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ABSTRACT It is a matter of time before quantum computers will break the cryptosystems like RSA and
ECC underpinning today’s internet protocols. As Post-Quantum Cryptography (PQC) is a low-cost approach
compared to others like quantum key distribution, the National Institute of Standards and Technology (NIST)
has recently reviewed and analyzed numerous approaches to PQC. As a PQC candidate, Bit Flipping Key
Encapsulation (BIKE) is expected to be standardized as a general-purpose Key Encapsulation Mechanism
(KEM) by NIST. However, it lacks a comprehensive review of BIKE associated with technical analysis. This
paper aims to present an in-depth review and analysis of the BIKE scheme with respect to relevant attacks.
We provide a comprehensive review of the original McEliece (ME) scheme and present a detailed discussion
on its practical challenges. Furthermore, we provide an in-depth study on the challenges of ME and BIKE
cryptosystems in achieving the Indistinguishability under Chosen-Ciphertext Attack (IND-CCA) security.
We provide an analysis of these cryptosystems and their security against several attacks before pointing out
the research gaps for strengthening BIKE.

INDEX TERMS Authentication, security and privacy protection, post quantum cryptography, BIKE, IND-
CCA security.

I. INTRODUCTION
Public-key cryptography plays an essential role in the
security and integrity of digital services and technologies like
communication protocols, cryptocurrencies, cyber security
applications, and many more. Generally, the security of the
currently used public-key cryptosystems and KEM schemes
relies upon the complexity and difficulty of computational
problems such as integer factorization problems (used in RSA
cryptosystem [1]) and discrete logarithm problems (used in
DSA [2], ECDSA [3], El Gamal [4], Diffie-Hellman (DH)
key exchange [5], and ECDH [6] algorithms). In classical
computation models, both integer factorization and discrete
logarithm problems are considered computationally hard.
However, recent studies suggest that these ‘‘computationally
hard’’ challenges will become solvable in polynomial time
using quantum computation models [7], [8], [9] with the
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so-called Cryptographically Relevant Quantum Computers
(CRQC) [10]. Such CRQCs will enable the implementation
of Shor’s quantum algorithm that solves the integer factoriza-
tion and discrete logarithm problems in polynomial time [11].
CRQCs will also reduce the security level of symmetric-
key encryption schemes and cryptographic hash functions
through Grover’s algorithm [12]. It poses a severe threat to
the security of the internet and other critical ICT systems
and demands immediate and incremental research efforts to
secure current and future data.

Despite the potential for CRQC to break current public-
key cryptosystems (asymmetric encryption algorithms), sym-
metric encryption and cryptographic hash functions may
remain relatively secure in the post-quantum era [13], [14].
It is because the current research suggests that quantum
algorithms are unlikely to efficiently solve NP-hard prob-
lems [9] that are the basis of symmetric encryption schemes
and hash functions (see Section II for details about NP-
hard problems). At most, the symmetric algorithms and hash
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TABLE 1. The effect of quantum computers on the security of the commonly used cryptographic algorithms.

functions will only need to increase their key size and hash
length to maintain the current level of security. For example,
in the post-quantum era, a 128-bit level of security can be
achieved using AES-256 with a key size of 256. Similarly,
a quantum birthday attack presented in [15] uses Grover’s
algorithm [12] to find collisions for hash functions. 171-
bit security is achievable through SHA-2 and SHA-3 hash
algorithms with 512 bits output [16]. The anticipated impact
of envisaged quantum computers on various cryptographic
algorithms is summarized in Table 1.

The security of public-key cryptosystems remains a pri-
ority in the post-quantum era. NIST [17] is undertaking a
standardization project to identify suitable public-key and
KEM schemes for the post-quantum era [18]. In July 2022,
NIST completed the third round of the standardization
project, and four KEM candidate schemes were selected for
the fourth round [19] where three of them are code-based
algorithms, i.e., BIKE [20], Classic McEliece (CME) [21],
and Hamming Quasi-Cyclic (HQC) [22] schemes. Having
proven to be quantum-resistant, code-based cryptosystems
use the theory of error correcting codes (more precisely,
they are based upon structural codes with some intentionally
inserted errors such that only the legitimate receiver with
the right knowledge could recover the plaintext). Their
security inherently relies on the fact that decoding a codeword
without the knowledge of the encoding scheme is an
NP-complete problem [23], [24]. The security of code-
based cryptosystems does not rely on the complexity of
any mathematical problem that quantum computers solve
efficiently.

However, code-based cryptosystems suffer from many
practical issues. For example, the original McEliece (ME)
cryptosystem [25] has large public and private key sizes,
e.g., 500 KB or more (depending on the required level of
accuracy), which is a few hundred times more than the
current public-key cryptosystems with a key size of 1 KB
to 2 KB. Newer variants of the McEliece cryptosystem
reduce the key sizes by complicating the code structure.
Unfortunately, the applied modifications incurred security
compromises, resulting in successful attacks [26], [27]. The
BIKE scheme has been developed to mitigate the key size

issue while preserving the security guarantees. Therefore,
BIKE is expected to be selected as a standard general-purpose
KEM at the end of Round 4 of NIST’s PQC standardization
process [19].

Although recent studies in [28] and [29] analyze code-
based cryptosystems, the literature lacks a comprehensive
study of detailed attack descriptions with respect to the
latest version of BIKE. We aim to provide insights into
BIKE’s IND-CCA security and related issues. We adopt
a review-cum-tutorial approach to contribute to a deep
understanding of the working principles of code-based
cryptosystems and present an overview of the known
attacks and how they can potentially impact IND-CCA
security. In addition, the provided details are important
for system architects, security solution designers, and
developers to adopt the BIKE cryptosystems in real-world
applications. Considering the adoption of standardized tech-
nology is crucial as it may take years to integrate the
standardized algorithm into various applications successfully.
Moreover, our analysis can be used as a reference for
comparing with other types of post-quantum public-key
cryptosystems.

Our main contributions are summarized as follows:
• We present an in-depth review of the state-of-the-art
BIKE scheme along with the necessary preliminaries.

• We comprehensively analyze ME and BIKE and
describe the reasoning behind the success/failures of
various attacks. We also describe the working principles
of Bit Flipping Decoder and its state-of-the-art instanti-
ation adopted in BIKE.

• We analyze the IND-CCA security of the ME and BIKE
cryptosystems, provide an in-depth discussion on the
impact of Decoder Failure Rate (DFR) on IND-CCA
security, and point out future research directions.

In the remainder of the paper, Section II provides prelim-
inaries on complex problems and code-based cryptography.
Section III presents a brief overview of the orthodox ME
cryptosystem. Section IV details QC-MDPC-based variant,
decoding principles, BIKE, and relevant attacks. Finally,
Section V concludes the paper and identifies future research
directions.
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II. PRELIMINARIES
This section presents the foundation for the next sections
of the paper. We first briefly review the categories of
computationally-hard problems. Then, we review the syn-
drome decoding problem, a fundamental element in the
security of code-based cryptosystems. We refer the readers
to [30] and [31] for detailed information about the theory of
error correcting codes.

Throughout this paper, we use bold upper-case letters to
denote matrices (e.g.,HHH ). For vectors (matrices with a single
row or column), we use bold lower-case letters (e.g., eee).

A. COMPLEXITY OF PROBLEMS
Computational problems are classified based on their inher-
ent complexity. In the following paragraphs, we review
various categories in the literature [32], [33].

1) P PROBLEMS
The set of computational problems solvable by algorithms
that terminate in some steps bounded by a polynomial in the
length of the input, e.g., shortest path problem [34], Rubik’s
puzzle [35], and many alike.

2) NP PROBLEMS (NON-DETERMINISTIC IN
POLYNOMIAL TIME)
The set of verifiable problems in polynomial time (if we are
given a correct answer). The NP category covers a range of
problems that differ regarding their inherent hardness level.
In the easiest form, they include the P category. Based on
the definitions, any P problem is NP since it can be verified
in polynomial time. On the other hand, the NP class covers
algorithmic problems with a high hardness level (with no
known deterministic solution that terminates in polynomial
time). The computational problems used in the currently
deployed cryptosystems are predominantlyNP problemswith
various hardness levels [36], [37]. In addition to the hardness
property, they need to be verifiable by legitimate parties in
polynomial time. For example, there is no known classical
algorithm to solve the factorization problem (used in the
RSA cryptosystem) in polynomial time (i.e., the hardness
feature). However, the party with the private key (a solution
to the problem) can efficiently decrypt the ciphertext (i.e., the
verification property).

3) NP-HARD PROBLEMS
The set of problems that have (at least) the same hardness
as that of the most difficult problem(s) in the NP category.
Moreover, verifying a given answer to the NP-hard problem
in polynomial time is challenging. It suggests an overlap
between the NP and NP-hard classes, thereby defining
another class called NP-complete.

4) NP-COMPLETE PROBLEMS
The set of problems that are both NP and NP-hard. They
have two fundamental features: (i) a high level of hardness

FIGURE 1. NP-Complete problems are outside the BQP class, meaning
that quantum computers can not solve them in polynomial time.
However, popular cryptosystems’ (RSA and DSA) security relies on integer
factorization and discrete logarithm problems and will be very likely
compromised in the post-quantum era.

to solve in polynomial time (as an NP-hard problem), and (ii)
verifiable in polynomial time (as an NP problem).

5) BOUNDED ERROR QUANTUM POLYNOMIAL-TIME (BQP)
PROBLEMS
The problems that can be solved by quantum computers in
polynomial time. These include all the P problems and many
NP problems (see Fig. 1), e.g., integer factorization (used
in RSA cryptosystem) and discrete logarithm problem (used
in DSA). Previous research indicates that most NP and all
the NP-complete problems are outside the BQP zone [38]
(see Fig. 1). Hence, a quantum computer needs more than
a polynomial number of steps to solve an NP-complete
problem.

NP-complete problems are ideal algorithmic problems for
cryptography, particularly in the post-quantum era, because
of their highest possible level of inherent difficulties (close
to the NP class) when a given solution is verifiable in
polynomial time. In other words, beyond that level of
hardness, the verification of a solution cannot be performed
in polynomial time which is not a desirable feature in
cryptography. Moreover, they cannot be solved by quantum
computers in polynomial time.

Since the security of code-based cryptosystems is based
on the syndrome decoding (SD) problem (which is proved
to be NP-complete [38], [39]), they can be suitable alter-
natives of conventional public-key cryptosystems. The next
subsection briefly reviews the SD problem and discusses its
NP-completeness.

B. SYNDROME DECODING (SD) PROBLEM
Before we review the SD problem, we briefly present some
definitions of error-correcting codes.
Definition 1 (Block Code [30], [31]): The error correcting

code C is a block code if the information bit streams
are considered as separate fixed-length message segments
(blocks).
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In block codes, the information bit streams (i.e., input
messages denoted by uuu = (u1, u2, . . . , uk )) consist of k
information digits defined over GF(q). TheGalois fieldGF(q)
is a field with a finite number of q distinct elements (e.g.,
GF(5) = {0, 1, 2, 3, 4}). A block code may comprise qk

possible distinct message blocks. The error correcting code
C transforms each input message block uuu into a distinct n-bit
(n > k) sequence denoted by zzz. Each sequence zzz is called
a codeword. As a result, qk distinct legitimate codewords
correspond to the qk possible message blocks. The set of qk

codewords is referred to as a C(n, k) block code [40]. Unlike
source coding mechanisms like MP4 (used for compressing
data), in error correcting codes, n − k redundant digits are
purposefully added to the information block to attain error
correction. Due to the added digits, an error correcting code
incurs communication overhead accordingly.
Definition 2 (Rate of a Block Code [30], [31]): The rate

(efficiency) of the block code C(n, k) is defined as k/n.
There is a trade-off between the communication overhead

imposed by a block error correcting code and its effectiveness
in correcting errors.
Definition 3 (Linear Block Code [30], [31]): The error

correcting code C(n, k) is a linear code if the modulo-2 sum
(i.e., the XOR binary operation if q = 2) of any two or
multiple codewords is a valid codeword.

For simplicity, we consider binary block codes that the
digits of uuu and zzz are defined over GF(2).
Definition 4 (Hamming Weight and Hamming Dis-

tance [40]): The number of non-zero bits in a codeword is
called the Hamming weight. The Hamming distance d(xxx,yyy)
between two codewords xxx and yyy is the number of bit positions
where xxx and yyy differ.

Therefore, d(xxx,000) is the Hamming weight of xxx, where 000
is the vector containing n bits of 0. The minimum distance
dmin of a linear code C is the minimum Hamming distance
between any two distinct codewords.
Definition 5 (Generator Matrix [30], [31]): A generator

matrixGGG of a linear code C(n, k) is a k×nmatrix that defines
the one-to-one mapping between the k-bit message block uuu
and the corresponding n-bit codeword zzz, such that zzz1×n =
uuu1×k ·GGGk×n.

The encoder uses GGG to generate the distinct codewords
associated with each message block uuu.
Definition 6 (Systematic Code [41]): A linear codeC(n, k)

is systematic if its generator matrix can be written in the form
ofGGG = [III k |AAAk×(n−k)], where III k is a k× k identity matrix and
AAA is the k × (n− k) coefficient matrix.

When GGG is specified in the systematic form, each n-bit
codeword zzz generated by GGG can be split into two parts. The
first k bits are equal to the corresponding message block uuu,
and the second part has the (n − k) redundant parity-check
bits.
Definition 7 (Parity-Check Matrix [30], [31]): The parity-

checkmatrixHHH of a linear codeC(n, k) is an (n−k)×nmatrix
that is orthogonal to all the codewords of C, i.e., a codeword
zzz is in C if and only ifHHH · zzzT = 000.

If GGG is in the systematic form (i.e., GGG = [III k |AAAk×(n−k)]),
thenHHH is obtained byHHH = [AAAT |IIIn−k ].HHH represents the linear
relationships that the bits of a codeword zzz must be ordered as
a codeword of C. Thus, the decoder usesHHH to verify whether
the received vector is a valid codeword of C.
After reviewing the basic concepts of error correcting

codes (see [30] and [31] for more details), in the following,
we discuss the SD problem.
Definition 8 (Syndrome Decoding Problem): Given three

integers n, k , and t (where k < n and t ≤ n), a parity-
check matrix HHH ∈ F2(n−k)×n , and a vector YYY ∈ F2(n−k) , the
syndrome decoding problem searches for a vector eee ∈ F2n of
the Hamming weight ≤ t such thatHHH · eeeT = YYY .
Berlekamp et al. proved that the SD problem is NP-

complete if the parity-check matrix HHH is randomly cho-
sen [39]. The NP-completeness establishes an essential
security assumption required for code-based cryptosystems.
It justifies why a code-based cryptosystem is a competitive
alternative to the current public-key cryptosystems in the
post-quantum era. Code-based cryptosystems are built based
on the assumption that the efficient decoder of the code used
in the encryption process is known only by the legitimate
decrypting party (i.e., the party with the private key). Thus,
any illegitimate decryption effort has to be done by solving
the SD problem in which HHH is a randomly generated
parity-check matrix. It makes the recovery of the error
vector eee (that is necessary for decryption) an NP-complete
problem. Since this problem falls outside the BQP category
of computational problems, code-based cryptosystems are
potentially considered quantum-resistant [38].

III. THE McEliece (ME) CRYPTOSYSTEM
In this section, we review the ME cryptosystem as the basis
of the CME scheme, analyze the security of ME and discuss
its practical challenges.

A. DESCRIPTION
The ME cryptosystem is a public-key scheme invented by
Robert McEliece in 1978 [25]. ME is based on error correct-
ing codes, and its security relies on the NP-completeness of
the SD problem. The main idea behind ME is to choose an
error correcting code for which a fast and efficient decoding
algorithm is known (McEliece suggested Goppa codes [42]).
To encrypt a message, a disguised version of the generator
matrix (of the selected code) is used as the public key
to encode the input plaintext message. This setup forces
any entity without the knowledge of the associated private
key to use the syndrome decoding approach to decrypt the
ciphertext, resulting in an NP-complete task according to the
SD problem.However, the owner of the private key eliminates
the disguise and decrypts the result using the known fast
decoder.
The ME cryptosystem is composed of three algorithms:

Key Generation (KeyGen), Encryption (Encrypt), and
Decryption (Decrypt). To send a message to Bob, Alice uses
Bob’s public key, which is associatedwith his private key. The
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encryption of a message with Bob’s public key transforms the
message to a codeword (i.e., the ciphertext), decrypted upon
reception by Bob using his private key.

Next, we briefly describe the KeyGen algorithm and
elaborate on the steps involved in Encrypt and Decrypt
algorithms.

1) KEY GENERATION
(pk, sk) = KeyGen(m, t).

The KeyGen algorithm takes the integers m and t as input
and returns the public-private key pair (pk, sk) by performing
the following steps.
• To generate a key pair, Bob first generates a Goppa
code G(n, k) that can correct t errors. This operation is
accomplished by choosing a random Goppa polynomial
g(x) with degree t over Galois Field GF(2m). This Goppa
polynomial is defined as:

g(x) = g0 + g1x + · · · + gtx t =
t∑
i=0

gix i (1)

where n = 2m and k = n − tm (According to
the characteristics of Goppa codes. It should be noted
that g(x) is created through the random selection of gi
coefficients over GF(2m), i.e., gi (i = 0, 1, . . . , t) is
a random binary number of m bits. See [42] for more
details about Goppa codes).

• Based on the created Goppa code, Bob obtains its
generator matrixGGG of dimension k × n.

• Since GGG is used for transforming a plaintext message
into a codeword (see Section II for details), Bob now
scrambles this matrix by multiplying it with a k × k
nonsingular matrix SSS, and n × n permutation matrix PPP
(i.e., to disguiseGGG). The resultant matrixGGGpub = SSS ·GGG ·PPP
is published as the public key by Bob along with t , i.e.,
pk = (GGGpub, t).

• Bob’s private key is composed ofGGG, SSS, and PPP, i.e., sk =
(GGG,SSS,PPP).

2) ENCRYPTION
ccc = Encrypt(uuu, pk).

To encrypt a k-bit plaintext message uuu with Bob’s public
key pk , Alice performs the following three steps (see Fig. 2).
• Alice first multiplies uuu with GGGpub to get the n-bit vector
zzz = uuu ·GGGpub.

• Then, she uses t (the other component of public key)
and generates a random binary vector eee of length n with
Hammingweight t (see Section II for Hammingweight).

• Finally, she adds zzz and eee to get the ciphertext ccc = zzz⊕ eee
before sending it to Bob (note that addition in module
2 is equivalent to a xor operation).

3) DECRYPTION
uuu = Decrypt(ccc, sk).

To decrypt ciphertext ccc, Bob uses his private key sk and
performs the following steps:

FIGURE 2. Block diagram of the McEliece (ME) cryptosystem. Note that
eee′ = eee · PPP−1 has the same hamming weight as eee. Thus, they both have the
same effect on the decoder’s functionality.

• Bob first multiplies ciphertext ccc with PPP−1 (i.e., a com-
ponent of private key). It results in ccc′ = uuu · SSS · GGG · PPP ·
PPP−1 ⊕ eee ·PPP−1 = (uuu · SSS) ·GGG⊕ eee′.

• ccc′ appears to be a codeword of G (i.e., (uuu · SSS) · GGG)
that is corrupted by some errors eee′. To eliminate the
error from this codeword, Bob uses the efficient Goppa
decoder. The Hamming weight of eee′ and eee are the
same (i.e., t) because multiplying eee with PPP−1 does
not change the weight of eee (it only scrambles its
columns).

• Once the error is removed, the codeword (uuu ·SSS).GGG can be
transformed into its corresponding message (i.e., uuu · SSS).
The generator matrixGGG is only known to Bob since this
is part of his private key.

• Finally, to get the original message uuu, Bob will simply
multiply uuu · SSS with SSS−1, i.e., uuu · SSS · SSS−1 = uuu. SSS is known
to Bob only since it is a part of his private key.

Fig. 2 shows the block diagram of the ME cryptosystem.

IV. VARIANTS OF McEliece CRYPTOSYSTEMS
The previous discussion shows that the original McEliece
scheme is based on Goppa codes. Using Goppa codes for
public key cryptosystems is widely studied and considered
safe. However, the key sizes are an important problem with
the original McEliece. Variants of the McEliece scheme have
been proposed that target a reduction in key sizes [43].
One simple variant is proposed in [44] that does not
need permutation or scrambling matrices as in the original
McEliece scheme. Generally, these code-based variants allow
iterative decoding like Low-Density Parity-Check (LDPC)
codes. However, they are proven unsuitable for cryptosystems
due to their sparse parity check matrix and the parity check
equations corresponding to codewords in a dual code [43].
According to [44], a potential solution to this problem is to
increase theweight of parity checks such that it is smaller than
the dimension of the code, thereby making it cumbersome
to find low-weight codewords in the dual code. This family
of codes is called Moderate-Density Parity-Check (MDPC)
codes that can be decoded with the same decoders as LDPC
codes. For practical reasons, the quasi-cyclic version of
MDPC (i.e., QC-MDPC) codes is particularly interesting
because the parity check matrix is described by its first row
only, resulting in a significant reduction in key sizes [43]. This
section presents the details of QC-MDPC codes and discusses
their Bit Flipping (BF) decoder. Then, the QC-MDPC variant
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of the McEliece scheme is presented, and its security issues
are discussed.

A. QC-MDPC CODES
We present the Quasi-cyclic (QC) codes’ definition as it is
needed to understand QC-MDPC codes.
Definition 9 (Quasi-Cyclic Code): A binary linear code

C(N ,K ) is quasi-cyclic if there exists an integer n0 < N such
that every cyclic shift of a codeword C ∈ C by n0 bits creates
another valid codeword of C.
In a systematic QC code, each codeword C consisted of p

blocks of n0 bits (i.e., N = n0 × p, where p is an integer),
and every block includes k0 = K/p information bits and
r0 = (n0 − k0) redundancy (parity) bits. For r0 = 1,
we have

r = (n0 − k0)× p = r0 × p = p (2)

In a QC code with r0 = 1 (or r = p), the generator and
parity check matrices comprise p × p circulant blocks [45].
The parity check matrix of a QC code can be written in the
following format:

HHH = [HHH0 HHH1 . . . HHHn0−1] (3)

where each blockHHH i is a p× p binary matrix in the form of

HHH i =



h(i)0 h(i)1 h(i)2 . . . h(i)p−1
h(i)p−1 h

(i)
0 h(i)1 . . . h(i)p−2

. . . . .

. . . . .

. . . . .

h(i)1 h(i)2 h(i)3 . . . h(i)0


Because p = N − K , HHH has N − K rows and n0p = N
columns. As is evident, each blockHHH i can be described by its
first row only, i.e., the other p−1 rows are obtained by cyclic
shifts of the first row. Thus, to construct HHH , one needs only
the first row of n0 HHH i blocks. Since each row ofHHH i has p bits,
only n0p = N bits are needed to storeHHH .

Using the aboveHHH , the generator matrix of a QC code for
r = p can be written in the following format:

GGG = [IIIK |QQQK×(N−K )] =



| (HHH−1n0−1 ·HHH0)T

| (HHH−1n0−1 ·HHH1)T

| (HHH−1n0−1 ·HHH2)T

IIIK | .

| .

| .

| (HHH−1n0−1 ·HHHn0−2)
T


(4)

To prove the above format for GGG, we use HHHGGGT = 000 to
obtain the following:

h(0)0 . . . h(0)p−1 . . . h(n0−1)0 . . . h(n0−1)p−1

h(0)p−1 . . . h(0)p−2 . . . h(n0−1)p−1 . . . h(n0−1)p−2
. . . . . . .

. . . . . . .

. . . . . . .

h(0)1 . . . h(0)0 . . . h(n0−1)1 . . . h(n0−1)0




1 0 . . . 0
0 1 . . . 0
0 0 . . . 0
. . . . . .

. . . . . .

. . . . . .

0 0 . . . 1
q0,0 q2,0 . . . qK ,0
q0,1 q2,1 . . . qK ,1
. . . . . .

. . . . . .

. . . . . .

q0,(N−K ) q1,(N−K ) . . . qK ,(N−K )



= 000

The firstK columns ofHHH are [HHH0 . . .HHHn0−2] because (n0−
1)p = N − p = K . The K columns are multiplied by IIIK (the
upper K rows of the second matrix) which results in

[HHH0 HHH1 . . .HHHn0−2]+HHHn0−1 ×QQQ
T
= 000 (5)

The aforementioned equation suggests that only the last block
ofHHH (i.e.,HHHn0−1) is multiplied byQQQT (the lower N −K rows
of the second matrix).HHHn0−1 has p = N −K columns which
is equal to the number of rows inQQQT . Since the above addition
is in module 2, we can transfer the first term to the right side
of the equation to obtain the following equation:

HHHn0−1 ×QQQ
T
= [HHH0 HHH1 . . .HHHn0−2] (6)

This equation can be re-written as:

QQQT = [(HHH−1n0−1 ·HHH0) (HHH−1n0−1 ·HHH1) . . . (HHH−1n0−1 ·HHHn0−2)]
(7)

Finally, we obtainQQQ expressed as follows:

QQQ = [(HHH−1n0−1 ·HHH0) (HHH−1n0−1 ·HHH1) . . . (HHH−1n0−1 ·HHHn0−2)]
T

=



(HHH−1n0−1 ·HHH0)T

(HHH−1n0−1 ·HHH1)T

.

.

.

(HHH−1n0−1 ·HHHn0−2)
T


which is identical to the format ofQQQ in Eq. 4.
Definition 10 (LDPC/MDPC Codes): An (N , r,w)-LDPC

or MDPC code is a linear code of length N and dimension
K = N − r that is defined by a parity-check matrix with a
constant row weight w.
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The only difference between LDPC and MDPC codes is
in the value of row weight w. For LDPC codes, w is a small
constant (usually less than 10); in MDPC codes, row weights
are the function of code length, i.e., increase with code length
N as O(

√
NlogN ). As discussed before, we are interested

in MDPC codes only because the LDPC-based McEliece
variants suffer from various vulnerabilities [43].

B. THE QC-MDPC VARIANT OF THE McEliece SCHEME
This variant of the McEliece cryptosystem was proposed by
Misoczki et al. [44] in 2013. It consisted of three subroutines:

(1) Key Generation:
• Private keyPrivate keyPrivate key: is the parity check matrix HHH ∈ F r×N

2 of a
t-correcting (N , r,w) code from QC-MDPC family that
is defined asHHH = [HHH0 HHH1 . . . HHHn0−1]. The first row of
HHH is generated by selecting a random vector ofN = n0×
p bits. The other r − 1 rows are obtained through cyclic
shifts of the first row. Each blockHi in above equation is
a circulant block of order p×p, with p = r andHamming
weight ofwi such thatw =

∑n0−1
i=0 wi. The size of private

keyH is p×n0×p = (N−k)×N . However, onlyN bits
are needed to store the private key (the first row only).

• Public key:Public key:Public key: is the corresponding generator matrixGGG that
can be computed from the private key (orHHH ) using Eq. 4.
Similar to H , G is also quasi-cyclic that needs storing
only the first row instead of the entire matrix. From the
above matrix, it is evident that the size ofGGG is K × (K +
p) = K × N (because p = r = N − K ). As indicated
above, the public key GGG can be described using its first
row only, which has K + p bits. Since the first K bits of
the first row are part of the identity matrix IIIK , the actual
size of the key is p = N −K . It significantly reduces the
key size compared to N × K in the original McEliece
scheme. For example, for the parameters N = 1024 and
K = 524 as used in the original McEliece, the key size
is drastically reduced from 66 KB to 63 B.

(2) Encryption:
The encryption of the QC-MDPC variant is akin to the
original McEliece, in which a plaintext message uuu ∈ FK2 is
subjected to the following computation:

rrr = uGuGuG+ eee (8)

where eee ∈ FN2 is a random vector of weight(eee) ≤ t , and the
value of t is obtained from the error correcting capability of
the corresponding decoder [44].

(3) Decryption:
To decrypt ciphertext rrr ∈ FN2 , the receiver performs the
following procedure:
• Compute uGuGuG from rrr by subjecting it to a t-error
correcting decoder 9H that leverages the knowledge of
HHH for efficient decoding.

• Retrieve uuu from uGuGuG. It can be accomplished by taking
the first K bits of uGuGuG asGGG is in a systematic form.

In the QC-MDPC variant, there is no need to deploy
the permutation and scrambling matrices PPP and SSS. The
simplification makes the decryption procedure simpler than
the original McEliece scheme where PPP and SSS are critical
elements (regardless of the complexity of the decoder unit
that is discussed in the next section).

1) DEALING WITH CHOSEN CIPHERTEXT ATTACKS
Using the systematic format of the generator matrixGGG in the
encryption procedure puts the scheme vulnerable to chosen
ciphertext and message recovery attacks. It is because the
ciphertext rrr = uGuGuG+eee includes a copy of the plaintext uuu in its
firstK bits (since ri = ui+ei for 1 ≤ i ≤ K ). Two ciphertexts
rrr1 and rrr2 are most likely distinguishable if an attacker knows
their corresponding plaintexts uuu1 and uuu2. In the worst case,
if ei = 0 for 1 ≤ i ≤ K , the ciphertexts are distinguishable
with the probability of 1.

To address this issue, Misoczki et al. [44] proposed to
deploy a secure CCA2-conversion model in the QC-MDPC
variant. Before encryption, the plaintext uuu is applied to a
CCA2-conversion unit. It converts plaintext uuu to a random
vector whose observation brings no useful knowledge for an
adversary. Misoczki et al. recommended using the CCA2-
Conversion model proposed by Kobara and Imai in [46].

C. DECODING QC-MDPC CODES
The proposed QC-MDPC variant of the McEliece scheme is
based on the assumption that there is an efficient decoder
9H to decode uGuGuG + eee to uGuGuG. Misoczki et al. proposed
the Bit Flipping (BF) algorithm to decode their QC-MDPC
codes [44]. However, BF-based decoders are inherently
probabilistic decoders that lead to a non-zero decoding failure
probability. In such decoders, non-negligible decoding failure
rates (DFR) degrade system efficiency and may result in
critical security issues (presented in the next section). DFR
is defined as the percentage of decoding failures in a given
number of decoding attempts [44]. DFR is a critical factor
in the efficiency and security of the QC-MDPC variant.
In this regard, Misoczki et al. [44] proposed to select the
system parameters to achieve a negligible DFR. In the
following, we review the BF decoding algorithm and present
its modified version proposed byMisoczki et al. for decoding
QC-MDPC codes. Then, we investigate the DFR issue in
detail and review the approaches proposed to deal with this
issue.

1) BIT FLIPPING (BF) DECODER
The Bit Flipping algorithm was proposed by Gallager
in 1963 [47]. It is a probabilistic and iterative decoding
algorithm that provides an error correction capability that
increases with the code length N and decreases with the
weight of parity-check equations (i.e., w) [44]. As a quick
result, the error correcting capability of BF in MDPC codes
is lower than in LDPC codes (because LDPC codes have a
smaller w).
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The BF algorithm is defined based on the Tanner graph
of an LDPC/MDPC code. The Tanner graph is a visual
representation of the parity check matrix and has two sets of
nodes:
• Check nodes (illustrated by squares in Fig. 3) represent
the rows of parity-check matrix. Thus, every Tanner
graph has N − K check nodes (each representing a row
ofHHH ).

• Variable (Bit) nodes (illustrated by circles in Fig. 3)
represent the N bits of a received vector rrr that should be
decoded. Each bit node in the Tanner graph represents a
single column of the parity-check matrix, as the size of
r equals the number of columns in H .

The following procedure is performed to generate the
Tanner graph of an LDPC/MDPC code with the (N −K )×N
parity-check matrix HHH in which hij is the element located at
row i and column j.
• Draw N − K check nodes (squares) and N bit nodes
(circles).

• Connect check node i to bit node j if hij = 1.
The number of edges that are connected to check node i (i.e.,
degree of the node) indicates the number of codeword bits
that are involved in the ith parity-check equation (defined by
row i ofHHH ).

The BF decoding algorithm works as follows:
1) We generate the Tanner graph of the code using

the parity-check matrix HHH (i.e., private key). We set
iter = 1.

2) Given a specific vector rrr = (r1, r2, . . . , rN ) (that
should be decoded), label each bit node j of the Tanner
graph with rj (1 ≤ j ≤ N ).

3) We compute the result of the parity-check equation
for every row of HHH , i.e., 1i =

∑N
j=1 hijrj mod 2, for

1 ≤ i ≤ N − K .
4) If 1i = 0 ∀i ∈ {1, 2, . . . ,N − K }, we return rrr as the

decoded vector and terminate the algorithm.
5) If 1i ̸= 0, we label the relevant check node i with

‘‘unsatisfied’’.
6) Make another label lj for each bit node j, where lj is the

number of check nodes that (1) have a connection to bit
node j, and (2) are labeled with ‘‘unsatisfied’’.

7) For each bit node j, if lj is greater than a predetermined
threshold b, then we flip rj and update rrr .

8) Set iter = iter+1. If iter is greater than a threshold and
∃ i ∈ {1, 2, . . . ,N − K } such that 1i ̸= 0, we return
‘‘failure’’ and terminate the algorithm.

9) With the updated rrr , we jump to step 2.
Fig. 3 shows an example of how the BF algorithm decodes a
received vector rrr = [0 1 0 0 1 0 0] that is corresponding with
the codeword zzz = [0 0 0 0 0 0 0], i.e., eee = [0 1 0 0 1 0 0].
Based on the presented procedure, the BF decoding

algorithm is probabilistic. Decoding failures may occur
because the maximum number of iterations may be reached
before all the parity-check equations are satisfied. On the
other hand, increasing the threshold determined for the
number of iterations degrades the decoding performance
in terms of speed. Specifically, the number of iterations

is automatically greater for MDPC codes with a larger w
than for LDPC codes. Intuitively, the complexity of the
BF algorithm increases with w. To mitigate this issue,
Misoczki et al. proposed modifying the original BF algorithm
to select the threshold b. In the proposed approach, instead
of a predetermined value of b, it is updated at each iteration
using b = MAXu + δ, where MAXu is the maximum
number of unsatisfied parity-check equations at that iteration,
and δ is a small integer. This approach is shown to be
effective in reducing the overall number of iterations since it
allows flipping a larger number of bits at each iteration [44].
Moreover, the algorithm can be restarted in case of a decoding
failure by reducing δ by 1. In [44], the optimal initial value of
δ is empirically determined as 5 to approximately reduce the
number of iterations from 65 to 10.

2) MITIGATING THE DFR ISSUE
Although the new variant of the BF algorithm proposed by
Misoczki et al. results in performance improvement of the
BF-based decoder, the QC-MDPC variant still suffers from
the DFR issue. The following three approaches have been
proposed in [44] to mitigate the DFR issue.
• Approach 1: Conservative selection of the number of
errors t and other system parameters such as N and w
so that DFR becomes negligible (e.g., less than 10−7).

• Approach 2: If the decoding process fails for a specific
ciphertext, a more sophisticated decoding algorithm
with better error correction capability is used. However,
this approach increases the decoder’s complexity.

• Approach 3: If the decoding process fails for a specific
ciphertext, a new encryption will be requested (i.e.,
a retransmission request). Because a CCA2-conversion
module is used, the two transmitted ciphertexts (associ-
ated with the encryption of the same message) are like
random sequences (they are indistinguishable). Thus,
an adversary cannot gain any information from this
retransmission.

However, the last approach can make the scheme vulner-
able to reaction attacks since the decoder informs the sender
about the result of the last decoding procedure. A potential
inception of such an attack is detailed below:

D. REACTION ATTACK ON QC-MDPC VARIANT
Employing a decoder with a non-negligible DFR may affect
the QC-MDPC variant’s security. Decoders with a noticeable
DFR enable attackers to conduct a reaction attack. The first
reaction attack was proposed by Guo et al. in 2016 [43].
Unlike other reaction attacks aiming to recover a single
encrypted message, this attack targets recovering the private
key in the QC-MDPC variant of the McEliece scheme with
the BF decoder. Thus, it can be categorized as a structural
attack as well. In this attack, it is assumed that N = 2K and
n0 = 2. In this case, HHH is written in the form of [HHH0 HHH1].
Moreover, it is assumed that HHH0 and HHH1 have equal row
weights, i.e., w0 = w1. Considering these assumptions, this
attack targets to recoverHHH0 (i.e., the first block of the private
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FIGURE 3. Tanner graph for a specific parity check matrix HHH and the BF decoding procedure on vector rrr = [0 1 0 0 1 0 0] that is
corresponding with the codeword zzz = [0 0 0 0 0 0 0].

key) from GGG (i.e., public key) by sending a large number of
encryptedmessages and observing the reaction of the decoder
at each decryption. Using HHH0, the attacker can obtain the
remaining part of HHH (i.e., HHH1) by doing some linear algebra
operations, such that GGGHHHT

= 000. In this regard, we have
[IIIK |QQQK×K ][HHH0 HHH1]T = 000 in which both HHH0 and HHH1 are
K × K (because for N = 2K , we have p = N − K = K ).
This results in HHHT

0 +QQQHHH
T
1 = 000 since IIIKHHHT

0 = HHHT
0 . Finally,

the attacker obtainsHHH1 = [QQQ−1HHHT
0 ]
T .

To find HHH0, Guo et al. showed that there exists a strong
correlation between the probability of decoding failure (for
some chosen ciphertexts in which the error vector eee has t 1s
located at pairwise distance d) and the existence of a distance
d between two 1s in the first row of HHH0. Obtaining the first
row of HHH0 is sufficient for the attacker to recover the whole
HHH0. In simple words, if there are two ‘1’ digits in the first
row of HHH0 at a distance d , then the probability of decoding
failure is much smaller (in contrast with a situation when
distance d does not exist between any two 1s.) Based on this
finding, they first empirically computed the decoding failure
probability for different values of d . Then, each d is classified
into one of the two classes of ‘‘existing’’ and ‘‘not existing’’
based on the computed probability (i.e., a distance d with
a small failure probability is categorized as ‘‘existing’’ and
vice versa). This procedure can help the attacker reconstruct
the first row of HHH0 for a successful private key recovery in
minutes [43].

Similarly, the second approach may also create an oppor-
tunity for the attacker to obtain information about the result
of decoding procedures through conducting side-channel
attacks. For example, if approach 2 is adopted, an attacker

can monitor the processing time taken by the decoder to
decode a ciphertext and conclude whether the decoder had
an unsuccessful decoding attempt (in the decoding of the
previously-sent ciphertext). In case of failure, the decoder
switches to another decoding technique, causingmore latency
than successful decoding. Thus, the first approach seems the
most secure among the two. To fully address this decoding
issue, the research community investigated the design of
efficient decoders for QC-MDPC codes to achieve negligible
DFRs [27], [48], [49].

Various alternative code-based cryptosystems are built
on top of the aforementioned schemes, especially the ones
included in the NIST’s standardization project [17]. In the
next section, we will discuss these state-of-the-art variants,
including Classic McEliece (CM) [21] and Bit Flipping
Key Encapsulation Scheme (BIKE) [20]). Both schemes are
included in Round 3 of NIST’s standardization project and are
potential candidates for the post-quantum key encapsulation
mechanism.

E. BIT FLIPPING KEY ENCAPSULATION SCHEME (BIKE)
BIKE [20] is another code-based KEM qualified in the third
round of theNIST PQC standardization project as an alternate
candidate and is based on QC-MDPC code. It leverages
the Fujisaki-Okamoto (FO) CCA transform [50], [51] and
the state-of-the-art Black-Gray-Flip (BGF) decoder [49] to
address the IND-CCA insecurity issue of the QC-MDPC
variant. Three different versions of the BIKE scheme exist,
namely, BIKE-1, BIKE-2, and BIKE-3, that target the
heterogeneous needs of different cryptographic applications.
Following NIST’s recommendation, BIKE has converged
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to a single version that relies heavily on BIKE-2. In the
following, we review the final version of BIKE (i.e.,
spec v4.2 available in [20]) and succinctly describe its
subroutines.

1) DEFINITIONS
We briefly present some definitions provided in the BIKE
technical specification that are required to understand the
subroutines of BIKE.

1) System Parameters:System Parameters:System Parameters: Based on the required level of
security (denoted by λ), system parameters r , w, t , and
l are determined.
• r is the length of circulant blocks (equivalent to p
as discussed earlier). Given r = N/n0 and n0 =
2 in BIKE, we have N = 2r . Moreover, since
r = N − K , we have N = 2r or r = K . r should
be sufficiently large to result in (together with w
and t) a low level of DFR such that the required
security level λ is finally met (in BIKE, three
security levels 1, 3, and 5 have been considered,
corresponding to the security of AES-128, AES-
192, and AES-256, respectively. To satisfy each
level, a separate set of system parameters are
recommended).

• w is the row weight of the parity check matrix
which is an even positive integer (i.e., w/2 is odd).

• t is the Hamming weight of the error vector which
is a positive integer.

• l is the size of the generated (shared) symmetric
key which is a positive integer.

2) Hash Functions:Hash Functions:Hash Functions: In BIKE, three hash functions H,
L, and K are uniformly selected at random that are
modeled as random oracles. H takes an l-bit sequence
and generates a 2r-bit sequence of Hamming weight
t (i.e., H : {0, 1}l −→ {0, 1}2r

|t|). Similarly for L
and K we have L : {0, 1}2r −→ {0, 1}l and K :
{0, 1}2l+r −→ {0, 1}l , respectively.

BIKE consists of three subroutines, key-generation, encap-
sulation, and decapsulation, depicted in Fig. 4. The ultimate
result of these subroutines is a symmetric key secretly shared
between two communicating parties. These subroutines work
as follows:

2) KEY GENERATION SUBROUTINE
The KeyGen subroutine takes no input (except the system
parameters) and generates a public-private key.
• Private Key:Private Key:Private Key: Generate hhh0,hhh1 ←− R both of weight
|hhh0| = |hhh1| = w/2, where R is a cyclic polynomial
ring F2[X ]/(X r − 1) (equivalently, hhh0 and hhh1 can be
considered as r × 1 column vectors). Then, select σ

at random (uniformly) from the message space M =

{0, 1}l . Finally, set the private key as sksksk = (hhh0,hhh1, σ ).
• Public Key:Public Key:Public Key: Compute hhh = hhh1hhh

−1
0 and send it to the other

party as the public key pkpkpk .

3) ENCAPSULATION SUBROUTINE
The Encaps subroutine takes the public key hhh as input and
generates a ciphertext CCC (that is sent to the other party) and
a symmetric key KKK s that is remained secret and used for
encrypting data. The following procedure is performed in this
subroutine (see Fig. 4):
• Select an l − bit vector mmm from the message space M
uniformly at random.

• Compute (eee0,eee1) = H(mmm) where eee0 and eee1 are error
vectors of r bits such that |eee0| + |eee1| = t .

• Using the obtained error vectors eee0 and eee1, compute
CCC = (CCC0,CCC1) = (eee0 + eee1hhh,mmm ⊕ L(eee0,eee1)) and send
it to the other party.

• Compute KKK s = K(mmm,CCC) as the secret symmetric key.

4) DECAPSULATION SUBROUTINE
TheDecaps subroutine takes the private keypkpkpk and ciphertext
CCC as input and generates the symmetric key KKK s or a failure
symbol ⊥. The following procedure is performed in this
subroutine:
• Compute the syndrome SSS = CCC0hhh0.
• Decode SSS using the Black-Gray-Flip decoder (that will
be reviewed in the next subsection) to obtain the error
vectors eee′0 and eee′1. If |eee

′

0| + |eee
′

1| ̸= t or the decoding
procedure fails, return ⊥ and halt.

• Compute mmm′ = CCC1 ⊕ L(eee′0,eee
′

1). If H(mmm′) ̸= (eee′0,eee
′

1), set
mmm′ = σ .

• KKK s = K(mmm′,CCC).
Based on the above subroutines, two communicating parties
can securely establish the same (symmetric) key KKK s. If the
legitimate device (who owns the private key) receives a
valid ciphertext CCC , it will be able to compute KKK s from CCC .
However, any malicious attempt to recover KKK s without the
knowledge of the private key fails because decoding the
received ciphertext using syndromeCCC0hhh0 for an arbitrary QC
code is infeasible (i.e., the SD problem is NP-complete).
Moreover, the legitimate receiver can verify the integrity of
CCC0 (that is critical in recovering the shared key) through the
confirmation ofH(mmm′) = (eee′0,eee

′

1).
Although the submitters of BIKE provide specific imple-

mentation details [20], we present the essential aspects in the
next subsection to avoid confusion.

5) DETAILS ON BIKE
6) HOW IS THE ENCODING PROCEDURE PERFORMED IN
THE Encaps SUBROUTINE?
The BIKE scheme is based on Niederreiter’s framework [52]
(like CM), so the encoding procedure is performed using
the parity-check matrix. In BIKE, the parity-check matrix
is deployed in its systematic format. Thus, for the encoding
procedure, we have

CCC0 =
[
eee0 eee1

]
·HHHT
=

[
eee0 eee1

] [
III r

HHH1HHH
−1
0

]
Note thatHHHT is a 2r × r matrix.
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FIGURE 4. Block diagram of the BIKE scheme. Alice uses Bob’s public key to securely generate a session key KKK s. Once Bob receives the
ciphertext CCC , he can obtain the same KKK s as Alice generated (it should be mentioned that BIKE does not receive any plaintext as input
because it is a KEM scheme used by two entities to secretly generate a shared key). After the shared session key generation, both parties
can use KKK s to communicate their message through a data encryption mechanism (DEM).

This is becauseN = r+K = 2r (the dimension ofHHH1HHH
−1
0

is r × r). Thus, the final encoded vector is

CCC0 = eee0 + eee1HHH1HHH
−1
0 (9)

Equation 9 can be written in the following form since both
HHH0 and HHH1 are circulant blocks that can be described using
their first row.

CCC0 = eee0 + eee1hhh1hhh
−1
0 = eee0 + eee1hhh (10)

7) WHY IS THE DECODING PROCEDURE PERFORMED
USING CCC0hhh0?
In the Decaps subroutine, the decoder module needs to
recover (eee0,eee1) from the received ciphertext CCC0. To do this,
assume we have a QC code C with parity-check and generator
matrices of HHH =

[
HHH0 HHH1

]
and GGG =

[
HHHT

1 HHHT
0

]
, respectively

(C is a valid code since the condition GGGHHHT
= 000 is satisfied

for these matrices). Suppose that we have used C to encode
the plaintext uuu = [u1 u2 . . . ur ] (note that K = r in this code
since n0 = 2). Thus, the generated codeword uuu.GGG is equal to[
uuuHHHT

1 uuuHHHT
0

]
(i.e., a 1 × N vector, where N = 2r). Assume

this codeword experiences an error vector eee of length 2r and
weight t that can be written in the form of eee =

[
eee0 eee1

]
, where

eee0 and eee1 are 1 × r vectors such that |eee0| + |eee1| = t . In this
case, if the result is vector rrr , we have the following:

rrr = u.Gu.Gu.G+ eee =
[
uuuHHHT

1 + eee0 uuuHHH
T
0 + eee1

]
(11)

Suppose we compute the syndrome of rrr . In this case, we will
obtain the following by using the fact that the sum of
the transpose of matrices is equal to the transpose of the
sum of two matrices and by performing the simple matrix
multiplication (note that if MMM = [MMM ij] is a matrix consisted
of smaller blocksMMM ij, then,MMMT

= [MMMT
ji ]).

SSS = HHH · rrrT =
[
HHH0 HHH1

]
.

[
(uuuHHHT

1 + eee0)
T

(uuuHHHT
0 + eee1)

T

]
= HHH0((uuuHHHT

1 )
T
+ eeeT0 )+HHH1((uuuHHHT

0 )
T
+ eeeT1 )

(12)

Since HHH0 and HHH1 are circulant blocks, we have HHH0HHH1 =

HHH1HHH0, (uuuHHHT
1 )
T
= HHH1uuuT , and (uuuHHHT

0 )
T
= HHH0uuuT . Thus, the

syndrome SSS is written as follows:

SSS = HHH0HHH1uuuT +HHH0HHH1uuuT +HHH0eeeT0 +HHH1eeeT1
= HHH0eeeT0 +HHH1eeeT1 (13)

This follows from the fact that addition is performed in
module 2.
The above syndrome can be applied to a BF-based decoder

(or any other appropriate decoder) to obtain eee0 and eee1. Now,
we investigate the encoded vector CCC0 = eee0 + eee1hhh1hhh

−1
0

generated in the BIKE’s Encaps subroutine. If we compute
CCC0hhh0, the result will be equivalent to the syndrome SSS,
as shown in Eq. 13. Note that the circulant blocks HHH0 and
HHH1 can be described using hhh0 and hhh1, respectively. hhh0 and
hhh1 are considered as r×1 column vectors, i.e.,HHH0 andHHH1 are
constructed from hhh0 and hhh1 column-wise.
Therefore, we recover eee0 and eee1 from SSS = CCC0hhh0 by

applying it to a BF-based decoder that works using HHH =[
HHH0 HHH1

]
. This is exactly what the decoder module deployed

in Decaps does (note that the decoder takes hhh0 and hhh1 as
input to decode SSS = CCC0hhh0). However, since the BF decoder
can lead to higher DFR, we discuss the Black-Gray-Flip
(BGF) decoder recommended to be deployed in the Decaps
subroutine of BIKE in the following subsection.

8) BGF DECODER
The BGF decoder [49] is a variant of the Black-Gray (BG)
decoder [48], [53], which is a complex version of the BF
decoder. The main difference between BG and the original
BF decoder is that a BG decoder may flip back the value
of a bit (variable) node (or an error bit, equivalently) if
it is convinced that the bit was mistakenly flipped in the
previous iteration. A simple version is the Time-to-Live
(TTL) mechanism. However, in BG, a more complex version
of TTL is used. In this version, the decoder creates two lists
of bit nodes (called Black and Gray lists) to keep track of
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FIGURE 5. Black-Gray-Flip (BGF) decoder and its relation to Black-Gray
(BG) and Bit Flip (BF) decoders.

those bit flips that are regarded as ‘‘uncertain’’ [54]. The
first list (i.e., Black) maintains the positions of those bit
nodes that were just flipped. However, the second list (i.e.,
Gray) keeps positions of bit nodes for which the number of
unsatisfied parity checks is close to the threshold b but below
it (i.e., greater than b − δ, where δ is a small value chosen
empirically).

In every iteration of BG, the following three steps are
performed. In step 1, the decoder decides whether or not
the value of a bit node should be flipped by comparing
the corresponding unsatisfied parity checks with threshold b
(akin to a single iteration of the BF decoder). In addition,
it computes the black and gray lists. In steps 2 and 3,
another iteration of BF is performed, but only the bit nodes
in the black and gray lists are considered (for steps 2 and 3,
respectively). In these steps, the value of black/gray bit nodes
is updated if the number of their corresponding unsatisfied
parity checks is greater than a newly set threshold = [(d +
1)/2] + 1 (where d = w/2 is a positive odd integer, and
the row weight w is a positive even integer), to gain more
confidence in the flipped bits [49]. Finally, the value of the
syndrome is updated based on the obtained error vector. If it
is equal to zero, the obtained error vector is returned, and
the algorithm terminates. Otherwise, if the current iteration
number is less than the maximum number of iterations,
another iteration is performed; otherwise, ⊥ is returned, and
the algorithm terminates.

The BGF decoder (deployed in BIKE), as depicted in
Fig. 5, is similar to BG. It starts with one iteration of the
BG decoder but proceeds with several BF iterations until
either condition is met: The syndrome vector becomes zero,
or the maximum number of iterations is reached (see Fig. 5).
It translates to less number of required steps to achieve lower
DFR as compared with the BG decoder. For example, for
NI iterations, BG would essentially need 3 × NI steps (NI
represents the number of iterations taken to recover all errors),
whereas BGF needs 3× (NI − 1) steps [49].

The BGF decoder has been identified as the most
efficient variant of the BF algorithm in terms of DFR and
complexity [49]. In BIKE, the thresholds used in BGF
are computed using the functions tuned through extensive
simulations. These threshold values are considered important
system parameters since they determine the level of DFR in

a decoder. In BIKE, the threshold values are obtained based
on the target DFRs that are 2−128, 2−192 and 2−256 for the
respective levels of security (i.e., λ).
The formal proof of a negligible DFR is a perplexing

task (no mathematical model has been proposed yet). Thus,
in BIKE, the corresponding threshold values for different
DFR levels are estimated through extensive simulations and
extrapolations [55], [56].

9) BIKE SECURITY AGAINST REACTION ATTACKS
The QC-MDPC variant of the McEliece is vulnerable to a
specific reaction attack that exploits the decoding failures
to recover the private key [43]. This vulnerability has been
seriously considered in BIKE since it deploys a QC-MDPC
encoder. In this regard, BIKE submitters have proposed two
approaches to address the reaction attack.
• Approach 1: This approach assumes that the party who
sends the public key to initiate a session (i.e., the
private key owner) generates a fresh public-private key
pair for every session. In other words, this party never
decapsulates more than one ciphertext with a single
private key. Therefore, reaction-based key recovery
attacks like the one proposed in [43] are no longer
feasible because they need many observations of the
decoder’s reaction based on the same key pair. This
approach is suitable for synchronous communication
protocols (e.g., TLS) in which the immediate refreshing
of the public-private key pair is possible. As a result,
the mechanism needs to be IND-CPA secure only since
CCA attacks are automatically addressed in such usage
models. Moreover, this usage model provides both
backward and forward secrecy.

• Approach 2: This approach is appropriate when a public-
private key pair is reused for two or more symmetric
key exchanges (i.e., two or more runs of the BIKE algo-
rithm). It can occur either intentionally or inadvertently.
For example, in asynchronous communication protocols
(e.g., email), adoption of approach 1 is not feasible since
the party that is sending data (through aDEMunit) needs
a fresh version of the public key, which may not be
provided yet by the other party (e.g., the other party is
offline). In such scenarios, the deployed decoder must
offer a negligible DFR, i.e., the system parameters r , w,
and t must be carefully selected such that the DFR is low
enough to match the security requirement.

The first approach results in a high level of latency
due to the key generation procedure (and publishing of
the updated public key) that needs to be performed at the
beginning of each symmetric key exchange session. It can
be a considerable issue for the key generation phase to take
longer than the encapsulation procedure because it includes
the computation of an inversion. According to the imple-
mentation results provided in the BIKE specification [20],
the key generation procedure may take 2 to 4 times longer
than the encapsulation procedure. Based on these results, the
key generation phase shares 20 to 30 percent (approximately)
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in the overall latency. It indicates that updating the public-
private key pairs for each key exchange session results in
a 25 to 40 percent increase in latency. The large latency
resulting from the decapsulation procedure partiallymitigates
this issue. Moreover, in the BIKE technical specification,
deploying a batch key generation mechanism is proposed to
allow computing only one polynomial inversion for every
F key generation. Therefore, KeyGen is accelerated when
establishing shared keys.

Moreover, reusing the key pair a few times does not result
in an effective threat since the reaction-based key recovery
attacks [43] rely on observing many decoding failures. Thus,
adopting approach 2 with a non-negligible DFR seems secure
if the number of key reuses is small.

10) BIKE SECURITY AGAINST SIDE-CHANNEL ATTACKS
In a side-channel attack, the attacker attempts to gain knowl-
edge about a cryptosystem by observing the implementation-
related parameters of the system (e.g., power consumption,
timing information, etc.) rather than directly targeting the
weaknesses that may exist in the system architecture [57].
In a specific class of side-channel attacks (timing attacks),
the attacker targets to obtain knowledge by measuring
the time taken to execute different algorithms, processes,
or subroutines of the cryptosystem. This type of side-
channel attack can be conducted on the QC-MDPC variant
of the McEliece scheme by observing the time taken to
decode different ciphertexts. Even if the decoder performs
an implicit rejection when the decoding fails (such that the
rejection brings no useful knowledge to an attacker), it is
still possible for the attacker to identify decoding failures
with high probability by measuring the decoding time. BF-
based decoders have an iterative structure that causes the
algorithm’s run time to vary, i.e., the run time depends on
the number of iterations required to find the decoded vector
successfully. Thus, if it takes longer than expected for the
decoding algorithm to terminate, the attacker (who monitors
the run time) will know that a decoding failure has occurred.

In the BIKE specification, it is proposed to use a constant-
time implementation of the BGF decoder to address side-
channel attacks. In other words, the number of iterations
is fixed for decoding different ciphertexts. Thus, based on
the employed implicit-rejection version of Fujisaki-Okamoto
transformation [50], [51], any malicious attempt to identify
decoding failures will be unsuccessful. Using fresh public-
private key pairs addresses the issue of reaction attacks
(including side-channel attacks). However, as discussed in
the previous subsection, this solution is not feasible for
asynchronous applications. Thus, the constant-time imple-
mentation approach must be adopted to avoid side-channel
attacks.

11) IMPACT OF WEAK-KEYS ON BIKE
Security of BIKE (IND-CCA security) is dependent upon the
low DFR of the deployed decoder (e.g., BGF decoder as used

in BIKE). For example, authors in [27] have argued that DFR
needs to be as low as 2−λ for λ-bit of IND-CCA security.
However, interestingly, recent research has pointed out the
existence of some specific (private) keys that negatively
impact the DFR and the IND-CCA security. Such keys are
referred to as weak-keys. For example, Drucker et al. [48]
have argued that IND-CCA security of BIKE is difficult to
claim without first proving (or disproving) the existence of
weak-keys and formally quantifying their impact on DFR.
Sendrier et al. [58] have demonstrated through empirical
analysis that the average DFR is not hugely impacted by
the known weak-keys. Thus, Drucker et al. argued that the
existence of weak-keys is not critical to IND-CCA claims.
However, this analysis is insufficient to claim the IND-
CCA security of the BIKE. Subsequently, they conducted
a similar analysis with the BGF decoder (see [59] for
details) and argued that weak-keys do not significantly impact
the DFR. However, another similar work [60] conducted
a similar analysis with the BFG decoder and concluded
different results compared with [59]. More precisely, this
work (i.e., [60]) argued, based upon their analysis, that weak-
keys could be a potential threat to IND-CCA security of
BIKE. However, this difference could be using different
parameters and platforms for their respective analysis. Our
analysis suggests that some of the parameters in [59] are
unclear, and subsequent empirical analysis with similar
parameters may help ascertain weak-keys impact. Both these
works are empirical, making it difficult to favor one or the
other without understanding the root cause of the difference.

V. CONCLUSION AND FUTURE WORK
In this paper, we investigated the BIKE, i.e., a post-quantum
key encapsulation scheme that has recently progressed to
Round 4 of the NIST PQC standardization project and is
likely to be standardized as a general-purpose KEM. This
paper offers the necessary preliminaries and comprehends the
orthodox ME cryptosystem and its contemporary variations
based on QC-MDPC (e.g., BIKE) for fledgling researchers,
security architects, and developers. We also comprehensively
reviewed various possible attacks on such code-based
cryptosystems and described the potential reasonings for
the success or failure of such attacks. We comprehensively
elaborated the working principles of the Bit-Flipping decoder
and its state-of-the-art variants, such as the BGF decoder,
and its role in facilitating certain types of reaction and
side-channel attacks in BIKE. Our analysis of recent
literature suggests that the weak-key issue has been described
differently by different research works and demands a
subsequent analysis by first benchmarking the approach,
parameters, and potentially the data (e.g., ciphertexts and
key-pairs used in DFR analysis). Although there have been
no benchmarking efforts, we identify one dataset [61] for
future analysis. Similarly, our review of related literature
suggests no comparisons of BIKE with other candidates
shortlisted in Round 4. We believe such a comparison may
relieve interesting insights that may help in further tweaking
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this scheme. Similarly, making BIKE an authenticated-KEM
(AKEM) is also currently overlooked and thus may open the
door to some attacks that leverage the lack of authentication
by design (see [62] for details). AKEM ensures that the party
who initiates the symmetric key generation process (owner
of the private key) can authenticate the other party when a
ciphertext CCC is received to ensure the sender’s legitimacy.
It will help BIKE (or A-BIKE) to alleviate the possibility of
various attacks.
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