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Exciton condensation in biased bilayer graphene
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We consider suspended bilayer graphene under applied perpendicular electric bias field that is known to
generate a single particle gap 2� and a related electric polarization P . We argue that the bias also drives a
quantum phase transition from band insulator to superfluid exciton condensate. The transition occurs when
the exciton binding energy exceeds the band gap 2�. We predict the critical bias (converted to band gap),
�c ≈ 60 meV, below which the excitons condense. The critical temperature, Tc(�), is maximum at � ≈ 25 meV,
T max

c ≈ 115 K, decreasing significantly at smaller � due to thermal screening. Entering the condensate phase,
the superfluid transition is accompanied by a cusp in the electric polarization P (�) at � → �c, which provides
a striking testable signature. Additionally, we find that the condensate prefers to form a pair density wave.
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I. INTRODUCTION

Excitonic condensates in two-dimensional (2D) materials
promise novel superfluid [1–5] or topological [6–11] prop-
erties, and have thereby attracted considerable theoretical
and experimental attention. Moreover, due to these novel
transport behaviors, excitonic condensates promise a route to
future technological advancements. So far, however, exper-
imental realizations of the desired condensate have proven
problematic.

Theoretically it is convenient to classify exciton conden-
sates (also known as exciton insulators) by the nature of the
corresponding interaction-driven quantum phase transition.
Class I corresponds to the (semi)metal-to-exciton condensate
phase transition [12–14]. In this case there are simultaneous
Fermi surfaces of electrons and holes. If the Fermi surfaces
are identical, an arbitrarily weak attraction between electrons
and holes leads to condensation. This situation is analogous
to BCS superconductivity. Class II corresponds to the band
insulator-to-exciton condensate phase transition. In this case
there is no Fermi surface and the interaction must exceed a
critical value to generate the condensate.

Graphene layers, with their very near particle-hole symme-
try, have provided a hunting ground for exciton condensation.
Previous theoretical considerations include bilayer graphene
(BLG), unbiased with AB stacking [15–17] or biased with AA
stacking [18,19]. There have been no corresponding experi-
mental detections of condensation.

Another set of proposals are graphene double layers
[20–24] or double bilayers [25–28], separated by a dielec-
tric. Theoretical predictions for the Berezinskii-Kosterlitz-
Thouless (BKT) transition temperature for such systems vary
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significantly from room temperature in Ref. [20] to 1 mK in
Refs. [23,24]; the key difference arises due to the inclusion
[23,24] or exclusion [20] of Coulomb screening. Experi-
mentally, there is one recent indirect indication of possible
zero-magnetic field exciton condensation in double-bilayer
graphene with WSe2 spacer [29] and also in an InAs/GaSb
bilayer [30], with both scenarios belonging to Class I. On
the other hand, there have been several experimental reports
of exciton condensation in quantum Hall regime in strong
magnetic field for double-layer graphene [31–33] or other
double-layer systems [4,34,35]; such excitonic pairing occurs
between different Landau levels.

Most, if not all, previous studies of exciton condensation
have been aimed at class I. However, class I is necessarily a
many-body problem and progress often requires uncontrolled
approximations. Here, instead, we consider condensation in
class II. A striking technical advantage is that we only need
to consider a two-body problem. In class II the condition of
exciton condensation is the equality of the exciton binding en-
ergy εb to the single-particle band gap, 2�. The present work
is focused on biased BLG. Unbiased BLG is a semimetal,
however, application of an electric bias (perpendicular electric
field) opens a single-particle band gap 2� [36], placing it
within class II. The bias is created by symmetric metallic gates
above and below the plane.

A careful treatment of the screened attractive electron-
hole Coulomb interaction is essential to make quantitative
predictions of the binding energy and hence of the conden-
sation transition. To this end, we account for three sources of
screening: (i) screening by metallic gates placed a distance
d above and below the BLG plane; (ii) dielectric screening
due to a material between BLG and the gates; and (iii) BLG
self-screening and retardation thereof, as captured via the
random phase approximation (RPA). We find that all three
sources of screening significantly influence, i.e., reduce, the
condensation critical temperature. To this end, we propose
idealized experimental setups to allow us to maximize the
critical temperature. A key development in this work is our
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treatment of the retardation of the self-screening, i.e., retarda-
tion of the screened Coulomb potential.

The key development of this work is that we are able to
use reliable two-body techniques to describe excitonic bounds
states in a band insulator and account for environmental
sources of screening; treat dynamically screening/retardation.
This combination affords a reliable prediction of the critical
temperature and how it may be optimized with respect to
system parameters. As a corollary, our theory explains why
previous experimental studies of bilayer graphene and related
materials has not achieved exciton condensation. Entering the
exciton condensate phase, we lose this quantitative control
over the problem, and instead resort to mean-field theory. We
note that the exciton condensate is a neutral superfluid, and
that experimentally distinguishing between this and the band
insulator phase is subtle. Using our mean-field description,
we establish two key experimental signatures of the excitonic
condensate.

II. METHODS

We consider biased bilayer graphene for which the low-
energy single-particle Hamiltonian can be reduced to [37]

H0 =
(

� − μ − p2
−

2m

− p2
+

2m −� − μ

)
. (1)

H0 is written in terms of {A1, B2} orbitals, with A, B refer-
ring to graphene sublattice and subscripts 1,2 referring to
layers. Here p± = τ px ± ipy, p is the in-plane momentum,
τ = ±1 the valley quantum number, m ≈ 0.032me the effec-
tive mass, and � is proportional to the bias electric field,
� ∝ E , [38]. The chemical potential μ is set to zero (half-
filling) for the rest of this work. There are corrections to
(1) related to electron-hole asymmetry, trigonal warping, etc.
However, influence of all these corrections on the exciton
is negligible at � < 60 meV, see Ref. [39], so here we dis-
regard the corrections. Hence electron and hole dispersions,
denoted ω(±)

p , are symmetric about μ = 0, i.e., ω(±)
p = ±ωp,

with ωp =
√

�2 + p4/(4m2). Application of the bias induces
electric polarization along the field. If a ≈ 0.3 nm is the sep-
aration between the planes and e is the electron charge, the
electric dipole moment per unit area is |e|aP�, with the layer
polarization P�, due to the bias ∝ �, given by

P� = 4
∫

d2 p

(2π )2
(|β (−)

p |2 − |α(−)
p |) = 2m�

π
ln

	

|�| . (2)

The factor 4 is due to the spin and valley degeneracy, α(−)
p,τ and

β (−)
p,τ are upper and lower components of the negative energy

eigenfunction (for a given valley), and 	 is the ultraviolet en-
ergy cutoff. We confirm via a direct calculation that including
the next two orbitals, i.e., {A2, B1}, naturally cuts off of the
UV divergence; the choice 	 = 0.5 eV in (2) is consistent
with the direct four-orbital calculation.

Attraction between electron and hole is due to the screened
Coulomb interaction

Vq,iξ = − 2πe2

εrq/ϒq − 2πe2�(q, iξ, T )
. (3)

FIG. 1. Screening factor vs momentum for � = 10 meV, d =
1000 nm, εr = 1. The factor is presented for two imaginary frequen-
cies, ξ = 0, ξ = 2�, and for two temperatures, T = 0, T = 3�/4 =
87 K.

Here q is the momentum transfer, ξ is the imaginary fre-
quency transfer, and T is temperature. Other parameters are:
(i) ϒp = tanh(pd ) accounts for the metallic gate screening,
at a distance d above and below the BLG plane; (ii) εr is
the dielectric constant of the substrate/superstrate material
between BLG and gates; and (iii) �(q, iξ, T ) is the polariza-
tion operator of BLG, with details presented in Appendix B.
To demonstrate key features of (3), we introduce a screening
factor, defined as the ratio of the screened interaction (3) to
the bare Coulomb interaction, −2πe2/(εrq). The screening
factor provides a measure of the effectiveness of screening.
Figure 1 demonstrates that the screening very strongly de-
pends on frequency and on temperature. Notably, thermally
excited electrons practically fully screen the static interaction,
i.e. the screening factor becomes vanishingly small.

A frequency dependence of Vq,iξ corresponds to retarda-
tion of the interaction in the time-domain. For a weakly
bound exciton in an insulator, with binding energy εb � 2�,
retardation is not important [39]. However, retardation be-
comes essential for strongly bound excitons εb ∼ 2�. We
point out that the condition for exciton condensation, εb =
2�, necessarily implies strongly bound excitons and there-
fore retardation is important. To properly treat retardation in
the exciton binding problem, one has to employ the Bethe-
Salpeter equation (BSE) [40] (see Appendix D)

χξn,k = −T
∑

m

∫
d2k′

(2π )2

Vk−k′,i(ξn−ξm )Z
τ ′,τ
k,k′

(E/2 − ωk)2 + ξ 2
n

χξm,k′ , (4)

written in terms of the amputated two-particle Green’s func-
tion χξn,k. Here E = 2� − εb, ξn = (2n + 1)πT and Zτ ′,τ

k,k′ =
〈ψ (−)

k,τ ′ |ψ (−)
k′,τ ′ 〉〈ψ (+)

k′,τ |ψ (+)
k,τ

〉 is the vertex form factor, with ψ
(±)
k,τ

denoting the single-particle wave functions for conduction
and valence bands of (1), see also Appendix C. The total
momentum of the electron and hole is encoded in the valley
indices, and is either zero for τ = τ ′ (intravalley pairing)
or nonzero for τ = −τ ′ (intervalley pairing), as depicted
in Fig. 2. The form factors do not distinguish spin, yet
they weakly distinguish between intra- and intervalley pair-
ing; the implications for the condensate phase is discussed
later. The interaction has an SU(2) × SU(2) spin symmetry;
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FIG. 2. Inter- and intravalley excitons: intravalley have zero total
momentum P = 0, while intervalley have P = 2K, with K the valley
momentum.

correspondingly, the exciton bound state has an SO(4) spin
symmetry relating the spin-singlet and -triplet configurations.

We pause to mention that under an instantaneous inter-
action, Vk−k′ , e.g., as obtained by ignoring the frequency
dependence of screening, the exciton can be described
by a wave function that obeys the Lippmann-Schwinger
equation (LSE),

(E0 − 2ωk)�k =
∫

d2k′

(2π )2
Vk−k′Zτ ′,τ

k,k′ tanh
(ωk′

2T

)
�k′ . (5)

LSE is a linear eigenvalue problem and can be easily solved
to find the eigenenergy E0 and eigenfunction �k; solution
of (5) shows that the Lippmann-Schwinger wave function
�k is well localized in the momentum space, k �

√
2m�.

This corresponds to the exciton spatial size r ∼ 1/
√

2m�. We
see a hint that the wave-function approach is problematic at
� → 0. We denote the binding energy computed from LSE
as ε0

b = 2� − E0.

III. PHASE DIAGRAM

Via direct computation of Eq. (4), the intervalley s-wave
exciton is found to have the lowest energy for � > 0; we
henceforth specialize to this state. Let us start from T = 0.
Figure 3(a) shows the exciton binding energy vs the gap pa-
rameter � for εr = 1 and three values of distance to the gate
d = {20, 100, 1000} nm; the solid and dashed lines are com-
puted from the BSE (4) and LSE (5), respectively, whereby

only the BSE includes retardation effects. First, we see that
retardation significantly influences the binding energy; one
could think of retardation of the screened potential acting
as an effective dynamic boson mode, which is enhancing
the binding of electrons and holes. Second, the plot marks a
condensation region, whereby εb � 2�. At εr = 1, conden-
sation occurs for gates placed beyond a critical distance d >

dc ≈ 10–15 nm. In particular, for d = {20, 100, 1000} nm the
quantum critical point is �c = {31, 55, 62} meV. Considering
instead hBN encapsulation, such that εr = 3.9, and taking d =
100 nm, the critical point is reduced to �c = 3 meV. These
results highlight the strong influence of gate and dielectric
screening on the excitonic binding energy and condensation
transition.

To establish the phase boundary of Fig. 3(b), we solve
εb(Tc) = 2�. We note that for � < �c, the two-particle prob-
lem makes sense only at or above the critical temperature,
where Tc is understood to be a BKT transition temperature.
For εr = 1 and d = {100, 1000} nm maximum critical tem-
peratures are significant, Tc ≈ {100, 115} K, respectively. For
εr = 3.9, d = 100 nm the superfluid dome is comparatively
small. Figure 3(b) shows that as � → 0, the Tc(�) is rapidly
decreasing. However, we stress that we do not propagate
the BSE technique down to exactly � = 0; here the system
becomes semimetallic and the two-body technique employed
here becomes prohibitively expensive numerically. Physically,
the strong suppression of Tc at small band gap � is due to
the enhanced thermal excitation to the conduction band; the
thermally excited states act as a source of metallic screening,
and thereby have a significant affect on the Coulomb attrac-
tion. This feature, i.e., strongly enhanced screening, makes
this problem highly non-BCS; BCS provides a simple relation
between T = 0 order parameter and Tc, which derives from
the Pauli blocking factor (i.e., thermal occupation factors). In
our case, we have both (thermal) Pauli blocking as well as
thermal screening of the interaction. We find that the thermal
screening plays the dominant role in melting the order, and
thus we do not recover the standard BCS relation.

Finally, we mention that within the BSE two-body for-
malism we arrive at the following critical scaling of Tc near

FIG. 3. (a) Exciton binding energy at T = 0 and three values of distance to gates, d = 20, 100, 1000 nm vs the band gap, at εr = 1. Dashed
lines correspond to LSE and solid lines to BSE. (b) Superfluid domes, for the following sets of parameters: {εr = 1, d = 1000 nm}, {εr = 1,
d = 100 nm}, {εr = 3.9, d = 1000 nm}. Points represent Tc versus the band gap parameter �, as computed from the BSE (4).
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� → �−
c (see Appendix F),

Tc(�) ∼ �c/ ln

(
g�c

�c − �

)
, (6)

where g is a dimensionless combination of the interaction
strength and density of states, as well as other dimensionless
numerical factors that we do not evaluate.

IV. CONDENSATE PHASE

Entering the condensate phase we can no longer apply
two-body techniques, and therefore do not expect to make
quantitative predictions. Even so, the results below provide
crucial predictions for future experimental tests of the exci-
ton condensate. The discussion from here on will be based
on a mean-field Hamiltonian, HMF = ∑

p,τ,s c†
p,τ,sωpcp,τ,s +

v†
p,τ,s(−ωp)vp,τ,s + ∑

p,τ,τ ′,s,s′ c†
p,τ,s�(p)τ,τ,s,s′vp,τ ′,s′ + H.c.,

with c†
p,τ,s(v

†
p,τ,s) the creation operators for conduction (va-

lence) electrons, and with �(p)τ,τ,s,s′ the order parameter.
Explicitly for the s-wave intervalley excitonic condensate, it
takes the form

�(p)τ,τ ′,s,s′ = �0(p)(τx )τ,τ ′ei (τ−τ ′ )
2 φ (dμsμisy)s,s′ , (7)

where �0(p) is the amplitude; φ an arbitrary phase encod-
ing the phase difference between the two distinct intervalley
states, i.e., those with valley indices (τ, τ ′) = (+−) and
(−+); τx is a Pauli matrix acting on valley indices; sμ are
Pauli spin matrices; and dμ are the components of a unit
four-vector, with μ = 0 corresponding to a spin singlet and
μ = 1, 2, 3 to the components of the spin triplet. There is an
SO(4) degeneracy of this spin ordering vector (dμ).

We pause to note that a spontaneous symmetry break-
ing in unbiased bilayer graphene has been considered [15].
Specifically, that work predicts a spontaneous ferroelectric
polarization perpendicular to the plane, breaking a Z2 layer
symmetry. By contrast, in the present work the applied electric
bias explicitly breaks the Z2 symmetry and drives a single-
particle band gap (2�). Our key prediction is the spontaneous
breakdown of a U(1) symmetry, and hence the onset of super-
fluidity. We stress that the superfluid order parameter [Eq. (7)]
is not a ferroelectric; it does not couple linearly to an external
electric field. However, it does influence the layer polarization
in a measurable way and this opens a unique way to detect the
superfluid quantum phase transition. We discuss these details
next.

Within the ordered phase � < �c, and at T = 0, we ap-
peal to the BCS/Eliashberg gap equation to estimate �0(p)
[for simplicity we, for now, ignore the momentum depen-
dence, such that �0(p) = �0]. Near the critical point � →
�c, and to logarithmic accuracy, the gap equation gives 1 =
g′ ln(	′/

√
�2 + |�0|2) or |�0| = Re

√
�2

c − �2. Here �c =
	′e−1/g′

, g′ ∼ g is a dimensionless combination of the inter-
action and density of states and 	′ ∼ 	 is a UV cutoff.

The natural, measurable quantity of the system is not
�0, but instead the layer polarization. In the absence of
excitonic order, �0 = 0, the polarization is P� of Eq. (2).
polarization results from the valence electrons belonging
predominantly to, say, the bottom layer. Since �0 �= 0 ulti-
mately corresponds to removing valence electrons (bottom

layer) and enhancing conduction electrons (top layer), one
expects �0 �= 0 to reduce the ground-state polarization. The
polarization in the condensate phase is then simply P�,�0 =
2m�

π
ln(	/

√
�2 + |�0|2). We see that �0 �= 0 indeed reduces

the layer polarization, with leading correction quadratic in �0.
Further, we appeal to the gap equation solution to arrive a key
prediction,

P�,�0 − P� = −m|�0|2
π�

−−−−→
�→�−

c

−2m(�c − �)

π
. (8)

This expression shows that there is a linear in � (and hence in
external electric field E ) reduction of the layer polarization in
the vicinity of the critical point. We anticipate the polarization
being readily measured via quantum capacitance, see, e.g.,
Refs. [30,41,42], which would provide a direct experimental
test of the exciton condensation transition.

Finally, we turn to the in-plane real-space structure of the
condensate. The intervalley ordering [Eq. (7)] implies that,
in real space, the condensate exhibits a pair density wave
pattern, denoting �̃s,s′ (r, r′) = �̃(r, r′)(dμsμisy)s,s′ ,

�̃(r, r′) = �̃0(r − r′) cos(K · (r + r′) + φ) (9)

with �0(r − r′) a complex amplitude (derived in the
Appendix G). Fluctuations of φ correspond to gapless sliding
modes of the pair density wave. The pair density wave is
spatially modulated with a periodicity of three unit cells. It
is worth noting that under a particle-hole transformation, the
excitonic pair can be mapped to the superconducting Cooper
pair, as shown in, e.g., Ref. [43]. Building on this insight, it
is natural to compare the phenomenology of the excitonic and
superconducting pair density waves. A detailed analysis of the
analogous superconducting density wave pattern has already
been conducted in Ref. [44], and this pattern has been associ-
ated with higher-order topology in Refs. [45,46]. However, the
question of whether the excitonic pair density wave in Eq. (9)
exhibits higher topology remains for future work.

V. DISCUSSION

We presented a description of excitonic bound states in
biased BLG and their subsequent condensation, using two-
body techniques. This is in contrast to exciton formation
and condensation from a semimetallic ground state, which
require many-body techniques that often lead to uncontrolled
approximations. We studied suspended biased BLG with gates
at d > dc ≈ 10–15 nm and found that excitons condense for
� < �c, as shown in Fig. 3(a). Our primary theoretical find-
ing is that at distances d = 100 nm (1000 nm), the maximum
critical temperature is predicted to be 100 K (115 K), and is
optimized at nonzero bias, as shown in Fig. 3(b).

Regarding previous experiments on biased bilayer
graphene, we discuss Refs. [47–49]. Reference [49] uses
parameters d ≈ 20 nm and ε = 3.9 (hBN encapsulation),
and examines � � 20 meV. Consistent with our predictions
(Fig. 3), they do not observe exciton condensation. On
the other hand, Refs. [47,48] use d ≈ 20 nm, ε = 1
(suspended), and probe a range of � down to � = 0.
Based on our modeling, exciton condensation is expected,
and indeed both Refs. [47,48] report a Coulomb-driven
band gap opening at � = 0; we suggest that this is
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FIG. 4. Dimensionless layer polarization, as a function of band
gap parameter �, with and without the condensate, corresponding
to P�,� and P� [Eq. (2)], respectively. Here we use the meanfield
expression |�0| = Re

√
�2

c − �2, at T = 0, with �c = 62 meV cor-
responding to system parameters εr = 1, d = 1000 nm. Due to the
onset of the condensate �, a cusp is seen in reduced layer polariza-
tion, P�,�/(m�), at the critical point �c.

consistent with exciton condensation. Therefore, it is
crucial to perform further studies, ideally at d = 100 nm, to
examine the possibility of exciton condensation in suspended
bilayer graphene. The question is, how best to detect the
condensate?

Our work proposes a solution. Although our two-body
techniques become less accurate upon entering the BEC
phase, we were able to establish several qualitative fea-
tures of the condensate. Distinguishing between the excitonic
condensate/insulator and the band insulator experimentally
is challenging. However, we found that excitons influence
the macroscopic dipole moment [cf. (8)], and proposed a
smoking-gun test for exciton condensation: quantum capac-
itance measurements of the dipole moment as a function of
the bias field, which tunes the band insulator to exciton con-
densate phase transition (cf. Fig. 4). We hope that our findings
entice direct experimental searches for the excitonic conden-
sate in biased bilayer graphene, and future theoretical work
may consider other candidate materials using the two-body
approach applied here.
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APPENDIX A: HAMILTONIAN AND WAVE FUNCTIONS

The Hamiltonian and wave functions are (in zero field)

Hτ = − (τ px ∓ ipy)2

2m
σ± + �σz

|ψ (+)
p,τ 〉 = 1√

(εp−�)2

p4/(4m2 ) + 1

(
−1

εp−�

p2/(2m) e
2iτθp

)
,

|ψ (−)
p,τ 〉 = P|ψ (+)

p,τ 〉 = 1√
(εp−�)2

p4/(4m2 ) + 1

(
εp−�

p2/(2m) e
−2iτθp

1

)
,

P = iσyC. (A1)

Here C enacts complex conjugation and the operator P
generates the particle-hole transformation, which is an anti-
commuting symmetry of this Hamiltonian. Defining ψ− in
this way correctly generates the phase/winding factors.

APPENDIX B: POLARIZATION OPERATOR

The expression for the polarization generically takes the
form,

�(q, iξ, T ) = 4
∑

μ,ν=±

∫
d2 p

(2π )2

(
fεμ

p
− fεν

p+q

)
iξ + ε

μ
p − εν

p+q
Fμν

p,p+q.

(B1)

Here the form factors are Fμν
p,p+q = |〈ψ (μ)

p+q,τ |ψ (ν)
p,τ 〉|2, with

μ, ν = ±. Using that −ε−
p = ε+

p ≡ εp and F−−
p,p+q = F++

p,p+q,
F−+

p,p+q = F+−
p,p+q, we get

�(q, iξ, T ) = 8
∫

d2 p

(2π )2

[
(εp − εp+q)

(
fεp − fεp+q

)
ξ 2 + (εp − εp+q)2

F++
p,p+q

+ (εp + εp+q)
(

fεp + fεp+q − 1
)

ξ 2 + (εp + εp+q)2
F+−

p,p+q

]
.

(B2)

APPENDIX C: VERTEX FORM FACTORS

The Coulomb interaction is taken to be

Hint =
∑

p1,p2,p3

∑
τ,τ ′

V (p2 − p1)�†
p1,τ

�
†
p2,τ

′�p3,τ
′�p1+p2−p3,τ

,

(C1)

which neglects valley exchange. We transform to band basis,

�p,τ = Up,τ

(
cp,τ

vp,τ

)
, Up,τ = (|ψ (+)

p,τ 〉, |ψ (−)
p,τ 〉),

with cp,τ and vp,τ the destruction operators for conduction
and valence electrons. Restricting consideration to the exciton
channel, denoted HX

int, the interaction becomes,

HX
int =

∑
p1,p2

∑
τ,τ ′

V (p2 − p1)c†
p1,τ

cp2,τ
v

†
p2,τ

′vp1,τ
′

× 〈
ψ

(−)
p2,τ

′
∣∣ψ (−)

p1,τ
′
〉〈
ψ (+)

p1,τ

∣∣ψ (+)
p2,τ

〉
. (C2)

In the main text we denote the from factor Zτ ′,τ
p1,p2

=
〈ψ (−)

p2,τ
′ |ψ (−)

p1,τ
′ 〉〈ψ (+)

p1,τ
|ψ (+)

p2,τ
〉.

APPENDIX D: NUMERICAL BSE SOLUTION

In this Appendix we describe the numerical method em-
ployed to solve BSE. For ease of notation, we introduce

043176-5



HARLEY D. SCAMMELL AND OLEG P. SUSHKOV PHYSICAL REVIEW RESEARCH 5, 043176 (2023)

variables

Xξ,p =
√

a2
p + ξ 2χξ,p

Vp,k(ξ − λ) = Vp,k(ξ − λ)Zp,k√(
a2

p + ξ 2
)(

a2
k + λ2

) , (D1)

with ap = −E/2 + εp, such that the BSE more compactly
reads,

Xξ,p = − ∫
Vp,k(ξ − λ)Xλ,kDλDk. (D2)

To solve Eq.(D2), we first fix the energy E , and introduce a
new variable R, such that

RXξ,p = − ∫
Vp,k(ξ − λ)Xλ,kDλDk. (D3)

Here, solving for R is a standard eigenvalue problem and
can be efficiently performed numerically. Of the solutions,
we keep the maximal eigenvalue Rmax. Next, we repeat this
process for a range of E ; the solution to the original BSE (D2)
is found when E satisfies Rmax(E ) = 1.

APPENDIX E: NON-HERMITICITY OF BSE

The BS equation is written,

χξn,k = −T
∑

m

∫
d2k′

(2π )2

Vk−k′,i(ξn−ξm )Z
τ ′,τ
k,k′

(E/2 − ωk)2 + ξ 2
n

χξm,k′ . (E1)

Treating each {ξn, k} as a matrix index, then the BS can be
solved as an eigenvalue problem, i.e.,

χ̄ = −�W χ̄ . (E2)

Here � = V Z is Hermitian, however the combination �W is
non-Hermitian and therefore the eigenvalues are not guaran-
teed to be real. However, there exists a transformation,

χ̄ = −�W
1
2 (W

1
2 χ̄ )

W − 1
2 χ̄ ′ = −�W

1
2 χ̄ ′

χ̄ ′ = −W
1
2 �W

1
2 χ̄ ′. (E3)

If W
1
2 is strictly real, then matrix on the right-hand side, i.e.,

W
1
2 �W

1
2 , is Hermitian. For the case in question, W is both

diagonal and positive definite, i.e., since componentwise it is
written

Wξn,k;ξ ′
n,k

′ = δξn,k;ξ ′
n,k

′
1

(E/2 − ωk)2 + ξ 2
n

, (E4)

and therefore W
1
2 is strictly real. We also note that ξ 2

n =
[(2n + 1)πT ]2 > 0, which prevents this matrix from being
singular.

Finally, since our initial matrix (here denoted M1 ≡ �W )
and the transformed matrix (here denoted M2 ≡ W

1
2 �W

1
2 ) are

related by a similarity transformation, i.e.,

M1 = (W
1
2 )−1M2W

1
2 , (E5)

then M1 and M2 have the same eigenvalues and, since M2 is
Hermitian, these eigenvalues are guaranteed to be real.

APPENDIX F: CRITICAL TEMPERATURE SCALING

Setting E = 0, the T = 0 the Lippmann-Schwinger equa-
tion gives the condition for �c

2

√
p4

4m2
+ �2

c�p =
∫

d2 p′

(2π )2
V 0

p,p′�p′ . (F1)

At T > 0, the condition E = 0 requires � < �c, and is given
by

2

√
p4

4m2
+ �2

c�p =
∫

d2 p′

(2π )2

[
V 0

p,p′ + δVp,p′e− �
Tc

]
�p′ . (F2)

Using that the characteristic momentum is p = √
2m�, we

combine these two equations as

�c = ν0, � = (ν0 − ν1e− �
Tc ),

(�c − �) = ν1e− �
Tc ,→ Tc = �/ ln

(
ν1

�c − �

)
. (F3)

APPENDIX G: REAL-SPACE ORDER PARAMETER

In this Appendix we derive the effective lattice model
for the dominant excitonic order parameter. Introducing the
real-space creation operators for the conduction and valence
bands via,

c†
p,τ,s =

∑
r

φ(+)
p,τ (r)c̃†

r,s,

v†
p,τ,s =

∑
r

φ(−)
p,τ (r)ṽ†

r,s. (G1)

With r spanning the real-space lattice sites, and comprising
two sublattices, σ = A1, B2, and {a(r ∈ A) = 1, a(r ∈ B) =
0} and {b(r ∈ A) = 0, b(r ∈ B) = 1}. Here,

φ(+)
p,τ (r) = ei(p+τK )(α(+)

τ,k a(r) + β
(+)
τ,k b(r)),

φ(−)
p,τ (r) = ei(p+τK )(α(−)

τ,k a(r) + β
(−)
τ,k b(r)), (G2)

with definitions,

α(+)
τ,p = − cos γp = −1√

(εp−�)2

p4/(4m2 ) + 1
,

β (+)
τ,p = sin γpe2iτθp = εp − �

p2/(2m)

e2iτθp√
(εp−�)2

p4/(4m2 ) + 1
,

α(−)
τ,p = sin γpe−2iτθp = εp − �

p2/(2m)

e−2iτθp√
(εp−�)2

p4/(4m2 ) + 1
,

β (−)
τ,p = cos γp = 1√

(εp−�)2

p4/(4m2 ) + 1
. (G3)

The mean-field Hamiltonian becomes,

H� =
∑

p,τ,τ ′,s,s′
c†

p,τ,s�(p)τ,τ ′,s,s′vp,τ ′,s′ + H.c.

=
∑

p,τ,τ ′,s,s′

∑
r,r′

φ(+)
p,τ (r)(φ(−)

p,τ ′ )∗(r′)�(p)τ,τ ′,s,s′ c̃†
r,sṽr′,s′

+ H.c. (G4)
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We consider intervalley pairing in the s-wave channel and with arbitrary spin ordering (singlet or triplet). There is both a
symmetric and an antisymmetric combination of the valleys,

�(p)τ,τ ′,s,s′ =
{
�0(p)(τx )τ,τ ′ (dμsμ)s,s′

�0(p)(iτy)τ,τ ′ (dμsμ)s,s′ .
(G5)

In fact, there is a U(1) rotational symmetry that connects these distinct valley structures, we more compactly write

�(p)τ,τ ′,s,s′ = �0(p)(τx )τ,τ ′ei (τ−τ ′ )
2 φ (dμsμ)s,s′ . (G6)

Let us consider the case that r ∈ A and r′ ∈ B,

HAB
� =

∑
p,τ,s,s′

∑
r∈A,r′∈B

(ei(p+τK )·rα(+)
τ,p a(r))(e−i(p−τK )·r′

β
(−)
−τ,pb(r′))�0(p)eiτφ c̃†

r,sṽr′,s′ (dμsμ)s,s′ + H.c.

=
∑

p,τ,s,s′

∑
r∈A,r′∈B

[eip·(r−r′ )eiτK·(r+r′ )α(+)
τ,p β

(−)
−τ,p�0(p)eiτφ]c̃†

r,sṽr′,s′ (dμsμ)s,s′ + H.c. ,

=
∑

r∈A,r′∈B

∑
p

[2eip·(r−r′ )(− cos2 γp)�0(p)][cos(K · (r + r′) + φ)]
∑
s,s′

c̃†
r,sṽr′,s′ (dμsμ)s,s′ + H.c. ,

=
∑

r∈A,r′∈B

�AB(r − r′)[cos(K · (r + r′) + φ)]
∑
s,s′

c̃†
r,sṽr′,s′ (dμsμ)s,s′ + H.c. . (G7)

We have defined the function,

�AB(r − r′) ≡
∑

p

[2eip·(r−r′ )(− cos2 γp)�0(p)], (G8)

which determines the real-space amplitude and can be directly evaluated numerically.
Performing the same procedure for all combinations of r, r′ in {A1, B2}, we arrive at the expression,

H� =
∑
r,r

�(r − r′)[cos(K · (r + r′) + φ)]
∑
s,s′

c̃†
r,sṽr′,s′ (dμsμ)s,s′ + H.c., (G9)

with amplitude function given by,

�(r − r′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

�AA(r − r′) = ∑
p[2eip·(r−r′ )(− cos γp sin γpe±2iτθp )�0(p)], for {r ∈ A1, r′ ∈ A1}

�BB(r − r′) = ∑
p[2eip·(r−r′ )(cos γp sin γpe±2iτθp )�0(p)], for {r ∈ B2, r′ ∈ B2}

�AB(r − r′) = ∑
p[2eip·(r−r′ )(− cos2 γp)�0(p)], for {r ∈ A1, r′ ∈ B2}

�BA(r − r′) = ∑
p[2eip·(r−r′ )(sin2 γpe±4iθp )�0(p)], for {r ∈ B2, r′ ∈ A1}.

. (G10)

[1] Yu. E. Lozovik and V. I. Yudson, Feasibility of superfluidity
of paired spatially separated electrons and holes: A new super-
conductivity mechanism, Pis’ma Zh. Eksp. Teor. Fiz. 22, 556
(1975) [JETP Lett. 22, 274 (1975)].

[2] M. B. Pogrebinskii, Mutual drag of carriers in a
semiconductorinsulator-semiconductor system, Fiz. Tekh.
Poluprovodn. 11, 637 (1977) [Sov. Phys. Semicond. 11, 372
(1977)].

[3] J. M. Blatt, K. Böer, and W. Brandt, Bose-Einstein condensation
of excitons, Phys. Rev. 126, 1691 (1962).

[4] M. Kellogg, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West,
Vanishing Hall resistance at high magnetic field in a double-
layer two-dimensional electron system, Phys. Rev. Lett. 93,
036801 (2004).

[5] J.-J. Su and A. MacDonald, How to make a bilayer exciton
condensate flow, Nature Phys. 4, 799 (2008).

[6] R. Wang, O. Erten, B. Wang, and D. Y. Xing, Prediction of
a topological p + ip excitonic insulator with parity anomaly,
Nature Commun. 10, 210 (2019).

[7] D. Varsano, M. Palummo, E. Molinari, and M. Rontani,
A monolayer transition-metal dichalcogenide as a topo-
logical excitonic insulator, Nature Nanotechnol. 15, 367
(2020).

[8] E. Perfetto and G. Stefanucci, Floquet topological phase of
nondriven p-wave nonequilibrium excitonic insulators, Phys.
Rev. Lett. 125, 106401 (2020).

[9] Z. Sun and A. J. Millis, Topological charge pumping in exci-
tonic insulators, Phys. Rev. Lett. 126, 027601 (2021).

[10] Z.-R. Liu, L.-H. Hu, C.-Z. Chen, B. Zhou, and D.-H. Xu,
Topological excitonic corner states and nodal phase in bilayer
quantum spin Hall insulators, Phys. Rev. B 103, L201115
(2021).

[11] H. D. Scammell, J. Ingham, T. Li, and O. P. Sushkov, Chiral
excitonic order from twofold van Hove singularities in kagome
metals, Nat. Commun. 14, 605 (2023).

[12] L. V. Keldysh and Y. V. Kopaev, Possible instability of the
semimetallic state toward Coulomb interaction, Sov. Phys.
Solid State 6, 2219 (1965).

043176-7

https://doi.org/10.1103/PhysRev.126.1691
https://doi.org/10.1103/PhysRevLett.93.036801
https://doi.org/10.1038/nphys1055
https://doi.org/10.1038/s41467-018-08203-9
https://doi.org/10.1038/s41565-020-0650-4
https://doi.org/10.1103/PhysRevLett.125.106401
https://doi.org/10.1103/PhysRevLett.126.027601
https://doi.org/10.1103/PhysRevB.103.L201115
https://doi.org/10.1038/s41467-023-35987-2


HARLEY D. SCAMMELL AND OLEG P. SUSHKOV PHYSICAL REVIEW RESEARCH 5, 043176 (2023)

[13] D. Jérome, T. M. Rice, and W. Kohn, Excitonic insulator, Phys.
Rev. 158, 462 (1967).

[14] B. Halperin and T. Rice, The excitonic state at the
semiconductor-semimetal transition, J. Phys. C: Solid State
Phys. 21, 115 (1968).

[15] R. Nandkishore and L. Levitov, Dynamical screening and ex-
citonic instability in bilayer graphene, Phys. Rev. Lett. 104,
156803 (2010).

[16] K. W. Song, Y.-C. Liang, and S. Haas, Excitonic instabilities
and insulating states in bilayer graphene, Phys. Rev. B 86,
205418 (2012).

[17] V. Apinyan and T. K. Kopeć, Excitonic gap formation and
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