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Abstract

The development of the Internet of Things (IoT) technology leading to a new era of smart applications such as smart trans-
portation, buildings, and smart homes. Moreover, these applications act as the building blocks of IoT-enabled smart cities.
The high volume and high velocity of data generated by various smart city applications are sent to flexible and efficient cloud
computing resources for processing. However, there is a high computation latency due to the presence of a remote cloud
server. Edge computing, which brings the computation close to the data source is introduced to overcome this problem. In
an IoT-enabled smart city environment, one of the main concerns is to consume the least amount of energy while executing
tasks that satisfy the delay constraint. An efficient resource allocation at the edge is helpful to address this issue. In this
paper, an energy and delay minimization problem in a smart city environment is formulated as a bi-objective edge resource
allocation problem. First, we presented a three-layer network architecture for IoT-enabled smart cities. Then, we designed a
learning automata-based edge resource allocation approach considering the three-layer network architecture to solve the said
bi-objective minimization problem. Learning Automata (LA) is a reinforcement-based adaptive decision-maker that helps to
find the best task and edge resource mapping. An extensive set of simulations is performed to demonstrate the applicability and
effectiveness of the LA-based approach in the IoT-enabled smart city environment.

© 2015 Published by Elsevier Ltd.
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Note: This work is an extension of the conference
paper [1], where we solved the edge resource allo-
cation problem in an IoT-enabled smart city environ-
ment with an auction-based approach. In that work,
we jointly minimized the energy consumption and the
computation time of the delay-sensitive tasks. How-
ever, in the current research, we used a Learning Au-
tomata (LA)-based approach for resource allocation as
a bi-objective minimization problem. The LA makes
the best decision (selection of the best action) from
a set of possible actions. Here, LA is considered for
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the edge resource allocation problem. Accordingly,
the best VM and task pair are chosen to satisfy certain
system constraints in a dynamic edge environment. A
series of experiments have been conducted in terms
of energy consumption, average delay, and success ra-
tio to confer the effectiveness of the proposed solu-
tion. An experiment is also conducted to choose the
appropriate reward and penalty values along with an
ANOVA test to determine the influence of the pro-
posed approach.

1. Introduction

Nowadays Internet of Things (IoT) becomes an in-
dispensable part of people’s life. This is because of the
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presence of IoT technology in every aspect of our life
starting from smart homes to smart healthcare, emer-
gency services, and many more. All these smart appli-
cations are leading to a new era of IoT-enabled smart
cities. In addition, the IoT-enabled applications gen-
erate a large volume of data that requires a good pro-
cessing infrastructure. The other requirements of IoT-
enabled smart city applications are low latency, energy
efficiency, etc. For instance, an application with fre-
quent interaction with the data source and processing
unit requires low latency (e.g., smart transportation).
Cloud computing is a computing paradigm that pro-
vides users with high computation and storage capac-
ity. Cloud deployment is beneficial for IoT-enabled
smart city applications [2]. Cloud-based deployment
helps aggregate the data from heterogeneous IoT de-
vices, that are present in geographically distributed ar-
eas. Although the cloud is essential for IoT deploy-
ments, it is cost-inefficient and suffers from high end-
to-end latency and communication overhead [3]. This
is due to the presence of geographically remote hetero-
geneous cloud servers that are far from the data source
[4, 5]. The problems associated with cloud deploy-
ment for IoT applications affect the delay-sensitive
tasks and IoT sensing devices with limited resources.
In this context, edge computing technology acts as a
prominent solution by bringing the computation and
storage closer to the data source,i.e., IoT devices [6].

Edge computing is a layer between the IoT/device
layer (data source) and the cloud layer (computing in-
frastructure), that keeps the data processing closer to
the IoT devices. However, the edge layer has fewer
resources compared to the cloud layer. These lim-
ited edge resources need to be utilized in a better and
more energy-efficient way. For example, inefficient
resource utilization in an autonomous car application
causes a delay in data analysis and decision making,
resulting in a car crash. The solution to overcome
these problems is an efficient edge resource allocation
method. In this context, this paper presents a Learn-
ing Automata (LA) based solution for edge resource
allocation in IoT-enabled smart cities. LA uses the
reinforcement-based learning method to learn from
the action taken in a dynamic environment [7, 8, 9].
The continuous interaction with the working environ-
ment helps LA to make the best decision (choose the
best action) from a set of possible actions. Similarly,
in the edge resource allocation problem, we need to
find the best mapping between a task and a comput-
ing resource (here, Virtual Machine (VM) in edge
layer) from a set of possible pairings between tasks
and VMs in a dynamic edge environment. Thus, LA
is considered a suitable candidate for edge resource
allocation problem. Researchers have proposed a lot
of heuristics, meta-heuristics, machine learning, and
deep learning solutions for resource allocation prob-
lems in edge environments. Some of these approaches
focus on single objective [4], and some on bi-objective

[4] problems. Further, some approaches need a lot
of parameter updation to reach the solution [10], [11]
and are time-consuming. This work differs from the
existing approaches in the following ways: a Learn-
ing Automata(LA)-based solution is proposed for this
bi-objective minimization problem. LA is a simple
reward-penalty-based method with few mathematical
operations and is not time-consuming.

The contributions made in this paper are listed be-
low.

− First, a three-layer network architecture of an
IoT-enabled smart city environment is presented
for reference.

− The edge resource allocation problem to mini-
mize energy consumption and computing delay is
formulated as a bi-objective minimization prob-
lem. A Learning Automata(LA)-based edge re-
source allocation method is proposed for this bi-
objective minimization problem.

− A series of experiments were conducted to con-
firm the effectiveness of the LA-based solution.
The comparison results with its peers in terms
of energy consumption, average delay, and suc-
cess rate show the applicability of the proposed
scheme in the IoT-enabled smart city environ-
ment.

The paper is organized as follows: The literature re-
view is discussed in Section 2. Section 3 presents
the three-layer network architecture of an IoT-enabled
smart city. The formulation of the energy and de-
lay minimization problem is described in Section 4.
Section 5 demonstrates the fundamentals of Learning
Automata (LA) and the proposed Variable Structure
LA (VLA) model. The proposed LA-based edge re-
source allocation method, along with an example, is
presented in Section 6. Section 7 and Section 8 in-
cludes the discussion of the simulation results and the
concluding remarks of the paper, respectively.

2. Related work

A significant amount of work has been done in the
field of edge resource allocation for IoT applications.
Some of them are discussed below. The authors in [2]
proposed a task offloading policy using k-means clus-
tering and Q-learning to minimize energy consump-
tion and delay in the IoT network. Zhao et al. [12]
used clustering and enumeration techniques to design
edge resource allocation algorithms to reduce the av-
erage response time of a request in IoT-enabled smart
cities. Wang et al. [4] presented a hybrid genetic
simulated annealing mechanism for IoT networks to
minimize latency and provide energy-efficient service.
Fan et al. [5] proposed an Application awaRE work-
load Allocation (AREA) algorithm to minimize re-
sponse time in edge-based IoT network. A time and
energy efficient resource management mechanism are
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presented in [3] for IoT-fog-cloud architecture. Fur-
thermore, a resource allocation method with an edge
resource sharing contract is discussed in [6] for delay-
sensitive applications. Since communication plays a
key role in IoT application management, authors in
[13] presented a scheme to minimize network band-
width usage as well as the processing overhead of the
central server. Authors in [10] proposed a blockchain-
based Task Offloading and Resource Allocation (TO-
RA) algorithm to address the delay and reliability is-
sues in the IoT environment. A Software Ddefined
Network (SDN) is a good candidate for implementing
the IoT network, since the decision making is faster
in SDN. In this context, Sahoo et al. [14] proposed a
method to select a controller using traffic priorities and
response time in a software-defined wide area network
system.

Authors in [15] have addressed the issue of min-
imizing content download latency in edge comput-
ing with Content Caching (CC) and User Association
(UA) algorithms. In [16], an algorithm is proposed
to minimize the resource provisioning cost and im-
prove resource utilization in a mobile cloud environ-
ment. Researchers used game theory and Lyapunov
optimization theory-based solutions for energy har-
vesting in mobile edge computing [11]. The mini-
mization of energy consumption using energy beam-
forming and time-based task allocation is discussed
in mobile edge computing [17]. Authors in [18] have
presented algorithms using the Stackelberg game con-
cept to allocate idle resources in volunteer vehicles to
address the overloaded tasks in Vehicular Edge Cloud
servers. Artificial Intelligence (AI) is vital for wireless
access to IoT networks. In this context, researchers in
[19] presented neural networks-based and Deep Rein-
forcement Learning (DRL) based methods for spec-
trum access and spectrum sensing in centralized and
distributed AI-enabled IoT networks. Correlations be-
tween the Sustainable Development Goals (SDGs) and
Information and Communication Technologies (ICTs)
are discussed in [20].

The Learning Automata (LA) can be used in a dy-
namic environment such as edge computing where the
user’s demand changes depending on time and loca-
tion. It is used in many areas such as vertex cov-
erage problems, VM consolidation, server allocation,
etc. Some of them are discussed below. A survey on
learning automata , which includes norms and behav-
ior of learning automata is presented in [7]. The au-
thors in [8] proposed an LA-based approach to solve
a minimum vertex-covering problem in a stochastic
graph. Moreover, LA is used in [9] to detect over-
loaded Physical Machines (PM). This result is further
used to reduce energy consumption through VM con-
solidation. The authors in [21] have used the con-
cept of learning automata to design an algorithm for
delay-sensitive tasks to minimize energy usage and
makespan in the cloud system. The behavior of learn-

ing automata with changing the number of actions is
discussed in [22]. A service migration minimization
method using learning automata is introduced in [23]
to enable low latency, high reliability applications to
have short downtime in an edge computing environ-
ment. The authors in [24] used learning automata
to address the barrier coverage problem in the smart
ocean IoT environment. Gheisari et al. [25] presented
a cognitive congestion control mechanism for IoT us-
ing a learning automata game. A learning automata-
based multiobjective hyper-heuristic is presented in
[26]. Different types of learning automata models with
their operation are discussed in [27]. Velusamy et
al. [28] presented a learning automaton-based method
for making per-request decisions to reduce the routing
cost of a web request. Researchers in [29] used learn-
ing automata and autonomic computing paradigm for
cloud resource provisioning to address fluctuating de-
mand in the multiplayer online gaming system. From
the above study, we found that learning automata is
an interesting concept that has found applications in
various research areas such as cloud, network, gam-
ing environment, etc. However, very little work has
been done on the implementation of LA for delay-
constrained tasks in the edge computing environment.
In this context, reinforcement-based learning and less
data required for computation attract us to use LA to
solve edge resource allocation problems.

3. System architecture

The three-layer network architecture of an IoT-
enabled smart city is shown in Figure 1. The bot-
tom layer or IoT layer includes IoT devices of vari-
ous smart city applications such as smart homes, smart
transportation, etc. However, the IoT devices have
shortcomings such as limited computation capacity
and low battery life. These limitations cause task
offloading to the upper layer. The middle layer or
edge layer and cloud layer consist of Virtual Machines
(VMs). A VM in the edge layer can act as a controller.
Each controller has its coverage area, and it manages
IoT devices in its coverage area. Since delay con-
straint (i.e., deadline) is one of the key performance
metrics of smart city applications [12], a controller
checks whether the response time of a task meets the
deadline or not. If the condition doesn’t hold, then the
task is rejected. Otherwise, a task offloading process
is initiated.

A controller has two sub-components; decision-
maker and the resource allocator (shown in Figure 3).
The decision maker uses the proposed variable struc-
ture LA (VLA) model (discussed in the next section)
to find an appropriate VM for a task while satisfying
the system objective. The VLA model runs for a fixed
number of iterations. In each iteration, the decision-
maker selects a VM based on its action probability
value, and its result is stored in the LA table. The
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Fig. 1: Network Architecture for IoT enabled Smart City

resource allocator uses the decision of final iteration
stored in the LA table to assign a task to an appro-
priate VM. The task with the largest computation or
storage requirements are sent for processing to the top-
most cloud layer.

4. Problem formulation

Suppose there are n number of IoT devices in a
smart city application. The task or data from these
devices are processed either locally or at the edge and
cloud layer. Each task tski of the IoT devices has the
following characteristics: the size of the task (tsk szi),
tsk eni is the energy consumption per CPU cycle, and
deadline dli. Let the computing capacity of the de-
vice devi is cci and it is measured as CPU cycles per
second. Depending on the computing location, three
modes of operation are possible: local mode, edge
mode, or cloud mode. In this paper, the problem for-
mulation is done considering local and edge modes.
Suppose the edge layer has a m number of VMs. The
VM characteristics are as follows: vm cc j is the com-
puting capacity of vm j is the CPU cycles per second
and vm en j measured as energy consumption per CPU
cycle. The following discussion highlights the compu-
tation delay and energy consumption in each mode.

Local Mode: The task computation is performed in
the IoT device. The execution time ext(i, l) of tski is
computed as,

ext(i, l) =
tsk szi

cci
(1)

The start time st(i) of tski at device devi is added with
the execution time ext(i, l) to generate the computation
delay c delay(i, l) as computed in 2.

c delay(i, l) = st(i) + ext(i, l), (2)

The energy en(i, l) consumed by devi for execution of
tski is

en(i, l) = tsk szi × tsk eni (3)

Edge or Cloud Mode: In this mode, a task tski is
offloaded to the edge layer. Let VM vm j is used to
process tski. This task offloading causes transmission
delay and is calculated as

tti =
tsk szi

cc link
(4)

where cc link is the transmission capacity of the com-
munication link used for task offloading. The compu-
tation delay c del(i, j) of tski caused by task offloading
is computed as

c del(i, j) = tti + (st(i, j) + ext(i, j)), (5)

where the start time and execution time of tski on vm j

are represented by st(i, j).and ext(i, j), respectively.
The execution time is formulated as

ext(i, j) =
tsk szi

vm cc j
. (6)

There are two types of energy consumption associated
with a task tski: transmission energy Tr E(i) due to
task offloading and computation energy C E(i, j) for
task execution in a VM. Let T E be the transmission
energy consumed per CPU cycle. The transmission
energy and computation energy are formulated as fol-
lows:

Tr E(i) = T E × tsk szi (7)

C E(i, j) = vm en j × tsk szi (8)

Hence the total energy Tot E(i, j) consumed for exe-
cuting a task is

Tot E(i, j) = Tr E(i) +C E(i, j) (9)

A binary indicator yi is used to indicate the mode of
computation. Mathematically it is represented as

yi =

0 Local Mode
1 Edge Mode or Cloud Mode

(10)

Some tasks of an application are performed in local
model and some in edge mode. So the delay del(i, j)
and the energy consumption en(i, j) of task tski are for-
mulated as

del(i, j) = (1 − yi) × c delay(i, l) + yi × c del(i, j) (11)
en(i, j) = (1 − yi) × en(i, l) + yi × tot en(i, j) (12)

The above equation must satisfy the following con-
straint

del(i, j) ≤ dli and en(i, j) ≤ en max (13)

Where en max is the maximum energy consumption
possible in the system. The bi-objective minimization
problem is formulated as a single objective (c f j

i ) min-
imization problem in Equation 14. After applying the
normalization process (to make both energy and delay
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metrics unit less), the minimization problem is formu-
lated as

c f j
i = α ×

del(i, j)
del max

+ (1 − α) ×
en(i, j)
en max

(14)

where α is the weight factor. The worst case delay is
represented by del max. Extending the above formu-
lation for n number of tasks the minimization problem
is reduced to

c ft =
m∑

j=1

n∑
i=1

c f j
i × z j

i (15)

where binary indicator z j
i indicates whether tski is ex-

ecuted on vm j or not. The goal is to minimize c ft.
Mathematically, this is expressed as

Minimize c ft (16)

5. Learning automata

Learning Automata (LA) is a type of reinforcement
learning mechanism that learns by performing a fi-
nite set of actions on a random environment and re-
ceiving reinforcement signals from this environment
[7],[8] [9],[22],[23],[24],[25],[26],[27][30]. It can be
considered as an adaptive decision that learns to select
the best action from the available set of actions and
to adapt to the changes made in the working environ-
ment. The finite number of actions of an automaton is
associated with probability. An action with the high-
est probability is selected from the problem-dependent
action set. The action is performed on the environ-
ment. A reinforcement signal is generated by the en-
vironment and is sent to the automaton. Upon receiv-
ing the reinforcement signal, the automaton classifies
its action as desirable or undesirable. If the action is
desirable, the action taken is rewarded, otherwise the
action is punished.

The automaton then updates its action probability
vector based on the reinforcement signal. In this way,
the automaton learns to choose the best action from
its action set. The learning process continues until a
stopping criterion is reached. The stopping criterion
can be the maximum number of iterations or the prob-
ability value reaching a threshold. The relationship
between the learning automata and its environment is
shown in Figure 2, where the environment consists of
virtual machines. The random environment can be of
the following types, depending on the nature of the re-
inforcement signal: P-model, Q-model, and S-model.
The P-model environment generates binary elements,
success (0) or failure (1). For favorable response, the
reinforcement signal value is either success or 0. An
unfavorable response is indicated by failure or 1. In
the Q-model environment, the reinforcement signal
value is in the interval [0, 1]. In the S-model environ-
ment, the reinforcement signal value falls in the range

[a,b]. Stochastic LA can be classified into finite struc-
ture LA (FLA) and variable structure LA (VLA). In
VLA, the action set of an automaton varies with time,
whereas in FLA action set is constant. Since the num-
ber of requests in the edge environment varies with
time, we proposed a VLA model to represent it. The
proposed VLA model uses P-model for reinforcement
signal values.

5.1. Proposed VLA model

In this work, LA is used to find the best edge re-
source and IoT request pair to solve the edge resource
allocation problem. We assumed that each task gen-
erated by an IoT device is associated with an au-
tomaton and the VMs present in the edge layer re-
alize the random environment. The proposed VLA
model, as shown in Figure 3, is represented by the
tuple < tski, Ai, αi, pi, βi, L >. tski is the task gen-
erated by ith IoT device, Ai is the learning automa-
ton of tski, action set of Ai is αi, the probability vec-
tor corresponding to αi is pi, the reinforcement sig-
nal for action αi is βi and L is the learning algorithm.
Here, the mapping of a task to a VM is considered
as an action of an automaton. Thus, αi can be for-
mulated as αi = {α

j
i |1 ≤ j ≤ m, i = 1 to n}, where

α1
i denotes the mapping of task tsk1 to VM vm1, α2

i
means tski is mapped to vm2 and so on. Similarly,
the probability vector pi = {p

j
i |α

j
i ∈ αi}, where p1

i
means the probability associated with action α1

i , p2
i

means the probability associated with action α2
i and

so on. Since the action with the highest probability
is chosen by an automaton at every moment or itera-
tion, it can be rewritten pi = max{p1

i , p
2
i , ..., p

m
i } and

αi = {α
j
i |p

j
i = max(pi)}. The learning algorithm L is a

. . .A1 A2 An

Action Response

A1 -- Automaton -- VM

Fig. 2: Learning automata and its Environment

recurrence relation adopted to revise the action prob-
ability vector. The learning algorithm uses the cost
function value at iteration k − 1 and k to generate the
reinforcement signal. The action αi of Ai is either re-
warded or penalized according to the βi value. This
reward and penalty operation updates the action prob-
abilities. If βi = 0, the action of Ai is desirable, then
the action is rewarded using Equation 17. If βi = 1,
then penalize the action of Ai according to the Equa-
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tion 18.

p j
i (k + 1) =

p j
i (k) + ϕ × (1 − p j

i (k)) j = i
(1 − ϕ) × p j

i (k) ∀ j, j , i
(17)

p j
i (k + 1) =

(1 − φ) × p j
i (k) j = i

φ
r−1 + (1 − φ) × p j

i (k) ∀ j, j , i
(18)

Here, ϕ and φ are the reward and penalty constants,
respectively. For the following iteration, Equation 17
says to increase the probability of action αi at iteration
k (first part) and decrease the probability of other ac-
tions (second part). Similarly, Equation 18 says that,
for the next iteration, p j

i of α j
i is decreased (first part)

while p j
i , j , i, of other actions are increased (second

part). The LA table stores the result of each iteration.
The proposed VLA model is designed for a given task
set, but it can be extended to support other task sets.
This feature of the proposed VLA makes it adaptable
to the changing needs of in IoT-enabled smart city en-
vironments.

. . .

a1 a2 an

b1
bnb2

Actions
Responses

tsk1 tsk2 tskn

. . .

Edge 
Environment

final
iteration

Resource 
Allocator

Actual 
Allocation

A1
A2

An

LA Table

-- VM -- Decision Maker

-- Resource Allocator

IoT Task set

Fig. 3: Proposed VLA Model

6. Learning automata based edge resource alloca-
tion approach

For a dynamic edge environment, a fast decision
unit is required to help satisfy the delay constraint
of tasks. The unit will be responsible for making re-
source allocation decisions based on the previous de-
cision in a dynamically changing environment. This
gives us the motivation to apply the learning method to
the edge resource allocation problem. In the proposed
learning automata (LA) based approach, the continu-
ous interaction between the automaton and the envi-
ronment leads to the best decision. The unique fea-
tures of LA that justify its choice for the edge resource
allocation problem are listed below.

• LA requires no a priori information of an under-
lying application and has a simple feedback sys-
tem.

• LA has very few mathematical operations, and it
doesn’t need to perform time-consuming calcula-
tions, which makes it suitable for delay-sensitive
applications.

• The responses of the environment to the automa-
ton are reflected in the action probability matrix.
Tuning this history information can help to im-
prove system performance.

Algorithm 1 : Pseudo code of LA-based Edge Re-
source Allocation Approach

Input: Task set (Tk), tski ∈ Tk,VM set Vm, vm j ∈

Vm
Output: Scheduled pair

〈
tski, vm j

〉
1: Set it = 1;
2: for each (tski, vm j) pair in the system do
3: Generate execution time ET matrix and prob-

ability matrix P using S tep − 1 and S tep − 2;
4: end for
5: while it ≤ it max do
6: for each (tski, vm j) pair in the system do
7: if it == 1 then
8: Randomly assign a task to a VM;
9: else

10: Choose an action with highest proba-
bility in P;

11: end if
12: end for
13: Compute the cost function for the assignment

using Equation 15.
14: if c ft(it) ≤ c ft(it − 1) then
15: for each (tski, vm j) pair in the system do
16: if del j

i ≤ dli then
17: Set βi = 0;
18: else
19: Set βi = 1;
20: end if
21: end for
22: end if
23: for each task tski in the system do
24: if βi == 0 then
25: Use Equation 17 to reward action of

Ai;
26: else if βi == 1 then
27: Use Equation 18 to penalize action of

Ai;
28: end if
29: end for
30: Update p j

i value using U pdate Prob();
31: it = it + 1;
32: end while

The steps followed in the proposed LA-based ap-
proach are discussed below.

• Step-1-Initialization: Initially, all VMs are avail-
able in the edge layer. So, the probability p j

i of
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each action α j
i of the automaton Ai is set to 1

m ,
where m is the number of VMs in the edge layer.
Thus, p j

i (0) = 1
m . Also, c ft(0) = INF.

• Step-2-Representation of Execution and Proba-
bility Matrix: The set of actions αi of an automa-
ton Ai is the ith row element of the execution ma-
trix ET . For example, actions α j

1, j = {1, 2, ...,m}
for automaton A1 are the row 1 elements of ET .
Similarly, p j

i is the element of n ×m action prob-
ability matrix P.

• Step-3-Update Action Probability: The learning
algorithm L decides whether an action α j

i by Ai

is rewarded or punished. Let θ min denote the
minimum value and θ max indicates maximum
value for probability p j

i . If p j
i ≤ θ min for an ac-

tion then deactivate it for task tski. Similarly, if
p j

i = θ max, then deactivate all other actions and
assign tski to VM vm j. The deactivated actions
are removed from the action set of an automa-
ton. This process is done to avoid unnecessary
computation, which contributes to faster compu-
tation. The pseudocode for updating the action
probability is shown in Algorithm 2.

• Step-4-Stopping Criteria: If iteration it equals
maximum iteration count it max, stop the learn-
ing process.

The operation of the proposed LA-based edge re-
source allocation mechanism is shown in Algorithm
1. Initially, the iteration count it is set to 1. For each
(taski, vm j) pair in the system the execution time ET
and the probability matrix are computed (line - 3 ).
For the first iteration, a task is randomly assigned to
an available VM. However, in a subsequent iteration,
an action with the highest probability is chosen for the
assignment (lines 7 - 11). In each iteration, the cost
function is computed for the resource allocation deci-
sion made. The cost function value in the current iter-
ation (say, it) is compared to the previously computed
(i.e., it − 1) cost function value. If c ft(it) ≤ c ft(it − 1),
then it is checked whether the action of the automaton
satisfies deadline constraint or does not. If the condi-
tion holds, then set reinforcement signal βi = 0, other-
wise set βi = 1 (lines 13 - 22). This reinforcement sig-
nal value is used to reward or penalize an action (lines
24 - 28). Accordingly, the action probability value is
updated. This process continues until it ≤ it max is
not reached (lines 30 - 32).

Algorithm 2 : Pseudo code of U pdate Prob()
Input: Task set (Tk), tski ∈ Tk,VM set Vm, vm j ∈

Vm, θ min, α j
i , θ max

Output: Decision on Action α j
i

1: for each (tski, vm j) pair in the system do
2: if p j

i ≤ θ min then
3: Deactivate α j

i ;
4: end if
5: if p j

i == θ max then
6: Assign tski to vm j;
7: end if
8: end for

6.1. Example

The Algorithm 1 is explained with an example. Let
a smart city application has three IoT devices (n = 3),
and the edge layer has two VMs (m = 2). Then, the list
of automatons is A1, A2, A3 (one for each IoT device).
An automaton Ai, i = {1, 2, 3} has two actions (r =
2). The two actions are the task generated by Ai can
be processed either on vm1 or at vm2. So, the actions
of automaton Ai are represented by α j

i , i = {1, 2, 3}
and j = {1, 2}. Assume that the maximum number of
iterations is it max = 3.

Iteration 1 : Let the action set α = {α2
1, α

1
2, α

1
3}, i.e.,

tsk1 associated with A1 is assigned to vm2 and so on.
This scenario is shown in Figure 4.

Suppose α2
1 and α1

2 meet the deadline constraint of
respective tasks. Whereas α1

3 fails to meet the deadline
constraint of the task. Assume that the cost function
value for above edge resource allocation is c ft(1) =
18. Since, c ft(1) ≤ c ft(0), the reinforcement signal
generated by the environment is {β1 = 0, β2 = 0, β3 =

1}. Based on the β1 and β2 value, actions α2
1 and α1

2 are
rewarded. The action α1

3 is penalized as β3 = 1. Let
ϕ = φ = 0.1. The detailed calculation (reward) of A1
and A2 using Equation 17 are as follows:

p1
1(2) = (1 − ϕ) × p1

1(1) = 0.9 × 0.5 = 0.45
p2

1(2) = 0.5 + 0.1 × 0.5 = 0.55
p1

2(2) = (1 − ϕ) × p1
2(1) = 0.5 + 0.1 × 0.5 = 0.55

p2
2(2) = 0.9 × 0.5 = 0.45

(19)
Similarly, the penalty calculation of A3 using Equa-

Task 

\VM
vm1 vm2

tsk1 0.5 0.5

tsk2 0.5 0.5

tsk3 0.5 0.5

vm2 vm1 vm1

P =
Allocation=

tsk1 tsk3tsk2

Fig. 4: Probability Matrix and Allocation Vector (Initial)

tion 18 is as follows:p1
3(2) = 0.9 × p1

3(1) = 0.9 × 0.5 = 0.45
p2

3(2) = 0.1 + 0.9 × p2
3(1) = 0.1 + 0.9 × 0.5 = 0.55

(20)
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Task 

\VM
vm1 vm2

tsk1 0.45 0.55

tsk2 0.55 0.45

tsk3 0.45 0.55

vm2 vm1 vm2

P =

After Iteration 1 

Allocation=

tsk1 tsk3tsk2

Fig. 5: Probability Matrix and Allocation Vector (Iteration 1)

The updated probability matrix after iteration 1 is
shown in Figure 5.

Iteration 2 : Let the action set is α = {α2
1, α

1
2, α

2
3},

and all the actions meet the deadline limit of the re-
spective tasks. The reinforcement signal of each ac-
tion is set to zero,i.e., {β1 = 0, β2 = 0, β3 = 0}. The
probability matrix is updated as follows:

Task 

\VM
vm1 vm2

tsk1 0.405 0.595

tsk2 0.595 0.405

tsk3 0.405 0.595

vm2 vm1 vm2

P =
Allocation=

tsk1 tsk3tsk2

Fig. 6: Probability Matrix and Allocation Vector (Iteration 2)



p1
1(2) = 0.9 × 0.45 = 0.405

p2
1(2) = 0.55 + 0.1 × 0.45 = 0.595

p1
2(2) = 0.55 + 0.1 × 0.45 = 0.595

p2
2(2) = 0.9 × 0.45 = 0.405

p1
3(2) = 0.9 × 0.45 = 0.405

p2
3(2) = 0.1 + 0.9 × 0.55 = 0.595

(21)

The updated probability matrix after iteration 2 is
shown in Figure 6. This is the final edge resource al-
location decision.

6.2. Time complexity

Theorem 1. The time complexity of the proposed edge
resource allocation algorithm is O(nm).

Proof. To generate ET and P matrix O(nm) time is
required. The time complexity to generate the allo-
cation vector is O(nm). The cost function calculation
also takes O(nm) times. O(nm) time is needed to check
whether a task meets it’s deadline or not. The time
complexity of computing the reward and penalty value
is O(n). The time required to set the reinforcement sig-
nal value is O(nm). The time complexity of updating
the probability matrix is O(nm). Thus, the time com-
plexity of the proposed LA-based edge resource allo-
cation approach is O(nm) + it max(O(nm) + O(nm) +
O(nm) + O(n) + O(nm) + O(nm)) = O(nm).

7. Simulation results

The following algorithms are used for comparison:
local processing, edge offloading, and EOERA [12] to
show the performance improvement of the proposed
LA-based edge resource allocation algorithm. The de-
tails of the algorithms are as follows:

• Local processing:- In this approach, computation
is done at the IoT devices.

• Edge offloading:- The tasks whose computation
cannot be completed by local processing are sent
to the edge layer. A greedy approach is used in
the edge layer to execute a task.

• Enumeration-based Optimal Edge Resource Al-
location (EOERA): All the possible edge re-
source allocations are enumerated, and the re-
sponse time is calculated for each case. All the
calculated values are compared, and an optimal
allocation is selected. This work has similarities
with our work in the sense that “in both cases,
all possible edge resource allocation combina-
tions are considered and compared to find the
optimal solution”. The difference between this
work [12] and our work is that the edge resource
allocation in [12] is a single objective problem
(latency minimization). Whereas our approach
is a bi-objective (energy consumption and delay
minimization) edge resource allocation problem.
Second, our approach assigns a probability value
to each (task, VM) pair, which helps to reduce the
search time as the pair with the highest probabil-
ity is always selected. In contrast, [12] searches
the entire solution space is searched to find the
optimal solution.

Table 1: Simulation Settings

Parameter Value
tski size [10 − 30] Mcycles [4]
Energy consumed by devi 10−7 Joules per cycle [2]
dev′i s computation capacity [150 − 600] Mcycles per second [4]
Energy consumed by vm j 10−8 Joules per cycle [2]
vm′js computation capacity [104 − 3 × 104] Mcycles per second [4]
Computation capacity of
transmission link

[102 − 2 × 102] Mcycles per second

Transmission energy 10−7 Joules per cycle

The performance of the system is evaluated in terms of
energy consumption, average delay, and success rate.
The number of tasks completed before the deadline
divided by the total number of tasks is called the suc-
cess ratio. The performance of the algorithms is eval-
uated by varying the number of tasks and the number
of VMs. The experiment is carried out using an in-
house simulator and Python 3.0 on an Intel (R) Core
(TM) i7-4770 CPU @ 3.40 GHz 3.40 GHz CPU and
8 GB RAM running on WINDOWS 11. The detailed
simulation setting and parameter is given in TABLE
1. The simulation framework consists of a task gener-
ator, task scheduler, and VM pool. A task generator is
designed to generate tasks where task arrival follows
the Poisson distribution. We assume that the task ar-
rival rate is λ = 0.8. The task’s deadline is set as:
dli = ai + baseD, where baseD is in the uniform dis-
tribution U(5, 10). VM pool consists of a finite set
of VMs and represents a cloud environment for task
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scheduling. Task scheduler uses scheduling mecha-
nisms (algorithms) and various constraints to map a
task to an appropriate VM in the VM pool.

The reward (ϕ) and penalty (φ) values determine
the speed and accuracy of convergence of the LA ap-
proach. If ϕ is too small, the learning process will be
slow. Whereas, if ϕ is too large, the action probability
value will be large and the accuracy of the automa-
ton in perceiving the optimal behavior will be low.
Thus, an appropriate ϕ value that is sufficiently small
can cause the probability of convergence to the opti-
mal behavior as close to 1 as desired. Furthermore, to
measure the learning ability of LA, it is compared to
a pure chance automaton that always chooses its ac-
tions with equal probabilities. We conduct an experi-
ment to choose an appropriate value for ϕ and φ. An
experiment is carried out with a task count between
[50 − 300] with a step of 50. The VM count is set to
60. The variation of the cost function value with the
proposed LA-based approach and the pure-chance (all
action probabilities are equal) approach over the task
count is shown in Figure 7a with ϕ = φ = 0.1, Figure
7b with ϕ = φ = 0.01, Figure 7c with ϕ = φ = 0.001,
respectively. From Figure 7a to Figure 7c, it can be in-
ferred that the value of the cost function increases with
an increase in the number of tasks, even when the val-
ues of ϕ and φ change. Further, it can be seen that a
low value for ϕ = φ = 0.001 causes a rise in the cost
function value. This also indicates the slow learning
process of LA. Here, we consider ϕ = φ = 0.1. It can
be seen from Figure 10 that, after 500 iterations there
is minimal variation in the objective function value.
This indicates automata is starting to converge to a so-
lution. So, the maximum iteration count it max is set
to 500.

Figure 8 shows the effect of the number of tasks on
system performance. We set the number of VMs to
60. The average computation delay increases as the
number of tasks increases,as shown in Figure 8a. The
proposed LA-based method has a shorter delay com-
pared to local processing and edge offloading. This
can be attributed to the fact that the computing capa-
bility of IoT devices is low, which makes it difficult
to handle too many tasks. Whereas task offloading to
the edge layer has low delay but has a bottleneck of
transmission delay. The fixed number of VMs with an
increase in the number of tasks inevitably an increase
in the computation delay. However, the LA-based re-
source allocation approach saves the computing delay
significantly. The energy consumption increases as the
number of tasks increases, as shown in Figure 8b. The
device consumes a lot of energy while processing a
task. The increase in task count keeps the VM busy,
which in turn consumes computation energy. In addi-
tion, the idle time of VM also contributes to the en-
ergy consumption. There is also transmission energy
that adds to the total energy consumption. The ex-
perimental result as shown in Figure 8b indicates that

the LA concept helps the proposed to efficiently utilize
the resource (VM), which in turn saves more energy.
The effect of the number of tasks on the success rate
is shown in Figure 8c. Local processing will not have
a significant success rate due to the limited computing
capability of the IoT device. So, local processing is
not considered for comparison. Adding tasks with a
fixed number of VMs causes many tasks to miss their
deadlines. This reduces the success rate. However, the
proposed approach has a high success rate compared
to all the other approaches. The VM selection based
on the probability value helps the proposed LA-based
approach to select the best VM for a task.

Fig. 11: ANOVA Test Scenario

The effect of the number of VMs on system perfor-
mance is shown in Figure 9. Here, number of tasks is
set to 200. Figure 9a shows the behavior of the sys-
tem as the number of VMs changes. Adding VMs to
the system reduces the computing delay. This is be-
cause a large number of VMs allows many task to be
executed in parallel. The transmission delay can be
ignored due to its small value, as computing delay is
the main contributor to the total delay. However, the
edge offloading approach has more computation de-
lay compared to the proposed LA-based method. The
continuous interaction of LA with the working envi-
ronment to select the best VM for a task causes the
performance improvement of the proposed method.
The energy consumption with variation in the num-
ber of VMs is shown in Figure 9b. The addition in
VM count increases the number of successful task ex-
ecutions. This contributes to the computation energy.
The transmission energy also contributes to total en-
ergy consumption. In addition, the total energy con-
sumption also increases due to the energy consumed
by idle VM in a large VM count. The edge offload-
ing process consumes more energy compared to the
proposed LA-based method. The decision on the cur-
rent VM selection considering the previous selection
in the proposed LA-based method guarantees this per-
formance improvement. In Figure 9c shows the effect
of the number of VMs on the success rate. By increas-
ing the number of VMs, more tasks can be executed
and completed before the specified deadline. Thus, the
success rate increases as the number of VMs increases.
From the figure, it can be observed that the proposed
approach has a better performance compared to oth-
ers. This is because the continuous interaction with
the environment and the probability value allows the
selection of the best (task, VM) pair.

A two-way Analysis of Variance i.e. ANOVA test
is performed with the null hypothesis: ”All algorithms
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(a) Cost function Value with ϕ = φ = 0.1
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(b) Cost function Value with ϕ = φ = 0.01
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(c) Cost function Value with ϕ = φ = 0.001

Fig. 7: Cost function value for different ϕ and φ value
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Fig. 8: Impact of number of tasks on system performance

have a success rate of 70%”. The test was applied to
350 tasks with different numbers of VMs; 30 (Experi-
ment 1), 60 (Experiment 2), and 90 (Experiment 3), as
shown in shown in Figure 11. The calculated p-value
for the rows is 0.075, which is greater than the default
value of 0.05. Hence, the null hypothesis cannot be
rejected at the 95% level of confidence level.

8. Conclusion

Today, IoT applications are present everywhere
starting from the smart grids to the smart healthcare
systems. These applications require low computing la-
tency. Energy consumption is another important issue
in the IoT network. In this regard, edge computing is
helpful because it brings computation close to the data
source, thus reducing computation delay and energy
consumption. The energy and delay minimization
problem addressed in this work has been formulated as
a bi-objective edge resource allocation problem. First,
a three-layer IoT network architecture for IoT-enabled
smart cities was presented. Then learning automata
(LA) had been used to realize the solution of the above
problem. First, an LA-based edge resource allocation
framework was designed, and then an allocation algo-
rithm was presented considering this framework. The
simulation results show the performance improvement
of the proposed LA-based edge resource allocation
method over some existing approaches. In the future,
we plan to implement this approach in a specific smart
application, such as a smart home or smart driving. In
addition, we plan to develop an edge resource alloca-
tion method that considers other metrics such as task
allocation fairness and user satisfaction.
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