
ar
X

iv
:2

31
1.

01
72

5v
1

 [
cs

.P
L

]
 3

 N
ov

 2
02

3
JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 1

Quantum Recursive Programming with Quantum

Case Statements
Mingsheng Ying and Zhicheng Zhang

Abstract—We introduce a novel scheme of quantum recur-
sive programming, in which large unitary transformations, i.e.
quantum gates, can be recursively defined using quantum case
statements, which are quantum counterparts of conditionals
and case statements extensively used in classical programming.
A simple programming language for supporting this kind of
quantum recursion is defined, and its semantics is formally
described. A series of examples are presented to show that
some quantum algorithms can be elegantly written as quantum
recursive programs.

Index Terms—Quantum programming, recursive program-

ming, quantum case statement, operational semantics.

I. INTRODUCTION

THE computer programming pioneers like Dijkstra, Hoare

and many others had persuaded a high level of ele-

gance in early programming research by introducing effective

program constructs and programming schemes. In particular,

iteration and recursion were employed to describe repetitive

tasks without requiring a large number of steps to be speci-

fied individually. Typical examples include: (i) Quicksort can

be elegantly expressed as a recursive program [6]; and (ii)

Euclid’s algorithm that computes the greatest common divisor

(gcd) of two positive integers can be elegantly written as a

do-loop:

do x > y → x := x− y
� x < y → y := y − x
od

(1)

in the guarded commands language (GCL) [5].

How can we achieve the same level of elegance in quan-

tum programming? Indeed, at this moment, the majority of

quantum programming research focuses on relatively low-level

features, and the higher-level elegance of quantum program-

ming has not been seriously considered at all. This short

paper presents an attempt toward the elegance in quantum

programming by introducing a novel scheme of quantum

recursion.

As is well-known, if-then-else conditionals, or more general

case statements, are extensively used in recursive definitions

of functions in classical programming. An example is the

program (1) of the Euclid’s algorithm. It has been realised

Mingsheng Ying is with the State Key Laboratory of Computer Science,
Institute of Software, Chinese Academy of Sciences, and the Department
of Computer Science and Technology, Tsinghua University, China. E-mail:
yingms@ios.ac.cn; yingmsh@tsinghua.edu.cn.

Zhicheng Zhang is with the Centre for Quantum Software and
Information, University of Technology Sydney, Australia. E-mail:
Zhicheng.Zhang@student.uts.edu.au.

that two fundamentally different kinds of case statements can

be defined in quantum programming [13]:

1) Measurement-based case statements are usually given in

the following form:

if (�i ·M [q] = mi → Pi) fi (2)

where q is a quantum variable and M a measurement

performed on q with possible outcomes mi’s, and for

each i, Pi is a subprogram. The statement (2) selects

a command according to the outcome of measurement

M : if the outcome is mi, then the corresponding com-

mand Pi will be executed. It is worth noting that the

control flow of (2) is classical because the selection of

commands in it is based on classical information — the

outcomes of a quantum measurement.

2) Quantum case statements are usually defined using a

quantum “coin” in the following form:

qif [c] (�i · |i〉 → Pi) fiq (3)

where {|i〉} is an orthonormal basis of the state Hilbert

space of an external “coin” system c, and the selection

of subprograms Pi’s is made according to the basis

states |i〉 of the “coin” space. A fundamental difference

between (2) and (3) is that the control flow of (3) is

quantum because the basis states of quantum “coin” c
can be superposed and thus c carries quantum informa-

tion rather than classical information (for more about

quantum control flow, see [13], Chapter 6 and [12]).

The scheme of recursion with measurement-based case state-

ments (2) has already been studied in the literature, and was

termed in [13] as recursive quantum programming for the

recursion is executed along classical control flow. In this paper,

we consider a new scheme of recursion with quantum case

statements (3). An important difference between this scheme

of quantum recursion and the previous one is as follows: in this

scheme, procedure identifiers can occur in different branches

of a quantum case statement of the form (3) and thus recursive

calls to them may happen in the way of quantum parallelism

as a superposition of execution paths. Thus, we call the new

scheme quantum recursive programming for the execution is

executed along quantum control flow. As will be shown in a

series of examples, an important class of large quantum gates

can be defined and quantum algorithms can be described in the

new scheme of quantum recursion conveniently and elegantly.

This paper is organised as follows. As a basis for defining

quantum recursion, we introduce quantum arrays in Section II.

Our quantum recursive programs are then introduced in several

http://arxiv.org/abs/2311.01725v1

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 2

steps. We start from defining a quantum circuit description

language QC in Section III. In Section IV, QC is embedded

into a simple classical programming language. Then quantum

recursive programs without parameters and their semantics

are defined in Section V. The quantum recursive programs

considered in V are generalised by equipped with parameters

in Section VI, where actual parameters are described using the

classical programming language presented in Section IV.

II. QUANTUM ARRAYS

In this section, we introduce the notions of quantum array

and subscripted quantum variable, which will be needed in

defining quantum recursive programs.

A. Quantum types

As a basis, let us first define the notion of quantum type.

Recall that a basic classical type T denotes an intended set of

values. Similarly, a basic quantum type H denotes an intended

Hilbert space. It will be considered as the state space of a

simple quantum variable. We will also use higher quantum

type of the form:

T1 × ...× Tn → H (4)

where T1, ..., Tn are basic classical types, and H is a basic

quantum type. Mathematically, this type denotes the following

tensor power of Hilbert spaceH (i.e. tensor product of multiple

copies of H):

H⊗(T1×...×Tn) =
⊗

t1∈T1,...,tn∈Tn

Ht1,...,tn (5)

where Ht1,...,tn = H for all t1 ∈ T1, ..., tn ∈ Tn. Intuitively, if

H is the state space of a quantum system A, then according to

the basic postulates of quantum mechanics, the Hilbert space

(5) is the state space of the composite system consisting of

those quantum systems indexed by (t1, ..., tn) ∈ T1× ...×Tn,

each of which is identical to A.

A notable basic difference between higher classical types

and quantum ones is that some states in the space (5) are

entangled between the quantum systems indexed by different

(t1, ..., tn) ∈ T1 × ...× Tn.

Example II.1. Let H2 be the qubit type denoting the 2-

dimensional Hilbert space. If q is a qubit array of type

integer→ H2, where integer is the (classical) integer type,

then for any two integers k ≤ l, section q[k : l] stands for the

restriction of q to the interval [k : l] = {integer i|k ≤ i ≤ l}.
For example,

⊗l
i=k |0〉i +

⊗l
i=k |1〉i√

2

is an entangled state of the qubits labelled k through l.

B. Quantum variables

In this paper, we will use two sorts of quantum variables:

• simple quantum variables, of a basic quantum type, say

H;

• array quantum variables, of a higher quantum type, say

T1 × ...× Tn → H.

Definition II.1. Let q be an array quantum variable of the

type T1 × ...× Tn → H, and for each 1 ≤ i ≤ n, let si be a

classical expression of type Ti. Then q[s1, ..., sn] is called a

subscripted quantum variable of type H.

Intuitively, array variable q denotes a quantum system

composed of subsystems indexed by (t1, ..., tn) ∈ T1×...×Tn.

Thus, whenever expression si is evaluated to a value ti ∈ Ti
for each i, then q[s1, ..., sn] indicates the system of index

tuple (t1, ..., tn). For example, let q be a qubit array of type

integer × integer → H2. Then q[2x + y, 7 − 3y] is a

subscripted qubit variable; in particular, if x = 5 and y = −1
in the current classical state, then it stands for the qubit

q[9, 10].

III. A QUANTUM CIRCUIT DESCRIPTION LANGUAGE

In this section, we introduce a quantum circuit description

language QC. The major difference between QC and other

languages in the previous literature for the same purpose is that

the construct of quantum case statement is added into QC.

As pointed out in Section I, this language will be expanded

gradually in the subsequent sections for recursive definition of

large quantum gates and algorithms.

A. Syntax

We assume that the alphabet of QC consists of:

• A set QV of simple or subscripted quantum variables;

• A set U of unitary matrix constants.

The unitary matrix constants in U will be instantiated in

practical applications. We fix the following notations:

- As defined in Section II, each quantum variable q ∈ QV

assumes a type T (q). This means that variable q stands

for a quantum system with the Hilbert space denoted by

T (q) as its state space.

• A sequence q = q1, ..., qn of distinct quantum variables is

called a quantum register. It denotes a composite quantum

system consisting of subsystems q1, ..., qn. Its type is de-

fined as the tensor product T (q) = T (q1)⊗ ...⊗T (qn) of

the types of q1, ..., qn. For simplicity of the presentation,

we often identify q with the set {q1, ..., qn} of quantum

variables occurring in q.

- Each unitary matrix constant U ∈ U assumes a type of

the form T (U) = H1 ⊗ ... ⊗ Hn. This means that the

unitary transformation denoted by U can be performed on

a composite quantum system consisting of n subsystems

with typesH1, ...,H2, respectively. Thus, if q = q1, ..., qn
is a quantum register with T (qi) = Hi for i = 1, ..., n;

that is, the types of U and register q match, then U [q]
can be thought of as a quantum gate with quantum wires

q1, ..., qn.

Definition III.1. Quantum circuits C ∈ QC are defined by

the syntax:

C ::= U [q] | C1;C2

| qif [q]
(

�
d
i=1|ψi〉 → Ci

)

fiq
(6)

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 3

More precisely, they are inductively defined by the following

clauses, where qv(C) denotes the quantum variables in C:

(1) Basic gates: If U ∈ U is a unitary matrix constant and

q is a quantum register such that their types match, then

quantum gate U [q] is a circuit, and qv(U [q]) = q, ;

(2) Sequential composition: If C1 and C2 are circuits, then

C ≡ C1;C2 is a circuit too, and qv(C) = qv(C1) ∪
qv(C2);

(3) Quantum case statement: If q is a quantum register,

{|ψi〉}di=1 is an orthonormal basis of the Hilbert space

denoted by the type T (q), and Ci (i = 1, ..., d) are

circuits with

q ∩
(

d
⋃

i=1

qv(Ci)

)

= ∅, (7)

then

C ≡ qif [q]
(

�
d
i=1|ψi〉 → Ci

)

fiq (8)

is a circuit, and qv(C) = q ∪
(

⋃d
i=1 qv(Ci)

)

.

Intuitively, each C ∈ QC represents a circuit with quantum

wires qv(C). The circuit constructs introduced in the above

definition are explained as follows.

(i) The circuit C1;C2 in clause (2) stands for the se-

quential composition of circuits C1 and C2. Indeed,

if C1 and C2 do not share quantum variables; that is,

qv(C1) ∩ qv(C2) = ∅, we can also define their parallel

composition C1 ⊗ C2. But C1;C2 and C1 ⊗ C2 are

semantically equivalent whenever qv(C1)∩qv(C2) = ∅.
So, the parallel composition is not included in the above

definition.

(ii) The quantum case statement defined in equation (8) is

a straightforward generalisation of (3) with a quantum

“coin” c being replaced by a sequence q of quantum

variables. The condition (7) means that q is a system

external to all Ci (i = 1, ..., d). Semantically, quantum

case statement (8) is a quantum multiplexor (i.e. a multi-

way generalisation of conditional) [11]. A multiplexor

can be understood as a switch that passes one of its

data inputs through to the output, as a function of a set

of select inputs. Here, q is the select register, and if q
is in state |ψi〉, then a quantum datum |ϕ〉 is inputted

to the corresponding circuit Ci and an output |ϕi〉 is

obtained at the end of Ci. A basic difference between

classical and quantum multiplexors is that the quantum

select register q can be in a superposition of |ψi〉 (i =
1, ..., d), say

∑d
i=1 αi|ψi〉. In this case, the output is then

∑d
i=1 αi|ϕi〉, a superposition of the outputs of different

circuits Ci (i = 1, ..., d). This point will be seen more

clearly from the operational semantics defined below.

Remark III.1. A much more general notion of quantum case

statement in which quantum measurements may occur was

introduced in [13], Chapter 6. In this paper, however, the

notion of quantum case statement is restricted to quantum

circuits (thus, unitary transformations) so that its semantics

can be more clearly defined.

B. Operational semantics

For each quantum variable q ∈ QV , assume its type T (q)
denotes Hilbert space Hq . Then for any set X ⊆ QV of

quantum variables, the state space of the quantum variables in

X is the tensor product HX =
⊗

q∈X Hq. In particular, the

state space of all quantum variables is HQV .

A configuration is defined as a pair (C, |ψ〉), where C ∈
QC is a quantum circuit or C = ↓ stands for termination,

and |ψ〉 is a pure quantum state in Hilbert space HX for some

qv(C) ⊆ X ⊆ QV . We write C for the set of all configurations

with circuits in QC.

Definition III.2. The operational semantics of quantum cir-

cuits in QC is the transition relation → ⊆ C × C between

configurations that is defined by the transitional rules given

in Table I.

The transition rules (GA) and (SC) are self-explanatory. But

the rule (QC) needs an careful explanation. First, for any state

|ψ〉 in a Hilbert space HX with X ⊇ q, we can always write it

in the form of |ψ〉 =∑d
i=1 αi|ψi〉q|θi〉, as done in the premise

of the rule (QC), because HX = Hq ⊗ HX\q and {|ψi〉} is

an orthonormal basis of Hq . Second, let us write →n for the

composition of n copies of →. If i1 6= i2, then it is possible

that

(Ci1 , |θi1〉)→n1 (↓, |θ′i1〉) and (Ci2 , |θi2〉)→n2 (↓, |θ′i2〉)

for n1 6= n2. This is why the reflexive and transitive closure

→∗ of → is used in the premise of the rule (QC). Finally,

let C ∈ QC be a quantum circuit and X ⊇ qv(C). Then the

denotational semantics of C over X can be defined as operator

JCK on HX as follows:

JCK|ϕ〉 = |ψ〉 if and only if (C, |ϕ〉)→∗ (↓, |ψ〉).

It is easy to show that

q
qif [q]

(

�
d
i=1|ψi〉 → Ci

)

fiq
y
=

d
∑

i=1

|ψi〉〈ψi| ⊗ JCiK. (9)

Furthermore, if we adopt the matrix representation of operators

in the orthonormal basis {|ψi〉}, then (9) can be written as

the diagonal matrix diag(JC1K, ..., JCdK). This confirms that

semantically, quantum case statement is exactly the same as

quantum multiplexor [11].

C. Illustrative Examples

To illustrate their applicability, let us present several exam-

ples showing that the circuit constructs introduced in Defini-

tion III.1; in particular quantum case statement, can be used

to define some commonly used quantum gates conveniently.

Example III.1. Assume that the single-qubit identity matrix I ,

the NOT matrix X , and Rx(θ) = iRx(2θ) are unitary matrix

constants in U , where Rx(θ) is the rotation about the x axis:

Rx(θ) =

(

i cos θ
2 sin θ

2

sin θ
2 i cos θ

2

)

Then:

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 4

(GA) (U [q], |ψ〉)→
(

↓, (U ⊗ IQV\q)|ψ〉
)

(SC)
(C1, |ψ〉)→ (C′

1
, |ψ′〉)

(C1;C2, |ψ〉)→ (C′
1
;C2, |ψ′〉)

(QC)
|ψ〉 =

∑d
i=1

αi|ψi〉q |θi〉 (Ci, |θi〉)→
∗ (↓, |θ′i〉) (i = 1, ..., n)

(

qif [q]
(

�
d
i=1
|ψi〉 → Ci

)

fiq, |ψ〉
)

→
(

↓,
∑d

i=1
αi|ψi〉q |θ′i〉

)

TABLE I: Transition Rules for Quantum Circuits. In rule (GA), IQV \q stands for the identity operator on the Hilbert space

HQV \q . In rule (SC), we make the convention that ↓;C2 = C2. In rule (QC), →∗ denotes the reflexive and transitive closure

of relation →.

1) The CNOT (Controlled-NOT) gate with q1 as its control

qubit can be defined by

CNOT[q1, q2] := qif [q1] |0〉 → I[q2]

� |1〉 → X [q2]

fiq

2) The Toffoli gate with q1, q2 as its control qubits is defined

by

Toffoli[q1, q2, q3] := qif [q1, q2] |00〉 → I[q3]

� |01〉 → I[q3]

� |10〉 → I[q3]

� |11〉 → X [q3]

fiq

3) The Deustch gate with q1, q2 as its control qubits is

defined by

Deutsch(θ)[q1, q2, q3] := qif [q1, q2] |00〉 → I[q3]

� |01〉 → I[q3]

� |10〉 → I[q3]

� |11〉 → Rx(θ)[q3]

fiq

Note that Deutsch(π2) = Toffoli.
4) The Fredkin gate with q1 as its control qubit is defined

by

Fredkin[q1, q2, q3] := qif [q1] |0〉 → I[q2]; I[q3]

� |1〉 → SWAP[q2, q3]

fiq

where the swap gate:

SWAP[q2, q3] := CNOT[q2, q3];CNOT[q3, q2];

CNOT[q2, q3].

Two quantum circuits C1, C2 ∈ QC are said to be equiva-

lent, written C1 ≡ C2, if for any |ψ〉, |ψ′〉,

(C1, |ψ〉)→ (↓, |ψ′〉) if and only if (C2, |ψ〉)→ (↓, |ψ′〉).

Then we have:

Example III.2. It is easy to verify that

qif [q1]|+〉 → I[q2] � |−〉 → Z[q2] fiq

≡ qif [q2]|0〉 → I[q1] � |1〉 → X [q2] fiq.

IV. QUANTUM CIRCUITS DEFINED WITH CLASSICAL

VARIABLES

To increase the expressive power, in this section we embed

QC into a classical programming language. Our aim for

this embedding is to allow us to use classical expressions as

parameters in quantum recursive programs.

A. Syntax

For simplicity, let us choose classical while-language as the

host language. Thus, we obtain:

Definition IV.1. Quantum circuits C ∈ QC+ with classical

variables are defined by the syntax:

C ::= skip | x := t | U [q] | C1;C2

| if b then C1 else C2 fi

| while b do C od

| qif [q]
(

�
d
i=1|ψi〉 → Ci

)

fiq

(10)

where x is a string of classical simple or subscripted variables,

t is a string of classical expression, b is a Boolean expression,

and other condition are the same as in Definition III.1.

The quantum variables qv(C) in C ∈ QC+ are defined

inductively as follows:

1) qv(skip) = qv(x := t) = ∅;
2) qv(U [q]) = q;

3) qv(C1;C2) = qv (if b then C1 else C2 fi) = qv (C1)∪
qv(C2);

4) qv(while b do C od) = qv(C);
5) qv(qif [q]

(

�
d
i=1|ψi〉 → Ci

)

fiq) = q ∪
(

⋃d
i=1 qv(Ci)

)

.

As usual in classical programming, a conditional of the

form if b then C1 else skip fi will be simply written as

if b then C1 fi.

Remark IV.1. Our aim of introducing classical computation

in QC+ is to enable quantum circuits be defined using

classical expressions as their parameters. So, in a sense, the

connection between classical and quantum variables in QC+

is unidirectional from classical ones to quantum ones. But a

connection from quantum variables to classical ones can also

be introduced by adding statements of the form x := M [q],
meaning that the outcome of measurement M on quantum

variables q is stored in classical variable x. For simplicity

of presentation, however, we choose not to consider it in this

paper.

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 5

(SK) (skip, σ, |ψ〉)→ (↓, σ, |ψ〉) (SC)
(C1, σ, |ψ〉)→ (C′

1
, σ′, |ψ′〉)

(C1;C2, σ, |ψ〉)→ (C′
1
;C2, σ′, |ψ′〉)

(AS) (x := t, σ, |ψ〉)→ (↓, σ[x← σ(t)], |ψσ〉) (GA) (U [q], σ, |ψ〉)→ (↓, σ, (U ⊗ IQV\q)|ψ〉)

(QC)
|ψ〉 =

∑d
i=1

αi|ψi〉q|θi〉 (Ci, σ, |θi〉)→
∗ (↓, σ′, |θ′i〉) (i = 1, ..., n)

(

qif [q]
(

�
d
i=1
|ψi〉 → Ci

)

fiq, σ, |ψ〉
)

→
(

↓, σ′,
∑d

i=1
αi|ψi〉q |θ

′
i〉
)

TABLE II: Transition Rules for Quantum Circuits with Classical Variables. In rule (AS), let x = x1, ..., xn and t = t1, ..., tn.

Then σ(ti) denotes the value of expression ti in state σ, and σ[x ← σ(t)] is the state of classical variables obtained by

replacing the value of xi in σ with σ(ti) simultaneously for all 1 ≤ i ≤ n.

(BS) (begin local x := t, C end, σ, |ψ〉)→ (x := t;C;x := σ(x), σ, |ψ〉)

TABLE III: Transition Rule for Local Variables.

B. Operational semantics

To define operational semantics of QC+, we need to

modify the definition of configuration in order to accommodate

classical variables. A configuration is now defined as a triple

(C, σ, |ψ〉), where C ∈ QC+ is a quantum variable with

classical variables, σ is a state of classical variables, and |ψ〉
is a pure quantum state in HX for some qv(C) ⊆ X ⊆ QV .

For simplicity, we abuse a bit of notation and still use C to

denote the set of all configurations.

Definition IV.2. The operational semantics of quantum cir-

cuits in QC+ is the transition relation → ⊆ C × C between

configurations defined by the transitional rules given in Table

II.

The rules (SK), (SC), (AS) and (GA) are easy to understand.

One design decision in the rule (QC) needs an explanation.

In its premise, when starting in the state classical state σ,

the executions of all branches (Ci, σ, |θi〉) (i = 1, ..., n) are

required to terminate in the same classical state σ′. At the

first glance, this is a very strong requirement and hard to

meet in practical applications. Indeed, as we will see in the

next subsection and Example V.1, it can be easily achieved by

introducing local variables.

C. Local variables

In this subsection, we further introduce local classical

variables into QC+ by extending its syntax with the following

clause:

C ::= begin local x := t;C end (11)

where x is a sequence of classical variables and t a sequence

of classical expressions. A statement of the form (11) is called

a block statement, and its operational semantics is defined by

the rule (BS) in Table III.

The rule (BS) is very similar to the rule defining the

operational semantics of local variables in classical programs

(see for example [2], the rule (ix) on page 154). In the

execution of block statement (11) starting in classical state σ,

the local variables x are first initialised by assignment x := t,
then the circuit C within the statement is executed. After that,

x resume their original values in σ. It is easy to see that if x is

an empty sequence, then the block statement can be identified

with circuit C within it.

We will see in Example V.1 how local variables can help

in describing quantum recursive programs.

V. QUANTUM RECURSIVE PROGRAMS WITHOUT

PARAMETERS

Now we are ready to define a language RQC+ of re-

cursively defined quantum circuits. In this section, we only

consider quantum recursive circuits without parameters. More

general quantum recursive circuits with parameters will be

considered in the next section. As we will see shortly, at

the level of syntax, quantum recursive circuits and classical

recursive programs (see for example [2], Chapters 4 and

5) are similar to each other. The major difference between

them appears at the level of semantics, where quantum case

statements involved in the former will exhibit superposition of

the executions of multiple circuits within recursive procedures.

A. Syntax

Let us first define the syntax of RQC+. We add a set of

procedure identifiers, ranged over by symbols P, P1, P2, ...
into the alphabet of QC+. Then the syntax of RQC+ is

defined by extending the syntax (10) and (11) of QC+ by

adding the clause:

C ::= P (12)

with quantum variables qv(P) = ∅. As in classical recursive

programming [2], an occurrence of a procedure identifier in

a program is called a procedure call. We assume that each

procedure identifier P is defined by a declaration of the form

P ⇐ C (13)

where C ∈ RQC+ is called the procedure body. Note that in

the declaration (13), P may appear in the procedure body C;

the occurrences of P in C are thus called recursive calls. We

assume a fixed set D of procedure declarations.

B. Operational semantics

To define the operational semantics of RQC+, we first

generalise the notion of configuration (C, σ, |ψ〉) by allowing

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 6

C ∈ RQC+. Then the operational semantics is the transition

relation → between configurations defined by the transition

rules given in Tables II and III together with the following

copy rule:

(CR)
P ⇐ C ∈ D

(P, σ, |ψ〉)→ (C, σ, |ψ〉) (14)

Intuitively, the copy rule allows that a procedure call is

dynamically replaced by the procedure body of its declaration

given in declarations D.

C. Illustrative Examples

The following two examples show how some large unitary

transformations (i.e quantum gates) can be elegantly described

as quantum recursive programs defined above.

1) Controlled unitary transformations: Controlled unitaries

are a class of quantum gates widely used in quantum comput-

ing. Mathematically, let U be a unitary operator on a single

qubit and n a positive integer. Then the controlled-U gate

C(n)(U) with q1, ..., qn as its control qubits and qn+1 as its

target qubit is defined by

C(n)(U)|i1, ..., in〉|ψ〉

=

{

|i1, ..., in〉U |ψ〉 if i1 = ... = in = 1;

|i1, ..., in〉|ψ〉 otherwise

for any i1, ..., in ∈ {0, 1} and |ψ〉 ∈ H2.

Using a quantum programming language without recursion,

one has to define C(n) for different integers n individually.

Now within the recursion scheme introduced above, we can

define C(n) in a uniform way:

Example V.1. Let q be a qubit array of type integer→ H2.

Then the controlled-U gate on the section q[first : last] with

the first (last − first) qubits as its control qubits and the last

one as its target qubit can be written as the recursive program:

C(∗)(U) ⇐
if first = last

then U [q[last]]

else qif [q[first]]|0〉 → skip

� |1〉 → begin local first := first + 1;

C(∗)(U) end

fiq

fi

It is worth noting that a block statement with local variables

is employed in the above program C(∗)(U) to guarantee that

different branches of a quantum case statement terminate in

the same classical state (see the explanation of the transition

rule (QC) given after Definition IV.2).

2) Quantum Fourier transforms: As a key subroutine,

quantum Fourier transforms appear in many important quan-

tum algorithms, including Shor’s factoring algorithm. The

quantum Fourier transform QFT (n) on n qubits is mathe-

matically defined by

QFT (n)|j〉 = 1√
2n

n
∑

k=0

e2πijk/2
n |k〉 (15)

for j = 0, 1, ..., 2n−1. If we use the binary representation j =
j1j2...jn =

∑n
l=1 jl2

n−l and binary fraction 0.k1k2...km =
∑m

l=1 kl2
−l, then the defining equation (15) of QFT (n) can

be rewritten as

QFT (n)|j1, ..., kn〉 =
1√
2n

n
⊗

l=1

(

|0〉+ e2πi0.jn−l+1...jn |1〉
)

.

(16)

As shown in Table IV, QFT (n) can be decomposed into a

sequence of single-qubit and two-qubit basic gates, namely

the Hadamard gate H and controlled-rotations C(Rl) (l =
1, ..., n), where

Rl =

(

1 0

0 e2πi/2
l

)

is a single-qubit gate.

In a quantum programming language that does not support

recursion, one has to program QFT (n) in a way similar

to Table IV. For a large number n of qubits, the size of

such a QFT (n) program will be very large. Using recursion,

however, we can write QFT (n) as a program, of which the

size is independent of the number n of qubits:

Example V.2. Let q be a qubit array of type integer→ H2.

Then quantum Fourier transform on the section q[m,n] can

be written as the following recursive program:

QFT (m,n) ⇐ H [q[m]]; if m < n then Rotate(m,n);

QFT [m+ 1, n]

fi;

Reverse(m,n)

Rotate(m,n) ⇐ Rotate(m,n− 1);

qif [q[n]]|0〉 → skip

� |1〉 → Rn[q[m]]

fiq

Reverse(m,n) ⇐ if m < n then SWAP [q[m], q[n]];

if m+ 2 ≤ n then

Reverse(m+ 1, n− 1)

fi

fi

VI. QUANTUM RECURSIVE PROGRAMS WITH PARAMETERS

In this section, we further expand the language RQC+

defined in the last section to RQC++ of quantum recursive

circuits with classical parameters.

A. Syntax

We add a set of procedure identifiers P, P1, P2, ... into the

alphabet of QC+. Each identifier P is given an arity ar (P).
Then the syntax of RQC++ is defined by the syntax (10) and

(11) of QC+ together with the following clause:

C ::= P (t1, ..., tn) (17)

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 7

QFT (n)[q1, ..., qn] ::= H[q1];C(R2)[q2, q1];C(R3)[q3, q1]; ...;C(Rn−1)[qn−1, q1];C(Rn)[qn, q1];

H[q2];C(R2)[q3, q2];C(R3)[q4, q2]; ...;C(Rn−1)[qn, q2];

..............................

H[qn−1];C(R2)[qn, qn−1];

H[qn];

Reverse[q1, ..., qn]

TABLE IV: A quantum circuit for quantum Fourier transform. Here, C(Rl)[qi, qj] stands for the controlled-Rl with qi as its

control qubit and qj as its target qubit, and Reverse[q1, ..., qn] is the quantum gate that reverses the order of qubits q1, ..., qn.

(RC)
P (u1, ..., un)⇐ C ∈ D

(P (t1, ..., tn), σ, |ψ〉)→ (begin local u := t;C end, σ, |ψ〉)

TABLE V: Transition Rule for Quantum Recursive Circuits with Parameters.

The above syntax of RQC++ is very similar to that of

classical recursive programs with parameters given in [2].

In procedure call (17), P is a procedure identifier with

ar(P) = n, and t1, ..., tn are classical expressions, called

actual parameters. Whenever n = 0, procedure P (t1, ..., tn)
degenerates to a procedure without parameters considered in

the last section.

Each procedure identifier P is defined by a declaration of

the form:

P (u1, ..., un)⇐ C (18)

where u1, ..., un are classical simple variables, called formal

parameters; and the procedure body C ∈ RQC++. We

assume a fixed set D of procedure declarations.

B. Operational semantics

Now configurations are triples (C, σ, |ψ〉) with C ∈
RQC++ and σ, |ψ〉 being as in Section V. The semantics of

RQC++ is then a transition relation between configurations

defined by the rules in Tables II and III together with the

recursive rule (RC) in Table V.

C. Illustrative examples

1) Controlled unitary transformations revisited: Using re-

cursion with parameters introduced in this section, controlled

unitaries can be programmed in a more compact way than

Example V.1:

Example VI.1. The controlled-U gate on the section q[m : n]
with the first (n−m) qubits as its control qubits and the last

one as its target qubit can be written as the recursive program:

C(∗)(U)(m,n) ⇐ if m = n

then U [q[n]]

else qif [q[m]]|0〉 → skip

� |1〉 → C(∗)(U)[m+ 1, n]

fiq

fi

In particular, it is interesting to note that different from

Example V.1, the C(∗)(U) program in the above example does

not use any block statement and local variable.

Remark VI.1. The idea of the above example can be easily

generalised to give a recursive definition of a quantum case

statement with multiple quantum coins of the form:

qif [q[1 : k]](�x∈{0,1}k |x〉 → Ux[q[k + 1]]) fiq (19)

in terms of quantum case statements with a single quantum

coin of which the number of branches is fixed.

2) Quantum state preparation: Quantum state preparation

(QSP) is a basic procedure employed in many quantum

algorithms; in particular, in quantum simulation and quantum

machine learning. The problem is as follows. Given an N -

dimensional complex vector a = (aj)
N−1
j=0 ∈ CN , where

N = 2n. Our goal is to generate the n-qubit state:

1√
a

N−1
∑

j=0

√
aj |j〉

from the basis state |0〉n, where a =
∑N−1

j=0 |aj |.
For each 0 ≤ j < N , and for any 0 ≤ l < r ≤ N , define θj

and Sl,r such that aj = eiθj |aj | and Sl,r =
∑r−1

j=l |aj |. Then

the QSP algorithm (which slightly generalises the one in [8])

consists of n steps. For 0 ≤ k < n, in the kth step, it performs

the transformation:

{

|0〉n 7→ U0,0|0〉|0〉⊗(n−1) k = 0;

|x〉|0〉⊗(n−k) 7→ |x〉Uk,x|0〉|0〉⊗(n−k−1) 1 ≤ k < n

for all 0 ≤ x < 2k− 1, where Uk,x is a single qubit gate such

that:

Uk,x|0〉 =
√
γx|0〉+ eiβx/2

√

1− γx|1〉,

and γx =
Su,w

Su,v
, βx = θw − θu, u = 2n−kx, v = 2n−kx +

2n−k and w = u+v
2 . Using the language RQC+, the QSP

algorithm can be elegantly rewritten as a quantum recursive

program:

JOURNAL OF LATEX CLASS FILES, VOL. 18, NO. 9, SEPTEMBER 2020 8

Example VI.2. Let

QSP(k, n) ⇐ if k = 0 then U0,0[q[1]] else

if 1 ≤ k < n then

qif [q[1 : k]](�|x〉 → Uk,x[q[k + 1]];

QSP(k + 1, n))

fiq

fi

fi

Then one calls QSP(0, n) for the quantum state preparation.

At the first glance, there seems a bug in the above program:

the number 2k of branches of the qif -statement varies as the

number k of coin qubits q[1 : k]. But it is actually not a

bug because as pointed out in Remark VI.1, the qif -statement

with coins q[1 : k] can be recursively defined in terms of

qif -statement with a single coin qubit.

3) Quantum Random-Access Memory (QRAM): Many ap-

plications of quantum computing (from optimisation and ma-

chine learning to cryptanalysis) presume the existence of

QRAM, a quantum counterpart of RAM (Random-Access

Memory) in classical computing [7]. The strongest type of

QRAM is called QRAQM (Quantum Random-Access Quan-

tum Memory), which stores quantum data and access data

based on addresses that are themselves a quantum state in a

superposition. Among several equivalent forms, we consider a

QRAQM that performs the following transformation: for any

data set D[0 : N] with N = 2n − 1, and for any address

0 ≤ j ≤ N ,

|j〉|D[0 : N]〉 7→ |j〉|D[j]〉|D[0 : j − 1]〉|D[j + 1 : N]〉. (20)

Intuitively, given an address j, the desired data element D[j] is

swapped out. A simple (but not very efficient) implementation

of QRAQM can be written as a quantum recursive program:

Example VI.3. We use qa[1 : n] for the address register

holding |j〉 and qD[0 : N] for the data register holding

|D[0 : N]〉 on the LHS of (20). Let

U(l, r, k)⇐ if k ≤ n then

begin local m := ⌊(l + r)/2⌋;
qif [qa[k]] |0〉 → U(l,m, k + 1)

� |1〉 → U(m+ 1, r, k + 1);

SWAP [qD[l], qD[m+ 1]]

fiq

end

fi

Then one calls U(0, N, 1) for the QRAQM operation.

It is interesting to note that a Divide-and-Conquer strategy

was employed in the above example where QRAM is divided

into two subproblems smaller than the original one that are

then solved respectively in each of the branches of a quantum

case statement.

VII. CONCLUSION

This short paper introduces a new scheme of quantum

recursive programming. The basic ideas of this scheme of

quantum recursion are illustrated through a series of inter-

esting examples. It should be emphasised that this scheme of

quantum recursion is defined based on the notion of quantum

case statement; indeed, it cannot be realised without quantum

case statements, as we can observe from the examples.

This paper is merely one of the first steps toward a theory

of quantum recursive programming. Plenty of problems about

quantum recursions remain unsolved. Here, we would like to

mention the following two open problems:

• Implementation of quantum recursion: Classical recur-

sive programs are usually implemented employing stack

[4], [1]. How can we implement the kind of quantum

recursion introduced in this paper? Indeed, a notion of

quantum stack has still not been properly defined.

• More sophisticated quantum recursive programming tech-

niques: A simple Divide-and-Conquer strategy was em-

ployed in Example VI.3. Several other quantum Divide-

and-Conquer strategies have been proposed in the litera-

ture (see for example [3]). It is interesting to see whether

or not and how quantum algorithms developed with

these Divide-and-Conquer strategies can be recursively

programmed. Furthermore, how can quantum recursive

programming be combined with structural development

techniques of quantum algorithms as recently proposed

in [10].

ACKNOWLEDGMENTS

This work was partly supported by the National Natural

Science Foundation of China (Grant No: 61832015). Zhicheng

Zhang was supported by the Sydney Quantum Academy,

NSW, Australia.

REFERENCES

[1] H. Abelson, G. J. Sussman and J. Sussman, Structure and Interpretation

of Computer Programs (2nd Edition), The MIT Press, 1996.
[2] K. R. Apt, F. S. de Boer and E. -R. Olderog, Verification of Sequential

and Concurrent Programs, Springer, London 2009.
[3] A. M. Childs, R. Kothari, M. Kovacs-Deak, A. Sundaram and D. C. Wang,

Quantum divide and conquer, arXiv 2210.06419.
[4] E. W. Dijkstra, Recursive programming, Numerische Mathematik

2(1960)312-318.
[5] E. W. Dijkstra, Guarded command, nondeterminacy and formal derivation

of programs, Communications of the ACM 19(1975)453-457.
[6] C. A. R. Hoare, Quicksort, The Computer Journal 5(1962)10-16.
[7] S. Jaques and A. G. Rattew, QRAM: a survey and critique, arXiv:

2305.10310.
[8] I. Kerenidis and A. Prakash, Quantum recommendation systems, in:

Proceedings of the 8th Innovations in Theoretical Computer Science

Conference (ITCS), 2017, pp. 49:1-21.
[9] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum

Information, Cambridge University Press, 2000.
[10] Z. M. Rossi and I. L. Chuang, Semantic embedding for quantum

algorithms, arXiv: 2304.14392.
[11] V. V. Shende, S. S. Bullock and I. L. Markov, Synthesis of quantum-logic

circuits, IEEE Transactions on CAD of Integrated Circuits and Systems

25(2006) 1000-1010.
[12] C. Yuan, A. Villanyi and M. Carbin, Quantum control machine: The

limits of control flow in quantum programming, arXiv: 2304.15000.
[13] M. S. Ying, Foundations of Quantum Programming, Morgan Kaufmann,

2016.
[14] M. S. Ying and Y. Feng, A flowchart language for quantum program-

ming, IEEE Transactions on Software Engineering 37(2011) 466-485.

	Introduction
	Quantum Arrays
	Quantum types
	Quantum variables

	A Quantum Circuit Description Language
	Syntax
	Operational semantics
	Illustrative Examples

	Quantum Circuits Defined with Classical Variables
	Syntax
	Operational semantics
	Local variables

	Quantum recursive programs without parameters
	Syntax
	Operational semantics
	Illustrative Examples
	Controlled unitary transformations
	Quantum Fourier transforms

	Quantum recursive programs with parameters
	Syntax
	Operational semantics
	Illustrative examples
	Controlled unitary transformations revisited
	Quantum state preparation
	Quantum Random-Access Memory (QRAM)

	Conclusion
	References

