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Speech2EEG: Leveraging Pretrained Speech
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Abstract— Identifying meaningful brain activities is criti-
cal in brain-computer interface (BCI) applications. Recently,
an increasing number of neural network approaches have
been proposed to recognize EEG signals. However, these
approaches depend heavily on using complex network
structures to improve the performance of EEG recogni-
tion and suffer from the deficit of training data. Inspired
by the waveform characteristics and processing methods
shared between EEG and speech signals, we propose
Speech2EEG, a novel EEG recognition method that lever-
ages pretrained speech features to improve the accuracy
of EEG recognition. Specifically, a pretrained speech pro-
cessing model is adapted to the EEG domain to extract
multichannel temporal embeddings. Then, several aggrega-
tion methods, including the weighted average, channelwise
aggregation, and channel-and-depthwise aggregation, are
implemented to exploit and integrate the multichannel tem-
poral embeddings. Finally, a classification network is used
to predict EEG categories based on the integrated features.
Our work is the first to explore the use of pretrained speech
models for EEG signal analysis as well as the effective ways
to integrate the multichannel temporal embeddings from
the EEG signal. Extensive experimental results suggest
that the proposed Speech2EEG method achieves state-of-
the-art performance on two challenging motor imagery (MI)
datasets, the BCI IV-2a and BCI IV-2b datasets, with accu-
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racies of 89.5% and 84.07%, respectively. Visualization
analysis of the multichannel temporal embeddings show
that the Speech2EEG architecture can capture useful pat-
terns related to MI categories, which can provide a novel
solution for subsequent research under the constraints of
a limited dataset scale.

Index Terms— Transfer learning, motor imagery,
electroencephalogram.

I. INTRODUCTION

ABrain-computer interface (BCI) allows direct communi-
cation between the human brain and computer devices by

gathering central nervous system activities from the cerebral
cortex [1]. Unlike invasive BCIs that require brain surgery
prior to recording intracranial information, electroencephalog-
raphy (EEG) has gained increasing popularity due to its
ability to collect macroscopic brain signals without potential
surgical risks and decreasing biosignal quality [2]. During the
synaptic excitations of neuronal dendrites, electric currents
from the cortex and the deep brain structure are measured
using electrodes as EEG signals to control external devices
[3]. Emerging BCI applications include artificial limb control
[4], teleoperation [5], [6], gaming [7], healthcare [8], [9],
and clinical diagnosis [10]. The foundation of brain-actuated
teleoperation control is the recognition of a user’s intent based
on their brain signals [11], [12]. Despite the encouraging
prospects and progress thus far, the extraction of discrim-
inative features and accurate classification of EEG signals
remains a challenge in the development of more advanced
BCI applications.

In the pursuit of reliable EEG signal analysis, previous
works have shown that traditional feature extraction and noise
removal methods are useful not only for acoustic signals but
also for EEG signals [13], [14], [15], [16], [17], [18], [19],
[20]. The adaptation of traditional features such as independent
component analysis (ICA) [21], fast Fourier transforms (FFTs)
[22], wavelet transforms (WTs) [23], and Mel-frequency cep-
stral coefficients (MFCCs) [24] from speech processing to
EEG analysis has been successful because both are mixture
signals with similar characteristics [25], [26]. These methods
can be summarized as EEG sonification, which treats an
EEG signal as an audio signal and analyses it using speech
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recognition techniques [27], [28], [29]. More recently, deep
learning models have the potential to learn better features
that outperform traditional features and improve recognition
accuracy [8], [30], [31], [32], [33], [34], [35], [36], [37].
These methods have sought to stack more complicated network
structures into existing architectures because a shallow neural
network can only learn to extract limited features. However,
the lack of EEG data in the training stage and its poor quality
are often overlooked, which can make deep neural network
learning difficult [38].

This work is inspired by the shared characteristics between
acoustic speech and EEG signals as well as recent works that
draw the connection between noninvasive brain signals and
automatic speech recognition [39], [40], [41], [42]. In this
paper, we propose Speech2EEG, a novel EEG signal classifica-
tion approach with better elasticity towards continuous EEG
recognition in real-life scenario. The Speech2EEG approach
exploits pretrained speech processing model in combination
with EEG signal framing to improve the performance in
capturing brain dynamics. To the best of our knowledge,
we are the first to propose adopting structural feature extractors
pretrained from massive speech datasets rather than training
from scratch using the small and noisy EEG dataset. This is
because the quality and scale of EEG data can have as much
impact on the network’s learning process as the EEG-specific
network design [43]. Considering the low signal-to-noise ratio
of EEG signals, adapting a well-trained feature extractor from
a similar signal could be more efficient because the heavy
noise in the training data often has a negative impact on
the training process [44]. In addition, we propose to extract
multichannel temporal embeddings from overlapping time
frames for EEG signals rather than extracting features from
the whole EEG sequence, which enables more fine-grained
analysis of EEG signals for the recognition of brain dynamics
as well as for potential real-life BCI applications. Last but
not lease, the spatial dependencies among EEG channels are
exploited by a variety of straightforward feature aggregation
networks to combine channelwise information and yield the
final representation for EEG classification.

Extensive experiments were conducted to illustrate the
effectiveness of our proposed Speech2EEG model on two chal-
lenging motor imagery (MI) datasets, including the BCI IV-2a
and BCI IV-2b datasets, as discussed in Section IV. We also
provide visualization and analysis for the most relevant fea-
tures in Section IV-I. The main contributions of this paper can
be summarized as follows:

• The Speech2EEG model is the first approach proposed
to leverage a pretrained speech processing model for
effective EEG recognition and flexible network design.
Experimental results show that Speech2EEG can achieve
state-of-the-art accuracy on two challenging MI datasets.

• Multichannel temporal embeddings are introduced for
EEG signal processing to enable fine-grained EEG anal-
ysis and more realistic applications in real-life scenarios.

• Visualization of the most influential features and topo-
graphic map suggest that the proposed approach extracts
more plausible features from behavior-related brain
activities.

II. RELATED WORK

A. Pretrained Models for EEG Analysis

The reason for using pretrained models in the EEG domain
is straightforward. First, due to collection difficulty and strict
experimental protocol, data in the EEG domain are usually not
large-scale. Therefore, a well-trained model is more crucial
to provide rich and effective feature extractors and alleviate
the dependence on the quality and size of the training dataset
[45]. As a result, the practical benefit of achieving better
EEG features from a pretrained neural network has provoked
transfer learning development for EEG signal classification
[46], [47], [48].

Typically, the pretrained neural networks used in existing
EEG research are trained using other subjects or using other
sessions with the same subject [49], [50], [51]. In [52] and
[53], neural networks are first trained using existing data from
source subjects with source sessions before being fine-tuned
to the target subject and session using a small amount of
target data. To achieve further improvement and learn more
general features that can reveal or separate different factors
of the phenomena entangled in the input data, unsupervised
learning methods are introduced to make use of knowledge
learned from a different EEG task [54], [55], [56], [57], [58].
For instance, autoencoders are first trained to reconstruct EEG
time series before fine-tuning the encoder to a classification
task [59], [60], [61], [62], [63]. These methods indicate that
downstream EEG tasks can also benefit from more general
feature extractors to a certain extent.

Recently, BENDR [38] trained a transformer model on the
Temple University Hospital EEG Corpus speech processing
domain dataset [64] to learn to increase the EEG representation
generalization level. Although their pretrained model is not
as competitive as more task-specific models, they show that
useful features for EEG data can be captured using structures
from language models. However, insufficient information in
EEG signals can result in suboptimal feature extractors in the
pretraining process. Different from their approach, this study
explores the possibility of using a feature extraction network
trained using the speech processing domain to provide general
representations and avoid overfitting on a small dataset.

B. Effective Architectures for Raw EEG Signals

Deep learning methods for EEG analysis reduce the burden
of designing feature extraction methods manually and allow
end-to-end learning of task-related feature extractors automat-
ically. Many works on deep learning models for EEG analysis
focus on improving the network architecture.

Shallow ConvNet [65] uses a temporal convolution layer
with a small 1 × 25 convolutional kernel and a spatial filter
over all electrodes to aggregate temporal features from the
previous layer. Further feature abstraction and downsampling
are carried out using temporal convolutional layers with
increasing kernel sizes and pooling layers. EEGNet [30]
uses a channelwise spatial convolution layer as in Shallow
ConvNet while improving the Shallow ConvNet structure by
using a larger 1 × 64 temporal convolutional kernel and a
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Fig. 1. The general framework of the proposed Speech2EEG method. After data acquisition from BCI caps, an embedding network pretrained on
a large-scale speech dataset is adapted to the EEG domain to extract temporal embeddings from EEG signals within each time frame. Then, the
generated temporal embeddings from each EEG channel are aggregated using a feature aggregation network. In this study, three types of feature
aggregation schemas are designed to exploit temporal embeddings. Finally, the aggregated features are used to determine the category of the
EEG signal and the user’s intent.

separable convolutional layer. The latter allows direct infor-
mation exchange among feature maps generated from differ-
ent spatial filters. TCNet [37] further improves the EEGNet
architecture by adding a temporal convolutional network that
stacks two dilated causal convolutional layers and a residual
skip connection that reorganizes the output temporal features
from an EEGNet while increasing the depth of the neural
network to allow more abstract feature summaries of previous
EEG signals. Both the larger temporal kernel size in EEGNet
and the application of dilated convolution enable a larger
receptive field for feature aggregation across the temporal
dimension. However, the overall receptive field of the network
increases mainly by building a deeper network. The last
convolutional layer in the network hierarchy has the largest
receptive field but the lowest temporal resolution. To enable
a global receptive field in the early network hierarchy and
prevent the loss of temporal resolution, ATCNet [66] adapts
a multihead attention block [67] after a Shallow-ConvNet-
like convolutional block to extract a feature representation for
each sliding window. The multihead attention block computes
the attention score between features of every pair of slid-
ing windows while keeping the number of sliding windows
unchanged throughout the attention layers. Other architectures,
such as graph embedding [68] and long-short term memory
(LSTM) [69], have also been proposed to recognize raw EEG
signals. To determine the optimal architecture, recent work
has also tried to search for the optimal network architec-
ture for each subject using neural network search (NAS)
algorithms [70].

Our insight into these architectures is that they use channel-
wise spatial filters to impose an inductive interchannel relation
bias, which corresponds to the nature of EEG signals being
a mixture of brain activities projected on the human scalp
surface. As a result, brain activity of interest should have an
impact on several neighboring electrodes. The identification of
similar EEG signals among neighboring electrodes can thus be
the key to identifying specific brain activity. Inspired by these
developments, we adopted the spatial convolutional filtering
mechanism that is widely used in these state-of-the-art neural
networks to design the feature aggregation network, while the
temporal convolution layer is replaced by a pretrained speech

feature extraction network that extracts multichannel temporal
embeddings from raw EEG signals.

III. PROPOSED TRANSFER LEARNING METHOD

This section provides technical details of the proposed
Speech2EEG approach. The proposed Speech2EEG model is
depicted in Fig.1. From left to right, Speech2EEG takes a raw
EEG waveform as input and applies three modulated subnet-
works, including a temporal embedding subnetwork, a feature
aggregation subnetwork, and a classification subnetwork. After
EEG data acquisition, the pretrained temporal embedding
network extracts temporal embeddings for all EEG channels
within a time frame. Then, the aggregation network is used for
the integration and selection of features among different spatial
or temporal locations. Finally, the classification network per-
forms classification and yields a distributional score over the
testing categories. The proposed Speech2EEG approach trans-
fer knowledge learn from a large-scale waveform dataset to
improve the performance of the EEG classification task. In the
training stage, the fine-tuning method is utilized to adjust the
pretrained temporal embedding subnetwork to the EEG clas-
sification with the help of the feature aggregation subnetwork
and classification subnetwork. This paper describes the task
settings in Section III-A. Afterwards, a detailed description
of the temporal embeddings is introduced in Section III-B.
Then, the aggregation networks are described in Section III-C.
Finally, the training objective and settings will be described in
Section III-D.

A. Preliminaries
We use X = {X (i)

}
M
i=1 to denote the set of all M EEG

samples available at the training phase, with Y = {y(i)
}

M
i=1

denoting the categorical labels of these EEG sequences. Let
C denote the number of EEG categories in a specific EEG
classification task, i.e., y(i)

∈ {1, . . . , C}. Each sample of EEG
signal X (i)

∈ RN×T consists of N EEG channels of sequential
EEG sample points with a length of T timesteps. T is fixed to
a constant value after resampling or segmentation throughout
the dataset. If not noted otherwise, the superscript in X (i) will
be dropped for brevity.
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B. Multichannel Temporal Embedding for Raw EEG
Signals

The proposed Speech2EEG model utilizes a transformer-
like network pretrained on a large-scale speech dataset to
generate temporal embeddings over a small time frame for
the EEG sequence from each channel. Modern transformer-
like speech processing networks use self-supervised learn-
ing objectives for training to learn to discover meaningful
speech units such as phonemes in a short time period [71].
We hypothesize that filters that are able to identify speech
units can also generate useful features for event-induced
brain activities such as event-related desynchronization (ERD)
[72], [73], [74]. Thus, these features would contain more
useful information than the noisy EEG signal for further
analysis.

For a speech processing transformer-like architecture, one
way to obtain feature representations is to use the output
of the attention layers or fine-tune the whole transformer
network model to a BCI dataset. However, features obtained
from self-attention layers are biased toward the exploitation
of long-term dependencies among speech units and have less
information about the original input signal. Likewise, classi-
fication layers can be overly adapted to the original speech-
related task, which is unlikely to be helpful. We validated this
empirical assumption by building a additional classification
layer on top of different components of a transformer-like
architecture by an ablation study in Section IV-G. There-
fore, we make use of the convolutional subnetwork before
the attention layers as the network φ to extract temporal
features.

We use the convolutional subnetwork from the Wav2Vec
2.0 [75] model to obtain multichannel temporal embeddings in
this study, as depicted in Fig.1. The major reason for selecting
this pretrained speech processing model is that it is trained on
a large-scale waveform dataset in a self-supervised manner.
The obtained general features allow this model to perform
well after fine-tuning on a small-scale dataset. In addition,
it has a modularized network architecture that can be exploited
flexibly. Denote φ j (X i ) as the i th channel features obtained
from the j th layer of φ, j ∈ {1, . . . , 7}. As discussed
in [76] and [77], representations from earlier convolutional
layers preserve more detailed local information, while those
from later layers are more compact and abstract. We use
the output from the last layer of φ ( j = 7) to avoid local
noise and enjoy a smaller embedding size for the temporal
embeddings. φ consists of seven 1D convolutional layers
with group normalization (GN) [78] used to normalize the
features within each feature group. The Wav2Vec 2.0 model
convolutional encoder has a receptive field of 400 time steps
with a stride of 320 time steps. For an EEG signal with a
sampling rate of 250 H z, temporal embeddings are extracted
from approximately 1.5 seconds duration of the EEG signal as
a time frame with approximately 1 second overlapping. The
resulting time frame for the temporal embedding is similar
to the minimum time course of a typical ERD signal evoked
during the MI process [79]. The overlapping window of the
embeddings also allows more detailed scanning of the EEG

signal for the ERD signal compared to networks that use the
entire 3 to 4-second epoch [80], [81].

As depicted in the bottom of the temporal embedding block
from Fig.1, we assume the output embedding of a single EEG
channel ek = φ j (Xk) ∈ RG×P to be a two-dimensional tensor
of group number G and feature size P , where G is the number
of time frames within the EEG time sequence and P is the
output feature size for each EEG time frame. In our specific
case, P = 512. We stack ek from all N EEG channels to form
a three-dimensional tensor E =

[
φ j (X1), . . . , φ j (X N )

]
=

[e1, . . . , eN ] , E ∈ RN×G×P as the multichannel temporal
embeddings for a complete EEG signal X . Ideally, we expect
multichannel temporal embeddings to contain a useful descrip-
tion of brain dynamics that can be used to identify various
MI categories while the differences between the EEG and
speech signal distributions to be alleviated through a fine-
tuning process.

C. Aggregation and Classification
Nonetheless, temporal embeddings alone are not sufficient

to make an EEG signal prediction. This is also supported
in the experiment in Section IV-G. Given the temporal
embeddings from each EEG channel, we employed different
schemas to design the feature aggregation networks for the
Speech2EEG model. A total of three aggregation methods are
used with different levels of complexity. They are weighted
average aggregation (WA), channelwise aggregation (CA), and
channel-and-depthwise aggregation (CDA).

1) Weighted Average Aggregation (WA): is the simplest
aggregated schema with minimum transformation to multi-
channel temporal embeddings (depicted in Fig. 2a). This can
be treated as the baseline aggregation method. Assuming the
multichannel temporal embeddings are already good enough
for downstream EEG classification, a simple mechanism that
allows feature selection and weighting will be sufficient to sep-
arate various EEG categories. Therefore, a dense layer is used
in the Speech2EEG-WA to learn static weighting matrices that
integrate temporal embeddings to a compact feature vector of
size D. Denoting an aggregated feature as h, mathematically,
each unit computes a weighted summation using multichannel
temporal embeddings, which can be written as:

hd = σ(
∑
i, j,k

W d
i jk ⊗ Ei jk), ∀d ∈ {1, . . . , D} (1)

where ⊗ denotes elementwise multiplication and σ is an
elementwise nonlinearity operation or identical function. If an
identical operation is used as σ , then the dense layer can also
be viewed as a linear projection of the temporal embeddings.
W d

∈ RN×G×P is the learnable weights to aggregate informa-
tion for the d th output hidden unit. An obvious drawback of
the WA schema is that it cannot construct more complex and
abstract features using embeddings from neighboring channels.
Additionally, the scale of the Speech2EEG-WA architecture
will increase drastically as the number of channels increases.

2) Channelwise Aggregation (CA): is depicted in Fig. 2b
where the popular spatial convolution from multiple EEG
network architectures is adopted. After converting raw EEG
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Fig. 2. Aggregation strategies are used to exploit multichannel temporal embeddings in this study. (a) Weighted aggregation strategy: the
multichannel temporal embeddings are flattened and concatenated before applying weight summation using hidden projection layer units.
(b) Channelwise aggregation strategy: multichannel temporal embeddings are aggregated using a spatial convolutional layer where spatial
dependencies among channels are exploited. (c) Channel-and-depthwise aggregation strategy: after the spatial aggregation of multichannel
temporal embeddings, features from different feature maps are further integrated. The subsequent classification modules remain static throughout
all aggregation strategies, which is an MLP network consisting of a dense layer.

signals to temporal embeddings using a pretrained speech fea-
ture extraction network, we intend to investigate whether the
exploitation of spatial dependencies among EEG channels can
improve recognition performance. A total of F1 convolutional
filters with a kernel size of N × 1 are trained so that each
spatial filter performs channelwise aggregation. Assume we
have a filter ω ∈ RN×1 from a spatial convolutional layer
and denote the output of the spatial convolutional as h. Each
feature map h f of the output h is computed by:

h f = σ(

G∑
i=1

N∑
j=1

ω
f
j Ei jk), ∀ f ∈ {1, . . . , F1} (2)

As discussed in [30], the use of spatial filters enables the
extraction of features related to a specific frequency band.
After spatial filtering, we apply an additional max pooling
layer of pool size K p and 1D convolutional layers of kernel
size K × 1 to reduce the feature size before using a dense
layer with D hidden units for the final classification. The
Speech2EEG-CA architecture constructs higher-level features
from speech features when they are not immediately distinctive
among EEG categories.

3) Channel-and-Depthwise Aggregation (CDA): uses an
architecture similar to EEGNet after temporal embedding
extraction, as depicted in Fig.2c. We apply a convolutional
layer with F1 filters of filter size K 1 × 1, followed by a spatial
convolutional layer with F1 × F2 filters. After applying the
spatial convolution, a pooling layer of pool size K p is used
to reduce feature size, while a separable convolutional layer
of F3 filters and K 3 × 1 kernel size is used to enable
depthwise interaction between convolutional feature maps.
Another benefit of using a separable convolutional layer is the
increase in the number of network layers for the learning of
more complex features from multichannel temporal embed-
dings. To help regulate the model, batch normalization [82]
layers are used in this architecture. Assuming that embeddings
extracted from a speech model have limited discriminative
capacity toward EEG recognition, we at least expect a mature
network to perform basic filtering and transformation of raw

EEG waveforms so that low-level noise can be reduced while
similar EEG time frames remain close in the continuous
embedding space. From this perspective, the Speech2EEG-
CDA architecture uses less noisy embedding to learn good
features for EEG recognition.

The detailed architecture settings for the three aggregation
networks are listed in Table II. Despite using different feature
aggregation subnetworks, we use a simple multilayer percep-
tron (MLP) as the classification network for all Speech2EEG
architectures.

D. Training Objective and Search Space for the
Hyperparameters

To train the Speech2EEG models, cross-entropy loss is
applied as the objective function, which can be written as:

L(p(i)) = −

M∑
i=1

y(i) log(p(i)) (3)

where p(i) denotes the prediction for an EEG sample in the
training set X (i), and y(i) is the true label for the corresponding
EEG sample. We use Adam [83] for the optimization algorithm
with a weight decay rate of 1e−2. The batch size is set
to 64. The network parameters as well as the learning rate
are searched for each experiment using cross-validation on
the training data similar to [37] and [84]. The search space
for the hyperparameters is listed in Table I. To allow more
efficient searching of the hyperparameters, we adopted the
Tree-structured Parzen Estimator algorithm (TPE) algorithm
[85] for choosing parameters within the parameter search
space for a total of 100 rounds. To avoid excessive training and
searching time, we adopted the Median Pruning algorithm to
stop search rounds that has significantly worse performance.

IV. EXPERIMENTS

To verify the effectiveness of the adapted features and the
feature aggregation architectures, the datasets 2a and 2b from
BCI Competition IV are utilized for extensive experiments.
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TABLE I
SEARCH SPACE FOR THE HYPERPARAMETERS

In particular, both internal ablation studies and external com-
parisons with state-of-the-art methods are conducted in this
paper. For both datasets, subject-specific results are obtained
using different the proposed Speech2EEG approaches. Since a
number of works on the BCI IV-2a dataset are also interested
in the cross-validation performance on the entire dataset,
a mix-subject five-fold cross-validation experiment on the
BCI IV-2a dataset is also carried out to better compare with
external methods and evaluate the more general capacity of the
proposed method. Additionally, ablation studies are carried out
to investigate the performance of directly fine-tuning output
from different modules of the pretrained speech model on
both datasets to justify the rationale of using the feature
extraction module for extracting temporal embeddings. Since
the BCI IV-2a dataset contains more motor imagery categories
and complete information from all channels compared to the
BCI IV-2b dataset, an ablation study on the impact of different
training set sizes. A brief description of the two datasets
and the preprocessing steps are available in Section IV-B.
Then, Section IV-C describes the evaluation metrics used in
our experiments. The experimental outcome and the ablation
studies are discussed in Section IV-D to Section IV-H. Finally,
visualization of the proposed Speech2EEG model is presented
and discussed in Section IV-I.

A. Implementation Details
The Speech2EEG method is implemented in PyTorch,

a deep learning library based on Python, and is run on an
Intel Xeon E-2274G 4.0 GHz CPU and an NVIDIA Quadro
RTX 6000 with CUDA 10.2 GPU. The algorithms used for
hyperparameter searching is implemented using the Optuna
framework [86].

B. Datasets and Preprocessing
1) The BIC IV-2a dataset [87] is an oscillatory EEG dataset

containing four types of imagined movements from 9 subjects
(A01-A09). There are a total of 288 trials for each session.
Each subject conducted two sessions (session T and session
E) on different days. Hints were provided before the imagined
movements of both hands, feet, and tongue in each trial.

The EEG data were recorded using 25 electrodes (22 EEG
channels and 3 EOG channels) with a sampling rate of 250 Hz.
A bandpass filter between 0.5 and 100 Hz was applied to
both the 2a and 2b datasets during the data collection phase.
Although a number of studies suggest that additional prepro-
cessing methods such as resampling [30], channel selection,
exponential smoothing or dataset cleansing [65] are useful
techniques for classification performance, we empirically find
that these methods have a limited effect on the performance
of the proposed method. Therefore, for the BCI IV-2a dataset,
the raw EEG data from the 22 EEG channels are used as input
to our Speech2EEG architectures.

2) The BCI IV-2b dataset [88] contains EEG data collected
from 9 subjects (B01-B09) using 6 electrodes (3 bipolar EEG
channels and 3 EOG channels) with a sampling rate of 250 Hz.
Subjects were asked to imagine the movements of the left
or right hand in each trial during 3 training sessions and
2 evaluation sessions. To minimize the overfitting issue and
compensate for the smaller data size, we apply data augmen-
tation processing to the BCI IV-2b dataset. Following [80],
we utilize a Butterworth high-pass filter to cut off frequencies
above 100 Hz as noise samples. Then, we combine the noise
samples with other EEG data from the same session to obtain
augmented samples. Generation of the augmented samples is
shown in Eq. 4.

X (i)
aug = X (i)

− X̄ (i)
+ X̄ ( j), (4)

where X̄ (i) denotes the noise from the i th sample in the
training set, X̄ ( j) denotes noise from another sample j within
the same session, and X (i)

aug is the augmented sample using the
original data sample X (i).

C. Evaluation Metrics
Two frequently used metrics in the EEG literature are used

to evaluate the performance of the method proposed in this
study. They are the accuracy and the kappa score. To quan-
titatively compare the effectiveness of each MI classification
method, the accuracy Acc of the convergence model can be
obtained by

Acc =
Ncorrect

Nl
, (5)

where Nl and Ncorrect are the total number of ground truth
labels and the number of correct predictions, respectively.
In addition to the accuracy score, the kappa value κ is
computed to eliminate the impact of random guessing in the
classification. The κ value is computed as follows [89]:

κ =
Acc − pr

1 − pr
, (6)

where pr is random classification accuracy in a dataset.

D. Subject-Specific Results on the BCI IV-2a Dataset
In this experiment, we train variants of the Speech2EEG

model for each subject and compare the performance with
existing methods. The subject-specific results are shown in
Table IV. Table III summarizes the optimal hyperparameters
of all Speech2EEG architectures.
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TABLE II
ARCHITECTURES OF SPEECH2EEG-WA, SPEECH2EEG-CA, AND SPEECH2EEG-CDA

TABLE III
OPTIMAL NETWORK PARAMETERS FOR EACH SUBJECT IN THE BCI IV-2A DATASET

TABLE IV
RESULTS FOR 4-CLASS CLASSIFICATION ON THE BCI IV-2A DATSET

For all aggregation strategies, the Speech2EEG architectures
achieve higher accuracy and kappa scores on average and
consistently steady performance across all subjects thanks
to the help of feature extractors adapted from a pretrained
speech processing model. Compared to the results reported
for EEG-TCNet [37] and TCNet-Fusion [91], which share a
setting similar to our method, our architecture achieves an

over 3% increase in average accuracy. Moreover, the standard
deviation of the accuracy between subjects is only approxi-
mately 0.1, which is more consistent across different subjects.
Note that the baseline Speech2EEG-WA and Speech2EEG-
CA architectures use a simple aggregation method compared
to MBEEGSE [90] and ATCNet [66], which use more sophis-
ticated network architectures. This suggests that the quality of
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TABLE V
OPTIMAL NETWORK PARAMETERS FOR EACH SUBJECT IN THE BCI IV-2B DATASET

TABLE VI
COMPARISON OF EXTERNAL METHODS AND THE PROPOSED METHOD ON THE BCI COMPETITION IV-2B DATA

training data could have a larger impact on model performance
than the selection of model architecture in this case. Finally,
the Speech2EEG-CDA architectures achieve a state-of-the-art
MI classification accuracy of 89.5%, which shows that the
Speech2EEG model can leverage knowledge learned from
acoustic speech data to improve recognition performance for
EEG signals.

E. Subject-Specific Results on the BCI IV-2b Dataset
To demonstrate the generalization of the proposed method,

we train the Speech2EEG models using the first three sessions
and evaluate the last two testing sessions for each subject.
The accuracy on each subject as well as the average accuracy
on all subjects using the proposed Speech2EEG models is
compared with state-of-the-art algorithms on the BCI IV-2b
dataset, as shown in Table VI. The optimal network param-
eters for each subject are presented in Table V. The results
show that the proposed Speech2EEG model has superior
average accuracy performance. Our method outperforms tra-
ditional methods such as filter bank common spatial pattern
(FBCSP) [92] and the empirical mode decomposition based
filtering method (EMD-MI) [93]. Compared to recent deep
learning methods including the ConvNet [65], the MI-CNN
[94], and temporal pyramid pooling (TPP) network [81], the
Speech2EEG model achieves more compatetive performance.
Although when compared to the deep representation-based
domain adaptation (DRDA) method, the improvement on accu-
racy is insignificant. Our method is more data-efficient since

the proposed Speech2EEG models only uses the data from the
target subject while the DRDA method requires additional data
from other subjects to learn domain-invariant features. Addi-
tionally, an internal comparison between Speech2EEG models
with and without pretrained weights is listed in Table VI.
The comparison illustrates that with the help of the pretrained
feature extraction module, the proposed Speech2EEG models
are able to obtain useful waveform information from the start
and avoid overfitting the noisy training dataset. Compared to
learning the whole network from scratch using the noisy EEG
training data, the pretrained feature extraction module could
have a positive impact on the classification performance.

F. Mixed-Subject Results on the BCI IV-2a Dataset
To verify the general capacity of the proposed Speech2EEG

architecture as well as to compare with existing methods,
we conduct a mixed-subject classification experiment on the
BCI IV-2a dataset. We train Speech2EEG-WA, Speech2EEG-
CA, and Speech2EEG-CDA models for all subjects in a 5-fold
cross-validation setting. Table VIII shows the optimal perfor-
mance for each architecture compared to existing methods
and Table VII shows the statistical test between Speech2EEG
models with and without pretrained weights using the top-3
results from each architecture.

As illustrated in Table VIII, for every Speech2EEG archi-
tecture, the use of a pretrained feature extractor improves the
classification accuracy compared to training from scratch with
raw EEG data while Table VII shows that the difference is sig-
nificant. The Speech2EEG-CA and Speech2EEG-CDA models
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TABLE VII
TOP-3 CLASSIFICATION RESULTS AND STUDENT-T TEST BETWEEN

SPEECH2EEG MODELS WITH AND WITHOUT PRETRAINED

WEIGHTS ON BCI IV-2A DATASET

TABLE VIII
COMPARISON OF EXTERNAL METHODS AND THE PROPOSED METHOD

ON THE BCI COMPETITION IV-2A DATASET

achieve higher accuracy than the baseline Speech2EEG-WA
method, indicating that the exploitation of spatial informa-
tion remains effective for processing multichannel temporal
embeddings. For the Speech2EEG-WA and Speech2EEG-CA
architectures, the improvement from pretraining the speech
feature extraction network is nearly 5%. When training
the Speech2EEG-CDA architecture without pretrained feature
extractors, the model’s performance drops to only 76.7%,
which is inferior to the reproduced EEGNet baseline (77.0%).
This is consistent with empirical findings that shallower neural
networks tend to be more effective than their deeper counter-
parts in BCI [38], [65], [103]. The Speech2EEG-CDA model
has the deepest architecture, and training such a large network
can be difficult, especially with a limited amount of training
data and poor data quality. However, with the help of the
pretrained feature extractor, Speech2EEG-CDA benefits from
its deeper architecture while achieving the highest accuracy.

An external comparison between the proposed Speech2EEG
architectures and the latest methods evaluated on the
BCI IV-2a dataset is also summarized in Table VIII. The
proposed Speech2EEG method achieves superior performance
compared to existing methods. The Spatio-Spectral CNN [100]
reported an accuracy of 87.15% but only used 2 MI cate-
gories. Different from their method, the proposed Speech2EEG
method is evaluated on all 4 MI categories in the dataset.
The C2CM [84], MB-3DCNN [90], and multiview feature
learning [98] methods introduced structures to exploit certain
EEG characteristics. Unlike these methods, the adaptation of

TABLE IX
RESULTS ON FINE-TUNING DIFFERENT NETWORK COMPONENTS ON

THE BCI IV-2A AND 2B DATASETS

structured feature extractors achieves better performance on
this dataset than the introduction of a more complex network
structure.

G. Ablation Study on Fine-Tuning the Whole Pretrained
Network

To support the rationale of only using the feature extrac-
tion module from the pretrained speech model for extracting
temporal embeddings, we conduct ablation experiments to
study the performance of fine-tuning different components
of the pretrained speech processing network for EEG sig-
nals classification. We are interested in the transferability
of the logit output (the whole pretrained model), the output
from the transformer module, and the output of the feature
extraction module of the pretrained model. An additional
dense layer with a softmax activation function is added on
top of these network components to obtain the classification
result for each EEG category. Table IX shows the perfor-
mance of fine-tuning different network components to the
BCI IV-2a and the BCI IV-2b datasets. It illustrates that using
the transformer module as well as fine-tuning the whole
model yields inferior prediction accuracies which are close to
random guesses. However, fine-tuning the feature extraction
subnetwork could reach 72.23% and 69.32% accuracies on
the BCI IV-2a and 2b datasets respectively without using an
additional aggregation network. This ablation experiment vali-
dates the previous assumption that certain low-level features in
the pretrained speech model could also capture discriminative
patterns from the EEG signal after a fine-tuning process.
Therefore, the feature of the feature extraction module of
the pretrained speech model could be the more reasonable
candidate to use for extracting temporal embeddings in the
proposed Speech2EEG approach.

H. Ablation Study on Different Training Data Sizes
We further perform an ablation study on the performance

of the proposed Speech2EEG model on an EEG dataset
with a smaller scale by reducing the training data while
keeping the testing data unchanged. The pretrained Wav2Vec
2.0 model can achieve good performance when fine-tuned on
small datasets. We intend to investigate how well Speech2EEG
models both with and without pretrained weights perform in
different training dataset scales.

On the BCI IV-2a and BCI IV-2b datasets, the perfor-
mance of each Speech2EEG architecture in various training
data percentages is displayed in Fig.3 and Fig.4 respectively.
We implemented EEGNet with a variable network structure as
in [37] as the benchmark method for comparison. According
to Fig.3, on the BCI IV-2a dataset, all architectures can
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Fig. 3. Comparison of classification performance on different train-
ing dataset percentages on the BCI IV-2a dataset. (w/o) denotes the
Speech2EEG model not using pretrained weights.

Fig. 4. Comparison of classification performance on different train-
ing dataset percentages on the BCI IV-2b dataset. (w/o) denotes the
Speech2EEG model not using pretrained weights.

benefit from the increase in training EEG samples from the
training dataset scale of 50% to 90%. The performance of
the EEGNet architecture peaks at 90% of the training data
but drops when provided more EEG samples in the training
phase. We consider the main reason why EEGNet fails to
benefit from a larger training dataset is its insufficient scale
and depth of its architecture. In contrast, Speech2EEG-WA
and Speech2EEG-CA models without the pretrained weights
perform similarly to the baseline EEGNet model when suffi-
cient training data is presented. However, the Speech2EEG-
CDA model is consistently worse than the baseline EEGNet
model. This is aligned with the empirical finding that a
deeper and larger neural network will often be more difficult
to train without a sufficiently large data corpus [38]. After
all, without the pretrained weights, the Speech2EEG models
are similar to a deep convolutional network with certain
channel aggregation structures. Our proposed Speech2EEG
method bypasses this problem through the introduction of

Fig. 5. Topology map of salient channels. The red regions indicate a
higher importance during classification, while the blue regions indicate
a lower importance.

pretrained feature extractors, which avoids the difficult training
of a mature deep neural network using noisy EEG signals.
With well-structured multichannel temporal embeddings, the
subsequent feature aggregation and classification networks are
more likely to construct useful features after fine-tuning. As a
result, the Speech2EEG architectures benefit from the increase
in the scale of the training dataset and the neural network.
As for the BCI IV-2b dataset, Fig.4 shows that on this 2 classes
EEG dataset, Speech2EEG models with pretrained weights
perform substantially outperform the baseline EEGNet model
as well as Speech2EEG models without pretrained weights.
The result on BCI IV-2b further demonstrates the positive
impact of pretrained weights on the classification performance.

I. Visualization
A major advantage of the proposed Speech2EEG method

is that it effectively adapts a mature feature extraction net-
work pretrained on large-scale speech data to extract useful
temporal embeddings from the EEG data. In this section,
we utilize the InputGradient method [104] to determine how
our Speech2EEG model distinguishes one EEG category from
another. Due to the fact that the BCI IV-2b dataset only utilizes
3 electrodes corresponding to the C3, Cz, and C4 locations
while the BCI IV-2a dataset has more complete coverage
of the brain area with a total of 22 electrodes, we consider
the BCI IV-2b dataset has better visualization effects when
demonstrating the performance of the proposed Speech2EEG
model.

First, we visualize topology maps of the saliency of the EEG
channels from a Speech2EEG model using pretrained speech
embeddings, a Speech2EEG model trained from scratch with-
out using pretrained speech embeddings, and a randomly
initialized Speech2EEG model in Fig.5. Fig.5a shows that
when using pretrained speech embeddings, Speech2EEG is
more focused on channels located in the middle of the scalp,
which is aligned with the occurrence of ERD signals in
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previous research [73], [79]. In Fig.5b, without the adaptation
of a mature feature extraction network, although the model
can still make use of channels located in the middle scalp,
it pays too much attention to the channels at the edge of the
scalp, which are more vulnerable to noise. In contrast, the
topology map of the randomly initialized model (Fig.5c), does
not respond to a specific brain region.

The saliency map is the most commonly used method to
measure and visualize the spatial support of a particular class
in each input signal. In EEG signal classification, since each
channel represent a particular spatial location of the human
scalp, the saliency map can provide information about which
brain area are the most informative when the neural network
tries to classify the input EEG signal. The topographical
saliency map for the four motor imagery category from the
proposed Speech2EEG model with and without pretrained
weights is shown in Fig.5a and Fig.5b respectively. For better
visualization, the normalized saliency maps of different sam-
ples are averaged to get the mean saliency map for each motor
imagery category. Values are normalized into the range [0, 1].
The red color in the brain topology maps denotes high salient
and informative brain area while the blue color denotes low
salient and less informative brain area in the motor imagery
task. The upper side of the saliency map is corresponding to
the frontal cortex area while the lower side is corresponding
to the posterior cortex area. Additionally, the saliency map
of a randomly initialized Speech2EEG model is also shown
in Fig.5c for better sanity check [105]. As can be seen
from Fig.5a, for input signals from the four motor imagery
categories, the saliency map shows that the central (near the
C3 and C4 location) and the posterior (near the Pz location) of
the brain are the most informative in the network’s perspective.
This is consistent with the previous literatures that study the
responding distribution of brain signals of motor imagery
[11], [73], [79], [106], [107], [108]. According to Brodmann
brain function partition [109], brain area around the C3 and
C4 location correspond to the primary motor cortex and is
mainly associated with the sensorimotor functions. On the
other hand, the brain area near the Pz location are correspond
to visuo-motor coordination as well as brain functions for
perception and processing of stimuli related to the senses
[110]. In the view of deep learning model, by focusing on
the key areas of ERD signal occurrence during motor imagery
can avoid negative influence of the noise and other brain
activities. Thus, it is beneficial to the recognition of different
EEG categories. In Fig.5b, the saliency map for a Speech2EEG
model without using the pretrained weights shows that the
model finds the central area informative for the left hand,
right hand, tongue and the feet categories. This is similar
to the salient area from Fig.5a. The correct focus on the
motor-related brain area could provide sanity support for how
the Speech2EEG model without pretrained weights managed
to correctly classify a certain amount of input EEG signals.
However, it also considers frontal areas around the F7 and F8
locations as well as the posterior areas around the P7 and P8
locations. Since the functionality of these area is less relevant
to the motor imagery activities, the model is more vulnerable

Fig. 6. Visualization of the top-20 important embedding dimen-
sions of the Speech2EEG model compared to a randomly initialized
Speech2EEG network. On the left, the saliency map of the important
temporal embedding dimensions for all MI categories is plotted from left
to right. On the right is the normalized value of the top-20 important
temporal embedding dimensions, where D1 denotes the top-1 impor-
tant temporal embedding dimension and D20 denotes the top-20 impor-
tant temporal embedding dimension.

to noise and influence from irrelevant brain activities. Finally,
the saliency map of the randomly initialized model (Fig.5c)
completely omit the motor imaginary regions and thus can
only perform random guess towards an input EEG signal. The
comparison between trained model and randomly initialized
model shows that the saliency results are independent of the
data and that the models indeed learn to exploit the spatial
information from the EEG data reliable.

In addition to the topology map, we visualize the top-20
most impactful dimensions of the multichannel temporal
embeddings by the same saliency method (reindexed as D1 to
D20). The saliency values for these dimensions are displayed
using the saliency maps on the left side of in Fig.6a and Fig.6b
while the value for each dimension is displayed using the
radar maps located on the right. Values of the saliency maps
are normalized into the range [0, 1] to facilitate display.
For each motor imagery category, the x-axis of the saliency
map represents the index of the embedding, while the y-axis
represents each data sample in the test set. The displayed
dimensions index and the order are consistent for each motor
imagery category. As depicted in the saliency maps from
Fig.6a, the Speech2EEG model focuses on a particular set
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of these embedding dimensions when predicting each brain
activity. While the saliency maps from a randomly initialized
model (Fig.6a) display identical saliency distribution among
all categories. This result shows that after adapting the pre-
trained feature extraction module to the EEG dataset, the
Speech2EEG model discovers a certain group of temporal
information to be consistent and useful for this motor imagery
classification task. Such that the model can rely on more
diverse viewpoints of the EEG waveform signal to support
its prediction. As for the radar map on the right side of
Fig.6a, the resulting value for each dimension varies greatly
among different brain activities. This indicates that the adapted
speech feature extractors can capture discriminative patterns
in unseen EEG data during the testing phase. Therefore, the
adaptation process (i.e., fine-tuning) can be an effective way to
introduce good feature extractors learned from speech data to
EEG data. The adaptation preprocess is similar to the transfer
of classical acoustic filters to EEG processing in existing
research. In contrast, embeddings from a randomly initialized
model exhibit no difference among MI categories and can only
produce guess-level accuracy (Fig.6b).

V. CONCLUSION AND FUTURE WORK

In this paper, we demonstrate that pretrained features from
a large-scale speech processing model can be used to improve
performance for EEG signal analysis. Using feature extraction
networks pretrained using speech, we obtain multichannel
temporal embeddings from raw EEG data. These embed-
dings are further processed using a feature aggregation net-
work with a relatively simple structure. A total of 3 feature
aggregation structures are designed in our study to utilize
these adapted speech embeddings. Experimental results show
that the proposed method can achieve state-of-the-art results on
the BCI IV-2a and BCI IV-2b datasets. Our findings suggest
the potential for using existing pretrained speech models to
improve the performance of EEG signal classification with a
more flexible network design. In particular, ablation studies
on both BCI IV-2a and 2b datasets suggest that when the
scale of training data is reduced by up to 40%, the proposed
Speech2EEG method still achieves better performance com-
pared to the popular EEGNet method. This research opens the
door to building larger models for BCI systems. It is possible
that we can utilize off-the-shelf pretrained speech processing
models to improve the performance in a particular BCI task.
In the future, we plan to investigate more advanced transfer
learning methods to further improve the overall performance
of other BCI tasks. Techniques such as knowledge distillation
methods could be a potential way to reduce the volume of the
deep learning model while attaining reasonable performance.
Furthermore, the impact of speech models pretrained on other
speech datasets on the performance of EEG signal classifica-
tion will also be investigated in the future.
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