear

memory. In KCL, each 𝑘-clique in 𝐺 is considered to have a unit

weight and distribute it among its vertices. Thus, the weight 𝑟 (𝑢)
of a vertex 𝑢 is the total weight that 𝑢 receives from the 𝑘-cliques

containing it.

The main process of KCL is shown in Algorithm 1. Initially, 𝑟 (𝑢)
is set to zero for each vertex 𝑢 (Line 1). In each iteration, KCL visits

each 𝑘-clique in𝐺 . It finds the vertex𝑢∗ with the smallest weight in

each visited 𝑘-clique and increases the weight of 𝑢∗ by one (Lines

2-5). Intuitively, the vertices with higher weights are more likely

to appear in D𝑘 (𝐺) because higher weights indicate that they are

contained by many 𝑘-cliques. Thus, the subgraph induced by the

first 𝑠∗ vertices with the largest 𝑘-clique density is returned as an

approximate solution on 𝐺 (Lines 8-10).

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Note that KCL adopts the KCList algorithm [16] to visit 𝑘-cliques

for 𝑇 iterations, each of which takes 𝑂 (𝑘𝑚(𝛿
2
)𝑘−1) time and 𝑂 (𝑚)

memory (𝛿 is the degeneracy of the graph). Then, KCL needs an

additional scan of 𝑘-cliques to obtain the approximate solution.

Thus, KCL takes𝑂 ((𝑇 + 1)𝑘𝑚(𝛿
2
)𝑘−1) time and𝑂 (𝑚) space in total.

The exact algorithm in [41] (denoted by KCL-Exact) runs the
large-memory version of KCL (i.e., the Frank-Wolf algorithm [41])

for increasing numbers of iterations, which stores how each𝑘-clique

distributing its unit weight across vertices in the memory. KCL-
Exact utilizes the concept of stable sets to filter out unpromising

sub-optimal solutions. A vertex set 𝐵 is stable if (1) the weight of

any vertex in 𝐵 always exceeds that of any vertex outside 𝐵; and

(2) for each 𝑘-clique intersecting 𝐵 but not contained by 𝐵, it must

only distribute its weight among its vertices in 𝐵. Note that 𝐷𝑘 (𝐺)
must reside in a stable set [41]. Thus, KCL-Exact only checks for

optimality when the current approximate solution is stable.

Limitations of KCL and KCL-Exact. Compared to previous ap-

proximate algorithms with poor approximation guarantees (e.g.,

CoreApp), KCL will converge to the optimal solution after visiting

the 𝑘-cliques for sufficient iterations. Even within limited iterations,

it is able to yield near-optimal approximation results [41]. One

performance bottleneck is that KCL computes the 𝑘-cliques from

scratch in each iteration in the same order. This not only compro-

mises efficiency but also is not ideal for convergence as pointed

out in [41]. Another issue is that KCL always visits all 𝑘-cliques of
the input graph in each iteration, many of which are irrelevant to

𝐷𝑘 (𝐺). As for KCL-Exact, it depends on the Frank-Wolf algorithm,

which requires large memory usage and is only applicable to small

graphs or small values of 𝑘 .

4 UTILIZING THE IDEA OF PIVOTING

5
𝑣!"	

𝑣$	
3

𝑣%	
3

𝑣&	
3

𝑣'	
3

𝑣$	
3

𝑣&	
3

𝑣(
4

𝑣$	
4

𝑣&	
4

𝑣'	
4

𝑣%	
4

𝑣)	
5

𝑣(
5

𝑣&	
5

𝑣$	
5

𝑣!"	
3

𝑣*	
3

𝑣+	
3

𝑣!!	
4

𝑣!"	
4

𝑣+	
4

𝑣*	
4

𝑣!&	
5

𝑣!!	
5

𝑣+	

5

𝑣!	
3

𝑣)	
3

𝑣&	
3 5

𝑣*	

5
𝑣%	

Figure 2: An example of the SCT∗-Index

After reviewing the state-of-the-art solutions, we find the convex-

programming-based algorithms more promising as they not only

quickly yield near-optimal approximation but also return the exact

solution more efficiently via a reduced number of max-flow calls.

However, KCL and KCL-Exact repeatedly call KCList, which is de-

signed to list 𝑘-cliques on sparse graphs and small values of 𝑘 . In

[32], adopting the idea of “pivoting” [13, 18, 21, 38, 44], the succinct

clique tree is proposed to support exact 𝑘-clique counting for all 𝑘 ,

which stems from the recursion tree for maximal clique enumera-

tion. However, if we use the tree to directly support 𝑘-clique listing

for a specific 𝑘 , the entire tree needs to be traversed even for the

paths not containing any 𝑘-clique. In this section, by adapting the

succinct clique tree, we propose the SCT
∗
-Index to help list the

𝑘-cliques without computing from scratch.

4.1 The SCT∗-Index
The SCT

∗
-Index is a tree-shaped index with a virtual root node

connecting all second-level sub-trees. Each tree-node stores the

following information.

• Vertex id: The vertex stored in this tree-node. This is empty

for the root node.

• Vertex label: The label of the stored vertex (pivot or hold).

This is empty for the root node.

• Children: The pointer to the child tree-nodes. This is empty

for the leaf nodes.

• Max-depth: The maximum depth among all sub-trees that

are rooted at this tree-node.

Each path P from the root to a leaf node is a compressed represen-

tation of 𝑘-cliques that are formed by the “piviot” vertices (denoted

by 𝑉𝑝 (P)) and “hold” vertices (denoted by 𝑉ℎ (P)) along the path.
The vertex types (hold/pivot) are identified by the different types of

recursive calls in the recursion tree [32]. When making a recursive

call on a candidate set 𝑆 , a pivot vertex is chosen in 𝑆 (usually the

vertex with the highest degree) to prune the recursive calls corre-

sponding to the vertices in 𝑁 (𝑝, 𝑆). The non-neighbors of 𝑝 in 𝑆 are

identified are the hold vertices. We can have the following lemma

as proved in [32].

Lemma 2 ([32]). Given a root-to-leaf path P, each 𝑘-clique in P
must include all hold vertices and 𝑘 − |𝑉ℎ (P)| pivot vertices in P. In
addition, there are

(|𝑉𝑝 (P) |
𝑘−|𝑉ℎ (P) |

)
𝑘-cliques in P in total.

Note that each pivot vertex does not participate in all 𝑘-cliques in

P and is only contained by

(|𝑉𝑝 (P) |−1

𝑘−|𝑉ℎ (P) |−1

)
𝑘-cliques. Obviously, only

the root-to-leaf paths of lengths at least 𝑘 can contain 𝑘-cliques. To

enumerate 𝑘-cliques, we only explore the child tree-nodes whose

max-depth is at least 𝑘 .

Example 2. Figure 2 shows the SCT∗-Index of the graph in Figure 1.
The top grey node represents the root node that connects the sub-trees.
The shaded tree-nodes store hold vertices and the other tree-nodes
store pivot vertices. Each tree-node stores a vertex id and an integer
indicating the max-depth of all sub-trees rooted at this tree-node. We
can see that to visit 𝑘-cliques for larger 𝑘 , only a fraction of the SCT∗-
Index needs to be traversed. When 𝑘 = 3, the whole SCT∗-Index needs
to be visited to support 3-clique listing. When 𝑘 = 4, we only need to
visit the sub-trees rooted at 𝑣6, 𝑣7, and 𝑣12, whose max-depths are at
least 4. In addition, we illustrate the conclusion in Lemma 2. In the
root-to-leaf path < 𝑟𝑜𝑜𝑡, 𝑣6, 𝑣3, 𝑣2, 𝑣5 >, there are two hold vertices
and two pivot vertices. Since all 3-cliques here must contain the two
hold vertices, one additional vertex between 𝑣3 and 𝑣2 is needed to form
3-cliques. Thus, there are two 3-cliques under this path: {𝑣6, 𝑣5, 𝑣2}
and {𝑣6, 𝑣5, 𝑣3}. Note that for the pivot vertex 𝑣3, it is only contained
in one of them.

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Scaling Up 𝑘-Clique Densest Subgraph Detection Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Build the SCT∗-Index. How do we construct the SCT
∗
-Index?

The SCT
∗
-Index is essentially the recursion tree of listing all cliques

[32]. Initially, a degeneracy ordering is used to transform 𝐺 into

a directed acyclic graph. For each vertex 𝑢, its out-neighborhoods

𝑁 + (𝑢) contains the neighbors of 𝑢 with larger core-numbers. For

each vertex 𝑢, a sub-tree rooted at 𝑢 is constructed by making

recursive calls on 𝑁 + (𝑢), which contains the cliques formed by 𝑢

and its out-neighbors. On some large graphs, building the SCT
∗
-

Index to completion may take up too much space. In such cases, we

can build a partial SCT
∗
-Index to save space based on the following

observations.

(1) for a vertex 𝑢, if |𝑁 + (𝑢) + 1| < 𝑘 , then the sub-tree rooted

at 𝑢 does not contain any 𝑘-cliques.

(2) for a vertex 𝑢, if |𝑐𝑛(𝑢) + 1| < 𝑘 (𝑐𝑛(𝑢) is the core-number

of 𝑢), then the sub-tree rooted at 𝑢 does not contain any

𝑘-cliques.

The first observation is immediate. The second observation holds

because 𝑢 must be contained in the (𝑘 − 1)-core to be contained in

any 𝑘-clique. Thus, we can apply out-degree-based and degeneracy-

based pruning to SCT
∗
-Index to reduce its space consumption.

Specifically, we choose a threshold 𝑘 ′ and only build the sub-

trees rooted at vertices with |𝑁 + (𝑢) + 1| ≥ 𝑘 ′ and |𝑐𝑛(𝑢) + 1| ≥
𝑘 ′. The resulting SCT∗-Index still supports 𝑘-clique listing for all
𝑘 ≥ 𝑘 ′, denoted by SCT∗-𝑘 ′-Index. When built to completion, the

SCT
∗
-Index takes 𝑂 (𝑛3

𝛼 (𝐺)/3) space where 𝛼 (𝐺) is the arboric-

ity of graph 𝐺 . The time complexity to build the SCT
∗
-Index is

𝑂 (𝛼 (𝐺)2 |𝑆𝐶𝑇 (𝐺) | +𝑚 + 𝑛), where |𝑆𝐶𝑇 (𝐺) | is the size of SCT∗-
Index [32].

4.2 The SCTL algorithm
Based on the SCT

∗
-Index, we propose the SCTL algorithm that

obtains near-optimal solutions more efficiently as outlined in Algo-

rithm 2. For ease of presentation, Algorithm 2 is written in nested

for-loops. In actual implementation, SCTL is a recursive algorithm
that traverses the SCT

∗
-Index in a depth-first manner to get all

root-to-leaf paths by only visiting the tree-nodes whose recorded

max-depths are at least 𝑘 . In each iteration, SCTL visits the 𝑘-cliques
in each root-to-leaf path. For each 𝑘-clique, SCTL finds the vertex
with the smallest weight and increases it by 1 (Lines 2-7). Since

the vertex weights are updated in the same way as in KCL, the con-
vergence of SCTL to the optimal solution and its ability to yield

near-optimal approximation is immediate based on the analysis

in [41]. In addition, SCTL achieves better efficiency since it simply

“reads off” the 𝑘-cliques from the root-to-leaf paths in SCT
∗
-Index.

Note that an upper bound can be derived in SCTL based on the

vertex weights similar to KCL in [41]. This is useful in estimating

the approximation ratio in practice when the exact solution is un-

available.

Complexity analysis. In each iteration of SCTL, the dominating

time cost is incurred by traversing the SCT
∗
-Index and updating

the vertex weights. SCT
∗
-Index traversal takes𝑂 (∑P |𝑉 (P)| times

and the number of vertex weight updates equals 𝑂 (|𝐶𝑘 (𝐺) |). At
last, SCTL needs to scan the 𝑘-cliques once more to recover the

approximated 𝑘-clique density (Line 8). Thus, the total time com-

plexity of𝑂 ((𝑇 +1)× (∑P |𝑉 (P)|+ |𝐶𝑘 (𝐺) |). The space complexity

is |𝑆𝐶𝑇 (𝐺) |.

Algorithm 2: SCTL
Input:𝐺 : the input graph;𝑇 : the number of iterations, 𝑆𝐶𝑇 (𝐺) :

the SCT-index of𝐺

Output: G: an approximate solution on𝐺

1 𝑟 (𝑢) ← 0 for all 𝑢 ∈ 𝑉 (𝐺) ;
2 foreach 𝑡 ← 1, 2, 3,𝑇 do
3 foreach valid root-to-leaf path P do
4 collect the pivot vertices and hold vertices in P;
5 foreach 𝑘-clique𝐶 in P do
6 𝑢∗ ← 𝑎𝑟𝑔 𝑚𝑖𝑛𝑢∈𝑉 (𝐶)𝑟 (𝑢) ;
7 Increase 𝑟 (𝑢∗) by 1;

8 run Lines 6-10 of Algorithm 1;

9 return G;

1 3 6 01 0 1 2 0 1 3 6

process clique {𝑣!, 𝑣", 𝑣#}	
process clique {𝑣!, 𝑣", 𝑣%}	

𝑣&	 𝑣%	 𝑣#	 𝑣'	 𝑣&%	𝑣&&	𝑣&(𝑣)	𝑣*	𝑣+	𝑣!	𝑣"	

1 3 6 01 0 2 0 1 3 6
1 3 6 01 2 2 0 1 3 6

2
1

weights after 1st iteration

Figure 3: The weight updates in SCTL

Example 3. We show how SCTL updates vertex weights in the 2
𝑛𝑑

iteration when 𝑘 = 3. In Figure 3, the vertex weights after the 1
𝑠𝑡

iteration of SCTL are shown in the first row. The following rows show
the vertex weights after processing the 3-cliques in the root-to-leaf
path <𝑟𝑜𝑜𝑡, 𝑣6, 𝑣3, 𝑣2, 𝑣5>. The shaded boxes contain the vertex weights
of the clique being visited and red boxes contain the vertex weight
that has just been increased. Before clique {𝑣6, 𝑣5, 𝑣3} is visited, 𝑣3 has
the minimum weight and its weight is increase to 2. When processing
clique {𝑣6, 𝑣5, 𝑣2}, the weight of 𝑣3 is increased from 0 to 1.

5 OPTIMIZATIONS
Based on the SCT

∗
-Index, the SCTL algorithm can list 𝑘-cliques

and update vertex weights much faster than KCList. To further

improve efficiency, we devise effective graph reduction rules to

limit the search scope for the optimal solution by considering clique

connectivity and clique engagement. In addition, we design batch

processing techniques to reduce the total number of vertex weight

updates in each iteration based on the structure of SCT
∗
-Index.

5.1 Graph reductions
We observe that neither of KCL and SCTL exploits the pruning

power of sub-optimal solutions and always visits all the 𝑘-cliques

in 𝐺 in each iteration. Motivated by this, we present the 𝑘-clique-

connectivity-based and the clique-engagement-based reductions.

Clique-connectivity-based reduction. Here we aim to obtain

a graph partitioning of 𝐺 and apply “divide-and-conquer” to each

partition. The connected components of 𝐺 are a natural fit for

this task but such a partition is too coarse for the 𝑘-clique densest

subgraph problem. Intuitively, when two subgraphs induced by two

vertex partitions do not share any 𝑘-cliques, they can be considered

individually for the 𝑘-clique densest subgraph problem. Thus, we

define the 𝑘-clique-isolating partition as follows, which divides the

graph into more fine-grained partitions.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Definition 4. 𝑘-clique-isolating partition. Given a graph𝐺
and an integer 𝑘 , a 𝑘-clique-isolating partition of |𝑉 (𝐺) | is a set of
non-overlapping vertex sets 𝐾𝑃𝑖 such that (1)𝑉 (𝐺) = ⋃

𝑖
𝐾𝑃𝑖 ; and (2)

for any 𝑘-clique in 𝐺 , its vertex set is contained in exactly one 𝐾𝑃𝑖
for some 𝑖 .

By Definition 4, it is immediate that for each vertex 𝑣 ∈ 𝐾𝑃𝑖 for
some 𝑖 , 𝐶𝑘 (𝑣,𝐺) = 𝐶𝑘 (𝑣,𝐺 [𝐾𝑃𝑖]), where 𝐺 [𝐾𝑃𝑖] is the subgraph
induced by 𝐾𝑃𝑖 in 𝐺 . Thus, finding the D𝑘 (𝐺) of 𝐺 is equivalent

to finding the D𝑘 (𝐺) on each 𝑘-clique-isolating partition of 𝐺 . To

obtain such a partition, a naive method is to initialize each ver-

tex as an individual partition and run a 𝑘-clique listing algorithm

and merge any two partitions that share one 𝑘-clique. Due to the

large number of 𝑘-cliques, there will be even more “merge” opera-

tions, which incurs a large overhead. To address this, we propose

KPComputation that exploits the SCT∗-Index to efficiently compute

the 𝑘-clique-isolating partition as outlined in Algorithm 3.

Algorithm 3: KPComputation

Input:𝐺 : the input graph; 𝑆𝐶𝑇 (𝐺) : the SCT-index of𝐺
Output: 𝑝𝑎𝑟 [𝑢]: the partition ID for each 𝑢 ∈ 𝑉 (𝐺)

1 𝑝𝑎𝑟 [𝑢] ← 𝑢 for each 𝑢 ∈ 𝑉 (𝐺) ;
2 𝑑𝑒𝑝𝑡ℎ [𝑔] ← 0 for each partition 𝑔 ∈ {𝑝𝑎𝑟 [𝑢] : 𝑢 ∈ 𝑉 (𝐺) };
3 foreach root-to-leaf path P do
4 𝑝𝑎𝑟 ← {findPartition(𝑝𝑎𝑟 [𝑢]) : 𝑢 ∈ 𝑉 (P) };
5 𝑔∗ ← 𝑎𝑟𝑔 𝑚𝑎𝑥𝑔∈𝑝𝑎𝑟𝑑𝑒𝑝𝑡ℎ [𝑔];
6 foreach 𝑔 ∈ 𝑝𝑎𝑟 and 𝑔 ≠ 𝑔∗ do
7 𝑝𝑎𝑟 [𝑔] ← 𝑔∗;

8 if 𝑑𝑒𝑝𝑡ℎ [𝑔] == 𝑑𝑒𝑝𝑡ℎ [𝑔∗] then
9 increase 𝑝𝑎𝑟 [𝑔∗] by 1;

10 return 𝑝𝑎𝑟 [𝑢] for each 𝑢 ∈ 𝑉 (𝐺) ;
11 Function findPartition(𝑢):
12 if 𝑝𝑎𝑟 [𝑢] == 𝑢 then
13 𝑝𝑎𝑟 [𝑢] = findPartition(𝑝𝑎𝑟 [𝑢]) ;
14 return 𝑝𝑎𝑟 [𝑢];

Algorithm 3 adopts the disjoint set data structure [42] to dy-

namically maintain the 𝑘-clique-connectivity. For each vertex 𝑢,

𝑝𝑎𝑟 [𝑢] stands for the parent node of 𝑢 in the disjoints set forest

and the findPartition procedure returns the root node of the tree
where 𝑢 resides. Algorithm 3 exploits an important structural char-

acteristic of the SCT
∗
-Index: each root-to-leaf path is a compressed

representation of 𝑘-cliques that reside in the same 𝑘-clique isolating

partition because they share the same hold vertices. Thus, instead of

visiting all 𝑘-cliques and merging the partitions sharing the same 𝑘-

cliques, KPComputation visits all root-to-leaf paths and merges the

partitions containing the vertices on the same path. Note that union-

by-rank (Lines 6-9) and path-compression (Lines 13) optimizations

are implemented. With these optimizations, findPartition takes

near-constant time.

When the 𝑘-clique-isolating partition is obtained, we can obtain

an upper bound on the maximum 𝑘-clique density for each partition

via the following lemma.

Lemma 3. Given a subgraph 𝐺 ′ ⊆ 𝐺 , the 𝑘-clique density 𝜌𝑘 (𝐺 ′)
of 𝐺 ′ must not exceed 𝜌 =𝑚𝑎𝑥𝑣∈𝐺 |𝐶𝑘 (𝑣,𝐺) |/𝑘 .

Proof. By Definition 1, 𝜌𝑘 (𝐺 ′) =
|𝐶𝑘 (𝐺′) |
|𝑉 (𝐺′) | . Since each 𝑘-clique

has 𝑘 vertices, |𝐶𝑘 (𝐺 ′) | =
∑
𝑣∈𝑉 (𝐺′) |𝐶𝑘 (𝑣,𝐺 ′) |/𝑘 . In addition,

|𝐶𝑘 (𝑣,𝐺 ′) | ≤ |𝐶𝑘 (𝑣,𝐺) | ≤ 𝑚𝑎𝑥𝑣∈𝐺 |𝐶𝑘 (𝑣,𝐺) | since 𝐺 ′ ⊆ 𝐺 . Thus,
𝜌𝑘 (𝐺 ′) ≤

𝑚𝑎𝑥𝑣∈𝐺 |𝐶𝑘 (𝑣,𝐺 |)× |𝑉 (𝐺′) |
𝑘×|𝑉 (𝐺′) | =𝑚𝑎𝑥𝑣∈𝐺 |𝐶𝑘 (𝑣,𝐺) |/𝑘 . □

The above lemma allows us to use any provisionally obtained 𝑘-

clique-density 𝜌 ′ to prune some𝑘-clique-isolating partitions. Specif-

ically, if there exists a partition 𝐾𝑃 𝑗 with𝑚𝑎𝑥𝑣∈𝐾𝑃 𝑗 |𝐶𝑘 (𝑣,𝐺) |/𝑘 <

𝜌 ′, then 𝐾𝑃 𝑗 can be safely removed because any subgraph of 𝐾𝑃 𝑗
cannot have a 𝑘-clique density better than 𝜌 ′.
Clique-engagement-based reduction. In this part, we discuss

how the 𝑘-clique engagement of a vertex, i.e., the number of 𝑘-

cliques containing a vertex, can be used for graph reduction. Intu-

itively, when |𝐶𝑘 (𝑣,𝐺) | is large, the vertex 𝑣 is more likely to be

included in the optimal solution and vice versa. Previous work [22]

also points out this observation and proposes the (𝑘 ′,Ψ)-core model

to control the 𝑘-clique engagement of the vertices. As reviewed

in Section 3, one important finding is that the optimal solution

must reside in a (𝑘 ′,Ψ)-core for some 𝑘 ′ (Lemma 1). However, com-

puting the (𝑘 ′,𝜓)-core for graph reduction involves visiting all

𝑘-cliques for many iterations. This incurs huge overhead especially

when the 𝑘-cliques are computed from scratch repeatedly as in [22].

Motivated by this, we derive the following lemma.

Lemma 4. Given any subgraph 𝐺 ′ ⊆ 𝐺 such that 𝜌𝑘 (𝐺 ′) = 𝜌 ′,
D𝑘 (𝐺) is contained in the subgraph 𝐺𝜌′ , which is induced by the
vertices with its 𝑘-clique engagement ≥ ⌈𝜌 ′⌉. Here 𝐺𝜌′ is referred to
the search scope w.r.t. the density 𝜌 ′.

Proof. By Lemma 1, the 𝑘-clique densest subgraph resides in

the (𝑘 ′,Ψ)-core where 𝑘 ′ = ⌈𝜌𝑜𝑝𝑡 ⌉. By the nested property of

(𝑘 ′,Ψ)-core, (𝑘 ′,Ψ)-core is contained in (𝑘 ′′,Ψ)-core, where 𝑘 ′′ =
⌈𝜌 ′⌉ ≤ 𝑘 ′. By Definition 3, (𝑘 ′′,Ψ)-core is contained by𝐺𝜌′ , which
completes the proof. □

Based on the above lemma, as SCTL runs, the sub-optimal density

𝜌 ′ increases and the resulting 𝐺𝜌′ shrinks. In the meantime, the

𝑘-clique engagement of the vertices in 𝐺𝜌′ can be easily updated

by only visiting the 𝑘-cliques in 𝐺𝜌′ . Specifically, we can avoid

visiting any root-to-leaf path containing any hold vertex outside of

𝐺𝜌′ (i.e., any hold vertex 𝑣 s.t. |𝐶𝑘 (𝑣,𝐺) | < ⌈𝜌 ′⌉). For each visited

root-to-leaf path P, we remove the pivot vertices that do not reside

in 𝐺𝜌′ . For each remaining hold vertex 𝑣 ∈ 𝑉ℎ (P), we increase

|𝐶𝑘 (𝑣,𝐺𝜌′) | by
(|𝑉𝑝 (P) |
𝑘−|𝑉ℎ (P) |

)
, since each 𝑘-clique contains all hold

vertices and 𝑘 − |𝑉ℎ (P)| pivot vertices on the root-to-leaf path. For

each remaining pivot vertex 𝑣 ∈ 𝑉𝑝 (P), we increase |𝐶𝑘 (𝑣,𝐺𝜌′) |
by

(|𝑉𝑝 (P) |−1

𝑘−|𝑉ℎ (P) |−1

)
for the similar reason.

Example 4. On the graph in Figure 1, we illustrate how the pro-
posed graph reduction optimizations shrink the search scope forD𝑘 (𝐺).
Initially, the 𝑘-clique-isolating partitions can be computed by calling
KPComputation, which divides the graph into 𝐾𝑃1 and 𝐾𝑃2. In 𝐾𝑃1,
themaximum per-vertex-𝑘-clique count is |𝐶𝑘 (𝑣2,𝐺) | = 9. In𝐾𝑃2, the
maximum per-vertex-𝑘-clique count is |𝐶𝑘 (𝑣8,𝐺) | = 6. By Lemma 3,
the 𝑘-clique density upper bounds of 𝐾𝑃1 and 𝐾𝑃2 are computed to be
9/3 = 3 and 6/3 = 2, respectively. Within a few iterations, SCTL can
quickly find a sub-optimal solution induced by the vertices {𝑣2-𝑣12},
which has a 𝑘-clique density of 23

11
. Based on clique-connectivity-based

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Scaling Up 𝑘-Clique Densest Subgraph Detection Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

graph reduction, the 𝐾𝑃2 partition can be pruned since its density up-
per bound is smaller than the sub-optimal density. In addition, vertex
𝑣1 can also be discarded since |𝐶𝑘 (𝑣1,𝐺) | = 1 < ⌈ 23

11
⌉ by Lemma 4.

5.2 Batch processing 𝑘-cliques
Although graph reduction techniques can significantly reduce the

search scope for D𝑘 (𝐺), each 𝑘-clique in𝐺 still needs to be visited

once in each iteration (Algorithm 2 Lines 5-7). Since a root-to-leaf

path P organizes multiple 𝑘-cliques, a natural question arises: “can

we distribute the weight increase (i.e., the number of 𝑘-cliques in

P) to the vertices in P in a batch manner”? Consider the following

extreme example on a path P. If a vertex 𝑢 ∈ P has weight zero

while other vertices have very large weights, it is likely that 𝑢 is

always the vertex with the minimum weight when visiting all 𝑘-

cliques under P, and we can directly apply the total weight increase
to 𝑢. However, in more complicated cases, we need to consider that

the vertex with the minimum weight can be changed dynamically.

To address this issue, we propose the BatchUpdate algorithm (as

shown in Algorithm 4) that identifies the fundamental cases where

batch updating vertex weights is possible and recursively breaks

down the original problem into these cases.

Algorithm 4: BatchUpdate
Input: P: a root-to-leaf path; 𝑙𝑖𝑚: number of remaining 𝑘-cliques

Output: 𝑟 : the vertex weights
1 if 𝑙𝑖𝑚 ≤ 0 then
2 return;

3 Compute𝑚𝑖𝑛ℎ ,𝑚𝑖𝑛𝑝 , 𝑣
ℎ
𝑚𝑖𝑛

, 𝑣
𝑝

𝑚𝑖𝑛
, 𝑐𝑘𝑚𝑖𝑛 and 𝑔𝑎𝑝 by scanning

𝑉ℎ (P) and𝑉𝑝 (P) ;
4 if 𝑙𝑖𝑚 == |𝐶𝑘 (P) | then
5 if𝑚𝑖𝑛ℎ <𝑚𝑖𝑛𝑝 then
6 𝑟 (𝑣ℎ

𝑚𝑖𝑛
) ← 𝑟 (𝑣ℎ

𝑚𝑖𝑛
) +𝑚𝑖𝑛 (𝑐𝑘𝑚𝑖𝑛, 𝑔𝑎𝑝) ;

7 BatchUpdate (P, |𝐶𝑘 (P) | −𝑚𝑖𝑛 (𝑐𝑘𝑚𝑖𝑛, 𝑔𝑎𝑝));
8 else
9 𝑟 (𝑣𝑝

𝑚𝑖𝑛
) ← 𝑟 (𝑣𝑝

𝑚𝑖𝑛
) +𝑚𝑖𝑛 (𝑐𝑘𝑚𝑖𝑛, 𝑔𝑎𝑝) ;

10 if 𝑐𝑘𝑚𝑖𝑛 > 𝑔𝑎𝑝 then
11 move 𝑣

𝑝

𝑚𝑖𝑛
from𝑉𝑝 (P) to𝑉ℎ (P) and call

BatchUpdate (P, 𝑐𝑘𝑚𝑖𝑛 − 𝑔𝑎𝑝);
12 if |𝑉 (P) | − 1 ≥ 𝑘 then
13 BatchUpdate (P \ {𝑣𝑝

𝑚𝑖𝑛
}, |𝐶𝑘 (P) | − 𝑐𝑘𝑚𝑖𝑛);

14 if 𝑙𝑖𝑚 < |𝐶𝑘 (P) | then
15 𝑚𝑖𝑛∗ =𝑚𝑖𝑛 (𝑐𝑘𝑚𝑖𝑛, 𝑔𝑎𝑝, 𝑙𝑖𝑚) ;
16 if𝑚𝑖𝑛ℎ <𝑚𝑖𝑛𝑝 then
17 𝑟 (𝑣ℎ

𝑚𝑖𝑛
) ← 𝑟 (𝑣ℎ

𝑚𝑖𝑛
) +𝑚𝑖𝑛∗;

18 BatchUpdate (P, 𝑙𝑖𝑚 −𝑚𝑖𝑛∗);
19 else
20 𝑟 (𝑣𝑝

𝑚𝑖𝑛
) ← 𝑟 (𝑣𝑝

𝑚𝑖𝑛
) +𝑚𝑖𝑛∗;

21 if 𝑔𝑎𝑝 ==𝑚𝑖𝑛∗ then
22 move 𝑣

𝑝

𝑚𝑖𝑛
from𝑉𝑝 (P) to𝑉ℎ (P) and call

BatchUpdate (P,𝑚𝑖𝑛 (𝑙𝑖𝑚, 𝑐𝑘𝑚𝑖𝑛) − 𝑔𝑎𝑝);
23 remove 𝑣

𝑝

𝑚𝑖𝑛
in𝑉ℎ (P) ;

24 if |𝑉 (P) | − 1 ≥ 𝑘 then
25 BatchUpdate (P \ {𝑣𝑝

𝑚𝑖𝑛
}, 𝑙𝑖𝑚 − 𝑐𝑘𝑚𝑖𝑛);

26 return 𝑟 (𝑢) for each 𝑢 ∈ 𝑉 (P) ;

Given a root-to-leaf path P, Algorithm 4 handles the 𝑘-cliques

in P in batch and makes recursive calls on the number of 𝑘-cliques

that remain to be processed in P (denoted by 𝑙𝑖𝑚). Initially, 𝑙𝑖𝑚 is

set to |𝐶𝑘 (P)|, where 𝐶𝑘 (P) represents the set of 𝑘-cliques in P.
Also, Algorithm 4 scans the vertices in P (Line 3) to compute:

(1)𝑚𝑖𝑛ℎ and 𝑠𝑒𝑐𝑜𝑛𝑑ℎ : the top-2 minimum vertex weights in𝑉ℎ (P);
𝑣ℎ
𝑚𝑖𝑛

: the vertex with the minimum weight in 𝑉ℎ (P);
(2)𝑚𝑖𝑛𝑝 and 𝑠𝑒𝑐𝑜𝑛𝑑𝑝 : the top-2 minimum vertex weights in𝑉𝑝 (P);
𝑣
𝑝

𝑚𝑖𝑛
: the vertex with the minimum weight in 𝑉𝑝 (P);

(3)𝑤𝑚𝑖𝑛 and𝑤𝑠𝑒𝑐𝑜𝑛𝑑 : the top-2 minimum vertex weights in 𝑉 (P).
For ease of presentation, we organize Algorithm 4 in the case

when the vertex with the minimum weight is unique and discuss

the general cases in the end. After identifying the vertex with

the minimum weight, Algorithm 4 always processes the 𝑘-cliques

containing the vertex first. We use 𝑔𝑎𝑝 to represent the difference

between the top-2 minimum vertex weights in 𝑉 (P) (i.e., 𝑔𝑎𝑝 =

|𝑤𝑠𝑒𝑐𝑜𝑛𝑑−𝑤𝑚𝑖𝑛 |). In addition, we use 𝑐𝑘𝑚𝑖𝑛 to represent the number

of 𝑘-cliques containing the vertex with the minimum weight:

𝑐𝑘𝑚𝑖𝑛 =

(|𝑉𝑝 (P) |
𝑘−|𝑉ℎ (P) |

)
𝑚𝑖𝑛ℎ < 𝑚𝑖𝑛𝑝(|𝑉𝑝 (P) |−1

𝑘−|𝑉ℎ (P) |−1

)
𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Since 𝑔𝑎𝑝 and 𝑙𝑖𝑚 restrict the largest weight increase that can

be applied to the vertex with the minimum weight, the weight

increase actually applied is the minimum of 𝑙𝑖𝑚, 𝑐𝑘𝑚𝑖𝑛 and 𝑔𝑎𝑝 .

Based on whether 𝑙𝑖𝑚 = |𝐶𝑘 (P)| and the type of the vertex with

the minimum weight, Algorithm 4 includes four cases as follows.

In Cases 1-2, the vertex with the minimum weight is a hold vertex

and in Cases 3-4 it is a pivot vertex.

Case 1: 𝑙𝑖𝑚 = |𝐶𝑘 (P)| and𝑚𝑖𝑛ℎ < 𝑚𝑖𝑛𝑝 (Lines 5-7). Since 𝑙𝑖𝑚 =

|𝐶𝑘 (P)| ≥ 𝑐𝑘𝑚𝑖𝑛 , 𝑚𝑖𝑛(𝑐𝑘𝑚𝑖𝑛, 𝑔𝑎𝑝) is the weight increase that is

applied to 𝑣ℎ
𝑚𝑖𝑛

(Line 6). The remaining |𝐶𝑘 (P)| −𝑚𝑖𝑛(𝑐𝑘𝑚𝑖𝑛, 𝑔𝑎𝑝)
𝑘-cliques are handled by a recursive call (Line 7).

Case 2: 𝑙𝑖𝑚 < |𝐶𝑘 (P)| and 𝑚𝑖𝑛ℎ < 𝑚𝑖𝑛𝑝 (Lines 15-18). 𝑙𝑖𝑚 <

|𝐶𝑘 (P)| indicates that BatchUpdate is being recursively called by

itself. Since𝑚𝑖𝑛∗ is the smallest among 𝑐𝑘𝑚𝑖𝑛 , 𝑔𝑎𝑝 , and 𝑙𝑖𝑚, it is the

weight increase applied to 𝑣ℎ
𝑚𝑖𝑛

(Line 17). The remaining 𝑙𝑖𝑚−𝑚𝑖𝑛∗
𝑘-cliques are handled by a recursive call (Line 18).

Case 3: 𝑙𝑖𝑚 = |𝐶𝑘 (P)| and 𝑚𝑖𝑛ℎ ≥ 𝑚𝑖𝑛𝑝 (Lines 9-13). In this

case, we focus on processing the 𝑘-cliques containing 𝑣
𝑝

𝑚𝑖𝑛
first.

Since 𝑙𝑖𝑚 = |𝐶𝑘 (P)| ≥ 𝑐𝑘𝑚𝑖𝑛 , we apply the weight increase of

𝑚𝑖𝑛(𝑐𝑘𝑚𝑖𝑛, 𝑔𝑎𝑝) to 𝑣𝑝𝑚𝑖𝑛 (Line 9). Note that when 𝑐𝑘𝑚𝑖𝑛 > 𝑔𝑎𝑝

(Lines 10-11), only 𝑔𝑎𝑝 𝑘-cliques are handled and the remaining

𝑘-cliques containing 𝑣
𝑝

𝑚𝑖𝑛
still need to be processed. By moving

𝑣
𝑝

𝑚𝑖𝑛
into 𝑉ℎ (P), the recursive call will only handle the remaining

𝑐𝑘𝑚𝑖𝑛 −𝑔𝑎𝑝 𝑘-cliques containing 𝑣𝑝𝑚𝑖𝑛 (Line 11). Lastly, we process

the 𝑘-cliques not containing 𝑣
𝑝

𝑚𝑖𝑛
via a recursive call (Lines 12-13).

Case 4: 𝑙𝑖𝑚 < |𝐶𝑘 (P)| and𝑚𝑖𝑛ℎ ≥ 𝑚𝑖𝑛𝑝 (Lines 20-25). This case

is similar to Case 3. The difference is the number of 𝑘-cliques pro-

cessed is capped at 𝑙𝑖𝑚.

In each of these cases, the weight increase of certain vertices

can be pre-computed and applied immediately instead of being

incremented by one repeatedly. During the execution of Algorithm

4, these cases transform from each other via recursive calls, which

significantly reduces the total number of weight updates in SCTL.
Note that these cases handle the scenario when the vertex with the

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

minimum weight is unique. When the vertices with the minimum

weight only contain |𝑆ℎ
𝑚𝑖𝑛
| hold vertices, the total weight increase of

these vertices is𝑚𝑖𝑛(|𝑆ℎ
𝑚𝑖𝑛
|×|𝑤𝑚𝑖𝑛−𝑤𝑠𝑒𝑐𝑜𝑛𝑑 |, 𝑙𝑖𝑚, |𝐶𝑘 (P)|) andwe

apply such a change evenly to these hold vertices.When the vertices

with the minimum weight contain pivot vertices, we process these

pivot vertices one by one. Since in the worst case, BatchUpdate
needs as many weight updates as the number of 𝑘-cliques under

the root-to-leaf path P, its time complexity is 𝑂 (|𝐶𝑘 (P)|).

Example 5. We show how Algorithm 4 updates the vertex weights
when processing the root-to-leaf path P = < 𝑟𝑜𝑜𝑡, 𝑣12, 𝑣11, 𝑣8, 𝑣9, 𝑣10>
of the SCT∗-Index in Figure 2 (𝑘 = 3). After the first iteration, the ver-
tex weights in the path are: 𝑟 (𝑣12) = 1, 𝑟 (𝑣11) = 4, 𝑟 (𝑣8) = 4, 𝑟 (𝑣9) =
4 and 𝑟 (𝑣10) = 5. In the following, we show the vertex weight updates
in the second iteration. Initially, 𝑙𝑖𝑚 is set to |𝐶𝑘 (P)| =

(
4

3−1

)
= 6.

Since the hold vertex 𝑣12 has the minimum weight, Algorithm 4 enters
Case 1 and update 𝑟 (𝑣12) to 4, which is the second minimum weight.
Then, Algorithm 4 processes the remaining 𝑘-cliques via a recursive
call with 𝑙𝑖𝑚 = 3. In the recursive call, Algorithm 4 enters Case 4 since
there exists a pivot vertex 𝑣9 with the minimum weight 4. In this case,
a recursive call is invoked to handle the 𝑘-cliques containing 𝑣9, and
another recursive call is used to handle the other 𝑘-cliques not con-
taining 𝑣9. The first recursive call results in two more recursive calls
of Case 4. Note that these three recursive calls increase the weights of
𝑣8, 𝑣9, and 𝑣11 by one, respectively. Then, Algorithm 4 terminates. In
total, the resulting total number of vertex weight updates is 4, reduced
from the number of 𝑘-cliques of 6.

5.3 The SCTL∗ algorithm

Algorithm 5: SCTL∗

Input:𝐺 : the input graph;𝑇 : the number of iterations, 𝑆𝐶𝑇 (𝐺) :
the SCT-index of𝐺

Output: G: an approximate solution on𝐺

1 𝜌′ ← (
𝑀
𝑘)
𝑀

, 𝑟 (𝑢) ← 0 for all 𝑢 ∈ 𝑉 (𝐺) ;
2 Call KPComputation to compute 𝑝𝑎𝑟 [𝑣] for all 𝑣 ∈ 𝑉 (𝐺) ;
3 foreach 𝑡 ← 1, 2, 3, ...𝑇 do
4 foreach valid root-to-leaf path 𝑃 ∈ 𝑆𝐶𝑇 (𝐺) do
5 if there exists 𝑣 ∈ 𝑉 (P) s.t. 𝜌 (𝑝𝑎𝑟 [𝑣]) ≤ 𝜌′ then
6 continue;

7 𝑉ℎ ← the hold vertices in 𝑃 with |𝐶𝑘 (𝑣,𝐺𝜌′) | ≥ ⌈𝜌′⌉;
8 𝑉𝑝 ← the pivot vertices in 𝑃 with |𝐶𝑘 (𝑣,𝐺𝜌′) | ≥ ⌈𝜌′⌉;
9 increase |𝐶𝑘 (𝑣,𝐺𝜌′) | by

(|𝑉𝑝 |
𝑘−|𝑉ℎ |

)
for each 𝑣 ∈ 𝑉ℎ ;

10 increase |𝐶𝑘 (𝑣,𝐺𝜌′) | by
(|𝑉𝑝 |−1

𝑘−|𝑉ℎ |−1

)
for each 𝑣 ∈ 𝑉𝑝 ;

11 BatchUpdate (P, |𝐶𝑘 (P) |);
12 𝜌′ ← the 𝑘-clique density of the current solution;

13 run Lines 6-10 of Algorithm 1;

14 return G;

We apply the above optimizations to SCTL and propose the SCTL∗

algorithm as shown in Algorithm 5. Note that we use 𝜌 ′ to de-

note the best currently found 𝑘-clique density. 𝜌 ′ is initialized to

(𝑀𝑘)
𝑀

, where𝑀 is the maximum clique size fetched from the SCT
∗
-

Index. The vertex weights are initialized to zero (Line 1). Then,

the KPComputation algorithm is called to compute the 𝑘-clique-

isolating partitions in 𝐺 and 𝑝𝑎𝑟 [𝑢] represents the partition ID of

a vertex 𝑢 (Line 2). Just like SCTL, SCTL∗ refines the vertex weights
as it visits the 𝑘-cliques for 𝑇 iterations (Lines 3-12). The difference

is that, due to clique-connectivity and clique-engagement-based

graph reduction, SCTL∗ only needs to process the 𝑘-cliques on pro-

gressively smaller search scope 𝐺𝜌′ , where 𝐺𝜌′ is the search scope

for D𝑘 (𝐺) resulting from the sub-optimal density 𝜌 ′. Specifically,
if any vertex 𝑢 in root-to-leaf path P satisfies 𝜌 (𝑝𝑎𝑟 [𝑣]) ≤ 𝜌 ′, then
the whole path is discarded because this path resides in a 𝑘-clique-

isolating-partition whose density upper bound is dominated by 𝜌 ′

(Lines 5-6). Moreover, SCTL∗ only considers the 𝑘-cliques formed by

the hold vertices and pivot vertices with |𝐶𝑘 (𝑣,𝐺𝜌′) | ≥ ⌈𝜌 ′⌉ (Lines
7-8). In addition, to process these significantly reduced 𝑘-cliques,

SCTL∗ calls BatchUpdate algorithm to handle the 𝑘-cliques under

the same root-to-leaf path together, which further reduces the num-

ber of vertex weight updates. Note that the 𝑘-clique engagement

of the vertices in𝐺𝜌′ are updated when visiting each root-to-leaf

path without increasing the time complexity (Line 9-10).

Complexity analysis. The dominating cost of SCTL∗ is still in-
curred by SCT

∗
-Index traversal and vertex weight updates. Our

SCT
∗
-Index-based graph reduction reduces the number of 𝑘-cliques

processed from |𝐶𝑘 (𝐺) | to |𝐶𝑘 (𝐺𝑡) |, where 𝐺𝑡 is the search scope

for D𝑘 (𝐺) in iteration 𝑡 . Note that by utilizing BatchUpdate, the
number of vertex weight updates is much smaller than |𝐶𝑘 (𝐺𝑡) |.
Like SCTL, SCTL∗ needs an additional scan of 𝑘-cliques to recover

the 𝑘-clique density of the approximate solution. The total time

complexity is𝑂 ((𝑇 + 1) ×∑P |𝑉 (P)| +∑𝑇𝑡=1
|𝐶𝑘 (𝐺𝑡) |) + |𝐶𝑘 (𝐺𝑇) |.

6 SAMPLING-BASED SOLUTIONS
In the literature, the sampling strategy has been applied to get ap-

proximate solutions of the 𝑘-clique densest subgraph more quickly

[37, 41]. However, existing sampling-based approximate algorithms

rely on enumerating the 𝑘-cliques for sampling and recovering

the 𝑘-clique density, which is infeasible for large-scale graphs. In

this part, we propose the SCTL∗-Sample algorithm, which exploits

the structure of SCT
∗
-Index to avoid enumerating all 𝑘-cliques

for improved scalability. In addition, we propose an exact algo-

rithm SCTL∗-Exact that utilizes a near-optimal solution obtained

by SCTL∗-Sample to reduce the search scope for D𝑘 (𝐺).

6.1 The sampling-based approximate algorithm
Based on the SCT

∗
-Index, the advanced sampling-based algorithm

SCTL∗-Sample involves the following two optimizations. First, we

can pre-compute how many 𝑘-cliques we need from each root-to-

leaf path and only visit the 𝑘-cliques that will be sampled. Second,

we can easily compute the 𝑘-clique density of the subgraph in-

duced by some vertex set via the SCT
∗
-Index. In either situation,

we can avoid listing all 𝑘-cliques in𝐺 . The SCTL∗-Sample algorithm
consists of three stages: (1) the sampling stage; (2) the weight refine-

ment stage; and (3) the recovery stage. The details of the algorithm

are summarized in Algorithm 6.

In the sampling stage (Lines 1-3), we obtain a sample of 𝑘-cliques

of size 𝜎 from the SCT
∗
-Index. To ensure the sampled 𝑘-cliques are

distributed evenly under each root-to-leaf path, we pre-compute

a sampling ratio, which is the ratio of 𝑘-cliques we need from

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Scaling Up 𝑘-Clique Densest Subgraph Detection Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

Algorithm 6: SCTL∗-Sample
Input:𝐺 : the input graph;𝑇 : the number of iterations, 𝑆𝐶𝑇 (𝐺) :

the SCT-index of𝐺 , 𝜎 : the number of 𝑘-cliques sampled

Output: G: an approximate solution on𝐺

1 K ← ∅;
2 foreach valid root-to-leaf path P do
3 add |𝐶𝑘 (P) | 𝜎

|𝐶𝑘 (𝐺) |
𝑘-cliques from𝐶𝑘 (P) to K ;

4 𝜌′ ← 0, 𝑟 (𝑢) ← 0 for each 𝑢 ∈ 𝑉 (�̃�) ;
5 foreach 𝑡 ← 1, 2, 3,𝑇 do
6 foreach sampled 𝑘-clique𝐶 ∈ K do
7 if |𝐶𝑘 (𝑣, �̃�) | ≥ ⌈𝜌′⌉ for each 𝑣 ∈ 𝐶 then
8 𝑢∗ = 𝑎𝑟𝑔𝑢∈𝑉 (𝐶)𝑚𝑖𝑛 (𝑟 (𝑢)) ;
9 increase 𝑟 (𝑢∗) by 1;

10 update |𝐶𝑘 (𝑣, �̃�) | for each 𝑣 ∈ 𝐶 ;
11 𝜌′ ← the 𝑘-clique density of the approximate solution in �̃� ;

12 ˜G ← the approximate solution on the sampled subgraph G;
13 use SCT

∗
-Index to recover the 𝑘-clique density of𝐺 [𝑉 (˜G)];

14 G ← 𝐺 [𝑉 (˜G)];
15 return G;

𝐶𝑘 (𝐺), i.e. 𝜎
|𝐶𝑘 (𝐺) | . Then, under each processed root-to-leaf path,

we aim to sample |𝐶𝑘 (P)| 𝜎
|𝐶𝑘 (𝐺) | 𝑘-cliques and store them in main

memory (Line 3). Note that |𝐶𝑘 (P)| is computed from the formula

in Lemma 2.We terminate this process when the sample size reaches

𝜎 . With the SCT
∗
-Index, we are able to obtain a sample of 𝑘-cliques

efficiently without visiting all 𝑘-cliques.

In the weight refinement stage (Lines 4-11), we scan the sampled

𝑘-cliques for 𝑇 iterations and apply the same vertex weight update

strategy to the sampled 𝑘-cliques as in SCTL∗. We use �̃� to denote

the subgraph induced by the vertices in the sampled 𝑘-cliques. To

apply clique-engagement-based graph reduction in Section 5 on

�̃� , we compute the 𝑘-clique-engagement of the vertices in �̃� (i.e.,

|𝐶𝑘 (𝑣, �̃�) |) during sampling. We use 𝜌 ′ to store the best currently

obtained 𝑘-clique density (Line 11). By Lemma 4, we only visit the

𝑘-cliques whose vertices satisfy |𝐶𝑘 (𝑣, �̃�) | ≥ ⌈𝜌 ′⌉ (Line 7). In this

way, we need not visit all sampled 𝑘-cliques in each iteration, which

improves efficiency.

In the recovery stage (Lines 12-14), we first compute the approx-

imate solution on the sampled subgraph �̃� (denoted by
˜G) and

then recover the 𝑘-clique density of the subgraph induced by the

same vertices on 𝐺 (denoted by 𝐺 [𝑉 (˜G)]) using the SCT
∗
-Index

(Lines 13-14). In Line 12, we first sort the vertices in non-increasing

order of their weights (𝑟 (𝑢)). For each 𝑖 ≤ 𝑛, we compute 𝑦𝑖 , which

is the number of 𝑘-cliques contained in the subgraph induced by

the first 𝑖 vertices in the order, by scanning all sampled 𝑘-cliques.

Then, we find 𝑠 such that

∑
𝑖≤𝑠 𝑦𝑖
𝑠 is maximized and return the

subgraph induced by the first 𝑠 vertices as ˜G. In Line 13, we use

the SCT
∗
-Index to count the number of 𝑘-cliques in 𝐺 [𝑉 (˜G)] (i.e.,

|𝐶𝑘 (𝐺 [𝑉 (˜G)]) |). For each root-to-leaf path P, we remove the ver-

tices not in 𝐺 [𝑉 (˜G)] and increment |𝐶𝑘 (𝐺 [𝑉 (˜G)]) | by
(𝑝′
𝑘−ℎ′

)
by

Lemme 2, where 𝑝 ′ and ℎ′ are the number of remaining pivot and

hold vertices in P. The 𝑘-clique density of𝐺 [𝑉 (˜G)] is computed as

|𝐶𝑘 (𝐺 [𝑉 (˜G)]) |
|𝑉 (˜G) |

. In this way, we exploit the structural characteristics

of the SCT
∗
-Index and avoid visiting all 𝑘-cliques to recover the

𝑘-clique density in the original graph.

Utilizing the SCT∗-𝑘 ′-Index. Note that on some large-scale

graphs, only the SCT
∗
-𝑘 ′-Index can be built for some 𝑘 ′. In this

case, we can still run SCTL∗-Sample using the root-to-leaf paths

in SCT
∗
-𝑘 ′-Index and obtain reasonable approximations for arbi-

trary 𝑘 . This is because most 𝑘-cliques in D𝑘 (𝐺) generally come

from larger cliques, whose enumeration is likely to be supported

by SCT
∗
-𝑘 ′-Index.

Complexity analysis. In the sampling stage, Algorithm 6 visits all

valid root-to-leaf paths in SCT
∗
-Index that contain 𝑘-cliques and

store 𝜎 of them. Traversing the SCT
∗
-Index takes 𝑂 (∑P |𝑉 (P)|)

time and storing 𝜎 𝑘-cliques takes𝑂 (𝑘𝜎) time. The time complexity

of the weight refinement stage is 𝑂 (𝑇𝑘𝜎), in which the sampled 𝑘-

cliques are scanned for𝑇 rounds. In the recovery stage, Algorithm 6

visits all sampled 𝑘-cliques again to obtain the approximate solution

on �̃� . Then, it computes the number of 𝑘-cliques of the approximate

solution on𝐺 by selectively visiting some root-to-leaf paths, which

takes 𝑂 (∑P |𝑉 (P)|) time. Overall, the time complexity of SCTL∗-
Sample is 𝑂 (∑P |𝑉 (P)| + (𝑇 + 2)𝑘𝜎). The dominating space cost

is incurred by the SCT
∗
-Index.

Remark 1. SCTL∗-Sample is an approximate algorithm like SCTL∗

with improved scalability via sampling. The difference is that when
an approximate solution is obtained from SCTL∗, an upper bound
on the maximum 𝑘-clique density can be derived, which results in
a lower bound for the approximation ratio. For SCTL∗-Sample, the
upper bound derived is actually with high probability instead of
deterministic [17, 41].

6.2 The sampling-based exact algorithm

Algorithm 7: SCTL∗-Exact
Input:𝐺 : the input graph; 𝑆𝐶𝑇 (𝐺) : the SCT-index of𝐺 , 𝜎 : the

number of 𝑘-cliques sampled

Output: D𝑘 (𝐺) : a 𝑘-clique densest subgraph of𝐺

1 run SCTL∗-Sample to obtain 𝜌′ ;

2 𝐺𝜌′ ← the subgraph induced by the vertices𝐶𝑘 (𝑣,𝐺) ≥ ⌈𝜌′⌉;
3 while𝐺𝜌′ is reducing do
4 update𝐶𝑘 (𝑣,𝐺𝜌′) for all 𝑣 ∈ 𝑉 (𝐺𝜌′) ;
5 𝑇 ← 10;

6 while D𝑘 (𝐺) is not found do
7 run SCTL∗ for𝑇 iterations;

8 if The approximate solution is optimal then
9 break;

10 Else𝑇 ← 2𝑇 ;

11 return D𝑘 (𝐺) ;

In this part, we introduce the SCT
∗
-Index-based exact algorithm

SCTL∗-Exact, which utilizes SCTL∗-Sample to quickly obtain a near-
optimal solution and drastically reduces the search scope.

As shown in Algorithm 7, SCTL∗-Exact calls SCTL∗-Sample to

obtain a near-optimal 𝑘-clique density 𝜌 ′ quickly (Line 1). Since

𝜌 ′ is very close to the maximum 𝑘-clique density, we apply clique-

engagement-based graph reduction with 𝜌 ′ and reduce the search

scope 𝐺𝜌′ until it stops shrinking (Lines 2-4). In this way, a very

tight search scope for D𝑘 (𝐺) is obtained and from this point on

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

only the 𝑘-cliques in𝐺𝜌′ need to be considered. Then, we run SCTL
∗

for an increasing number of iterations (Lines 5-10). We utilizes the

improved Goldberg’s condition from KCL-Exact in [41] and max-flow

to test if the current approximate solution is optimal. Since only the

𝑘-cliques in𝐺𝜌′ are considered, running max-flow incurs much less

memory compared to previous exact algorithms like CoreExact
and KCL-Exact.

7 EXPERIMENTAL EVALUATIONS
In this section, we conduct experiments to evaluate the effectiveness

and efficiency of our algorithms versus the state-of-the-arts.

7.1 Experimental settings
Algorithms.We extensively evaluate the following algorithms: Ap-
proximate algorithms: 1) CoreApp: the (𝑘, 𝜙)-core-based algorithm

in [22]; 2) KCL: the convex-programming-based algorithm in [41];

3) KCL-Sample: KCL with the sampling strategy in [41]; 4) SCTL: our
basic SCT

∗
-Index-based algorithm in Section 4.2; 5) SCTL+: SCTL

with graph reduction optimizations; 6) SCTL∗: SCTL with all opti-

mizations proposed in Section 5.3; 6) SCTL∗-Sample: SCTL∗ with
the sampling strategy proposed in Section 6.1.

Exact algorithms: 1) The exact algorithm KCL-Exact in [41]. 2) Our

SCT
∗
-Index-based exact algorithm proposed in Section 6.2.

We also report the construction time and size of the SCT
∗
-Index

that is used for our SCT-index-based algorithms. All algorithms

are implemented in C++ except for CoreApp, for which we directly

use its original Java implementation from [22]. The experiments

are run on a Linux server with 2 × Intel Xeon E5-2698 processor

(2.20GHz, 40 Cores) and 512GB main memory. We terminate an
algorithm if the running time is more than 10

5 seconds by default.
Datasets. In our experiments, we use 12 real-world datasets includ-

ing all the datasets used in [41]. All the datasets used here can be

found in SNAP (http://snap.stanford.edu/data/). The summary of

datasets is shown in Table 2. |𝑉 (𝐺) | denotes the number of vertices,

and |𝐸 (𝐺) | represents the number of edges. The types of vertices

and edges are also shown in the table. 𝑘𝑚𝑎𝑥 represents the size of

the maximum 𝑘-clique.

Table 2: Summary of datasets

Dataset |𝐸 | Type of 𝐸 |𝑉 | Type of 𝑉 𝑘𝑚𝑎𝑥

Email 183,831 Communication 36,692 Email 20

Amazon 925,872 Purchasing 334,863 Item 7

loc-gowalla 950,327 Share 196,591 User 29

DBLP 1,049,866 Authorship 425,957 Papers 114

road-CA 2,766,607 Connection 1,965,206 Endpoints 4

WikiTalk 4,659,565 Edit 2,394,385 Users 26

Youtube 2,987,624 Friendship 1,134,890 Users 17

as-skitter 11,095,298 Connection 1,696,415 IP addresses 67

soc-pokec 22,301,964 Friendship 1,632,803 Users 29

LiveJournal 34,681,189 Friendship 4,036,538 Users 327

Orkut 117,185,083 Friendship 3,072,627 Users 51

Friendster 1,806,067,135 Friendship 124,836,180 Users 129

7.2 Performance of algorithms
Evaluate the effectiveness and efficiency of SCTL∗. As shown
in Table 3, we report the representative query results (𝑘 = 15) of

the three approximation algorithms CoreApp, KCL, and SCTL∗ and

their total query time for all values of 𝑘 on 5 datasets. Note that

we run KCL and SCTL∗ for 10 iterations. On datasets where exact

solutions are available (i.e., Email, loc-gowalla, and Youtube), we
report the actual approximation ratios. Otherwise, we use the upper

bounds obtained from our SCTL∗ algorithm to estimate the approx-

imation ratios as on WikiTalk and soc-pokec. We observe that

KCL and SCTL∗ are able to achieve near-optimal approximations

while CoreApp yields worse approximation ratios. This is because

KCL and SCTL∗ are guaranteed to converge to the optimal solution

with a sufficient number of iterations but CoreApp always returns

the (𝑘 ′𝑚𝑎𝑥 ,Ψ)-core with a theoretical approximation ratio of 1/𝑘 .
Also, CoreApp incurs high computation cost since it needs to re-

peatedly call the KCList algorithm to compute the (𝑘 ′𝑚𝑎𝑥 ,Ψ)-core.
We also report the construction time of the SCT

∗
-Index and the

ratio of the number of tree nodes in the SCT
∗
-Index to the number

of edges in the graph. We can see that the SCT
∗
-Index can be built

within reasonable time and space for these datasets. With such an

index, we observe that SCTL∗ is significantly faster than KCL and

CoreApp because (1) it directly “reads off” the 𝑘-cliques from the

SCT
∗
-Index instead of computing from scratch; and (2) its efficiency

is further improved by graph reduction and batch processing opti-

mizations. In the remaining experiments, we focus on evaluating

the convex-programming-based solutions (i.e., KCL and the SCT
∗
-

Index-based algorithms) since the efficiency and effectiveness of

these algorithms are much better than CoreApp.
Evaluate the effect of 𝑘 . In Figure 4, we report the running time of

KCL, SCTL, SCTL+, and SCTL∗ for different values of 𝑘 on 5 datasets.

Overall, the SCT
∗
-Index-based algorithms significantly outperform

KCL with different 𝑘 values, and the proposed graph reduction and

batch processing optimizations incrementally speed up the SCTL
algorithm as expected. Specifically, when 𝑘 approaches 𝑘𝑚𝑎𝑥 , the

SCT
∗
-Index-based algorithms are faster than KCL by up to two or-

ders of magnitude. For example, SCTL∗ achieves a speedup of 733×
and 135× on Wikitalk (𝑘 = 19) and Email (𝑘 = 23), respectively.

This is because the KCList algorithm adopted by KCL is originally

designed for sparse graphs with small 𝑘 values (e.g., 𝑘 < 𝑘𝑚𝑎𝑥/2),
while SCTL and SCTL∗ can fetch the few 𝑘-cliques very quickly from
the SCT

∗
-Index when 𝑘 is large. In addition, the proposed optimiza-

tions for SCTL are usually more effective when 𝑘 approaches
𝑘𝑚𝑎𝑥

2
,

which is generally when the number of 𝑘-cliques is very large.

As shown in Figure 5, we also report the 𝑘-clique densities of the

approximate solutions from KCL, SCTL, and SCTL∗ after 10 iterations

as 𝑘 varies on Email and Youtube. As expected, KCL, SCTL, and
SCTL∗ can produce near-optimal approximations and the proposed

optimizations do not affect the effectiveness of SCTL.
Evaluate the effect of graph reduction and batch processing.
In Table 4, we report some statistics to illustrate the effectiveness of

the proposed optimizations in SCTL∗. On Email and Youtube, we
choose two representative 𝑘 values and run SCTL∗ for 10 iterations.

𝐺𝑇 represents the search scope for the 𝑘-clique densest subgraph

before entering iteration 𝑇 .
|𝐶𝑘 (𝐺𝑇) |
|𝐶𝑘 (𝐺) | denotes the ratio of the num-

ber of 𝑘-cliques contained by𝐺𝑇 and those in𝐺 .
#updates

|𝐶𝑘 (𝐺) | is the ratio
of the number of actual vertex weight updates by SCTL∗ in iteration

𝑇 and the number of 𝑘-cliques. We can observe that as 𝑇 increases,

𝐺𝑇 is reduced progressively, reflected by its decreasing number of

10

http://snap.stanford.edu/data/

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Scaling Up 𝑘-Clique Densest Subgraph Detection Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 3: Index build time and query time of approximation algorithms (𝑇 = 10)

Dataset SCT
∗
-Index Query time (s) and approximate ratios when 𝑘 = 15 Total query time (s) for all 𝑘

Time (s)
#tree nodes

𝑚 CoreApp KCL SCTL∗ CoreApp KCL SCTL∗

Email 0.40 21.67 196.74 (0.82) 2.29 (1.00) 0.05 (1.00) 2706.91 64.58 11.73
loc-gowalla 2.08 15.58 1402.836 (0.70) 81.87 (1.00) 43.67 (1.00) 27677.80 809.27 331.79
WikiTalk 154.11 122.80 time out 20679.20 (≥ 0.96) 1912.05 (≥ 0.96) time out time out 22443.88
Youtube 5.88 4.69 2973.58 (0.47) 5.47 (1.00) 0.07 (1.00) time out 109.30 15.71
soc-pokec 48.62 27.38 13723.77 (≥ 0.97) 206.40 (≥ 0.97) 82.22 (≥ 0.97) time out 3164.05 681.06

3 7 11 15 19
k

10 2

10 1

100

101

Ti
m

e(
s)

KCL
SCTL
SCTL +

SCTL *

(a) Email

3 5 7 9 11
k

10 1

100

101

102

Ti
m

e(
s)

KCL
SCTL

SCTL +

SCTL *

(b) Youtube

5 10 15 20 25
k

10 1

100

101

102

103

Ti
m

e(
s)

KCL
SCTL

SCTL +

SCTL *

(c) soc-Pokec

5 10 15 20 25
k

10 1

100

101

102

Ti
m

e(
s)

KCL
SCTL

SCTL +

SCTL *

(d) Gowalla

7 11 15 19 23
k

10 1

100

101

102

103

104

105

Ti
m

e(
s)

KCL
SCTL
SCTL +

SCTL *

(e) Wikitalk

Figure 4: Effect of 𝑘 on the running time of KCL and SCT∗-Index based approximate algorithms

4 8 12 16 20
k

0.0

0.2

0.4

0.6

0.8

1.0

ra
tio

 to
 o

pt
im

al
 d

en
sit

y KCL SCTL SCTL*

(a) Email

4 7 10 13 16
k

0.0

0.2

0.4

0.6

0.8

1.0

ra
tio

 to
 o

pt
im

al
 d

en
sit

y KCL SCTL SCTL*

(b) Youtube

Figure 5: Effectiveness of KCL, SCTL, and SCTL∗

Table 4: Effectiveness of the proposed optimizations

Dataset 𝑘 𝐶𝑘 (𝐺) 𝑇 |𝑉 (𝐺𝑇) | |𝐸 (𝐺𝑇) | |𝐶𝑘 (𝐺𝑇) |
|𝐶𝑘 (𝐺) |

#updates

|𝐶𝑘 (𝐺) |

Email

7 1.63 × 10
7

1

6

10

903

837

293

60012

18094

15496

94.76%

58.28%

53.12%

14.91%

9.02%

7.44%

11 8.86 × 10
6

1

6

10

383

328

135

22792

6754

6164

93.62%

50.29%

45.89%

31.77%

18.67%

18.78%

Youtube

7 7.96 × 10
6

1

6

10

1352

1175

251

98812

15628

13144

92.48%

47.29%

42.25%

13.79%

6.17%

5.96%

11 7.17 × 10
5

1

6

10

260

236

102

14418

4356

3394

93.27%

63.14%

53.33%

35.57%

24.95%

23.71%

vertices and edges. The number of 𝑘-cliques enclosed by𝐺𝑇 also de-

creases steadily. These validate the effect of our SCT
∗
-Index-based

graph reduction optimization. Note that 𝐺𝑇 is already significantly

smaller compared to 𝐺 before the first iteration because the maxi-

mum clique serves as a non-trivial approximate solution that can be

used for graph reduction. In addition, we observe that the number

of vertex weight updates by SCTL∗ is noticeably smaller than the

number of 𝑘-cliques in𝐺𝑇 . This is because the batch processing op-

timization enables SCTL∗ to consider the 𝑘-cliques under the same

root-to-leaf path together and avoid enumerating each of them.

Table 5: Comparison between KCL-Sample and SCTL∗-Sample

Dataset SCT
∗
-Index 𝑘 KCL-Sample SCTL∗-Sample

Time (s)
#tree nodes

𝑚 Time (s) Density Time (s) Density

Email 0.40 21.67

5

10

15

8.11

21.87

6.64

8.07 × 10
3

5.75 × 10
4

3.57 × 10
3

7.83

17.72

3.93

8.07 × 10
3

5.75 × 10
4

3.57 × 10
3

as-Skitter 122.31 86.67

5

25

45

65

86.14

time out

time out

time out

1.12 × 10
6

−
−
−

19.22

26.26

32.95

2.81

1.12 × 10
6

2.36 × 10
17

3.13 × 10
16

1.33 × 10
2

DBLP 2.29 2.99

10

40

70

100

time out

time out

time out

time out

−
−
−
−

20.44

36.28

47.26

57.69

5.97 × 10
11

8.27 × 10
28

7.00 × 10
29

2.74 × 10
15

Orkut 1207.05
∗

319.53

10

20

30

40

time out

time out

time out

time out

−
−
−
−

101.22

83.49

75.58

52.66

4.10 × 10
10

1.25 × 10
15

1.42 × 10
15

1.14 × 10
11

Live-journal 3767.68
∗

294.62

50

100

150

200

250

300

time out

time out

time out

time out

time out

time out

−
−
−
−
−
−

279.83

371.05

426.67

483.89

431.31

335.85

5.81 × 10
58

2.94 × 10
86

7.00 × 10
97

3.21 × 10
95

6.59 × 10
78

268 × 10
42

Friendester 5669.84
∗

2.59

25

50

75

100

125

time out

time out

time out

time out

time out

−
−
−
−
−

59.49

79.69

91.29

103.22

122.31

2.23 × 10
24

2.70 × 10
29

1.97 × 10
29

1.72 × 10
27

3.33 × 10
5

Evaluate the effect of sampling. We compare two sampling-

based approximate algorithms (i.e., KCL-Sample and SCTL∗-Sample)
and report the running time and the resulting 𝑘-clique densities

for varying values of 𝑘 on 6 datasets in Table 5. For both algorithm,

we always sample 10
7 𝑘-cliques as done in [41]. We also report

the SCT
∗
-Index build time and the ratio of the number of tree

11

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

nodes in the SCT
∗
-Index to the number of edges in the graph.

Note that on graphs Orkut, Live-journal, and Friendester, we
build SCT

∗
-𝑘 ′-Index and set 𝑘 ′ set to 40, 326, and 128, respectively.

Out of the 6 datasets with varying 𝑘 values, the optimal solutions

are only available on Email and DBLP, and our SCTL∗-Sample is

able to find these solutions quickly. This is because the 𝑘-clique

densest subgraph on the sampled subgraph and that of the original

graph usually highly overlap [37]. In addition, SCTL∗-Sample is

able to provide reasonable approximate solutions for all values of

𝑘 on graphs with as many as 1 billion edges, while KCL-Sample is
only feasible for limited 𝑘 values or small graphs. This is because

SCTL∗-Sample avoids enumerating all 𝑘-cliques when extracting a

sample of 𝑘-cliques and when recovering the approximate 𝑘-clique

density on the original graph with the SCT
∗
-Index, respectively.

In addition, SCTL∗-Sample applies the clique-engagement-based

graph reduction to further reduce the number of sampled 𝑘-cliques

visited in each iteration.

Table 6: Compare query time (s) of the exact algorithms

Dataset 𝑘 KCL-Exact SCTL∗-Exact

Email
10

15

20

33.96

4.43

3.25

8.27

4.37

0.03

Youtube
10

15

32.18

4.43

5.97

0.16

Orkut

48

49

50

51

time out

time out

time out

time out

27.50

25.54

24.51

15.52

Live-Journal 327 out of memory 197.66

Compare to the state-of-the-art exact algorithms.We compare

the running time of KCL-Exact and SCTL∗-Exact on 4 datasets with
some representative 𝑘 values in Table 6. We can observe that SCTL∗-
Exact outperforms KCL-Exact in all settings. On small datasets

like Email and Youtube, SCTL∗-Exact achieves better efficiency

because it uses sampling to obtain a near-optimal solution and

a relatively small subgraph as the search scope for D𝑘 (𝐺). The
dominating time cost for both algorithms is incurredwhen verifying

that the current approximate solution is indeed optimal via a flow

network. On Orkut, for the prescribed 𝑘 values, KCL-Exact cannot

finish within the time limit, while SCTL∗-Exact can obtain the

exact solutions efficiently. On Live-Journal, KCL-Exact runs out
of memory from storing the 𝑘-cliques. We can observe that SCTL∗-
Exact achieves better efficiency while incurring less memory by

focusing on the 𝑘-cliques in a reduced search scope.

8 RELATEDWORK
Below we review the related works of the edge densest subgraph

problem and the 𝑘-clique densest subgraph problem, which are

closely related.

Edge densest subgraph. The edge densest subgraph problem

(EDS) aims to find the subgraph with the maximum average de-

gree [1, 3, 4, 7–9, 20, 30, 34, 39, 43]. An important finding in the

EDS literature is that solving a parametric maximum flow problem

can be used to verify if a subgraph is the densest subgraph [26].

This establishes a general framework of conducting a binary search

on the maximum density and using a flow network as a verifica-

tion tool for EDS and its variants [36, 45]. Generally, solving the

maximum flow problem [14, 24, 27] can be time-consuming and

such an exact algorithm becomes infeasible on large graphs. Ap-

proximation algorithms are usually proposed to improve efficiency

[11, 17, 41, 46]. The peeling algorithm for 𝑘-core decomposition

runs in linear time and provides a 2-approximation for the EDS
problem [5, 11]. A recent work [46] studies the 𝑝-mean densest

subgraph problem and proposes a generalized peeling algorithm

with an approximation ratio of 1/(1 + 𝑝)
1

𝑝
, which reduces to EDS

when 𝑝 equals one. In addition, a recent line of research formulates

the densest subgraph problem as a convex program and resorts to

convex optimization algorithms to design approximation and exact

algorithms [17, 35, 41].

𝑘-clique densest subgraph. As a variant of EDS, the 𝑘-clique
densest subgraph problem is proposed in an attempt to better de-

tect “near-clique” subgraphs, which aims to maximize the average

number of 𝑘-cliques per vertex over all subgraphs [45]. The classic

framework of conducting a binary search for the maximum density

via max-flow is extended to solve the 𝑘-clique densest subgraph

problem [22, 37, 45], where a hyper-graph with the same vertices

and the 𝑘-cliques as hyper-edges is considered. The exact algorithm

under this framework has limited scalability due to the large num-

ber of 𝑘-cliques and the large size of the resulting flow network. To

address this, a cohesive subgraph model (𝑘 ′,Ψ)-core is proposed
in [22] to apply graph reduction, which allows the flow network

to be built on progressively smaller subgraphs. The (𝑘 ′,Ψ)-core
with the maximum 𝑘 ′ itself also serves as a

1

𝑘
approximation. [37]

adopts the same framework to compute both the 𝑘-clique densest

subgraph and the (𝑝, 𝑞)-biclique densest subgraph (on bipartite

graphs). They discover that sampling a fraction of the 𝑘-cliques is

enough to obtain a close approximate solution. In addition, con-

vex programming based algorithms are proposed in [41], including

a large memory Frank-Wolfe algorithm and a linear memory ap-

proximate algorithm KCL that converges to the optimal solution

after scanning the 𝑘-cliques for sufficient iterations. Compared to

existing solutions, our work can produce near-optimal solutions

more efficiently via novel graph reduction and batch processing

optimizations with the SCT
∗
-Index. We also propose a sampling-

based algorithm capable of providing approximate solutions for

arbitrary 𝑘 values on graphs at billion-scale, which also facilitates

the search for the exact solution.

9 CONCLUSION
In this paper, we study the 𝑘-clique densest subgraph problem and

provide more efficient and scalable algorithms. By adapting the

succinct clique tree, we propose the SCT
∗
-Index to store 𝑘-cliques.

Based on the SCT
∗
-Index, we propose the SCTL algorithm with

near-optimal approximation ratios in practice, which is further

sped up by novel graph reduction and batch processing techniques.

We further push the efficiency boundary via sampling and our

SCTL∗-Sample algorithm can offer reasonable approximations for

graphs at billion-scale, which also facilitates the search for the exact

solution. Extensive experiments on 12 real-world graphs verify the

efficiency and effectiveness of the proposed techniques.

12

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

Scaling Up 𝑘-Clique Densest Subgraph Detection Conference acronym ’XX, June 03–05, 2018, Woodstock, NY

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

REFERENCES
[1] Venkat Anantharam and Justin Salez. 2016. The densest subgraph problem in

sparse random graphs. The Annals of Applied Probability 26, 1 (2016), 305–327.

[2] Reid Andersen and Kumar Chellapilla. 2009. Finding dense subgraphs with size

bounds. In International workshop on algorithms and models for the web-graph.
Springer, 25–37.

[3] Albert Angel, Nick Koudas, Nikos Sarkas, and Divesh Srivastava. 2012. Dense

subgraph maintenance under streaming edge weight updates for real-time story

identification. arXiv preprint arXiv:1203.0060 (2012).
[4] Yuichi Asahiro, Refael Hassin, and Kazuo Iwama. 2002. Complexity of finding

dense subgraphs. Discrete Applied Mathematics 121, 1-3 (2002), 15–26.
[5] Yuichi Asahiro, Kazuo Iwama, Hisao Tamaki, and Takeshi Tokuyama. 2000.

Greedily finding a dense subgraph. Journal of Algorithms 34, 2 (2000), 203–221.
[6] Gary D Bader and Christopher WV Hogue. 2003. An automated method for

finding molecular complexes in large protein interaction networks. BMC bioin-
formatics 4, 1 (2003), 1–27.

[7] Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. 2012. Densest subgraph

in streaming and mapreduce. arXiv preprint arXiv:1201.6567 (2012).

[8] Oana Denisa Balalau, Francesco Bonchi, TH Hubert Chan, Francesco Gullo, and

Mauro Sozio. 2015. Finding subgraphs with maximum total density and limited

overlap. In Proceedings of the Eighth ACM International Conference on Web Search
and Data Mining. 379–388.

[9] Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos

Tsourakakis. 2015. Space-and time-efficient algorithm for maintaining dense

subgraphs on one-pass dynamic streams. In Proceedings of the forty-seventh
annual ACM symposium on Theory of computing. 173–182.

[10] Gregory Buehrer and Kumar Chellapilla. 2008. A scalable pattern mining ap-

proach to web graph compression with communities. In Proceedings of the 2008
international conference on web search and data mining. 95–106.

[11] Moses Charikar. 2000. Greedy approximation algorithms for finding dense

components in a graph. In International Workshop on Approximation Algorithms
for Combinatorial Optimization. Springer, 84–95.

[12] Jie Chen and Yousef Saad. 2010. Dense subgraph extraction with application to

community detection. IEEE Transactions on knowledge and data engineering 24, 7

(2010), 1216–1230.

[13] Zi Chen, Long Yuan, Xuemin Lin, Lu Qin, and Jianye Yang. 2020. Efficient

maximal balanced clique enumeration in signed networks. In Proceedings of The
Web Conference 2020. 339–349.

[14] Boris V Cherkassky and Andrew V Goldberg. 1997. On implementing the

push—relabel method for the maximum flow problem. Algorithmica 19, 4 (1997),
390–410.

[15] Guangyu Cui, Yu Chen, De-Shuang Huang, and Kyungsook Han. 2008. An

algorithm for finding functional modules and protein complexes in protein-

protein interaction networks. Journal of Biomedicine and Biotechnology 2008

(2008).

[16] Maximilien Danisch, Oana Balalau, and Mauro Sozio. 2018. Listing k-cliques in

sparse real-world graphs. In Proceedings of the 2018 World Wide Web Conference.
589–598.

[17] Maximilien Danisch, T-H Hubert Chan, and Mauro Sozio. 2017. Large scale

density-friendly graph decomposition via convex programming. In Proceedings
of the 26th International Conference on World Wide Web. 233–242.

[18] Apurba Das, Seyed-Vahid Sanei-Mehri, and Srikanta Tirthapura. 2020. Shared-

memory parallel maximal clique enumeration from static and dynamic graphs.

ACM Transactions on Parallel Computing (TOPC) 7, 1 (2020), 1–28.
[19] Xiaoxi Du, Ruoming Jin, Liang Ding, Victor E Lee, and John H Thornton Jr.

2009. Migration motif: a spatial-temporal pattern mining approach for financial

markets. In Proceedings of the 15th ACM SIGKDD international conference on
knowledge discovery and data mining. 1135–1144.

[20] Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. 2015. Efficient densest

subgraph computation in evolving graphs. In Proceedings of the 24th international
conference on world wide web. 300–310.

[21] David Eppstein and Darren Strash. 2011. Listing all maximal cliques in large

sparse real-world graphs. In International Symposium on Experimental Algorithms.
Springer, 364–375.

[22] Yixiang Fang, Kaiqiang Yu, Reynold Cheng, Laks V. S. Lakshmanan, and Xuemin

Lin. 2019. Efficient Algorithms for Densest Subgraph Discovery. Proc. VLDB
Endow. 12, 11 (2019), 1719–1732.

[23] Eugene Fratkin, Brian T Naughton, Douglas L Brutlag, and Serafim Batzoglou.

2006. MotifCut: regulatory motifs finding with maximum density subgraphs.

Bioinformatics 22, 14 (2006), e150–e157.
[24] Giorgio Gallo, Michael DGrigoriadis, and Robert E Tarjan. 1989. A fast parametric

maximum flow algorithm and applications. SIAM J. Comput. 18, 1 (1989), 30–55.
[25] David Gibson, Ravi Kumar, and Andrew Tomkins. 2005. Discovering large dense

subgraphs in massive graphs. In Proceedings of the 31st international conference
on Very large data bases. Citeseer, 721–732.

[26] Andrew V Goldberg. 1984. Finding a maximum density subgraph. (1984).

[27] Andrew V Goldberg and Robert E Tarjan. 1988. A new approach to the maximum-

flow problem. Journal of the ACM (JACM) 35, 4 (1988), 921–940.
[28] Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and Christos

Faloutsos. 2016. Fraudar: Bounding graph fraud in the face of camouflage. In

Proceedings of the 22nd ACM SIGKDD international conference on knowledge
discovery and data mining. 895–904.

[29] Haiyan Hu, Xifeng Yan, Yu Huang, Jiawei Han, and Xianghong Jasmine Zhou.

2005. Mining coherent dense subgraphs across massive biological networks for

functional discovery. Bioinformatics 21, suppl_1 (2005), i213–i221.
[30] Shuguang Hu, Xiaowei Wu, and TH Hubert Chan. 2017. Maintaining densest

subsets efficiently in evolving hypergraphs. In Proceedings of the 2017 ACM on
Conference on Information and Knowledge Management. 929–938.

[31] Martin Jaggi. 2013. Revisiting Frank-Wolfe: Projection-free sparse convex opti-

mization. In International Conference on Machine Learning. PMLR, 427–435.

[32] Shweta Jain and C Seshadhri. 2020. The power of pivoting for exact clique

counting. In Proceedings of the 13th International Conference on Web Search and
Data Mining. 268–276.

[33] Shweta Jain and C Seshadhri. 2020. Provably and efficiently approximating

near-cliques using the Turán shadow: PEANUTS. In Proceedings of The Web
Conference 2020. 1966–1976.

[34] Victor E Lee, Ning Ruan, Ruoming Jin, and Charu Aggarwal. 2010. A survey of

algorithms for dense subgraph discovery. In Managing and mining graph data.
Springer, 303–336.

[35] Chenhao Ma, Yixiang Fang, Reynold Cheng, Laks VS Lakshmanan, and Xiaolin

Han. 2022. A Convex-Programming Approach for Efficient Directed Densest

Subgraph Discovery. In Proceedings of the 2022 International Conference on Man-
agement of Data. 845–859.

[36] ChenhaoMa, Yixiang Fang, Reynold Cheng, Laks VS Lakshmanan,Wenjie Zhang,

and Xuemin Lin. 2020. Efficient algorithms for densest subgraph discovery on

large directed graphs. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data. 1051–1066.

[37] Michael Mitzenmacher, Jakub Pachocki, Richard Peng, Charalampos Tsourakakis,

and Shen Chen Xu. 2015. Scalable large near-clique detection in large-scale

networks via sampling. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 815–824.

[38] Kevin A Naudé. 2016. Refined pivot selection for maximal clique enumeration in

graphs. Theoretical Computer Science 613 (2016), 28–37.
[39] Lu Qin, Rong-Hua Li, Lijun Chang, and Chengqi Zhang. 2015. Locally dens-

est subgraph discovery. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 965–974.

[40] Ahmet Erdem Sariyuce, C Seshadhri, Ali Pinar, and Umit V Catalyurek. 2015.

Finding the hierarchy of dense subgraphs using nucleus decompositions. In

Proceedings of the 24th International Conference on World Wide Web. 927–937.
[41] Bintao Sun, Maximilien Danisch, TH Chan, and Mauro Sozio. 2020. KClist++: A

simple algorithm for finding k-clique densest subgraphs in large graphs. Pro-
ceedings of the VLDB Endowment (PVLDB) (2020).

[42] Robert Endre Tarjan. 1975. Efficiency of a good but not linear set union algorithm.

Journal of the ACM (JACM) 22, 2 (1975), 215–225.
[43] Nikolaj Tatti and Aristides Gionis. 2015. Density-friendly graph decomposition.

In Proceedings of the 24th International Conference onWorldWideWeb. 1089–1099.
[44] Etsuji Tomita, Akira Tanaka, and Haruhisa Takahashi. 2006. The worst-case time

complexity for generating all maximal cliques and computational experiments.

Theoretical computer science 363, 1 (2006), 28–42.
[45] Charalampos Tsourakakis. 2015. The k-clique densest subgraph problem. In

Proceedings of the 24th international conference on world wide web. 1122–1132.
[46] Nate Veldt, Austin R Benson, and Jon Kleinberg. 2021. The generalized mean

densest subgraph problem. In Proceedings of the 27th ACM SIGKDD Conference
on Knowledge Discovery & Data Mining. 1604–1614.

[47] Kai Wang, Xuemin Lin, Lu Qin, Wenjie Zhang, and Ying Zhang. 2020. Efficient

bitruss decomposition for large-scale bipartite graphs. In ICDE. IEEE.
[48] Kai Wang, Shuting Wang, Xin Cao, and Lu Qin. 2020. Efficient radius-bounded

community search in geo-social networks. IEEE Transactions on Knowledge and
Data Engineering (2020).

[49] Nan Wang, Jingbo Zhang, Kian-Lee Tan, and Anthony KH Tung. 2010. On

triangulation-based dense neighborhood graph discovery. Proceedings of the
VLDB Endowment 4, 2 (2010), 58–68.

[50] Haiyuan Yu, Alberto Paccanaro, Valery Trifonov, and Mark Gerstein. 2006. Pre-

dicting interactions in protein networks by completing defective cliques. Bioin-
formatics 22, 7 (2006), 823–829.

[51] Long Yuan, Lu Qin, Wenjie Zhang, Lijun Chang, and Jianye Yang. 2017. Index-

based densest clique percolation community search in networks. IEEE Transac-
tions on Knowledge and Data Engineering 30, 5 (2017), 922–935.

[52] Si Zhang, Dawei Zhou, Mehmet Yigit Yildirim, Scott Alcorn, Jingrui He, Hasan

Davulcu, and Hanghang Tong. 2017. Hidden: hierarchical dense subgraph de-

tection with application to financial fraud detection. In Proceedings of the 2017
SIAM International Conference on Data Mining. SIAM, 570–578.

13

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Problem definition

	3 State-of-the-arts
	3.1 The (k',)-core-based algorithms
	3.2 The convex-programming-based algorithms

	4 Utilizing the idea of pivoting
	4.1 The SCT*-Index
	4.2 The SCTL algorithm

	5 Optimizations
	5.1 Graph reductions
	5.2 Batch processing k-cliques
	5.3 The SCTL* algorithm

	6 Sampling-based solutions
	6.1 The sampling-based approximate algorithm
	6.2 The sampling-based exact algorithm

	7 Experimental evaluations
	7.1 Experimental settings
	7.2 Performance of algorithms

	8 Related Work
	9 Conclusion
	References

