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Abstract

To tackle the global climate challenge, it urgently
needs to develop a collaborative platform for com-
prehensive weather forecasting on large-scale me-
teorological data. Despite urgency, heterogeneous
meteorological sensors across countries and re-
gions, inevitably causing multivariate heterogene-
ity and data exposure, become the main barrier.
This paper develops a foundation model across
regions capable of understanding complex mete-
orological data and providing weather forecast-
ing. To relieve the data exposure concern across
regions, a novel federated learning approach has
been proposed to collaboratively learn a brand-
new spatio-temporal Transformer-based foundation
model across participants with heterogeneous me-
teorological data. Moreover, a novel prompt learn-
ing mechanism has been adopted to satisfy low-
resourced sensors’ communication and computa-
tional constraints. The effectiveness of the pro-
posed method has been demonstrated on classical
weather forecasting tasks using three meteorologi-
cal datasets with multivariate time series.

1 Introduction
Climate change will significantly impact all regions; how-
ever, the specific effects will vary [Kjellstrom et al., 2016].
Increasing global temperatures and melting ice will lead to
alterations in sea levels, ocean currents, weather patterns, and
cloud cover [Hagemann et al., 2013]. To effectively tackle
the challenge of global climate change, the implementation of
a large-scale collaborative data-sharing platform is essential.
Although this work is labor-intensive and demands a mul-
titude of skilled experts, the utilization of machine learning
techniques can enhance efficiency in addressing this problem.
Nonetheless, the machine learning domain faces a challenge
when attempting to employ a centralized uniform model to
serve all regions due to their heterogeneity. An effective solu-
tion involves pre-training a foundational model using exten-
sive weather data and enabling each region to fine-tune the
model using a relatively small data to enhance its ability to
capture local weather patterns.
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Figure 1: Our MetePFL for weather forecasting. i) pre-trained FM
initializes the local FM; ii) local FM trains using local data; iii) the
server aggregates and transmits local prompts’ parameters.

Weather forecasting is a fundamental analytical task aimed
at modeling the dynamic changes of weather on both a global
and regional scale. Multi-sensor weather forecasting serves
as a critical tool in mitigating the loss of human lives and
property by providing early warnings for extreme weather
events resulting from global climate change [Chattopadhyay
et al., 2020]. The objective of this approach is to capture po-
tential correlations between multiple meteorological factors
and the tendency of weather variations in order to gain a com-
prehensive understanding of specific regions. Unlike conven-
tional time-series data, weather time-series data in meteorol-
ogy are gathered from sensing devices distributed across di-
verse geographical locations [Campbell and Diebold, 2005].

One-step forecasting [Chen et al., 2022b; Chen et al.,
2023], empowered by recent advancements in deep learning,
have garnered considerable attention due to their high effi-
ciency. However, the performance of these strategies is hin-
dered by the non-stationary nature of weather changes. This
limitation arises from their reliance on fixed patterns derived
from prior knowledge. To address this issue and capture tem-
poral information, other studies [Karevan and Suykens, 2020;
Alléon et al., 2020] suggest formulating the tasks as auto-
regression problems. These studies utilize preceding time
step variables to predict variables at the subsequent time
step [Chen and Lai, 2011]. This technique is commonly im-
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plemented using RNN or Transformer models. The choice of
these models is based on their superior performance in time
series analysis [Shi et al., 2015].

However, previous works focus on using an uniform model
to serve all regions regardless of heterogeneity. In contrast,
foundation model (FM) represents a novel service architec-
ture that aims to pre-train a large model with extensive data.
Subsequently, this model can be fine-tuned for specific tasks
using relevant data, such as weather forecasting in a partic-
ular region. The FM has the capability to capture common
knowledge shared among multiple tasks or participants. Fur-
ther refinements can then enhance its alignment with the spe-
cific requirements of a given task. The FM has demonstrated
remarkable success in Natural Language Processing (NLP),
exemplified by ChatGPT. Notably, recent progress in foun-
dation models has been observed across diverse domains, in-
cluding ViT [Xu et al., 2022], BERT [Yates et al., 2021], and
CLIP [Radford et al., 2021].

In contrast to existing FMs, training a FM on weather fore-
casting tasks must tackle the following challenges. First,
sharing raw data across countries/regions will not be easy.
Second, transmitting and processing the continuously col-
lected data is a challenge for low-resourced sensors or de-
vices. Third, real-time forecasting is critically important. In
summary, we need a solution to tackle data security, com-
munication, and computation efficiency issues and provide
on-device decisions independently.

This paper will design a novel machine-learning approach
to train foundation models on weather forecasting tasks. The
model will be capable of understanding and constructing
the complex spatiotemporal relationship of meteorological
data to provide reliable analysis support on weather fore-
casting and global climate challenges. Specifically, we pro-
pose a novel Meteorological Prompt Federated Learning
(MetePFL) approach to collaboratively learn a Transformer-
based foundation model (FM) across devices with multivari-
ate time-series data (see Figure 1). The MetePFL only consid-
ers the model parameters exchange among devices rather than
direct data sharing. Considering the low-resourced sensors’
communication efficiency constraint, a brand-new prompt
learning mechanism is introduced upon a pre-trained FM
to comprehensively explore the correlation among weather-
related variables while computing a few parameters.

Three weather forecasting datasets based on multivariate
time series with multiple meteorological factors, i.e., precip-
itation, temperature, upstream, are leveraged to verify the ef-
fectiveness of MetePFL. The main contributions of this work
are summarized in four-fold:

• This is the first work to explore a foundation model-
based solution to enhance weather forecasting tasks to-
wards a global scale.

• The proposed prompt federated learning approach is a
novel mechanism to collaboratively learns a foundation
model for the applications with many satellite sites or
stations across regions.

• A spatio-temporal prompt learning mechanism has been
designed to efficiently tackle multivariable time series.

• Experiments on three real datasets have demonstrated
the effectiveness and superior of our proposed solution.
It is worth noting that we obtain excellent performance
with only 2.38% of the model’s parameters trained.

2 Related Work
Weather Forecasting. Weather forecasting plays a crucial
role in the global climate analysis system. Conventional fore-
casting methods utilize numerical weather prediction (NWP)
models, which incorporate physical constraints to simulate
weather phenomena [Bauer et al., 2015]. However, with
the emergence of data-driven approaches, weather forecast-
ing has shifted towards approaches driven by data, such
as ARIMA [Chen and Lai, 2011], SVM [Sapankevych and
Sankar, 2009], and NNs [Voyant et al., 2012]. While these
basic models exhibit potential, they encounter difficulties in
comprehending nonlinear temporal dynamics. Deep Learn-
ing methods, especially models based on Recurrent Neu-
ral Networks (RNNs), have exhibited promising outcomes
in weather forecasting [Shi et al., 2015]. Recently, Trans-
formers have demonstrated superior performance compared
to RNN-based models in time series analysis [Bojesomo et
al., 2021], thereby gaining popularity for weather-related
tasks [Chen et al., 2023]. However, these models neglect the
data exposure concerns when utilizing multi-sensor data for
real-world tasks and modeling spatio-temporal correlations.

Foundation Model. A fully supervised learning paradigm
needs a large scale of data. The foundation model provides a
practical solution for scenario-specific tasks, aiming to pre-
train a model using extensive prior knowledge. The FM
has widespread applications in NLP [Yates et al., 2021] and
CV [Xu et al., 2022; Radford et al., 2021], providing an ef-
fective cross-task learning strategy. For example, ChatGPT
can be used as a baseline model for researchers to fine-tune it
to achieve more accurate responses for downstream tasks.

Federated Learning. Federated learning (FL) is a new
learning paradigm to embody the collaborative training of
models without requiring data exposure from each partici-
pant (e.g., meteorological sensors) [McMahan et al., 2017;
Long et al., 2021; Long et al., 2020; Jiang et al., 2020].
Vanilla FL suffer from the heterogeneity of data and de-
vices. Personalized FL aims to solve the problem by mul-
tiple techniques [Tan et al., 2022a; Chen et al., 2022a;
Wang et al., 2022; Ma et al., 2022; Tan et al., 2021; Zhang et
al., 2023; Li et al., 2023; Long et al., 2023; Li et al., 2019;
Li et al., 2020; Gao et al., 2022] via training better personal-
ized model for each client. However, these methods are not
suitable for weather forecasting due to all parameters must
be considered during communication so that hinder the real-
time forecasting. pre-train-based strategy can mitigate the
problem [Tan et al., 2022b] but can not explore the spatio-
temporal correlations. Different from the above methods, this
paper focuses on establishing a high-efficiency FL approach
that provides analytical support to across-regional weather
forecasting systems with heterogeneous meteorological data.

Prompt Learning. Prompt learning as a lightweight mech-
anism is widely used in NLP [Li and Liang, 2021; Liu et al.,
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2021], which requires fewer parameters and is more adap-
tive than fine-tuned pre-trained models by represented by sev-
eral prompt tuning strategies in different applications [Zhou
et al., 2022a]. Different from language data, understanding
multidimensional correlation among multivariate data in the
weather forecasting task is critical. However, the key point is
often ignored by the federated prompt learning method [Guo
et al., 2022]. The paper introduces a novel prompt mecha-
nism within the FL framework based on pre-trained FM to
explore the temporal dynamics and the potential correlation
among clients while computing only a few parameters.

3 Problem Formulation
Given N clients that possess individual local private datasets
D, each client has a multivariate time series denoted as Xi ∈
Rm×n. In this notation, each sample at a specific time step t
is represented as xt ∈ R1×n. Weather forecasting using mul-
tivariate time series can be defined as the process of utilizing
historical values of all variables for a duration of P periods to
predict the values of a specific variable in the future over Q
periods, can be defined below:

[xt−P ,xt−P+1, · · · ,xt]
f−→

[
x′

t+1,x
′
t+2, · · · ,x′

t+Q

]
, (1)

where f is a learning system, and x′
t ∈ R1×1 is the value of

the variable to be forecasting at the t-th time step. Valida FL
system aims to minimize the average loss of the global model
w on all clients’ local dataset:

F (w): = argmin
w1,w2,...,wN

N∑
k=1

nk

n
Fk(wk), (2)

where nk is the number of samples hold by the k-th client. n
is the number of samples held by all clients. Fk(wk) denotes
the local objective function of k-th client. The distinguishing
factor is that each client possesses a unique pattern, and sen-
sors are deployed in specific locations, resulting in a statisti-
cally heterogeneous environment. To address this challenge,
PFL is typically modeled as a bi-level optimization problem.

F (v;w): = argmin
{w1,w2,...,wN},{v1,v2,...,vN}

N∑
k=1

Gk(vk, w),

i.e. Gk(vk, w) =
nk

n
Fk(vk) + λR(vk, w), (3)

where each client hold a personalized model parameterized
by vi, w denotes the global model. R(·) is the regularization
term to control model update, via avoiding the local model
updating be far away to the optimal global model.

4 Meteorological Prompt Federated Learning
The framework of MetePFL is depicted in Figure 1. In con-
trast to conventional Federated Learning (FL) where random
global parameters are broadcasted to each client, MetePFL
employs a fixed FM, thereby reducing computation costs and
improving performance without requiring extensive back-
propagation. During each round, only the prompt parame-
ters of the clients are taken into consideration. The MetePFL
framework consists of the Spatial-Temporal Prompt (STP)
and the optimization process.

Figure 2: Schematic of Spatial-Temporal Prompt Learning.

4.1 Spatial-Temporal Prompt
The Spatial-Temporal Prompt (STP) shown in Figure 2 can
be divided into Temporal prompt learning (TPL) and Spatial
prompt learning (SPL).

Temporal prompt learning (TPL). To effectively under-
stand the temporal dynamics under multivariate interactions,
we use a multi-step incremental learning mechanism for
learning the prompt parameters along the time dimension.
The TPL comprise four phases, is shown in Figure 3.

Given a time-series X ∈ Rm×n, the m and n represent
the number of time steps and variables, respectively. Define
a initial step l, the four temporal prompt format: (1) initial
prompt P̂ ; (2) Temporal prompt-I: P1; (3) Temporal prompt-
II: P2 ∈ R2l×n; (4) Temporal prompt-III: P3 ∈ R2l×n.

The first p steps are fixed as Seq ∈ Rp×n. In addition,
the data within the p to k steps are spliced with the P̂ ∈
R(k−p+l)×n to generate P1 by

∥X(p∼k), P̂T ∥ → PT,1,PT,1 ∈ R(2k−2p+l)×n, (4)

where ∥∥ denote the concat operation. To enhance the accu-
racy of forecasting performance, we adopt a two-stage objec-
tive in the initial learning phase: ”X(0∼p) 1−→ X(0∼k) 2−→
X(0∼k+l)”. During this phase, we encourage the FM to en-
hance prompt parameters associated with prior knowledge in
X(p∼k) in order to establish a foundation for the subsequent
stage. In the next stage, the FM learns the remaining PT,1

parameters in X(k∼k+l). This approach enables the FM to
develop a comprehensive understanding of the relationships
among variables across different time periods, rather than es-
tablishing rigid back-and-forth associations. The formulation
of the initial learning phase is:

R1 = FM([Seq, embed(PT,1)]), (5)

where the embed(x) represents the learnable position en-
coder, and the FM is the pre-trained foundation model.

Splicing discrete prompts to form a complete series is chal-
lenging because their parameters cannot match the FM simul-
taneously. To establish the relationship between two prompts,
a dual-correct strategy is adopted in the second learning
phase. This strategy encourages the FM to correct PT,1 based
on the previous PT,1 while learning PT,2. The objectives of
the second learning phase are ”X(0∼k+l) −→ X(0∼k+3l).”
This process can be formulated as mapping the input data
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Figure 3: The learning strategy of Temporal Prompt Learning, which consists of four different learning phases.

from X(0∼k+l) to X(0∼k+3l) during the second phase.

∥PT,1,PT,2∥ → PT,2,PT,2 ∈ R3l×n, (6)

R2 = FM(∥Seq2,Rp/2∼p
1 , embed(Rp∼p+l

1 ), embed(PT,2)∥).

The objective of the third learning phase can be expressed
as “X(0∼k+3l) −→ X(0∼k+5l)”, for further correcting these
previously learned prompts to improving the continuity of
several prompts and providing smooth transitions between
them. The third learning phase can be formulated as:

∥PT,2,PT,3∥ → PT,3,PT,3 ∈ R4l×n, (7)

R3 = FM(∥Seq3, P̂ ∗Rp∼(p+l)
2 , embed(PT,2), embed(PT,3)∥).

To prevent the prompt parameters from being overly biased
toward expressing short-term over long-term dependence, the
final stage of learning intends to uniformly adjust these pa-
rameters. The corresponding values from the three previous
learning phases are concatenated along the time dimension
and then multiplied by the uniform prompt PT,w. The final
learning can be expressed as follows.

∥PT,1,PT,2,PT,3∥ → PT,w,

∥PT,1 + PT,2 + PT,3,PT,2 + PT,3,PT,3∥ → ˆPT,w, (8)

RT = FM(∥Seq, 1

m− k

m∑
i=k

[tanh( ˆPT,w) ∗ PT,w]∥).

Spatial Prompt Learning (SPL). We regard multiple me-
teorological factors within a specific space. This enables the
establishment of correlations between these factors from a
spatial perspective on the local client. The SPL are shown
in Figure 4.

The trainable parameters that serve as spatial prompts can
be represented as PS ∈ R(m−k)×1, where m − k represents
the length of the forecasting period. Prior to the initial learn-
ing phase, the first p hours of the data are considered fixed
and denoted as Seq ∈ Rk×n. Subsequently, Seq are com-
bined with the initial spatial prompts along the temporal di-
mension, and any gaps in the spatial dimension are filled with
zero-valued parameters, resulting in P̂S ∈ R(m−k)×(n−1).

The first learning phase comprises:

∥PS , P̂S∥ → PS,1,

P ′
S,1 = PS,1 ∗ FM(∥Seq,S1∥).

(9)

In learning spatial prompts for the ith variable, the ith

learning phase of SPL can be formulated as follow:

∥P ′
S,i−1, P̂S ∈ R(m−k)×(n−i)∥ → PS,i,

P ′
S,i = PS,i ∗ FM(∥Seq,PS,i∥).

(10)

One advantage of SPL over auto-regression is its continuous
correction of learned prompt parameters from the previous it-
eration. This correction utilizes all the previously predicted
values, leading to improved forecast accuracy. Moreover,
SPL improves the model’s perception of correlations among
multiple variables by considering adjacent variables together.
Through multiple iterations of regression, SPL enhances the
model’s ability to account for these spatial correlations.

To prevent isolating the TPL and SPL effects within the
STP, we combine the result of TPL and SPL empirically using
a Gate operation. The output of the STP is formulated as
R = [(1− sigmoid(RS)) ∗ tanh(RT )] ∗W .

4.2 Optimization of MetePFL
The optimization objective of MetePFL is

argmin
P

N∑
k=1

nk

n
[Fk({Pk}) + λR({Pk}, {P g})] + τG(A) (11)

where {Pk} is prompts including PS ,PT , {P g} is the global
prompt parameters, G(A) is a regularization term used to
represent the correlation among client according the adjacent
matrix A. specifically, the term Fk({P })+λR({P }, {P g})
can be formulated as Lk = LMSE + λ∥{Pk} − {P g}∥22. The
optimization objective on i-th client as:

argmin
A

N∑
k=1

λR({Pk}, {P g}) + τG(A),

s.t. P s ∈ argmin
{Pk}

Aj,iS({Pj}, {Pi}),

i.e. P g = G({P s
1 }, {P s

2 }, ..., {P s
N}),

(12)

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3535



Figure 4: The learning strategy of Spatial Prompt Learning, the empty is a location in data where variables need forecasting.

Algorithm 1 MetePFL algorithm.
Initialized PT , PS .
for each communication round t = 0, 1, 2, · · · , T do

Local model initialize:
for each client i = 0, 1, 2, ..., N in parallel do
0← PT ,PS

Local model update:
for each client i = 0, 1, 2, · · · , N in parallel do

Update PT , PS for e local steps:
Train PT , PS with loss function L in Eq.(11)

end for
Each selected client sends PT , PS to the server
Aggregation:
A← GraphGenerator({P1}, {P2}, · · · , {PN})
A′ ← GAT (A)
Update P for r steps GCN(A′, {Pi}Ni=1):
{P s

i }Ni=1 = A′{Pi}Ni=1

{P s
i }Ni=1 = α{P s

i }Ni=1 + (1− α){Pi}Ni=1

Get Global Prompts {P g} ← G({P s
1 }, {P s

2 }, ..., {P s
N})

end for

where the A ∈ {0, 1}, S({Pj}, {Pi}) is the similarity of
prompt parameters of client i and client j measured by co-
sine or distance, G(·) is the average operation. During the
optimization of MetePFL, each client update their model via
solving the local objective function as Lk after them receive
the fixed foundation model at first. Then each client upload
their prompts P rather than complete model to the server
that conduct graph-based aggregation, which significantly re-
duce the communication overhead while exploring the po-
tential correlations among clients. The aggregation includ-
ing two steps: Graph Attention Network (GAT) [Veličković
et al., 2017]-based graph structure learning that explore the
dynamic correlations among clients and Graph Convolution
Network (GCN) [Kipf and Welling, 2016] that utilized to pa-
rameters reconstruction using learned adjacent matrix A and
the prompt parameters uploaded by clients. The GCN auto-
matically updates the parameters of each node by aggregating
the models of its neighbors in the graph.

5 Experiments
Baselines. We compare our MetePFL with STGCN [Yu et
al., 2017], LSTM [Graves, 2012], ConvLSTM [Shi et al.,
2015], Transformer [Zerveas et al., 2021], Informer [Zhou
et al., 2021], Autoformer [Wu et al., 2021], and Fed-
former [Zhou et al., 2022b]. The LSTM-based models have

four layers. The Transformer consists of an eight-layer En-
coder, while the Informer, Autoformer, and FEDformer con-
sist of two encoders and a decoder. The Transforme models
are trained by data-centric and FL setting, respectively.

Datasets. We compiled three multivariate time series
datasets from NASA1, Average Precipitation (AvePRE), Sur-
face Temperature (SurTEMP), and Surface Upstream (Su-
rUPS) collected by 88, 525, and 238 devices, respectively.
All three datasets cover the hour-by-hour variability of 12 dif-
ferent weather-related meteorological variables.

Experimental Setups. Models’ input and output dimen-
sions are C = 12 and C = 1, respectively. The dataset is split
into training, validation, and testing in a 6:2:2 ratio. For pre-
training, we use 2/3 of the training set (i.e., 50% of the entire
dataset) for training and 1/6 as the validation set (i.e., 10% of
the complete dataset) based on the above partition, following
the pre-training strategy from Zerveas et al. [Zerveas et al.,
2021]. For fine-tuning and prompt learning, the last 1/6 of
the training set is used for training, while the validation and
test sets remain unchanged. In the federated training process,
we set k to control the number of clients participating in train-
ing per round, and we use k = 0.1 and k = 0.2 in the experi-
ments. The forecasting uses 12 time steps in history (P=12,
i.e., the past twelve hours) to predict 15 time steps in the fu-
ture (Q=15, i.e., fifty hours in the future) with a time window
length of 27 h. We set l to 3, considering the validity time and
trigger threshold of weather events. All models were trained
on an NVIDIA Tesla V100 GPU using an initial learning rate
of 1e−3 and a batch size of 128, ADAM [Kingma and Ba,
2014] as the optimizer. The algorithm used in the FL of the
Transformer-based network is FedAvg. The communication
round was set to 20, α = 0.5, and the early stopping strat-
egy was applied. Mean absolute error (MAE) and root mean
absolute error (RMSE) as evaluation metrics. The code is
avaliable at https://github.com/shengchaochen82/MetePFL.

5.1 Overall Comparison
Table 1 presents a performance comparison between our
MetePFL and baselines. Results indicate the superiority of
the Transformer-based model over the LSTM-based model
and STGCN when trained centrally across all three datasets.
However, when utilized as a FM within the FL framework,
the performance of the Transformer-based model is dimin-

1https://disc.gsfc.nasa.gov/
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Model Temproal Encoding
AvePRE SurTEMP SurUPS

MAE RMSE MAE RMSE MAE RMSE

STGCN None 0.331 0.815 0.196 0.257 0.298 0.399
ConvLSTM None 0.305 0.730 0.198 0.266 0.311 0.416

LSTM None 0.326 0.781 0.212 0.274 0.335 0.431

Transformer
Learnable 0.301 0.714 0.236 0.313 0.369 0.475

Fixed 0.332 0.744 0.239 0.320 0.351 0.449

FEDformer
Learnable 0.239 0.547 0.165 0.214 0.205 0.271

Fixed 0.248 0.564 0.165 0.216 0.201 0.264

Autoformer
Learnable 0.271 0.589 0.167 0.235 0.201 0.265

Fixed 0.269 0.590 0.176 0.228 0.212 0.279

Informer
Learnable 0.213 0.543 0.191 0.245 0.251 0.330

Fixed 0.216 0.547 0.193 0.251 0.240 0.311

Fed-Transformer Learnable 0.454/0.402 0.927/0.892 0.780/0.684 0.910/0.793 0.621/0.522 0.769/0.640
Fed-FEDformer Learnable 0.397/0.372 0.791/0.726 0.684/0.530 0.822/0.680 0.612/0.512 0.754/0.647
Fed-Autoformer Learnable 0.425/0.349 0.784/0.724 0.742/0.627 0.924/0.765 0.578/0.503 0.715/0.602

Fed-Informer Learnable 0.385/0.361 0.865/0.768 0.647/0.513 0.790/0.656 0.605/0.543 0.737/0.724

PromptFL-Transformer Learnable 0.427/0.389 0.828/0.786 0.683/0.612 0.824/0.741 0.603/0.519 0.766/0.641
MetePFL* Learnable 0.389/0.376 0.631/0.626 0.592/0.522 0.611/0.597 0.584/0.485 0.721/0.610
MetePFL Learnable 0.378/0.342 0.628/0.605 0.556/0.542 0.601/0.569 0.521/0.460 0.642/0.589

Table 1: Performance comparison of MetePFL with baselines, the first eight models are trained from scratch using full parameters. Fed-
Transformer refers to training the Transformer model from scratch in a federated learning (FL) setting, the last two models employ FL-based
prompt learning methods with a pre-trained Transformer as the FM, the symbol ∗ indicates a FedAvg-based implementation, underline means
the optimal in FL full parameters training, Bold means the optimal in FL prompt learning strategy.

FM Algorithm
AvePRE SurTEMP SurUPS

MAE RMSE MAE RMSE MAE RMSE

Transformer*

FedAtt 0.507/0.467 0.836/0.823 0.978/0.947 1.279/1.186 0.705/0.686 0.828/0.820
FedProx 0.567/0.531 0.845/0.827 0.922/0.901 1.141/1.102 0.688/0.672 0.814/0.810
Scaffold 0.567/0.536 0.833/0.811 0.930/0.899 1.232/1.200 0.697/0.676 0.817/0.808
FedAvg 0.611/0.591 0.823/0.810 0.998/0.896 1.118/1.115 0.706/0.699 0.832/0.821

Transformer

MetePFL (FedAtt) 0.383/0.357 0.735/0.618 0.576/0.520 0.603/0.575 0.511/0.482 0.642/0.610
MetePFL (FedProx) 0.399/0.385 0.691/0.633 0.564/0.542 0.686/0.667 0.556/0.512 0.702/0.651
MetePFL (Scaffold) 0.385/0.353 0.755/0.627 0.602/0.531 0.727/0.600 0.560/0.512 0.719/0.645
MetePFL (FedAvg) 0.389/0.376 0.631/0.626 0.592/0.522 0.611/0.597 0.584/0.485 0.721/0.610

MetePFL 0.378/0.342 0.628/0.605 0.556/0.542 0.601/0.569 0.521/0.460 0.642/0.589

Table 2: Performance comparison between fine-tuned Transformer and MetePFL with different FL algorithm, ∗ implying that the model
applies fine-tuning strategy, the MetePFL (·) means that the implementation based on other FL algorithm, Bold means the optimal results.

ished compared to the trained FM. This reduction can be at-
tributed to the heterogeneity of weather data collected from
multiple sensors. Notably, while the Transformer may be less
effective than other similar models in centralized training, it
demonstrates a significant performance advantage over Fed-
FEDformer, Fed-Autoformer, and Fed-Informer when em-
ployed as an FM within the MetePFL. This observation sug-
gests that STP enhances the Transformer’s capability to com-
prehend spatiotemporal data. Furthermore, our reliable FM
and aggregation algorithms (Transformer and FedAvg) sur-
pass PromptFL [Guo et al., 2022]. This outcome provides
additional validation of the effectiveness and superiority of
our proposed MetePFL.

To evaluate the effectiveness and superiority of MetePFL
over fine-tuning, we implement different MetePFL version
based on four FL algoirthms: FedAtt [Jiang et al., 2020], Fed-
Prox [Sahu et al., 2018], Scaffold [Karimireddy et al., 2020],
and FedAvg [McMahan et al., 2017]. We maintained the
prompt setting and compared the results against fine-tuning.
The results are presented in Table 2. Our experiments reveal

the following findings: (1) MetePFL outperforms the fine-
tuning method, highlighting the sensitivity of data correlation
to the STP approach; (2) the graph-based aggregation used in
MetePFL surpasses other algorithms, indicating its effective-
ness in mitigating the negative impact of Non-IID.

5.2 Framework Applicability
To determine the applicability of MetePFL, we replaced its
FM with pre-trained Informer and Autoformer using the same
pre-training strategy. Additionally, we used fine-tuning and
PromptFL as reference strategies. The results as shown in
Table 3. Our proposed MetePFL remains valid for other
Transformer FMs and significantly outperforms fine-tuning
and PromptFL. By comparing the performance of MetePFL
under different FL algorithm, we demonstrate the effective-
ness of the graph-based aggregation once again.

5.3 Parameter Utilization
Table 4 compares parameter utilization for different federated
prompt learning strategies. PromptFL and MetePFL are sig-
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Model Strategy AvePRE SurTEMP SurUPS

Fed-Informer

Fine-tuning (FedAvg) 0.397/0.391 0.776/0.759 0.734/0.713 0.874/0.864 0.669/0.631 0.824/0.781
Fine-tuning (FedAtt) 0.403/0.378 0.780/0.724 0.950/0.899 1.057/1.00 0.686/0.675 0.807/0.793

PromptFL 0.407/0.361 0.742/0.727 0.722/0.700 0.867/0.832 0.671/0.658 0.786/0.753
MetePFL (FedAvg) 0.382/0.357 0.631/0.618 0.701/0.692 0.840/0.812 0.698/0.650 0.796/0.725
MetePFL (FedAtt) 0.392/0.387 0.776/0.758 0.754/0.696 0.905/0.839 0.669/0.644 0.772/0.738

MetePFL 0.363/0.358 0.630/0.601 0.713/0.677 0.838/0.800 0.652/0.644 0.755/0.739

Fed-Autoformer

Fine-tuning (FedAvg) 0.378/0.373 0.761/0.758 0.693/0.682 0.848/0.834 0.610/0.523 0.767/0.721
Fine-tuning (FedAtt) 0.372/0.355 0.761/0.754 0.706/0.683 0.848/0.839 0.598/0.551 0.742/0.698

PromptFL 0.355/0.348 0.759/0.753 0.672/0.659 0.826/0.807 0.584/0.543 0.724/0.678
MetePFL (FedAvg) 0.364/0.348 0.780/0.731 0.674/0.630 0.820/0.781 0.564/0.520 0.736/0.656
MetePFL (FedAtt) 0.372/0.341 0.762/0.754 0.689/0.641 0.824/0.766 0.549/0.525 0.717/0.650

MetePFL 0.355/0.334 0.750/0.719 0.666/0.630 0.814/0.750 0.547/0.516 0.712/0.649

Table 3: Performance comparison of pre-trained Fed-Informer and Fed-Autoformer with different learning strategies, MetePFL (FedAvg)
and MetePFL (FedAtt) implies the FedAvg- and FedAtt-based implementations, respectively, Bold means the optimal performance.

Strategy # of Total Param # of Training Param # of Participation Param

FL-Regular 3,229,857 3,229,857 100%
FL-Fine Tuning 3,288,886 109,854 30.37%

PromptFL 3,250,867 71,835 2.22%
MetePFL (Ours) 3,258,547 77,595 2.38%

Table 4: Comparison of parameter utilization of MetePFL.

nificantly more advantageous than regular training (train from
scratch) and fine-tuning, with parameter utilization of 2.22%
and 2.38%, respectively - nearly 28% lower than fine-tuning.
While PromptFL is better than MetePFL in parameter utiliza-
tion (-0.16%), it performs nearly 20% worse than MetePFL
(see Table 1). Despite considering only 2.38% parameters,
MetePFL achieves excellent performance and significantly
improves inter-device communication efficiency.

5.4 Ablation Study
To evaluate the effectiveness of STP, we conducted abla-
tion studies under general scenarios rather than under the
FL framework. The results are presented in Table 5. The
Encoder-only and Decoder-only Transformer underwent pre-
training with one-step forecasting and auto-regressive mech-
anisms similar to previous experiments. The Encoder-only
Transformer trained with STP outperformed the Decoder-
only Transformer, indicating the superior learning mecha-
nism of the proposed STP over conventional auto-regression.
Moreover, the performance gap between the pre-trained En-
coder with and without STP confirms the efficacy of the pro-
posed STP in general scenarios.

Model Strategy MAE RMSE

Encoder-only

Train from scratch 0.332 0.744
Train from scratch & STP 0.300 0.689

Pre-train 0.295 0.668
Pre-train & STP 0.267 0.571

Decoder-only Train from scratch 0.304 0.724

Table 5: Comparison of Encoder/Decoder-only Transformer under
different strategies in general scenarios based on AvePRE.

The effectiveness of SPL, Gate, and their advantage
over position-aware embedding (PE) was verified using the

TPL SPL Gate PE MAE RMSE

w w w/o w/o 0.301 0.608
w w w w/o 0.267 0.571

w/o w w/o w/o 0.284 0.580
w w/o w/o w/o 0.299 0.613

w/o w/o w/o w 0.284 0.617

Table 6: Ablation results of the proposed STP in Encoder-only
Transformer based on the AvePRE in general scenarios.

Encoder-only Transformer. The results are presented in Ta-
ble 6. SPL demonstrates a greater improvement compared
to PE. Additionally, SPL enhances the model’s performance,
while the model without Gate experiences a significant de-
cline. TPL does not perform as effectively as desired in
generic scenarios. Consequently, we conducted ablation ex-
periments in the FL setting, as shown in Table 7. The results
indicate that both TPL and SPL enhance the model’s fore-
casting performance. In conclusion, the effectiveness of the
Gate operation is demonstrated, and both TPL and SPL can
improve the model’s performance in the FL setting.

TPL SPL Gate MAE RMSE

w w w 0.378 0.628
w/o w w/o 0.407 0.722
w w/o w/o 0.415 0.740

Table 7: Ablations on FL setting.

6 Conclusion
This paper proposes a novel machine learning approach to
train foundation models for weather forecasting tasks, capa-
ble of capturing the spatiotemporal relationships of meteoro-
logical data based on multivariate time series. To enhance the
performance while keeping data secure and reducing com-
munication overhead, we introduce a prompt learning mech-
anism based on the fixed foundation model within the FL
framework. Additionally, we utilize a graph-based approach
to mitigate the impact of data heterogeneity on model effec-
tiveness. Extensive experiments on three real-world weather
datasets confirm the effectiveness of our proposed method.

Proceedings of the Thirty-Second International Joint Conference on Artificial Intelligence (IJCAI-23)

3538



References
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