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Mixed-strategy Nash equilibrium is the cornerstone of our understanding of
strategic situations that require decision makers to be unpredictable. Using data
from nearly half a million serves over 3000 tennis matches, and data on player
rankings from the ATP and WTA, we examine whether the behavior of professional
tennis players is consistent with equilibrium. We find that win rates conform re-
markably closely to the theory for men, but conform somewhat less neatly for
women. We show that the behavior in the field of more highly ranked (i.e., better)
players conforms more closely to theory. We show that the statistical tests used
in the prior related literature are not valid for large samples like ours; we develop
a novel statistical test that is valid and show, via Monte Carlo simulations, that it
is more powerful against the alternative that receivers follows a nonequilibrium
mixture.
Keywords. Minimax, mixed strategy Nash equilibrium play, natural experiment.
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1. Introduction

Laboratory experiments have been enormously successful in providing tightly con-
trolled tests of game theory. The results of these experiments, however, have not been
supportive of the theory for games with a mixed-strategy Nash equilibrium: student sub-
jects do not mix in the equilibrium proportions and subjects exhibit serial correlation
in their choices rather than the serial independence predicted by the theory. While the
rules of an experimental game, which requires players to be unpredictable, may be sim-
ple to understand, it is far more difficult to understand how to play well. Student subjects
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no doubt understand the rules, but they have neither the experience, the time, nor the
incentive to learn to play well. In professional sports, by contrast, players have typically
devoted their lives to the game and they have substantial financial incentives, and thus
it provides an ideal setting to test theory.

The present paper examines whether the behavior of sports professionals conforms
to theory by combining a unique data set from Hawk-Eye, a computerized ball track-
ing system employed at Wimbledon and other top championship tennis matches, with
data on player rankings from the ATP Association of Tennis Professionals (ATP) and the
Women’s Tennis Association (WTA). It makes several contributions: With a large data set
and a new statistical test we introduce, it provides a far more powerful test of the theory
than in any prior study. It also provides a broad test of the theory by analyzing the play
of both men and women players with different degrees of expertise. It finds substantial
differences in the degree to which the behavior of men and women conform to equi-
librium. Most significantly, it shows that even tennis professionals differ in the degree
to which their behavior conforms to theory and, remarkably, the on-court behavior of
more highly ranked players conforms more closely to theory. We are aware of no similar
result in the literature.

A critique of the results of prior studies using data from professional sports has been
that they have low power to reject the theory.1  Walker and Wooders (2001), henceforth
WW, studies a data set comprised of approximately 3000 serves made in 10 men’s cham-
pionship tennis matches. Chiappori, Levitt, and Groseclose (2002), henceforth CLG, and
Palacios-Huerta (2003), henceforth PH, study 459 and 1417 penalty kicks, respectively.
Our data set, by contrast, contains the precise trajectory and bounce points of the tennis
ball for nearly 500,000 serves from over 3000 professional tennis matches, and thereby
provides an extremely powerful test of the theory. Camerer (2003) suggests that WW’s fo-
cus on long matches, with the goal of generating a test with high statistical power, could
introduce a selection bias in favor of equilibrium play. Our analysis does not suffer from
this critique as it uses data from all the matches where the Hawk-Eye system was em-
ployed.

The large number of matches in our data set requires the development of a novel sta-
tistical test for our analysis. When the number of points played in each match is small
relative to the overall number of matches, as it is in our data set, we show that a key sta-
tistical test employed in WW is not valid: even when the null hypothesis is true, the test
rejects the null (implied by Nash equilibrium) that winning probabilities are equalized
across directions of serve. By contrast, the test that we develop, based on the Fisher ex-
act test, rejects the true null hypothesis with exactly probability α at the α significance
level. We show via Monte Carlo simulations that our test, as an added bonus, is substan-
tially more powerful than the test used in WW and the subsequent literature against the
alternative that the receiver follows a nonequilibrium mixture.2,3

1See Kovash and Levitt (2009).
2The WW test is valid for the data set it considered, where the number of points in each match was large

relative to the number of matches, as we show in Section 6.
3It should be understood hereafter that all power comparisons are based on Monte Carlo simulations

where the alternative hypothesis is that receivers follows a nonequilibrium mixture.
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An unusual feature of our test is that the test statistic itself is random, and thus a
different p-value is realized each time the test is conducted. It would be perfectly le-
gitimate to run the test once and reject the null hypothesis if the p-value is less than
the desired significance level. It is more informative, however, to report the empirical
density of p-values obtained after running the test many times, and this is what we do.
When reporting our results, we will make statements such as “the empirical density of
p-values places an x% probability weight on p-values below 0.05.” Reporting the em-
pirical density reveals the sensitivity of our conclusions to the randomness inherent in
the test statistic. Since randomized tests are seldom used, we complement our analysis
with the implementation of a deterministic test in Appendix B.4 The deterministic test
has low power in comparison to our randomized test.

We find that the win rates of male professional tennis players are strikingly consis-
tent with the equilibrium play. Despite the enormous power of our statistical test—due
to the large sample size and the greater power of the test itself—we cannot reject the null
hypothesis that winning probabilities are equalized across the direction of serve. We do
not reject the null for either first or second serves. For first serves, the empirical den-
sity of p-values places no probability weight on p-values below 0.05 (i.e., the joint null
hypothesis is never rejected at the 5% significance level). For second serves, it places
almost no probability weight on p-values below 0.05.

The win rates for female players, by contrast, conform less neatly to theory. The em-
pirical density function of p-values places a 44.73% weight on p-values below 0.05 for
first serves, and a 16.1% weight on p-values below 0.05 for second serves. Nonetheless,
the behavior of female professional tennis players over 150,000 tennis serves conforms
far more closely to theory than the behavior of student subjects in comparable labo-
ratory tests of mixed-strategy equilibrium. Applying our test to the data from O’Neill’s
(1987) classic experiment, for example, we obtain an empirical density function of p-
values that places probability one on p-values less than 0.05. Hence, the null hypothesis
that winning probabilities are equalized is resoundingly rejected based on the 5250 de-
cisions of O’Neill’s subjects while we obtain no such result for female professional tennis
players, despite having vastly more data.

This result naturally raises the question of whether the behavior of better—more
highly ranked—female tennis players conforms more closely to theory. To investigate
the effect of ability on behavior, we divide our data into two subsamples based on the
rank of the player receiving the serve. (It is important to keep in mind that it is the re-
ceiver’s play that determines whether winning probabilities are equalized across direc-
tions of serve.) In one subsample, the receiver is a “top” player, that is, above the median
rank, and in the other the receiver is a “nontop” player. We test the hypothesis that win-
ning probabilities are equalized across the direction of serve on each subsample sepa-
rately. For men, win rates conform closely to equilibrium on each subsample. This result
is not surprising given the close conformity of behavior to theory in the overall sample
for men.

As just noted, win rates conform to equilibrium somewhat less neatly for women.
Significantly, in women’s matches in which the receiver is a “top” player, we do not come

4We are grateful to Kei Hirano for suggesting the construction of the deterministic test.
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close to rejecting equilibrium, while equilibrium is resoundingly rejected for the sub-
sample in which the receiver is “nontop.” This result shows that behavior of female re-
ceivers conforms more closely to theory for more highly ranked players.

What might explain this difference between male and female players? While the rules
of the game are the same for men’s and women’s tennis, the payoffs in the contest for a
point are different: in men’s tennis, the server wins 64% of all the points when he has
the serve, while in women’s tennis the server only wins 58% of the points.5 Hence, it
seems likely that the players’ incentives to learn equilibrium, or selection effects that fa-
vor equilibrium play, differ for men and women. Given the greater speed of the serve,
a receiver in men’s tennis who fails to play equilibrium (and equalize the server’s win-
ning probabilities) may be more vulnerable to being exploited by the server. The serve
is widely regarded as more important in men’s than women’s tennis (see Rothenberg
(2017)).

A second implication of equilibrium theory is that the players’ choices of direction
of serve are random (i.e., serially independent), and hence unpredictable. We find that
both male and female players exhibit serial correlation in their serves with female play-
ers’ serves being significantly more serially correlated than male players’ serves. The dif-
ference may be the result of the greater importance of the serve in men’s tennis. In men’s
tennis, 8.71% of all first serves are “aces,” with the receiver unable to place his racket on
the ball. A male player whose serve is predictable surrenders a portion of the significant
advantage that comes from having the serve. In women’s tennis, by contrast, only 4.41%
of first serves are aces.

Here, too, we find evidence that the behavior of higher ranked players conforms
more closely to equilibrium: higher ranked male players exhibit less serial correlation
in the direction of serve than lower ranked players.

Related literature

Our paper contributes to the literature investigating the degree to which the behavior
of professions conforms to equilibrium. WW was the first paper to use data from pro-
fessional sports to test the minimax hypothesis and the notion of mixed-strategy Nash
equilibrium.6 It found that the win rates of male professional tennis players conformed
to theory, in striking contrast to the consistent failure of subjects to follow the equilib-
rium mixtures (and equalize payoffs) in laboratory experiments.

Hsu, Huang, and Tang (2007), henceforth HHT, broadens the analysis of WW. It
found that win rates conformed to the theory for a sample of 9 women’s matches, 8 ju-
nior’s matches, and 10 men’s matches. The greater power of our statistical test means
that it potentially overturns these conclusions and indeed it does: Our test, applied to

5In other words, the value of the game for the point (for the server) is higher in men’s tennis than women’s
tennis, which is likely driven by physical differences: men are taller and stronger, and thus deliver faster
serves. In our data set, the average speed of the first serve is 160 kph for men and 135 kph for women. Only
0.45 seconds elapses between the serve and the first bounce in men’s tennis.

6von Neuman’s notion of Minimax, the foundation of modern game theory, and Nash equilibrium coin-
cide in two-player constant-sum games, and we will use the terms minimax and equilibrium interchange-
ably.
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HHT’s data for women and juniors, puts weights of 18.1% and 49.2%, respectively, on p-
values of less than 0.05. On the other hand, applying our test to WW’s data or HHT’s data
for men, we reaffirm their findings that the behavior of male professional tennis players
conforms to equilibrium. In both cases, the empirical density of p-values assigns zero
probability to p-values below 0.05.

CLG studies a data set of every penalty kick occurring in French and Italian elite soc-
cer leagues over a 3-year period (459 penalty kicks), and tests whether play conforms to
the mixed-strategy Nash equilibrium of a parametric model of a penalty kick in which
the kicker and goalkeeper simultaneously choose Left, Center, or Right. A challenge in
using penalty kicks to test theory is that most kickers take few penalty kicks and, further-
more, a given kicker rarely encounters the same goalie. The latter is important since the
contest between a kicker and goalie varies with the players involved, as do the equilib-
rium mixtures and payoffs.7 CLG finds that the data conforms to the qualitative predic-
tions of the model, for example, kickers choose “center” more frequently than goalies.8

A key contribution of CLG is the precise identification of the predictions of equilibrium
theory that are robust to aggregation across heterogeneous contests.

PH studies a group of 22 kickers and 20 goalkeepers who have participated in at least
30 penalty kicks over a 5-year period, in a data set comprised of 1417 penalty kicks. The
null hypothesis that the probability of scoring is the same for kicks to the left and to the
right is rejected at the 5% level for only 2 kickers.9 Importantly, his analysis ignores that
a kicker generally faces different goalkeepers (and different goalkeepers face different
kickers) at each penalty kick.

In professional tennis, unlike soccer, we observe a large number of serves, taken in
an identical situations (e.g., Federer serving to Nadal from the “ad” court), over a period
of several hours.10 The relationship between the players’ actions and the probability of
winning the point is the same in every such instance, and thus the data from a single
match can be used to test equilibrium theory. There is no need to aggregate data across
matches and players as in CLG or PH.

The present paper is related to a literature that examines the effect of experience in
the field on behavior in the laboratory (see, e.g., Cooper, Kagel, Lo, and Gu (1999) and
Van Essen and Wooders (2015)). Palacios-Huerta and Volij (2008) reports evidence that
professional soccer players behave according to equilibrium when playing abstract nor-
mal form games in the laboratory. Levitt, List, and Reiley (2010) is, however, unable to
replicate this result, while Wooders (2010) argues that Palacios-Huerta and Volij (2008)’s
own data is inconsistent with equilibrium. Levitt, List, and Sadoff (2011) shows that ex-
pert chess players, who might expected to be skilled at backward induction reasoning,

7CLG provides evidence that payoffs in the 3 × 3 penalty kick game vary with the kicker, but not with the
goalie.

8In a linear probability regression, the paper finds weak evidence against the hypothesis that kickers
equalize payoffs across directions based on the subsample of 27 kickers with 5 or more kicks. This null is
rejected at the 10% level for 5 of kickers, whereas only 2.7 rejections are expected.

9PH aggregates kicks to the center and kicks to a player’s “natural side” and thereby makes the game a
2 × 2 game.

10Typical experimental studies of mixed-strategy play likewise feature a fixed pair of players playing the
same stage game repeatedly over a period of an hour or two.
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play the centipede game much like typical student subjects. Our work differs by exam-
ining the effect of expertise on the conformity of behavior in the field to equilibrium
play.

Several papers have used data from professional sports to study the effect of pres-
sure on behavior. Paserman (2010) finds evidence that player performance in profes-
sional tennis is degraded for more “important” points, that is, points where winning or
losing the point has a large influence on the probability of winning the match. Gonzalez-
Diaz, Gossner, and Rogers (2012) find that players are heterogeneous in their response
to important points and they develop a measure of a skill they call “critical ability.” The
probability of winning a point is highly responsive to the point’s importance for players
with high critical ability. Kocher, Lenz, and Sutter (2012) find for soccer that there is no
first-mover advantage in penalty kick shootouts.

In Section 2, we present the model of a serve in tennis and the testable hypothe-
ses implied by the theory. In Section 3, we describe our data. In Section 4, we describe
our new statistical test of the hypothesis that winning probabilities are equalized, we
present our results, and we show that the behavior of higher ranked players conforms
more closely to theory than for lower ranked players. In Section 5, we report the results
of our test that the direction of serve is serially independent. In Section 6, we compare
the power of the WW test and the power of our new test, for the hypothesis that winning
probabilities are equalized. We show that (i) the WW test is valid when the number of
points in each match is large relative to the number of matches, but is not valid con-
versely, (ii) our new test is valid whether the number of matches is small (as in WW) or
large, (iii) our new test is more powerful than the test used WW and subsequent studies,
and we (iv) apply our test to the data from HHT.

2. Modeling the serve in tennis

We model each point in a tennis match as a 2×2 normal-form game. The server chooses
whether to serve to the receiver’s left (L) or the receiver’s right (R). The receiver simul-
taneously chooses whether to overplay left or right. The probability that the server ulti-
mately wins the point when he serves in direction s and the receiver overplays direction
r is denoted by πsr . Hence, the game for a point is represented by Figure 1.

Since one player or the other wins the point, the probability that the receiver wins the
point is 1 − πsr , and hence the game is completely determined by the server’s winning
probabilities. We refer to a game of the kind in Figure 1 as a “point game.”

The probability payoffs in Figure 1 will depend on the abilities of the two players
in the match and, in particular, on which player is serving. In tennis, the player with

Figure 1. The game for a point.
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the serve alternates between serving from the ad court (the left side of the court) and
from the deuce court (the right side). Since the players’ abilities may differ when serving
or receiving from one court or the other, the probability payoffs in Figure 1 may also
depend upon whether the serve is from the ad or deuce court. At the first serve, the
probability payoffs include the possibility that the server ultimately wins the point after
an additional (second) serve. Since the second serve is the final serve, the probability
payoffs for a second serve will be different than those for a first serve.11

In addition to varying the direction of the serve, the server can also vary its type
(flat, slice, kick, topspin) and speed. In a mixed-strategy Nash equilibrium, all types of
serves which are delivered with positive probability have the same payoff. Therefore, it
is legitimate to pool, as we do, all serves of different types but in the same direction. Our
test of the hypothesis that the probability of winning the point is the same for serves left
and serves right can be viewed as a test of the hypothesis that all serves in the support
of the server’s mixture have the same winning probability.

We assume that within a given match the probability payoffs are completely deter-
mined by which player has the serve, whether the serve is from the ad or deuce court,
and whether the serve is a first or second serve. In other words, there are exactly eight
distinct “point games” in a match. These point games and the rules of tennis completely
determine the extensive form game for a tennis match. We assume for every point game
that (i) πLL < πLR and πRR < πRL , that is, the server wins the point with lower probabil-
ity (and the receiver with higher probability) when the receiver correctly anticipates the
direction of the serve, and (ii) πLL <πRL and πRR <πLR . Under this assumption, there is
a unique Nash equilibrium for every point game and it is in (strictly) mixed strategies.

A tennis match is a complicated extensive form game: The first player to win at least
four points and to have won two more points than his rival wins a unit of scoring called
a “game.” The first player to win at least six games and to have won two games more
than his rival wins a “set.” In a five-set match, the first player to win three sets wins the
match. The players, however, are interested in winning points only in so far as they are
the means by which they win the match. The link between the point games and the over-
all match is provided in Walker, Wooders, and Amir (2011), which defines and analyzes
a class of games (which includes tennis) called Binary Markov games. They show that
Nash equilibrium (and minimax) play in the match consists of playing, at each point,
the equilibrium of the point game in which the payoffs are the winning probabilities πsr

of Figure 1. Thus, play depends only on which player is serving, whether the point is an
ad-court or a deuce-court point, and whether the serve is a first or second serve; it does
not otherwise depend on the current score or any other aspect of the history of play prior
to that point.12

11If the first serve is a fault, then the server gets a second, and final, serve. If the second serve is also
a fault, then the server loses the point. First and second serves are played differently. In our data set, the
average speed of a first serve for men is 160 kph and of a second serve is 126 kph (35.3% of first serves fault,
but only 7.5% of second serves fault).

12A binary Markov game consists of a binary scoring rule and a collection of point games. A binary scor-
ing rule consists of (i) a finite set of states and (ii) two transition functions that govern how play proceeds
from one state to the next. The states represent the possible scores of the match. There are two absorbing
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Figure 2. An illustrative point game.

Testing the theory

Two testable implications come from the theory. The first is that a player obtains the
same payoff from all actions which in equilibrium are played with positive probability.
To illustrate this hypothesis, consider the illustrative point game in Figure 2.

The receiver’s equilibrium mixture is to choose L with probability 2/3 and R with
probability 1/3. When the receiver follows this mixture, then the server wins the point
with the same probability (namely, 0.65) whether he serves L or he serves R.13 In an
actual tennis match, we do not observe the probability payoffs, and hence we cannot
compute the receiver’s equilibrium mixture. Nonetheless, so long as the receiver plays
equilibrium, then the server’s probability of winning the point will be the same for serves
L and serves R.

When theory performs poorly, an important question is whether the behavior of bet-
ter players conforms more closely to theory. Does a better player, when receiving the
ball, more closely follow his equilibrium mixture and, therefore, more closely equalize
the server’s winning probabilities? In Section 4, we provide evidence that top female
players do equalize the servers’ winning probabilities when receiving the ball, while
lower ranked female players do not. Thus, the behavior of better female players con-
forms more closely to theory. Both top and nontop male players equalize the server’s
winning probabilities when receiving.

The second implication of the theory, which comes from the equilibrium analysis
of the extensive form game representing a match, is that the sequence of directions of
the serve chosen by a server is serially independent. A server whose choices are serially
correlated may be exploited by the receiver and therefore his play is suboptimal. To ad-
dress this question, we focus on the rank of the server. Section 4 provides evidence that
higher ranked male players exhibit less serial correlation in the direction of their serve
than lower ranked males, and thus their behavior conforms more closely to theory.

3. The data

Hawk-Eye is a computerized ball tracking system used in professional tennis and other
sports to precisely record the trajectory of the ball. Our data set consists of the official

states, one where Player A has won the match and the other where Player B has won. From every state,
there are two possible transitions: the state reached if Player A wins the current point and the state reached
if Player B wins the point. Associated with each state is a normal form game—a “point game”—that governs
how points are won at that state.

13The server’s equilibrium mixture also equalizes the receiver’s winning probability for each of his ac-
tions. Since the receiver’s action is not observed, we cannot test this hypothesis.
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Table 1. Match characteristics.

Female Male All

Surface

Carpet 35 174 209
Clay 130 366 496
Grass 95 204 299
Hard 917 1251 2168

Best of
3 1177 1400 2577
5 0 595 595

Events

Davis Cup (Fed Cup) 8 18 26
Grand Slam 458 526 984
Olympics 19 16 35
ATP (Premier) 662 101 763
International – 473 473
Master – 825 825
Hopman Cup 30 36 66

Total 1117 1995 3172

Hawk-Eye data for all matches played at the international professional level, where this
technology was used, between March 2005 and March 2009.14 Most of the matches are
from Grand Slam and Association of Tennis Players (ATP) tournaments. Overall, the data
set contains 3172 different singles matches. Table 1 provides a breakdown of the match
characteristics of our data.

As the use of the Hawk-Eye system is usually limited to the main tournaments,
the data set contains a large proportion of matches from top tournaments (e.g., Grand
Slams). Within tournaments, the matches in our data set are more likely to feature top
players as the Hawk-Eye system is used on the main courts and was often absent from
minor courts at the time of our sample. Finally, the tournament structure of tennis
means that top players appear in more matches in a tournament. As a consequence,
the matches contained in the data set tend to feature the best male and female players.

For each point played, our data set records the trajectory of the ball, as well as the
player serving, the current score, and the winner of the point.15 When the server faults
as a result of the ball failing to clear the net, then we extrapolate the path of the serve
to identify where the ball would have bounced had the net not intervened. Figure 3 is a
representation of a tennis court and shows the actual and imputed ball bounces of first
serves by men, for serves delivered from the deuce court. The dashed lines in the figure
are imaginary lines—not present on an actual court—that divide the two “right service”
courts and are used to distinguish left serves from right serves.

14Hawk-Eye has been used to resolve challenges to line calls since 2006, which is evidence of the greater
reliability of Hawk-Eye over human referees.

15Hawk-Eye records the path of the ball as a sequence of arcs between impacts of the ball with a
racket, the ground, or the net. Each arc (in three dimensions) is decomposed into three arcs, one for each
dimension—the x-axis, the y-axis, and the z-axis. Each of these arcs is encoded as a polynomial equation
with time as a variable. For each arc in three dimensions we have therefore three polynomial equations
(typically of degree 2 or 3) describing the motion of the ball in time and space.
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Figure 3. Ball bounces for deuce court first serves by men.

Our analysis focuses on the location of the first bounce following a serve. As is evi-
dent from Figure 3, serves are typically delivered to the extreme left or the extreme right
of the deuce court. We classify the direction of a serve—left or right—from the server’s
perspective: A player serving from the left- hand side of the court delivers a serve across
the net into the receiver’s right service court. A bounce above the dashed line (on the
right-hand side of Figure 3) is classified as a serve to the left, and a bounce below the
dashed line is classified as a serve to the right. Likewise, for a player serving from the
right-hand side of the court, a bounce below the dashed line (on the left- hand side of
Figure 3) is classified as a left serve, while a bounce above is classified as a right serve.

One could more finely distinguish serve directions, for example, left, center, and
right, but doing so would not impact our hypothesis tests. So, long as left and right are
both in the support of the server’s equilibrium mixture, serves in each direction have the
same theoretical winning probability.

Second serves are delivered at slower speeds than first serves and are less likely to be
a fault, but are also typically delivered to the left or right. See Appendix E in the Online
Supplementary Material (Gauriot, Page, and Wooders (2023)) for the ball bounces for
second serves, and for serves from the ad court, and for serves by women.

While Hawk-Eye automatically records bounce data, the names of the players, the
identity of the server, and the score are entered manually. This leads to some discrepan-
cies as a result of data entry errors. To ensure that the information we use in our analysis
is correct, we check that the score evolved logically within a game: the game should start
at 0-0, and the score should be 1-0 if the server wins the first point and 0-1 if the re-
ceiver wins the point. We do this for every point within a game. If there is even one error
within a game, we drop the whole game. While conservative, this approach ensures that
our results are based on highly accurate data. We observe a total of 465,262 serves in
the cleaned data. A detailed description of the data cleaning process is provided in Ap-
pendix A.
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Table 2. Summary statistics.

Serve Court Serves Point Games Serves/Point Game P(L) P(R) P(Win|L) P(Win|R)

Male

First Deuce 118,843 3615 32.88 45.07 54.93 65.02 64.71
First Ad 107,455 3583 29.99 46.19 53.81 63.94 63.78
Second Deuce 45,028 3615 12.46 30.02 69.98 52.53 52.02
Second Ad 41,674 3583 11.63 33.45 66.55 51.99 52.72

Female

First Deuce 57,978 2066 28.06 47.09 52.91 57.93 56.64
First Ad 52,908 2042 25.91 52.08 47.92 56.55 55.97
Second Deuce 21,525 2066 10.42 38.84 61.16 46.29 45.61
Second Ad 19,851 2042 9.72 41.09 58.91 44.28 46.06

Table 2 reports summary statistics for the cleaned data, where P(L) is the frequency
of serves to the Left and P(Win|L) is the frequency that the point is won following a serve
to the left. Both male and female servers win the point more frequently on first serves
than second serves. Men win both first and second serves more frequently than women.

4. Testing for equality of winning probabilities

Let pi
j denote the true, but unknown, probability that the server in point game i wins the

point when the first serve is in direction j. According to equilibrium theory, pi
L = pi

R for
each point game i, that is, the probability that the server wins the point is the same for
serves left and for serves right in each point game.

Individual play and the Fisher exact test

We use the Fisher exact test to test the null hypothesis that pi
L = pi

R = pi for point game
i, that is, the probability that the server wins the point is the same whether serving to
the left or to the right. Let f (niLS|niS , niL, niR ) denote the probability, under the null, that
the server wins niLS serves to the left, conditional on winning niS serves in total, after
delivering niL and niR serves to the left and to the right. As shown by Fisher (1935), this
probability does not depend on pi and is given by

f
(
niLS|niS , niL, niR

) =

(
niL
niLS

)(
niR
niRS

)
(
niL + niR

niS

) ,

where niRS = niS − niLS . Let F(niLS|niS , niL, niR ) be the associated c.d.f., that is,

F
(
niLS|niS , niL, niR

) =
niLS∑

k=max{niS−niR,0}

f
(
k|niS , niL, niR

)
.
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In its standard application, the Fisher exact test rejects the null hypothesis at signifi-
cance level α for niLS such that F(niLS|niS , niL, niR ) ≤ α/2 or 1 −F(niLS − 1|niS , niL, niR ) ≤ α/2.

The Fisher exact test is the uniformly most powerful (UMP) unbiased test of the hy-
pothesis that pi

L = pi
R but because of the discreteness of the density f , randomization

is required to achieve a significance level of exactly α (see Lehmann and Romano (2005,
p. 127)). Let n̄iLS be the largest integer such that F(n̄iLS|niS , niL, niR ) ≤ α/2 and niLS be the
smallest integer such that 1 − F(niLS − 1|niS , niL, niR ) ≤ α/2. Without randomization, the
true size of the test is only F(n̄iLS|niS , niL, niR ) + 1 − F(niLS − 1|niS , niL, niR ), which may be
considerably smaller than α.

We implement a randomized Fisher exact test of exactly size α as follows: For each
point game i, let ti be the random test statistic given by a draw from the uniform distribu-
tion U[0, F(niLS|niS , niL, niR )] if niLS takes its minimum value, that is, niLS = min{niS −niR, 0},
and by a draw from the distribution U(F(niLS − 1|niS , niL, niR ), F(niLS|niS , niL, niR )] other-
wise. Under the null hypothesis that pi

L = pi
R, the test statistic ti is distributed U[0, 1].16

Hence, rejecting the null hypothesis if ti ≤ α/2 or ti ≥ 1 − α/2 yields a test of exactly
size α.

The Fisher exact test and the randomized Fisher exact test make the same (deter-
ministic) decision for all realizations of niLS except niLS = n̄iLS + 1 or niLS = niLS − 1.17 If
niLS = n̄iLS + 1, then the Fisher exact test does not reject the null, while the randomized
test rejects it with probability

α/2 − F
(
n̄iLS|niS , niL, niR

)
F

(
n̄iLS + 1|niS , niL, niR

) − F
(
n̄iLS|niS , niL, niR

) .

Likewise, if niLS = niLS − 1, the Fisher exact test does not reject the null, while the ran-
domized test rejects it with probability

F
(
niLS − 1|niS , niL, niR

) − (1 − α/2)

F
(
niLS − 1|niS , niL, niR

) − F
(
niLS − 2|niS , niL, niR

) .

It is the addition of randomization for these two realizations that yields a test of exactly
size α.

Randomizing over whether to reject a specific null hypothesis might seem unnatural
and, indeed, randomized tests are seldom used.18 In our context, however, we are not
interested in whether pi

L = pi
R for any particular point game i, but rather whether the

null hypothesis is rejected at the expected rate for the thousands of point games in our
data set. Our use of the randomized Fisher exact test allows us to exactly control the size
of the test and, therefore, the expected rejection rate under the null, without any appeal
to an asymptotic distribution of a test statistic.

Table 3 shows the percentage of points games for which equality of winning prob-
abilities is rejected for the Hawk-Eye data, for men and women and for both first and

16See Appendix C for the proof.
17Suppose niLS ≤ n̄iLS . The randomized Fisher exact test rejects the null since ti ∼ U(F(niLS −

1|niS , niL, niR ), F(niLS|niS , niL, niR )] and, therefore, ti ≤ F(niLS|niS , niL, niR ) ≤ F(n̄iLS|niS , niL, niR ) ≤ α/2.
18See Tocher (1950) for an early general analysis of randomized tests.
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Table 3. Rejection rate (Fisher exact test) for H0 : pi
L = pi

R (10,000 trials).

Setting # Point Games

Significance Level

5% 10%

Men (1st Serve) 7198 5.06% (0.16) 10.01% (0.20)
Men (2nd Serve) 7198 5.02% (0.23) 10.13% (0.30)
Women (1st Serve) 4108 5.35% (0.22) 10.50% (0.28)
Women (2nd Serve) 4108 4.86% (0.30) 9.64% (0.40)

second serves. As just noted, for point game i the null hypothesis is rejected at the 5%
significance level if either ti ≤ 0.025 or ti ≥ 0.975. Since ti is random, each percentage is
computed for 10,000 trials; the table reports the mean and standard deviation (in paren-
theses) of these trials. For men, for both first and second serves, the (mean) frequency
at which the null is rejected at the 5% significance level is very close to 5%, the level ex-
pected if the null is true.19 For women, the null is rejected at a somewhat higher than
expected rate (5.35%) on first serves, and a slightly lower than expected rate (4.86%) for
second serves.

At the individual level, the rates at which equality of winning probabilities is rejected
at the 5% and 10% significance level are consistent with the theory. These results are,
however, only suggestive. In the next subsection, we report the results of our test of the
hypothesis of interest, that pi

L = pi
R for each point game i.

Aggregate play and the joint null hypothesis

Of primary interest is the joint null hypothesis that pi
L = pi

R for each point game i, and
we use the ti’s generated from the randomized Fisher exact test to construct our test.
Since the ti’s are independent draws from the same continuous distribution, namely
the U[0, 1] distribution, we can test the joint hypothesis by applying the Kolmogorov–
Smirnov (KS) test to the empirical c.d.f. of the t-values. Formally, the KS test is as follows:
The hypothesized c.d.f. for the t-values is the uniform distribution, F(x) = x for x ∈ [0, 1].
The empirical distribution of N t-values, one for each point game, denoted F̂(x), is given
by F̂(x) = 1

N

∑N
i=1 I[0,x](ti ), where I[0,x](ti ) = 1 if ti ≤ x and I[0,x](ti ) = 0 otherwise. Under

the null hypothesis, the test statistic K = √
N supx∈[0,1] |F̂(x)−x| has a known asymptotic

distribution (see Mood, Graybill, and Boes (1974, p. 509)). Our appeal to an asymptotic
distribution at this stage is well justified since there will be thousands of point games
and associated ti’s for each of the joint null hypotheses we consider.

Figure 4(a) shows a realization of an empirical distribution (in red) of t-values for
the Hawk-Eye data for first serves by men; the theoretical c.d.f. is in blue. The empirical
and theoretical c.d.f.’s very nearly coincide. The value of the KS test statistic is K = 0.495

19Since each point game has fewer second serves than first serves, the stochastic nature of the t’s will tend
to be more important for second serves. This is evident in the table from the higher standard deviations
for second serves. Likewise, since we tend to observe fewer serves for women, the standard deviations are
higher for women.
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Figure 4. KS test for men of H0 : pi
L = pi

R ∀i (Hawk-Eye, First Serves).

and the associated p-value is 0.967. The data is typical of the data that equilibrium play
would produce: equilibrium play would generate a value of K at least this large with
probability 0.967. Despite its enormous power, based on 226,298 first serves in 7198
point games, the test does not come close to rejecting the null hypothesis.

The results reported in Figure 4(a) provide strong support for equilibrium play. Since
the t-values are stochastic, the empirical c.d.f. and the KS test p-value reported in Fig-
ure 4(a) are also random. It is natural to question the robustness of the conclusion that
the joint null hypothesis is not rejected to different realizations of the ti’s. To assess its
robustness, we run the KS test many times, each time generating a new realization of
t-values, a new empirical c.d.f. of t-values, a new test statistic K, and a new KS test p-
value. We emphasize that the data—in this case the data for first serves by men—is held
fixed each time the KS test is run.

Figure 4(b) shows the empirical density of the KS test p-values obtained after 10,000
repetitions of the test. To construct the density, the horizontal axis is divided into
100 equal-sized bins [0, 0.01], [0.01, 0.02], � � � , [0.99, 1.0] and so, if 10,000 p-values were
equally distributed across bins, then there would be 100 p-values per bin. The verti-
cal height of each bar in the histogram is the number of p-values observed in the bin
divided by 100. By construction, the area of the shaded region in Figure 4(b) is one, and
hence it is an empirical density. The bins to the left of the vertical lines at 0.05 and at 0.10
contain, respectively, p-values for which the null is rejected at the 5% and 10% level.

Figure 4(b) shows that the conclusion above is indeed fully robust to the realizations
of the t-values. The joint null hypothesis of equality of winning probabilities for first
serves does not even come close to being rejected for the Hawk-Eye data for first serves
by men. In only one instance, (0.01%) of 10,000 trials of the KS test is the null hypothesis
rejected at the 5% level. In only 0.14% of the trials it is rejected at the 10% level. The mean
p-value is 0.690, which is far from the rejection region.

Before proceeding, it is important to emphasize several aspects of our test. First,
it is a valid test in the sense that if the null hypothesis is true (i.e., pi

L = pi
R for

each i), then the p-value obtained from the KS test is asymptotically uniformly dis-
tributed as the number of point games grows large. Second, conditional on any real-
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Figure 5. KS test for men of H0 : pi
L = pi

R ∀i (Hawk-Eye, Second Serves).

ization of the data, there is no reason to expect the KS test p-values obtained from
running the test repeatedly (e.g., as in Figure 4(b)) to be uniformly distributed. Finally,
as the number of serves in each point game grows large, then the intervals U[F(niLS −
1|niS , niL, niR ), F(niLS|niS , niL, niR )] from which the t-values are drawn shrink and the em-
pirical density of the KS p-values collapses to a degenerate distribution.

Figure 5 shows the result of applying our test to the Hawk-Eye data for 86,702 sec-
ond serves by men from 7198 point games. For a typical realization of the t-values, such
as the one shown in Figure 5(a), the joint null hypothesis of equality of winning prob-
abilities is not rejected. Figure 5(b) shows the density of KS test p-values after 10,000
trials. Only for a small fraction of these trials (2.58%) is the joint null rejected at the 5%
level. For second serves as well, the KS test does not come close to rejecting the joint null
hypothesis.20

While the data for both first and second serves is strikingly consistent with the the-
ory, comparing Figures 4(b) and 5(b) reveals that for second serves the conformity to
theory is slightly less robust to the realization of the ti’s. This is a consequence of the
fact that in tennis there are fewer second serves than first serves in each point game.
Thus, the intervals U[F(niLS − 1|niS , niL, niR ), F(niLS|niS , niL, niR )] from which the t-values
are drawn tend to be larger for second serves, and the empirical c.d.f. of t-values is more
sensitive to the realization of the t’s.

Our data also allows a powerful test of whether the play of women conforms to equi-
librium. In the Hawk-Eye data for women, there are 110,886 first serves and 41,376 sec-
ond serves, obtained in 4108 point games. For women, while the empirical and theo-
retical c.d.f.’s of t-values appear to the eye to be close, for many realizations of the t’s
the distance between them is, in fact, sufficiently large that the joint null hypothesis of
equality of winning probabilities is rejected. Figures 6 and 7 show respectively the results
of KS tests of the hypothesis that pi

L = pi
R for all i, for first and second serves. For first

20While the numbers of point games for first and second serves are identical, there are fewer second
serves than first serves in each point game and, therefore, the statistical power of the test is lower for second
serves.
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Figure 6. KS test for women of H0 : pi
L = pi

R ∀i (Hawk-Eye, First Serves).

serves, the null is rejected at the 5% and 10% significance level in 44.73% and 72.70%
of 10,000 trials, respectively. In other words, run once, the test is nearly equally likely to
reject the null as not at the 5% level; three out of four times the test rejects the null at the
10% level.

The results for second serves are more ambiguous. The null hypothesis tends not to
be rejected at the 5% level: in only 16.01% of the trials is the p-value below 0.05.

In sum, male professional tennis players show a striking conformity to the theory
on both first and second serves. The behavior of female professional tennis players con-
forms less closely to the theory, especially on first serves.

The behavior of female professional tennis players, however, conforms far more
closely to equilibrium than the behavior of student subjects in comparable laboratory
tests of mixed-strategy Nash play. Figure 8(a) shows a representative empirical c.d.f. of
50 t-values obtained from applying our test to the data from O’Neill’s (1987) classic ex-
periment in which 50 subjects, in 25 fixed pairs, played a simple card game 105 times. In
the game’s unique mixed-strategy Nash equilibrium, the probability that player i wins

Figure 7. KS test for women of H0 : pi
L = pi

R ∀i (Hawk-Eye, Second Serves).
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Figure 8. KS test of H0 : pi
J = pi

N ∀i (O’Neill’s (1987) experimental data).

a hand is the same when playing the joker card as when playing a number card (i.e.,
pi
J = pi

N ). Nonetheless, for the empirical c.d.f. of t-values in Figure 8(a), the joint null
hypothesis of equality of winning probabilities is decisively rejected, with a p-value of
0.01. The empirical density function in Figure 8(b) shows that rejection of the null at
the 5% significance level is completely robust to the realization of the t-values—at this
significance level the null is certain to be rejected.

Hence, the behavior of female professional tennis players conforms far more closely
to theory than the behavior of student subjects in laboratory experiments.

Expertise and equality of winning probabilities

Next, we consider whether the behavior of better (i.e., higher ranked) players conforms
more closely to theory. The Association of Tennis Professionals (ATP) and the Women’s
Tennis Association (WTA) provide rankings for male and female players, respectively.
Our analysis here is based on the subsample of matches for which we were able to obtain
the receiver’s rank at the time of the match. It consists of 96% of all point games for men,
but since the ranking data was unavailable for women for the years 2005 and 2006, only
69% of the point games for women.21 The median rank for male players is 22 and for
female players is 17.

In a mixed-strategy equilibrium, the receiver’s play equalizes the server’s winning
probabilities. (In the illustrative example in Figure 2, the server’s winning probability is
0.65 for each of his actions only if the receiver follows his equilibrium mixture.) Thus,
to evaluate the effect of expertise on behavior, we partition the data for first serves into
two subsamples based on whether the rank of the player receiving the serve was above or
below the median rank. We say players with a median or higher rank are “top” players; all
other players are “nontop.” The three panels of Figure 9 show the empirical c.d.f.’s of KS-
test p-values when testing the joint null hypothesis of equality of winning probabilities
for each subsample of men and for the sample of all point games for which we could

21The ATP/WTA ranking were obtained from http://www.tennis-data.co.uk/alldata.php.

http://www.tennis-data.co.uk/alldata.php
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Figure 9. KS test for men of H0 : pi
L = pi

R ∀i by receiver’s rank.

obtain the receiver’s rank. Panel (c) is the analogue of Figure 4(b) and shows that the
null of hypothesis that winning probabilities are equalized is not rejected for the sample
of 6902 point games for which we have the receiver’s rank.

Panels (a) and (b) of Figure 9 show that the null hypothesis that winning probabili-
ties are equalized is not rejected when servers face either top or non-top male receivers.
In only 0.39% and 0.15% of the trials is the null rejected at the 5% significance level; p-
values are typically far from the rejection region. Hence, we do not come close to reject-
ing the hypothesis that male receivers act to equalize the server’s winning probability, for
either top or nontop receivers. This result is not surprising given the close conformity of
the data to the theory on the whole sample.

Figures 6 and 7 established that the behavior of female professional tennis players
conformed less neatly to equilibrium. For first serves, the joint null hypothesis of equal-
ity of winning probabilities is rejected at the 5% level in 44.73% of all trials. Figure 10(c)
shows that a similar conclusion holds for the subsample of 2906 point games for which
we were able to obtain the receiver’s rank.

Figures 10(a) and (b) show a striking difference between the play of top and nontop
female receivers: for the subsample of matches in which the receiver is ranked “top” the
joint null hypothesis of equality of winning probabilities does not come close to being
rejected, as shown in panel (a). In contrast, the null is decisively rejected for the sub-
sample in which the receiver is ranked “nontop,” as shown in panel (b). The best female
players, when receiving the serve, do act to equalize the server’s winning probabilities, in

Figure 10. KS test for women of H0 : pi
L = pi

R ∀i by receiver’s rank.
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accordance with equilibrium. To our knowledge, this is the first evidence in the literature
showing that behavior in the field of better players conforms more closely to theory.

Why do both top and nontop male receivers equalize the server’s winning probabil-
ities, while for women only top receivers do? We conjecture that the selection pressure
toward equilibrium is larger for men than for women. A male receiver who fails to equal-
ize the server’s winning probabilities can readily be exploited since men deliver serves
at very high speed. Such a receiver may well not be sufficiently successful to appear in
our data set. The serve in women’s tennis, by contrast, is much slower—fewer serves are
won by aces and the serve is more frequently broken. Return and volley play is relatively
more important in women’s tennis, and a good return and volley player can be success-
ful even if her play when receiving a serve is somewhat exploitable. We find that the best
female players, nonetheless, do equalize the server’s winning probabilities.

Comparing tests

We conclude this section by discussing the differences between our test and the WW test
of the joint null hypothesis that winning probabilities are equalized. Our test is based
on the empirical c.d.f. of the t-values obtained from the randomized Fisher exact test,
which are exactly distributed U[0, 1] under the null hypothesis that pi

L = pi
R for each

point game i. WW’s test is based on the empirical c.d.f.of the Pearson goodness-of-fit
p-values, which are only asymptotically distributed U[0, 1] under the null. In particular,
for each point game i, WW compute the test statistic

Qi =
∑

j∈{L,R}

[(
nijS − nijp̂

i
)2

nijp̂
i

+
(
nijF − nij

(
1 − p̂i

))2

nij
(
1 − p̂i

) ]
,

where p̂i = (niLS + niRS )/(niL + niR ), the server’s empirical win rate, is the maximum like-
lihood estimate of the true but unknown winning probability pi, and nijS and nijF are the

number of serves won and lost in direction j. The test statistic Qi is asymptotically dis-
tributed chi-square with 1 degree of freedom under the null hypothesis as the number
of serves grows large, and the associated p-value is therefore only asymptotically dis-
tributed U[0, 1]. The p-value is not exactly distributed U[0, 1] for any finite number of
serves, and thus, when the number of point games grows large relative to the number of
serves in each point game, the WW test rejects the joint null hypothesis even when it is
true, as shown in Appendix C.

In Section 6, we verify via Monte Carlo simulations that the WW test is not valid when
the number of point games is large relative to the number of serves. We show it is valid
when the number of point games is not large relative to the number of serves, at it was
for the WW data set of 40 point games.22 Monte Carlo simulations show that our test is
more powerful than the WW test when the WW test is valid. Our test, therefore, has two
significant advantages over the WW test: (i) it is valid even when the number of point
games is large, and (ii) it is more powerful than the WW test.

22In favor of the WW test, it makes a deterministic decision—it either rejects the null or not—and hence
the results are easier to interpret, even if it falsely rejects a true null when the number of point games is
large.
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5. Serial independence

We test the hypothesis that the server’s choice of direction of serve is serial independent.
For each point game i, let si = (si1, � � � , si

niL+niR
) be the sequence of first-serve directions,

in the order in which they occurred, where sij ∈ {L, R} is the direction of the jth serve.

Let ri denote the number of runs in si. (A run is a maximal string of identical symbols,
either all L’s or all R’s.) Under the null hypothesis of serial independence, the probability
that there are exactly r runs in a randomly ordered list of niL occurrences of L and niR
occurrences of R is

fR
(
r|niL, niR

) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2

(
niL − 1

r/2 − 1

)(
niR − 1

r/2 − 1

)/(
niL + niR

niL

)

if r is even,(
niL − 1

(r − 1)/2

)(
niR − 1

(r − 3)/2

)
+

(
niL − 1

(r − 3)/2

)(
niR − 1

(r − 1)/2

)/(
niL + niR

niL

)

if r is odd,

for r ∈ {2, � � � , niL + niR}. Let FR(r|niL, niR ) be the associated c.d.f. At the 5% significance
level, the null is rejected if FR(r|niL, niR ) ≤ 0.025 or if 1 −FR(r − 1|niL, niR ) ≤ 0.025, that is,
if the probability of r or fewer runs is less than 0.025 or the probability of r or more runs
as less than 0.025. In the former case, the null is rejected since there are too few runs,
that is, the server switches the direction of serve too infrequently to be consistent with
randomness. In the latter case, the null is rejected as the server switches direction too
frequently.

To test the joint null hypothesis that first serves are serially independent, for
each point game i we draw the random test statistic ti from the U[FR(ri − 1|niL, niR ),
FR(ri|niL, niR )] distribution. Under the joint null hypothesis of serial independence, each
ti is distributed U[0, 1]. We then apply the KS test to the empirical distribution of the
t-values.

Figure 11 shows representative empirical c.d.f.’s of t-values for first serves (left panel)
and for second serves (right panel) for the Hawk-Eye data for men. The KS test rejects
the joint null hypothesis of serial independence, for both first and second serves, with p-
values virtually equal to zero.23 In each case, the empirical c.d.f. lies below the theoretical
c.d.f., and hence the null is rejected as a consequence of too frequent switching, that is,
there are more than the expected number of large t-values.

The empirical density of the KS test p-values that we have provided in prior figures
is omitted for Figure 11 since the p-values are virtually zero for every realization of the
t’s.

Figure 12 shows representative empirical c.d.f.’s of t-values for first and second
serves by women for the Hawk-Eye data. Women also exhibit negative serial correlation

23At the individual player level, serial independence is rejected in point game i at the 5% significance
level if ti ≤ 0.025 or ti ≥ 0.975. For first serves, we reject serial independence as a result too few runs (i.e.,
ti ≤ 0.025) for 2.9% of the point games, and reject it as a result of too many runs (i.e., ti ≥ 0.975) for 7.0% of
the point games.
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Figure 11. KS test for men of H0 : si is serial independent ∀i (Hawk-Eye).

in the direction of serve, for both first and second serves, with the null of serial indepen-
dence rejected at virtually any significance level.

Comparing Figures 11(a) and 12(a), one might be tempted to conclude that women
exhibit more serial correlation in first serves than men since the empirical c.d.f. of t-
values is further from the theoretical one (namely, the 45-degree line) for women. While
this conclusion is correct, as we shall see shortly, it is premature: when the server’s choice
of direction of serve is not serially independent in point game i, then the distribution of
ti will tend to depend on the number of first serves. Since we observe different num-
bers of first serves for men and women and, indeed, different numbers of first serves for
different players, a direct comparison of the c.d.f.’s is not meaningful.

Gender and serial correlation

To determine the degree of serial correlation in first serves, and whether the differ-
ence between male and female players is statistically significant, we compute, for every
point game, the Pearson product-moment correlation coefficient between successive

Figure 12. KS test for women of H0 : si is serial independent ∀i (Hawk-Eye).
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Figure 13. Empirical density of correlation coefficients, first serves.

serves.24 Figure 13 shows the empirical densities of correlation coefficients for male and
female tennis players for first serves.

The mean correlation coefficient for men is −0.086 and for women is −0.150, a sta-
tistically significant difference using a two-sample t-test.25

Table 4 shows the result of a logit regression for first serves in which the dependent
variable is the direction of the current serve and the independent variables are the di-
rection of the prior serve (from the same point game) and the direction of the prior serve
interacted with gender. We use a fixed effect logit, using only within point game varia-
tion, to cancel out variation in the equilibrium mixture across point games.26

The coefficient estimate on Right t−1 × male is statistically significant and positive,
indicating that men exhibit less negative serial correlation in their choices than women.
The estimated magnitude of serial correlation is strategically significant. To illustrate,
consider a female player who (unconditionally) serves right and left with equal proba-
bility. If the prior serve was right, the estimates predict that the next serve will be right

Table 4. Serial correlation and gender.

Right t−1 −0.659
S.E. (0.014)

Right t−1 × male 0.329
S.E. (0.017)

Nserves 325,394
Fixed effect point game

24When all serves are in the same direction we take the correlation coefficient to be one.
25The two-sample t-test yields a test statistic of −14.16 and p-value of 4.57 × 10−39.
26Estimating the fixed effect logit regression requires that point games in which all first serves are in the

same direction be dropped from the sample.
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with probability 0.418 if the server is male but will be right with probability only 0.341 if
the server is female.27

Expertise and serial correlation

We now provide additional evidence that the behavior of better players conforms more
closely to optimal and equilibrium play. Optimal play for the server requires that the
direction of serve be serially independent, since serially correlated play is predictable
and, therefore, exploitable. Here, we show that higher ranked male players exhibit less
serial correlation than lower ranked players, while the degree of serial correlation does
not depend on rank for women. This provides additional evidence, consistent with our
earlier conjecture, that there is a strong selection effect against men who depart from
equilibrium play.

Table 5 shows the results of logit regressions in which the dependent variable is the
direction of the current first serve and the independent variables are the direction of
the prior first serve (in the same point game), the direction of the prior serve interacted
with the server’s rank, and the direction of the prior serve interacted with the receiver’s
rank.28 We measure rank as proposed by Klaassen and Magnus (2001), transforming the
ATP/WTA rank of a player into the variable R̃ where R̃= 8− log2(ATP/WTA rank). Higher

Table 5. Serial correlation and player rank.

Men Women

Right t−1 −0.577 −0.689
S.E. (0.027) (0.053)
Right t−1 × R̃server 0.067 0.008

S.E. (0.005) (0.008)
Right t−1 × R̃receiver −0.002 0.004

S.E. (0.005) (0.008)

Nserve 207,418 77,508
Npointgame 6887 2901
Fixed effect point game point game

27In particular, on the next serve the probability of a serve to the right is, for males and females, respec-
tively,

Pr(Right t |Right t−1, male ) = exp(−0.659 + 0.329)
1 + exp(−0.659 + 0.329)

= 0.418,

and

Pr(Right t |Right t−1, female ) = exp(−0.659)
1 + exp(−0.659)

= 0.341.

28In Section 4, we focused on the ranks of receivers since it is the receiver’s mixture that determines
whether server’s winning probabilities are equalized.
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ranked players have higher values of R̃, for example, the players ranked first, second,
third have values of R̃ equal to 8, 7, and 6.415, respectively.29

For men, the coefficient on Right t−1 × R̃server is positive and statistically significant.
Men exhibit less correlation in their direction of serve as they are more highly ranked.
For women, by contrast, the server’s rank is statistically insignificant. As expected, the
rank of the receiver is statistically insignificant for both men and women.

6. Statistical power and a reevaluation

In this section, we use Monte Carlo simulations to study the properties of the KS test of
the joint hypothesis of equality of winning probabilities. We show that the test is valid
when the empirical c.d.f. is generated from the Pearson goodness-of-fit test p-values, so
long as the number of point games is not too large (as it was in WW). If, however, the
number of point games is large, then the same test rejects the null even when it is true,
and is thus not valid. We show, by contrast, that if the empirical c.d.f. is generated from
the randomized Fisher exact test t-values as we propose, then the test is valid even when
the number of point games is large.

We show further that our KS test based on the randomized Fisher t-values is more
powerful than the two tests used in the prior literature: the KS test based on the Pearson
goodness-of-fit p-values and the Pearson joint test.30 A more powerful test has the po-
tential to reverse the conclusions from WW (for men) and HHT (for men, women, and
juniors) that the win rates in the serve and return play of professional tennis players are
consistent with equilibrium. We show that the conclusions of WW and HHT for men are
robust. However, the more powerful test does not support HHT’s finding that the serve
and return play of female professional tennis players and of players in junior matches is
consistent with theory.

The power of our test

To evaluate the power of the KS test based on the randomized Fisher exact test t-values,
we frame our discussion in terms of the hypothetical point game in Figure 2. Recall that
in the game’s mixed-strategy Nash equilibrium, the receiver chooses L with probabil-
ity 2/3. Denote by θ the probability that the receiver chooses L. Our null hypothesis H0

that pL = pR can equivalently be viewed as the null hypothesis that θ = 2/3, that is, the
receiver follows his equilibrium mixture, thereby equalizing the server’s winning prob-
abilities. Denote by Ha(θ) the alternative hypothesis that the receiver chooses L with
probability θ. Then the server’s winning probabilities are

pL(θ) = 0.58θ+ 0.79(1 − θ)

29As described in Klaassen and Magnus (2014, pp. 107–110), the measure R̃(ATP rank) = 8 −
log2(ATP rank) can be interpreted as a (smoothed) measure of the “expected” round a player reaches in
a tennis tournament. A player ranked 1 has R̃ = 8, that is, he reaches the final round (round 7) and wins.
A player ranked 2 has R̃ = 7, that is, he reaches the final round and loses. A player ranked 4 has R̃ = 6,
that is, he reaches the semifinal and loses, and so on. A player ranked 128 has R̃ = 1, that is, he enters the
tournament and does not advance to the next round.

30See, for example, Table 1 and Figure 2 in WW.
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Table 6. Rejection rate for H0 at the 5% level, N = 7000.

True θ KS based on t’s KS based on p’s Pearson joint test

0.65 0.850 1.00 0.692
0.66 0.221 1.00 0.650
2/3 0.047 1.00 0.654
0.67 0.089 1.00 0.643
0.68 0.662 1.00 0.682

and

pR(θ) = 0.73θ+ 0.49(1 − θ).

We conduct Monte Carlo simulations to compare the power of our test, that is, the prob-
ability that H0 is rejected when Ha(θ) is true, to the tests used in the prior literature.

Since we have data for 7198 point games for men, we first simulate data for 7000
point games with payoffs as given above. In the simulated data every point game has 30
serves, and serves in each direction are equally likely.31 Table 6 shows, as θ varies near
its equilibrium value of 2/3, the probability that the joint null hypothesis H0 : pi

L = pi
R

∀i ∈ {1, � � � , 7000} is rejected at the 5% significance level when Ha(θ) : pi
L = pL(θ) and

pi
R = pR(θ) ∀i ∈ {1, � � � , 7000} is true, for several different tests.

The first column of Table 6 shows the probability of rejecting the null when using
the KS test based on the randomized Fisher exact test t-values. Note that the test is valid.
Specifically, if the null is true, that is, θ = 2/3, then the null is rejected with probability
approximately 0.05. By contrast, if the null is false, for example, Ha(0.65) is true, that is,
the server’s true winning probability is pL(0.65) = 0.6535 for serves left and pR(0.65) =
0.6460 for serves right, then H0 is rejected at the 5% level with probability 0.850. The
second column of Table 6 shows that the KS test based on the Pearson goodness-of-
fit p-values is not valid: it rejects the null hypothesis at the 5% significance level with
probability 1 when the null is true. The third column shows that the Pearson joint test
(see WW, p. 1527, for a description of this test) is also not valid.

Figure 14(b) shows the power of KS test based on the randomized Fisher exact test
t-values for all values of θ. It shows that our test, coupled with a large data set, yields a
powerful test of the joint null hypothesis of equality of winning probabilities. The power
functions for the Pearson joint test and the KS test based on the p-values from the Pear-
son goodness-of-fit test are omitted since, as shown in Table 6, neither test is valid.32

Figure 14(a) compares the power of the three tests discussed above for a sample size
of 40 point games, the number of point games in WW’s data set. It shows that the prob-
ability that the joint null hypothesis H0 : pi

L = pi
R ∀i ∈ {1, � � � , 40} is rejected at the 5%

significance level when Ha(θ) : pi
L = pL(θ) and pi

R = pR(θ) ∀i ∈ {1, � � � , 40} is true. The

31Simulating the data with the hypothetical point game’s 8/15 equilibrium mixture probability on left
has no impact on the results.

32As a robustness check, Appendix D in the Online Supplementary Material reproduces the results re-
ported here, but where the simulated data matches the characteristics of the observed data, point game by
point game, rather than just in aggregate.
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Figure 14. Power functions for KS test based on t-values (solid), p-values (dotted), and Pearson
joint (dashed).

dotted-line power function (the curve at bottom) shows the probability of rejecting H0

when Ha(θ) is true for the KS test based on the empirical distribution of the 40 p-values
from the Pearson goodness-of-fit test.33 Importantly, it shows that this test is valid for
the WW sample. The dashed-line power function (middle curve) is for the Pearson joint
test, and is the analogue of the power function shown in Figure 4 of WW. The solid-line
power function (curve at top) is for the KS test based on the empirical distribution of 40
t-values from the randomized Fisher exact test. This last test is, by far, the most powerful.
If, for example, Ha(0.6) is true, then the KS test based on the t’s rejects H0 at the 5% sig-
nificance level with probability 0.131, while the Pearson joint test and the KS test based
on the Pearson goodness-of-fit p-values reject H0 with probability 0.085 and 0.055, re-
spectively.

Reanalysis of prior findings

The KS test we propose, based on the randomized Fisher exact test t-values, is valid
for all sample sizes and is more powerful than the existing tests used in the literature.
Given its greater power, our test has the potential to overturn results in the prior litera-
ture based on less-powerful tests.

Using the KS test based on the Pearson goodness-of-fit p-values, WW found that the
joint null hypothesis of equality of winning probabilities did not come close to being
rejected. Figure 15(a) shows one realization of the empirical distribution of Fisher ex-
act test t-values for the WW data. For this realization, the value of the test statistic is
K = 0.685 and the associated p-value is 0.737. Figure 15(b) shows that the KS test p-
values after 10,000 trials are concentrated around 0.6, and hence are far from the rejec-
tion region. The joint null hypothesis of equality of winning probabilities is not rejected
even once at the 5% significance level. Thus, the new test confirms the WW finding that

33For the power functions reported in Table 6 and Figure 14, the data is simulated 10,000 times for each
value of θ ∈ {0, 0.01, 0.02, � � � , 0.99, 1} and for θ = 2/3.
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Figure 15. KS test of H0 : pi
L = pi

R ∀i (WW data).

the joint null hypothesis of equality of winning probabilities for first serves does not
come close to being rejected for male professional tennis players.

HHT studies a data set comprised of ten men’s matches, nine women’s matches, and
eight junior’s matches. The men’s and women’s matches are all from Grand Slam finals,
while the juniors matches include the finals, quarterfinals, and second-round matches
in both tournaments and Grand Slam matches. HHT found, using the KS test based on
Pearson p-values, that the joint null hypothesis of equality of winning probabilities is
not rejected for any one of their data sets, or all three jointly. The KS statistics are 0.778
for men (p-value 0.580), 0.577 for women (p-value 0.893), 0.646 for juniors (p-value
0.798), and 0.753 (p-value 0.622) for all 27 matches or 108 point games combined. We
show that this conclusion is robust for men, but not for women and juniors, to using the
more powerful test based on the t-values.

Figure 16(a) shows, for the HHT men’s data, a representative empirical c.d.f. of t-
values (left panel) and the empirical distribution of the p-values (right panel) obtained
from 10,000 trials of the KS test based on the randomized Fisher t-values. The joint null
hypothesis is not rejected once at the 5% level. Hence, the more powerful test supports
HHT’s findings for men.

Figures 16(b) and (c) show for women and juniors, by contrast, the empirical dis-
tributions of p-values are shifted sharply leftward (relative to the one for men) and the
same joint null hypothesis is frequently rejected. For women, for example, it is rejected
in 18.13% of 10,000 trials at the 5% level and in 47% of all trials at the 10% level. The left-
ward shift of the empirical density of the p-values is even more striking for juniors. For
that data, the joint null is rejected at the 5% level in 49.18% of the trials and at the 10%
level in 77.28% of the trials.

Thus, the greater power of the KS test based on the t-values confirms HHT’s conclu-
sion for men, but overturns their conclusions for women and juniors.

7. Conclusion

We conclude by quantifying the strategic consequences of the failure of female players
to perfectly equalize the server’s winning probabilities. Recall that in the Hawk-Eye data,
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(a)

(b)

(c)

Figure 16. (a) KS test for men of H0 : pi
L = pi

R ∀i (HHT data). (b) KS test for women of
H0 : pi

L = pi
R ∀i (HHT data). (c) KS test for Juniors of H0 : pi

L = pi
R ∀i (HHT data).

for a sample of 4108 point games of first serves by women, the KS test rejects the joint
null hypothesis that winning probabilities are equalized in 44.73% of the trials (see Fig-
ure 6). To quantify the strategic consequences, we exploit the illustrative point game in
Figure 2. We first identify the deviation from equilibrium play by receivers that is con-
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sistent with the 44.73% rejection rate in 4108 point games. We then identify the increase
in the probability of winning the match a player can obtain by exploiting the receiver’s
departure from equilibrium play when serving, while continuing to play equilibrium
herself when receiving.

We simulate data for 4108 point games, with 30 serves per point game, under the
hypothesis that servers chooses L with equilibrium probability 8/15, while receivers
chooses L with probability θ. Were all receivers to follow the equilibrium mixture, choos-
ing L with probability θ = 2/3, then the probability that the server wins the point is the
same for both directions, that is, pL(2/3) = pR(2/3) = 0.65, and the KS test of the joint
null hypothesis that pi

L = pi
R for i ∈ {1, � � � , 4108} is rejected at the 5% level in 5% of the

trials. The failure of receivers to equalize winning probabilities implies receivers either
underplay or overplay L relative to its equilibrium frequency. Monte Carlo simulations
show that θ′ = 0.6532 and θ′′ = 0.6768 are each consistent with the observed 44.73% re-
jection rate.

Suppose that all receivers underplay L, following the mixture θ′ = 0.6532. The best
response for servers is to choose L with probability 1, thereby increasing the probability
of winning a point from 0.65 to

pL(0.6532) = 0.58(0.6532) + 0.79(1 − 0.6532) = 0.65283.

In a match of two identical players, the probability payoffs in Figure 2 govern the players’
payoffs regardless of which player is serving. Consider such a match, where (i) one player
deviates from equilibrium, choosing θ = 0.6532 when receiving, and (ii) his opponent
exploits the deviating player when serving (choosing L with probability 1) but follows
equilibrium when receiving (choosing θ = 2/3). In such a match, the exploiting player
wins a point with probability 0.65283 when serving, while the deviating player wins a
point with probability 0.65 when serving. One can show that the exploiting player wins
increases her probability of winning a three-set match from 0.5 to 0.51393, an increase
of 2.786%.34 This appears to be a strategically and economically significant: obtaining
a similar increase in the probability of winning a match by other means could easily
require substantially better coaching, substantially more practice, or substantially more
raw talent.35

This back-of-the-envelope calculation overestimates the strategic consequences of
the nonequilibrium play hypothesized. It assumes the server immediately recognizes
a receiver’s departure from equilibrium play. More important, it assumes that servers
can fully exploit (via switching to a pure strategy) receivers who departs from equilib-
rium play, which is surely unrealistic. In practice, a receiver would change his play if the
server adopted a pure strategy. In order to avoid tipping off the receiver, a sophisticated
server would exploit receivers by switching to a pure strategy only on the most impor-

34The calculation is performed by https://hiddengameoftennis.com/tennis-calculators-markov-win/.
35The analogous calculation shows that against a receiver who chooses θ′′ = 0.6768, a server can raise her

probability of winning a three-set match to 0.51195, a 2.39% increase. The benefit of exploiting a nonequi-
librium receiver is even greater in a five-set match, as played in men’s tennis.

https://hiddengameoftennis.com/tennis-calculators-markov-win/
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Table A.1. Number of serves and point games after data cleaning.

Female Male

1st 2nd N 1st 2nd N

All 147,000 57,005 4657 284,109 113,757 7951
(i) Scoreline 115,014 44,082 4511 230,305 91,341 7690
(ii) Server? 113,125 43,387 4511 228,802 90,739 7690
(iii) 1st or 2nd? 113,121 42,180 4511 228,785 87,732 7690
(iv) ≥10 serves 110,886 41,376 4108 226,298 86,702 7198

tant points.36 See https://www.youtube.com/watch?v=ja6HeLB3kwY for Andre Agassi’s

description of how he exploited Becker by “reading Becker’s tongue.”

Appendix A: Data cleaning

There were several steps in the cleaning the data. Table A.1 shows the numbers of serves

remain after each step. As noted in the text, we first eliminated from our analysis every

game in which the scoreline did not evolve logically. Row (i) shows the number of first

serves, second serves, and point games that remain.37 We then eliminated those serves

in which there is ambiguity regarding which player is serving (Row (ii)) and those in

which there is ambiguity regarding whether the serve is a first or second serve (Row (iii)).

Finally, if a point game has fewer than 10 first serves, then we drop the point game and

also the associated point game of second serves (Row (iv)).38

Appendix B: A deterministic test

Here, we describe and study the properties of a deterministic test, suggested by Hirano

(personal communication), of the joint null hypothesis that winning probabilities are

equal for serves to the left and serves to the right. Hereafter, we refer to this test as the

“Hirano deterministic test.” While the test is valid (by construction), we show that it has

substantially less power than the KS test based on the randomized Fisher exact test-t

values that we develop and employ in the body of the paper. The lower statistical power

of the Hirano deterministic test means that it sometimes fails to reject a null hypothesis

when the same null is rejected by the KS test based on the randomized Fisher exact test-t

values, as we show below.

36The importance of a point can be measured as the difference in the probability of winning the match
that results from winning rather than losing the current point.

37A point can be played more than once, for example, after a set, after a successful challenge of the
umpire’s decision (on the serve or later in the rally), or after a member of the audience disturbs play. When
the same point is played more than once, we use only the serve direction of the first play.

38Our results are robust to the choice of restrictions (e.g., more than 10, 20, or 30 serves).

https://www.youtube.com/watch?v=ja6HeLB3kwY
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The test

We test the joint null hypothesis that pi
L = pi

R for each point game i ∈ {1, � � � , N }.39 Hi-
rano’s deterministic test is based on the empirical winning frequencies for serves left and
serves right, denoted for point game i by p̂i

L = niSL/n
i
L and p̂i

R = niSR/n
i
R, respectively.

The Hirano test has three steps. Step I is to compute the test statistic X̂ = ∑N
i=1 |p̂i

L− p̂i
R|,

which is the sum of the absolute differences of the empirical winning frequencies over
N point games. Let nS = (n1

S , � � � , nNS ), nL = (n1
L, � � � , nNL ), and nR = (n1

R, � � � , nNR ) be the
marginals for the N point games. Let F|nS ,nL,nR(X ) denote the distribution of X , the sum
of the absolute values of the differences between the left- and right-winning frequencies,
conditional on the marginals and under the null hypothesis. Then the two-sided p-value
for X̂ is

p= 2 min
(
F|nS ,nL,nR(X̂ ), 1 − F|nS ,nL,nR(X̂ )

)
.

Since F|nS ,nL,nR(X ) is unknown, in Step II we generate B simulated values of the test
statistic under the null hypothesis. Recall that in point game i the probability of k win-
ning serves to the left, under the null hypothesis that pi

L = pi
R and given the marginals

niS , niL, and niR, is given by

f
(
k|niS , niL, niR

) =

(
niL
k

)(
niR
niRS

)
(
niL + niR

niS

) ,

where niRS = niS − k. Hence, f (k|niS , niL, niR ) is the probability that p̂i
L = k/niL and p̂i

R =
(niS − k)/niR are the winning frequencies for serves left and serves right. Simulating em-
pirical winning frequencies for each of the N point games according to these distribu-
tions, we obtain a simulated value for the test statistic. Let X̂∗

|nS ,nL,nR
(j) denote the jth

simulated value of the test statistic. Finally, in Step III, following MacKinnon (2009), the
equal-tailed simulated p-value for X̂ is40

p∗ = 2 min

(
1
B

B∑
j=1

I
(
X̂∗

|nS ,nL,nR
(j) ≤ X̂

)
,

1
B

B∑
j=1

I
(
X̂∗

|nS ,nL,nR
(j) > X̂

))
.

Steps I and II were suggested by Hirano, and Step III follows MacKinnon (2009).
Table B.1 shows the test statistics, with the associated simulated p-values and sam-

ple sizes, for male and female players and first and second serves, of the test of the null
hypothesis that winning probabilities are equalized.

For male players, Hirano’s deterministic test reaches the same conclusions as the KS
test based on the randomized Fisher exact test t-values: the joint null hypothesis that

39We drop point games in which either niL = 0 or niR = 0. By comparison, our KS test based on the ran-
domized Fisher ti values calls for a draw ti ∼ U[0, 1] for such point games, which reflects that they are not
informative about the null.

40MacKinnon (2009) calls this the equal-tailed “bootstrap” p-value.
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Table B.1. Deterministic tests of H0 : pi
L = pi

R ∀i for various subsamples, B = 1000.

Sample

Men Women

First Serve Second Serve First Serve Second Serve

All X̂ 1090.5 1890.7 704.5 1098.9∗
p∗ 0.613 0.540 0.252 0.024
N 7188 6131 4095 3483

With Ranking X̂ 1045.9 1813.5 489.0 784.0
p∗ 0.902 0.618 0.493 0.145
N 6892 5856 2902 2486

Top Receiver X̂ 539.2 915.4 244.9 385.9
p∗ 0.240 0.536 0.502 0.362
N 3462 2926 1461 1254

Nontop Receiver X̂ 506.6 898.0 244.1 398.1
p∗ 0.303 0.932 0.766 0.265
N 3430 2930 1441 1232

winning probabilities are equalized is not rejected for either the whole sample or any
of the subsamples. For female players, Hirano’s deterministic test rejects the joint null
for second serves, but it does not reject the null for nontop receivers, as did the KS test
based on the Fisher exact test t-values. All these results are consistent with the smaller
statistical power of Hirano’s deterministic test, which we establish in the next section,
compared to the KS test based on the randomized t-values.

The power of the test

We now study the power of Hirano’s deterministic test, performing for this test the same
simulations reported in Section 6 for the KS test based on the randomized Fisher exact
test t-values. Figure B.1 is the analog of Figure 14. The solid lines reproduce the power
functions for the KS test based on the randomized Fisher exact test t-values.

The power functions for Hirano’s deterministic test (dashed line) are generated as
follows. Let θ ∈ [0, 1]. We first simulate a random sample under the alternative hypoth-
esis Ha(θ) : pi

L = pL(θ) and pi
R = pR(θ) ∀i ∈ {1, � � � , N }. Let X̂ = ∑N

i=1 |p̂i
L − p̂i

R| be the
associated value of the test statistic, and let nS , nL, and nR be the associated vectors
of marginal distributions. We then simulate 1000 values of the test statistic under the
null hypothesis that pi

L = pi
R ∀i ∈ {1, � � � , N }. Let F̂∗

|nS ,nL,nR
(X ) be the empirical c.d.f. of

the simulated test statistic. The null hypothesis is rejected at the 5% significance level if
either F̂∗

|nS ,nL,nR
(X̂ ) ≤ 0.025 or 1 − F̂∗

|nS ,nL,nR
(X̂ ) ≤ 0.025, that is, if the realized value of

the test statistic for the simulated sample is in the tails of the c.d.f. of the simulated test
statistic. The power function for the deterministic test is the probability that the null is
rejected when Ha(θ) is true.41

41For the power functions reported in Figure B.1 and Table B.2, when N = 40 and when N = 7000, the
data is simulated 10,000 times and 1000 times, respectively, for each value of θ ∈ {0, 0.01, 0.02, � � � , 0.99, 1}
and for θ = 2/3.
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Figure B.1. Power functions for the deterministic test and for the KS test based on t-values.

It is evident from Figure B.1 that Hirano’s deterministic test has substantially less
power, for both small and large samples. These results demonstrate the usefulness of the
test we develop in the body of the paper. Given the lower power of Hirano’s deterministic
test, unsurprisingly it fails to reject the null for some subsamples for which the KS test
based on the randomized t-values does reject.

Table B.2 shows that Hirano’s deterministic test is especially low powered, in com-
parison to our KS test based on the randomized Fisher exact test t-values, in the neigh-
borhood of the null hypothesis.

Appendix C

This Appendix has three parts. The first part proves that when the null hypothesis
pi
L = pi

R is true for point game i, then the randomized Fisher Exact test value ti is dis-
tributed U[0, 1]. The second part shows that the randomized Fisher exact test ti’s con-
tinues to be distributed U[0, 1] even if there is serial correlation in the direction of the
serve. Finally, the third part demonstrates that the KS test, based on the p-values from
the Pearson goodness-of-fit test, will fail when the number of point games grows large
while the number of serves per point game is held fixed.

Table B.2. Rejection rate for H0 at the 5% level, N = 7000.

True θ KS based on t’s Deterministic X̂ = ∑N
i=1 |p̂i

L − p̂i
R|

0.65 0.997 0.052
0.66 0.460 0.051
2/3 0.046 0.057
0.67 0.153 0.056
0.68 0.964 0.043
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Proof that ti ∼U[0, 1] under the null

Assume that pi
L = pi

R = p. As shown by Fisher (1935), the random variable niLS , with
support {niLS , niLS + 1, � � � , niL} and where niLS = max{niS − niR, 0}, has p.d.f.,

f
(
niLS|niS , niL, niR

) =

(
niL
niLS

)(
niR
niRS

)
(
niL + niR

niS

) ,

and c.d.f.,

F
(
niLS|niS , niL, niR

) =
niLS∑

k=max{niS−niR,0}

f
(
k|niS , niL, niR

)
.

Let ti be the random test statistic defined, as described in Section 4, by

ti ∼
{
U

[
0, F

(
niLS|niS , niL, niR

)]
if niLS = niS − niR,

U(F
(
niLS − 1|niS , niL, niR

)
, F

(
niLS|niS , niL, niR

)
] otherwise.

We prove that ti is distributed U[0, 1].
The following claim holds for any discrete random variable, and thus it holds in our

context as well.

Claim. Let X be a discrete random variable with support {x1, � � � , xK }, where x1 < x2 <

· · · < xK , with p.d.f. f (xk ) > 0 and associated c.d.f. F(xk ). Let t be the random variable
defined by

t ∼
{
U

[
0, F(x1 )

]
if X = x1,

U(F(xk−1 ), F(xk )] if X = xk.

Then t is distributed U[0, 1].

Proof. First, note that the support of t is the interval [0, 1] since the union of the inter-
vals [0, F(x1 )], (F(x1 ), F(x2 )], � � � , (F(xK−1 ), F(xK )] is [0, 1]. Furthermore, since these
intervals are disjoint, then any z ∈ [0, 1] is an element of exactly one interval.

Let z ∈ [0, 1] be arbitrary. We need to show that Pr{t ≤ z} = z. If z ≤ F(x1 ), then

Pr{t ≤ z} = Pr{0 ≤ t ≤ z|X = x1}f (x1 ) = z

F(x1 )
f (x1 ) = z.

If z > F(x1 ), then there is a unique k′ > 1 such that z ∈ (F(xk′−1 ), F(xk′ )]. Then

Pr[t ≤ z] = F(xk′−1 ) + Pr{xk′−1 < t ≤ z}

= F(xk′−1 ) + Pr{t ≤ z|X = xk′ }f (xk′ )
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= F(xk′−1 ) + z − F(xk′−1 )
F(xk′ ) − F(xk′−1 )

f (xk′ )

= z.

This completes the proof.

The proof requires that t be drawn from U(F(xk−1 ), F(xk )] with probability f (xk ).
In our context, the c.d.f. of interest is F(niLS|niS , niL, niR ). If the null hypothesis that pi

L =
pi
R = p is not true, then the probability ti is drawn from

U
(
F

(
niLS − 1|niS , niL, niR

)
, F

(
niLS|niS , niL, niR

)]
need not be f (niLS|niS , niL, niR ) as niLS need not be distributed according to Fisher’s for-
mula. The ti value might, for example, be drawn from the interval [0, niLS ] with probabil-
ity greater than f (niLS|niS , niL, niR ).

Serial correlation and the randomized Fisher exact test

We show that the t-values in the randomized Fisher exact test remain uniformly dis-
tributed even when the server exhibits serial correlation in the direction of the serve.
Hence, our test of the null that pi

L = pi
R ∀i is not undermined by the presence of serial

correlation in the direction of the serve that we find in our data.
We need to show that the formula for the Fisher exact test

f (nLS|nS , nL, nR ) =

(
nL
nLS

)(
nR
nRS

)
(
nL + nR

nS

)

continues to hold if the server exhibits serial correlation in the direction of serve.42 As-
sume that the number of winning serves to the left, conditional on the number of left
serves, is independent of the number of winning serves to the right, conditional on the
number of right serves, that is,

P(nLS , nRS|nL, nR ) = P(nLS|nL )P(nRS|nR ).

A simple example of a DGP that would satisfy this assumption is that the server alter-
nates between serves left and serves right.43 More generally, the assumption is satisfied
if the probability of a serve left or right depends only on the history of directions of past
serves.

42For notational convenience, we suppress the index i for the point game.
43This, of course, would be inconsistent with equilibrium play.
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We now show that Fisher’s formula holds given the assumption above. We have
that

f (nLS|nS , nL, nR ) = P(nLS , nRS , nL, nR )
P(nS , nL, nR )

= P(nLS , nRS , nL, nR )
P(nS , nL, nR )

P(nL, nR )
P(nL, nR )

= P(nLS , nRS|nL, nR )
P(nS|nL, nR )

.

By the conditional independence assumption, we have

P(nLS , nRS|nL, nR ) = P(nLS|nL )P(nRS|nR )

=
(
nL
nLS

)
pnLS (1 −p)nL−nLS

(
nL
nRS

)
pnRS (1 −p)nR−nRS ,

where the second equality follows from the null hypothesis that pL = pR = p. Likewise,
we have

P(nS|nL, nR ) =
(
nL + nR

nS

)
pnS (1 −p)nL+nR−nS .

Thus,

P(nLS , nRS|nL, nR )
P(nRS|nL, nR )

=

(
nL
nLS

)(
nR
nRS

)
(
nL + nR

nS

) ,

which completes the proof.

Failure of the KS test based on the Pearson p-values

We show that WW’s test of the equality of winning probabilities, that is, the KS test based
on the p-values from the Pearson goodness-of-fit test, fails when the number of point
games grows large, while at the same time, the number of serves per point game is fixed.
It fails as, under the null hypothesis, the empirical c.d.f. of p-values converges to a dis-
crete distribution rather than the U[0, 1] distribution.

We first prove that the test fails in the simpler setting of testing that each coin in a
collection of N coins is fair. In this discussion, a coin is the analogue of a point game and
a toss of the coin is the analogue of a serve in the point game. We consider coins rather
than point games since the probability of a Heads is p(H ) = 0.5 under the null hypoth-
esis, whereas the probability of winning a point on a serve is unknown. This simplifies
the explanation of why the KS test based on the Pearson p-values is not valid when N ,
the number of coins (or point games) grows large, while the number of coin tosses (or
serves) is fixed.
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Figure C.1. Theoretical c.d.f.’s of binomial and Pearson p-values for H0 : pH = 0.5.

The theoretical c.d.f. of the binomial p-values for the null hypothesis that a single
coin tossed n = 100 times is fair is the solid line in Figure C.1.44 The theoretical distribu-
tion of the Pearson goodness-of-fit p-values when testing the null hypothesis, after 100
tosses, that the coin is fair is the dashed line and is constructed as follows: Let nH and
nT denote the number of heads and tails, respectively, after n tosses of the coin. The test
statistic is

Qn = (nH − n/2)2

n/2
+ (nT − n/2)2

n/2
,

where n/2 is the expected number of each outcome after n tosses. Under the null hy-
pothesis, Qn is asymptotically distributed chi-square with 1 degree of freedom (χ2(1))
as n grows large. Let F(x; 1) denote the c.d.f. of the χ2(1) distribution. If q̂n is the real-
ized value of Qn, then the associated p-value is 1 − F(q̂n; 1). If nH = 45, for example,
then the binomial p-value is 0.3628 and Pearson p-value is 0.3173 (since q̂100 = 1.0).
Figure C.1 illustrates that the probability of a Pearson p-value of 0.3173 or less is 0.3682.

Both c.d.f.’s in Figure C.1 approach the U[0, 1] distribution as n grows large, but both
are discrete for finite n.

Suppose next that we have many independent coins and for each coin i we obtain a
Pearson p-value pi after n = 100 tosses. As the number N of coins approaches infinity,

44Recall that a p-value is the probability of obtaining a test result at least as extreme as the result actually
observed, when the null hypothesis is true. The theoretical c.d.f. of the binomial p-values is exact: for each
possible realized value x of a p-value, the probability of a p-value less than or equal to x is itself x. This
means that the “steps” on the c.d.f. of binomial p-values fall on the 45-degree line.
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by the Glivenko–Cantelli theorem the empirical distribution of N Pearson p-values ap-
proaches the (discrete) theoretical distribution of Pearson p-values shown above. The
maximal distance between the theoretical c.d.f. of the Pearson p-values and the c.d.f. of
the uniform distribution approaches 0.0796.45 Thus, as N approaches infinity the max-
imal distance between the empirical c.d.f. of Pearson p-values and the uniform c.d.f.
approaches 0.0796, and the KS test statistic approaches K = 0.0796

√
N . By Mood, Gray-

bill, and Boes (1974, Theorem 1, p. 508), the limiting distribution of the KS test statistic
is

H(x) = 1 − 2
∞∑
j=1

(−1)j−1e−2j2x2
for x > 0.

Hence, H(0.0796
√
N ) approaches one as N approaches infinity. The null hypothesis

that each of N coins is fair is rejected at any significance level, even though the null
is true.

Suppose next that we have a pair of coins, a “Left” coin and a “Right” coin, and
the coins have probabilities pL(H ) and pR(H ), respectively, of coming up heads when
tossed. Testing the hypothesis that pL(H ) = pR(H ) = p(H ), after nL tosses of the left
coin and nR tosses of the right coin, is exactly analogous to testing the hypothesis that
pi
L = pi

R = pi, that is, winning probabilities are equalized, in a single point game i, after
niL and niR serves left and right. As in the example above, the Pearson p-value has a dis-
crete distribution (which depends on the true, but unknown, value of p(H )) under the
null hypothesis.46 As the number of pairs of coins approached infinity, the empirical dis-
tribution of Pearson p-values will approach its theoretical distribution. The KS test will
reject the null hypothesis that pL(H ) = pR(H ) for every pair of coins in the collection.

The KS test based on the randomized Fisher exact t-values, by contrast, is a valid
test for any number N of coins and tosses n (or point games and serves). This follows
since, under the relevant null hypothesis—the coins are fair or winning probabilities
are equal for serves in each direction—the randomized Fisher exact t-values are exactly
and continuously distributed U[0, 1], as established at beginning of this Appendix. As N
grows large, the empirical c.d.f. approaches the U[0, 1] distribution.

In both examples above, the collections considered were homogeneous under the
null: in the first example, each coin in the collection was fair, while in the second exam-
ple each pair of coins had the same probability p(H ) of heads. In the Hawk-Eye data,
the point games are heterogenous, with pi varying across i, and hence the theoretical
distribution of the Pearson p-value will vary with i as well. Nonetheless, there is no rea-
son to expect under the null hypothesis pi

L = pi
R ∀i that the empirical distribution of

Pearson p-values will approach the U[0, 1] distribution as the number of point games
grows large.

The Monte Carlo simulations reported in Appendix C study the behavior of the KS
test when point games are heterogenous, with winning probabilities that match those
of the Hawk-Eye data. The results reported there show that when there are 7000 point

45The maximum distance is at the first “jump down” of the Pearson c.d.f. on the right- hand side.
46See Section 4 (subsection on Comparing Tests) for a description of the Pearson test.
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games, the KS test based on the Pearson p-values rejects the null hypothesis that win-
ning probabilities are equalized for serves in different directions, even when the null is
true.
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