
“© 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.”

Efficient Reinforcement of Bipartite Networks at
Billion Scale

Yizhang He†, Kai Wang†, Wenjie Zhang†, Xuemin Lin†, Ying Zhang?
†University of New South Wales, ?University of Technology Sydney

{yizhang.he, kai.wang}@unsw.edu.au, {zhangw, lxue}@cse.unsw.edu.au, ying.zhang@uts.edu.au

Abstract—Bipartite networks, which model relationships be-
tween two different types of entities, are prevalent in many real-
world applications. On bipartite networks, the cascading node
departure undermines the networks’ ability to provide sustain-
able services, which makes reinforcing bipartite networks a vital
problem. Although network reinforcement is extensively studied
on unipartite networks, it remains largely unexplored on bipartite
graphs. On bipartite networks, (α, β)-core is a stable structure
that ensures different minimum engagement levels of the vertices
from different layers, and we aim to reinforce bipartite networks
by maximizing the (α, β)-core. Specifically, given a bipartite
network G, degree constraints α and β, budgets b1 and b2, we
aim to find b1 upper layer vertices and b2 lower layer vertices as
anchors and bring them into the (α, β)-core s.t. the number of
non-anchor vertices entering in the (α, β)-core is maximized.
We prove the problem is NP-hard and propose a heuristic
algorithm FILVER to solve the problem. FILVER runs b1 + b2
iterations and choose the best anchor in each iteration. Under
a filter-verification framework, it reduces the pool of candidate
anchors (in the filter stage) and computes the resulting (α, β)-
core for each anchor vertex more efficiently (in the verification
stage). In addition, filter-stage optimizations are proposed to
further reduce “dominated” anchors and allow computation-
sharing across iterations. To optimize the verification stage,
we explore the cumulative effect of placing multiple anchors,
which effectively reduces the number of running iterations.
Extensive experiments on 16 real-world datasets and a billion-
scale synthetic dataset validate the effectiveness and efficiency of
our proposed techniques.

I. INTRODUCTION

Bipartite networks are naturally used to model the relation-
ships between two distinct types of entities, which are widely
prevalent in many real-world scenarios such as customer-
product networks in E-commerce [1], user-page networks
in social analysis [2], and people-activity networks in event
recommendation [3]. Notably, the structural stability of these
networks is crucial since it reflects the ability of such networks
to provide sustainable services [4], [5]. For example, on a
customer-product network of an online shopping platform
(e.g., Amazon, Alibaba, and eBay), the continuing and frequent
connections between customers and products usually lead to
not only more revenue from sales but also more web traffic to
attract advertisements [6], [7], [8]. As node departures have
the snowball effect of causing more nodes to drop out [9]
and even cause a total network breakdown [5], it is vital to
reinforce a bipartite network and maintain its stability.

In the literature, a common and practical approach for
network reinforcement is core maximization, which aims to
enlarge the stable structure captured by the k-core model
[10], [11], [12], [13], [14], [15]. Here k-core is the maximal

(4, 3)-core

𝒖𝒖𝟐𝟐
(Hank)

𝒖𝒖𝟒𝟒
(Mark)

𝒖𝒖𝟏𝟏
(Tom)

𝒖𝒖𝟑𝟑
(Jack)

𝒗𝒗𝟏𝟏
(Drink)

𝒗𝒗𝟐𝟐
(Phone)

𝒗𝒗𝟑𝟑
(Cake)

𝒗𝒗𝟒𝟒
(Sneaker)

Anchored (4, 3)-core
𝒖𝒖𝟓𝟓

(Joey)

Fig. 1: A user-item network

subgraph where each vertex has at least k neighbors, which is
considered as a feasible indicator of network stability [5], [16].
However, the approaches proposed in these existing works
focus on general (unipartite) networks and are not suitable for
reinforcing bipartite graphs, where the vertices of two different
layers represent different types of entities, and their degrees
can be of different scales.

On bipartite networks, the (α, β)-core model [17], [18], [19]
naturally extends the k-core model by having different degree
constraints (α and β) on two different vertex layers (i.e., the
upper/lower layers). In an (α, β)-core, the vertices on upper
and lower layers are guaranteed to have minimum engagement
levels of α and β respectively [18], which are unlikely to leave
the bipartite network and cause it to break down. Motivated
by the above reasons, we aim to reinforce bipartite networks
by maximizing the (α, β)-core. Specifically, if we select some
vertices as anchors and let them enter the (α, β)-core (e.g.,
setting their degrees to +∞ or add more connections to them),
then more vertices (i.e., followers) that were not in the (α, β)-
core will be also included by it. The expanded (α, β)-core is
also called the anchored (α, β)-core. In this paper, given a
bipartite network G, and two integers b1 and b2, we study the
anchored (α, β)-core problem that aims to find b1 upper layer
vertices and b2 lower layer vertices as anchors to maximize the
number of vertices in the anchored (α, β)-core (i.e., maximize
the number of followers). Consider the example in Figure 1.
The closely connected community with 3 people and 4 items is
the (4, 3)-core. Given b1 = b2 = 1, to expand this community
as much as possible, the best solution is to choose u2 (“Hank”)
and v1 (“Drink”) as anchors, which allows all vertices to be
included in the anchored (4, 3)-core except u5 (“Joey”).
Applications. The anchored (α, β)-core problem on bipartite
graphs has many real-world applications, and we present two
representative scenarios as follows.
• Maintaining social groups. In user-item networks (e.g.,

customer-product networks in Amazon, user-page networks in
Facebook, and user-movie networks in IMDb), social groups
formed by people with common interests, habits, and beliefs
are widely prevalent. As these groups are often fragile and
prone to fall apart [20], [21], maintaining the variety and
stability of these groups is vital to the activity and prosperity
of networks. For example, in a customer-product network,
the underlying platform can offer special discounts on certain
items, or sponsor some users like social media influencers to
achieve this goal. Therefore, studying the anchored (α, β)-core
problem can effectively identify these critical users and items
for maintaining such social groups.
• Reinforcing mutualistic networks. In ecosystems, mutually
beneficial interactions between two types of bio-entities are
naturally modeled as bipartite networks called mutualistic
networks. Many of these networks are formed by plants and
animals [22]. Such reciprocal relationships are vital to the
ecosystem because the extinction of some plants or animals
can result in extinction cascades [23]. In the (α, β)-core of
a plant-animal network, each plant can depend on at least α
animals to pollinate and disperse seeds, while each animal
can live on food sources and shelters provided by at least β
plants. These plants and animals are more resilient and less
vulnerable to extinction. Such stable units of the ecosystem
can be expanded and strengthened by improving the habitats
of certain species (i.e., “anchor” some plants or animals to
expand the induced (α, β)-core).
Motivations. Despite the applications mentioned above, the
anchored (α, β)-core problem is NP-hard and APX-hard.
Existing studies of core maximization to reinforce unipartite
networks propose greedy algorithms for NP-hard problems like
the anchored k-core problem [11], [12], the anchored coreness
problem [13], [16], and the anchored budget minimization
problem [15]. However, these algorithms do not apply to our
problem for two reasons: (1) these algorithms are based on
k-core, which ignores the characteristics of bipartite networks,
i.e., the vertices in different layers have different types; (2)
the optimization objectives are inherently different. Besides, as
nowadays bipartite networks can reach billion-scale, it is cost-
prohibitive to devise exact algorithms to solve the anchored
(α, β)-core problem on large bipartite networks.

Motivated by the above observations, in this paper, we resort
to greedy heuristics to solve the problem. Intuitively, we can
run b1 + b2 iterations and for each iteration, we search for
the best anchor which can produce the largest number of
followers. The number of followers of each candidate anchor
is computed by using the (α, β)-core computation algorithm
in [18]. Experimental results show that this greedy approach
can produce commensurate numbers of followers as the exact
algorithm. However, it suffers from long running time (e.g.,
it cannot finish within 24 hours on the WC dataset with 3.8
million edges), which cannot be used to handle large-scale
bipartite networks. This compromised efficiency is due to
the following reasons. Firstly, in each iteration of the greedy
algorithm, it needs to process lots of candidate anchors, the
number of which is linear to the number of vertices in the
whole graph. Secondly, to build the anchor set, we need to

compute the followers of each candidate anchor, which needs
to traverse the whole graph in the worst case. In addition, it is
difficult to explore computation-sharing opportunities across
iterations for the greedy algorithm since the anchored (α, β)-
core can expand a lot in each iteration.
Our approaches. Firstly, we propose the upper/lower deletion
orders based on the vertex deletion order during (α, β)-core
computation to capture the dependencies among anchors and
followers. By utilizing these orders, the FILVER algorithm is
proposed, which follows a filter-verification framework to find
the best anchor in each iteration. In the filter stage, FILVER
leaves out unpromising candidate anchors that do not produce
any followers. In the verification stage, FILVER computes the
followers for each promising anchor in a local manner, which
is much faster than computing globally using the (α, β)-core
computation algorithm [18].

Secondly, we propose a set of optimizations to further speed
up the filter stage. We define follower signature to filter more
“dominated” anchors, whose follower set can be covered by
other anchors’. The follower signature of an anchor x is the
set of its neighbors that are deleted after x when computing
the (α, β)-core, which can be considered as the starting point
for computing the followers. An important feature of follower
signatures is that if the follower signature of an anchor x1
is covered by that of another anchor x2, then the follower
set of x1 must be covered by that of x2. By leveraging
the bipartite graph structure, a two-hop filtering algorithm
is devised to efficiently eliminate such “dominated” anchors
and drastically reduce the candidate anchor pool. In addition,
since the anchored (α, β)-core expands in each iteration, the
upper/lower deletion orders need to be correctly updated at
the beginning of the filter stage. To reuse information across
iterations, we explore the nested property of (α, β)-core to
identify the affected scope of each placed anchor and reduce
the parts of the orders that need recomputation.

Thirdly, we optimize the verification stage by exploring the
cumulative effect of placing multiple anchors and propose the
FILVER++ algorithm. Specifically, while scanning through the
candidate anchors (after filtering) in each iteration, FILVER++

maintains a set of t (t > 1) representative anchors. By devising
effective anchor set maintenance techniques, we constantly
update this set of anchors and ensure that the sets of followers
brought by these anchors are largely non-overlapping. Since
FILVER++ finds t anchors rather than one per iteration, it
requires fewer iterations till termination. Experiment results
validate that FILVER++ brings in a similar number of follow-
ers as FILVER and further pushes the efficiency boundary.
Contribution. Here we summarize our principal contributions.
• We propose and explore the anchored (α, β)-core prob-

lem to reinforce bipartite networks. We also prove the
problem is NP-hard and APX-hard.

• We propose a heuristic filter-verification framework to
solve the problem, which can largely reduce the compu-
tation cost.

• We propose a set of filter-stage optimizations to further
filter “dominated” anchors and allow computation-sharing
across iterations.

• We propose verification-stage optimizations by exploring

the cumulative effect of placing multiple anchors to
reduce the number of processed iterations.

• We conduct extensive experiments on 17 real and syn-
thetic bipartite networks to validate the effectiveness
and efficiency of the proposed techniques. Experimental
results show that the FILVER algorithm is efficient and
produces a similar number of followers as the exact
algorithm. Also, the FILVER++ algorithm with optimiza-
tions in both stages significantly outperforms FILVER in
efficiency by up to 44× and is scalable to the billion-scale
dataset.

Organization. The rest of the paper is organized as follows.
Section 2 defines the problem and introduces the straight-
forward solutions. Section 3 presents the filter-verification
framework and the FILVER algorithm. Section 4 and 5 propose
filter-stage and verification-stage optimizations, respectively.
Section 6 reports the experimental results. Section 7 reviews
the related work, and Section 8 concludes the paper.

II. PRELIMINARIES

TABLE I: Summary of Notations
Notation Definition

G a bipartite graph
A the set of anchors

N(u,G) the neighbors of u in G
d(u,G) the degree of u in G
Cα,β(GA) the vertex set of anchored (α, β)-core

Sup(G), Slow(G) the upper and lower shell of G
F (A) the followers of anchor set A

OU (u), OL(u) the upper/lower deletion order of a vertex u
rf(x) the order-reachable vertices from an anchor x

coreU (u), coreL(u) the upper/lower deletion order of a vertex u
AGU (x), AGL(x) the upper/lower affected graph an anchor x

In this section, we present important notations and introduce
the anchored (α, β)-core model. Then, we formally define the
anchored (α, β)-core problem and prove its hardness.

A. Problem definition

In this paper, we use an unweighted bipartite graph G(V =
(U,L), E) to model a bipartite network. V = U ∪ L denotes
the set of vertices where U and L represent the upper and
lower layer, respectively. The vertices in U and L are called
upper vertices and lower vertices. E ⊆ U ×L denotes the set
of edges. We use n = |V | to denote the number of vertices and
m = |E| to denote the number of edges in G (m > n). The set
of neighbors of a vertex u in G is denoted by N(u,G). Given
a vertex set J , N(J) denotes the union of the neighbors of
vertices in J (i.e., N(J) =

⋃
u∈J N(u,G)). In addition, the

degree of u is denoted by d(u,G) = |N(u,G)|. When the
context is clear, we omit the input graph G in notations.

Definition 1 ((α, β)-core). Given a bipartite graph G and
degree constraints α and β, a subgraph G′ is the (α, β)-core,
if (1) all vertices in G′ satisfy the degree constraints, i.e.,
d(u,G′) ≥ α for each u ∈ U(G′) and d(v,G′) ≥ β for
each v ∈ L(G′); and (2) G′ is maximal, i.e., any supergraph
G′′ ⊇ G′ is not an (α, β)-core. The vertex set of the (α, β)-
core is denoted by Cα,β(G).

Now we introduce the anchored (α, β)-core model. In this
paper, if a vertex u is anchored, it always stays in the (α, β)-
core regardless of its degree (or equivalently, we set d(u,G)
to +∞). Such vertices are called anchor vertices or anchors.

Definition 2 (Anchored (α, β)-core). Consider a bipartite
graph G, degree constraints α, β, and a vertex set A ⊆ V (G).
The graph G with vertices in A anchored is denoted by GA
and the anchored (α, β)-core is the corresponding (α, β)-core
of GA. The vertex set of the anchored (α, β)-core is denoted
by Cα,β(GA).

Apart from the vertices in Cα,β(G)∪A, there exist vertices
able to satisfy the degree constraints and stay in the anchored
(α, β)-core due to the presence of the anchors, which are the
followers of A. We formally define the followers as below.

Definition 3 (Follower). Given a bipartite graph G, degree
constraints α, β and a set of anchors A, the vertices in
Cα,β(GA)\ (Cα,β(G)∪A) are called followers of A, denoted
by F (A). The upper and lower vertices in F (A) are called
upper followers and lower followers, denoted by FU (A) and
FL(A) respectively.

Problem Statement. Given a bipartite graph G, degree con-
straints α, β, and budgets b1, b2, the anchored (α, β)-core
problem aims to find a sets of anchors A = A1 ∪ A2

(A1 ⊆ U(G) and A2 ⊆ L(G) with |A1| = b1 and |A2| = b2)
such that the number of followers (|F (A)|) is maximized.

B. Problem complexity

Theorem 1. The anchored (α, β)-core problem is NP-hard
except the cases when 1 ≤ α = β ≤ 2.

Proof. When α = β = 1, the whole graph is in the (α, β)-
core and the problem is trivially polynomial-time solvable.
When α = β = 2, the (2, 2)-core is the same as k-core when
k = 2 which can be solved using an efficient algorithm [10]
that maximizes the anchored 2-core.

When α = 1 and β > 1, the (α, β)-core includes exactly
the lower vertices with degrees at least β and their neighbors.
Placing anchors on upper vertices does not incur any followers
because all lower vertices satisfying the degree constraints are
already in the (α, β)-core. Thus, we only consider finding b2
lower vertices as anchors. In such case, the anchored (α, β)-
core problem is equivalent to a maximum cover (hereafter
called MC) problem [24], which aims to find at most b sets to
cover the most number of elements and is NP-hard. Likewise,
the problem is also NP-hard when β = 1 and α > 1.

We still need to prove the NP-hardness when (1) α ≥ 3 and
β ≥ 2 and (2) β ≥ 3 and α ≥ 2. Symmetrically, we only need
to handle case (1). As the anchored (α, β)-core problem can be
reduced from itself with a restriction that only selecting upper
anchors, we only need to prove the NP-hardness of such case
by reducing it from the MC problem. Consider an arbitrary
instance of the MC problem with c sets {Ti} (1 ≤ i ≤ c),
and d elements {e1, e2, . . . ed} = ∪1≤i≤cTi. We construct a
corresponding instance of the anchored (α, β)-core problem.

We first construct a bipartite graph B with (α−1)×(β−1)
upper vertices and 2×(α−1) lower vertices. The lower vertices

of B has two parts, L∗ and L′, each of size α−1. Each vertex
in L∗ connects to all upper vertices in B. Each vertex in L′

connects to β−1 upper vertices. Note that only vertices in L′

do not meet the degree constraints α and β. We also construct
a bipartite graph R, which is a tree with an upper vertex as
its root. In R, each lower vertex has α − 1 upper vertices as
children, and each upper vertex that is not a leaf node has
β−1 lower vertices as children. The tree is grown until it has
at least max1≤i≤c Ti upper vertices as leaf nodes.

We make d copies of B denoted by Bi (1 ≤ i ≤ d), each
corresponding to an element ei. We also make c copies of
R denoted by Rj (1 ≤ j ≤ c), each corresponding to a set
Ti. The roots of Ri are denoted by uj (1 ≤ j ≤ c). Then,
we connect Bi and Rj in the following way: if ei ∈ Tj ,
we connect the lower vertices with degree β − 1 in Bi to
the ith leaf node (which is an upper vertex) in Rj . If a leaf
node in Rj does not connect to any Bi, we connect it to a
lower vertex in a biclique J with β upper vertices and α lower
vertices. When searching for the optimal anchor set, we can
only consider roots uj ∈ Rj (1 ≤ j ≤ c) as anchors intuitively.
When uj is anchored, all the vertices in Bi become followers
if Bi connects to Rj . In this way, the optimal selection of sets
within budget b in the MC problem corresponds to the optimal
assignment of anchors in the anchored (α, β)-core problem.
Fig. 2 shows the reduction process when α = 3 and β = 2.
Since the MC problem is NP-hard, the anchored (α, β)-core
problem is also NP-hard when α ≥ 3 and β ≥ 2.

10/1/2020 np-hard.svg

file:///C:/Users/jerry/OneDrive/Desktop/svg/np-hard.svg 1/1

upper vertex

lower vertex

𝑇1 : {𝑒1 , 𝑒3} 𝑇2 : {𝑒1 ,𝑒2 , 𝑒3} 𝑇3 : {𝑒3 , 𝑒4}

𝑒1 𝑒2 𝑒3 𝑒4

𝑢1 𝑢2 𝑢3

𝐵1 𝐵2 𝐵4𝐵3

𝑅1 𝑅2 𝑅3

a biclique 𝐽

Fig. 2: Illustrating the reduction when α = 3 and β = 2.

Theorem 2. For any ε > 0, it is NP-hard to approximate the
anchored (α, β)-core problem within a ratio of (1− 1/e+ ε)
except the cases when 1 ≤ α = β ≤ 2.

Proof. Theorem 1 shows that the MC problem can be reduced
to the anchored (α, β)-core problem for all α and β except
when 1 ≤ α = β ≤ 2. Thus, this theorem holds since the
MC problem cannot be approximated by a polynomial-time
algorithm with a ratio of (1− 1/e+ ε) [25].

C. Warm up
An exact solution. To solve the anchored (α, β)-core problem,
a basic approach is to go through all possible combinations of
anchor assignments and select the anchor set A that maximizes
the number of followers. The number of followers can be
computed by setting the degrees of anchors to +∞ and
applying the (α, β)-core computation algorithm [18], which

iteratively removes the vertices without enough degrees in
O(m) time. Although this brute force method guarantees an
optimal solution, the time complexity O(

(
n1

b1

)(
n2

b2

)
m) is cost-

prohibitive. Here n1 and n2 are the number of upper and lower
vertices in G, respectively.
A naive greedy approach. Due to the above reason, we
resort to greedy heuristics to solve the problem, and a naive
greedy approach Naive is described as follows. Given budgets
b1 and b2, Naive runs b1 + b2 iterations and finds one best
anchor in each iteration. Firstly, the anchor set A is initialized
to empty. Then, in each iteration, we consider the vertices
that are not in the vertex set of the anchored (α, β)-core
(i.e., Cα,β(GA)) as candidate anchors. After going through
all the candidate anchors, we choose the one with the largest
number of followers and add it into A. The time complexity
of Naive is O((b1 + b2)nm) since there are b1 + b2 iterations,
and it needs O(nm) time to compute the followers of O(n)
candidate anchors in total in each iteration.

III. A FILTER-VERIFICATION FRAMEWORK

When handling large-scale bipartite graphs, Naive is still
too time-consuming due to its large candidate anchor pool
and inefficient follower computation process. Since the vertex
deletion order during core decomposition [26], [27], [28] is
used to accelerate the computation process when solving many
k-core related problems on unipartite graphs [11], [29], [30],
[14], we investigate if a new greedy paradigm can be designed
by considering the vertex deletion order during the (α, β)-core
computation process.

A. Exploring the vertex deletion order

First, we present the following definitions and observations.

Definition 4. Upper/lower shell. Given a bipartite graph G
and degree constraints α and β, the upper shell refers to
the vertices in Cα,β−1(G) \ Cα,β(G), denoted by Sup(G).
Similarly, the lower shell refers to the vertices in Cα−1,β(G)\
Cα,β(G), denoted by Slow(G).

It follows immediately that when a upper vertex x ∈ U(G)
is anchored, its followers (i.e., F (x)) must come from the
upper shell Sup(G). This is because anchoring one upper
vertex can only cause the vertices in the (α, β − 1)-core to
enter the anchored (α, β)-core. Likewise, if a lower vertex
x ∈ L(G) is anchored, the followers must come from the
lower shell Slow(G). Thus, we define the potential followers
as follows.

Definition 5. Potential followers. Given a bipartite graph G
and the degree constraints α and β, we call the vertices in
Sup(G) ∪ Slow(G) potential followers.

A straightforward observation is that a candidate anchor
cannot have any followers if it does not connect to any
potential followers. This helps us prune out the unpromising
anchors and identify the promising anchors defined as follows.

Definition 6. Promising anchors. Given a bipartite graph
G and degree constraints α and β, the promising anchors
are the upper vertices which connect to Sup(G) and not in

upper	vertex lower	vertex

𝑟-sc𝑜𝑟𝑒 𝑢 :
			𝑂𝑈 𝑢 :	

|s𝑖𝑔 𝑢 |:
27 6 0 2 0 0
30 0 1 2 4 5

-3 2 - - 0 0

u2 u5 v2 v3 v4 u3 u4

(4, 3)-core

𝑢+ 𝑢, 𝑣+ 𝑣- 𝑣. 𝑢- 𝑢.

Fig. 3: The upper deletion order of the bipartite graph in Fig. 1
(α = 4, β = 3). An red edge represents two edges.

the (α, β)-core (i.e., in N(Sup(G)) \Cα,β(G)) and the lower
vertices which connect to Slow(G) and not in the (α, β)-core
(i.e., in N(Slow(G)) \ Cα,β(G)). The other vertices in G are
called unpromising anchors.

Upper/lower deletion order. To efficiently identify the
promising anchors and their followers, we propose the upper
deletion order (denoted by OU) and the lower deletion order
(denoted by OL). For the upper deletion order, we compute
the (α, β)-core from the (α, β−1)-core and assign OU (u) = i
(i > 1) for the ith deleted vertex u. In addition, for the other
upper vertices that connect to some vertices already in the
order and not in the (α, β)-core, we also include them in the
order and assign their order numbers as 0. Likewise, the lower
deletion order is derived from the vertex deletion order when
computing the (α, β)-core from the (α− 1, β)-core similarly.
Note that these orders can be computed in O(m) time and we
will show the details later.

Example 1. Consider maximizing the (4, 3)-core of the graph
in Fig. 1 by choosing an upper anchor vertex. The upper
deletion order of v2, v3, v4, u3, and u4 are computed by
iteratively deleting vertices from the (4, 2)-core until the (4, 3)-
core is found. OU (u2) and OU (u5) are zero because u2
and u5 are not in the (4, 2)-core. Note that since u1 is not
connected to any potential followers, it is excluded from OU
and is not a promising anchor. v1 is also excluded from OU
since it is neither an upper vertex nor a potential follower.

B. The filter-verification framework

Based on the above deletion orders, we propose a filter-
verification framework to find the best anchor in one iteration.
Filter stage. In this stage, the unpromising anchors are filtered
out in two steps. (1) We filter out the vertices that are not in
either of the orders. These vertices are either in the (α, β)-
core or outside of the (α, β)-core but not connected to any
potential followers. (2) For each remaining candidate anchor
x, we compute an order-based upper bound of the number of
its followers (i.e., |F (x)|) and leave out those whose upper
bounds are zero.

To derive an upper bound for |F (x)|, we first introduce the
following concepts.

Definition 7. Order-reachable. Given the upper (lower) dele-
tion order OU (OL) and a vertex x in U(G) (L(G)), a vertex
u is order-reachable from x, if there exists a path from x to

u such that for any adjacent vertices x1 and x2 on the path
OU (x1) < OU (x2) (OL(x1) < OL(x2)).

Lemma 1. For an anchor x, the followers of x must be order-
reachable from x.

Proof. Let u be a follower of x. It is immediate that x must
precede u in the upper (lower) deletion order. Otherwise,
u will be deleted before x during the anchored (α, β)-core
computation. Also, since u must gain support from x to stay
in the anchored (α, β)-core, u must be order-reachable from
x. Thus, this lemma holds.

Based on Lemma 1, F (x) must be contained by the set of
order-reachable vertices from x, denoted as rf(x). Thus, |rf(x)|
is an upper bound for |F (x)|. However, computing |rf(x)|
for all remaining anchors needs O(nm) time since for each
anchor, it takes O(m) time to traverse all the order-reachable
vertices using BFS. To reduce the complexity, we resort to a
coarser and recursive definition of upper bound as follows.

r-score(x) =

{∑
u∈W (x)(r-score(u) + 1) |W (x)| > 0,

0 otherwise

Here W (x) denotes the set of neighbors of x that are
order-reachable. Note that r-score(x) allows us to pass the
estimates of |rf(x)| through neighbors recursively. By pro-
cessing vertices in a reverse deletion order, the above upper
bounds of all promising anchors can be computed easily using
dynamic programming in O(m) time. For example, as shown
in Fig. 3, r-score(u3) = r-score(u4) = 0 because no ver-
tices are order-reachable from them. By the above definition,
r-score(v4) = (r-score(u3) + 1) + (r-score(u3) + 1) = 2.
If r-score(x) = 0, x is an unpromising anchor and can be
pruned since |F (x)| ≤ r-score(x) (e.g., u3 and u4 in Fig. 3).
In addition, we will show that r-score(x) can also guide the
greedy algorithm when searching for the best anchor since it
reflects the anchor’s potential to produce followers.
Verification stage. In this stage, we compute the followers for
the promising anchors and find the best anchor. By Lemma
1, for each promising anchor, we only consider the order-
reachable vertices of it as candidate followers. Thus, instead
of computing F (x) globally from the input graph G, we
can compute F (x) based on the upper/lower deletion orders
in a local manner as outlined in Algorithm 1. Without loss
of generality, we present the techniques in the context of
anchoring an upper vertex.

To compute the followers of an upper anchor x, we traverse
the vertices that are order-reachable from x in ascending order
of upper deletion order (by iteratively adding them into V ′). In
this process, the vertices in OU are divided into three groups:
• the set of unvisited vertices, denoted by Vc;
• the set of discarded vertices, i.e., the visited vertices that

are proven not followers of x, denoted by Vd;
• the set of survived vertices, i.e., the visited vertices that

satisfy the degree constraints and can be followers of x,
denoted by Vs.

For each potential follower u ∈ OU , to determine if u is a fol-
lower of x, we need to evaluate which neighbors of u can stay
in the anchored (α, β)-core. Note that the neighbors of u in Vs

Algorithm 1: Compute Followers
Input: x: an upper anchor; OU : the upper deletion order
Output: F (x): the followers of x

1 V ′ ← {x}; Vs ← {x}; Vd ← ∅;
2 while V ′ is not empty do
3 u← the vertex in V ′ s.t. OU (u) is minimal;
4 compute dub(u) accordingly;
5 if dub(u) meets the degree constraints then
6 Vs ← Vs ∪ {u}; /* mark u as survived */
7 foreach v ∈ N(u) such that v is unvisited and

OU (u) < OU (v) do
8 V ′ ← V ′ ∪ {v};
9 mark v as visited;

10 else
11 Vd ← Vd ∪ {u}; /* mark u as discarded */
12 update dub(v) for each vertex v ∈ OU ;
13 add the vertices in V ′ that violate the degree

constraints into Vd;
14 V ′ ← V ′ \ {u};
15 return the survived vertices in Vs \ {x} as F (x);

and Vc can be in the anchored (α, β)-core while the ones in Vd
cannot. All neighbors of u in the (α, β)-core are also included.
Thus, the upper bound of the degree of u in the anchored
(α, β)-core is |N(u)∩Vc|+ |N(u)∩Vs|+ |N(u)∩Cα,β(G)|,
denoted by dub(u) (Line 4). If dub(u) satisfies the degree
constraints, then u is marked as “survived”, and the unvisited,
order-reachable neighbors of u are added into V ′ as candidate
followers (Lines 5-9). Otherwise, u is marked as discarded
and added into Vd. Subsequently, the degree upper bounds of
other potential followers in OU are updated recursively and
those violating the degree constraints are marked as discarded
as well (Lines 10-13). When the algorithm terminates, the
vertices in Vs satisfy the degree constraints and are the
followers of x. Note that if x is a lower anchor, we use OL
to compute F (x) instead of OU in Algorithm 1.
The FILVER algorithm. Based on the above techniques, we
propose the FILVER algorithm as shown in Algorithm 2. Each
iteration of FILVER follows the filter-verification framework,
which includes (1) a filter stage where the promising anchors
are identified and ranked; (2) a verification stage where the
anchors’ followers are computed and the best anchor is chosen.

In the filter stage (Lines 3-6), the upper/lower deletion
orders are computed by calling the OrderComputation
procedure. Firstly, it computes the upper deletion order by iter-
atively removing the vertices that violate the degree constraints
(in P) until the (α, β)-core is found (Lines 17-22). For each
vertex u deleted in the ith iteration, OU (u) is set to i. In Line
23, for each upper promising anchor u not in Sup(G), OU (u)
is set to 0. In Lines 24-25, lower deletion order is computed
with the same time complexity. Then, the promising anchor
set PA is initialized to be the vertices in either of these two
orders (Line 4). For each x ∈ PA, we compute r-score(x)
and exclude x from PA if r-score(x) = 0 (Lines 5-6).

In the verification stage (Lines 7-13), we explore the promis-
ing anchors in non-increasing order of their upper bounds and
record the current best anchor as x∗. For each explored anchor
x, we compute F (x) by calling Algorithm 1. Note that we do
not need to compute F (x) in the following two situations.
• If there exists a visited anchor x′ such that x ∈ F (x′),

Algorithm 2: FILVER
Input: G: a bipartite graph; α, β: the degree constraints;

b1, b2: budgets
Output: A: the set of anchors

1 A← ∅;
2 while |A ∩ U(G)| < b1 or |A ∩ L(G)| < b2 do
3 compute upper/lower deletion orders with Procedure

Order Computation;
4 PA← the vertices in the upper/lower deletion order;
5 compute r-score(x) for each x in PA;
6 remove the vertices with r-scores being 0 from PA;
7 x∗ ← a vertex in PA with the largest r-score;
8 foreach x ∈ PA with non-increasing r-score do
9 if x is not dominated by x∗ or any previous

explored anchors then
10 compute F (x) using Algorithm 1;
11 if |F (x)| > |F (x∗)| then
12 x∗ ← x;
13 A← A ∪ {x∗};
14 return A;
15 Procedure OrderComputation(G, α, β);
16 G ← the (α, β − 1)-core of G; i← 0;
17 P ← the vertices in G violating the degree constraints;
18 while P is not empty do
19 foreach u ∈ P do
20 remove u and its incident edges from G;
21 i← i+ 1 and OU (u)← i;
22 P ← vertices in G violating the degree constraints;
23 for each u ∈ U(G) connecting to Sup(G) and not in

Cα,β−1(G), let OU (u)← 0;
24 run Lines 16-22 with G replaced by the (α− 1, β)-core and
OU replaced by OL;

25 for each u ∈ L(G) connecting to Slow(G) and not in
Cα−1,β(G), let OL(u)← 0;

26 return OU and OL

then we skip computing F (x) since |F (x)| ≤ |F (x′)|;
• If r-score(x) ≤ |F (x∗)|, we also skip x.

When |F (x)| > |F (x∗)|, we update the best anchor x∗ to x.
At the end of each iteration, we add x∗ to A and update G
by GA, which is the graph with vertices in A anchored.
Complexity analysis. FILVER needs to run b1+ b2 iterations.
In each iteration, the upper/lower deletion order computation
takes O(m) time. Computing r-score(x) for one anchor x
takes O(deg(x)) time, so computing all upper bounds needs∑
xO(deg(x,G)) = O(m). For each anchor x, computing

F (x) using Algorithm 1 takes O(m) time. Thus, the total
time complexity of FILVER is O((b1 + b2)(n

′ ×m)), where
n′ is the number of anchors we compute followers for in each
iteration, which is much smaller than n in practice. The space
complexity is O(m) because the input graph takes O(m) space
and the upper/lower deletion orders take O(n) space.

IV. FILTER STAGE OPTIMIZATIONS

Motivations. Although the FILVER algorithm achieves signif-
icant speedup compared to the Naive algorithm, the filter stage
of FILVER still lacks pruning power for the following reasons.
• In FILVER, some unfiltered anchors may be “dominated”

by other anchors, which means that their followers are
fully covered by others’.

• When a new anchor is placed, the upper/lower deletion
orders can change a lot and need to be recomputed from
scratch in each iteration of FILVER.

In this section, we propose filter-stage optimizations to address
these issues. Firstly, we unveil the dominating relationships
among candidate anchors and leverage bipartite graph structure
to efficiently filter many “dominated” anchors. Secondly, we
exploit the nested property of the (α, β)-core to identify which
parts of the upper/lower deletion orders needs recomputation.

A. Discover dominating relationships among anchors
As shown in Fig. 3, the follower set of u5 ({u3, u4, v3, v4})
is contained by the follower set of u2 ({u3, u4, v2, v3, v4}).
In this case, u5 cannot become the best anchor in the current
iteration since it is “dominated” by u2, and we wish to filter
such anchors earlier. However, it is difficult to predict and
exploit such relationships in the filter stage, when the followers
are not yet computed. To effectively filter more “dominanted”
anchors, we introduce the anchors’ follower signatures.

Definition 8. Follower signature. Given an anchor x in OU
or OL, the follower signature of x is the set of its neighbors
that are order-reachable from x, denoted by sig(x).

The follower signature can be considered as the starting
point to compute the followers of an anchor as shown in
Algorithm 1. For example, in Fig. 3, v2, v3, and v4 are
the neighbors of u2 that are order-reachable from it, so
sig(u2) = {v2, v3, v4}. Intuitively, if two anchors have the
same follower signature, they must produce the same follow-
ers. The following lemma depicts a more general picture.

Lemma 2. Consider two anchors x1 and x2 that are both in
U(G) or L(G). If sig(x1) ⊆ sig(x2), then F (x1) ⊆ F (x2).

Proof. Let G1 and G2 be the anchored (α, β)-core w.r.t. x1
and x2, respectively. Since sig(x1) ⊆ sig(x2), if we replace
x1 by x2 in G1 (denoted as G′1), G′1 will still satisfy the
degree constraints of (α, β)-core. By Definition 2, G2 is the
maximal subgraph with x2 anchored that satisfies the degree
constraints, which means that G′1 must be a subgraph of G2.
Thus, F (x1) ⊆ F (x2), and the lemma holds.

Motivated by the above lemma, the anchors whose follower
signatures are dominated by others can be safely pruned. To
implement this, a naive approach is to compute the follower
signatures of all promising anchors and perform pairwise
comparisons. This is obviously too time-consuming due to the
vast number of follower signatures.

By Definition 8, given an anchor x, the vertices whose
follower signatures can dominate or be dominated by sig(x)
must be the two-hop neighbors of x. In addition, according to
the bipartite graph structure, the search scope for these two-
hop neighbors is limited to the layer x resides on. For example,
in Fig. 3, the two-hop neighbors of u2 in OU are u3, u4, an
u5, which are all upper layer vertices. Here we formally define
these vertices as the order-obeying two-hop neighbors.

Definition 9. Order-obeying two-hop neighbors. Consider
an anchor x in U(G) (L(G)). If there exists a path x
v w such that OU (x) < OU (v) and OU (w) < OU (v)

(OL(x) < OL(v) and OL(w) < OL(v)), then w is an order-
obeying two-hop neighbor of x.

Based on Definition 9, we devise a two-hop filtering algo-
rithm to detect the dominating relationships among the anchors
on the same layer. Without loss of generality, the algorithm is
shown in Algorithm 3 in the context of filtering upper anchors.

Algorithm 3: Two-hop Filtering Algorithm
Input: G: a bipartite graph; α, β: the degree constraints;
Output: PA: the set of remaining anchors

1 PA← ∅;
2 foreach x ∈ U(G) ∩ OU with non-decreasing |sig(x)| do
3 mark x as visited;
4 v1 ← the vertex in sig(x) with the minimum degree;
5 D ← N(v1);
6 foreach vertex v ∈ sig(x) \ {v1} do
7 if |D| · log(deg(v)) < deg(v) then
8 binary search for each vertex w ∈ D in N(v);
9 else

10 for each vertex w in N(v) check if w ∈ D;
11 D ← D ∩N(v);
12 if D is not empty then
13 discard x;
14 else
15 Add x to PA and compute |rf(x)|;
16 return PA

The two-hop filtering algorithm. The two-hop filtering al-
gorithm visits the upper anchors in OU in non-decreasing
order of the sizes of their follower signatures (Line 2). In
this manner, for each anchor x, we only need to check if x
is dominated by any unvisited anchor, i.e., an anchor with
a follower signature at least as large as sig(x) (Line 3-
15). Evidently, the unpromising anchors with empty follower
signatures do not need to be considered.

For any anchor y dominating x, y must be an order-
obeying two-hop neighbor via all vertices in sig(x), i.e.,
y ∈ ∩v∈sig(x)N(v) \ {x}. We use D to store the vertices
that may dominate x and initialize D as the neighbor set of
the vertex with the smallest degree (v1) in sig(x) (Lines 4-5).
Note that we only include the unvisited anchors whose upper
deletion order is higher than OU (v) in D. Then, we visit each
vertex v ∈ sig(x) \ {v1} and update D as D ∩ N(v) (Lines
6-11). To compute D ∩N(v), we can have the following two
methods.
• We visit each neighbor w of v and check whether w ∈ D.
• Suppose N(v) is sorted beforehand, we can conduct a

binary search on N(v) for each w ∈ D.
The first method takes O(deg(v)) time and the second needs
O(|D| · log(deg(v))) time. Thus, for each v ∈ sig(x), we can
pre-compute deg(v) and |D| · log(deg(v)) to choose which
method is more efficient (Line 7). Note that if D becomes
empty at any point, it means that no anchor can dominate x and
we terminate the for-loop of Lines 6-11 early. Otherwise, we
discard x (Line 13). The time complexity of Algorithm 3 Lines
1-13 is O(

∑
(u,v)∈E(G)min(deg(v),minw∈N(v)(deg(w)) ·

log(deg(v)))). Note that since |PA| is drastically reduced
compared to FILVER, we can afford to compute |rf(x)| as the
upper bound for |F (x)| for each remaining anchor x ∈ PA,

by using a BFS from x in O(
∑
u∈rf(x)∪{x} deg(u)) time

(Line 15). To filter lower anchors with dominated follower
signatures, we use L(G) ∩ OL instead of U(G) ∩ OU .

Lemma 3. The two-hop filtering algorithm correctly excludes
all anchors whose follower signatures are being “dominated”.

Proof. For any x1 and x2 such that sig(x1) ⊆ sig(x2),
|sig(x1)| ≤ |sig(x2)|. (1) |sig(x1)| < |sig(x2)|. In this case,
the algorithm processes x1 first and x2 will occur in D after
Line 11. (2) |sig(x1)| = |sig(x2)|. In this case, x1 and x2 must
share the same follower signature, and the algorithm will keep
one of x1 and x2. Thus, the lemma holds.

Example 2. We process the upper anchors of OU in Fig. 3
in non-decreasing order of their follower signatures. u3 and
u4 are pruned since sig(u3) = sig(u4) = ∅. We visit u5 first
and go through the vertices in sig(u5) = {v3, v4}. Since u2 ∈
N(v3)∩N(v4) and |sig(u2)| > |sig(u5)|, u5 is dominated by
u2 and thus can be safely pruned.

Algorithm 4: Order Maintenance Algorithm
Input: x∗: the best anchor chosen in the last iteration
Output: OU : the upper deletion order

1 G∗ ← ∅;
2 V (G∗)← the vertices visited by BFS from x∗ restricted to

vertices with coreU (u) ≥ coreU (x∗);
3 restore the edges in G∗ from E(G);
4 foreach coreU (x

∗) ≤ β′ ≤ β − 1 do
5 compute the (α, β′)-core component containing x∗;
6 for each deleted vertex u, coreU (u)← β′;
7 Invoke Procedure OrderComputation from Algorithm 2

to compute OU (u) for all u ∈ V (G∗);
8 Properly assign coreU (u) for all u ∈ V (G∗);
9 return OU ;

Algorithm 5: FILVER+

Input: G: a bipartite graph; α, β: the degree constraints;
b1, b2: budgets;

Output: A: the set of anchors
1 A← ∅;
2 while |A ∩ U(G)| < b1 or |A ∩ L(G)| < b2 do
3 if A is empty then
4 compute OU and OL from G with the Order

Computation procedure;
5 else
6 maintain OU and OL with Algorithm 4;
7 PA← the vertices in the upper/lower deletion order;
8 filter the anchors in PA by Algorithm 3;
9 x∗ ← a vertex in PA with the largest |rf(x)|;

10 foreach x ∈ PA with non-increasing |rf(x)| do
11 if x is not dominated by x∗ or any previous

explored anchors then
12 compute F (x) using Algorithm 1;
13 if |F (x)| > |F (x∗)| then
14 x∗ ← x;
15 A← A ∪ {x∗};
16 return A;

B. Connectivity-based order maintenance

In the FILVER algorithm, the upper/lower deletion orders
are recomputed from the input graph in each iteration, which

is time-consuming. An intuitive alternative is to only rebuild
the parts of these orders that are affected by the last chosen
anchor (hereafter denoted by x∗). To achieve this, we first
introduce the following concept.

Definition 10. Upper/lower core numbers. Given a bipartite
graph G and degree constraints α and β, the upper core num-
ber of a vertex u is the largest integer k such that u ∈ (α, k)-
core, i.e., coreU (u) = max{k|u ∈ (α, k)-core}. Likewise, the
lower core number of u is the largest integer k such that u ∈
(k, β)-core, i.e., coreL(u) = max{k|u ∈ (k, β)-core}.

The upper/lower core numbers allow us to measure the
influential scope of x∗ on OU and OL. We denote the upper
core number of x∗, coreU (x∗) as β∗. Since x∗ can only
affect the upper core numbers and OU in the (α, β′)-core with
β′ ≥ β∗, we identify the connected component of (α, β∗)-core
containing x∗ as the upper affected graph of x∗, denoted
by AGU (x

∗). Note that we only need to recompute OU for
the vertices in AGU (x∗). Likewise, if coreL(x∗) = α∗, then
the connected component of (α∗, β)-core containing x∗ is the
lower affected graph of x∗, denoted by AGL(x∗). We only
need to recompute OL for the vertices in AGL(x

∗). Based
on these observations, we propose the order maintenance
algorithm, as outlined in Algorithm 4.

The order maintenance algorithm. Without loss of gen-
erality, Algorithm 4 is presented in the context of updating
OU . G∗ is used to represent the upper affected graph of
x∗ (Line 1). The vertices of G∗ is found by conducting a
BFS from x∗ and only visiting the vertices with upper core
numbers no less than coreU (x∗) (Line 2). Since updating OU
locally demands the (α, β-1)-core, we compute it from G∗

by gradually increasing the degree constraint β′ and correctly
update the upper core numbers in G∗. Note that due to the
nested property of (α, β)-core, we always compute (α, β′)-
core component from (α, β′ − 1)-core component in Line 5.
Then, since only the part of OU in G∗ is changed, we apply
the OrderComputation procedure from Algorithm 2 on
G∗ (Line 7). To properly assign the upper core number in G∗

(Line 8), we set coreU (u) to β − 1 for each deleted vertex u
in Line 7. For the remaining vertices in the anchored (α, β)-
core, we assign their upper core numbers as β. Note that
Algorithm 4 can be used to update OL by replacing upper
core numbers and β− 1 in Line 4 to lower core numbers and
α− 1, respectively. The time cost of Algorithm 4 is linear to
the size of the upper/lower affected graph.

The FILVER+ algorithm. Following the filter-verification
framework, we propose the FILVER+ algorithm based on the
above filter-stage optimizations, as outlined in Algorithm 5.
Specifically, we only compute OU and OL from the input
graph G in the first iteration when A is empty (Line 4).
Otherwise, we maintain OU and OL based on the best anchor
of the last iteration (Line 6). Also, we use the two-hop filtering
algorithm to eliminate the anchors with dominated follower
signatures from PA and compute a tight upper bound for the
remaining anchors (Line 8). The logic of the verification stage
(Lines 10-15) remains the same as the FILVER algorithm.

6 7 8 9 10

0.2

0.4

0.6

0.8

1.0

|F
sh

(T
)|/

|F
U
(T

)|

(a) varying α on WC, β = 7

20 40 60 80 100
|Fsh(T)|

20
40
60
80

100
120
140

|F
U
(T

)|

(b) α = 6 and β = 7 on WC

Fig. 4: Comparing |Fsh(T)| with |F (T)|, where |T | = 5

V. VERIFICATION STAGE OPTIMIZATIONS

Motivation. With filter-stage optimizations, FILVER+ signif-
icantly outperforms FILVER. To further speed up FILVER+,
here we investigate verification-stage optimizations. An in-
tuitive idea is to reduce the number of iterations (in the
verification stage) by placing multiple t (t > 1) anchors
in each iteration. However, the problem of finding multiple
anchors per iteration is the anchored (α, β)-core problem with
smaller budgets and thus is NP-hard. It is cost-prohibitive to
search through all possible combinations of t anchors. In this
section, we propose a new strategy to effectively find a set T
of anchors which can bring more followers in one iteration.
A. Anchor set maintenance

In each iteration, we maintain an anchor set T of size t and
try to update T with a new incoming anchor x such that |F (T)|
is increased. For each x, we need to check all possible ways to
replace one anchor in T by x, which requires O(t×m) time in
total. Thus, it does not provide much efficiency improvement
if we anchor t vertices per iteration in this way. To improve
the efficiency while ensuring the quality of anchor vertices,
we aim to find a metric to identify the anchor with “the least
contribution” in T and only compare this anchor with the new
incoming anchor. We first show that the anchors’ followers in
T can be computed collectively as follows.

F (T) =
⋃
x∈T

F (x) ∪
⋃

1<i≤|T |

(fT (i) \ fT (i− 1)) (1)

where fT (i) denotes the set of followers induced by
any anchor set X with size equal to i (i.e., fT (i) =⋃
X⊆T,|X|=i F (X)). In this formula, the first term

⋃
x∈T F (x)

is the union of the followers independently brought by each
anchor in T , which is hereafter called the in-shell follower set
of T and denoted as Fsh(T). The second term represents the
collective effects of multiple anchors.

According to Equation 1, Fsh(T) is a subset of F (T)
and thus |Fsh(T)| can be considered as a lower bound of
|F (T)|. As shown in Fig. 4(a), we randomly select 100 sets
of anchors on a representative dataset WC and compute the ratio
|Fsh(T)|/|F (T)|. It can be observed that |Fsh(T)| is around
0.7×|F (T)| and is a tight lower bound of |F (T)|. For each
randomly selected anchor set T when α = 6 and β = 7, we
also report the sizes of Fsh(T) and F (T) in Fig. 4(b), which
indicates that |Fsh(T)| and |F (T)| are highly correlated. Now
we can define the following concepts based on |Fsh(T)| to
measure the contribution of each anchor in T .

Definition 11. Exclusive follower set. Given the anchor set
T , for each x ∈ T , the exclusive follower set of x in T , denoted

𝑢6

𝑢4

𝑢3

𝑢2

𝑢1

𝑢7
𝑢8

𝑢9

upper vertex

lower vertex

𝑢5𝑣1 𝑣2

𝑣3 𝑣4

𝑣5
𝑣6

𝑣7

Fig. 5: Maintaining an anchor set

by Fex(x, T), is the set of followers that are not followers of
any other anchors in T , i.e., Fex(x, T) = F (x)\Fsh(T \{x}).

Definition 12. Least-contribution-anchor. Given a set of
anchors T , the least-contribution-anchor is the anchor x ∈ T
s.t. |Fex(x, T)| is minimized, denoted by xmin(T).

Based on Definition 11, if an anchor x′ ∈ T has a
large size of exclusive follower set, we consider x′ has a
high contribution to T because many followers in Fsh(T)
depend solely on x′. On the contrary, the anchor with the
smallest number of exclusive followers in T , i.e., xmin(T),
can be viewed as the anchor with the least contribution to T .
Therefore, given a new anchor x, we can replace xmin(T)
with x in O(|F (x)|) time according to the following lemma.

Lemma 4. Given an anchor set T and a new anchor x, sup-
pose T ′ is the anchor set after replacing xmin(T) with x, i.e.,
T ′ = (T \xmin(T))∪{x}. If Fex(x, T ′) > Fex(xmin(T), T),
then |Fsh(T ′)| > |Fsh(T)|.

Proof. Let x = Fsh(T \ {xmin(T)}). Then, |Fsh(T ′)| =
|x ∪ Fex(x, T ′)| = |x| + |Fex(x, T ′)|. Also, |Fsh(T)| =
|x ∪ Fex(xmin(T), T)| = |x| + |Fex(xmin(T), T)|. Thus,
|Fsh(T ′)| − |Fsh(T)| = Fex(x, T

′) − Fex(xmin(T), T) and
this lemma holds.

Algorithm 6: Anchor Set Maintenance
Input: T : the current anchor set; x: a new incoming anchor;

b1, b2: budgets; A: the set of selected anchors
Output: T : the updated anchor set

1 if |T | < t then
2 if T ∪ {x} satisfies the budget constraints then
3 T ← T ∪ x; /* insert x into T */
4 else
5 T ′ ← (T \ xmin(T)) ∪ {x};
6 if |Fsh(T ′)| > |Fsh(T)| and T ′ satisfies the budget

constraints then
7 T ← T ′; /* replace xmin(T) with x */
8 return T

The anchor set maintenance algorithm is outlined in Al-
gorithm 6. When |T | < t, we keep inserting the anchors
into T (Lines 1-3). When |T | = t, we replace xmin(T)
with x if the new anchor set T ′ = T \ xmin(T)) ∪ {x}
has a larger in-shell follower set (i.e., |Fsh(T ′)| > |Fsh(T)|)
(Lines 5-7). By Lemma 4, |Fsh(T ′)| > |Fsh(T)| is equiv-
alent to |Fex(x, T ′)| > |Fex(xmin(T), T)|, so we only
need to compute and compare the sizes of Fex(x, T ′) and
Fex(xmin(T), T) in Line 6. Note that T must always satisfy
the budget constraints (Line 2 and Line 6) that |T ∩U(G)|+
|A ∩ U(G)| ≤ b1 and |T ∩ L(G)|+ |A ∩ L(G)| ≤ b2.

Complexity analysis of Algorithm 6. The dominating cost of
Algorithm 6 occurs when computing |Fex(x, T ′)| (Line 6) and
replacing xmin(T) with x (Line 7). Computing |Fex(x, T ′)|
can be done in O(|F (x)|) time by visiting each element
u′ in F (x) and checking if u′ is covered by any anchor
in T \ xmin(T). Replacing xmin(T) with x can also be
implemented in O(|F (x)|) time by using a hash table that
stores which vertices in T have the exclusive follower sets of
size k for possible values of k. Therefore, the time complexity
of Algorithm 6 is O(|F (x)|).

Example 3. In Fig. 5, the follower sets of anchors u1,
u6, and u9 are {u2, u3, v3, v4}, {u3, u4, u5, v5, v6, v7}, and
{u7, u8, v1, v2}, respectively. When t = 2, let the current
anchor set T = {u1, u6}. u1 is the least-contribution-anchor
of T (i.e., u1 = xmin(T)). Suppose u9 is a newly processed
anchor. Let T ′ be the anchor set with u1 replaced by u9, i.e.,
T ′ = {u6, u9}. Since |Fex(u9, T ′)| = 4 > |Fex(u1, T)| = 3,
we replace u1 with u9.

Algorithm 7: FILVER++

Input: G: a bipartite graph; α, β: the degree constraints;
b1, b2: budgets; t: the number of anchors placed in
each iteration

Output: A: the set of anchors
1 A← ∅;
2 while |A ∩ U(G)| < b1 or |A ∩ L(G)| < b2 do
3 run Lines 3-8 of Algorithm 5;
4 T ← ∅; /* initialize the anchor set */
5 foreach x ∈ PA with non-increasing |rf(x)| do
6 if x is not dominated by any previous anchors and

|rf(x)| > |Fex(xmin(T), T)| then
7 compute F (x) using Algorithm 1;
8 update T using Algorithm 6;
9 A← A ∪ T ;

10 G← GA;
11 return A

B. The FILVER++ algorithm

Based on the verification-stage techniques, we propose the
FILVER++ algorithm as outlined in Algorithm 7. The filter
stage of FILVER++ is the same as Algorithm 5 (Line 3) except
that when A is not empty, FILVER++ needs to maintain OU
and OL against t new anchors. Algorithm 4 can be extended to
handle t anchors in batch. To update OU , we visit each x′ ∈ T
in non-decreasing order of coreU (x′) and invoke Algorithm 4
to update the part of OU in AGU (x′). Note that if an unvisited
anchor x′′ exists in AGU (x

′), then AGU (x
′′) ⊆ AGU (x

′)
since anchors with smaller upper core numbers are visited
earlier. Hence, we do not need to maintain OU w.r.t. x′′. The
lower deletion order OL can be maintained in batch similarly.

In the verification stage (Lines 4-9), FILVER++ explores the
anchors that survived the filter stage in non-increasing order
of their upper bounds. After computing F (x) for an anchor
x by calling Algorithm 1 (Line 7), Algorithm 6 is invoked to
maintain the anchor set T (Line 8). Note that we do not need
to compute F (x) in the following two situations.
• If there exists a visited anchor x′ such that x ∈ F (x′),

then we skip computing F (x) since |F (x)| ≤ |F (x′)|;

• If |rf(x)| ≤ |Fex(xmin(T), T)|, x cannot possibly im-
prove T and we also skip x.

At the end of each iteration, the anchors in T are added to A.
Complexity analysis of FILVER++. The time complexity of
the filter stage of FILVER++ is the same as that of FILVER+.
In the verification stage, for each remaining anchor x, it
takes O(m) time to compute F (x) and O(|F (x)|) time to
maintain the anchor set T using Algorithm 6. As t anchors are
chosen at a time, Algorithm 7 requires d b1+b2t e iterations til
termination. Since the verification stage incurs the dominating
cost, the total time complexity of FILVER++ algorithm is
O(d b1+b2t e(n

′′ ×m)), where n′′ is the number of anchors we
compute followers for. Apart from the O(m) storage cost of
the input graph, the anchor set maintenance algorithm and
storing the upper/lower deletion orders and upper/lower core
numbers takes O(n) space. The total space complexity of
Algorithm 7 is O(m) (if we suppose m > n).

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate the anchored (α, β)-core model
and the proposed algorithms through empirical studies.

A. Experimental Settings

TABLE II: Summary of Datasets
Dataset |E| |U | |L| dmax δ

Unicode (UL) 1.26K 0.87K 0.25K 141 4
Cond-mat (AC) 58.60K 38.74K 16.73K 116 8
Writers (WR) 144.34K 135.57K 89.36K 246 6

Producers (PR) 207.27K 187.68K 48.83K 512 6
Movies (ST) 281.40K 157.18K 76.10K 321 7

BookCrossing (BX) 1.15M 445.8K 105.3K 13,601 41
Stack-Overflow (SO) 1.30M 545.2K 96.7K 6,119 22

Taobao (TB) 1.02M 5.16M 2.015M 1393 10
Wiki-en (WC) 3.80M 2.04M 1.85M 11,593 18
Amazon (AZ) 5.74M 2.15M 1.23M 12,180 26
DBLP (DB) 8.65M 1.43M 4.00M 951 10

Epinions (ER) 13.67M 876.3K 120.5K 162,169 152
Wiki-de (DE) 57.32M 3.62M 425.8K 278,998 156

Delicious (DUI) 101.80M 34.61M 833.1K 29,240 184
LiveJournal (LG) 112.31M 3.20M 7.49M 1,053,676 109

Orkut (OG) 327.04M 11.51M 2.78M 318,240 467
Synthetic (SN) 1919.93 M 5M 5M 36,360 359

Datasets. We use 16 real datasets in our experiments. 15 of
them are from KONECT (http://konect.cc/), and Taobao is
a user-item network from the Taobao user-behaviour dataset
(https://tianchi.aliyun.com/), where each edge represents that
a user has bought an item. To further challenge scalability,
we generate the Synthetic dataset with about two billion
edges using the well-known graph generator GTgraph un-
der the Erdős–Rényi model (http://www.cse.psu.edu/~kxm85/
software/GTgraph/). Table II shows the statistics of these
datasets. |U | and |L| are the number of vertices in the upper
and lower layers. |E| is the number of edges in the graph. dmax
is the maximum degree in the graph, and δ is the maximum
integer such that the (δ, δ)-core exists in the graph.
Algorithms. We evaluate the following greedy algorithms:
Naive (the naive greedy algorithm) in Section II, FILVER
(the basic filter-verification algorithm) in Section III, FILVER+

(FILVER with the filter-stage-optimizations) in Section IV, and
FILVER++ (FILVER with both the filter-stage and verification-
stage optimizations) in Section V. We also test FILVER against
the exact algorithm Exact in Section II and other approaches

http://konect.cc/
https://tianchi.aliyun.com/
http://www.cse.psu.edu/~kxm85/software/GTgraph/
http://www.cse.psu.edu/~kxm85/software/GTgraph/

(Random, Top-Degree, and Degree-Greedy which will be
described later). The algorithms are implemented in C++,
and the experiments are run on a Linux server with an Intel
Xeon E5-2698 processor and 512GB memory. We terminate
an algorithm if its running time exceeds 105 seconds.

Scorpion's Dance

Stardoc II: Beyond Varallan

Dinosaur in a Haystack

Reinvent Yourself

A Delusion of Satan

Puerto Vallarta Squeeze

Divorce for Dummies

Felidae. Roman

Der Gott der kleinen Dinge
Coming to Terms: A Novel

The Foxman
I, Rigoberta Menchu

Irish Magic

upper followers

lower followers

(α, β)-core

upper anchors

lower anchors

Fig. 6: A case study on BX

5 10 15 20 25
(b1, b2)

10 1

100

101

102

103

fo

llo
we

rs

Rand
Top-k

Degree
FILVER

(a) WC, varying b1, b2

(1, 0) (0, 1) (1, 1) (2, 1) (1, 2)
combinations of b1, b2

2

4

6

8

10

12

fo

llo
we

rs

0.002s,
0.11s

0.003s,
0.2s

0.003s,
28.42s

0.004s,
3246s

0.005s,
8747s

FILVER EXACT

(b) UL, varying b1, b2

Fig. 7: Effectiveness of FILVER

AC WR PR ST BX SO TB WC AZ DB ER DE DUI LG OG SN
Datasets

100101102103104105

Ti
m

e(
s)

Naive FILVER FILVER+ FILVER++

Fig. 8: Performance on different datasets
B. Effectiveness Evaluation

Here we evaluate the effectiveness of the anchored (α, β)-
core model and the proposed filter-verification framework.
Evaluate the effectiveness of anchored (α, β)-core model.
Firstly, we conduct a case study to evaluate the effectiveness
of the anchored (α, β)-core model on a user-book dataset (BX)
[31] by running FILVER. Here each edge indicates that a user
has read a book. Fig. 6 shows the anchored (3, 20)-core with 2
upper anchors and 2 lower anchors. Due to these four anchors,
there are 35 upper followers and 11 lower followers entering
in the anchored (3, 20)-core. Note that some followers are not
connected to any anchor vertices in the result since vertices can
gain support from not only anchors but also other followers.
Evaluate the effectiveness of FILVER. We evaluate the
effectiveness of FILVER by comparing the number of followers
generated with other approaches. Note that we omit the results
from Naive algorithm since it yields the same anchors and
followers as FILVER. In Fig. 7(a), we show the number of

followers produced by 4 algorithms (Random, Top-Degree,
Degree-Greedy and FILVER) as budgets b1 and b2 increase
from 5 to 25 on WC. α and β are set to 10 and 7, respectively.
Random assigns b1 anchors in U(G) and b2 anchors in L(G)
arbitrarily. Top-Degree assigns the b1, b2 anchors with the top-
b1 and top-b2 largest degrees in U(G) and L(G), respectively.
Degree-Greedy follows a greedy strategy and selects the an-
chor with the largest degree from V (G)\Cα,β(GA) iteratively
until there is no budget left. We observe that the degree-
based algorithms slightly outperform Random. Also, FILVER
produces significantly more followers than other algorithms.

We also compare FILVER to Exact, which checks all
combinations of candidate anchors and finds the optimal
solution. Fig. 7(b) shows the number of followers produced
by FILVER and Exact on UL w.r.t. different b1 and b2, where
α = 4, β = 3. FILVER can find the optimal solution in
all these settings. Note that the running time of Exact grows
exponentially, so we only test FILVER against Exact on a small
dataset with limited budgets.

C. Performance Evaluation

In this part, we evaluate the performance of Naive, FILVER,
FILVER+, and FILVER++. First, we show the running time of
these algorithms on 16 datasets (UL is omitted since it is too
small). Then, we investigate the effect of α, β, b1, b2 and t. By
default, α and β are set to 0.6δ and 0.4δ, respectively. b1, b2
are set to 10, and t is set to 5.
Evaluate performance on different datasets. Fig. 8 shows
the running time of Naive, FILVER, FILVER+, and FILVER++

on 16 datasets with default parameters. We observe that the al-
gorithms under the filter-verification framework (i.e., FILVER,
FILVER+, and FILVER++) are much faster than Naive on all
datasets. For instance, Naive cannot finish within the time
limit on datasets larger than SO, while FILVER, FILVER+,
and FILVER++ are scalable to the graph SN with about two
billion edges. This is because Naive identifies a very large
pool of candidate anchors and needs to traverse the whole
graph to compute followers for each of them. We also observe
that both the filter-stage and verification-stage optimizations
significantly improve the efficiency of FILVER. By applying
the filter-stage optimizations, FILVER+ outperforms FILVER
on all the datasets. In addition, with optimizations in two
stages, FILVER++ outperforms FILVER by about one order of
magnitude on AC, WR, PR, and WC. Especially, on TB and DB,
the relative speedup of FILVER++ versus FILVER are 15× and
44×, respectively. Note that we omit Naive in the remaining
experiments since it is not scalable.
Evaluate the effect of degree constraints α and β. In the
first row of Fig. 9, we report the running time of FILVER,
FILVER+, and FILVER++ for different values of α and β
on SO, AZ, and DE. We can observe that the running time
does not necessarily change as α or β varies, because the
degree constraints do not contribute to the time complexity of
these algorithms. A clear pattern depicted in the figures is that
FILVER+ consistently outperforms FILVER, while FILVER++

outperforms FILVER+. This again validates the effectiveness
of the proposed optimizations and the efficiency of FILVER++.

4 8 12 16 20

101

102

Ti
m

e(
s)

FILVER FILVER+ FILVER++

(a) SO, varying α

5 10 15 20 25101

102

103

Ti
m

e(
s)

FILVER FILVER+ FILVER++

(b) AZ, varying α

30 40 50 60 70

103

104

Ti
m

e(
s)

FILVER FILVER+ FILVER++

(c) DE, varying α

4 8 12 16 20

101

102

Ti
m

e(
s)

FILVER FILVER+ FILVER++

(d) SO, varying β

5 10 15 20 25101

102

103

Ti
m

e(
s)

FILVER FILVER+ FILVER++

(e) AZ, varying β

30 40 50 60 70

103

104

Ti
m

e(
s)

FILVER FILVER+ FILVER++

(f) DE, varying β

5 10 15 20 25
b1

100

101

102

Ti
m

e(
s)

FILVER FILVER+ FILVER++

(g) SO, varying b1

5 10 15 20 25
b1

101

102

103

Ti
m

e(
s)

FILVER FILVER+ FILVER++

(h) AZ, varying b1

5 10 15 20 25
b1

102

103

104

Ti
m

e(
s)

FILVER FILVER+ FILVER++

(i) DE, varying b1

5 10 15 20 25
b2

100

101

102

Ti
m

e(
s)

FILVER FILVER+ FILVER++

(j) SO, varying b2

5 10 15 20 25
b2

101

102

103

Ti
m

e(
s)

FILVER FILVER+ FILVER++

(k) AZ, varying b2

5 10 15 20 25
b2

102

103

104

Ti
m

e(
s)

FILVER FILVER+ FILVER++

(l) DE, varying b2

Fig. 9: Effect of α, β, b1, and b2

Evaluate the effect of budgets b1 and b2. The second row
of Fig. 9 shows the performances of FILVER, FILVER+, and
FILVER++ when budgets b1 and b2 vary from 5 to 25 on
SO, AZ, and DE. We can see that as b1 or b2 increases, the
running time of the three algorithms increases. This is because
more budgets result in more iterations for all these algorithms,
which drive up the time cost.

0 2 4 6 8 10 12 14 16
placed anchors

0

50

100

150

200

fo

llo
we

rs

t=1
t=2
t=4

t=8
t=16

(a) WC, varying t

0 2 4 6 8 10 12 14 16
placed anchors

0
200
400
600
800

1000
1200
1400

fo

llo
we

rs

t=1
t=2
t=4

t=8
t=16

(b) DB, varying t
Fig. 10: Effect of t on the number of followers

TABLE III: Effect of t on the running time
t 1 2 4 8 16
WC 65.58 33.68 19.67 12.56 7.19
DB 5997.72 3434.09 1900.85 1271.16 586.10

Evaluate the effect of t. We evaluate the effect of t (i.e., the
number of anchors chosen per iteration) in FILVER++ on the
datasets WC and DB. Here t takes on the values of 1, 2, 4, 8
and 16. α = 0.6δ, β = 0.4δ and b1 = b2 = 8. For FILVER++

with different t, Fig. 10 depicts the accumulating number of
followers as the number of placed anchors approaches b1+b2.
We can observe that when t is small (t < 8), FILVER++

and FILVER+ generate similar numbers of followers. When t
approaches b1+ b2, FILVER++ yields slightly fewer followers
than FILVER+. The running time of FILVER+ and FILVER++

are reported in Table III. As expected, FILVER++ incurs
smaller running time because it places t (t > 1) anchors in
each iteration, while FILVER+ only finds one. As t increases,
the running time of FILVER++ decreases because more an-
chors placed per iteration means fewer iterations.

VII. RELATED WORK

Below we review related works of network reinforcement
and cohesive subgraph models on bipartite graphs.

Network reinforcement. The motivation for network rein-
forcement goes back to the literature of engagement dynamics
of networks [32], [10]. Bhawalkar and Kleinberg [10] observe
the phenomenon of network unraveling and introduce the
anchored k-core model to for network reinforcement. Efficient
solutions are proposed to solve this problem [11], [12]. Fol-
lowing the anchored k-core model, many similar problems are
studied, such as the anchored and collapsed coreness problem
[13], [16], [4], anchored k-truss problem [33], collpased k-
core and k-truss problem [34], anchored vertex exploration
[30], budget minimization for anchored k-core [15], and k-core
maximization by edge addition [14]. The algorithms proposed
in these works focus on unipartite graphs and are not suitable
to reinforce bipartite networks. A recent work [35] studies
collapsed (α, β)-core problem on bipartite graphs, which aims
to minimize the size of the (α, β)-core by removing a set of
edges from it. However, it focuses on the edges inside the
(α, β)-core instead of actively expanding it.
Cohesive subgraph models on bipartite networks. On bipar-
tite networks, various cohesive subgraph models are proposed.
Extended from k-core, (α, β)-core [17], [18], [19], [36] uses
different degree constraints to ensure the engagement levels
of the vertices of different layers. The k-bitruss model is
proposed [37], [38], [39] which requires each edge in the
subgraph is contained in at least k butterflies. In addition,
biclique [40], [41] is a well-known cohesive subgraph model
which is a complete bipartite graph. However, existing works
on bipartite graphs mainly focus on the efficient computation
of the cohesive subgraphs rather than network reinforcement.

VIII. CONCLUSION

In this paper, we study the anchored (α, β)-core problem
to reinforce bipartite networks. Due to the NP-hardness of
the problem, we resort to greedy heuristics. By considering
the vertex deletion orders during (α, β)-core computation, we
propse a filter-verification framework to improve efficiency.
We further push the efficiency boundary with optimizations in
both filter and verification stages. Extensive experiments on
16 real-world graphs and one synthetic graph at billion-scale
verify the effectiveness of the proposed techniques.

REFERENCES

[1] J. Wang, A. P. De Vries, and M. J. Reinders, “Unifying user-based and
item-based collaborative filtering approaches by similarity fusion,” in
SIGIR. ACM, 2006, pp. 501–508.

[2] C. M. O’Connor, J. U. Adams, and J. Fairman, “Essentials of cell
biology,” Cambridge, MA: NPG Education, vol. 1, p. 54, 2010.

[3] J. C. Brunson, “Triadic analysis of affiliation networks,” arXiv preprint
arXiv:1502.07016, 2015.

[4] F. Zhang, J. Xie, K. Wang, S. Yang, and Y. Jiang, “Discovering key
users for defending network structural stability,” World Wide Web, pp.
1–23, 2021.

[5] F. Morone, G. Del Ferraro, and H. A. Makse, “The k-core as a predictor
of structural collapse in mutualistic ecosystems,” Nature physics, vol. 15,
no. 1, pp. 95–102, 2019.

[6] R. M. Dewan, M. L. Freimer, and J. Zhang, “Management and val-
uation of advertisement-supported web sites,” Journal of Management
Information Systems, vol. 19, no. 3, pp. 87–98, 2002.

[7] R. Benbunan-Fich and E. M. Fich, “Effects of web traffic announcements
on firm value,” International Journal of Electronic Commerce, vol. 8,
no. 4, pp. 161–181, 2004.

[8] H. Sun, J. Chen, and M. Fan, “Effect of live chat on traffic-to-sales
conversion: Evidence from an online marketplace,” Production and
Operations Management, 2021.

[9] X. Huang, I. Vodenska, S. Havlin, and H. E. Stanley, “Cascading failures
in bi-partite graphs: model for systemic risk propagation,” Scientific
reports, vol. 3, p. 1219, 2013.

[10] K. Bhawalkar, J. Kleinberg, K. Lewi, T. Roughgarden, and A. Sharma,
“Preventing unraveling in social networks: the anchored k-core prob-
lem,” SIAM Journal on Discrete Mathematics, vol. 29, no. 3, 2015.

[11] F. Zhang, W. Zhang, Y. Zhang, L. Qin, and X. Lin, “Olak: an efficient
algorithm to prevent unraveling in social networks,” PVLDB, vol. 10,
no. 6, 2017.

[12] R. Laishram, A. Erdem Sar, T. Eliassi-Rad, A. Pinar, and S. Soundarajan,
“Residual core maximization: An efficient algorithm for maximizing the
size of the k-core,” in SIAM. SIAM, 2020, pp. 325–333.

[13] Q. Linghu, F. Zhang, X. Lin, W. Zhang, and Y. Zhang, “Global
reinforcement of social networks: The anchored coreness problem,” in
SIGMOD, 2020.

[14] Z. Zhou, F. Zhang, X. Lin, W. Zhang, and C. Chen, “K-core max-
imization: An edge addition approach,” in Proceedings of the 28th
International Joint Conference on Artificial Intelligence. AAAI Press,
2019, pp. 4867–4873.

[15] K. Liu, S. Wang, Y. Zhang, and C. Xing, “An efficient algorithm for the
anchored k-core budget minimization problem,” in ICDE. IEEE, 2021,
pp. 1356–1367.

[16] Q. Linghu, F. Zhang, X. Lin, W. Zhang, and Y. Zhang, “Anchored
coreness: efficient reinforcement of social networks,” The VLDB Journal,
pp. 1–26, 2021.

[17] A. Ahmed, V. Batagelj, X. Fu, S.-H. Hong, D. Merrick, and A. Mrvar,
“Visualisation and analysis of the internet movie database,” in 2007 6th
International Asia-Pacific Symposium on Visualization. IEEE, 2007.

[18] D. Ding, H. Li, Z. Huang, and N. Mamoulis, “Efficient fault-tolerant
group recommendation using alpha-beta-core,” in CIKM. ACM, 2017.

[19] B. Liu, L. Yuan, X. Lin, L. Qin, W. Zhang, and J. Zhou, “Efficient (α,
β)-core computation: an index-based approach,” in WWW, 2019.

[20] D. Garcia, P. Mavrodiev, and F. Schweitzer, “Social resilience in online
communities: The autopsy of friendster,” in Proceedings of the first ACM
conference on Online social networks, 2013, pp. 39–50.

[21] K. Seki and M. Nakamura, “The collapse of the friendster network
started from the center of the core,” in 2016 IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining
(ASONAM). IEEE, 2016, pp. 477–484.

[22] G. A. Pavlopoulos, P. I. Kontou, A. Pavlopoulou, C. Bouyioukos,
E. Markou, and P. G. Bagos, “Bipartite graphs in systems biology and
medicine: a survey of methods and applications,” Gigascience, vol. 7,
no. 4, p. giy014, 2018.

[23] J. Bascompte and P. Jordano, “Plant-animal mutualistic networks: the
architecture of biodiversity,” Annu. Rev. Ecol. Evol. Syst., vol. 38, 2007.

[24] R. M. Karp, “Reducibility among combinatorial problems,” in Complex-
ity of computer computations. Springer, 1972.

[25] U. Feige, “A threshold of ln n for approximating set cover,” JACM,
vol. 45, no. 4, 1998.

[26] S. B. Seidman, “Network structure and minimum degree,” Social net-
works, vol. 5, no. 3, pp. 269–287, 1983.

[27] V. Batagelj and M. Zaversnik, “An o (m) algorithm for cores decompo-
sition of networks,” arXiv preprint cs/0310049, 2003.

[28] Z. Lin, F. Zhang, X. Lin, W. Zhang, and Z. Tian, “Hierarchical core
maintenance on large dynamic graphs,” PVLDB, vol. 14, no. 5, pp. 757–
770, 2021.

[29] Y. Zhang, J. X. Yu, Y. Zhang, and L. Qin, “A fast order-based approach
for core maintenance,” in ICDE. IEEE, 2017, pp. 337–348.

[30] T. Cai, J. Li, N. A. H. Haldar, A. Mian, J. Yearwood, and T. Sellis,
“Anchored vertex exploration for community engagement in social
networks,” in ICDE. IEEE, 2020, pp. 409–420.

[31] C.-N. Ziegler, S. M. McNee, J. A. Konstan, and G. Lausen, “Improving
recommendation lists through topic diversification,” in WWW, 2005.

[32] F. D. Malliaros and M. Vazirgiannis, “To stay or not to stay: modeling
engagement dynamics in social graphs,” in CIKM, 2013.

[33] F. Zhang, Y. Zhang, L. Qin, W. Zhang, and X. Lin, “Efficiently
reinforcing social networks over user engagement and tie strength,” in
ICDE. IEEE, 2018, pp. 557–568.

[34] F. Zhang, C. Li, Y. Zhang, L. Qin, and W. Zhang, “Finding critical users
in social communities: The collapsed core and truss problems,” TKDE,
2018.

[35] C. Chen, Q. Zhu, Y. Wu, R. Sun, X. Wang, and X. Liu, “Efficient critical
relationships identification in bipartite networks,” World Wide Web, pp.
1–21, 2021.

[36] Y. He, K. Wang, W. Zhang, X. Lin, and Y. Zhang, “Exploring cohesive
subgraphs with vertex engagement and tie strength in bipartite graphs,”
Information Sciences, vol. 572, pp. 277–296, 2021.

[37] K. Wang, X. Lin, L. Qin, W. Zhang, and Y. Zhang, “Efficient bitruss
decomposition for large-scale bipartite graphs,” in ICDE. IEEE, 2020.

[38] Z. Zou, “Bitruss decomposition of bipartite graphs,” in DASFAA.
Springer, 2016.

[39] A. E. Sarıyüce and A. Pinar, “Peeling bipartite networks for dense
subgraph discovery,” in WSDM. ACM, 2018, pp. 504–512.

[40] B. Lyu, L. Qin, X. Lin, Y. Zhang, Z. Qian, and J. Zhou, “Maximum
biclique search at billion scale.” PVLDB, vol. 13, no. 9, 2020.

[41] S. Lehmann, M. Schwartz, and L. K. Hansen, “Biclique communities,”
Physical review E, vol. 78, no. 1, p. 016108, 2008.

	2021 IEEE
	paper (5).pdf
	Introduction
	Preliminaries
	Problem definition
	Problem complexity
	Warm up

	A filter-verification framework
	Exploring the vertex deletion order
	The filter-verification framework

	Filter stage optimizations
	Discover dominating relationships among anchors
	Connectivity-based order maintenance

	Verification stage optimizations
	Anchor set maintenance
	The FILVER++ algorithm

	Experimental evaluation
	Experimental Settings
	Effectiveness Evaluation
	Performance Evaluation

	Related Work
	Conclusion
	References

