
Information Sciences 661 (2024) 120186

Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Efficient multi-objective neural architecture search framework via

policy gradient algorithm

Bo Lyu a, Yin Yang b, Yuting Cao b, Pengcheng Wang a, Jian Zhu a,d, Jingfei Chang a,
Shiping Wen c,∗

a Zhejiang Lab, Hangzhou, Zhejiang, China
b College of Science and Technology, Hamad Bin Khalifa University, Doha 5855, Qatar
c Australian AI Institute, Faculty of Engineering and Information Technology, University of Technology Sydney, NSW 2007, Australia
d University of Science and Technology of China, Hefei, Anhui, China

A R T I C L E I N F O A B S T R A C T

Keywords:

Neural architecture search

Reinforcement learning

Non-differentiable

Supernetwork

Differentiable architecture search plays a prominent role in Neural Architecture Search (NAS)
and exhibits preferable efficiency than traditional heuristic NAS methods, including those based
on evolutionary algorithms (EA) and reinforcement learning (RL). However, differentiable NAS
methods encounter challenges when dealing with non-differentiable objectives like energy
efficiency, resource constraints, and other non-differentiable metrics, especially under multi-

objective search scenarios. While the multi-objective NAS research addresses these challenges, the
individual training required for each candidate architecture demands significant computational
resources. To bridge this gap, this work combines the efficiency of the differentiable NAS with
metrics compatibility in multi-objective NAS. The architectures are discretely sampled by the
architecture parameter 𝛼 within the differentiable NAS framework, and 𝛼 are directly optimised
by the policy gradient algorithm. This approach eliminates the need for a sampling controller to
be learned and enables the encompassment of non-differentiable metrics. We provide an efficient
NAS framework that can be readily customized to address real-world multi-objective NAS (MNAS)
scenarios, encompassing factors such as resource limitations and platform specialization. Notably,
compared with other multi-objective NAS methods, our NAS framework effectively decreases
the computational burden (accounting for just 1/6 of the NSGA-Net). This search framework
is also compatible with the other efficiency and performance improvement strategies under the
differentiable NAS framework.

1. Introduction

Neural Architecture Search (NAS) aims to mitigate the laborious process of manually tuning neural network architectures, thus
contributing to the advancement of AutoML [1–3]. Neural architecture search has demonstrated significant efficacy not only in the
architectures of networks such as CNNs, RNNs, and Transformers but has also exhibited favourable performance in networks like

* Corresponding author.

E-mail addresses: bo.lyu@zhejianglab.com (B. Lyu), yyang@hbku.edu.qa (Y. Yang), ycao@hbku.edu.qa (Y. Cao), wangpengcheng@zhejianglab.com (P. Wang),
Available online 26 January 2024
0020-0255/© 2024 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

qijian.zhu@zhejianglab.com (J. Zhu), cjf_chang@zhejianglab.com (J. Chang), shiping.wen@uts.edu.au (S. Wen).

https://doi.org/10.1016/j.ins.2024.120186

Received 10 July 2023; Received in revised form 5 January 2024; Accepted 18 January 2024

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ins
mailto:bo.lyu@zhejianglab.com
mailto:yyang@hbku.edu.qa
mailto:ycao@hbku.edu.qa
mailto:wangpengcheng@zhejianglab.com
mailto:qijian.zhu@zhejianglab.com
mailto:cjf_chang@zhejianglab.com
mailto:shiping.wen@uts.edu.au
https://doi.org/10.1016/j.ins.2024.120186
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ins.2024.120186&domain=pdf
https://doi.org/10.1016/j.ins.2024.120186
http://creativecommons.org/licenses/by/4.0/

Information Sciences 661 (2024) 120186B. Lyu, Y. Yang, Y. Cao et al.

GNNs [4,5] and SNNs [6]. The Reinforcement Learning (RL) based NAS method [7] utilizes the controller to sequentially sample
the candidate architectures and validate the corresponding performance, which serves as the reward of the RL framework. These
approaches incur substantial computational overhead in terms of resource and time costs, making it challenging for ordinary research
institutes and common commercial organizations (e.g., 20,000 GPU-days in [7] and 2,000 in [8]). To address this efficiency issue,
subsequent studies aim to enhance the search procedure, such as the ENAS framework [9]. With the advent of differentiable NAS,
as introduced by Liu et al. [10], which boasts enhanced efficiency, the focus of research has gradually shifted away from RL-

based NAS approaches. Differentiable NAS research makes significant progress by continuously relaxing the search space, resulting
in a differentiable loss w.r.t architecture parameters. This enables direct search through gradient-based optimization. The weight-

sharing approach, facilitated by the unified differentiable supernetwork [11], eliminates the need for training candidate architectures
individually from scratch, leading to substantial time and computational savings. Despite its high search efficiency, differentiable
NAS research often overlooks non-differentiable objectives – those without differentiable proxy loss functions for direct optimization
– such as energy, latency, and memory consumption. These objectives are crucial in resource-aware NAS and Multi-objective NAS
(MNAS) scenarios and should be jointly considered.

Alongside the remarkable advancements in the differentiable NAS sub-field, there has been a parallel growth in multi-objective
NAS methods (such as MnasNet [12], DPP-Net [13], MONAS [14], Pareto-NASH [15], [16], [17]). These methods focus on exploring
neural architectures within discrete search spaces while considering multiple metrics, both differentiable and non-differentiable.
These MNAS methods heavily rely on heuristic search strategies to enable the flexible customization of reward functions, resulting
in significant computational overhead.

Our method builds upon the differentiable NAS framework, in which the candidate operations are progressively eliminated after
each search stage, based on the architecture parameters. Simultaneously, we address the “depth gap” [18] by gradually increasing
the model’s depth. A key distinction is the detachment of the architecture parameter 𝛼 from the differentiable framework. Instead,
we sample architectures by the probability distribution of 𝛼, thereby eliminating the necessity of a sampling controller. Conse-

quently, we can directly optimize 𝛼 using a policy gradient algorithm. In sum, our framework zeroes in on a holistic exploration of
the architectural space, seamlessly melding both non-differentiable and differentiable metrics. This integrative strategy harmonizes
the strengths of differentiable neural architecture search (NAS) with the versatility of multi-objective NAS approaches, yielding a
synergistic confluence of methodologies.

Our contributions may be summarized as follows:

(1) This approach facilitates the incorporation of non-differentiable objectives into a differentiable search framework, synergizing
the efficiency of differentiable NAS with compatibility for the objectives of multi-objective NAS.

(2) Our search framework comprehensively tackles challenges associated with the “optimization gap” [19] 1, the “depth gap”, and
GPU memory consumption.

(3) This framework can be seamlessly integrated with scalability into the recently proposed search and evaluation strategies within
the differentiable NAS framework.

Considering the objectives of “Parameters” and “Accuracy”, our framework successfully generates high-performance and com-

pact architectures that also exhibit remarkable transferability. We showcase the effectiveness of our approach by achieving promis-

ing and compact architectures on CIFAR-10 (1.09M/3.3%, 2.4M/2.95%, 9.57M/2.54%) and CIFAR-100 (2.46M/18.3%,
5.46M/16.73%, 12.88M/15.20%), considering two metrics: Parameters and Test Error. Furthermore, we showcase the
transferability of the searched architectures on ImageNet, achieving a performance of 4.21M/24.8% and 5.23M/24.5%. In com-

parison to other multi-objective NAS methods, our approach remarkably diminishes the search cost, achieving completion within a
mere 1.3 GPU-days, which is only 1/6 of the resources required by NSGA-Net.

2. Related work

Individual heuristic NAS. Traditional methods for architecture search typically utilize Evolutionary Algorithms (EA) as the
search strategy [20,17,21–24]. These approaches involve mutating high-performing network architectures while discarding less
promising ones. In recent years, significant success has been reported in RL-based NAS methods on datasets like CIFAR-10 and PTB
[7,8]. These methods demand extensive computational resources, posing an efficiency challenge. To address this issue, ENAS [9]

improves the search efficiency by introducing a weight-sharing strategy, building upon the previous works [7,8]. Some research
endeavours, grounded in specific search spaces and tasks, have delved into architecture encoding approach and landscape analy-

sis, showcasing that straightforward Local Search [25] methods and Bayesian Optimization [26] methods can achieve favourable
outcomes in NAS tasks. Moreover, a recent study [27] has shown that utilizing GPT-4 as an optimizer, having it provide configura-

tion recommendations for candidate architectures, and encoding the validation accuracy of these architectures as prompts to be fed
back into GPT-4 enables an iterative interactive process for network architecture search. Overall, the heuristic NAS methods explore
architectures within a discrete domain and generally rely on the individual architecture evaluation, which raises concerns about
efficiency.

1 Directly sampling a sub-architecture, where weights are inherited from the overarching super-network, may not yield a precise proxy performance evaluation on
the validation set. This disparity stems from the weight-sharing training approach, which primarily focuses on optimizing the super-network as a whole, rather than
2

honing in on the nuances and performance of individual sub-networks.

Information Sciences 661 (2024) 120186B. Lyu, Y. Yang, Y. Cao et al.

Differentiable NAS. By leveraging the concept of continuously relaxing the search space, the DARTS method [10] establishes
the supernetwork that encompasses all candidate operations. This approach formulates the architecture search task as learning
architecture parameters, resulting in significantly improved search efficiency. DARTS and its subsequent works face the challenge of
high GPU-memory overhead [28] and the “depth gap” issue [18]. Additionally, differentiable NAS frameworks do not consider the
non-differentiable metrics such as FLOPs (floating-point operations) and Latency, as these metrics differ from Accuracy, which is
optimized using the differentiable cross-entropy function [19]. ProxylessNAS [29] takes advantage of the regularity of pre-defined
chain-style structures. It approximately calculates the expectation value of the inference latency of each chain-style layer, aggregates
the expectation values and formulates it as a regularization term, which allows the Latency metric to be differentiable. However,
ProxylessNAS is not applicable for the non-chain-style backbones, as the Latency expectation cannot be calculated using linear
transformation functions.

Multi-objective NAS and Platform-aware NAS. Multi-objective NAS methods, such as MnasNet [12] and MONAS [14], focus
on searching for architectures while considering multiple evaluation metrics. These studies incorporate various model resource con-

sumption factors, including Parameters, FLOPs, Latency, and Energy, to formulate reward-penalty coefficients for Accuracy

[30,16]. Resorting to single-policy multi-objective reinforcement learning algorithms, these methods facilitate the identification of
candidate architectures that strike a balance among these conflicting metrics. DPP-Net [13] introduces progressive search methods
that incorporate device-aware characteristics, such as Quality of Service (QoS) and hardware resource requirements (e.g., mem-

ory size), which are crucial metrics for deploying deep neural networks. Moreover, it considers different target platforms, such as
workstations, mobile devices, and embedded systems. Multi-objective evolutionary algorithms based on decomposition and Pareto
non-dominated sorting exhibit outstanding performance in multi-objective optimization problems [31]. In LEMONADE [32], the
evolutionary algorithm is introduced to tackle multi-objective NAS, resulting in promising Pareto-optimal performance on CIFAR-10.
These methods for multi-objective NAS heavily depend on reinforcement learning or evolutionary algorithms, which suffer from
drawbacks in terms of search efficiency. For instance, LEMONADE [32] demands a significant computational cost of 80 GPU-days.

One-shot NAS. One-shot NAS research, exemplified by SMASH [11] and SPOS [33], involves constructing a unified supernetwork,
from which the sub-architectures are heuristically sampled, and evaluated with the shared weights inherited from the supernetwork.
Prior to sampling, the supernetwork is uniformly trained without bias towards specific sub-architectures. As discussed in [19],
this approach gives rise to the “optimization gap”, indicating that a well-optimized supernetwork may not necessarily yield well-

performing sub-architectures.

3. Methodology

3.1. Preliminary

In the context of differentiable NAS, the mixed-edge operations 𝑜̄ at a specific location (𝑖, 𝑗) in the directed acyclic graph (DAG)
cell is constructed by all primitive operations (𝑜) in candidate operation set , following Eq. (1):

𝑜̄(𝑖,𝑗)(𝑥) =
∑

𝑜∈
exp

(
𝛼
(𝑖,𝑗)
𝑜

)
∑
𝑜′∈ exp

(
𝛼
(𝑖,𝑗)
𝑜′

) 𝑜(𝑥) (1)

where the 𝛼 denotes the architecture parameters and 𝑥 denotes the input feature map. Through this construction methodology, the
discrete architectural parameter space is effectively rendered continuous. The architecture search process is formulated to address
the bi-level optimization problem, as Eq. (2):

min
𝛼

𝑣𝑎𝑙 (𝑤∗(𝛼), 𝛼)
𝑠.𝑡. 𝑤∗(𝛼) = argmin

𝑤

𝑡𝑟𝑎𝑖𝑛(𝑤,𝛼)
(2)

where lower-level optimization targets the 𝑤 variable, based on the training dataset (𝑡𝑟𝑎𝑖𝑛), while the upper-level optimization
targets the 𝛼 variable, based on the validation dataset (𝑣𝑎𝑙), respectively. To address this bi-level optimization problem, DARTS
employs alternate optimization to approximately reach the solution.

3.2. Search strategy

Our framework is built upon the foundation of differentiable NAS, as depicted in Fig. 1. Distinctively, our method treats archi-

tectural parameters as a sampling policy rather than optimizing them differentially. These parameters are optimized using a policy
gradient algorithm in discrete space, following a non-differentiable path, as highlighted in blue. On the other hand, the weight pa-

rameters 𝑤 are optimized following the differentiable route (indicated in red). Our evaluation acceleration strategy is built upon the
weight-sharing differentiable NAS framework, where the sampled sub-architectures inherit the weights of the supernetwork.

3.2.1. Training of supernetwork weights

The training of weight parameters 𝑤 is accomplished by gradient descent, following Eq. (3):

∗

3

𝑤 (𝛼) = argmin
𝑤

𝑡𝑟𝑎𝑖𝑛(𝑤,𝛼) (3)

Information Sciences 661 (2024) 120186B. Lyu, Y. Yang, Y. Cao et al.

Fig. 1. The overall diagram of our multi-objective NAS framework. The directed acyclic graph (DAG) represents the Normal/Reduction Cell, which is char-

acterized by the parameter variables (𝑤, 𝛼). To handle non-differentiable optimization objectives, the architecture evaluation is decoupled from the differentiable
framework. The red propagation route, denoted by “D”, indicates that the propagation is differentiable w.r.t (𝑤, 𝛼). Conversely, the “blue” propagation route, marked
by “ND”, signifies that the propagation is non-differentiable w.r.t 𝛼.

where 𝑤∗ denotes the stage-wise optimization result of the current super-network’s weight parameters, constrained by the fixed
architecture parameter 𝛼.

3.2.2. Sampling sub-networks by architecture parameters

Regarding architecture sampling, for every mixed-edge index (𝑖, 𝑗), the probability 𝑝(𝑖,𝑗) is computed according to the correspond-

ing 𝛼(𝑖,𝑗), as Eq. (4):

𝑝(𝑖,𝑗) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝛼(𝑖,𝑗)) (4)

Subsequently, sampling by a multinomial distribution of probability vector 𝑝(𝑖,𝑗) to generate the vector 𝑔(𝑖,𝑗), as Eq. (5):

𝑔(𝑖,𝑗) ∼𝑀𝑢𝑙𝑡𝑖(𝑝(𝑖,𝑗),1) (5)

where the 𝑀𝑢𝑙𝑡𝑖 denotes the sampling function based on the multinomial distribution. The sub-networks () are organized by
sampled 𝑔, as Eq. (6):

 =(𝑔) (6)

where  represents the differentiable supernetwork organized by stacking Normal and Reduction cells in the form of DAG (as
depicted in Fig. 1), which are composed using mixed-edges as described by Eq. (1).

3.2.3. Optimize architecture parameters by policy gradient algorithm

The architecture search task is to optimize the architecture parameters 𝛼 to achieve the optimal reward 𝑅, following Eq. (7):

max
𝛼

𝑣𝑎𝑙(𝑤∗, 𝛼) = max
𝛼

𝔼𝑔∼𝛼[𝑅𝑣𝑎𝑙(𝑤∗,𝑔)] (7)

where  denotes the expected reward from the sampled candidate architectures, which depends on the current architecture param-

eters 𝛼. Since the forward propagation path w.r.t 𝛼 is non-differentiable, we adopt the policy gradient algorithm as an intuitive
approach to estimate the gradient value.

In terms of the policy gradient algorithm, considering the policy function 𝜋𝜙(𝑎 ∣ 𝑠) is differentiable w.r.t the policy parameter 𝜙.
The objective function  is a function dependent on parameter 𝜙, denoted as (𝜙). Let 𝜏 represent a trajectory sampled by the policy
parameterized by 𝜙, denoted as 𝑝𝜙(𝜏). The derivative of (𝜙) w.r.t the policy parameter 𝜙 can be achieved as Eq. (8):

(𝜙)
𝜕𝜙

= 𝜕

𝜕𝜙 ∫ 𝑝𝜙(𝜏)𝐺(𝜏)d𝜏

= ∫
(

𝜕

𝜕𝜙
𝑝𝜙(𝜏)

)
𝐺(𝜏)d𝜏

(
1 𝜕

)

4

= ∫ 𝑝𝜙(𝜏)
𝑝𝜙(𝜏) 𝜕𝜙

𝑝𝜙(𝜏) 𝐺(𝜏)d𝜏 (8)

Information Sciences 661 (2024) 120186B. Lyu, Y. Yang, Y. Cao et al.

Table 1

Notation in RL and the corresponding notation in this work.

RL Notations Notations in our NAS framework

State (𝑠) Supernetwork (with weights 𝑤) and the target task

Reward (𝑟) The evaluation metrics of the sampled architecture

Policy (𝜋) The distribution of architecture parameters 𝛼

Action (𝑎) Sampling the indices that represent the candidate architecture

= ∫ 𝑝𝜙(𝜏)
(

𝜕

𝜕𝜙
log𝑝𝜙(𝜏)

)
𝐺(𝜏)d𝜏

= 𝔼𝜏∼𝑝𝜙(𝜏)
[
𝜕

𝜕𝜙
log𝑝𝜙(𝜏)𝐺(𝜏)

]

where 𝜕

𝜕𝜙
log𝑝𝜙(𝜏) represents the partial derivative of the function log𝑝𝜙(𝜏) w.r.t 𝜙, and 𝐺(𝜏) denotes the cumulative discounted re-

ward of trajectory 𝜏 . The optimization direction is to increase the sampling probability 𝑝𝜙(𝜏) for trajectories 𝜏 with higher cumulative
discounted reward 𝐺(𝜏). From the perspective of reinforcement learning, the probability function 𝑝𝜙(𝜏) for the sampled trajectory
𝜏 w.r.t the policy parameter 𝜙 is defined as 𝑝𝜙(𝜏) = 𝑝

(
𝑠0
)∏𝑇−1

𝑡=0 𝜋
(
𝑎𝑡 ∣ 𝑠𝑡

)
𝑝
(
𝑠𝑡+1 ∣ 𝑠𝑡, 𝑎𝑡

)
. In the context of NAS, this probability

function is defined as the policy function, as Eq. (9):

𝑝𝜙(𝜏) ∶= 𝜋𝛼() (9)

The cumulative discounted reward is defined as:

𝐺(𝜏) ∶=𝑅𝑣𝑎𝑙(𝑤∗()) (10)

Hence, the gradient calculation for the optimization function w.r.t 𝛼 can be expressed as Eq. (11):

∇𝛼𝑣𝑎𝑙(𝛼) = 𝔼∼𝜋𝛼 ()[𝑅𝑣𝑎𝑙(𝑤∗(),)∇𝛼 log(𝜋𝛼())] (11)

We employ the classical REINFORCE [34] algorithm, which approximates the expectation using Monte-Carlo sampling, as Eq. (12):

∇𝛼𝑣𝑎𝑙(𝛼) ≈
1
𝑀

𝑀∑
𝑚=1

[𝑅𝑣𝑎𝑙(𝑤∗(𝑚),𝑚))∇𝛼 log(𝜋𝛼(𝑚)] (12)

where 𝑀 is the sampling number for a single policy gradient iteration. We empirically adopt the REINFORCE algorithm with baseline
[34], in which the baseline 𝑏 is calculated as the moving average value of the sampled sub-architectures, by which means to reduce
the variance and provide an unbiased estimation of the gradient, as Eq. (13):

∇𝛼𝑣𝑎𝑙(𝛼) ≈
1
𝑀

𝑀∑
𝑚=1

[𝑅𝑣𝑎𝑙(𝑤∗(𝑚),𝑚) − 𝑏)∇𝛼 log(𝜋𝛼(𝑚)] (13)

The baseline function is utilized to reduce the variance to reach the unbiased estimation of the gradient, in which 𝑏 is the moving
average of the previous architecture rewards. As aforementioned, we utilize multinomial sampling to strike a balance of exploitation-

and-exploration, preventing the early dominance of a single operation branch.

Comparatively, we establish the relationship between the notation employed in our NAS framework and the concepts in rein-

forcement learning, as presented in Table 1.

3.2.4. Architecture reward design

Undoubtedly, when evaluating performance, the widely utilized metric, Accuracy, is frequently employed as a direct reward.
Nevertheless, in the realm of multi-objective scenarios, it is crucial to meticulously devise the reward function according to real-

world demands. For example, in situations with constrained resources, there exists a trade-off between the device-agnostic and
device-related metrics. Inspired by Mnasnet [12], to shape the reward, we consider Accuracy and Parameters as the evaluation
metrics. We have the reward linear w.r.t Accuracy while maintaining a non-linear relationship w.r.t Parameters. This non-linear
relationship is achieved by incorporating a reward-penalty factor into a scalarization function, as described in Eq. (14):

𝑅 =𝐴𝑐𝑐 ⋅ (𝑃𝑎𝑟𝑎𝑚𝑠
𝑃

)𝛽 (14)

where 𝑃 is the reward-penalty reference and 𝛽 is the reward-penalty coefficient, both of which rely on empirically experimental
tuning. Fig. 2 illustrates the reward function surface, showcasing the cross-sectional curves for specific metrics and their correspond-

ing projection curves. The integration of non-differentiable metrics into the search process can be seamlessly achieved through the
scalarization function 𝑓 , which converts the reward vector into a scalar value, namely single-policy Multi-Objective Reinforcement
Learning (MORL) [35]. In a multi-objective optimization scenario, the scalarization function can be customized based on specific re-

quirements. For instance, considering objectives such as Accuracy, Parameters, and Latency, Eq. (15) demonstrates one possible
5

formulation of the scalarization function:

Information Sciences 661 (2024) 120186B. Lyu, Y. Yang, Y. Cao et al.

Fig. 2. The reward function surface described by Eq. (14). The spatial curves and their corresponding projection lines under specific Parameters and Accuracy

(maintaining consistency) are displayed. The dashed lines (𝐴′∕𝐵′∕𝐶 ′∕𝐷′) indicate the projection of the spatial curves, which following the equations “𝐴”: 0.52 ∗
(𝑃𝑎𝑟𝑎𝑚𝑠∕3.5)−0.45 , “𝐵”: 0.37 ∗ (𝑃𝑎𝑟𝑎𝑚𝑠∕3.5)−0.45 , “𝐶”: 𝐴𝑐𝑐 ∗ (2.5∕3.5)−0.45 , “𝐷”: 𝐴𝑐𝑐 ∗ (𝑃𝑎𝑟𝑎𝑚𝑠∕3.5)−0.45 , respectively.

Fig. 3. The schematic diagram of the progressive search framework. ①: The schematic diagram of network macro-architecture, which is constructed by stacked

Normal cell and Reduction cell, The stacked Normal cell and Reduction cell are parameterized by 𝐷 (stacked number), Channel number, 𝑁𝑜𝑟𝑚𝑎𝑙 (operation set
number of Normal cell), 𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛 (operation set number of Reduction cell), as listed in diagram ②; ②: The configuration parameters evolve during the different
search stages and the scale of the operation set. The evolving rule conforms to diagram ③; ③: After each search stage, candidate operations corresponding to the edges
with lagging architecture parameters at position (𝑖, 𝑗) will be removed from the candidate operation set 𝑖,𝑗 that for constructing the super network in the subsequent
stage. In the details shown of 𝛼 vector, the “Remove” indicates that the edges are dominated by others, and are to be removed.

𝑅 =𝐴𝑐𝑐 ⋅ [𝑎 ⋅ (𝑃𝑎𝑟𝑎𝑚𝑠
𝑃

)𝛽 + 𝑐 ⋅ (𝐿𝑎𝑡𝑒𝑛𝑐𝑦
𝐿

)𝛾] (15)

where the reference for Parameters and Latency is denoted by 𝑃 and 𝐿 respectively. The reward-penalty coefficients, denoted as
𝛽 and 𝛾 , are accompanied by the weight coefficients 𝑎 and 𝑐, satisfying the constraint 𝑎 + 𝑐 = 1.

3.2.5. Progressively deriving the architecture

In conventional differentiable NAS procedures, as the search progresses, the persistently outdated mixed-edge connections within
each cell (Normal cell/Reduction cell) not only incur ongoing memory overhead but also introduce the “optimization gap” issue.
Following P-DARTS, we adopt the strategy of progressively reducing the searched architecture through the combination of “search
space approximation and regularization”, as shown in Fig. 3. The reduction of the candidate operation set is achieved by Eq. (16):

(𝑖,𝑗)
𝑘+1 =(𝑖,𝑗)

𝑘
⊖(𝑖,𝑗)

𝑘
(𝑎𝑟𝑔𝑚𝑖𝑛(𝑝(𝑖,𝑗), 𝑛𝑘))) (16)

where 𝑛𝑘 represents the reduced number of candidate operation sets, 𝑘 denotes the stage with 𝑘 ≥ 0, and the operator ⊖ represents
the scale reduction. Conversely, the total number of network layers is increased using Eq. (17):

𝐿𝑘+1 =𝐿𝑘 + 𝑙𝑘+1 (17)
6

Our search framework is outlined in Algorithm 1. The algorithm begins with initializing the operations 𝑜̄(𝑖,𝑗)
𝑘

for each edge (𝑖, 𝑗)

Information Sciences 661 (2024) 120186B. Lyu, Y. Yang, Y. Cao et al.

Table 2

Designs of our search frameworks and the corresponding motivations.

Our framework Design Motivation

Evaluation

strategy

Weight-sharing differentiable

supernetwork

Weight inheritance for evaluation

acceleration, without individual

training from scratch

Search

strategy

Policy
Architecture parameters

𝛼

Directly optimize policy (without

controller, relatively low

dimensional)

Sampling
Multinominal sampling by

probabilistic distribution 𝛼

Balance exploitation and

exploration

Optimization
Optimizing 𝛼 by

policy-gradient algorithm

Customize reward function

flexibly, compatible with

non-differentiable objectives

and multi-objectives

Search space

Progressively shrinking the

operation set

Progressively shrinking the

search space, GPU-memory

friendly

Progressively

increasing the depth
Targets “depth gap”

Algorithm 1: Our search framework.

Input: Candidate operation set , Cell (DAG) stage number, search stage number 𝑆 , Layer number of the supernetwork of each stage 𝐷[0], 𝐷[1], ⋯ , 𝐷[𝑆−1],
Epoch number of each search stage 𝐸[0], 𝐸[1], ⋯ , 𝐸[𝑆 − 1], Training interval of policy gradient 𝐼𝑁𝑇𝐸𝑅𝑉 𝐴𝐿, Pre-training epoch number 𝑒𝑘 ;

Output: The optimal architecture;

1 for 𝑘 = 0 → 𝑠𝑡𝑎𝑔𝑒_𝑛𝑢𝑚 − 1 do

2 Init 𝑜̄
(𝑖,𝑗)
𝑘

∈(𝑖,𝑗)
𝑘

parameterized by 𝛼(𝑖,𝑗)
𝑘

for edge (𝑖, 𝑗);
3 Init the supernetwork with 𝑜̄(𝑖,𝑗)

𝑘
and 𝐿𝑘 ;

4 for 𝑒 = 0 →𝐸[𝑘] − 1 do

5 for 𝑠 = 0 →𝐵𝑎𝑡𝑐ℎ𝑁𝑢𝑚 do

6 if e >𝑒𝑘 and step % INTERVAL == 0 then

7 Update architecture parameters 𝛼 by Eq. (11)

8 end

9 Update weights parameters 𝑤 by Eq. (3)

10 end

11 end

12 Shrinking each 𝑖,𝑗

𝑘
by Eq. (16);

13 Increase layer number 𝐿𝑘 by Eq. (17);

14 end

15 Deriving the final architecture.

based on the candidate operation set . These operations are parameterized by 𝛼(𝑖,𝑗)
𝑘

. Simultaneously, a supernetwork is created
using these candidate operations, with its layer count set to 𝐿𝑘. The supernetwork undergoes pre-training over a predefined number
of epochs 𝐸[𝑘], with only the weight parameters 𝑤 updated based on a defined loss function, as Eq. (3). After the pre-training, the
policy gradient optimization (Eq. (11)) is additionally employed to strategically update architecture parameters 𝛼. After each search
stage, the algorithm applies Eq. (16) to reduce the candidate operation set 𝑖,𝑗

𝑘
, while the layer count 𝐿𝑘 is augmented as Eq. (17).

After the final search stage, the algorithm derives the optimal architecture based on the convergent architecture parameters 𝛼.

For clarity, we provide a concise summary of the design choices and their corresponding motivations in Table 2, focusing on three
key aspects: evaluation strategy, search strategy, and search space. Specifically, regarding the search strategy, we further analyze it
from three distinct perspectives: sampling policy, sampling operation, and optimization policy.

4. Comparison with related works

The underlying assumption for individual heuristic NAS methods, whether based on reinforcement learning (RL) or evolutionary
algorithms (EA), is the “performance ranking hypothesis” [38]. This hypothesis suggests that the relative performance of candidate
architectures can be effectively determined on proxy-tasks for a reduced number of training epochs. However, for the individual
heuristic NAS methods, the drawback lies in the individual training architectures from scratch that cause a significant computational
burden. While DARTS successfully addresses the time-consuming search problem, it introduces new challenges regarding GPU-

memory cost and the issue of the “depth gap”. To mitigate these issues, P-DARTS adopts the progressive search strategy, nevertheless,
several concerns still need to be addressed:
7

(1) It lacks end-to-end optimization, exemplified by the following designs:

Information Sciences 661 (2024) 120186B. Lyu, Y. Yang, Y. Cao et al.

Table 3

Relationship with other search strategies and evaluation methods in community.

Method Evaluation Strategy Search Strategy

Individual search

[7,12]

Individual training of sampled

architecture (proxy task)

Heuristic search:

(1) RL-based: sampling with

controller, of which the

parameters as the

policy to be optimized

(2) Population-based, e.g., EA

One-shot NAS

[9,11]
Weight-sharing supernetwork

Heuristic search:

(1) RL-based: sampling with

controller, of which the

parameters as the policy

to be optimized

(2) Population-based, e.g., EA.

Differentiable NAS

[10,36,37]

Weight-sharing differentiable

supernetwork

Differentiable optimization of 𝛼

by gradient descent

Ours
Weight-sharing differentiable

supernetwork

Sampling architectures by

probability distribution of 𝛼,

which is the policy to

be optimized

Table 4

Characteristics comparison with the state-of-the-art MNAS methods.

Method
Differentiable

metrics

Non-differentiable

metrics

Low

GPU-memory

Low time

cost

NASNet ✔ ✗ ✔ ✗

MnasNet ✔ ✔ ✗ ✗

DARTS ✔ ✗ ✗ ✔

FBNet ✔ ✗ ✔ ✗

ProxylessNAS ✔ ✗ ✗ ✔

P-DARTS ✔ ✗ ✔ ✔

Ours ✔ ✔ ✔ ✔

(a) The searched architecture undergoes processing with one initial channel setting, but its evaluation is conducted with a
different setting.

(b) The restriction on “skip-connect” operation is applied in the final search stage.

(c) When deriving the final architecture, the indegree of a node is strictly limited to 2. It inevitably results in the “architecture
inconsistency gap”.

(2) The P-DARTS framework is incapable of non-differentiable evaluation metrics such as Parameters and FLOPs.

As stated, the method in ProxylessNAS [29] is restricted by a predefined backbone structure, and is not applicable to non-chain-style
search spaces like DARTS-like methods, NAS-RL, and NASNet [19]. The Once-for-all (OFA) method [39] introduces the concept
of “progressive shrinking training” for the MobileNetV3-based supernetwork. This training approach enables both large-scale and
small-scale sub-networks sampled from the supernetwork to achieve satisfactory performance while meeting specific resource con-

straints. As a result, the training of the supernetwork (without relaxation) and the search process are conducted independently in
different stages. Notably, the “progressive shrinking training” in OFA is computationally intensive, requiring substantial time and
resource cost, such as 1,200 GPU hours across 32 V100 GPUs. Our approach directly treats the architecture parameter 𝛼 as
the heuristic optimization variable under the relaxed formulation of the search space. Thus, compared with EA-based NAS method,
this eliminates the need for the complex design of architecture encoding schemes (e.g., connection encoding, operation encoding)
and crossover/mutation operators. Additionally, our design allows for the integration of strategies proposed in recent differentiable
NAS works, such as “search space approximation” [18] to address the “depth gap” issue or the “partially-connected channel” [28]

strategy for efficient GPU-memory utilization during the search process.

The comparison and interplay between this study, individual search, one-shot search, and differentiable NAS have been sys-

tematically summarized in Table 3. This summary emphasizes the evaluation metrics and search strategies employed, deliberately
excluding the dimension of search space for focused analysis. The evaluation strategy of this work is rooted in differentiable NAS, but
it incorporates a unique design in its search strategy. Further, we compare our method with other classic NAS techniques from the
perspectives of search objectives and strategy properties. A detailed comparison can be found in Table 4. This comparative analysis
provides valuable insights into the similarities and distinctions among these methods, shedding light on their respective strengths
8

and limitations.

Information Sciences 661 (2024) 120186B. Lyu, Y. Yang, Y. Cao et al.

Table 5

Hyper-parameters setting of architecture search.

Initial channels 16 Layers 5,12,20 †

Pretrain epochs 10 Batch 128

Stage epochs 25 Reference of Parameters 4.4,3.2,1.8 †

LR decay cosine Penalty coefficient (C-10) -0.60,-0.60,-0.60 †

Reduced operation num 4,3,2† Penalty coefficient(C-100) -0.75,-0.85,-0.85 †

Optimizer (𝛼) Adam Optimizer (𝑤) SGD

† The configurations of the 3 stages of the progressive shrinking search.

5. Experiments

5.1. Datasets

We perform experiments on two widely used image classification datasets, namely CIFAR-10 and CIFAR-100. Each dataset com-

prises 50,000 images for training and 10,000 for testing, all of which are standardized to a spatial resolution of 32 ×32. Throughout
the search, we partition the training set into two equally-sized subsets: one for the lower-level optimization and the other for the
upper-level optimization. Upon completing the search process, apart from evaluating the discovered architectures, we additionally as-

sess their performance on ImageNet (ILSVRC2012). Following previous studies [10,18], we adhere to the mobile setting of ImageNet,
where the input images have dimensions of 224 × 224.

5.2. Search space

Regarding the predetermined backbone and search space, we adhere to the DARTS/P-DARTS methodology. When it comes to
the operations set, to better demonstrate the scalability of the search strategy and the capacity for model compression, we introduce
subtle modifications, outlined as follows:

(1) Normal Cell:

nonea) skip_connectb) sep_conv_3x3c)

sep_conv_5x5d) sep_conv_7x7e) dil_conv_3x3f)

dil_conv_5x5g) conv_1x1h) conv_3x3i)

conv_3x1_1x3j)

(2) Reduction Cell:

nonea) skip_connectb) max_pool_3x3c)

avg_pool_3x3d) max_pool_5x5e) max_pool_7x7f)

In our search space setting, the initial operation set scale of Normal cell (||𝑁
||) is 10, and the initial operation set scale of Reduction

cell (||𝑅
||) is 6. The search space scale is 1410 × 146 = 2 × 1018, where 14 represents the number of edges in the DAG. Specifically,

with 4 intermediate nodes, the edge number is calculated as 2 + 3 + 4 + 5 = 14.

5.3. Architecture search

5.3.1. Experimental setting

The search experiment is conducted with the PyTorch 1.4 framework on two NVIDIA 1080Ti GPUs. For clarity, we only
focus on the metrics of Accuracy and Parameters. The reward function is calculated as Eq. (14). The search hyperparameters are
outlined in Table 5.

5.3.2. Architecture search results

Within a specific search configuration, we conduct five iterations of experiments using different random seeds. Subsequently, we
select the optimal architecture for final evaluation based on the validation performance achieved through training from scratch over

100 epochs. The visualization of our searched model (CIFAR-10-S, employing a model compression configuration) is presented in
Fig. 4, with the Normal cell depicted in Fig. 4a, and the Reduction cell shown in Fig. 4b. The nodes in the visualization correspond
to the feature maps (FMs), while the edges represent the connections established through the searched operation.

Benefit from the end-to-end search, the searched Normal/Reduction cell architecture manifests in a more diverse manner.
There is no restriction on the indegree of a node, and the inclusion of “skip_connect” operations is not enforced. Edges are
9

only removed when the “none” operation is selected. This approach provides several benefits. From Fig. 4, we make several other

Information Sciences 661 (2024) 120186B. Lyu, Y. Yang, Y. Cao et al.

Fig. 4. The schematic illustration of the searched architecture (CIFAR-10-S). The Parameters is 1.09M with 16 initial channels. (a) Normal cell; (b) Reduction

cell.

Table 6

Hyper-parameters setting of architecture evaluation on
CIFAR-10 and CIFAR-100.

Layers 20 Initial channels 24

Epochs 600 Batch size 128

Optimizer SGD LR 0.025

LR scheduler cosine Weight decay 3e-4

Table 7

Hyper-parameters setting of architecture evaluation on Im-

ageNet.

Layers 14 Initial channels 36

Weight decay 3e-5 Batch 1024

Optimizer SGD Epochs 350

LR 0.1 LR scheduler linear

observations: First, the deep connections are preserved both in Normal cell and Reduction cell, e.g., from “c_{k-1}” and “c_{k-
2}” FMs to 3/4/5 FMs. Second, The “conv_1x1” operation is frequently selected, particularly during the early propagation stage
of the cell, e.g., applied on “c_{k-1}” and “c_{k-2}”. From our view, this primarily stems from the inherent compactness of

conv_1x1 within the Parameters, coupled with its exceptional ability to fuse the knowledge among the channels in the Feature
Maps (FMs). Third, the “max_pool_5x5” is frequently selected in the Reduction cell, for it is with a proper receptive field and is
also parameter-free.

5.4. Architecture evaluation

To determine the architecture for the final evaluation on CIFAR-10 dataset, we conduct the search framework across 5 runs.
Subsequently, we train the resulting five convergent architectures from scratch for a brief period of 100 epochs on the training
dataset to select the best one based on performance on the validation dataset. The best architecture is then trained from scratch five
times, each for 600 epochs, and we report the test error, expressed as both the mean and standard deviation, on the test dataset.

5.4.1. Architecture evaluation on CIFAR-10 and CIFAR-100

For architecture evaluation, we adhere to the experimental training setting of P-DARTS, as shown in Table 6. Table 8 compares
our approach with several state-of-the-art methods, encompassing both manually designed architectures and remarkable NAS ar-

chitectures. For the sake of fairness, we conduct the search experiment on the identical search space, aligned with P-DARTS, which
demonstrates that our models achieve comparable performance to P-DARTS. As an additional comparison, we also examined the scal-

ability of our method in the search spaces with an enhanced candidate operations set (including conv_3x3 and conv_3x1_1x3).
The search result includes an exceptionally compact architecture (S) with a test error of 3.3 ± 0.02% and 1.09M Parameters, a
moderate scale architecture (M) with a test error of 2.7 ± 0.05% and 3.2M Parameters, and a large scale architecture (L) with
a test error of 2.54 ± 0.03% and 9.57M Parameters. Further, our search experiment conducted on CIFAR-100 yields promising
results as well. We achieve a test error of 18.3 ± 0.03% with 2.46M Parameters for architecture S, 16.73 ± 0.06% test error with

5.46M Parameters for architecture M, and 15.2 ±0.07% test error with 12.88M Parameters for architecture L. Our search frame-

work achieves comparable performance to P-DARTS while offering a broader spectrum of model scales. This highlights the superior
versatility of our approach, particularly in the context of model compression functionality.

5.4.2. Architecture evaluation on ImageNet

To assess the transferability of the searched architecture, we directly transfer the searched Normal cell and Reduction cell to
10

the evaluation on ImageNet. Consistent with P-DARTS, the channel number is 36 and the layer number is 14. The architecture is

Information Sciences 661 (2024) 120186B. Lyu, Y. Yang, Y. Cao et al.

Table 8

Comparison of the evaluation results on CIFAR-10 and CIFAR-100.

Architecture
Test Err. (%) Params

(.M)

Search Cost

(GPU-days)

Search

MethodC-10 C-100

NASNet-A [8] 2.65 - 3.3 1800 RL

AmoebaNet-A [20] 3.34 - 3.2 3150 Evolution

PNAS [40] 3.41 - 3.2 225 SMBO

RelativeNAS [41] 2.34 15.86 3.93 0.4 Evolution

DARTS (first order) [10] 3 17.76 3.3 1.5 Gradient

SNAS + mild constraint [42] 2.98 - 2.9 1.5 Gradient

ProxylessNAS [29] 2.08 - 5.7 4 Gradient

P-DARTS† (C-10) [18] 2.5 16.55 3.4 0.3 Gradient

P-DARTS† (C-100) [18] 2.62 15.92 3.6 0.3 Gradient

P-DARTS† (C-10-Large) [18] 2.25 15.27 10.5 0.3 Gradient

P-DARTS† (C-100-Large) [18] 2.43 14.64 11 0.3 Gradient

Ours† (C-10) 2.47 ± 0.03 - 2.04 1.3⋆ RL

Ours† (C-100) 2.58 ± 0.05 - 3.43 1.3⋆ RL

Ours† (C-10-Large) - 15.3 ± 0.04 9.57 1.3⋆ RL

Ours† (C-100-Large) - 14.6 ± 0.03 10.5 1.3⋆ RL

Ours‡ (CIFAR-10-S) 3.3 ± 0.02 - 1.09 1.3⋆ RL

Ours‡ (CIFAR-10-M) 2.70 ± 0.05 - 3.2 1.3⋆ RL

Ours‡ (CIFAR-10-L) 2.54 ± 0.03 - 9.57 1.3⋆ RL

Ours‡ (CIFAR-100-S) - 18.3 ± 0.03 2.46 1.3⋆ RL

Ours‡ (CIFAR-100-M) - 16.73 ± 0.06 5.46 1.3⋆ RL

Ours‡ (CIFAR-100-L) - 15.20 ± 0.07 12.88 1.3⋆ RL

⋆ : The experiments were conducted on two NVIDIA 1080Ti GPUs, each with 11 GB memory, over a period
of 0.65 days.
† : The search is conducted on the original DARTS search space.
‡ : The search is conducted on modified DARTS search space for the evaluation of multi-objective search.

Table 9

Comparison of the evaluation results on ImageNet.

Architecture
Test Err.(%) Params

(.M)

Search Cost

(GPU-days)

Search

MethodTop-1 Top-5

NASNet-A [8] 26.0 8.4 5.3 1800 RL

AmoebaNet-A [20] 25.5 8.0 5.1 3150 Evolution

PNAS [40] 25.8 8.1 5.1 225 SMBO

MnasNet-A2 [12] 24.6 7.3 4.8 /† RL

DARTS (second order) [10] 26.7 8.7 4.7 4.0 Gradient

SNAS (mild constraint) [42] 27.3 9.2 4.3 1.5 Gradient

ProxylessNAS (GPU) [29] 24.9 7.5 7.1 8.3 Gradient

RelativeNAS [41] 24.88 7.7 5.05 0.4 Evolution

P-DARTS (CIFAR-10) [18] 24.4 7.4 4.9 0.3 Gradient

P-DARTS (CIFAR-100) [18] 24.7 7.5 5.1 0.3 Gradient

CIFAR-10-M 24.8 ± 0.07 7.5 ± 0.08 4.21 1.3 RL

CIFAR-100-M 24.5 ± 0.12 7.6 ± 0.18 5.23 1.3 RL

† MnasNet costs 4.5 days on 64 TPUv2.

trained from scratch five times, each for 600 epochs, and follows the training hyperparameters settings presented in Table 7. We
report the mean and standard deviation of test error on the test dataset, as shown in Table 9. Specifically, the models achieve a Top-1
test error of 24.8 ± 0.07% with 4.21M Parameters (CIFAR-10-M) and Top-1 test error of 24.5 ± 0.12% with 5.23M Parameters
(CIFAR-100-M).

5.5. Search cost comparison

In terms of search time cost, measured in GPU days, our method exhibits slightly higher time consumption compared to P-DARTS
(1.3 GPU days vs. 0.3 GPU days). This disparity arises from the fact that we separate the optimization process of the architecture
parameters 𝛼 from the weight parameters 𝑤, unlike P-DARTS, where both are unified within the gradient-based differentiable
framework. The additional time cost is incurred due to the sampling and independent evaluation of sub-architectures on the validation
set (which is the most time-consuming aspect while relying on the weight-sharing strategy), and the gradient calculation process
based on the policy gradient algorithm. This additional overhead is inevitable and justifiable, as it enables the search framework
to accommodate non-differentiable objectives and achieve multi-objective NAS. From another point, benefits from the evaluation
11

acceleration of differentiable supernetwork, our framework is significantly more efficient than multi-objective NAS methods based

Information Sciences 661 (2024) 120186B. Lyu, Y. Yang, Y. Cao et al.

Table 10

The search cost comparison with other multi-objective NAS methods.

Methods
Search

strategy

Search

dataset

Search cost

(GPU days)

Test Err. (%,Top-1)
Params(.M)

C10 ImageNet

MnasNet [12] RL ImageNet 288 (TPUv2) / 24.8 3.9

LEMONADE [32] EA C10 80 2.58/3.05 / 13.1/4.7

DPP-Net [13] SMBO C10 8 (1080Ti) 4.36 / 11.4

PARETO-NASH [15] EA C10 56 3.5 / 4

NSGA-Net [17] EA C10 8 (1080Ti) 3.85 / 3.3

RNSGA-Net [43] EA C10 3.11 3.89 / 3.00

ADF-L [44] RL C10 7.25 (P100) 2.76 / 3.94

MOEA-PS [45] EA C10 2.6 2.77 / 4.34

Ours RL C10 1.3 (1080Ti) 2.70† 24.8‡ 3.2†/4.21‡

†: The CIFAR-10-M architecture, layer number is 20, channel number is 24.

‡: Transferred architecture from CIFAR-10 to ImageNet, layer number is 14, and channel number is 36.

Fig. 5. The optimization effects on validation performance (𝐴𝑐𝑐) throughout the search process. Notably, both the historical best accuracy, denoted as 𝑚𝑎𝑥(𝐴𝑐𝑐((𝑔))),
and the current converged architecture’s performance denoted as 𝐴𝑐𝑐((𝑎𝑟𝑔𝑚𝑎𝑥(𝛼))), exhibit simultaneous improvement. Three stages of the search process: (a)

Stage 1; (b) Stage 2; (c) Stage 3.

on individual heuristic search (RL-based, EA-based). For clarity, we present a summary of the comparisons between our search cost
and the SOTA multi-objective NAS methods/framework in Table 10. Our method necessitates only 0.65 days of computation on

2 NVIDIA 1080Ti GPUs, each equipped with only 11GB memory. When compared to previous promising multi-objective NAS
methods, our approach demonstrates a substantial improvement in search resource cost, reducing it to 1.3 GPU-days, which is
just 1/6 of the cost incurred by NSGA-Net [17]. It is crucial to emphasize that the search cost, encompassing both search time and
memory cost, is influenced not only by the search strategy but also by factors such as the target dataset, proxy-task setting, and low-

fidelity evaluation. Hence, we also include the search settings and metrics in Table 10, including the search dataset, performance,
and model scale.

6. Ablation and diagnostic experiments

6.1. Effectiveness of search strategy

The effectiveness of the search algorithm is first validated in terms of a differentiable metric. We utilize validation Accu-
racy as the sole reward for reinforcement learning. Throughout the search process, we monitor two indicators at each stage. The
first indicator, denoted as 𝑚𝑎𝑥(𝐴𝑐𝑐((𝑔))), captures the maximum accuracy achieved by (𝑔) across the current search process,
where 𝑔(𝑖,𝑗) ∼𝑀𝑢𝑙𝑡𝑖(𝜋(𝑖,𝑗), 1). The second indicator represented as 𝐴𝑐𝑐((𝑎𝑟𝑔𝑚𝑎𝑥(𝛼))), measures the accuracy of (𝑎𝑟𝑔𝑚𝑎𝑥(𝛼)),
which represents the current converged architecture’s performance according to 𝛼. Fig. 5 exhibits a steady improvement in both
the two indicators. It demonstrates the algorithm’s effectiveness in successfully discovering architectures with outstanding precision
performance. We additionally delve into the search strategy’s capacity for recognizing non-differentiable metrics, specifically the

Parameters, by uniquely utilizing it as the exclusive reward criterion in the search process. Fig. 6 and Fig. 7 demonstrate that the
search algorithm tends to favour the “conv_3x3” operation to reach the higher Accuracy, with the final index converging towards
the “conv_3x3” operation.

We conduct further analysis on the influence of integrating performance and computational cost metrics into the search process.
Specifically, we compare the results of two penalty coefficients (0 and -0.25) while monitoring the Parameters and Accuracy.
As Fig. 8 shows, when using a penalty coefficient of 0, we observe a simultaneous increase in both Parameters and Accuracy, sug-

gesting that the enhancement in Accuracy is achieved at the expense of higher Parameters. When applying a penalty coefficient
of -0.25, the Parameters remain relatively stable while the Accuracy continues to improve.

6.2. Comparative analysis with P-DARTS method

We first present a comparative analysis between our method and P-DARTS for the original search space. These comparative exper-
12

iments are repeated 10 times, with the resulting curve delineating the mean values and the shaded region denoting the Interquartile

Information Sciences 661 (2024) 120186B. Lyu, Y. Yang, Y. Cao et al.

Fig. 6. The architecture search procedure of the maximization of the Parameters. The average Parameters keeps increasing. The Normal Cell, which determines
the Parameters, converging to the “conv_3x3” operation (indexed as 7). (a) The variation of the average Parameters across N sampled architectures; (b) The
records of the iteration indices of the Normal Cell operations; (c) The records of the iteration indices of the Reduction Cell operations.

Fig. 7. The architecture search process aims to minimize the Parameters. The average Parameters progressively decreases, as the Normal Cell architecture,
responsible for determining the Parameters, converges towards the “skip_connect” operation (indexed as 1) and the “None” operation (indexed as 0). (a) The
variation of the average Parameters across N sampled architectures; (b) The iteration indices of the Normal Cell operations; (c) The iteration indices of the

Reduction Cell operations.

Fig. 8. The reward is formulated with Parameters and Accuracy metrics by Eq. (14), showing the comparative effects under different reward-penalty coefficients.
The left y-axis of each sub-figure represents the Parameters, while the right y-axis represents the Top-1 validation accuracy. Three stages of the search process (a),
(b), (c): with a penalty coefficient of 0, the improvement of Accuracy is achieved by trading off Parameters; Three stages of the search process (d), (e), (f): with a
penalty coefficient of -0.25, the Parameters remains constant while the Accuracy continues to improve.

Range (IQR), providing a clear visual representation of variability, as Fig. 9 shows. Our experimental framework is conducted with
a penalty coefficient of −0.3 for Parameters. In contrast, the P-DARTS experiment is conducted without any restrictions on the
“skip_connect”, allowing for a comprehensive assessment of its model scale. Observations reveal a marginal increment in the
“Parameters” metric of the P-DARTS method during the first and second stages, followed by a slight decrement in the third stage.
This phenomenon is attributed to the frequent retention of the “skip_connect” operation, which is parameter-free, within the pro-

gressive search paradigm. In contrast, our methodology exhibits notable model compression capabilities in both the first and second
stages. Further, we conduct the comparative experiment on the modified DARTS search space, which includes the “conv_3x1_1x3”
and “conv_3x3” operations. As Fig. 10 shows, in terms of P-DARTS, there exists a pronounced and rapid increase in the Parame-
13

ters of the leading models. Consequently, when the channel number is set to 36, the resulting architecture achieves a Parameters

Information Sciences 661 (2024) 120186B. Lyu, Y. Yang, Y. Cao et al.

Fig. 9. The comparative experiments of our method versus P-DARTS in the original DARTS search space. The comparative experiments are conducted 10 times, with
the curve representing the mean values and the shaded area indicating the Interquartile Range (IQR). Our framework is conducted with a Parameters penalty
coefficient of -0.3, and the P-DARTS experiment is with no restriction of skip_connect. Three stages of the search process: (a) Stage 0; (b) Stage 1; (c) Stage
2.

Fig. 10. The comparative experiments of our method versus P-DARTS in the modified search space that with the “conv_3x1_1x3” and “conv_3x3” primitive
operations. The curve represents the variation of the model scale of the leading sub-architecture, with the interquartile range (IQR) denoted by the shaded area. Our
framework is conducted with a Parameters penalty coefficient of -0.3, and the P-DARTS experiment is with no restriction of “skip_connect” operation. Three
stages of the search process: (a) Stage 0; (b) Stage 1; (c) Stage 2.

value of approximately 10M. From our analysis, it becomes evident that P-DARTS attains model compactness primarily through the
utilization of compact operations within the original DARTS search space. Thus, it presents significant challenges in achieving a
multi-objective architectural search for P-DARTS, e.g., with limitations in terms of model compression capabilities.

7. Conclusion

This study introduces an efficient multi-objective NAS framework, which accommodates the non-differentiable metrics into the
differentiable NAS framework. This innovation harnesses the combined strengths of multi-objective NAS and differentiable NAS,
rendering it particularly suitable for practical NAS contexts characterized by resource constraints and platform-specific requirements.
Our method demonstrates performance on par with state-of-the-art NAS methods, while being notably more efficient in terms of both
time and resource utilization compared to prior multi-objective NAS methodologies. Additionally, our framework exhibits scalability
and compatibility with the recently introduced search methodology and evaluation strategy within the differentiable NAS framework,
as well as certain surrogate-model-based or predictor-based evaluation approaches [46–48]. Our ablation and diagnostic experiments
provide insights into the search procedure, monitor the parametric variations, and validate the effectiveness of our search strategy
from a process perspective. The diagnostic experiments could be extended to the NAS community, where architecture performance
should not be the sole metric for evaluating search methods. It is essential to acknowledge the limitations of our method. First,
our framework requires experimental tuning of the penalty-reward reference and coefficients. Second, although we address the
non-differentiable objectives, for the sampling in the discrete space, our approach incurs higher computational costs compared
to purely differentiable NAS methods. Last but not least, this work adopts a combination of the classic Weighted Sum Method
(WSM) and Weighted Product Method (WPM) from the field of MNAS [12,49]. These methods transform the objective vectors into
scalar functions to approximate the Pareto optimal solution set, however, there exist notable limitations. First, it is challenging to
find suitable weight vectors, denoted as 𝑤. Further, the linear aggregation is only applicable to problems with a convex Pareto
front, meaning that solutions on non-convex segments are unreachable. Also, selecting a single weight vector can only achieve one
Pareto optimal solution and cannot uniformly obtain a Pareto solution set, necessitating multiple executions with different weight
configurations to approximate the Pareto optimal frontier. In light of these limitations and building upon this work, we plan to
further explore these issues in future research, including self-adaptive tuning of search hyperparameters, e.g., the reference and
penalty coefficients.

CRediT authorship contribution statement

Bo Lyu: Writing – original draft, Software, Methodology, Conceptualization. Yin Yang: Writing – review & editing. Yuting Cao:

Validation, Investigation. Pengcheng Wang: Validation. Jian Zhu: Writing – review & editing. Jingfei Chang: Validation. Shiping
14

Wen: Supervision.

Information Sciences 661 (2024) 120186B. Lyu, Y. Yang, Y. Cao et al.

Declaration of competing interest

There is no conflict of interest in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgements

This publication was supported by the National Natural Science Foundation of China (62306291), in part by NPRP grants: NPRP
8-274-2-107 from Qatar National Research Fund, in part by Zhejiang Provincial Natural Science Foundation of China under Grant
No. LQ24F020029.

References

[1] X. He, K. Zhao, X. Chu, Automl: a survey of the state-of-the-art, Knowl.-Based Syst. 212 (2021) 106622.

[2] Y. Guo, Y. Luo, Z. He, J. Huang, J. Chen, Hierarchical neural architecture search for single image super-resolution, IEEE Signal Process. Lett. 27 (2020)
1255–1259.

[3] D. Stamoulis, R. Ding, D. Wang, D. Lymberopoulos, B. Priyantha, J. Liu, D. Marculescu, Single-path mobile automl: efficient convnet design and nas hyperpa-

rameter optimization, IEEE J. Sel. Top. Signal Process. 14 (4) (2020) 609–622.

[4] K. Zhou, X. Huang, Q. Song, R. Chen, X. Hu, Auto-gnn: neural architecture search of graph neural networks, Front. Big Data 5 (2022) 1–9.

[5] G. Feng, H. Wang, C. Wang, Search for deep graph neural networks, Inf. Sci. 649 (2023) 119617.

[6] Y. Kim, Y. Li, H. Park, Y. Venkatesha, P. Panda, Neural architecture search for spiking neural networks, in: S. Avidan, G.J. Brostow, M. Cissé, G.M. Farinella, T.
Hassner (Eds.), Computer Vision - ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XXIV, in: Lecture Notes in
Computer Science, vol. 13684, 2022, pp. 36–56.

[7] B. Zoph, Q.V. Le, Neural architecture search with reinforcement learning, in: 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings, 2017, pp. 1–16.

[8] B. Zoph, V. Vasudevan, J. Shlens, Q.V. Le, Learning transferable architectures for scalable image recognition, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 8697–8710.

[9] H. Pham, M.Y. Guan, B. Zoph, Q.V. Le, J. Dean, Efficient neural architecture search via parameter sharing, in: J.G. Dy, A. Krause (Eds.), International Conference
on Machine Learning, Stockholm, Sweden, vol. 80, 2018, pp. 4092–4101.

[10] H. Liu, K. Simonyan, Y. Yang, DARTS: differentiable architecture search, in: 7th International Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019, 2019, pp. 1–13.

[11] A. Brock, T. Lim, J.M. Ritchie, N. Weston, SMASH: one-shot model architecture search through hypernetworks, in: 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings, 2018, pp. 1–16.

[12] M. Tan, B. Chen, R. Pang, V.K. Vasudevan, M. Sandler, A. Howard, Q.V. Le, Mnasnet: platform-aware neural architecture search for mobile, in: Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 2820–2828.

[13] J.-D. Dong, A.-C. Cheng, D.-C. Juan, W. Wei, M. Sun, Dpp-net: device-aware progressive search for Pareto-optimal neural architectures, in: Proceedings of the
European Conference on Computer Vision, 2018, pp. 540–555.

[14] C.-H. Hsu, S.-C. Chang, J.-H. Liang, H.-P. Chou, C.-H. Liu, S.-H. Chang, T. Pan, Y.-T. Chen, W. Wei, D.-C. Juan, Monas: multi-objective neural architecture search
using reinforcement learning, preprint, arXiv :1806 .10332, 2018.

[15] F.H. Thomas Elsken, Jan Hendrik Metzen, Multi-objective architecture search for cnns, preprint, arXiv :1804 .09081, 2018.

[16] B. Lyu, S. Wen, K. Shi, T. Huang, Multiobjective reinforcement learning-based neural architecture search for efficient portrait parsing, IEEE Trans. Cybern. 53 (2)
(2023) 1158–1169.

[17] Z. Lu, I. Whalen, V. Boddeti, Y. Dhebar, K. Deb, E. Goodman, W. Banzhaf, Nsga-net: neural architecture search using multi-objective genetic algorithm, in:
Proceedings of the Genetic and Evolutionary Computation Conference, 2019, pp. 419–427.

[18] X. Chen, L. Xie, J. Wu, Q. Tian, Progressive differentiable architecture search: bridging the depth gap between search and evaluation, in: 2019 IEEE/CVF
International Conference on Computer Vision, ICCV 2019, Seoul, Korea (South), IEEE, 2019, pp. 1294–1303.

[19] L. Xie, X. Chen, K. Bi, L. Wei, Y. Xu, L. Wang, Z. Chen, A. Xiao, J. Chang, X. Zhang, et al., Weight-sharing neural architecture search: a battle to shrink the
optimization gap, ACM Comput. Surv. 54 (9) (2021) 1–37.

[20] E. Real, A. Aggarwal, Y. Huang, Q.V. Le, Regularized evolution for image classifier architecture search, in: The Thirty-Third AAAI Conference on Artificial
Intelligence, Honolulu, Hawaii, USA, 2019, pp. 4780–4789.

[21] W. Deng, X. Zhang, Y. Zhou, Y. Liu, X. Zhou, H. Chen, H. Zhao, An enhanced fast non-dominated solution sorting genetic algorithm for multi-objective problems,
Inf. Sci. 585 (2022) 441–453.

[22] Z. Lu, K. Deb, E.D. Goodman, W. Banzhaf, V.N. Boddeti, Nsganetv2: evolutionary multi-objective surrogate-assisted neural architecture search, in: A. Vedaldi, H.
Bischof, T. Brox, J. Frahm (Eds.), Computer Vision - ECCV 2020 - 16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part I, in: Lecture
Notes in Computer Science, vol. 12346, 2020, pp. 35–51.

[23] C. Huang, X. Zhou, X. Ran, Y. Liu, W. Deng, W. Deng, Co-evolutionary competitive swarm optimizer with three-phase for large-scale complex optimization
problem, Inf. Sci. 619 (2023) 2–18.

[24] H. Lee, S. An, M. Kim, S.J. Hwang, Meta-prediction model for distillation-aware NAS on unseen datasets, in: The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023, 2023, pp. 1–11.

[25] C. White, W. Neiswanger, S. Nolen, Y. Savani, A study on encodings for neural architecture search, in: H. Larochelle, M. Ranzato, R. Hadsell, M. Balcan, H. Lin
(Eds.), Advances in Neural Information Processing Systems 33: Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December
6-12, 2020, Virtual, 2020, pp. 1–13.

[26] C. White, W. Neiswanger, Y. Savani, BANANAS: Bayesian optimization with neural architectures for neural architecture search, in: Thirty-Fifth AAAI Conference
on Artificial Intelligence, AAAI 2021, 2021, pp. 10293–10301.

[27] M. Zheng, X. Su, S. You, F. Wang, C. Qian, C. Xu, S. Albanie, Can GPT-4 perform neural architecture search?, CoRR, arXiv :2304 .10970 [abs], 2023.

[28] Y. Xu, L. Xie, W. Dai, X. Zhang, X. Chen, G.-J. Qi, H. Xiong, Q. Tian, Partially-connected neural architecture search for reduced computational redundancy, IEEE
15

Trans. Pattern Anal. Mach. Intell. 43 (9) (2021) 2953–2970.

http://refhub.elsevier.com/S0020-0255(24)00099-9/bibE02CB21F4C1A7F8D653EEFA314DC78B0s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib490814F12D54445B04E557F16997AF02s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib490814F12D54445B04E557F16997AF02s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib78C8A14865B916C5CEA297B71DBF0ABFs1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib78C8A14865B916C5CEA297B71DBF0ABFs1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib85F35863AB20F13D7958153768546C8Cs1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibB5980BC32CE0906DD42DE1CF0C7E7459s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib8F434B694353733CA81B11E1C97938E0s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib8F434B694353733CA81B11E1C97938E0s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib8F434B694353733CA81B11E1C97938E0s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib9F02B4BA994C413057EF757A477D5373s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib9F02B4BA994C413057EF757A477D5373s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib3713242B90BC29964913C8B1F9178634s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib3713242B90BC29964913C8B1F9178634s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib93F94EFBEA0567DDD6ECE6C42E0BEABEs1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib93F94EFBEA0567DDD6ECE6C42E0BEABEs1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib338B0D809B4E160C5537CA6627D09C18s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib338B0D809B4E160C5537CA6627D09C18s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibE313B5BA11A189B6F14A633D17925857s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibE313B5BA11A189B6F14A633D17925857s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib1FA0F1B7DC3D39726C6711D9A8D225D3s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib1FA0F1B7DC3D39726C6711D9A8D225D3s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib62F3BEFBDDB48485BDAC4F154B8AD247s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib62F3BEFBDDB48485BDAC4F154B8AD247s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib737836320ED51FCA08CDEFEB05B4A00Ds1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib737836320ED51FCA08CDEFEB05B4A00Ds1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib6799DB2D703550F8C25AD4346A67318Fs1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib087775EC93CF0DE4A53763C99EC68E67s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib087775EC93CF0DE4A53763C99EC68E67s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib266BC63552971E8783DF835E50F81D9Cs1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib266BC63552971E8783DF835E50F81D9Cs1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib911826A541AEA9E19872971F116F57BCs1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib911826A541AEA9E19872971F116F57BCs1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib5162DEDC280685E3F52F20BC6977E2EBs1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib5162DEDC280685E3F52F20BC6977E2EBs1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibB7683FE568F7382336352E4486AD6000s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibB7683FE568F7382336352E4486AD6000s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib07983A7617DA51B6B82F5FE37ADC8C02s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib07983A7617DA51B6B82F5FE37ADC8C02s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib73C2923E4172F213B8BCFCA3202F7089s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib73C2923E4172F213B8BCFCA3202F7089s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib73C2923E4172F213B8BCFCA3202F7089s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib5C617F4C779C84CC43C540CF8AA3F595s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib5C617F4C779C84CC43C540CF8AA3F595s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibE9D6C27102E819567E543B74B949B72Fs1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibE9D6C27102E819567E543B74B949B72Fs1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibF319B54DB03CDB42DC311A1EDFE256B0s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibF319B54DB03CDB42DC311A1EDFE256B0s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibF319B54DB03CDB42DC311A1EDFE256B0s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibBB86862A86DB9C99B9B2D8D71CEF17CEs1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibBB86862A86DB9C99B9B2D8D71CEF17CEs1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib3F9081615BB99DD28CD75612922CCB68s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib74980BA8D329187F983C57B027591D4Fs1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib74980BA8D329187F983C57B027591D4Fs1

Information Sciences 661 (2024) 120186B. Lyu, Y. Yang, Y. Cao et al.

[29] H. Cai, L. Zhu, S. Han, Proxylessnas: direct neural architecture search on target task and hardware, in: International Conference on Learning Representations,
New Orleans, LA, USA, 2019, pp. 1–13.

[30] A. Cheng, J. Dong, C. Hsu, S. Chang, M. Sun, S. Chang, J. Pan, Y. Chen, W. Wei, D. Juan, Searching toward pareto-optimal device-aware neural architectures,
in: Proceedings of the International Conference on Computer-Aided Design, San Diego, CA, USA, 2018, pp. 136–156.

[31] X. Zhou, X. Cai, H. Zhang, Z. Zhang, T. Jin, H. Chen, W. Deng, Multi-strategy competitive-cooperative co-evolutionary algorithm and its application, Inf. Sci.
635 (2023) 328–344.

[32] T. Elsken, J.H. Metzen, F. Hutter, Efficient multi-objective neural architecture search via lamarckian evolution, preprint, arXiv :1804 .09081, 2018.

[33] Z. Guo, X. Zhang, H. Mu, W. Heng, Z. Liu, Y. Wei, J. Sun, Single path one-shot neural architecture search with uniform sampling, in: Proceedings of the European
Conference on Computer Vision, 2019, pp. 544–560.

[34] R.J. Williams, Simple statistical gradient-following algorithms for connectionist reinforcement learning, Mach. Learn. 8 (3) (1992) 229–256.

[35] S. Mannor, N. Shimkin, A geometric approach to multi-criterion reinforcement learning, J. Mach. Learn. Res. (2004) 325–360.

[36] L. Huang, S. Sun, J. Zeng, W. Wang, W. Pang, K. Wang, U-darts: uniform-space differentiable architecture search, Inf. Sci. 628 (2023) 339–349.

[37] J. Ji, X. Wang, Fast progressive differentiable architecture search based on adaptive task granularity reorganization, Inf. Sci. 645 (2023) 119326.

[38] X. Zheng, R. Ji, L. Tang, B. Zhang, J. Liu, Q. Tian, Multinomial distribution learning for effective neural architecture search, in: Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 1304–1313.

[39] H. Cai, C. Gan, T. Wang, Z. Zhang, S. Han, Once-for-all: train one network and specialize it for efficient deployment, in: International Conference on Learning
Representations, Addis Ababa, Ethiopia, 2020, pp. 1–15.

[40] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille, J. Huang, K. Murphy, Progressive neural architecture search, in: European
Conference on Computer Vision, Munich, Germany, 2018, pp. 19–34.

[41] H. Tan, R. Cheng, S. Huang, C. He, C. Qiu, F. Yang, P. Luo, Relativenas: relative neural architecture search via slow-fast learning, IEEE Trans. Neural Netw.
Learn. Syst. 1 (2021) 1–15.

[42] S. Xie, H. Zheng, C. Liu, L. Lin, SNAS: stochastic neural architecture search, in: 7th International Conference on Learning Representations, ICLR 2019, New
Orleans, LA, USA, May 6-9, 2019, 2019, pp. 1–17.

[43] L. Tong, B. Du, Neural architecture search via reference point based multi-objective evolutionary algorithm, Pattern Recognit. 132 (2022) 108962.

[44] Z. Chen, F. Zhou, G. Trimponias, Z. Li, Multi-objective neural architecture search via non-stationary policy gradient, CoRR, arXiv :2001 .08437 [abs], 2020.

[45] Y. Xue, C. Chen, A. Slowik, Neural architecture search based on a multi-objective evolutionary algorithm with probability stack, IEEE Trans. Evol. Comput.
27 (4) (2023) 778–786.

[46] C. Wei, C. Niu, Y. Tang, Y. Wang, H. Hu, J. Liang, NPENAS: neural predictor guided evolution for neural architecture search, IEEE Trans. Neural Netw. Learn.
Syst. 34 (11) (2023) 8441–8455.

[47] J. Siems, L. Zimmer, A. Zela, J. Lukasik, M. Keuper, F. Hutter, Nas-bench-301 and the case for surrogate benchmarks for neural architecture search, preprint,
arXiv :2008 .09777, 2020.

[48] V. Lopes, B. Degardin, L.A. Alexandre, Are neural architecture search benchmarks well designed? A deeper look into operation importance, Inf. Sci. 650 (2023)
119695.
16

[49] B. Lyu, H. Yuan, L. Lu, Y. Zhang, Resource-constrained neural architecture search on edge devices, IEEE Trans. Netw. Sci. Eng. 9 (1) (2021) 134–142.

http://refhub.elsevier.com/S0020-0255(24)00099-9/bib57944D783E02C59B8F26D6B6CB1BE375s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib57944D783E02C59B8F26D6B6CB1BE375s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib34B893473A51E4E9E76E9BBAD3B94504s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib34B893473A51E4E9E76E9BBAD3B94504s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibC7A6F2B4028221C112EEE1F1E45FFA09s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibC7A6F2B4028221C112EEE1F1E45FFA09s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib67A44CFDBD989ADFC77397FBE32A9B62s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibA282D527DB30ED3F6E510613DA11BA5Fs1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibA282D527DB30ED3F6E510613DA11BA5Fs1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib6130063FDD8908E5E96AD6602484CDA7s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibD992AB14475F3CC630A29F039F9CC9C1s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib9CD0821DB924ED51CE45965AD28BCE0As1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib6EE87228016956EECACCC9E9EAC63C01s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibF72BEBDE51B3C5EEB5D3B52AA5AA7E4Es1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibF72BEBDE51B3C5EEB5D3B52AA5AA7E4Es1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibB33B2336F0B339C30827B641B43AE9AFs1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibB33B2336F0B339C30827B641B43AE9AFs1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibFD40F2E3E0C4C276E2F2FD34C1461E45s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibFD40F2E3E0C4C276E2F2FD34C1461E45s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib2B3006A9DFEA5D8CBBA4A74A96F2D0F7s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib2B3006A9DFEA5D8CBBA4A74A96F2D0F7s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibA9729C1904BFA09C3DBE0020F1DDB15Ds1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibA9729C1904BFA09C3DBE0020F1DDB15Ds1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib6AEDB527788DF97224BA65479C72FB76s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib580EA90B70317AAEA62BEDC6B47D2B37s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib07DFA67AEF0BA49BE2BC4A1775691062s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib07DFA67AEF0BA49BE2BC4A1775691062s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib5BB1CC2AE4396DDD8C449B2A0C98FB5Cs1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bib5BB1CC2AE4396DDD8C449B2A0C98FB5Cs1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibD7D896E19E22E76AC114156047245966s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibD7D896E19E22E76AC114156047245966s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibE4F759EDB0C975C5A8D2D27D6393A510s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibE4F759EDB0C975C5A8D2D27D6393A510s1
http://refhub.elsevier.com/S0020-0255(24)00099-9/bibEDB41703AD6955A511424B2DDC8C8F0Bs1

	Efficient multi-objective neural architecture search framework via policy gradient algorithm
	1 Introduction
	2 Related work
	3 Methodology
	3.1 Preliminary
	3.2 Search strategy
	3.2.1 Training of supernetwork weights
	3.2.2 Sampling sub-networks by architecture parameters
	3.2.3 Optimize architecture parameters by policy gradient algorithm
	3.2.4 Architecture reward design
	3.2.5 Progressively deriving the architecture

	4 Comparison with related works
	5 Experiments
	5.1 Datasets
	5.2 Search space
	5.3 Architecture search
	5.3.1 Experimental setting
	5.3.2 Architecture search results

	5.4 Architecture evaluation
	5.4.1 Architecture evaluation on CIFAR-10 and CIFAR-100
	5.4.2 Architecture evaluation on ImageNet

	5.5 Search cost comparison

	6 Ablation and diagnostic experiments
	6.1 Effectiveness of search strategy
	6.2 Comparative analysis with P-DARTS method

	7 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References

