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Abstract19

We study the complexity of isomorphism problems for d-way arrays, or tensors, under natural20

actions by classical groups such as orthogonal, unitary, and symplectic groups. These problems arise21

naturally in statistical data analysis and quantum information. We study two types of complexity-22

theoretic questions. First, for a fixed action type (isomorphism, conjugacy, etc.), we relate the23

complexity of the isomorphism problem over a classical group to that over the general linear group.24

Second, for a fixed group type (orthogonal, unitary, or symplectic), we compare the complexity of25

the isomorphism problems for different actions.26

Our main results are as follows. First, for orthogonal and symplectic groups acting on 3-way27

arrays, the isomorphism problems reduce to the corresponding problems over the general linear group.28

Second, for orthogonal and unitary groups, the isomorphism problems of five natural actions on29

3-way arrays are polynomial-time equivalent, and the d-tensor isomorphism problem reduces to the30

3-tensor isomorphism problem for any fixed d > 3. For unitary groups, the preceding result implies31

that LOCC classification of tripartite quantum states is at least as difficult as LOCC classification32

of d-partite quantum states for any d. Lastly, we also show that the graph isomorphism problem33

reduces to the tensor isomorphism problem over orthogonal and unitary groups.34
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1 Introduction49

Previously in [13–15,17, 27], isomorphism problems of tensors, groups, and polynomials over50

direct products of general linear groups were studied from the complexity-theoretic viewpoint.51

In particular, a complexity class TI was defined in [15], and several isomorphism problems,52

including those for tensors, groups, and polynomials, were shown to be TI-complete. The53

equivalence between polynomials and 3-tensors was shown subsequently but independently54

in [27]; some problems over products of general linear groups with monomial groups were55

also shown to be TI-complete [7].56

In this paper, we study isomorphism problems of tensors, groups, and polynomials over57

some classical groups, such as orthogonal, unitary, and symplectic groups, from the computa-58

tional complexity viewpoint. There are several motivations to study tensor isomorphism over59

classical groups from statistical data analysis and quantum information. This introduction60

section is organised as follows. We will first review d-way arrays and some natural group61

actions on them in Section 1.1, and describe motivations to study these actions over classical62

groups in Section 1.2. We will then present our main results in Section 1.3, and give an63

overview of the proofs in Section 1.4. We conclude this introduction with a brief overview of64

the series of works this paper belongs to, a discussion on the results, and some open problems65

in Section 1.5.66

1.1 Review of d-way arrays and some group actions on them67

Let F be a field, and let n1, . . . , nd ∈ N. For n ∈ N, [n] := {1, 2, . . . , n}. We use T(n1 × · · · ×68

nd,F) to denote the linear space of d-way arrays with [nj ] being the range of the jth index.69

That is, an element in T(n1 ×· · ·×nd,F) is of the form A = (ai1,...,id
) where ∀j ∈ [d], ij ∈ [nj ],70

and ai1,...,id
∈ F. Note that 2-way arrays are just matrices. Let M(n×m,F) := T(n×m,F),71

and M(n,F) := M(n× n,F).72

▶ Definition 1. Let GL(n,F) be the general linear group of degree n over F. We define an73

action of GL(n1,F) × · · · × GL(nd,F) on T(n1 × · · · × nd,F), denoted as ◦, as follows. Let74

g = (g1, . . . , gd), where gk ∈ GL(nk,F) over k ∈ [d]. The action of g sends A = (ai1,...,id
) to75

g ◦ A = (bi1,...,id
), where bi1,...,id

=
∑

j1,...,jd
aj1,...,jd

(g1)i1,j1(g2)i2,j2 · · · (gd)id,jd
.76

There are several group actions of direct products of general linear groups on d-way77

arrays, based on interpretations of d-way arrays as different multilinear algebraic objects.78

For example, there are three well-known natural actions on matrices: for A ∈ M(n,F), (1)79

(P,Q) ∈ GL(n,F) × GL(n,F) sends A to P tAQ, (2) P ∈ GL(n,F) sends A to P−1AP , and80

(3) P ∈ GL(n,F) sends A to P tAP . These three actions endow A with different algebraic or81

geometric interpretations: (1) a linear map from a vector space V to another vector space82

W , (2) a linear map from V to itself, and (3) a bilinear map from V × V to F.83

Analogously, there are five natural actions on 3-way arrays, which we collect in the84

following definition (see [15, Sec. 2.2] for more discussion of why these five capture all85

possibilities within a certain natural class).86
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▶ Definition 2. We define five actions of (direct products of) general linear groups on 3-way87

arrays. Note that in the following, ◦ is from Definition 1.88

1. Given A ∈ T(l × m × n,F), (P,Q,R) ∈ GL(l,F) × GL(m,F) × GL(n,F) sends A to89

(P,Q,R) ◦ A;90

2. Given A ∈ T(l × l ×m,F), (P,Q) ∈ GL(l,F) × GL(m,F) sends A to (P, P,Q) ◦ A;91

3. Given A ∈ T(l × l ×m,F), (P,Q) ∈ GL(l,F) × GL(m,F) sends A to (P, P−t, Q) ◦ A;92

4. Given A ∈ T(l × l × l,F), P ∈ GL(l,F) sends A to (P, P, P−t) ◦ A;93

5. Given A ∈ T(l × l × l,F), P ∈ GL(l,F) sends A to (P, P, P ) ◦ A.94

These five actions arise naturally by viewing 3-way arrays as encoding, respectively: (1)95

tensors or matrix spaces (up to equivalence), (2) p-groups of class 2 and exponent p, quadratic96

polynomial maps, or bilinear maps, (3) matrix spaces up to conjugacy, (4) algebras, and (5)97

trilinear forms or (noncommutative) cubic forms. For details on these interpretations, we98

refer the reader to [15, Sec. 2.2].99

For a group G acting on a set S, the isomorphism problem for this action asks to decide,100

given s, t ∈ S, whether s and t are in the same G-orbit. For example, Graph Isomorphism101

is the isomorphism problem for the action of the symmetric group Sn on 2([n]
2 ), the power set102

of the set of size-2 subsets of [n].103

To help specify which of the five actions we are talking about, we use the following104

shorthand notation from multilinear algebra1. Let U ∼= Fl, V ∼= Fm and W ∼= Fn. The dual105

space of a vector space U is denoted as U∗. Then action (1) is referred to as U ⊗ V ⊗W , (2)106

is U ⊗ U ⊗ V , (3) is U ⊗ U∗ ⊗ V , (4) is U ⊗ U ⊗ U∗, and (5) is U ⊗ U ⊗ U . Note that from107

this shorthand notation, one can directly read off the action as in Definition 2 and vice versa.108

1.2 Motivations for isomorphism problems of d-way arrays over classical109

groups110

The term “classical groups” appeared in Weyl’s classic [34], though there are multiple111

competing possibilities for what this term should mean formally [20]. In this paper, we112

will be mostly concerned with groups consisting of elements that preserve a bilinear or113

sesquilinear form, which include orthogonal groups O, symplectic groups Sp, and unitary114

groups U, among others. As subgroups of GL, they act naturally on d-way arrays. Note that115

for the orthogonal group O(n,R), there are essentially three actions instead of five (because116

P−t = P for P ∈ O(n,R)).117

Actions of classical groups on d-way arrays have appeared in several areas of computational118

and applied mathematics [24]. In this subsection we examine some of these applications from119

statistical data analysis and quantum information.120

Warm up: singular value decompositions. Consider the action of (A,B) ∈ U(n,C) ×121

U(m,C) on C ∈ M(n × m,C) by sending C to A∗CB, where A∗ denotes the conjugate122

transpose of A. The orbits of this action are determined by the Singular Value Theorem,123

which states that every C ∈ M(n × m,C) can be written as A∗DB where A ∈ U(n,C),124

B ∈ U(m,C), and D ∈ M(n × m,C) is a rectangular diagonal matrix. Furthermore, the125

diagonal entries of D are non-negative real numbers, called the singular values of C. Similar126

results hold for O(n,R) × O(m,R) acting on Rn ⊗ Rm.127

1 See [24] for a nice survey of various viewpoints of tensors. For us, we have to start with the d-way array
viewpoint, because we wish to study the relations between different actions, and the constructions are
more intuitively described by examining the arrays.

ITCS 2024
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This example illustrates that the orbit structure of U(n,C) × U(m,C) on M(n×m,C)128

is different from the action of GL(n,C) × GL(m,C) on M(n×m,C). Indeed, the former is129

determined by singular values (of which there are continuum many choices) and the latter is130

determined by rank (of which there are only finitely many choices).131

Orthogonal isomorphism of tensors from data analysis. The singular value decom-132

position is the basis for the Eckart–Young Theorem [10], which states that the best rank-r133

approximation of a real matrix C is the one obtained by summing up the rank-1 components134

corresponding to the largest r singular values. To obtain a generalisation of such a result to135

d-way arrays, d > 2, is a central problem in statistical analysis of multiway data [9].136

Due to the close relation between singular value decompositions and orthogonal groups137

acting on matrices, it may not be surprising that the orthogonal equivalence of real d-way138

arrays is studied in this context [8,9,18,28]. For example, one question is to study the relation139

between “higher-order singular values” and orbits under orthogonal group actions. From the140

perspective of the orthogonal equivalence of d-way arrays, such higher-order singular values141

are natural isomorphism invariants, though they do not characterise orbits as in the matrix142

case. In the literature, d-way arrays under orthogonal group actions are sometimes called143

Cartesian tensors [31].144

Unitary isomorphism of tensors from quantum information. We now turn to F = C145

and consider the action of a product of unitary groups; such actions arise in at least two146

distinct ways in quantum information, which we highlight here: as LU or LOCC equivalence147

of quantum states, and as unitary equivalence of quantum channels.148

In quantum information, unit vectors in T(n1 × · · · × nd,C) ∼= Cn1 ⊗ · · · ⊗ Cnd are called149

pure states, and two pure states are called locally-unitary (LU) equivalent, if they are in the150

same orbit under the natural action of U := U(n1,C) × · · · × U(nd,C) (where the i-th factor151

of the group acts on the i-th tensor factor). By Bennett et al. [3], the LU equivalence of pure152

states also captures their equivalence under local operations and classical communication153

(LOCC), which means that LU-equivalent states are inter-convertible by reasonable physical154

operations.155

A completely positive map is a function f : M(n,C) → M(n,C) of the form f(A) =156 ∑
i∈[m] BiAB

∗
i for some complex matrices Bi ∈ M(n,C); quantum channels are given157

precisely by the completely positive maps that are also “trace-preserving”, in the sense that158 ∑
i∈[m] B

∗
i Bi = In. Two tuples of matrices (B1, . . . , Bm) and (B′

1, . . . , B
′
m) define the same159

completely positive map if and only if there exists S = (si,j) ∈ U(m,C) such that ∀i ∈ [m],160

Bi =
∑

j∈[m] si,jB
′
j [26, Theorem 8.2]. And two quantum channels f, g : M(n,C) → M(n,C)161

are called unitarily equivalent if there exists T ∈ U(n,C) such that for any A ∈ M(n,C),162

T ∗f(A)T = g(T ∗AT ). Thus, two matrix tuples (B1, . . . , Bm) and (B′
1, . . . , B

′
m) define the163

unitarily equivalent quantum channels if and only if their corresponding 3-way arrays in164

T(n× n×m,C) are in the same orbit under a natural action of U(n,C) × U(m,C).165

Classical groups arising from Code Equivalence. Classical groups may appear166

even when we start with general linear or symmetric groups. Here is an example from code167

equivalence. Recall that the (permutation linear) code equivalence problem asks the following:168

given two matrices A,B ∈ M(d× n, q), decide if there exist C ∈ GL(d, q) and P ∈ Sn, such169

that A = CBP . One algorithm for this problem, under some conditions on A and B, from [2]170

goes as follows. Suppose it is the case that A = CBP . Then AAt = CBPP tBtCt = CBBtCt.171

This means that AAt and BBt are congruent. Assuming that AAt and BBt are full-rank,172

then up to a change of basis, we can set that AAt = BBt =: F , so any such C must lie173

in a classical group preserving the form F . We are then reduced to the problem of asking174
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whether A and B are equivalent up to some C from a classical group and some P from a175

permutation group. This problem, as shown in [2], reduces to Graph Isomorphism.176

Some preliminary remarks on the algorithms for Tensor Isomorphism over177

classical groups. Although we show that Orthogonal TI and Unitary TI are still GI-178

hard ( [5, Proposition 3.1]), from the current literature it seems that orthogonal and unitary179

isomorphism of tensors are easier than general-linear isomorphism. There are currently two180

reasons for this: the first is mathematical, and the second is based on practical algorithmic181

experience, which we now discuss.182

One mathematical reason why these problems may be easier is that there are easily183

computable isomorphism invariants for such actions, while such invariants are not known184

for general-linear group actions. Here is one construction of a quite effective invariant in185

the unitary case. From A = (ai,j,k) ∈ T(n × n × n,C), construct its matrix flattening186

B = (bi,j) ∈ M(n × n2,C), where bi,j·n+k = ai,j,k. Then it can be verified easily that187

| det(BB∗)| is a polynomial-time computable isomorphism invariant for the unitary group188

action U(n,C) × U(n,C) × U(n,C). However, it is not known whether such isomorphism189

invariants for the general linear group action exist—if they did, they would break the190

pseudo-random assumption for this action proposed in [21].191

Practically speaking, current techniques seem much more effective at solving tensor192

isomorphism-style problems over the orthogonal group than over the general linear group.193

It is not hard to formulate Tensor Isomorphism and related problems over general194

linear and some classical groups as solving systems of polynomial equations. Motivated by195

cryptographic applications [30], we chose a TI-complete problem Alternating Trilinear196

Form Isomorphism [17], and carried out experiments using the Gröbner basis method for197

this problem, implemented in Magma [4]. For some details of these experiments see our full198

version [5, Appendix A]. We fixed the underlying field order as 32771 (a large prime that is199

close to a power of 2). Over the general linear group for n = 7, the solver ran for about 3200

weeks on a server, eating 219.7GB memory, yet still did not complete with a solution. Over201

the orthogonal group for odd n, the data are shown in Table 1. In particular, the solver202

returns a solution for n = 21 in about 3.6 hours, a sharp contrast to the difficulty met when203

solving the problem under the general linear group action.

n 7 9 11 13 15 17 19 21
Time (in s) 0.396 5.039 37.120 140.479 524.520 1764.179 4720.129 12959.799

Table 1 The experiment results of the Gröbner basis method to solve the problem of isomorphism
of alternating trilinear forms under the action of the orthogonal group.

204

1.3 Our results205

In this paper we study the complexity-theoretic aspects of Tensor Isomorphism under206

classical groups. We focus on the following two types of questions:207

1. Consider two classical groups G and H, and fix the way they act on d-way arrays. What208

are the relations between the isomorphism problems defined by these groups?209

2. Fix a classical group G, and consider its different actions on d-way arrays. What are the210

relations between the isomorphism problems defined by these actions?211

Questions of the first type were implicitly studied in [14, 15, 19] for some classes of d-way212

arrays, with the groups being either general linear or symmetric groups. For example, starting213

ITCS 2024



30:6 Isomorphism problems over classical groups

from a graph G, one can construct a 3-way array AG encoding this graph following Edmonds,214

Tutte and Lovász [11, 25, 32], and it is shown in [19] that G and H are isomorphic (a notion215

based on the symmetric groups Sn) if and only if AG and AH are isomorphic (under a product216

of general linear groups).217

Questions of the second type were studied in [13, 15] for GL. For example, one main218

result in [13,15] is to show the polynomial-time equivalence of the five isomorphism problems219

for 3-way arrays under (direct products of) general linear groups (cf. Section 1.1).220

Still, to the best of our knowledge, these types of questions have not been studied for221

orthogonal, unitary, and symplectic groups, which are the focus on this paper.222

Results on relations between different groups. Our first group of results shows that223

isomorphism problems of tensors under classical groups are sandwiched between the celebrated224

Graph Isomorphism problem and the more familiar Tensor Isomorphism problem under225

GL. We use Sn to denote the symmetric group of degree n, and view Sn as a subgroup of226

GL(n,F) naturally via permutation matrices. We use ≤ to denote the subgroup relation.227

When we say “reduces”, briefly, we mean: polynomial-time computable kernel reductions [12]228

(there is a polynomial-time function r sending (A,B) to (r(A), r(B)), such that the map229

(A,B) 7→ (r(A), r(B)) is a many-one reduction of isomorphism problems), that are typically230

polynomial-size projections (“p-projections”) in the sense of Valiant [33], functorial (on231

isomorphisms), and containments in the sense of the literature on wildness. Some reductions232

that use a non-degeneracy condition may not be p-projections. See [15, Sec. 2.3] for details233

on these notions.234

▶ Theorem 3. Suppose a group family G = {Gn} satisfies that Sn ≤ Gn ≤ GL(n,F), where235

here Sn denotes the group of n × n permutation matrices. Then Graph Isomorphism236

reduces to Bilinear Form G-Pseudo-isometry, that is, the isomorphism problem for the237

action of G(U) × G(V ) on U ⊗ U ⊗ V .238

Let Gn ≤ GL(n,F). We say that Gn preserves a bilinear form, if there exists some239

A ∈ M(n,F), such that Gn = {T ∈ GL(n,F) | T tAT = A}. For example, orthogonal and240

symplectic groups are defined as preserving full-rank symmetric and skew-symmetric forms.241

▶ Theorem 4. Let G = {Gn | Gn ≤ GL(n,F)} be a group family preserving a polynomial-242

time-constructible family of bilinear forms,2 and consider one of the five actions of GL on243

3-way arrays in Definition 2. The restricted G-isomorphism problem for this action reduces244

to the GL-isomorphism problem for this action.245

▶ Remark 5. Recall from Section 1.2 that the orthogonal equivalence of matrices (determined246

by singular values) is more involved than the general-linear equivalence of matrices (determ-247

ined by ranks) over R. By a counting argument, there is unconditionally no polynomial-size248

kernel reduction [12] (mapping matrices to matrices) from Orthogonal Equivalence of249

Matrices to General Linear Equivalence of Matrices. In contrast, Theorem 4 shows250

that for 3-way arrays, orthogonal isomorphism does reduce to general-linear isomorphism.251

Results on relations between different actions. Our second group of results is concerned252

with different actions of the same group on d-way arrays. Our main results are for the real253

orthogonal groups and complex unitary groups; we discuss some difficulties encountered with254

2 That is, the function Φ: N → M(n,F) giving a matrix for the form preserved by Gn is computable in
polynomial time. We note that no such restriction was needed in Theorem 3.
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symplectic groups in Section 1.5, and leave open the questions for more general bilinear-form-255

preserving groups.256

We begin with the five actions in Definition 2.257

▶ Theorem 6. Let G be either the unitary over C or orthogonal over R group family. Then258

the five isomorphism problems corresponding to the five actions of G on 3-way arrays in259

Definition 2 are polynomial-time equivalent to one another.260

Our second result in this group is a reduction from d-way arrays to 3-way arrays.261

▶ Theorem 7. Let G be the unitary over C or orthogonal over R group family. For any fixed262

d ≥ 1, d-Tensor G-Isomorphism reduces to 3-Tensor G-Isomorphism.263

An application in quantum information. As introduced in Section 1.2, LU equivalence,264

characterises the equivalence of quantum states under local operations and classical commu-265

nication (LOCC). We refer the interested reader to the nice paper [6] for the LOCC notion,266

as well as the classification of three-qubit states based on LOCC [1].267

By the work of Bennett et al. [3], LOCC equivalence of pure quantum states is the same268

as the equivalence of unit vectors in V1 ⊗ V2 ⊗ · · · ⊗ Vd where Vi are vector spaces over C.269

Our Theorem 7 can then be interpreted as saying that classifying tripartite quantum states270

under LOCC equivalence is as difficult as classifying d-partite quantum states. This may271

be compared with the result in [35], which states that classifying d-partite states reduces to272

classifying tensor networks of tripartite or bipartite tensors. (We note that the analogous273

result for SLOCC, via the general linear group action, was shown in [15]; in the next section274

we discuss how our proof here differs from the one there.)275

1.4 Overview of the proofs of main results276

In the following, we present proof outlines for Theorems 3, 4, 6, and 7. While their proofs277

are inspired the strategies of previous results [13,15,23], new technical ingredients are indeed278

needed, such as the Singular Value Theorem, and a certain Krull–Schmidt type result for279

matrix tuples under unitary group actions. We also wish to highlight that, Theorem 7280

requires not only using a quiver different from that in the proof of [15, Theorem 1.2], but281

also a completely new and much simpler argument.282

About Theorem 3. For Theorem 3, we start with Directed Graph Isomorphism (DGI),283

which is GI-complete. We then use a natural construction of 3-way arrays from directed284

graphs as recently studied in [23], which takes an arc (i, j) and constructs an elementary285

matrix Ei,j . By [23, Observation 6.1, Proposition 6.2], DGI reduces to the isomorphism286

problem of U ⊗ U ⊗W under GL(U) × GL(W ). Theorem 3 is shown by observing that the287

proofs of [23, Observation 6.1, Proposition 6.2] carry over to all subgroups of GL(U) and288

GL(W ) that contain the corresponding symmetric groups; see our full version [5, Section 3]289

for a detailed proof.290

About Theorem 4. For Theorem 4, let us consider the isomorphism problem of U ⊗V ⊗W291

under O(U) × O(V ) × O(W ). Let a = dim(U), b = dim(V ), and c = dim(W ). That is, given292

A, B ∈ T(a× b× c,F), we want to decide if there exists (R,S, T ) ∈ O(a,F) × O(b,F) × O(c,F),293

such that (R,S, T ) ◦ A = B. Our goal is to reduce this problem to an isomorphism problem294

of U ′ ⊗ V ′ ⊗W ′ under GL(U ′) × GL(V ′) × GL(W ′). The idea is to encode the requirements295

of R,S, T being orthogonal by adding identity matrices. We then construct tensor systems296

(A, I1, I2, I3) and (B, I1, I2, I3) where I1 ∈ M(a,F), I2 ∈ M(b,F), and I3 ∈ M(c,F) are the297

ITCS 2024



30:8 Isomorphism problems over classical groups

identity matrices, and the goal is to decide if there exists (R,S, T ) ∈ GL(a,F) × GL(b,F) ×298

GL(c,F) such that (R,S, T ) ◦ A = B, RtR = I1, StS = I2, and T tT = I3. Such a problem299

falls into the tensor system framework in [13]; a main result of [13, Theorem 1.1] can be300

rephrased as a reduction from Tensor System Isomorphism to 3-Tensor Isomorphism;301

see our full version [5, Section 4] for a detailed proof.302

About Theorem 6. For Theorem 6, polynomial-time reductions for the five actions under303

GL were devised in [13,15]. The main proof technique is a gadget construction, first proposed304

in [13], which we call the Furtony–Grochow–Sergeichuk gadget, or FGS gadget for short.305

Roughly speaking, this gadget has the effect of reducing isomorphism over block-upper-306

triangular invertible matrices to that over general invertible matrices. We will explain why307

this is useful for our purpose, and the structure of this gadget, in the following.308

First, let us examine a setting when we wish to restrict to consider only block-upper-309

triangular matrices. Suppose we wish to reduce isomorphism of U ⊗ V ⊗ W to that of310

U ′ ⊗U ′ ⊗W ′. One naive idea is to set U ′ = U ⊕ V and W ′ = W , and perform the following311

construction. Let A ∈ T(ℓ × m × n,F), and take the frontal slices of A as (A1, . . . , An) ∈312

M(ℓ×m,F). Then construct (A′
1, . . . , A

′
n) ∈ M(ℓ+m,F), where A′

i =
[

0 Ai

−At
i 0

]
, and let313

the corresponding 3-way array be A′ ∈ T((ℓ+m) × (ℓ+m) × n,F). Similarly, starting from314

B ∈ T(ℓ × m × n,F), we can construct B′ in the same way. The wish here is that A and B315

are unitarily isomorphic in U ⊗ V ⊗W if and only if A′ and B′ are unitarily isomorphic in316

U ′ ⊗ U ′ ⊗W ′. It can be verified that the only if direction holds easily, but the if direction is317

tricky. This is because, if we start with some isomorphism (R,S) ∈ U(U ′) × U(W ′) from A′
318

to B′, R may mix the U and V parts of U ′.319

This problem—more generally, the problem of two parts of the vector space potentially320

mixing in undesired ways—is solved by the FGS gadget, which attaches identity matrices of321

appropriate ranks to prevent such mixing. Figure 1 is an illustration from [15]. It can be322

verified that, because of the identity matrices Im+1 and I3m+2, an isomorphism R in the U ′
323

part has to be block-upper-triangular, and the blocks would yield the desired isomorphism324

for the U and W parts.325

This was done for the general linear group case in [15]. For the unitary group case,326

this almost goes through, because if a unitary matrix is block-upper-triangular, then it is327

actually block-diagonal, and the blocks are unitary too. Still, some technical difficulties328

remain. For example, now the gadgets cause some problem for the only if direction (which329

was easy in the GL case), so we must verify carefully that the added gadgets allow for330

extending the original orthogonal or unitary transformations to bigger ones. As another331

example, the proof in [13] relies on the Krull–Schmidt theorem for quiver representations332

(under general linear group actions). Fortunately, in our context we can replace that with a333

result of Sergeichuk [29, Theorem 3.1] so that the proof can go through. Finally, we also334

require the use of the Singular Value Theorem to handle certain degenerate cases.335

About Theorem 7. For Theorem 7, at a high level we follow the strategy of reduction336

from d-Tensor Isomorphism to 3-Tensor Isomorphism from [15], but we find that the337

construction there does not quite work in the setting of orthogonal or unitary group actions.338

As in [15], we shall reduce d-Tensor Isomorphism to Algebra Isomorphism, which339

reduces to 3-Tensor Isomorphism by Theorem 6. As in [15], we also use path algebras.340

However, they use Mal’cev’s result on the conjugacy of the Wedderburn complements of341

the Jacobson radical, and this result seems not to hold if we require the conjugating matrix342

to be orthogonal or unitary. To get around this, our main technical contribution is to343
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ℓ

n

A
Im+1

ℓ

m −At

m
Im+1

. . .
Im+1

I3m+2

. . . I3m+2
. . .
I3m+2

. . .

Figure 1 Pictorial representation of the reduction for Theorem 6; credit for the figure goes to
the authors of [15], reproduced here with their permission.

develop a related but in fact simpler path algebra construction, that avoids the use of the344

aforementioned deep algebraic results, and works not only in the GL setting, but extends to345

the orthogonal and unitary settings as well. This then gives us the reduction from d-Tensor346

Orthogonal Isomorphism to Orthogonal Algebra Isomorphism, and similarly in347

the unitary case.348

1.5 Summary and future directions349

Context within recent developments on the complexity of Tensor Isomorphism.350

Following [14, 15], this paper contributes to building up the complexity theory around351

Tensor Isomorphism and closely related problems. That is, [15] introduced TI-completeness352

and showed that many isomorphism problems, under the action of a product of general353

linear groups, were TI-complete. Then [14] focused on applications of tensor techniques for354

reductions around p-Group Isomorphism. Several recent works further enrich this theory,355

such as [7,17] showing more problems to be TI-complete, and [16] providing more efficient356

reductions between the five actions by general linear groups.357

Some remarks on our results and techniques for more matrix groups. In this358

paper, we examine isomorphism problems of d-way arrays under various actions of different359

subgroups of the general linear group from a complexity-theoretic viewpoint. We show that360

for 3-way arrays, the isomorphism problems over orthogonal and symplectic groups reduce361

to that over the general linear group. We also show that for orthogonal and unitary groups,362

the five isomorphism problems corresponding to the five natural actions are polynomial-time363

equivalent, and d-Tensor Isomorphism reduces to 3-Tensor Isomorphism.364
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As seen in Section 1.4, the proof strategies of our results are adapted from previous365

works [13,15, 23], although certain non-trivial adaptations were necessary, especially for the366

proofs of Theorem 6 and 7, beyond careful examinations of previous proofs. Interestingly,367

in extending the proof strategies from these previous works to our main results, we also368

encountered some obstacles that would seem are more generally obstacles to reaching a369

uniform result for all classical groups. For example, the reduction from orthogonal and370

symplectic to general linear seems not work for unitary—the standard linear-algebraic gadgets371

have no way to force complex conjugation—and the reductions between the five actions372

on 3-way arrays seem not work for symplectic. One stumbling block (pun intended) in373

the symplectic case is that even a symplectic block-diagonal matrix (let alone a symplectic374

block-triangular matrix) need not have its individual blocks be symplectic. For example, the375

matrix A⊕B, with A,B both n× n, is symplectic iff ABt = I.376

Complexity classes TIG. To put some of these remaining questions in a larger framework,377

we introduce a notation that highlights the role of the group doing the acting. Previously378

in computational complexity, the most studied isomorphism problems are over symmetric379

groups (such as Graph Isomorphism) and over general linear groups (such as tensor, group,380

and polynomial isomorphism problems). The former leads to the complexity class GI [22],381

and the latter leads to the complexity class TI [15]. Based on Theorems 6 and 7, it may be382

interesting to define TIG , where G is a family of matrix groups, consisting of all problems383

polynomial-time reducible to the 3-tensor isomorphism problem over G. Let S, GL, O, U,384

Sp be the symmetric, general linear, orthogonal (over R), unitary (over C), and symplectic385

group families. Then TIGL = TI by definition, and TIS = GI, as asking if two 3-tensors are386

the same up to permuting the coordinates is just the colored 3-partite 3-uniform hypergraph387

isomorphism problem, a GI-complete problem (by the methods of [36]). Then a special case388

of Theorem 3 can be reformulated as TIS ⊆ TIO ∩ TIU, and special cases of Theorem 4 can389

be reformulated as TIO,TISp ⊆ TIGL. It may be interesting to investigate TIG with G being390

other subgroups of GL, such as special linear, affine, and Borel or parabolic subgroups.391

Open questions. With this notation in hand, we highlight the following questions left open392

by our work:393

▶ Open Question 8. Which, if any, of TIO,TIU,TISp are equal to TI?394

As a warm-up in this direction, one may ask which of these classes is not only GI-hard,395

but contains Code Equivalence (permutational or monomial).396

We suspect that GI ⊆ TISp∩TISL as well, for the following reason. Although the symplectic397

groups Spn and the special linear groups SLn do not contain the symmetric group Sn given398

by n× n permutation matrices, they do contain isomorphic copies of Sn′ for n′ ≥ Ω(n). In399

particular, Sp2n contains Sn as the subgroup {A⊕AT : A ∈ Sn}, and SLn ∩ Sn = An (and400

contains an isomorphic copy of Sn−2, where even π ∈ Sn−2 get embedded as Pπ ⊕ I2 and401

odd π get embedded as Pπ ⊕ τ , where τ =
[
0 1
1 0

]
).402

▶ Open Question 9. Is TISL contained in TI? Are they equal?403

▶ Open Question 10. Is TIU ⊆ TI? And the same question for unitary versus general linear404

group actions over finite fields.405

▶ Open Question 11. What is the complexity of various problems in TI when restricted406

from GL to other form-preserving groups? A notable family of such groups is the mixed407

orthogonal groups O(p, q), defined over R by preserving a real symmetric form of signature408
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(p, q). But more generally, what about form-preserving groups for forms that are neither409

symmetric nor skew-symmetric?410

Paper organisation. After presenting some preliminaries in Section 2, we prove the main411

results: Theorem 6 in Section 3, and Theorem 7 in Section 4. For detailed proofs of Theorem 3412

and Theorem 4, we refer the reader to our full version [5, Section 3, Section 4].413

2 Preliminaries414

Fields. All our reductions are constant-free p-projections (that is, the only constants they415

use other than copying the ones already present in the input are {0, 1,−1}). When the fields416

are representable on a Turing machine, our reductions are logspace computable. For arbitrary417

fields, the reductions are in logspace in the Blum–Shub–Smale model over the corresponding418

field.419

Linear algebra. All vector spaces in this article are finite dimensional. Let V be a vector420

space over a field F. The dual of V , V ∗, consists of all linear or anti-linear forms over F. In421

this case when anti-linear is considered, F is a quadratic extension of a subfield K, there is422

thus an automorphism α ∈ AutK(F) of order two, and anti-linear means f(λv) = α(λ)f(v).423

An example is F = C and K = R, and α=complex conjugation. Whether V ∗ denotes linear424

or antilinear maps should be evident from context.425

Some subgroups of general linear groups. Let V be a vector space over a field F. Let426

GL(V ) be the general linear group over V , which consists of all invertible linear maps on V .427

Let ϕ : V ×V → F be a bilinear or sesquilinear form on V . In the case when ϕ is sesquilinear,428

F is a quadratic extension of a subfield K; sesquilinear means that it is linear in one argument429

and anti-linear in the other. Then GL(V ) acts on ϕ naturally, by M ∈ GL(V ) sends ϕ to430

ϕ ◦M , defined as (ϕ ◦M)(v, v′) = ϕ(M(v),M(v′)). The subgroup of GL(V ) that preserves431

ϕ is denoted as G(V, ϕ) := {M ∈ GL(V ) | ϕ ◦M = ϕ}.432

It is well-known that some classical groups arise as G(V, ϕ).433

1. Let F = C. Let ϕ be the sesquilinear form on V = Cn defined as ϕ(u, v) =
∑

i∈[n] u
∗
i vi,434

where u∗
i is the complex conjugate of ui. Then G(V, ϕ) is the unitary group U(n,C).435

2. Let F = R. Let ϕ be the symmetric bilinear form on V = Rn defined as ϕ(u, v) =436 ∑
i∈[n] uivi. Then G(V, ϕ) is the orthogonal group O(n,R).437

3. Let ϕ be the skew-symmetric bilinear form on V = F2n, defined as ϕ(u, v) =
∑

i∈[n](uiv2n−i+1−438

un+ivn−i+1). Then G(V, ϕ) is the symplectic group Sp(2n,F).439

Depending on the underlying fields, orthogonal groups may indicate some families of440

groups preserving different (non-congruent) symmetric forms. In this paper we always use441

orthogonal groups and unitary groups w.r.t. the standard bilinear or sesquilinear form as442

defined above.443

Matrices. Let M(l × m,F) be the linear space of l × m matrices over F, and M(n,F) :=444

M(n× n,F). Given A ∈ M(l ×m,F), denote by At the transpose of A. Given A ∈ GL(n,F),445

denote by A−1 the inverse of A and by A−t the inverse transpose of A.446

We use In to denote the n × n identity matrix, and if it is clear from the context, we447

may drop the subscript n. For (i, j) ∈ [n] × [n], let Ei,j ∈ M(n,F) be the elementary matrix448

where the (i, j)th entry is 1, and the remaining entries are 0. For i ≠ j, the matrix Ei,j − Ej,i449

is called an elementary alternating matrix.450
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3-way arrays and some group actions on them. Let T(ℓ × m × n,F) be the linear451

space of ℓ×m× n 3-way arrays over F. Given A ∈ T(ℓ×m× n,F), the (i, j, k)th entry of A452

is denoted as A(i, j, k) ∈ F. We can slice A along one direction and obtain several matrices,453

which are called slices. For example, slicing along the third coordinate, we obtain the frontal454

slices, namely n matrices A1, . . . , An ∈ M(l ×m,F), where Ak(i, j) = A(i, j, k). Similarly, we455

also obtain the horizontal slices by slicing along the first coordinate, and the lateral slices by456

slicing along the second coordinate.457

A 3-way array allows for group actions in three directions. Given P ∈ M(ℓ,F) and458

Q ∈ M(m,F), let PAQ be the ℓ × m × n 3-way array whose kth frontal slice is PAkQ.459

For R = (ri,j) ∈ M(n,F), let AR be the ℓ × m × n 3-way array whose kth frontal slice is460 ∑
k′∈[n] rk′,kAk′ .461

Tensors. Let V1, . . . , Vc be vector spaces over F. Let ai, bi, i ∈ [c] be non-negative integers,462

such that for each i, ai + bi > 0. A tensor T of type (a1, b1; a2, b2; . . . ; ac, bc) supported by463

(V1, . . . , Vc) is an element in V ⊗a1
1 ⊗ V ∗⊗b1

1 ⊗ V ⊗a2
2 ⊗ V ∗⊗b2

2 ⊗ · · · ⊗ V ⊗ac
c ⊗ V ∗⊗bc

c . We say464

that Vi’s are the supporting vector spaces of T , and ai (resp. bi) is the multiplicity of T at465

Vi (resp. V ∗
i ). (By convention V ⊗0 := F; note that U ⊗ F ∼= U , since our tensor products466

are over F.)467

The order of T is
∑

i∈[c](ai + bi). We say that T is plain, if a1 = · · · = ac = 1468

and b1 = · · · = bc = 0. The group GL(V1) × · · · × GL(Vc) acts naturally on the space469

V ⊗a1
1 ⊗V ∗⊗b1

1 ⊗V ⊗a2
2 ⊗V ∗⊗b2

2 ⊗· · ·⊗V ⊗ac
c ⊗V ∗⊗bc

c . Two tensors in this space are isomorphic470

if they are in the same orbit under this group action.471

From tensors to multiway arrays. For i ∈ [c], let Vi be a dimension-di vector space over472

F. Let T be a tensor in V ⊗a1
1 ⊗V ∗⊗b1

1 ⊗V ⊗a2
2 ⊗V ∗⊗b2

2 ⊗ · · · ⊗V ⊗ac
c ⊗V ∗⊗bc

c . After fixing the473

basis of each Vi, T can be represented as a multiway array RT ∈ T(d×(a1+b1)
1 ×· · ·×d×(ac+bc)

c )474

and the elements in GL(Vi) ∼= GL(di,F) can be represented as invertible di × di matrices.475

The action of (A1, . . . , Ac) on RT can be explicitly written following Definition 1, using Ai476

for ai directions and A−t
i for bi directions.477

3 Proof of Theorem 6478

Recall that we need to show the polynomial-time equivalence between the isomorphism479

problems of U ⊗ V ⊗ W , U ⊗ U ⊗ V , U ⊗ U∗ ⊗ V , U ⊗ U ⊗ U , and U ⊗ U ⊗ U∗ under480

orthogonal and unitary groups. We present the proofs for unitary groups, and the proofs for481

orthogonal groups follow the same line.482

The equivalences for GL were proved in [13,15]. We follow their proof strategies, but as483

mentioned in Section 1.4, certain technical difficulties need to be dealt with.484

In Section 3.1, we reduce U ⊗ U ⊗ V , U ⊗ U∗ ⊗ V , U ⊗ U ⊗ U , and U ⊗ U ⊗ U∗ to485

U ⊗ V ⊗ W . This is done through the tensor system framework with the adaptation to486

unitary isomorphism.487

In Section 3.2, we reduce U ⊗ V ⊗W to U ⊗ U ⊗W . This requires a careful check due488

to the introduction of the gadget.489

In Section 3.3 we reduce U ⊗ V ⊗W to U ⊗ U∗ ⊗W . This requires the Singular Value490

Theorem as a new ingredient.491

In Section 3.4, we reduce U ⊗ U ⊗W to U ⊗ U ⊗ U∗ and U ⊗ U ⊗ U .492
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3.1 Reduction to plain Unitary 3-Tensor Isomorphism493

In this section, we will reduce unitary isomorphism problems of U ⊗ U ⊗ V , U ⊗ U∗ ⊗ V ,494

U ⊗ U ⊗ U , and U ⊗ U ⊗ U∗ to U ⊗ V ⊗ W with a polynomial dimension blow-up. This495

requires rephrasing [13, Theorem 1.1], as in our full version [5, Theorem 4.1], and then496

proving the following new result in the unitary setting.497

▶ Theorem 12 (Unitary version of [13, Theorem 1.1]). Let S = {S1, . . . , Sc} and T =498

{T1, . . . , Tc} be two tensor systems supported by {V1, . . . , Vm}, where every Si and Ti is499

of order ≤ 3. Then there exists an algorithm r that takes S and T and outputs two500

3-tensors r(S) and r(T ) supported by vector spaces {U, V,W}, such that S and T are501

isomorphic as tensor systems under U(V1) × · · · × U(Vm) if and only if r(S) and r(T ) are502

isomorphic under U(U) × U(V ) × U(W ). The algorithm r runs in time polynomial in503

the maximum dimension over U, V,W , and this maximum dimension is upper bounded by504

poly(
∑

i∈[m] dim(Vi), 2poly(c)).505

This follows the same proof as [13, Theorem 1.1], outlined in our full version [5, Appendix506

B], with one change, based on the following result.507

We say that two matrix tuples (C1, . . . , Cm) ∈ M(l × n,F)m and (D1, . . . , Dm) ∈ M(l ×508

n,F)m are unitarily equivalent, if there exist unitary matrices L ∈ U(l,F) and R ∈ U(n,F),509

such that for any i ∈ [m], LCiR = Di.510

▶ Theorem 13 (Sergeichuk [29, Theorem 3.1]). Let C = (C1, . . . , Cm) ∈ M(l×n,F). Suppose511

C is unitarily equivalent to D = (D1, . . . , Dm), such that each Di is block-diagonal with512

k blocks, with the jth block of size dj × dj. Furthermore, let Dj = (D1,j , . . . , Dm,j) be the513

m-tuple of dj × dj matrices consisting of the jth block from each Di, and suppose Dj is not514

unitarily equivalent to a block-diagonal tuple. Then the isomorphism types of Di’s and the515

multiplicities of each isomorphism type are uniquely determined by C, that is, they are the516

same regardless of the choice of decomposition.517

From the above theorem, the following corollary is immediate:518

▶ Corollary 14. If
([
A1 0
0 B1

]
, . . . ,

[
Am 0
0 Bm

])
and

([
A1 0
0 C1

]
, . . . ,

[
Am 0
0 Cm

])
are519

unitarily equivalent, then (B1, . . . , Bm) and (C1, . . . , Cm) are unitarily equivalent.520

Proof of Theorem 12. With Corollary 14, the proof of [13, Theorem 1.1] goes through521

for this unitary setting, by replacing the use of the Krull–Schmidt theorem for quiver522

representations ( [13, pp. 20]) with Theorem 13.523

The case of orthogonal groups follows similarly by using [29, Theorem 4.1] instead. ◀524

We utilize the tensor system to construct reductions to plain 3-tensor unitary isomorphism,525

and then prove their correctness by Theorem 12.526

▶ Proposition 15. The unitary isomorphism problems on V ⊗V ⊗W,V ⊗V ∗ ⊗W,V ⊗V ⊗V527

and V ⊗ V ⊗ V ∗ are polynomial-time reducible to Unitary 3-Tensor Isomorphism on528

U ′ ⊗ V ′ ⊗W ′ where dim(U ′),dim(V ′) and dim(W ′) are at most polynomial in dim(V ) and529

dim(W ).530

Proof. The reduction is based on the observation that tensor systems can encode these531

isomorphism problems. For example, for A ∈ V ⊗ V ⊗W , we can construct a tensor system532

consisting of one tensor A and two vector spaces {V,W}, with two arcs from V to A, and533

one arc from W to A. Starting from two tensors A1, A2 ∈ V ⊗ V ⊗ W , we consider the534
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corresponding tensor systems, and ask for unitary isomorphism of these tensor systems.535

Then by Theorem 12, they can be reduced to the plain 3-tensor unitary isomorphism in time536

poly(dim(V ),dim(W )), as these are tensor systems with only 1 tensor each. It can be seen537

that this works for V ⊗ V ∗ ⊗W , V ⊗ V ⊗ V , and V ⊗ V ⊗ V ∗. This concludes the proof. ◀538

3.2 Reduction from Unitary 3-TI to Bilinear Form Unitary539

Psuedoisometry (V ⊗ V ⊗ W )540

We mainly follow the construction in [15] to show that there is a reduction from Unitary541

3-Tensor Isomorphism (U ⊗ V ⊗ W ) to Bilinear Form Unitary Pseudoisometry542

(V ′ ⊗ V ′ ⊗ W ′). In addition, we prove that the reduction from [15] preserves the unitary543

property in both directions.544

▶ Proposition 16. Given two 3-tensors A, B ∈ U ⊗V ⊗W , where dim(U) = l ≤ dim(V ) = m545

and dim(W ) = n. There is a reduction r : U⊗V ⊗W → V ′⊗V ′⊗W ′ with dim(V ′) = l+5m+3546

and dim(W ′) = n + l(m + 1) + m(3m + 2) such that A and B are unitarily isomorphic if547

and only if r(A) and r(B) are unitarily isomorphic, where frontal slices of r(A) and r(B) are548

skew-symmetric matrices.549

Proof. The reduction. We use the gadget in [13] and [15] to present this reduction. Here550

we use matrix format to illustrate our construction, and the picture of this construction is551

shown in Figure 1. Denote the ith frontal slice of A by Ai ∈ M(l ×m,C), where i ∈ [n]. Let552

the ith frontal slice of r(A) be Âi ∈ M(l+ 5m+ 3,C), where i ∈ [n+ l(m+ 1) +m(3m+ 2)].553

Then Âi is constructed as follows:554

For i ∈ [n], Âi is of the form

 0 Ai 0
−At

i 0 0
0 0 0

.555

For i ∈ [n+ 1, n+ l(m+ 1)], let Âi be the elementary alternating matrix Es,l+m+t −556

El+m+t,s, where s = ⌈(i− n)/(m+ 1)⌉ and t = i− n− (s− 1)(m+ 1).557

For i ∈ [n+ l(m+ 1), n+ l(m+ 1) +m(3m+ 2)], let Âi be the elementary alternating558

matrix El+s,l+m+m+1+t − El+m+m+1+t,l+s, where s = ⌈(i− n− l(m+ 1))/(3m+ 2)⌉ and559

t = i− n− l(m+ 1) − (s− 1)(3m+ 2).560

Denote lateral slices of r(A) by Li, where i ∈ [l + 5m+ 3]. Then we check the ranks of561

these lateral slices:562

For the first l slices, the lateral slice Li is a block matrix with two non-zero blocks. One563

block is −Im+1, and another block of size m× n is the transpose of the ith horizontal564

slice of −A. Thus, m+ 1 ≤ rank(Li) ≤ 2m+ 1.565

For the following m slices, Li is a block matrix with two non-zero blocks. One block is566

−I3m+2 and the other one is the (i − n)th lateral slice of A with size l × n. Therefore,567

3m+ 2 ≤ rank(Li) ≤ 3m+ 2 + l ≤ 4m+ 2.568

For the next m+ 1 slices, Li has a block Il after rearranging the columns, so rank(Li) =569

l ≤ m.570

For the last 3m+ 2 slices, similarly, Li has a block Im after rearranging the columns, so571

rank(Li) = m.572

Now we consider the ranks of linear combinations of the above slices. There are four573

observations that help prove the correctness of the reduction:574

If the combination contains Li for 1 ≤ i ≤ l, since the resulting matrix has at least one575

identity matrix Im+1 in the (l +m+ 1)th row to (l + 2m+ 1)th row, it has the rank at576

least m+ 1.577
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If the combination doesn’t contain Li for l + 1 ≤ i ≤ l +m+ 1, the resulting matrix has578

rank at most 3m+ 1, because there are at most l + 5m+ 3 − 3m− 2 ≤ 3m+ 1 non-zero579

rows.580

If the combination involves Li for l + 1 ≤ i ≤ l +m+ 1, the resulting matrix has rank at581

least 3m+ 2, because there is at least one identity matrix I3m+2 in the last 3m+ 2 rows.582

If the combination involves Li for 1 ≤ i ≤ l and Li for l + 1 ≤ i ≤ l + m + 1, the583

resulting matrix has rank at least 4m+ 3, because there are at least one identity matrix584

I3m+2 in the last 3m+ 2 rows and one identity matrix Im+1 in the (l +m+ 1)th row to585

(l + 2m+ 1)th row.586

The if direction. Assume there are P ∈ U(l + 5m + 3,C) and Q ∈ U(n + l(m + 1) +587

m(3m + 2),C) such that P tr(A)P = r(B)Q. Then we write P as P =

P1,1 P1,2 P1,3
P2,1 P2,2 P2,3
P3,1 P3,2 P3,3

,588

where P1,1 ∈ M(l,C), P2,2 ∈ M(m,C) and P3,3 ∈ M(4m + 3,C). By ranks of lateral slices589

of r(B) and the above observations, it’s easy to have that P2,1 = 0, P1,2 = 0, P1,3 = 0 and590

P2,3 = 0. Therefore, P is of the form

P1,1 0 0
0 P2,2 0
P3,1 P3,2 P3,3

. As P is a block-lower-trianglular591

unitary matrix, P1,1, P2,2 and P3,3 are unitary matrices. Since the aim is to check if A and B592

are isomorphic, we only consider the first n frontal slices of r(A) and r(B), which contains A593

and B respectively. After applying P on lateral slices and horizontal slices of r(A), we have594

the first n frontal slices as follows:595 P t
1,1 0 P t

3,1
0 P t

2,2 P t
3,2

0 0 P t
3,3

  0 Ai 0
−At

i 0 0
0 0 0

 P1,1 0 0
0 P2,2 0
P3,1 P3,2 P3,3

 =

 0 P t
1,1AiP2,2 0

−P t
2,2A

t
iP1,1 0 0

0 0 0

 .596

597

Then we apply the unitary matrix Q on the frontal slices of r(B), and have P tr(A)P = r(B)Q.598

Note that only the block (1, 2) and (2, 1) are non-zero blocks in the first n slices of r(B) and599

P tr(A)P , so we have that only the first n× n submatrix Q1,1 of Q is non-zero in the first n600

columns, which implies that Q1,1 is unitary from the fact that Q is unitary. Therefore, it is601

enough to give the isomorphism P t
1,1AP2,2 = BQ1,1 where P t

1,1, P2,2 and Q1,1 are unitary.602

The only if direction. Assume PAQ = BR for some P ∈ U(l,C), Q ∈ U(m,C) and603

R ∈ U(n,C). We claim that there are two unitary matrices P̂ = diag(P,Q, S1, S2) ∈604

U(l + 5m + 3,C) and Q̂ = diag(R, T1, T2) ∈ U(n + l(m + 1) + m(3m + 2),C) such that605

P̂ tr(A)P̂ = r(B)Q̂, where S1 ∈ U(m + 1,C), S2 ∈ U(3m + 2,C), T1 ∈ U(l(m + 1),C) and606

T2 ∈ U(m(3m+ 2),C).607

Due to the fact that PAQ = BR, it’s straightforward to check the first n frontal slices of608

P̂ tr(A)P̂ and r(B)Q̂ are equal. Then we consider the remaining gadget slices. Let r(A) and609

r(B) be tensors constructed by the (m+ 1)th frontal slice to (m+ l(m+ 1))th frontal slice of610

r(A) and r(B), respectively. Consider r(A) and r(B) from the frontal view:611 
0 0 E 0
0 0 0 0

−E 0 0 0
0 0 0 0

 ,612

613

where E ∈ T(l× (m+ 1) × l(m+ 1),C). Then we apply P̂ on the lateral and horizontal slices614
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of r(A),615 
P t

Qt

St
1

St
2




0 0 Ei 0
0 0 0 0

−Ei 0 0 0
0 0 0 0



P

Q

S1
S2

 =


0 0 P tEiS1 0
0 0 0 0

−St
1EiP 0 0 0
0 0 0 0

 ,616

617

where Ei ∈ M(l × (m + 1),C). Observe that P t acts on the horizontal direction of E, so618

it requires designing proper S1 and T1 to remove the effect of P . Let the lateral slice of E619

to be Li ∈ M(l × l(m + 1),C) where i ∈ [m + 1]. Apply a proper permutation π on the620

columns of Li and have the matrix L′
i = LiTπ =

[
0 . . . Il . . .0

]
where Tπ ∈ M(l(m+ 1),C) is621

the permutation matrix and the ith block of L′
i is the identity matrix Il ∈ M(l,C). After left622

multiplying L′
i by P t, we have P tL′

i =
[
0 . . . P t . . .0

]
. Now we define a diagonal matrix T ′

1623

as diag(P t, . . . , P t), which gives us P tL′
i = L′

iT
′
1 ⇐⇒ P tLi = LiTπT

′
1T

t
π. Then we set S1624

to be the identity matrix and T1 to be TπT
′
1T

t
π, and it yields P tES1 = ET1 , where S1 and T1625

are unitary.626

It remains to check the last m(3m+ 2) frontal slices, which uses the similar method as627

above, and this produces unitary matrix S2 and T2. Now we have the unitary matrix S and628

T as desired. ◀629

3.3 Reduction from Unitary 3-Tensor Isomorphism to Unitary630

Matrix Space Conjugacy (V ⊗ V ∗ ⊗ W )631

A 3-way array A ∈ T(l ×m× n,F) is non-degenerate if along each direction, the slices are632

linearly independent.633

▶ Lemma 17. For any 3-way array A ∈ T(l × m × n,C), there are unitary matrices634

T1 ∈ U(l,C), T2 ∈ U(m,C) and T3 ∈ U(n,C) such that635

(T1AT2)T3 =
[
Ã 0
0 0

]
,636

637

where Ã is a non-degenerate array of size l′ ×m′ × n′.638

Proof. First, we consider the horizontal slices of A. Let (A1, . . . , An) be the corresponding639

matrix tuple of frontal slices of A. Then we construct the l ×mn matrix640

A′ =
[
A1 . . . An

]
.641

642

We denote the maximum number of linearly independent horizontal slices of A by l′; it follows643

that the rank of A′ is l′. Applying a singular value decomposition on A′, we have644

A′ = UΣV ∗,645
646

where U and V are unitary matrices of size l × l and mn×mn, respectively, and Σ =
[
Σ̂
0

]
647

for a full-rank rectangular diagonal matrix Σ̂ of size l′ ×mn. Multiplying A′ by T1 = U−1,648

we have649

T1A
′ = ΣV ∗,650

651
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where the first l′ rows of ΣV ∗ are linearly independent and the last l − l′ rows are zero. It652

follows that acting T1 on the horizontal slices of A sends A to653

T1A =
[
Â
0

]
,654

655

where the horizontal slices of Â ∈ T(l′ ×m× n,C) are linearly independent.656

We can similarly find unitary matrices T2, T3 for the other two directions. ◀657

▶ Lemma 18. Given two 3-tensors A, B ∈ U ⊗ V ⊗W where l = dim(U),m = dim(V ) and658

n = dim(W ), there is a reduction r such that A and B are unitarily isomorphic if and only if659

r(A) and r(B) are unitarily isomorphic, where r(A) and r(B) are non-degenerate.660

We note that this reduction is one of the few in the paper that is explicitly not a p-661

projection (similar to how the reduction of a matrix to row echelon form is not a p-projection).662

Proof. By Lemma 17, we can find unitary matrices S1 ∈ U(l,C), S2 ∈ U(m,C) and S3 ∈663

U(n,C) to extract the l′ ×m′ × n′ non-degenerate tensor Ã of A. There are similar unitary664

matrices T1 ∈ U(l,C), T2 ∈ U(m,C) and T3 ∈ U(n,C) for B as well. Then we claim A and B665

are unitarily isomorphic if and only if r(A) = Ã and r(B) = B̃ are unitarily isomorphic.666

For the if direction, assume P̃ ÃQ̃ = B̃R̃ where P̃ ∈ U(l′,C), Q̃ ∈ U(m′,C) and R̃ ∈667

U(n′,C). It yields that P ′A′Q′ = B′R′ where A′ =
[
Ã 0
0 0

]
and B′ =

[
B̃ 0
0 0

]
, and P ′ =668

diag(P̃ , Il−l′), Q′ = diag(Q̃, Im−m′) and R′ = diag(R̃, In−n′). Then we set P to be T−1
1 P ′S1,669

Q to be S2Q
′T−1

2 and R to be T3R
′S−1

3 , where P,Q and R are unitary matrices. It’s easy670

to check that PAQ = BR.671

For the only if direction, suppose PAQ = BR for P ∈ U(l,C), Q ∈ U(m,C) and R ∈672

U(n,C), which follows that P ′A′Q′ = B′R′ for A′ =
[
Ã 0
0 0

]
and B′ =

[
B̃ 0
0 0

]
, and P ′ =673

T1PS
−1
1 , Q′ = S−1

2 QT2, and R′ = T−1
3 RS3. Write P ′ as

[
P1,1 P1,2
P2,1 P2,2

]
where P1,1 is of size674

l′ × l′. Observe that the last l − l′ horizontal slices of A′Q′ and B′R′ are 0 and the first l′675

slices of A′Q′ are linearly independent, so we derive that P2,1 = 0. We can conclude that676

Q′ and R′ are block-lower-trianglular matrices in the same way. Therefore, P̃ , Q̃ and R̃ are677

unitary, where P̃ is the first l′ × l′ submatrix of P ′, Q̃ is the first m′ ×m′ submatrix of Q′
678

and R̃ is the first n′ × n′ submatrix of R′. Thus, P̃ , Q̃ and R̃ form a unitary isomorphism679

between Ã and B̃ by P̃ ÃQ̃ = B̃R̃. ◀680

▶ Corollary 19. Given two 3-tensors A, B ∈ V ⊗ V ⊗W , there is a reduction r such that A, B681

are unitarily isomorphic if and only if r(A), r(B) ∈ V ⊗V ⊗W ′ are unitarily pseudo-isometric682

bilinear forms, and such that the frontal slices of r(A) and r(B) are linearly independent.683

Based on Lemma 18, we will show that the Unitary 3-Tensor Isomorphism (U⊗V ⊗W )684

can be reduced to Unitary Matrix Space Conjugacy (V ′ ⊗ V ′∗ ⊗W ′).3685

3 We note that there is some ambiguity in the name here, which where the notation helps. Namely,
“unitary conjugacy of matrix spaces” could mean either the action of U(V ′) × U(W ′) on V ′ ⊗ V ′∗ ⊗ W ′

or the action of U(V ′) × GL(W ′) on the same space. In this paper we do not consider such “mixed”
actions, though they are certainly interesting for future research. As a mnemonic, if we think of the
matrix space itself as “unitary”, in the sense of having a unitary structure, this lends itself to the
interpretation of U(V ′) × U(W ′) acting.
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▶ Proposition 20. There is a reduction r : U ⊗ V ⊗W → V ′ ⊗ V ′∗ ⊗W where dim(U) =686

l,dim(V ) = m,dim(W ) = n and dim(V ′) = l +m such that two tensors A, B ∈ U ⊗ V ⊗W687

are unitarily isomorphic if and only if r(A), r(B) ∈ V ′ ⊗ V ′∗ ⊗ W are unitarily conjugate688

matrix spaces.689

Proof. The reduction. Denote the ith frontal slice of A by Ai. We construct the reduction690

in the following way:691

Âi =
[
0 Ai

0 0

]
,692

693

where Âi ∈ M(l +m,C) is the ith frontal slice of r(A).694

Without loss of generality, we can always assume A and B are non-degenerate. Then we695

will show that A and B are isomorphic if and only if r(A) and r(B) are isomorphic.696

For the if direction. We assume that r(A) and r(B) are unitarily isomorphic, so there are697

P ∈ U(l +m,C) and Q ∈ U(n,C) such that P−1r(A)P = r(B)Q. Let P be a block matrix:698 [
P1,1 P1,2
P2,1 P2,2

]
,699

700

where P1,1 is of size l × l. Let r(B)Q be r(B)′ and the ith frontal slice of r(B)′ be B′
i. Since701

r(A)P = Pr(B)′, we have that702 [
AiP2,1 AiP2,2

0 0

]
=

[
0 P1,1B

′
i

0 P2,1B
′
i

]
,703

704

where AiP2,1 = 0 and AiP2,2 = P1,1B
′
i for all i ∈ [n]. It follows that every row of P2,1 is705

in the intersection of right kernels of Ai. Since A is non-degenerate, P2,1 must be a zero706

matrix. Thus, P is a block-upper-trianglular matrix, which results in P1,1 and P2,2 are707

unitary. Therefore, we have that P−1
1,1 AP2,2 = BQ for P1,1 ∈ U(l,C), P2,2 ∈ U(m,C) and708

Q ∈ U(n,C).709

For the only if direction. Suppose PAQ = BR where P ∈ U(l,C), Q ∈ U(m,C) and710

R ∈ U(n,C). Then we define P ′ and Q′ as follows711

P ′ =
[
P−1 0

0 Q

]
and Q′ = R,712

713

where P ′ and R′ are unitary. We can straightforwardly check that P ′−1
r(A)P ′ = r(B)Q′ . ◀714

We can similarly apply the strategy in this section to construct the reduction from715

Unitary 3-Tensor Isomorphism (U ⊗ V ⊗W ) to Bilinear Form Unitary Pseudo-716

isometry (V ⊗ V ⊗W ). We record this as the following result.717

▶ Proposition 21. There is a reduction r : U ⊗ V ⊗ W → V ′ ⊗ V ′ ⊗ W where dim(U) =718

l,dim(V ) = m,dim(W ) = n and dim(V ′) = l +m such that two tensors A, B ∈ U ⊗ V ⊗W719

are unitarily isomorphic if and only if r(A), r(B) ∈ V ′ ⊗V ′ ⊗W are unitarily pseudo-isometric720

bilinear forms.721
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3.4 Reduction from Unitary 3-Tensor Isomorphism to Unitary722

Algebra Iso. (V ⊗ V ⊗ V ∗) and Unitary Equivalence of723

Noncommutative Cubic Forms (V ⊗ V ⊗ V )724

▶ Proposition 22. There is a reduction from Bilinear Form Unitary Pseudo-isometry725

to Unitary Algebra Isomorphism and to Unitary Equivalence of Noncommutative726

Cubic Forms.727

In symbols, there are reductions728

r : V ⊗ V ⊗W → V ′ ⊗ V ′ ⊗ V ′∗ and r′ : V ⊗ V ⊗W → V ′ ⊗ V ′ ⊗ V ′
729
730

where dim(V ′) = dim(V ) + dim(W ) such that two bilinear forms A, B ∈ V ⊗ V ⊗ W are731

unitarily pseudo-isometric if and only if r(A) and r(B) are unitarily isomorphic algebras, if732

and only if r′(A) and r′(B) are unitarly equivalent noncommutative cubic forms.733

Proof. The construction. Given a tensor A ∈ V ⊗ V ⊗ W whose frontal slices are Ai,734

construct an array A′ ∈ T((l +m) × (l +m) × (l +m),C) of which the frontal slices are735

A′
i = 0 for i ∈ [l] and A′

i =
[
Ai−l 0

0 0

]
for i ∈ [l + 1, l +m] .736

737

Let Â represent the tensor in V ′ ⊗V ′ ⊗V ′∗ corresponding to entries defined by A′, and denote738

Ã by the tensor in V ′ ⊗V ′ ⊗V ′ corresponding to entries defined by A′. Note that by Corollary739

19, we can always assume that the frontal slices of A are linearly independent, so the last740

m slices of A′ are linearly independent as well. We will show that A, B ∈ V ⊗ V ⊗ W are741

isomorphic if and only if Â, B̂ ∈ V ′ ⊗ V ′ ⊗ V ′∗ are isomorphic, and A, B are isomorphic if and742

only if Ã, B̃ ∈ V ′ ⊗ V ′ ⊗ V ′ are isomorphic.743

The only if direction. Given P ∈ U(l,C) and Q ∈ U(m,C) such that P tAP = BQ, set P̂744

and P̃ to be diag(P,Qt) and diag(P,Q−1) respectively, where P̂ and P̃ are unitary. Then745

we can straightforwardly derive that P̂ tÂP̂ = B̂P̂ t and (P̃ tÃP̃ )P̃ = B̃.746

The if direction. We first consider the V ′ ⊗ V ′ ⊗ V ′∗ case. Assume there is a matrix P ∈747

U(l +m,C) such that P tÂP = B̂P t . Then we write P as
[
P1,1 P1,2
P2,1 P2,2

]
, where P1,1 ∈ M(l,C).748

Consider the first l slices B′′
i of B̂P t ,749

B′′
i = P tÂiP = 0.750

751

Since the last m slices of Â are linearly independent, we will have that P2,1 = 0. It follows752

that P1,1 and P2,2 are unitary. The equivalence of the last m slices of P tÂP and B̂P t yields753

that P t
1,1AP1,1 = BP t

2,2 , which completes the proof of the if direction for V ′ ⊗ V ′ ⊗ V ′∗.754

The proof for the if direction of V ′ ⊗ V ′ ⊗ V ′ case is similar to the above. ◀755

4 Proof of Theorem 7756

We present the proof for unitary groups, and the argument is essentially the same for757

orthogonal groups.758

Let A, B be two d-way arrays in T(n1 × · · · × nd,F). We will exhibit an algorithm T such759

that T (A) is an algebra on Fm where m = poly(n1, . . . , nd), and such that A and B are unitarily760

isomorphic as d-tensors if and only if T (A) and T (B) are unitarily isomorphic as algebras.761

We can then apply Theorem 6 to reduce to Unitary 3-Tensor Isomorphism. Therefore,762
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in the following we focus on the step of reducing Unitary d-Tensor Isomorphism to763

Unitary Algebra Isomorphism.764

Background on quivers and path algebras. A quiver is a directed multigraph G =765

(V,E, s, t), where V is the vertex set, E is the arrow set, and s, t : E → V are two maps766

indicating the source and target of an arrow.767

A path in G is the concatenation of edges p = e1, e2, . . . , en, where ei ∈ E for i ∈ [n],768

such that s(ei+1) = t(ei) for i ∈ [n− 1]. s(p) = s(e1) is the source of p, t(p) = t(en) is the769

target of p and l(p) = n is the length of p. For a consistent notation including the vertex,770

we define the source s(v) and target t(v) for each vertex v ∈ V by s(v) = t(v) = v, and we771

regard the length l(v) of every vertex v as 0. Note that V consists of paths of length 0, and772

E consists of paths of length 1.773

Let F be a field. The path algebra of G, denoted as PathF(G), is the free algebra generated774

by V ∪ E modulo the relations generated by:775

1. For v, v′ ∈ V , vv′ = v if v = v′, and 0 otherwise.776

2. For v ∈ V and e ∈ E, ve = e if v = s(e), and 0 otherwise. And ev = e if v = t(e), and 0777

otherwise.778

3. For e, e′ ∈ E, ee′ = 0 if t(e) ̸= s(e′).779

In this paper we make use of the following quiver. Note that this is different from the780

quiver used in [15]; this difference leads to some significant simplifications in the argument,781

and allows the argument to go through for unitary and orthogonal groups (it is unclear782

to us whether the original argument in [15] does so). Note that G = (V,E, s, t) where

v1 //

x1,1

��
x1,2

  ... //
x1,n1

55 v2 //

x2,1

��
x2,2

  ... //
x2,n2

55 v3 //

x3,1

��
x3,2

  ... //
x3,n3

44 · · · //

xd−1,1

��
xd−1,2

!!... //
xd−1,nd−1

55 vd
//

xd,1

��
xd,2

""... //
xd,nd−1

33 vd+1

Figure 2 The quiver G we use in this paper.

783

V = {v1, . . . , vd+1}, E = {xi,j | i ∈ [d], j ∈ [ni]}, s(xi,j) = vi and t(xi,j) = vi+1.784

Proof of Theorem 7. Let f, g ∈ U1 ⊗ U2 ⊗ · · · ⊗ Ud be two tensors, where Ui = Fni for785

i ∈ [d]. We can encode f in PathF(G) as follows. Recall that ei denotes the ith standard786

basis vector. Suppose f =
∑

(i1,...,id) αi1,...,id
ei1 ⊗ · · · ⊗ eid

, where the summation is over787

(i1, . . . , id) ∈ [n1] × · · · × [nd] and αi1,...,id
∈ F. Then let f̂ ∈ PathF(G) be defined as788

f̂ =
∑

(i1,...,id) αi1,...,id
x1,i1x2,id

. . . xd,id
, where (i1, . . . , id) ∈ [n1] × · · · × [nd].789

Let Rf := PathF(G)/(f̂) and Rg := PathF(G)/(ĝ). We will show that f and g are790

unitarily isomorphic as tensors if and only if Rf and Rg are unitarily isomorphic as algebras.791

Tensor isomorphism implies algebra isomorphism. Let (P1, . . . , Pd) ∈ U(n1,C) ×792

· · · × U(nd,C) be a tensor isomorphism from f to g. Then Pi naturally acts on the linear793

space ⟨xi,1, . . . , xi,ni
⟩, and together with the identity matrix Id+1 acting on ⟨v1, . . . , vd+1⟩.794

It’s straightforward to show that they form an algebra isomorphism from Rf to Rg, which is795

essentially the same as [15]; see our full version [5, Section 6] for a detailed proof.796

Algebra isomorphism implies tensor isomorphism. This part of the proof is new,797

compared to the corresponding part in [15].798
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Let ϕ : PathF(G)/(f̂) → PathF(G)/(ĝ) be an algebra isomorphism, which is determined799

by the images of vi, xj,k under ϕ.800

Note that PathF(G) is linearly spanned by paths in G, so it is naturally graded, and we801

use PathF(G)ℓ denotes the linear space of PathF(G) spanned by paths of length exactly ℓ.802

First, note that ϕ(f̂) = α · ĝ + a linear combination of quiver relations, where α ∈ F.803

Second, we claim that the coefficient of vi in ϕ(xj,k) must be zero for any i, j, k. If not,804

suppose ϕ(xj,k) = γ · vi + M where γ ̸= 0, and M denotes other terms not containing vi.805

On the one hand, ϕ(x2
j,k) = 0 because x2

j,k = 0 by the quiver relations. On the other hand,806

ϕ(xj,k)2 = (γ · vi +M)2 = γ2 · v2
i +M ′ = γ2 · vi +M ′ where M ′ denotes other terms, which807

cannot contain vi. So ϕ(xj,k)2 is nonzero, contradicting ϕ(x2
j,k) = 0 and ϕ being an algebra808

isomorphism.809

By the above, it follows for any path P (a product of xi,j ’s) of length ℓ ≥ 1, ϕ(P ) is a810

linear combination of paths of length ≥ ℓ. This implies that, if we express ϕ in the linear811

basis of PathF(G)/(f̂), (v1, . . . , vd+1, xi,j ,paths of length 2, . . . ,paths of length d), then ϕ is812

a block-lower-triangular matrix, where the each block is determined by the path lengths.813

That is, the first block is indexed by (v1, . . . , vd+1), the second block is indexed by (xi,j),814

the third block is indexed by paths of length 2, and so on.815

Third, we claim that for 1 ≤ i < j ≤ d + 1, the coefficient of xi,k in ϕ(xj,k′) must816

be zero. If not, then let P be a path of length d − i starting from vi+1. Because of the817

block-lower-triangular matrix structure and that ϕ is an isomorphism, we know that there818

exists a path P ′ of length d − i, such that the coefficient of P in ϕ(P ′) is nonzero. Then819

ϕ(xj,k′ ·P ′) = ϕ(xj,k′) · ϕ(P ′) = (β · xi,k +M) · (γ ·P +N) = β · γ · xi,k ·P +L, where M , N820

and L denote appropriate other terms, and β, γ ∈ F are non-zero. Note that xi,k · P cannot821

be cancelled from other terms. This implies that ϕ(xj,k′ · P ′) is non-zero. However, xj,k′ · P ′
822

has to be zero because P ′ is of length d − i, so it starts from some variable xi+1,k′′ . This823

leads to the desired contradiction.824

By the above, if we restrict ϕ to the linear subspace ⟨xi,j⟩ in the linear basis

(x1,1, . . . , x1,n1 , . . . , xd,1, . . . , xnd
),

then ϕ is again in the block-lower-triangular form, where the blocks are determined by the825

first index of xi,j . That is, the first block is indexed by x1,j for all j, the second block is826

indexed by x2,j for all j, and so on.827

We now can take the diagonal block of ϕ on (xi,1, . . . , xi,ni
), and let the resulting828

(invertible) matrix be Pi. These matrices P1, . . . , Pd together determine a linear map ψ on829

⟨xi,j⟩. By comparing degrees, we see that ψ(f̂) = α · ĝ. Now suppose F contains dth roots.830

We can then obtain (1/α1/d · P1, 1/α1/d · P2, . . . , 1/α1/d · Pd) · f = g.831

Getting back to our original goal, we see that if ψ is unitary, then the block-lower-832

triangular form of ψ implies that it is actually block-diagonal, and the diagonal blocks are all833

unitary as well. This shows that Pi’s are unitary, and f and g are unitarily isomorphic. ◀834
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