
Elsevier required licence: ©2023. This manuscript version is made available under the
CCBY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ The definitive
publisher version is available online at https://doi.org/10.1016/j.ins.2023.119475Get rights
and content

https://doi.org/10.1016/j.ins.2023.119475
https://s100.copyright.com/AppDispatchServlet?publisherName=ELS&contentID=S0020025523010605&orderBeanReset=true
https://s100.copyright.com/AppDispatchServlet?publisherName=ELS&contentID=S0020025523010605&orderBeanReset=true

Toward multi-target self-organizing pursuit in a partially observable Markov game?

Lijun Suna,b, Yu-Cheng Changb, Chao Lyuc,a, Ye Shid, Yuhui Shia,∗, Chin-Teng Linb,∗

aGuangdong Provincial Key Laboratory of Brain-inspired Intelligent Computation, Department of Computer Science and Engineering, Southern University of
Science and Technology, China

bCentre for Artificial Intelligence, CIBCI Lab, Faculty of Engineering and Information Technology, University of Technology Sydney, Australia
cHarbin Institute of Technology, China

dSchool of Information Science and Technology, ShanghaiTech University, China

Abstract

The multiple-target self-organizing pursuit (SOP) problem has wide applications and has been considered a challenging self-
organization game for distributed systems, in which intelligent agents cooperatively pursue multiple dynamic targets with partial
observations. This work proposes a framework for decentralized multi-agent systems to improve intelligent agents’ search and
pursuit capabilities. We model a self-organizing system as a partially observable Markov game (POMG) with the features of de-
centralization, partial observation, and noncommunication. The proposed distributed algorithm–fuzzy self-organizing cooperative
coevolution (FSC2) is then leveraged to resolve the three challenges in multi-target SOP: distributed self-organizing search (SOS),
distributed task allocation, and distributed single-target pursuit. FSC2 includes a coordinated multi-agent deep reinforcement learn-
ing method that enables homogeneous agents to learn natural SOS patterns. Additionally, we propose a fuzzy-based distributed task
allocation method, which locally decomposes multi-target SOP into several single-target pursuit problems. The cooperative coevo-
lution principle is employed to coordinate distributed pursuers for each single-target pursuit problem. Therefore, the uncertainties
of inherent partial observation and distributed decision-making in the POMG can be alleviated. The experimental results demon-
strate that distributed noncommunicating multi-agent coordination with partial observations in all three subtasks are effective, and
2048 FSC2 agents can perform efficient multi-target SOP with an almost 100% capture rate.

Keywords: multi-target pursuit, noncommunication, observation uncertainty, interaction uncertainty, self-organization

1. Introduction

Self-organizing systems and multi-agent coordination with-
out communication. Self-organization is a type of swarm in-
telligence that can be found in natural environments and animal
behaviors: rippled sand dunes, synchronized flashing fireflies,
fish schooling, flocking birds, etc [1]. It forms order and struc-
ture through purely internal and local interactions in a system,
without any external controls. So, many researchers [2, 3, 4, 5]
made efforts to understand the nature and create artificial self-
organization systems that can be characterized by decentraliza-
tion, partial observation, scalability, and emergent properties.
However, in general multi-agent game setups, communication
failures cannot be avoided due to communication attacks, vary-

?This work is partially supported by the Shenzhen Fundamental Research
Program under Grant No. JCYJ20200109141235597, the National Science
Foundation of China under Grant No. 61761136008, the Shenzhen Peacock
Plan under Grant No. KQTD2016112514355531, the Program for Guang-
dong Introducing Innovative and Entrepreneurial Teams under Grant No.
2017ZT07X386, and the Australian Research Council (ARC) under Discovery
Grant DP210101093 and DP220100803.
∗Corresponding author: Yuhui Shi, Chin-Teng Lin.
Email addresses: Lijun.Sun@student.uts.edu.au (Lijun Sun),

Yu-Cheng.Chang@uts.edu.au (Yu-Cheng Chang),
11849557@mail.sustech.edu.cn (Chao Lyu),
shiye@shanghaitech.edu.cn (Ye Shi), shiyh@sustech.edu.cn (Yuhui
Shi), Chin-Teng.Lin@uts.edu.au (Chin-Teng Lin)

ing protocols, blocked channels, physical distance, damage, en-
ergy conservation, etc. In such scenarios, multi-agent coordina-
tion degrades, since no commands, role assignments, conflicts
elimination, information sharing, or other negotiations can be
exchanged among agents. Therefore, more effective implicit
coordination is expected for the more restricted self-organizing
setup that does not rely on communication.

Background and application of the pursuit problem. This
work investigates the multiple-target self-organizing pursuit
(SOP) problem. It formulates general competitive and coop-
erative interactions among agents and thus can serve as a basic
capability of agents in standardized problems and real-world
applications. In warfare, agents may be any confrontational de-
vices, such as fighters, bombers, and missiles [6]. In aerospace,
one goal is to clean up space debris, inactive satellites, and
military vehicles to ensure the safety of active space assets or
aerial vehicles [7, 8, 9, 10]. The searchers, pursuers, targets,
or evaders in the pursuit may also represent players in a foot-
ball game, lions and humans in a bounded arena [11], searchers
and lost spelunkers in a cave [12], cops and robbers in a city
[13, 14, 15], pollutants and cleaning robots in the environment
[16], creatures in biological systems [1], etc.

Self-organizing pursuit game setup in comparison with rep-
resentative MARL pursuits. Comparing existing popular pur-
suit environments, MPE (multi-agent particle environments)
pursuit [17] uses the occupying-based capture, where one pur-

Preprint submitted to Journal of LATEX Templates December 17, 2022

suer occupies the same position of a target or their distance is
smaller than a threshold. However, its global observation rep-
resentation scales poorly with the number of agents. MAgent
pursuit (battle) [18] uses the tag-based capture, where a target
is attacked if it is tagged by pursuers. Besides, it provides the
option to use the global information in the observation or not.
The mean field pursuit [19] solves one mass capture problem,
where the mass center of the pursuers matches that of the targets
is called a capture. Although it can be applied in the large-scale
pursuit, the one mass capture is totally different from the multi-
target captures that are distributed in the whole space. More-
over, none of these environments consider the interagent colli-
sion avoidance problem.

Compared with the above capture definitions, the
surrounding-based capture in most literatures is more
general in terms of multi-agent behaviors and challenging in
terms of coordination, where a target cannot move only if it
is surrounded by pursuers. Therefore, this work builds the
multi-target self-organizing pursuit (SOP) environment and
consider a more practical and challenging multi-agent setting:
large-scale partially observable pursuers coordinate without
explicit communications, search, chase, and surround multiple
distributed dynamic targets until all targets are found and
captured without collisions in a grid world. It is worth noting
that we consider and report the multi-agent collision avoidance
performance, which is a crucial metric concerning the safety in
deploying the multi-agent system (MAS) but is rarely reported
especially in general MARL literatures.

Related work and MARL coordination solution. Since
Isaacs [6], the differential games are used to formulate the pur-
suit problem, which look for saddle-point strategies and model
the dynamics in games with differential equations [7, 8, 9, 10,
20]. However, most such works relate to two-agent zero-sum
games. Another seminal work proposed by Benda et al. [21]
explores the pursuit problem to investigate the optimal com-
munication structure of agents. In addition to the conventional
communication with predefined communication topology, mes-
sage content, and transmission frequency, selective commu-
nications, including dynamic event-triggered communications,
are studied [22, 23]. When there are no communications, agents
have no ways to get a bigger picture of the world by actively
exchanging information. Therefore, it is more challenging to
make decision only with agents’ own partial observations and
the uncertain behaviors of other agents, i.e., the interaction un-
certainty [24]. Finally, although many previous works consider
the surrounding-based capture, they model the pursuit domain
with the Markov decision process (MDP), where each agent can
fully observe all agents’ positions.

On the other hand, in terms of the partially observable multi-
agent settings, many general multi-agent reinforcement learn-
ing (MARL) algorithms are tested in the pursuit domain. Coor-
dinated agents can outperform fully independent agents [25]. In
particular, the centralized training and decentralized execution
(CTDE) is a general framework of coordinated learning for de-
centralized multi-agent systems. MADDPG [17], COMA [26],
and QMIX [27] are representative CTDE MARL algorithms
that have centralized action value functions. A common is-

sue of such centralized action-value function learning is that the
computational complexity increases with the number of agents
involved and the trained agents are heterogeneous, which hin-
der the large-scale deployment. Besides, since these centralized
action value functions are optimized with a fixed number of
agents, when the agent swarm size changes, the policy is hard
to guarantee its optimality and new training is needed.

In contrast, other CTDE MARL algorithms use the concept
of parameter sharing [28] to train shared (value or policy) mod-
els from the experiences of all homogeneous agents, which bet-
ter suit large-scale applications. For example, DGN (graph con-
volutional reinforcement learning) [29] represents the interac-
tions between agents by the graph network and trains end-to-
end by the deep Q-network method. It achieves the coopera-
tion of agents through local communications and interchanges
the outputs of its convolutional layers that contain the infor-
mation of agents within the multi-hop scope. Mean field re-
inforcement learning [30] tackles large scale multi-agent prob-
lems by simplifying the interactions between agents to the in-
terplay between an agent and the mean effect of its neighbor-
hood, i.e., the virtual mean agent, through the mean field ap-
proximation. However, by employing the mean field theory, it
explicitly ignores the detailed interactions between real agents,
which means it cannot deal with the collision avoidance be-
tween agents, i.e., the safety RL issues. Besides, most MARL
works tested regarding pursuit are subject to several or all of
the constraints: small-scale, fully observable pursuers, single-
target pursuit, occupying-based capture, with communications,
and permitted collisions (see also [31]).

Our work and contribution. Based on the above discussions,
the main contributions of this paper are:

• To facilitate the study of implicit multi-agent coordination
without communications, this work fills the current liter-
ature gap in the self-organizing pursuit (SOP) setup fea-
tured by large-scale, decentralization, partial observation,
no communication, no interagent collision, multiple dis-
tributed targets, and surrounding-based capture. To enable
this study, we build the SOP environment 1.

• To address the severer interaction uncertainty [24] and ob-
servation uncertainty due to no communications, this work
proposes the distributed hierarchical framework called the
fuzzy self-organizing cooperative coevolution (FSC2) for
the multi-target SOP, as shown in Figure 1. Through anal-
ysis, it decomposes the SOP into three sub-problems that
can be well formulated and can thus utilize the strengths of
fuzzy logic, MARL, and evolutionary computation (EC).

Further, the innovations of the proposed FSC2 framework can
be summarized as follows.

• The first module of FSC2: fuzzy based task allocation
overcomes the consensus issue of the distributed cluster-
ing in two folds by the fuzzy logic with introduced mem-
ory. First, to improve the consensus between independent

1All code is available at https://github.com/LijunSun90/pursuitFSC2.

2

Figure 1: FSC2 (fuzzy self-organizing cooperative coevolution) is a distributed framework for the self-organized pursuit (SOP) that consists of three modules: fuzzy
clustering, search policy, and pursuit algorithm–CCR. Note that, since the multi-target pursuit environment is dynamic where all agents and targets are moving, the
role of an agent is not fixed and may alternate between a searcher and a pursuer.

agents without communications, we utilize the fuzziness
of fuzzy clustering in identifying the cluster memberships
of agents. Second, to keep a consistent clustering decision
of a single agent in the time scale, we introduce an incre-
mental agent memory in the distributed fuzzy clustering.

• The second module of FSC2 for search learns reasonable
and explainable behaviors for large-scale homogeneous
agents by the CTDE actor-critic algorithm. By formu-
lating as the partially observable Markov game (POMG)
and designing the reward function, the unknown self-
organization mechanism can be learned that maps the local
search policy to the coordinated global space exploration
without communications.

• The third module of FSC2: pursuit algorithm–CCR pro-
poses a distributed coordination mechanism that can en-
sure the safety of multi-agent collision avoidance in the
target pursuit within clusters. To conquer the partial ob-
servation uncertainty and the limit of no communications,
the coevolutionary coevolution scheme is used for the on-
line planning in balancing the individual and swarm in-
terests, while the lexicographic convention is adopted for
close coordination with the introduced concept of certain
partial observation.

The organization of the paper is as follows. First, the prob-
lem formulation of self-organizing pursuit is given in Section 2.
Second, the proposed approaches are given in Section 3. Third,
the experimental results, analyses, and discussions are given in
Section 4. Finally, the conclusions, limitations, and future work
are given in Section 5.

2. Problem formulation

2.1. Multi-agent formulation of self-organization systems
A multi-agent system (MAS) can be seen as a decision-

making system in which each agent is a decision maker. It can
be formulated in terms of the following four factors: (1) the
number of agents: a single agent or multiple agents; (2) state
transitions: present (sequential problem) or not; (3) the uncer-
tainty of observability: full observability, joint full observabil-
ity, or partial observability; and (4) the reward function: each

agent has an individual reward function, all agents share the
same reward function, or different groups of agents have sep-
arate reward functions. Based on the above four dimensions,
various models have been proposed and investigated, as shown
in Figure 2a [24], and the common nomenclature for the model
name abbreviations is presented in Figure 2b.

(a) Common multi-agent problem formulations [24].

(b) Common nomenclature for multi-agent models.

Figure 2: Common multi-agent problem formulations and their nomenclature.

A definition of self-organization is given in [1]: global level
patterns unexpectedly emerge solely from the distributed de-
centralized local nonlinear interactions of components of the
system under behavioral rules (of thumb) with local informa-
tion and no external directing influences. In terms of these fea-
tures, we can formulate a self-organizing system as a POMG
[24]: 〈γ,I,S,A,O, P,O,R〉. γ is the discounted factor for re-
turn; I = {1, ..., n} represents all total n agents; S = {s} is the
true state space;A = A1×...×An = {~a} is the joint action space;

3

O = O1 × ... × On = {~o} is the joint observation space; P(s′|s, ~a)
is the transition function from the current state s to the next
state s′ given the joint action ~a; O(s) = {o1(s), ..., on(s)} is the
joint observation function; and R(s, ~a) = {R1(s, ~a), ...,Rn(s, ~a)}
is the joint reward function and each agent maximizes its own
accumulated reward.

The reason we use the POMG rather than the Dec-POMDP
(decentralized partially observable Markov decision process) to
represent a self-organizing system is that in the Dec-POMDP,
all agents are fully cooperative in that they aim to maximize a
collective reward R(s, ~a), while in a general self-organizing sys-
tem, even collaborative agents have unequal rewards and need
to balance the swarm benefits and their own benefits. Therefore,
POMG is more similar to the natural swarm intelligence.

2.2. The problem of self-organized search and pursuit
A typical multi-target search and pursuit scenario is illus-

trated in Figure 3. Due to the partial observation and commu-

Figure 3: A screenshot of self-organized search and pursuit in a bounded grid
world, where red squares are targets or evaders, blue squares are searchers or
pursuers, and green background around each agent shows its perception range
with an in f -norm radius of 5.

nication limitation of agents, we distinguish the self-organizing
search (SOS) and self-organizing pursuit (SOP) as two differ-
ent but related multi-agent problems, where the search policy
in SOS is taken as a basic capability of agents in the SOP.

• Self-organizing search (SOS): A search is considered
successful when a searcher occupies the same position of
a target, and the target will then disappear. The SOS ter-
minates when all targets in the environment disappear or
the maximum time is reached.

• Self-organizing pursuit (SOP): A capture is considered
as successful when a target is encircled by four pursuers
and cannot move further. However, the target will not dis-
appear after it is captured in the SOP. The game terminates
when all targets are found and captured or the maximum
time is reached.

Note that, the SOS task is only used to train the search policy
in Figure 1, i.e., the space exploring ability that will be used in
the SOP task. We design the SOS task harder than the search re-
quirement in the SOP to better train the search policy. First, the
SOS task uses multiple static targets since searching for static
targets are sometimes harder than dynamic ones in bounded en-
vironments, as the agent has no chance to wait for the target

coming. In addition, in the SOS task, a target is designed to
disappear after being searched to make the search task harder
and harder with time, especially when there is no communi-
cation and information exchange between agents. Last, in the
actual pursuit, agents are not expected to collide with the tar-
gets or evaders. However, in the SOS task, we specially define
a successful search as that a searcher occupies a target rather
than a target appears in the agent’s local view, which also only
serves the purpose of training. This is because, in the pursuit
where the search policy is applied, more than one agents are
expected to find and approach the same target simultaneously
in order to finally capture it.

In the following, we investigate the coordination strategies
for agents constrained by: (1) the observation range of an agent
is the scope of radius 5 according to the in f -norm, i.e., an
11 × 11 square centered at the agent; (2) communication be-
tween agents is limited that they can only see the positions of
targets and other agents in their own local views, and no other
information exchange is allowed; (3) the available movements
of all agents are 5 discrete actions {up, down, right, left, still} in
the grid world. Therefore, the in f -norm is used in the agent’s
perception, and the 1-norm (Manhattan distance) is used in the
agent’s movement, which are widely adopted in MAS.

3. Proposed approach for self-organizing pursuit (SOP)

In this section, we introduce in detail the proposed distributed
hierarchical framework–fuzzy self-organizing cooperative co-
evolution (FSC2) in Figure 1. FSC2 is a distributed algorithm
for homogeneous swarm of agents that each agent consists of
three modules: (1) fuzzy clustering; (2) search policy; and (3)
pursuit algorithm–CCR. Its main idea and motivation is to de-
compose the distributed self-organizing pursuit (SOP) problem
into sub-tasks that are more intuitive and simpler to be well de-
fined and solved.

In the multi-target pursuit environment, targets and partial
observable agents are distributed in the space. First, we as-
sume two alternate basic roles of an agent: searcher or pursuer,
based on the existence of free targets that are not captured in
the agent’s neighborhood. Then, agents are distributed clus-
tered that each searcher forms a separate cluster and pursuers
are clustered based on their neighborhood relationships. This
clustering process is conducted by the first module–fuzzy clus-
tering algorithm in Section 3.1, and Figure 4 gives an illustra-
tive clustering result. After clustering, an agent alternates be-
tween the second module: search policy in Section 3.2 and the
third module: pursuit algorithm–CCR in Section 3.3, based on
its real-time neighborhood. The whole algorithm of FSC2 is
given in Algorithm 1, the details of which are introduced in the
following sections.

3.1. Distributed fuzzy clustering for task allocation
We define that a pursuer is free if it has not captured a target,

while a target is free if it has not been captured. So, an agent is
either a searcher, which explores the space to find a free target,
or a pursuer, which cooperates with other free pursuers to cap-
ture a free target. In the multi-target SOP, since four pursuers

4

Figure 4: Illustration of the distributed clusters of agents determined by their neighborhood.

Algorithm 1: FSC2 for each agent in the SOP

1 while the termination conditions are not satisfied do
2 role, cluster center, cluster members,Memory←

Fuzzy clustering (Algorithm 2 in Section 3.1).
3 if role is a searcher then
4 As an SOS agent (Section 3.2), find free targets.

5 else if role is a pursuer then
6 As a CCR agent (Section 3.3), cooperate with

cluster members in pursuing cluster center.

are required to capture each target, distributed task allocation
or clustering is needed to determine which group of pursuers
capture which free target.

The main challenge in the multi-agent distributed clustering
is the consensus issue in two folds due to the partial observation
uncertainty and the interaction uncertainty. First, since agents
cannot fully observe the world or share the same knowledge
through communications, they cannot independently make ex-
actly the same decision. To address this issue, we adopt the
fuzzy clustering and utilize its fuzziness in identifying the clus-
ter memberships to reach a consensus with a higher probability.
Second, an agent may frequently switch between the roles of
searcher and pursuer over a short period of time steps due to its
partial observability, which causes instability in the distributed
clustering. We, therefore, introduce an incremental agent mem-
ory in the fuzzy clustering.

Fuzzy membership. Since the task of the pursuers is to cap-
ture targets, for agent k, the cluster centers are all its mk local
free targets T = {T1, ...,Tmk }, while the nk local free pursuers
A = {A1, ..., Ank } need to be clustered, and both T j and Ai are
2-D positions. The fuzzy membership value of the free pur-
suer Ai with respect to the cluster center T j in agent k’s view is
calculated by

µk
i j =

(||Ai − T j||
2
1)

1
1−α∑mk

j=1(||Ai − T j||
2
1)

1
1−α

∈ [0, 1], (1)

where α > 1 is the fuzzifier [32], the value of which is 1.5 in
our experiments. Thus, agent k can obtain its fuzzy membership
matrix

Mk = [µk
i j] ∈ Rnk×mk

, (2)

the i-th row Mk
i∗ of which is the fuzzy membership value of

agent i with respect to all local cluster centers in agent k’s point
of view. Based on Mk, agent k can obtain its membership matrix

M̂k ∼ Mk, (3)

which is a binary matrix. Its only one element with the value 1
in the i-th row M̂k

i∗ is sampled from the random distribution de-
termined by Mk

i∗, since an agent can only belong to one cluster.
Based on M̂k, the cluster center of agent k is the target

Tc|M̂k
kc,0,c=1,...,mk , (4)

while agent k’s cluster members are the pursuers

{Ai|M̂k
ic , 0, i = 1, ..., nk}. (5)

The distributed fuzzy clustering based task allocation process
in Equation (1) to (5) is summarized in Algorithm 2.

Agent memory. Note that, each agent’s Memory of the en-
vironment (line 1 of Algorithm 2) is updated through its ex-
periences, which includes the captured status of targets and
locked status of pursuers. So, the maximum size of Memory is
the same for all pursuers, which is determined by the possible
number of targets and pursuers in the environment. Without a
Memory, an agent may oscillate between the roles of a searcher
and a pursuer. For instance, an agent may walk one step closer
to a target, see the target captured by 4 pursuers, and know that
itself is a searcher; if it then walks one step away from the tar-
get, the agent can only see 3 pursuers surrounding the target and
cannot identify for certain whether it is captured, although it
previously observed its captured status. In other cases, a target
may be falsely captured such as when it is only blocked by an-
other free target. When that free target walks out of its way, the
previous “captured” target becomes free again. In such scenar-
ios, the agent should also update its Memory when it is pretty
sure based on its newest observation.

In addition, note that, although the number of local clusters
is determined by the number of local free targets in Equation
(1), the number of members in each cluster is not specified in
Equation (5). So, it is possible that more pursuers are clustered
into one same nearer target while less pursuers to a farther one.
It may be a bit greedy and redundant sometimes that pursuers
first cooperate to capture one nearer target as soon as possible
and then pursue others. However, this redundancy in the self-
organizing clustering may improve the system’s robustness to
individual robot’s software or hardware failures.

5

Algorithm 2: Distributed fuzzy clustering of agent k

Input : local observation ok
t of agent k at time t.

Output: role, cluster center, cluster members,Memory.
1 Update captured targets and locked pursuers in Memory.
2 if there are no local free or neighboring targets then
3 role← searcher.
4 cluster center ← the agent itself Ak.
5 cluster members← the agent itself Ak.

6 else
7 role← pursuer.
8 T = {T1, ...,Tmk } ← local free targets.
9 A = {A1, ..., Ank } ← local free pursuers.

10 cluster center ← Equation (4).
11 cluster members← Equation (5).

Global distributed consistency metric. To evaluate the con-
sistency in the distributed clustering process between the global
n agents and m targets, a consistency matrix C = [ci j] ∈ Rn×n

can be calculated from {M̂k |k = 1, ..., n}. ci j ∈ {−1, 1, ...,m} is
the global target index of the non-zero item of M̂i

j∗, which rep-
resents the cluster (or target) index for agent j from agent i’s
point of view, and ci j = −1 means that agent i has no idea of
the cluster of agent j because agent j is located out of the local
view of agent i.

The global DC (distributed consistency) can be defined as

DC .
=

2
n · (n − 1)

n−1∑
i=1

n∑
j=i

|{k|k ∈ Ĉi ∩ Ĉ j, and cik == c jk}|

|Ĉi ∩ Ĉ j|

∈ [0, 1],

(6)

where | · | is the the cardinality of a set; Ĉi = {k|k =

1, ..., n, and cik , −1} is the set of visible local pursuers for
agent i. The process of computating DC in Equation (6) is to
compare every two rows Ci∗ and C j∗ of C and calculate the ra-
tio of consistent decisions between agent i and agent j in their
common knowledge about the other pursuers. Due to this spe-
cial meaning in our application, we define 0/0 = 1 for Equation
(6), which means that two agents without local physical inter-
actions have fully consistent decisions.

3.2. Search policy in self-organized search (SOS)

In the self-organized search (SOS), a searcher does not have
any prior knowledge about the environment or the number of
searchers and targets. As in natural self-organization systems,
such as a school of fish or a flock of birds, the objective is to
equip searchers with the abilities that

(1) a single searcher can perform an effective search by itself
when there are no targets or searchers in its local view;

(2) a searcher has a tendency to follow other visible searchers
so that a flock of searchers can be formed since the natural
flocking behavior can increase the harvesting efficiency,
which is especially true with a bigger group [33];

(3) a flock of searchers can perform effective “migration”–like
actions rather than tangling with each other so that the
flock as a whole loses searching ability.

To achieve these goals, we use the actor-critic algorithm [34]
to enable self-organizing searchers to learn from experiences in
the centralized training and decentralized execution way.

The parameter θ of policy πθ is updated with the learning rate
α1 (3 × 10−4 and 10−4 in the search and pursuit experiments)
according to

θ = θ + α1 5θ J(πθ), (7)

where

5θ J(πθ) = Eτ∼πθ [
tmax∑
t=0

5θ log πθ(at |st)At], (8)

and τ = (s0, a0, r0, s1, a1, r1, ...) is the trajectory; At is the gen-
eralized advantage estimation (GAE) [35] in the form of

At =

tmax−t∑
l=0

(γλ)lδV
t+l, (9)

with γ, λ being two constants (0.99 and 0.97 in our experiments)
and

δV
t = R(st, ~at) + γVφ(st+1) − Vφ(st). (10)

being the temporal difference (TD) residual of the approximate
value function Vφ(·) with discount γ.

The parameter φ of the value function Vφ(st) is optimized by
minimizing the following loss function with stochastic gradient
descent and learning rate α2 (10−3 and 10−4 in the search and
pursuit experiments, respectively):

φ = arg min
φ

Est ,R̂t∼πθ
[(Vφ(st) − R̂t)2]. (11)

where R̂t =
∑tmax

t′=t γ
t′−tR(st′ , ~at′) is the discounted return from

point t with reward function R(st′ , ~at′) and discount factor γ.
Reward function. For the SOS task, individual agent’s re-

ward function Ri(st, ~at) in the POMG is given in Table 1.
Though simple, experiments show that it achieves satisfied co-
operation, and no additional efforts in the multi-agent credit as-
signment are needed as in the Dec-POMDP formulation.

Table 1: Reward function Ri(st , ~at) for self-organized search (SOS)

Action Reward
Search for a target 10 to the contributing agent
Collide with another agent -12 × # of agents collided with
Collide with an obstacle Die in its location
Move before termination -0.05

We once try to give the search reward to the contributing
flock, which is a connected component of the graph whose ver-
texes are agents and edges represent local observations among
agents. We assume that if one member agent searches for a tar-
get, the whole flock of agents obtain the reward equally to en-
courage flocking behavior. However, with such a reward mech-
anism, agents tangle with each other in local regions, although

6

they indeed prefer gathering. Instead, when we simply give a
reward only to the contributing agent that finds the target, as in
Table 1, the training performance improves significantly.

Note that, the episode reward is defined as the mean of all
agents’ discounted accumulated rewards in the same environ-
ment. In this way, the episode reward score will not increase
with the number of agents involved, and thus, the scores are
comparable between trials with different numbers of agents.

Parameter sharing based centralized training. In training,
agents in the same environment instance maintain a central ex-
perience pool and train shared critic and actor models with their
newest collective episode experiences. The shared models in
different environment instances are coordinated by communi-
cating and averaging their gradients to stabilize the training.

3.3. Cooperative coevolution algorithm for robots (CCR)

According to FSC2 (Algorithm 1), after distributed task allo-
cation, the mission of a free pursuer is to cooperate with other
cluster members pursuing the targeting cluster center. For the
single-target pursuit, we propose the CCR (cooperative coevo-
lution for robots) algorithm based on CCPSO-R [36, 37], which
further improves the cooperation of pursuers in their simultane-
ously decision making and execution process.

Cooperative coevolutionary evaluation scheme. Similar to
CCPSO-R, the real agents in the CCR are the pursuers that ex-
ecute physical actions in the environment, which can be repre-
sented by 2-D positions {Ai, i = 1, ..., n}. For each real agent Ai,
all the neighboring positions one step away from it, including its
current position, form a group of virtual agents {A1

i = Ai, ..., A5
i }

that can act as the candidate next positions for the real agent.
The decision-making process of a real pursuer is to evaluate
its virtual agents in the cooperative coevolutionary scheme and
greedily select the best one as its next position. The pursuit
performance is ensured by the evaluation quality of the virtual
agents, i.e., how well the fitness function is designed to guaran-
tee conflict-free efficient cooperation in the pursuit.

In particular, the cooperative coevolutionary evaluation
scheme means that the fitness evaluation of an individual agent
is not only determined by itself, but also on the other real
agents. For the target cluster center Tc and pursuer cluster
{A1, ..., A

j
i , ..., Ani }, where the i-th member A j

i is the j-th virtual
agent of the i-th real pursuer and ni is the total number of cluster
members, the fitness function f i j

stp was proposed in CCPSO-R
[36] as follows:

f i j
stp = f i j

closure + f i j
expanse + f i j

uni f ormity, (12)

where
f i j
closure = inconv(Tc, A1, ..., A

j
i , ..., Ani) (13)

evaluates whether the target Tc is located in the convex hull
formed by the pursuer cluster: 0 indicates that it is inside, 0.5
indicates that it is on the edge, and 1 indicates that it is outside;

f i j
expanse =

1
ni (

ni∑
k=1,k,i

||Ak − Tc||1 + ||A j
i − Tc||1) (14)

gives the spatial extent of the pursuer cluster in terms of Tc; and

f i j
uni f ormity = std

([
N11 N12
N21 N22

])
(15)

or
f i j
uni f ormity = std([N12,N21,N23,N32])

+std([N11,N13,N31,N33]).
(16)

evaluates how evenly the pursuer cluster is distributed around
Tc based on the standard deviation std(·) where Ni j is the num-
ber of pursuers in the (i, j)-th space bin (for details, see [36]).

However, f i j
stp only solves the cooperative single-target pur-

suit problem by letting agents make decisions sequentially,
while its parallel decision-making version PCCPSO-R [37] can
only resolve partial conflicts by introducing two secure dis-
tances in the fitness function. Hence, we propose a new fit-
ness function based on f i j

stp to enable conflict-free cooperation
in single-target pursuit. In detail, the fitness function for the
j-th virtual agent of the i-the real pursuer A j

i can be defined as

f i j =



∞, if nndi j
entity == 0 or

(nndi j
target , 1 & nndi j

pursuer == 1)
f i j
convention, else if nndi j

target == 1 &
nndi j

pursuer == 1
f i j
stp, else

(17)

where nndi j
entity is the distance to the nearest neighbor with the

set entity, which could be pursuers, targets or obstacles. In the
simultaneous decision-making and execution process, the se-
cure distance between a pursuer and a target is 1 and that be-
tween pursuers is 2 to ensure that there are no collisions, and
pursuers are not allowed to approach closer than this limit un-
less they are capturing a target. However, when the condition
(nndi j

target == 1 & nndi j
pursuer == 1) is satisfied, it means that

more than one pursuers may choose to occupy the same cap-
turing position in the next step, where a conflict may occur but
can be resolved by the lexicographic convention fitness function
f i j
convention as follows.

Lexicographic convention. In the proposed lexicographic
ordering, 2-D positions are sorted first in the ascending order
of their first-dimension values and then based on their second-
dimension values, and this is known by all agents. This is used
in the lexicographic convention that pursuers coordinate their
choices of one-step-away open capturing positions by the fol-
lowing steps.

(1) All local open capturing positions are sorted.

(2) All local free pursuers are sorted.

(3) The neighboring open capturing positions and pursuers are
paired in the priority order.

If the next candidate position or virtual agent A j
i of the current

real pursuer Ai is its assigned capturing position under a certain
partial observation, fconvention = −1; otherwise, fconvention = ∞,
which means that the choice not satisfying the lexicographic
convention is not allowed.

7

Concept of certain partial observation. The concept of cer-
tain partial observation is introduced to ensure multi-agent col-
lision free in the pursuit. It is in contrast to the uncertain par-
tial observation, which is defined as the partial observation that
satisfies the following two conditions, as illustrated in Figure
5. First, there exist risky capturing positions, which are the
open capture positions on specific boundaries of the local view
that will be assigned to a local free pursuer based on the lex-
icographic convention. Second, there are other free pursuers
neighboring the assigned captured position. Under such un-
certain observations, an agent may make risky decisions that
may lead to collisions. For simplicity, we prevent the current
agent from taking the assigned capturing position by setting
fconvention = ∞. Although this may influence the efficiency, it
can ensure that there are no collisions in the single-target pur-
suit due to the observation uncertainty in the POMG.

(a) Incorrect decisions by A3 due to its ob-
servation uncertainty.

(b) Actual decisions of pur-
suers.

Figure 5: Illustration of uncertain partial observation under the lexicographic
convention of Section 3.3; collisions may result if such scenarios are not de-
tected. A1, A2, A3, and A4 are the pursuers, T1 and T2 are the targets, X1, X2,
X3, and X4 are the open capturing positions, and these entities are numbered in
the lexicographic order given in Section 3.3. The green background is the per-
ception range of A3, and the dashed regions are the specific boundaries where
risky capturing positions may appear. For A3, X1 is a risky capturing position
that is located on the specific boundary of its local view and is assigned to a
local free pursuer based on the local lexicographic convention without the de-
tection of such scenarios. Meanwhile, the assigned capturing position X2 of A3
has another neighboring free pursuer A2. The decision of A3, which is made
based on uncertain observation satisfying the above two conditions as in (a),
may deviate from the actual decisions of pursuers as in (b) and risk collisions.

4. Experiments

4.1. Environment
First, for convenience in comparing the self-organizing

search (SOS) agents trained by different MADRL algorithms
with their official public code, we made several changes to the
PettingZoo Pursuit-V3 environment [38], including the initial-
ization, reward function, some utility functions, and bugs. Sec-
ond, for the multi-target self-organized pursuit (SOP), we im-
plemented the environment ourselves for more compact code.
The local observation oi(s) of agent i is always represented
as an 11 × 11 × 3 binary matrix, where the 3 channels are
for targets, agents, and obstacles. All code is available at
https://github.com/LijunSun90/pursuitFSC2.

4.2. Experimental setup
Since the proposed FSC2 framework decomposes the multi-

target SOP into three subtasks that are solved by different tech-
niques, we have different baselines for different (sub-)tasks and

the same algorithm, such as actor-critic, is used and performs
differently in different experiments. For clarity, we summarize
all experiments and analyses in Table 2.

Note that for the multi-target SOP, we integrate the best per-
forming actor-critic trained self-organizing searcher as the SOS
agent in FSC2 (Algorithm 1). All MADRL algorithms use the
same policy and value model, which is a two-layer ReLU multi-
layer perceptions (MLP) with hidden layers of size 400 and
300. The baselines for the SOS are as follows and use the re-
ward function given in Table 1.

(1) A swarm of independent random-walk searchers: Each
searcher randomly walks in the space, taking no account
of its surroundings and past history.

(2) A swarm of independent complete searchers: A complete
searcher searches the space in a systematic way to ensure
that every position on the map is visited at least once;
this search is complete so that all targets are guaranteed
to be found without a time limit. The optimal system-
atic search strategy is a solution to the Hamiltonian path
problem where every position is visited exactly once; this
problem is NP-complete [39]. For simplicity, we employ
an intuitive systematic strategy in which the searcher first
moves to its nearest map corner and then, starting from
that corner, performs zigzag or snakelike walking assum-
ing that the searcher knows the scope of the grid world but
does not know the targets’ positions. In addition, since the
search success is defined as the agent occupying the tar-
get’s position, the simple systematic searcher is actually
equivalent to a searcher with a perception range of 1.

(3) A swarm of coordinated searchers trained by the ApeX-
DQN, the current documented best performing model in
pursuit [40]: We tested the learning rates {10−6, 10−5,
10−4, and 10−3}; the batch sizes {128, 256, 512, and 1024};
the rollout fragment lengths {32 and 128}; and Adam
epsilons {0.00015, and 10−8}, where the best values are
shown in bold, and the other parameter values are the same
as in [40].

(4) A swarm of coordinated MADDPG searchers with com-
munication during training: The OpenAI MADDPG im-
plementation 2 is used in which an agent has access to all
other agents’ observations and actions through interagent
communication; these are used in training the critic func-
tion Q(~o, ~a). We tested the learning rates {10−4, 10−3, and
10−2}; the batch sizes {256, 512, and 1024}; and the model
update rates {4, 100, and 500}, where the best values are
shown in bold.

4.3. Self-organizing search (SOS) experiments

The training performances of the actor-critic, ApeX-DQN,
and MADDPG models for 8 agents searching 50 targets in
40×40 grid worlds are shown in Figure 6. The average episode

2https://github.com/openai/maddpg

8

Table 2: Summary of the experiments and analyses in Section 4

Section Task Experiment comparison & analysis

4.3 Self-organizing search (SOS)

- Independent random-walk searchers
- Independent complete searchers
- Swarm of MADDPG searchers
- Swarm of ApeX-DQN searchers
- Swarm of actor-critic searchers (our approach)
- Behavior analysis

4.4 Fuzzy-based distributed task allocation Distributed task allocation consistency analysis

4.5 Single-target pursuit
- Actor-critic trained pursuer
- CCR pursuer (our approach)

4.6 Multi-target self-organizing pursuit (SOP) Scalability experiments and complexity analysis

Figure 6: Training performance comparison on self-organizing search (SOS) over 10 random seeds, where the solid lines and shaded areas represent the mean and
standard deviation of the corresponding performance, respectively.

reward, episode length, number of collisions between agents,
and number of collisions with obstacles all contribute to the re-
ward received by agents as given in Table 1 and thus the agents’
training, while the episode search rate is not part of the reward
function and is presented to illustrate the effectiveness of the
training.

The actor-critic model has the best training performance in
terms of convergence speed, the final converged values, and the
stability of the training performance. In contrast, both MAD-
DPG and ApeX-DQN are influenced more by the random seeds
in the training. MADDPG oscillates severely during the train-
ing process. Regarding ApeX-DQN, we observed that the con-
vergence speed is not the most important metric since its per-
formance may degrade and diverge badly with a faster conver-
gence speed. Therefore, we chose the parameters that enable
ApeX-DQN’s performance to improve steadily, the final per-
formance of which is proven to be better than the best train-
ing performance of the parameters with faster convergence that
later degrade.

Second, we compare a single agent’s searching performance
in the 20×20, 40×40, 60×60, and 80×80 grid worlds with 5 tar-
gets in Figure 7. With the increase in the environment size and

Figure 7: Single SOS agent performance comparison in grid worlds of different
sizes, where the mean and standard deviation of the experimental results in 100
independent runs are plotted

the sparsity of targets, the performances of all policies change
accordingly, and the actor-critic searcher is always the best. For
the random-walk searcher, the environment size has little influ-
ence on its performance due to its local random movements,

9

which take longer to explore farther regions. For the system-
atic searcher, when the environment size is too large to allow
it to perform a complete systematic search in a limited time,
its performance is slightly better than that of the random-walk
searcher. Therefore, compared with a complete searcher, the
actor-critic searcher has better performance in searching targets
in a limited time in most scenarios.

Figure 8: Swarm performance comparison of 8 SOS agents searching 50 targets
in grid worlds of different sizes, where the mean and standard deviation of the
experimental results in 100 independent runs are plotted

Third, we compare the swarm performance of different poli-
cies by searching 50 targets with 8 searchers in 20 × 20, 40 ×
40, 60× 60, and 80× 80 grid worlds, as shown in Figure 8. The
smaller the environment is, the larger the swarm density is, and
the more challenging the mulit-agent coordination is; and the
actor-critic swarm always performs best. Although MADDPG
is the algorithm that considers the multi-agent interactions the
most in its critic function learning, its performance is not as
good as that of actor-critic. In addition, since MADDPG learns
a unique critic function for each agent, when the number of
agents changes, it needs to relearn.

Finally, the comparison of Figures 7 and 8 proves two facts.
First, the superiority of a swarm of independent agents over
a single-agent system stems from the benefits of introduc-
ing more agents, such as random-walk agents and systematic
agents. Second, coordinated inferior agents may sometimes
outperform single superior agents in some aspects, such as the
swarm of ApeX-DQN agents that outperform the single actor-
critic agent.

Behavior interpretation of the SOS policy and sparse tar-
gets exploration. One basic problem to be solved in self-
organized search is how a searcher behaves when there is no
information (no targets and no other searchers) in its current
perception, i.e., in the case of an empty observation. To simu-
late natural flocking, Reynolds [41] proposed three behavioral
rules for individual agents: (1) avoid collisions with neighbors;
(2) match velocity with neighbors, and (3) stay close to neigh-
bors, which also appear in the three behavior patterns of indi-
vidual fish models in the movement of a school [33]. However,
as indicated in [41], these three behaviors can only support aim-
less flocking; it is also observed in our experiments that if we
only apply these three rules, agents can group together yet be-

come tangled with each other in local regions so that the whole
group loses the search ability.

Similar to the case of adding a global direction or global tar-
get as the flock’s migratory urge in [41], we observe that the
successfully trained self-organizing searchers learn similar be-
haviors by themselves. As shown in Figure 9, we test the actor-
critic searcher’s behavior by always feeding it with the empty
observation, and then estimate the searcher’s action distribution
over its 5 legal actions by running these tests in 100 independent
runs with 1000 steps per run.

It can be seen that although different policies trained with
different random seeds have different preferences, the common
result is that they prefer a particular action most of the time
and stochastically choose other actions. In contrast to the ran-
dom walk with a uniform action distribution, shown as the red
dashed line in Figure 9, this trained action distribution ensures
that a searcher will move in one direction most of the time and
occasionally switch to another direction, which benefits the tar-
get search since the searchers are moving farther away, explor-
ing nonrepeatable areas most of the time, and covering a wide
expanse of the map in a limited time. This searching behav-
ior also provides a way to the space exploration problem with
sparse targets, as the example shown in Figure 7.

In addition, since the self-organizing searchers are homo-
geneous, when all searchers perform similar behaviors, as a
whole, the self-organizing search swarm behaves as an emer-
gent self-organized pattern. In other words, the self-organized
pattern in the self-organizing search emerges here because the
agents are homogeneous and behave according to the same
meaningful actions.

Figure 9: Behavior probability or action distribution of actor-critic trained self-
organizing search (SOS) policy with the empty observation, which is estimated
from 100 independent runs with 1000 steps per run. The different models are
actor-critic policies trained with different random seeds.

4.4. Empirical analysis of the consistency in distributed task
allocation

In the distributed task allocation, pursuers and targets are
grouped into clusters such that the multi-target SOP is locally
decomposed into several single-target pursuit problems. How-
ever, in this distributed decision-making process, there may be
inconsistency to some extent. As illustrated in Figure 10a, due
to the partial observability of pursuers, it is common that an

10

agent can only observe part of another agent’s local perception
so that they have different knowledge of the world, which is the
source of inconsistency in distributed clustering.

For hard clustering, such as k-means, an agent randomly se-
lects one of its nearest targets as its cluster center, while for
fuzzy clustering, the choice of targets is determined stochasti-
cally by the fuzzy membership matrices. The random choices
between the nearest targets in hard clustering and fuzzy mem-
bership values in the fuzzy clustering may all stochastically re-
sult in different consistency matrices C. We multiply the DC
value of each matrix C with its corresponding probability and
obtain the stochastic DC value. Figure 10a gives an example
scenario in which fuzzy clustering is stochastically superior to
hard clustering. Such scenarios occur when the uncertainty out-
side of the common observation area brings better options for
the agents, such as T2 to A2 in Figure 10a. In contrast, as illus-
trated in Figure 10b, fuzzy clustering is stochastically inferior
to hard clustering when the uncertainty outside of the common
observation area fails to provide better options for the agents,
such as T3 to A2, and when there is no any uncertainty.

However, since uncertainty is inherent in the partially observ-
able game, an agent can never determine the level of uncertainty
from only its own local view without other related informa-
tion communicated between neighboring agents. In addition,
what is important here is that with fuzzy clustering, in scenarios
where fuzzy clustering is stochastically inferior to hard cluster-
ing, its stochastic process enables it to be as good as or even
better than hard clustering. In contrast, with hard clustering, in
scenarios where hard clustering is not stochastically superior to
fuzzy clustering, its clustering result will never beat the fuzzy
clustering result. Therefore, fuzzy clustering reduces the in-
fluence of uncertainty in distributed task allocation in partially
observable environments, especially in cases without interagent
communication.

4.5. Single-target pursuit (STP) experiments
In the literature, it is not uncommon to train fully observable

agents in pursuing a single target with the surrounding-based
capture definition. Therefore, in this section, we train single-
target pursuers with the actor-critic (AC) algorithm and the re-
ward function in Table 3. All training is conducted in 6× 6 grid
worlds so that the agents’ 11 × 11 perception range can cover
the whole space and the partially observable agents can fully
perceive the environment. Then we compare the STP perfor-
mance between the trained AC pursuers and the proposed CCR
pursuers in Table 4.

Table 3: Reward function Ri(st , ~at) for single-target pursuit (STP)

Action Reward
Capture a target 5 to the contributing agent
Neighbor a target 0.1 to the contributing agent
Collide with an agent -0.2 × # of agents collided with
Collide with an obstacle Stay in place for one time step
Move before termination -0.05

Table 4: Single-target pursuit performance comparison between the actor-critic
(AC) trained pursuer and the CCR pursuer in 6x6 grid worlds. The values are
the mean and standard deviation of the results from 100 independent runs.

Algorithm Capture rate Episode length Collisions

AC
0.96

(0.196)
30.21

(100.339)
20.07

(97.457)

CCR
1.0

(0.0)
5.21

(1.971)
0.0

(0.0)

It can be seen that although AC pursuers can learn to cap-
ture the target very quickly with a high capture rate and low
collisions, collisions are difficult to be absolutely avoided in the
simultaneous decision-making and simultaneous action execu-
tion of the POMG. There is no chance of canceling, retract-
ing, or coordinating a wrong decision, which leads to colli-
sions since all agents’ actions are performed simultaneously af-
ter their simultaneously made decisions. This is different from
the scheme of simultaneous decision-making and sequential ac-
tion execution in some multi-agent games where collisions can
be resolved by, for example, the priorities of agents before the
decisions are actually executed. In contrast, CCR pursuers are
more efficient and reliable, as they simultaneously utilize the
cooperation coevolution mechanism to evaluate individual de-
cisions with respect to the swarm benefits and utilize the lexico-
graphic convention to resolve possible collisions in execution.

4.6. Self-organizing pursuit (SOP) experiments
We test the swarm performance and scalability of up to 2048

FSC2 agents in multi-target SOP in 40 × 40 and 80 × 80 grid
worlds, as shown in Figures 11 and 12, respectively. Almost all
experiments achieve a nearly 100% average capture rate except
that the number of pursuers is too small to cover the space in
the maximum of 500 time steps, such as in the cases of 4 and
8 pursuers in 80 × 80 grid worlds in Figure 12. However, the
more than 68% average capture rate proves the efficient search
ability of FSC2 agents in such trials.

Note that, the collisions in 0.22% and 2.1% of the trials in
Figures 11 and 12 all occur when the FSC2 agent is a searcher,
i.e., the SOS agent in Algorithm 1. This does not mean a per-
formance degradation of SOS agents in SOP tasks. Rather, it
reveals the weak safety guarantee of RL algorithms. Figure
13 gives two consecutive frames showing an inter-agent col-
lision when 128 targets and 512 pursuers are deployed in the
40 × 40 grid world. Although SOS agents learn to interact with
each other in the multi-agent environment and the collisions
are reduced significantly, it cannot be avoided absolutely. In
the search subtask, SOS agents are only trained in very simple
environments where boundary walls are the only obstacles. By
deploying SOS agents in the multi-target SOP, however, they
are often surrounded by increasingly complex distribution of
captured targets and locked pursuers that are equivalent to ob-
stacles, and the environment is more like a complicated maze.
Besides, compared with the collision avoidance with static ob-
stacles, the multi-agent collision avoidance is a more compli-
cated coordination problem that is harder to be fully guaranteed

11

(a) Illustrative scenarios: fuzzy clustering is stochastically superior to hard clustering. Note that, in M2, the membership value of
A1 to T2 is 0 because A2 can infer that T2 is outside the perception scope of A1 as all agents are homogeneous and have the same
perception radius.

(b) Illustrative scenarios: fuzzy clustering is stochastically inferior to hard clustering.

Figure 10: The computational process of DC in Equation (6) and stochastic comparisons between fuzzy clustering and hard clustering in distributed task allocation,
where the symbols “>” and “<” represent stochastically superior and inferior, respectively, and a dashed rectangle around an agent of the same color indicates its
local perception scope with an in f -norm radius of 2 for the purpose of illustration.

Figure 11: Swarm performance in the multi-target self-organizing pursuit
(SOP) in 40 × 40 grid wolds with different numbers of targets and pursuers,
where the mean and standard deviation of the experimental results in 100 inde-
pendent runs are plotted.

by RL. In such scenarios, FSC2 agents can still capture nearly
100% of the targets within the limit of 500 time steps without
collisions most of the time, which can also be seen from the
large standard deviation of the nonzero mean collisions in Fig-
ures 11 and 12.

In addition, the relatively stable swarm performance of FSC2

Figure 12: Swarm performance in the multi-target self-organizing pursuit
(SOP) in 80 × 80 grid wolds with different numbers of targets and pursuers,
where the mean and standard deviation of the experimental results in 100 inde-
pendent runs are plotted.

agents indicates that the three proposed subsolutions in FSC2,
i.e., the MADRL-trained self-organizing search (SOS) agents,
fuzzy-based distributed task allocation, and the CCR-based
single-target pursuit, all fulfill their responsibilities effectively
and efficiently, which also indicates the good scalability of
FSC2 agents. Due to the fully distributed nature of the pro-
posed self-organizing algorithm FSC2, its application and per-

12

Figure 13: Multi-agent collision scenario illustration in the multi-target SOP
with 128 targets (red squares) and 512 agents (blue squares) in 40 × 40 grid
world: the two circled agents in step 14 are two searchers that collide with each
other in step 15.

formance are not limited by the swarm size.

4.7. Discussion

Computational complexity analysis. For a distributed par-
tially observable agent without communication, the computa-
tional complexity is not related to the swarm size but only re-
lated to the observation range. Assume that there are n pur-
suers and m targets in the local observation defined by the
range r, where n + m ≤ r2, and let ci, i = 1, 2, ... be some
constants. First, for the distributed task allocation in Section
3.1, the time complexity in terms of Equations (2) to (5) is
(c1 · n · m + c3 · m) + c3 · n · m + c4 · m + c5 · n = O(n · m).
Second, for the SOS in Section 3.2, the time complexity of the
policy model with input size 3r2 is O(r2). Third, for the single-
target pursuit in Section 3.3, the time complexity 3 of Equation
(12) is O(nlogn) + c1 · n + c2 · (m + n) = O(nlogn), while the
time complexity of calculating the lexicographic convention in
Equation (17) is O(n2) + O(m2) + O(n · m) = O(max(n,m)2) in
the worst case. Therefore, based on Algorithm 1, FSC2’s time
complexity is O(max(n,m, r)2) in the worst case.

Generalization of FSC2 and comparison with existing
work. As introduced in Section 1, there are many capture def-
initions in the pursuit domain. The proposed FSC2 algorithm
can be extended to other multi-agent pursuit games, although it
is originally proposed for the 4-pursuer-surrounding-based cap-
ture. For example, FSC2 satisfies the mass capture based pur-
suit in [19]. In FSC2, when pursuers surround the target or even
before the target cannot move, the mass center of pursuers will
match that of the target. But instead of the mass center of the
group including all pursuers matching that of the evader group
and thus one mass capture in [19], four pursuers take charge of
each target and thus there are many distributed mass captures in
the FSC2. Therefore, compared with Zhou et al. [19], FSC2 is
more suitable for the pursuit where pursuers and targets are spa-
tially distributed. In particular, FSC2 can additionally deal with
the interagent collision avoidance. On the other hand, FSC2
can directly solve the pursuit problems with one more time step
if the capture is occupying-based and the number of pursuers
needed for a target is not greater than 4, as in MPE [17]. FSC2

3http://www.qhull.org/html/qh-code.htm#performance

agents only need to walk towards the target one more step af-
ter they surround the target and the target cannot move. Ac-
tually, not only the occupying-based pursuit, pursuers can do
many things as long as the target is surrounded, such as tagging
the target as in MAgent [18]. In the proposed fuzzy-based dis-
tributed task allocation, we do not limit the number of agents in
a cluster to greedily capture one visible target with as many pur-
suers as possible. This is beneficial when applying the FSC2 in
other pursuit problems under the occupying-based capture yet
with more than 4 pursuers for each target. In addition, the fit-
ness function, i.e., Equation (17), of the CCR algorithm is orig-
inally designed to suit the capture with more than 4 pursuers,
as shown in its sequential decision-making version: CCPSO-R
[36]. The only necessary modifications are the capture defini-
tion and the order of agents in which they walk toward the target
to ensure that there are no collisions.

5. Conclusion

This work investigated the large-scale multi-target SOP prob-
lem by formulating it as a POMG and proposed the distributed
algorithm FSC2 based on the fuzzy logic, MARL, and evolu-
tionary computation. It does not rely on interagent communica-
tion and is thus naturally robust to unavoidable communication
failures in general multi-agent game setups. In particular, FSC2
decomposes the SOP into three well formulated sub-problems.
First, for the distributed task allocation, the influence of interac-
tion uncertainty and partial observation uncertainty on the con-
sistent distributed clustering is reduced. Second, in the search,
a single SOS agent has superior performance in searching for
targets within a limited time, and a swarm of SOS agents per-
forms best in terms of multi-agent interactions. Third, for the
target pursuit, CCR can ensure effective target pursuing with
the safety guarantee in the inter-agent collision-avoidance. Fi-
nally, we prove the effectiveness of FSC2 in the SOP experi-
ments with more than 2048 agents.

However, the safety of interagent collision avoidance is dif-
ficult to be guaranteed by MADRL without explicit commu-
nications. This is also the reason that we only apply MARL
in the search sub-task, not the target pursuit task, the latter of
which needs more close coordination and challenges the RL
methods more. In future work, more complex self-organizing
patterns are expected to emerge that are not simply due to ho-
mogeneous agents, and the distributed implicit multi-agent co-
ordination problem needs to be further investigated.

References

[1] S. Camazine, J.-L. Deneubourg, N. R. Franks, J. Sneyd, G. Theraula,
E. Bonabeau, Self-organization in biological systems, Princeton univer-
sity press, 2001.

[2] M. Rubenstein, A. Cornejo, R. Nagpal, Programmable self-assembly in
a thousand-robot swarm, Science 345 (6198) (2014) 795–799. doi:10.
1126/science.1254295.

[3] F. Berlinger, M. Gauci, R. Nagpal, Implicit coordination for 3d underwa-
ter collective behaviors in a fish-inspired robot swarm, Science Robotics
6 (50). doi:10.1126/scirobotics.abd8668.

13

http://dx.doi.org/10.1126/science.1254295
http://dx.doi.org/10.1126/science.1254295
http://dx.doi.org/10.1126/scirobotics.abd8668

[4] S. Warnat-Herresthal, H. Schultze, K. L. Shastry, S. Manamohan,
S. Mukherjee, V. Garg, R. Sarveswara, K. Händler, P. Pickkers, N. A.
Aziz, et al., Swarm learning for decentralized and confidential clinical
machine learning, Nature 594 (7862) (2021) 265–270. doi:https:

//doi.org/10.1038/s41586-021-03583-3.
[5] D. Ye, M. Zhang, A. V. Vasilakos, A survey of self-organization mecha-

nisms in multiagent systems, IEEE Transactions on Systems, Man, and
Cybernetics: Systems 47 (3) (2017) 441–461. doi:10.1109/TSMC.

2015.2504350.
[6] R. Isaacs, Differential games: a mathematical theory with applications to

warfare and pursuit, control and optimization, New York: John Wiley and
Sons, 1965.

[7] D. Ye, M. Shi, Z. Sun, Satellite proximate pursuit-evasion game
with different thrust configurations, Aerospace Science and Technology
99 (2020) 105715. doi:https://doi.org/10.1016/j.ast.2020.

105715.
[8] Y. Guan, D. Maity, C. M. Kroninger, P. Tsiotras, Bounded-rational

pursuit-evasion games, in: 2021 American Control Conference (ACC),
2021, pp. 3216–3221. doi:10.23919/ACC50511.2021.9483152.

[9] Z. Wang, B. Gong, Y. Yuan, X. Ding, Incomplete information pursuit-
evasion game control for a space non-cooperative target, Aerospace 8 (8).
doi:10.3390/aerospace8080211.

[10] X. Tang, D. Ye, L. Huang, Z. Sun, J. Sun, Pursuit-evasion game switch-
ing strategies for spacecraft with incomplete-information, Aerospace Sci-
ence and Technology 119 (2021) 107112. doi:https://doi.org/10.
1016/j.ast.2021.107112.

[11] J. E. Littlewood, A mathematician’s miscellany, Methuen & Co. Ltd.,
London, 1953.

[12] T. D. Parsons, Pursuit-evasion in a graph, in: Theory and Applications of
Graphs, Springer Berlin Heidelberg, Berlin, Heidelberg, 1978, pp. 426–
441.

[13] R. Nowakowski, P. Winkler, Vertex-to-vertex pursuit in a graph, Discrete
Mathematics 43 (2) (1983) 235 – 239. doi:https://doi.org/10.

1016/0012-365X(83)90160-7.
[14] F. V. Fomin, P. A. Golovach, J. Kratochvı́l, On tractability of cops and

robbers game, in: G. Ausiello, J. Karhumäki, G. Mauri, L. Ong (Eds.),
Fifth Ifip International Conference On Theoretical Computer Science –
Tcs 2008, Springer US, Boston, MA, 2008, pp. 171–185.

[15] A. Bonato, The game of cops and robbers on graphs, American Mathe-
matical Soc., 2011.

[16] T. H. Chung, G. A. Hollinger, V. Isler, Search and pursuit-evasion in mo-
bile robotics, Autonomous robots 31 (4) (2011) 299. doi:10.1007/

s10514-011-9241-4.
[17] R. Lowe, Y. Wu, A. Tamar, J. Harb, P. Abbeel, I. Mordatch, Multi-agent

actor-critic for mixed cooperative-competitive environments, Neural In-
formation Processing Systems (NIPS).

[18] L. Zheng, J. Yang, H. Cai, M. Zhou, W. Zhang, J. Wang, Y. Yu, Magent:
A many-agent reinforcement learning platform for artificial collective in-
telligence, Proceedings of the AAAI Conference on Artificial Intelligence
32 (1).

[19] Z. Zhou, H. Xu, Decentralized optimal large scale multi-player pursuit-
evasion strategies: A mean field game approach with reinforce-
ment learning, Neurocomputingdoi:https://doi.org/10.1016/j.
neucom.2021.01.141.

[20] I. E. Weintraub, M. Pachter, E. Garcia, An introduction to pursuit-evasion
differential games, in: 2020 American Control Conference (ACC), 2020,
pp. 1049–1066. doi:10.23919/ACC45564.2020.9147205.

[21] M. Benda, V. Jagannathan, R. Dodhiawala, On optimal cooperation of
knowledge sources-an empirical investigation, Tech. rep., BCS-G2010-
28, Boeing Advanced Technology Center, Boeing Computing Services,
Seattle, Washington (1986).

[22] Y. Wang, L. Dong, C. Sun, Cooperative control for multi-player pursuit-
evasion games with reinforcement learning, Neurocomputing 412 (2020)
101–114. doi:https://doi.org/10.1016/j.neucom.2020.06.

031.
[23] M. Lv, B. D. Schutter, S. Baldi, Non-recursive control for formation-

containment of hfv swarms with dynamic event-triggered communica-
tion, IEEE Transactions on Industrial Informatics (2022) 1–1doi:10.
1109/TII.2022.3163573.

[24] K. H. W. Mykel J. Kochenderfer, Tim A. Wheeler, Algorithms for Deci-
sion Making, MIT Press, 2022.

URL https://algorithmsbook.com/

[25] M. Tan, Multi-agent reinforcement learning: Independent vs. cooperative
agents, in: Proceedings of the tenth international conference on machine
learning, 1993, pp. 330–337.

[26] J. Foerster, G. Farquhar, T. Afouras, N. Nardelli, S. Whiteson, Counter-
factual multi-agent policy gradients, in: Proceedings of the AAAI confer-
ence on artificial intelligence, Vol. 32, 2018.

[27] T. Rashid, M. Samvelyan, C. Schroeder, G. Farquhar, J. Foerster,
S. Whiteson, Qmix: Monotonic value function factorisation for deep
multi-agent reinforcement learning, in: International Conference on Ma-
chine Learning, PMLR, 2018, pp. 4295–4304.

[28] J. K. Gupta, M. Egorov, M. Kochenderfer, Cooperative multi-agent
control using deep reinforcement learning, in: G. Sukthankar, J. A.
Rodriguez-Aguilar (Eds.), Autonomous Agents and Multiagent Systems,
Springer International Publishing, Cham, 2017, pp. 66–83. doi:https:
//doi.org/10.1007/978-3-319-71682-4_5.

[29] J. Jiang, C. Dun, T. Huang, Z. Lu, Graph convolutional reinforce-
ment learning, in: International Conference on Learning Representations,
2019.

[30] Y. Yang, R. Luo, M. Li, M. Zhou, W. Zhang, J. Wang, Mean field multi-
agent reinforcement learning, in: International conference on machine
learning, PMLR, 2018, pp. 5571–5580.

[31] C. de Souza, R. Newbury, A. Cosgun, P. Castillo, B. Vidolov, D. Kulić,
Decentralized multi-agent pursuit using deep reinforcement learning,
IEEE Robotics and Automation Letters 6 (3) (2021) 4552–4559. doi:

10.1109/LRA.2021.3068952.
[32] J. C. Bezdek, Pattern recognition with fuzzy objective function algo-

rithms, Springer, Boston, MA, 2013. doi:https://doi.org/10.

1007/978-1-4757-0450-1.
[33] T. Pitcher, A. Magurran, I. Winfield, Fish in larger shoals find food

faster, Behavioral Ecology and Sociobiology 10 (2) (1982) 149–151.
doi:https://doi.org/10.1007/BF00300175.

[34] V. Konda, J. Tsitsiklis, Actor-critic algorithms, Advances in neural infor-
mation processing systems 12.

[35] J. Schulman, P. Moritz, S. Levine, M. Jordan, P. Abbeel, High-
dimensional continuous control using generalized advantage estimation,
arXiv preprint arXiv:1506.02438.

[36] L. Sun, C. Lyu, Y. Shi, Cooperative coevolution of real predator robots
and virtual robots in the pursuit domain, Applied Soft Computing
89 (2020) 106098. doi:https://doi.org/10.1016/j.asoc.2020.
106098.

[37] L. Sun, C. Lyu, Y. Shi, C.-T. Lin, Multiple-preys pursuit based on bi-
quadratic assignment problem, in: 2021 IEEE Congress on Evolutionary
Computation (CEC), 2021, pp. 1585–1592. doi:10.1109/CEC45853.

2021.9504823.
[38] J. K. Terry, B. Black, M. Jayakumar, A. Hari, R. Sullivan, L. San-

tos, C. Dieffendahl, N. L. Williams, Y. Lokesh, C. Horsch, et al., Pet-
tingzoo: Gym for multi-agent reinforcement learning, arXiv preprint
arXiv:2009.14471.

[39] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman, USA, 1979.

[40] J. K. Terry, N. Grammel, A. Hari, L. Santos, B. Black, Revisiting param-
eter sharing in multi-agent deep reinforcement learning, arXiv preprint
arXiv:2005.13625.

[41] C. W. Reynolds, Flocks, herds and schools: A distributed behavioral
model, in: Proceedings of the 14th annual conference on Computer graph-
ics and interactive techniques, 1987, pp. 25–34. doi:10.1145/37401.
37406.

14

http://dx.doi.org/https://doi.org/10.1038/s41586-021-03583-3
http://dx.doi.org/https://doi.org/10.1038/s41586-021-03583-3
http://dx.doi.org/10.1109/TSMC.2015.2504350
http://dx.doi.org/10.1109/TSMC.2015.2504350
http://dx.doi.org/https://doi.org/10.1016/j.ast.2020.105715
http://dx.doi.org/https://doi.org/10.1016/j.ast.2020.105715
http://dx.doi.org/10.23919/ACC50511.2021.9483152
http://dx.doi.org/10.3390/aerospace8080211
http://dx.doi.org/https://doi.org/10.1016/j.ast.2021.107112
http://dx.doi.org/https://doi.org/10.1016/j.ast.2021.107112
http://dx.doi.org/https://doi.org/10.1016/0012-365X(83)90160-7
http://dx.doi.org/https://doi.org/10.1016/0012-365X(83)90160-7
http://dx.doi.org/10.1007/s10514-011-9241-4
http://dx.doi.org/10.1007/s10514-011-9241-4
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2021.01.141
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2021.01.141
http://dx.doi.org/10.23919/ACC45564.2020.9147205
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2020.06.031
http://dx.doi.org/https://doi.org/10.1016/j.neucom.2020.06.031
http://dx.doi.org/10.1109/TII.2022.3163573
http://dx.doi.org/10.1109/TII.2022.3163573
https://algorithmsbook.com/
https://algorithmsbook.com/
https://algorithmsbook.com/
http://dx.doi.org/https://doi.org/10.1007/978-3-319-71682-4_5
http://dx.doi.org/https://doi.org/10.1007/978-3-319-71682-4_5
http://dx.doi.org/10.1109/LRA.2021.3068952
http://dx.doi.org/10.1109/LRA.2021.3068952
http://dx.doi.org/https://doi.org/10.1007/978-1-4757-0450-1
http://dx.doi.org/https://doi.org/10.1007/978-1-4757-0450-1
http://dx.doi.org/https://doi.org/10.1007/BF00300175
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2020.106098
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2020.106098
http://dx.doi.org/10.1109/CEC45853.2021.9504823
http://dx.doi.org/10.1109/CEC45853.2021.9504823
http://dx.doi.org/10.1145/37401.37406
http://dx.doi.org/10.1145/37401.37406

	Elsevier 2024
	Toward multi-target self-organizing pursuit in a partially observable Markov game
	Introduction
	Problem formulation
	Multi-agent formulation of self-organization systems
	The problem of self-organized search and pursuit

	Proposed approach for self-organizing pursuit (SOP)
	Distributed fuzzy clustering for task allocation
	Search policy in self-organized search (SOS)
	Cooperative coevolution algorithm for robots (CCR)

	Experiments
	Environment
	Experimental setup
	Self-organizing search (SOS) experiments
	Empirical analysis of the consistency in distributed task allocation
	Single-target pursuit (STP) experiments
	Self-organizing pursuit (SOP) experiments
	Discussion

	Conclusion

