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Abstract

The reversibility of Zn plating/stripping during cycling is adversely affected
by dendritic growth, electrochemical corrosion, surface passivation, and
hydrogen generation on the Zn anodes for rechargeable aqueous zinc ion
batteries (ZIBs). Herein, through an ordinary anodic etching process, a
uniform porous ZnP matrix protective layer was created on the Zn foil
(Zn@ZnP). The large and accessible specific surface area of the prepared
Zn@ZnP can facilitate contact with the electrolyte, accelerating the
migration and enhancing the desolvation of Zn**, effectively enhancing
the Zn deposition kinetics. According to studies from scanning electron
microscopy (SEM) and multiscale optical microscopy, the Zn@ZnP
electrode effectively inhibits the growth of dendrites with excellent Zn
plating/stripping reversibility. In consequence, the symmetric cell with the
Zn@ZnP electrodes displays a long-term cycle life of over 1260h at
10 mA cm 2. The full cell, consisting of Zn@ZnP anodes and MnO,-based
cathode, demonstrated a high discharge capacity of 145mAhg™" after
cycling 500 times at the current density of 1000 mA g~'. A scalable method
for designing a homogeneous anode protection layer enables dendrite-free
zinc metal anodes, paving the way for interface modification of other metal
anodes.
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1 | INTRODUCTION

Rechargeable aqueous zinc ion batteries (ZIBs) have
garnered worldwide attention for their cost-effectiveness as
well as the safety associated with Zn metal. With a
relatively low redox potential of 0.76V compared to
standard hydrogen electrodes (SHE), ZIBs boast a high
theoretical mass-specific capacity of 820mAhg™" and
volume-specific capacity of 5855mAhcm™.""* However,
Zn metal is chemically reactive and thermodynamically
unstable in weak acid electrolytes, leading to the generation
of by-products.”” Additionally, the uneven distribution of
electric fields over the Zn metal anode surface leads to
irregular Zn deposition, which eventually triggers the
growth of dendrites to penetrate the separators and lead
to short circuits.* Finally, it is impractical to utilize ZIBs
given their low Coulombic efficiency (CE) and short
lifespan.'® Therefore, establishing a dendrite-free Zn anode
is crucial to ensuring the optimal performance of ZIBs."' "

To address the aforementioned problems, a variety
of ways have been sought to enhance the stability as
well as facilitate uniform deposition of Zn metal anodes,
including electrolyte optimization,'*'° separator modifi-
cations'”'® and electrode/electrolyte interface engineer-
ing.'® The construction of an artificial interface layer
over Zn metal has been considered one of the most
encouraging strategies for electrode/electrolyte interface
engineering.*’ By isolating the Zn foil surface from the
electrolyte and creating an artificial protective layer,
we can minimize side reactions and inhibit Zn dendrite
growth.?®? To create the artificial protection layer, there
are two primary methods: (1) ex situ construction of an
ionic conductive layer on the Zn anode surface; (2) in situ
construction of a protective layer over the Zn anode
surface. Ex situ coating Zn foil with a montmorillonite
layer can accelerate Zn** diffusion, reduce corrosion
and passivation, and inhibit Zn dendrite growth.***! For
instance, an amorphous metal-organic framework
(MOF) of ATMP-Zr has been used to prepare an artificial
protective surface over the Zn metal anode by scraping
strategy.’” Isolating the metal substrate from the electro-
lyte can prevent side reactions and promote uniform Zn
deposition. Except for MOFs,** more nanomaterials and
polymers have been applied to construct artificial

aqueous zinc ion batteries, dendrite growth, protective layer, Zn ion flux regulations,

protective layers, such as nano-HfO,,** TiO,/polyvinyli-
dene fluoride®®>, and poly(vinyl butyral).”® However,
during prolonged cycling at higher current densities,
the ex situ physical coating may suffer from problems
such as cracking and exfoliation, resulting in direct
contact between the electrolyte and the freshly exposed
Zn metal and continuous side reactions.*®

In contrast, the in situ formed protective layers
with homogeneous morphologies show strong bonding
affinity with the Zn metal. It significantly enhances
the structural integrity of the protective layer during
long-term cycling, contributing to excellent battery
performance.’”® For instance, MOF-based compounds,
Ui0-66-(COOH), with carboxyl functionalized pores, were
used to construct a multifunctional ion-conducting inter-
face for the Zn metal anode. This interface effectively
facilitates the desolvation process of hydrated Zn** and
the diffusion of Zn** near the surface of Zn anodes,
thereby inhibiting side reactions and facilitating even Zn
deposition.*® Alloy compounds, such as ZnTe,*" ZnF,-Ag,®
nanoporous Zn0,** and S/MX@ZnS, were also in-situ
built over the Zn anode surface as protective layers."” In
addition, ZnP alloy can significantly accelerate the
desolvation rate of Zn*", facilitating zinc deposition. The
incorporated P can boost the Zn>* ion transfer rate and
reduce the energy barrier of electrochemical reaction on
the Zn plating/stripping process, effectively improving the
cycling stability of Zn anodes.*>** However, the thickness
and uniformity of the ZnP protective layer obtained via the
electrodeposition method may be difficult to control.

Herein, inspired by the excellent protection of ZnP
alloy materials, a highly reversible Zn metal anode was
designed through the in situ growth of an artificial
protective layer with a three-dimensional (3D) inter-
connected ZnP alloy structure over a Zn foil surface
(Zn@ZnP) by a controllable and efficient anodic etching
method. The anodic etching method also chemically
reconstructs the zinc foil while preparing the ZnP layer,
which further removes the zinc oxide present on the
surface of the zinc foil. Due to the 3D porous structure,
the zinc anode's specific surface area is also increased.
The broad specific surface area provided by the 3D
structure provides sufficient zinc deposition sites for the
battery cycle and effectively avoids the generation of zinc
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dendrites.***>™*® According to the analysis of the multi-
scale in situ and ex situ microscopy observations, the
prepared Zn@ZnP anodes facilitate homogeneous Zn
deposition, which benefits from accelerated Zn** migra-
tion rate and enhanced Zn>* desolvation kinetics of the
ZnP protective layers. The symmetric cell can operate for
2000h at 1mA cm™2, according to the electrochemical
testing findings, and it has a stable voltage hysteresis.
After increasing the current density to 10 mA cm™2, the
symmetric cell serves over 1260 h. With the aluminum
intercalated 8-MnO, on a reduced graphene oxide
nanosheet (AMGO) cathode, the assembled full cell
shows an outstanding discharge capacity of 145 mAh g~
after 500 cycles at 1000 mA g ™.

2 | RESULTS AND DISCUSSION

The Zn deposition behaviors on pristine Zn and Zn@ZnP
anodes are illustrated in Figure 1. Figure 1A shows that
the appearance of small protrusions is due to the uneven
deposition and gradual accumulation of zinc on the bare
zinc surface. These protrusions eventually form dendrites.
In addition, the contact with the aqueous electrolyte
generates H, in a weak acid electrolyte and produces by-
products (i.e., Zn(OH), and Zn,SO,(OH)s-H,0), severely
corroding the Zn anode inexorably. Those by-products are
deposited on the zinc surface and generate a passivating
layer that significantly increases the charge transfer
resistance of Zn-ion batteries. In contrast, Zn foil with a
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protective layer, porous interconnected ZnP matrix, can
promote uniform Zn deposition and effectively inhibit side
reactions during reduplicative plating/stripping of
Zn**/Zn (Figure 1B). By enhancing interaction with the
electrolyte, accelerating Zn** diffusion, and enhancing
7Zn>* desolvation, the protective surface on the Zn anodes
increases Zn deposition kinetics and facilitates homoge-
nous Zn deposition.

The field emission scanning electron microscopy
(FESEM) image displayed the Zn surface's morphology
changes before and after treatment in different condi-
tions. The surface of the pure Zn foil is relatively smooth
(Figure 2A). After anodic etching treatment in 0.1 M
NaH,PO, solution, the pristine Zn surface presents
an uneven and porous structure (Figure 2B). As the
concentration of the solution increases to 0.2 M, the Zn
surface presents a uniform 3D structure with a porous
skeleton (Figure 2C). Some agglomerates appear on the
Zn foil after being treated in 0.6 M NaH,PO, solution
(Figure 2D). When the concentration of the solution
reaches 1.0 M, a serious agglomeration phenomenon
appears on the Zn foil, resulting in uneven surface
morphology (Figure 2E). The composition of materials
and their distribution were investigated using energy
dispersive spectroscopy (EDS). The signals of the Zn
element and P element are uniformly distributed on the
Zn surface as shown in Figure 2F,G. Further study using
transmission electron microscopy (TEM) was carried
out to demonstrate the presence of an interconnected
ZnP matrix in Supporting Information: Figure S1. X-ray
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FIGURE 1 Schematic illustration of Zn deposition processes on different substrates. (A) pristine Zn foil and (B) Zn@ZnP foil.
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FIGURE 2 (A)scanning electron microscopy (SEM) image of the pristine Zn foil. (B-E) SEM images of the obtained Zn@ZnP foils after
the anodic etching treatment in NaH,PO, solutions with different concentrations. (B) 0.1 M, (C) 0.2M, (D) 0.6 M, and (E) 1 M. (F, G) The
energy dispersive spectroscopy element analysis of Zn@ZnP. (H) X-ray photoelectron spectroscopy (XPS) survey spectrum of Zn@ZnP. (I, J)

The corresponding high-resolution XPS spectra of (I) Zn 2p, and P 2p.

photoelectron spectroscopy (XPS) confirmed the element
content of Zn@ZnP (Figure 2H-J). The XPS spectra of
the Zn@ZnP anode revealed a typical Zn 2p diffraction
peak (Figure 2I). The existence of P in the protective
layer may be shown by the P 2p signal located at 134.5eV
in Figure 2J.** The good wettability of electrodes in
electrolytes could promote the migration of Zn** at the
surface of the electrodes and facilitate uniform Zn
deposition. To demonstrate the wettability of pristine
Zn anode and Zn@ZnP anode in 2M ZnSO, aqueous
electrolytes, contact angle testing was carried out
(Supporting Information: Figure S2). The Zn@ZnP anode
has a contact angle value of 50°, which is significantly
different from that of the pristine Zn anode (97°), illustrating
the enhanced wettability of the Zn@ZnP anode in aqueous
electrolytes.

The electrochemical performances of Zn anodes were
first tested by cyclic voltammetry (CV). Figure 3A shows
that the CV curves of the pristine Zn anode and the

Zn@ZnP anode demonstrate analogous redox peaks,
revealing the excellent reaction kinetics of Zn deposition
on the Zn@ZnP anode. The ZnSO, electrolyte's weak
acidity causes complicated side reactions on the electrode
intersurface,* which triggers the hydrogen generation
and raises the electrolyte's pH level.*”**>° We tested the
stability of various electrodes by soaking them in 2M
ZnSO, solution for 3 days. The electrodes were then
removed from the electrolyte solution and tested by
X-ray diffraction (XRD) measurement (Supporting Infor-
mation: Figure S3). The intensity and width of the
prominent peaks of the Zn matrix become stronger and
broader, especially (002), (101), and (102) at 36°, 39°, and
54°, respectively, illustrating that the additional P atoms
cause these crystal faces to be exposed on the zinc foil. In
addition, the XRD pattern of the pristine Zn foil shows
diffraction peaks at 12°, 21°, and 25° corresponding
to the (001), (002), and (111) crystal planes of the
Zn,SO4(OH)g-xH,O (PDF#39-0690). It demonstrates that
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FIGURE 3 (A) Cyclic voltammetry curves of Zn and Zn@ZnP. (B) Linear polarization curves of the corrosion test of Zn and Zn@ZnP
in 1 M Na,SO, solution. (C) Linear sweep voltammetry curves of the hydrogen evolution test of Zn and Zn@ZnP in 1 M Na,SO, solution.
(D, E) Electrochemical impedance spectroscopy results were obtained at different temperatures. (F) Corresponding Arrhenius plots and

comparison of activation energies of Zn and Zn@ZnP electrodes.

pristine Zn foil is prone to corrosion in contact with the
ZnSO, electrolyte. In contrast, the XRD pattern of
Zn@ZnP anode shows much weaker diffraction peaks
corresponding to Zn,SO4(OH)s-xH,O0, indicating that the
ZnP layer effectively inhibits the corrosion reaction
against aqueous electrolyte. The linear polarization
experiment and linear sweep voltammetry (LSV) curves
also confirmed the excellent protective effect of the ZnP
layer on pristine Zn foil in 1 M Na,SO, solution. In this
process, Na,SO, was chosen as the electrolyte instead of
ZnS0O, because zinc ions will be reduced in preference
to hydrogen ions in the hydrogen evolution reaction,
thus influencing the experimental results. As shown in
the linear polarization curves in Figure 3B, the corrosion
potential of the Zn@ZnP electrode (—1.032V wvs.
Ag/AgCl) is positively shifted by 58 mV compared with
the Zn foil (—1.090V vs. Ag/AgCl), indicating that the
ZnP protective layer can be much efficiently able to
prevent the corrosion and the hydrogen evolution.’"*
LSVs were verified over a wide voltage range (—1.2 to
—2.0V vs. Ag/AgCl) in 1 M Na,SO, solution (Figure 3C).
The fact that Zn@ZnP exhibits a much lower current
density for hydrogen evolution than pristine Zn foil
suggests that Zn foil protected by ZnP can significantly
slow down hydrogen evolution.

The impact of the ZnP protective layer on Zn**
migration was investigated in symmetrical cells, and the
activation energy (E,) reflecting the interface diffusion
barrier of Zn** was evaluated through resistance
response in the temperature range of 10-60°C, according
to the Arrhenius formula.>® The improvement of
the desolvation process on the Zn@ZnP electrode at
different temperatures was validated by the apparent Ea
from electrochemical impedance spectroscopy (EIS)
(Figure 3D,E). Obviously, the R, of pristine Zn electrodes
is higher than that of Zn@ZnP electrodes at a variety of
temperatures. The activation energy of the Zn@ZnP
electrode is calculated to be 32.51kJmol™!, which is
much lower than that of the pristine Zn electrode
(40.622kJ mol™) (Figure 3F). The low activation energy
accelerates the desolvation process of solvated Zn>T,
which promotes the reaction kinetic of Zn deposition.

To evaluate the cycle stability of the electrodes,
symmetrical cells were constructed and tested under
various current densities and capacity limitations.
The symmetric cells' rate performances were tested with
a capacity limitation of 2 mAh cm™2 (Figure 4A). At the
current density of 10 mA cm™2, the voltage curve of the
cell with the Zn electrodes started to fluctuate abnor-
mally. With an increase in current density, the voltage
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FIGURE 4 (A) The rate performance of symmetrical cells using pristine Zn electrodes or Zn@ZnP electrodes. (B-E) Long-term cycling

performance of symmetrical cells using pristine Zn electrodes or Zn@ZnP electrodes at different current densities and capacity limitations.
(B) 1 mA cm™2, 1mAhcm™2 (C) 10mA cm™2, 5mAhcm™2; (D) 10 mA cm™2, 10mAh cm™2; and (E) 20mA cm ™2, 10mAhcm ™.

hysteresis of the cell with Zn@ZnP electrodes steadily
grew. The Zn@ZnP electrode-equipped cell maintained
stable cycling when the current density was decreased to
0.5mA cm™>. The rate performance demonstrated that
the plating/stripping kinetics of the Zn@ZnP electrode
had been significantly improved. As shown in Figure 4B,
the electrochemical performance of ZnllZn and
Zn@ZnPl|Zn@ZnP were compared at 1 mAcm > and a
capacity limitation of 1mAhcm™ The voltage-time
curve fluctuated greatly for the cell with pristine Zn
electrodes after 150 h cycling due to the dendrite growth
on the surface of the Zn foil. In contrast, the cell with
Zn@ZnP electrodes showed significantly improved cy-
cling stability up to 2000 h. Once the current density
reached 10 mA cm ™2 (Figure 4C), the cell with Zn@ZnP
electrodes was able to cycle steadily for 1260 h with
stable plating/stripping potentials, whereas the -cell
with pristine Zn electrodes failed at 150 h. To further

determine the cycling stability of the Zn@ZnP electrodes
at high current densities, the capacity limitation was
fixed to 10 mAh cm™2. At the current densities of 10 and
20mA cm™?, the cells with Zn@ZnP electrodes even
cycled steadily for 95 and 100h with low voltage
hysteresis (Figure 4D,E). In addition, the cells with
Zn@ZnP electrodes are more stable than the cells with
pristine Zn anodes when charged and discharged at
different current densities (Supporting Information:
Figure S4). This indicates that the ZnP protective layer
can regulate Zn>* flux, inhibit the formation of dendrites,
and suppress secondary processes. Additionally, varied
concentrations of NaH,PO, electrolytes were used to
assess the electrochemical performance of Zn@ZnP
electrodes. As shown in Supporting Information:
Figure S5, the symmetric cells with Zn@ZnP electrode
demonstrated the best cycling performance (2000h) in
0.2 M NaH,PO, electrolyte at 0.5 mA cm™> and a capacity
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limitation of 0.5 mAh cm™?, further revealing the excellent
protective effects of ZnP layer on Zn metal anodes.
We performed XRD tests on the electrode after 100 cycles
to confirm the stability of the protective ZnP layer
(Supporting Information: Figure S6). No apparent changes
in the XRD patterns except the appearance of a small
amount of ZnP,.

To investigate the electrochemical protection mecha-
nism of a ZnP protective layer in the ZnSO, electrolyte
system, ex situ and in situ observations combined with
electrical analysis were conducted. Ex situ scanning
electron microscopy (SEM) was utilized to observe the
morphology evolutions during Zn deposition on both
pristine Zn anodes and Zn@ZnP anodes. Figure 5A-C
show the morphology evolution of pristine Zn under

1 mAh cm??
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1
I
I
i
|
e
1

1
E)

J'ENERGY __~WI LEYy—*!

various deposition times in 2M ZnSO, electrolyte with
1 mA cm™2. With a plating capacity of 1 mAh cm™2, pristine
Zn foil showed a rough surface with lots of dendrites
(Figure 5A). One of the major reasons for dendritic growth
is the accumulation of local charge caused by the uneven
deposition of 7Zn>*, which leads to the creation of
dendrites.*>>* The Zn dendrites kept accumulating when
the deposition reached 2 mAh cm™ (Figure 5B). After the
deposition capacity increased to 5 mAh cm™2, the Zn anode
surface was covered with dense hexagonal sheets
(Figure 5C). With the increase in deposition time, dendrite
growth becomes increasingly irregular, eventually leading
to cell failure. In addition, the sharp dendrites with high
surface areas on Zn foil further promote the side reactions
with the electrolyte.28 In contrast, the Zn@ZnP anode with

FIGURE 5 (A-F) scanning electron microscopy (SEM) images of the morphology evolution of (A-C) pristine Zn and (D-F) Zn@ZnP
anodes at different capacity limitations at the current density of 1 mA cm™2. The insets are the corresponding high-resolution SEM images.
(G, H) In situ optical observation of the Zn plating on (G) pristine Zn anodes and (H) Zn@ZnP anode.
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uniform Zn deposition was observed at different capacity
limitations (Figure 5D-F). The stable variation of the
Zn@ZnP surface indicated that the ZnP protective layer
could uniform the nucleation and deposition of Zn,
showing an excellent capability to inhibit dendrite growth.
The anode surface has a flat and smooth surface due to the
uniform distribution of the electric field, which also ensures
consistent Zn>* deposition.

Based on the above results, symmetrical cells
assembled with 2M ZnSO, electrolyte were subjected
to conduct in situ optical microscopy to observe the Zn
deposition process in real time. In Figure 5G, many
irregular protrusions appeared on the Zn foil surface
after 60 min. The protrusions gradually accumulated to
form dendrites along with the deposition time.?*>>>® The
Zn@ZnP anode, however, maintained a flat and smooth
surface throughout the deposition process (Figure 5H).
The outcomes further demonstrated that the artificial
ZnP layers can functionally inhibit dendrite growth and
improve ZIBs' cycling stability.

The full cells were used to further assess the
electrochemical performance of Zn@ZnP anodes and
pristine Zn anodes in 2M ZnSO, and 0.1 M MnSO,
electrolytes. The aluminum intercalated 8-MnO, on
reduced graphene oxide nanosheet (AMGO) was used as
the cathode material. Supporting Information: Figures S7
and S8 show the XRD, SEM, and TEM characteristics of

AMGO cathode materials. The CV curve of the Zn@ZnP-
based cell shows higher redox peaks compared to the Zn-
based cell, which indicates the improved electrochemical
activity of the Zn@ZnP anode (Figure 6A). In addition, the
Zn@ZnP-based cell exhibits a significantly lower imped-
ance than that of the pristine Zn anode, indicating a
significant decrease in charge transfer resistance during
the charging and discharging operations (Figure 6B).
Gradient current densities were employed to evaluate
the rate capability of the assembled full cells (Figure 6C).
Under the same current densities, the cell with a Zn@ZnP
anode consistently showed higher discharge-specific capaci-
ties than the cell with a pristine Zn anode. Supporting
Information: Figure S9 and Figure 6D show the correspond-
ing charge/discharge voltage profiles of full cells with the
gradient current densities from 100 to 2000 mA g~*. With
the increase of the current density, the discharge capacity
of the cell with pristine Zn anode demonstrated quick
fading from 256 mAh g™ at 100mA g™" to 125mAhg™" at
2000mA g ". On the contrary, as shown in Figure 6D,
compared to the pristine Zn-based cell, the Zn@ZnP-based
cell achieved an improved capacity of 270mAhg™" at
100mAg. The discharge-specific capacity of the
Zn@ZnP-based cell is 15mAhg™" at 2000mAg™". The
charge-discharge voltage curve comparison demonstrates
that the Zn@ZnP anode has good reversibility and can
facilitate the transfer of Zn®*. At the current density of
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—_ n : e Zn >
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FIGURE 6 Electrochemical properties of full cells with pristine Zn anodes and Zn@ZnP anodes. (A) The cyclic voltammetry curves at
the scan rate of 0.1 mV s™. (B) Electrochemical impedance spectroscopy results. (C) Rate performance. (D) The corresponding charge-
discharge curves of the zinc ion battery with the Zn@ZnP anode. (E) Long-term cycling performance at the current density of 1000 mA g™*.
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1000mA g™, the full cell with the Zn@ZnP anode and
AMGO cathode can maintain a discharge capacity of
145mAh g™ ! after 500 cycles with a high-capacity retention
of 81%, demonstrating superior stability as shown in
Figure 6E. However, the full cell with Zn anode and
AMGO cathode only achieved capacity retention of 70%
after 500 cycles. Therefore, it can be concluded that
Zn@ZnP anode has excellent stability and the ability to
inhibit dendrite growth.

3 | CONCLUSION

In summary, an in situ construction of a uniform
ZnP protective layer over the Zn anode surface was
accomplished using a controlled anodic etching strat-
egy. The anodic corrosion and hydrogen evolution were
efficiently suppressed by the Zn@ZnP electrode, and
Zn deposition kinetics were encouraged to potentially
lessen polarization during cycling. In addition, the
unique porous ZnP layer effectively induced even Zn
deposition, thereby suppressing dendrite growth. Fur-
thermore, in symmetric cells, the Zn@ZnP electrodes
show excellent rate performance and cycling stability.
With low voltage hysteresis at 1 mA cm™2, the cell with
Zn@ZnP electrodes has a stable cycle life of more than
2000 h. The symmetrical cell continued to run in a
steady cycle of plating/stripping for more than 1260 h
even at 10mAcm 2 In addition, the full cells
assembled with Zn@ZnP anodes and AMGO cathodes
showed outstanding cycling stability with a discharge
capacity of 145 mAh g~ after 500 cycles at 1000 mA g™ .
The ZnP protective layer prepared by a simple anodic
etching method offers a distinctive viewpoint on the
protection of the Zn anode as well as a novel concept for
the ZIBs interface protective layer.
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