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Abstract
An extraordinary amount of data is becoming avail-
able in educational settings, collected from a wide 
range of Educational Technology tools and services. 
This creates opportunities for using methods from 
Artificial Intelligence and Learning Analytics (LA) 
to improve learning and the environments in which 
it occurs. And yet, analytics results produced using 
these methods often fail to link to theoretical concepts 
from the learning sciences, making them difficult for 
educators to trust, interpret and act upon. At the same 
time, many of our educational theories are difficult to 
formalise into testable models that link to educational 
data. New methodologies are required to formalise 
the bridge between big data and educational theory. 
This paper demonstrates how causal modelling can 
help to close this gap. It introduces the apparatus of 
causal modelling, and shows how it can be applied to 
well-known problems in LA to yield new insights. We 
conclude with a consideration of what causal model-
ling adds to the theory-versus-data debate in educa-
tion, and extend an invitation to other investigators to 
join this exciting programme of research.
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INTRODUCTION

As online learning becomes mainstream with the response to Covid-19, the shift to new 
models of learning has dramatically accelerated in a way that was unanticipated before 2020. 
In response, a wide range of Educational Technology (EdTech) tools which were previously 
patchily adopted have now become mainstream in both schools and universities (Rapanta 
et  al.,  2021). For example, while universities have made use of them for decades, most 
schools have now moved their resources into Learning Management Systems (LMSs), and 
web conferencing tools have become a standard technology for delivering lectures. Similarly, 
online proctoring for exams has become common, albeit with a fair amount of accompanying 
controversy (Selwyn et al., 2021). This explosion in technology has resulted in the gener-
ation of an unprecedented amount of educational data which practitioners are increasingly 
attempting to use to support student learning. Indeed, the shift to online and hybrid models 
of instruction frequently leaves instructors in the dark about student engagement, where they 
are struggling and how class dynamics are evolving, as the visual clues that they traditionally 
rely upon are lost. The resulting trend towards using methods from Artificial Intelligence (AI) 

Practitioner notes

What is already known about this topic
•	 ‘Correlation does not equal causation’ is a familiar claim in many fields of research 

but increasingly we see the need for a causal understanding of our educational 
systems.

•	 Big data bring many opportunities for analysis in education, but also a risk that 
results will fail to replicate in new contexts.

•	 Causal inference is a well-developed approach for extracting causal relationships 
from data, but is yet to become widely used in the learning sciences.

What this paper adds
•	 An overview of causal modelling to support educational data scientists interested 

in adopting this promising approach.
•	 A demonstration of how constructing causal models forces us to more explicitly 

specify the claims of educational theories.
•	 An understanding of how we can link educational datasets to theoretical constructs 

represented as causal models so formulating empirical tests of the educational 
theories that they represent.

Implications for practice and/or policy
•	 Causal models can help us to explicitly specify educational theories in a testable 

format.
•	 It is sometimes possible to make causal inferences from educational data if we 

understand our system well enough to construct a sufficiently explicit theoretical 
model.

•	 Learning Analysts should work to specify more causal models and test their predic-
tions, as this would advance our theoretical understanding of many educational 
systems.
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1097CAUSAL MODELS, THEORY & DATA

and Learning Analytics (LA) to provide insights to instructors, institutions and even learners, 
has accordingly accelerated.

However, as the educational domain moves towards an era of big data, we might ask if the 
data being collected are fit for purpose (Kitto et al., 2020). Indeed, there is growing evidence 
to suggest that the data resulting from these many different learning environments are diffi-
cult to link to theoretically grounded educational concepts that decision makers can utilise to 
improve student outcomes (Knight & Buckingham Shum, 2017; Wise et al., 2021). This has 
led to a rise in calls to more tightly embed educational theory into these advanced analytics 
tools and methods (Guzmán-Valenzuela et al., 2021; Marzouk et al., 2016; Winne, 2020), 
and to claims that as our datasets grow, theory becomes more important than ever (Wise & 
Shaffer, 2015). But what precisely do we mean by this rather ambiguous concept? Almost 
every field of research has a different notion of what a theory is, what it is not (Sutton & 
Staw, 1995), along with the associated debates about how theory should inform our analyt-
ical methods. The learning sciences are no exception. These ongoing debates open up 
possibilities for us to learn from past efforts to conceptualise the interplay between theory 
and data in other domains. So what lessons can we learn from these past controversies? We 
will start by considering a similar debate that occurred in AI.

A historical example from Artificial Intelligence

In 2011 a very public debate exploded in the world of AI, when Peter Norvig 1 wrote a blister-
ing response (Norvig, 2012) to Noam Chomsky 2 who had

derided researchers in machine learning who use purely statistical methods 
to produce behaviour that mimics something in the world, but who don't try to 
understand the meaning of that behaviour. 

(Cass, 2011)

Chomsky insisted that we need to construct theories and interpretable models that explain 
the underlying patterns in a dataset, disparagingly referring to the statistical models being 
used in computational linguistics as ‘stamp collecting’. Norvig (2012) countered by pointing 
out that modern statistical models were performing so well that they were beating most 
theoretically informed models, and that more than 90% of researchers in the field were using 
them. In short, Norvig was claiming that Chomsky's insistence on a theoretical model was 
outdated, and that with enough data we would not need to develop an underlying under-
standing of the system being modelled. Instead, Norvig (2012) argued that we must accept 
that ‘nature's black box cannot necessarily be described by a simple model,’ (p 32), and 
that Chomsky's desire for an interpretable model was naive. While this debate centred 
upon linguistics, it can be understood as a much broader argument about what counts as 
a satisfactory model in a field exposed to big data. Norvig claimed that developing statisti-
cal models using large datasets and testing the results obtained using predictive accuracy 
was sufficient and that we did not need to understand the resulting predictions. In contrast, 
Chomsky claimed that more is required, and that we should be seeking explanatory princi-
ples that provide an understanding of the phenomena being studied. No clear consensus 
emerged from this debate about which approach was ‘best’. Indeed, the two sides of this 
debate centre around very different philosophical positions, which leads to very different 
interpretations of their claims. This argument between the ‘two cultures’ (Breiman, 2001) 
of science is hardly new, and indeed, with the rise of large language models and new tools 
like ChatGPT we see the power of statistical models coming to the fore again, albeit with an 
associated loss of interpretability (Bender et al., 2021). Arguments about the relative value 
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KITTO et al.1098

of statistical-versus-theoretical modelling have arisen in many fields, under a wide range of 
guises, but fundamental to this debate is a difference in understanding about the purpose of 
our models. Are they for predicting system behaviour or for providing a causal understanding 
of the system being studied? More recently, when Judea Pearl referred to deep learning as 
mere ‘curve fitting’ (Hartnett, 2018) he can be seen as reinvigorating this data-versus-the-
ory debate in AI. Interestingly, Pearl argues that a far richer understanding of causality is 
required for AI to reach a level of modelling equivalent to human general intelligence.

In this paper, we will argue that the modern apparatus of causal modelling (Pearl, 2009) 
offers materials to build a ‘middle space’ for learning and analytics to meet (Knight et al., 2014; 
Suthers & Verbert, 2013), by formalising the causal claims made by learning theory in a form 
that enables them to come into dialogue with the statistical machinery often used by analyt-
ical approaches.

Before commencing on this journey, we will consider how this debate plays out in the 
domain of the educational data sciences, pointing to a need in the field to make causal 
claims without resorting to controlled trials. This will provide us with motivation to more 
clearly articulate what we mean by a theory in education, before we move onto introducing 
the apparatus of causal modelling.

Education and big data

Education, at its heart, is about improving our society, our productivity, our culture, our knowl-
edge, our understanding and our thinking (UNESCO, 2020). To do this, educational institu-
tions need to be able to make effective interventions that improve learning outcomes and the 
environments in which people learn. The emphasis upon evidence-based practice has led to 
the increasing collection and presentation of data in education. The resulting wide ranging 
availability of data has driven the emergence of fields like LA and Educational Data Mining 
(EDM), which aim to provide actionable insights that would help to support this improvement 
(Jørnø & Gynther, 2018).

However, successfully intervening in a system as complex as education is no easy task 
(Davis & Sumara, 2010). A number of high-profile attempts to generate lasting change in 
educational settings have floundered. Consider for example the 2018 finding that a $575 
million Bill & Melinda Gates Foundation initiative, which sought to measure and improve 
teacher effectiveness, failed to boost student achievement in any measurable sense (Stecher 
et al., 2018). The report notes that ‘The [Intensive Partnerships] initiative might have failed 
to achieve its goals, because it succeeded more at measuring teaching effectiveness than 
at using the information to improve student outcomes’ (Stecher et al., 2018, p. 564). Decid-
ing what to measure, and then determining how to gather sufficient evidence to support an 
intervention, is a difficult problem. Even more problematic is assessing evidence of whether 
the intervention was successful. In the above case, it was found that measuring teacher 
effectiveness does not necessarily equate to improving student outcomes. It could be argued 
that the wrong data were being used to assess the effectiveness of the intervention that was 
supported by this program. But how are we to decide which data are the correct data to use?

Approaching this problem requires a deeper knowledge of the system than can be 
provided by the data alone (Pearl & Mackenzie, 2018). It is not enough to draw inferences 
about the associations between variables in an educational dataset. If we are to successfully 
intervene in a system then we must be able to understand what can be changed and why this 
should work. But this requires an understanding of the direction in which our associations (or 
correlations) flow, i.e. how one variable might influence another. In short, we require a causal 
understanding of the relationship between two variables.
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1099CAUSAL MODELS, THEORY & DATA

However, many who work with data are all too familiar with the catchphrase that ‘correla-
tion does not equal causation’, a claim that harkens back to the early days of statistics when 
Pearson equated causation with the statistically well-defined concepts of perfect correlation 
or anticorrelation (Pearl & Mackenzie, 2018, p. 66). This rather dramatic move resulted from 
the well-known difficulty of ensuring that a sequence of repeating events must continue to 
repeat in that pattern with absolute certainty:

That a certain sequence has occurred and recurred in the past is a matter of 
experience to which we give expression in the concept causation. … Science in 
no case can demonstrate any inherent necessity in a sequence, nor prove with 
absolute certainty that it must be repeated. (Pearson, 1911, p. 113)

Thus, Pearson followed in Hume's footsteps, declaring that we must be sceptical about the 
possibility of linking two events using any claims stronger than the declaration that a correla-
tion exists between them. Indeed, Pearson and his students were able to demonstrate that 
many causal relationships between two events A and B were spurious, or at best due to an 
underlying confounding variable that could explain the correlation. For example, we might 
be interested in whether having access to a home library influences students' academic 
performance. While there may be a direct effect between these two variables (eg, a student 
with access to books at home might read more and consequently perform better in class) it 
is also possible that some other variable is the underlying cause of both of these outcomes. 
Thus, it may be that the parents of the student are highly educated, better able to help them 
with their studies and expose them to many stimulating life experiences, while also buying 
many books.

It took Fisher to recover the notion of causal claims, some 25 years later, when he formal-
ised the notion of a randomised experiment. Jamison  (2019) provides a comprehensive 
overview of the complex history of this concept, tracing its historic use, before demonstrating 
how it became embedded in the social sciences as a tool for demonstrating causal relation-
ships across a number of different fields. In short, a randomised experiment enforces the 
randomised assignment of conditions, in a series of experimental observations, resulting in 
a set of outcomes. This removes the exogenous causes of the conditions as they are now 
governed by the randomisation process, which in turn removes any confounding from a 
common cause between the conditions and the outcomes. Performing this removal enables 
us to measure the causal effect of the treatment (i.e., the conditions) on an outcome, a form 
of experimentation now commonly referred to as a randomised controlled trial (RCT). RCTs 
are now commonly considered the gold standard for making causal claims. Thus, we see 
that the stances adopted by Pearson and Fisher gained particular prominence in the field of 
statistics, and from there have become influential in all the sciences, including the Learning 
Sciences, EDM and LA (although we acknowledge that not all researchers in these fields 
adhere to this stance).

There are numerous robust examples of RCT methodology in the learning sciences. 
For example, Brooks et  al.  (2018) performed a RCT on students enrolled in a Massive 
Open Online Course (MOOC). They assigned participants randomly to either a female 
condition (n = 23,365, male students = 18,482, where the instructor was a woman with two 
female ‘data scientists’ working in the background) or a male condition (n = 23,287, male 
students = 18,478, where a male instructor had two male ‘data scientists’ working in the back-
ground). The random assignment of participants to a condition enabled the authors to show 
that while no causal connection could be demonstrated between the condition and student 
persistence, the engagement of women assigned to the female condition was significantly 
improved. They were also able to show that a correlating strong but small negative effect 
occurred in men assigned to the female condition. Similar interesting results have been 
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KITTO et al.1100

found by a number of other studies in MOOCs (Boaler et al., 2018; Hossain et al., 2015; 
Kizilcec et al., 2020; Vilkova, 2022), although they are far less common outside of the MOOC 
format. Interestingly, Motz et al.  (2018) demonstrate that these claims need not be made 
exclusively in a laboratory setting with controlled experiments. They can also be embedded 
into a genuine learning setting, and often at scale.

The problem with experimental studies in education

However, it is far from true that every educational phenomenon that we would like to study 
can be meaningfully subjected to a RCT. Sometimes we are interested in an educational 
construct that cannot be directly measured, let alone directly changed by intervention (eg, 
motivation or self-regulation). In such cases we would need to create an experiment by 
changing the conditions of variables that are designed to serve as proxies for the latent 
variables thought to affect the outcome under study. At other times, it is impossible to split 
a set of students into two randomised groups (eg, there may only be one class of students, 
or a morning and evening class, which might be indicative of a confounding variable such 
as ‘employment status’). It might even be unethical to split a set of students into two groups. 
Performing an intervention on one group but not the other could lead to significant differ-
ences in life outcomes, and it can be difficult to justify an experiment in this context. It can 
also be difficult to properly blind participants in education, and students often become aware 
that they are under study (Sullivan, 2011). These complexities mean that many domains of 
education fail to meet the stringent requirements of a RCT. As a result, LA has tended to 
report upon correlations far more frequently than it makes causal claims. For example, Wong 
et al. (2019) conducted a systematic review of empirical LA papers that discussed student 
success, finding that prior to 2017 (when their search was performed) only two of 20 papers 
conducted a (quasi)experimental study, with the rest reporting correlations alone. Interest-
ingly, 16 of these papers made use of a learning theory of some form, with self-regulation 
being the most commonly used theory (n = 6).

Furthermore, while randomisation in experiments provides internal validity for a statistical 
result (ie, like is compared with like) it makes no guarantees about external validity (ie, the 
extent to which results can be generalised to other settings). This often leads to problems 
where previously reported results in LA fail to replicate. For example, Joksimovic et al. (2018) 
conducted a review of approaches to modelling learning in MOOCs, finding that many results 
in contemporary MOOC research lack generalisability. This finding was supported by the 
impressive study of Kizilcec et al.  (2020), who tested a range of interventions with more 
than 250,000 students in 247 online courses, demonstrating that few established interven-
tions actually resulted in beneficial outcomes for students. This failure to replicate frequently 
results from an over-reliance upon hypothesis testing, where a battery of tests is applied to 
a dataset with little theoretical motivation. As more tests are applied it becomes more and 
more likely that a false positive will be returned. Gelman and Loken (2014) have referred to 
the choices made in performing this type of analysis as a ‘garden of forking paths’. This term 
describes the way in which the many valid decisions that have to be made during a data 
analysis tend to add hidden variables which are not factored into hypothesis testing, making 
a result seem stronger than it actually is. One of the advantages of using an approach driven 
by theory is that it can limit this form of ad hoc data analysis. Rather than performing a 
battery of tests over every variable in a dataset, a theory provides the rationale for focusing 
on specific variables, and can make predictions about how a system should behave under 
changing conditions. Theory can also help a data analyst to define what data they should 
collect in the first place, a point recently made by Winne:
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1101CAUSAL MODELS, THEORY & DATA

This analysis reveals the essential and inescapable role of theory in deciding 
what trace data should be gathered and how trace data can contribute to recom-
mendations for improving learning, one main goal for generating and using 
learning analytics. (Winne, 2020, p. 1)

Interestingly, in the same paper, Winne also points to a primitive notion of causality when he 
makes use of IF-THEN rules to describe how a system with states might change in time. We 
see here a desire to use theory to move beyond the standard statistical picture. But what 
precisely do we mean by a theory in this paper?

But what do we mean by theory in education? A lesson from the 
psychological sciences

LA often brings people with very differing perspectives together to construct a ‘middle space’ 
understanding of our educational systems, at the intersection of learning and analytics (Knight 
et al., 2014; Suthers & Verbert, 2013). This results in a wide array of understandings about 
what the term theory actually means (Lodge et al., forthcoming). Education has produced 
many different theories over three broad epochs, often falling into something approximating 
behaviourist, cognitive and contextual categories (see eg, Murphy & Knight, 2016). However, 
a recent paper by Kahlil et al. (2022), calls attention to the complexity of the concept of an 
educational theory, pointing to the many different claims about what a theory actually is in 
the learning sciences. The authors conclude that ‘there is no single accepted definition of 
what constitutes a learning theory’ (p. 5). We agree. It is often easier to define what theory is 
not than it is to define theory per se (Sutton & Staw, 1995). Indeed, Sutton and Staw mount 
a convincing argument from organisational theory to demonstrate that a number of rhetori-
cal devices commonly deployed in papers as a representation of theory (specifically: refer-
ences, data, variables, diagrams and hypotheses), cannot in fact be taken to be sufficient 
representations of this extremely complex concept.

Interestingly, Kahlil et al. (2022) perform a scoping review of LA publications (in the two 
Society for Learning Analytics Research venues, the Learning Analytics and Knowledge 
conferences and the Journal of Learning Analytics) from 2011 to 2020, demonstrating that 
Self-Regulated Learning (SRL) is by far the most dominant theory used in the field, with 
26 papers using this concept in that date range. The next closest theories were Cognitive 
Load theory and Constructivism (at six papers each). One thing to note about each of these 
theories is that they are very different in flavour from the theories that have emerged in the 
physical sciences. For example, in physics Newton's laws of motion serve to: identify the rele-
vant phenomena that lie at the heart of motion (forces and mass); explain the epiphenomena 
that result from their interaction (velocity and acceleration); and make testable predictions 
about how an object will move if we understand its mass and the forces that it is subjected to. 
While we would not claim that all theories must take this ‘physical’ form, we do think that this 
type of explanatory power is something for which the learning sciences should be striving.

One way of understanding this divergence between the various approaches to theory 
in different fields can be found in Borsboom et al. (2021), which focuses upon explanatory 
theories in the psychological sciences. These are the theories which help us to draw a rela-
tionship between measured data and the underlying phenomena that it represents. They 
help us to understand the world, and in particular to intervene in it by providing a ‘think-
ing tool’ that allows us to track the consequences of our theoretical principles. We believe 
that this approach has broad applicability across all of the learning sciences. Intriguingly, 
Borsboom et al. (2021) propose a Theory Construction Methodology (TCM) which consists 
of five stages:
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KITTO et al.1102

1.	 Identify empirical phenomena: This step aims to find robust, stable and reproducible 
empirical generalisations that explain the phenomena of interest. These phenomena must 
be well established, and perhaps even self-evident in order to provide a solid foundation. 
This means that they have a solid empirical grounding and so can function as explanatory 
targets.

2.	Develop proto-theory: At this stage of the TCM abductive reasoning is typically used to 
develop an explanatory model. This normally involves the identification of a small set of 
general principles which somehow explain the empirical phenomena identified in step 1 
using hypotheses, models and theories. Proto-theories are explanatory, and often consist 
of conceptual diagrams and stories about how phenomena affect one another, and might 
‘borrow’ explanatory principles from other fields. However, they are difficult to empirically 
test as a number of choices must still be made in formalising them which can lead to 
non-replicable results between different research groups (Gelman & Loken, 2014; Kitto 
et al., 2023).

3.	Develop a formal model: A formal model captures the explanatory principles of the 
proto-theory in a set of rules or equations that can be used in a simulation or computer 
program. The formal model can be understood as an implementation of the proto-theory, 
although in some highly formalised fields (eg, physics) they will be almost the same. 
Crucially, Borsboom et al. (2021) point out that formal theoretical models should not be 
confused with data models. That is, while fitting parameters to data (eg, by performing a 
regression, correlation analysis, ANOVA, etc.) helps us to understand the data we have 
collected, it does not help us to understand the underlying phenomena that we are trying 
to explain. This suggests that the TCM aligns more closely with Chomsky's position than 
that of Norvig.

4.	Check explanatory adequacy: Once an explanatory theory has been formalised into a 
testable model it becomes possible to test whether it is able to explain the empirical 
phenomena identified in step 1. These phenomena must also be formalised in the same 
language as the formal model, which then enables us to test whether the theory, as repre-
sented in the model, generates the phenomena.

5.	Evaluate the overall worth of the theory: At this point it becomes possible to systematically 
evaluate the worth of the theory, using an established method. The hypothetico-deductive 
method is often used to evaluate the predictive success of the model, but other approaches 
are also possible. For example, Borsboom et  al.  (2021) prefer to evaluate theories in 
terms of their explanatory value.

Through the lens provided by the TCM, it becomes possible to claim that many of the theo-
ries we see in the learning sciences could be placed at the proto-theory stage. They have 
yet to formalise the connection between the phenomena that they seek to describe at a level 
of detail sufficient for checking the explanatory adequacy of the theory. Of most concern, the 
data that we collect for LA are often only loosely coupled to the empirical phenomena that 
we seek to model. How might we identify which empirical phenomena are primary to the 
behaviour that we seek to understand? And how can we become more sophisticated about 
the data that we collect?

Here we will argue that causal modelling provides a mechanism for moving from 
proto-theory into more formalised theoretical frameworks in the educational data sciences. 
In what follows we will proceed by gradually introducing the technical apparatus of causal 
modelling. This will enable us to explore some of its key advantages using examples from 
educational scenarios, and to demonstrate how causal modelling facilitates the move from 
an educational proto-theory into a model that can be tested for its explanatory adequacy. We 
will use two examples, one from SRL and another from Reflective Writing Analytics (RWA) to 
demonstrate how a causal approach offers new insights about the form that a formal model 
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1103CAUSAL MODELS, THEORY & DATA

of these phenomena should take. This will then lead to a higher level discussion about how 
causal modelling could advance the learning sciences, before we issue a call for more work 
to be completed on this exciting topic.

CAUSAL MODELLING—A BRIDGE BETWEEN DATA AND 
EDUCATIONAL THEORIES

Causal modelling enables us to make well informed causal claims by imposing a theoretical 
structure upon a dataset (Pearl, 2009, p. 38). This approach to causal inference provides a 
mechanism for data science and AI to move beyond statistical models based primarily upon 
correlation by encouraging modellers to think about the processes (and hence the underly-
ing phenomena) that generate a dataset (Lübke et al., 2020). Importantly, causal modelling 
provides a way to move beyond the ‘correlation does not imply causation’ mantra that is 
common in many fields using observational data, without the need to resort to the running of 
RCTs. Recent papers in LA have suggested that this opens up opportunities to involve stake-
holders in the construction of educational models (Hicks et al., 2022) and to reduce potential 
bias in educational research that relies upon observational data (Weidlich et al., 2022).

Pearl and Mackenzie (2018) sketch out three sources of association between variables 
that we might see when performing a data analysis: causation, confounding and endoge-
nous selection. Causal mediation is usually what we are most interested in, and is the result 
of an association that arises because one variable causes changes in the other variable. 
Confounding can occur when the association between the two variables arises from a third 
variable that is a common cause of the other two. For instance, an association between time 
spent in the laboratory and achievement in science might be due to a confounding variable, 
subject enrolment, and not a causal link between merely occupying a particular space and 
learning. Finally, endogenous selection can induce associations in the data, and occurs when 
we (sometimes unwittingly) select data based on a third variable that is a common effect of 
our variables of interest. For example, suppose we analyse the behaviour of students at a 
prestigious institution. To be accepted they would need to be hard working, or talented, or 
possibly both. We might then observe that hard working students tend to be less talented 
amongst the population under study. However, this association might be due to the students 
being selected into an elite institution (a common effect of talent and hard work) and not due 
to a causal link between talent and hard work. These three sources of association form the 
basis of all causal models, and the way in which causal modelling enables us to formalise 
them will be discussed in the next section.

Pearl and Mackenzie (2018) argue that a three-layer ladder of causation (see Table 1) 
can be used to classify the causal claims made by the different types of questions asked in 
an analysis:

1.	Association: This basic level of causality uses statistical relationships, correlations, curve 
fits, etc. to infer relationships between variables in a dataset. No causal information can 
be extracted, leading to the frequently cited adage that ‘correlation does not equal causa-
tion’. Much of the current work in LA falls into this category.

2.	 Intervention: This level involves not just measuring an effect, but changing an input and 
then recording an outcome. In performing this form of analysis we learn much more about 
how we might change outcomes, rather than simply observing them (which leads to a 
higher classification in the ladder). Work in LA that relies upon RCTs can be seen to fall 
into this category.

3.	Counterfactual: This highest level of the ladder involves considering what would have 
happened had we done things differently. Beginning with Pearl  (2009), an advanced 
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KITTO et al.1104

mathematical apparatus has been constructed which enables us to construct counterfac-
tual models in a mathematically precise way. However, very little work in LA currently falls 
into this category.

Counterfactuals are placed at the top of the ladder by Pearl and Mackenzie (2018) because 
they subsume interventional and associational questions. That is, it is possible to answer 
questions about interventions and associations if we can answer counterfactual questions, 
and similarly, we can often answer questions about associations if we have performed an 
intervention. For example, Albacete et al. (2019) subjected control and experimental groups 
to different treatments in an Intelligent Tutoring System (ITS) to test two different initialisa-
tion strategies. This is a clear intervention type study according to our understanding of the 
causal ladder illustrated in Table 1. The data collected in this study can be used to answer 
associational type questions at lower levels of the ladder, such as: what is the relationship 
between a student's pre-test performance (which is used to construct the learner model 
used in the control group) and the rate at which they correctly answer questions in the ITS. 
However, these data cannot answer questions that are further up the ladder. In essence, 
data from measuring associations cannot provide us with information about RCTs, and we 
cannot re-run an A/B test to find out what would have happened had the treatment groups 
been reversed.

Importantly, developing models at higher levels of the causal ladder requires substantial 
theoretical grounding. Instead of simply performing a correlation analysis where patterns 
between variables are discovered, both interventions and counterfactual claims require a 
model to be well enough developed that sensible hypotheses can be proposed ahead of 
time and then tested. Pearl and Mackenzie  (2018) explore many methods for recovering 
causality in an analysis, demonstrating that it is possible to do this without relying solely 
upon RCTs. This flexibility makes causal inference an ideal modelling tool for the observa-
tional studies that frequently occur in the educational data sciences. A suite of tools including 
Bayesian networks, do-calculus, and causal diagrams have been developed over the last 
two decades, and can now be used to make far stronger causal claims about a system of 
interest than is generally realised.

How does causal inference work?

To make causal inferences we must first find and ameliorate for potential sources of confound-
ing and endogenous selection to unmask the causal effect of interest. This is often done by 
using a theoretical understanding of the system to specify a causal model, and then encod-
ing that structure into relevant guidelines for a statistical model (Pearl, 2009).

One approach for achieving this translation uses causal diagrams to represent our theo-
retical understanding of a system (Pearl, 2009). These diagrams have formal constraints 
on how they are drawn, which enables us to utilise a graphical calculus of interventions, 
the do-calculus, to build a statistical model that makes causal inferences by minimising 
non-causal sources of association. The diagrams used in this method are Directed Acyclic 
Graphs (DAGs), where the nodes of the graph represent our variables of interest and directed 
arrows between the nodes represent the flow of causation. DAGs are required to be acyclic 
in order for the diagram to be understood by the statistical model. This means that there 
are no closed-paths (ie, loops) allowed if we follow the arrows around the diagram. Figure 1 
shows an example of how we might use a DAG to represent a theoretical hypothesis about 
the relationship between Available Time, Prior Learning, Effort and Performance.

Used like this a DAG is a simple causal model. DAGs are sometimes also referred to as 
Graphical Causal Models or Structural Causal Models, albeit with some technical differences 

 14678535, 2023, 5, D
ow

nloaded from
 https://bera-journals.onlinelibrary.w

iley.com
/doi/10.1111/bjet.13321 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [14/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



1105CAUSAL MODELS, THEORY & DATA

T A B L E  1   The three layers of Pearl and Mackenzie's (2018) causal ladder, with the types of questions 
asked at each layer, and indicative examples from education, along with typical formalism that is provided by 
Pearl (2009) for modelling such systems.

Causal ladder 
level

Types of 
question

Examples from 
education

Mathematical 
structure Example models

1. Association What is…? •	 What is the 
probability of a 
student being ‘at 
risk’ of X?

•	 What is the 
relationship 
between Y and 
student success?

•	 What clusters of 
student activity 
exist in a logfile for 
a LMS?

•	 What curriculum 
object most closely 
fits an identified 
knowledge gap?

Association type 
models tend 
to construct 
statements like 
P(y|x) = p (ie, the 
probability of event 
Y = y given that we 
observed event 
X = x is equal to p)

Jovanovic 
et al. (2019), 
Tempelaar 
et al. (2018)

2. Intervention What if…?
A/B questions

•	 What if I try 
replacing the 
lectures for this 
subject with flipped 
lessons?

•	 What effect does 
an open learner 
model have on the 
performance of a 
sub-cohort?

•	 How does the 
performance of a 
group of students 
using an ITS 
compare to a 
group exposed 
to a standard 
lecture and tutorial 
structure

Intervention type 
models are more 
concerned with 
statements like 
P(y|do(x),z) (ie, 
the probability of 
event Y = y given 
that we intervene 
and do something 
such as setting the 
value of X to x and 
then subsequently 
observe event 
Z = z)

Albacete 
et al. (2019), 
Brooks 
et al. (2018), 
Kizilcec 
et al. (2020)

3. Counterfactual Why?
Did X cause Y?
What if I had…?
(subjunctive)

•	 Why do my 
students get better 
grades when I do 
X?

•	 Did this 
open learner 
model cause 
higher student 
self-efficacy?

•	 What if a student 
who dropped out 
had been provided 
with support?

Counterfactual models 
go one step further 
again, talking 
about P(yx|x′, y′) 
(ie, the probability 
that event Y = y 
would have been 
observed had 
X been x, given 
that we actually 
observed X to be 
x′ and Y to be y′)

Brokenshire (2007), 
Brokenshire and 
Kumar (2009), 
Deho 
et al. (2022)

Note: The last column lists example papers at this level in the ladder.
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KITTO et al.1106

(Peters et al., 2017, p. 84). For this paper we shall use the term DAG to refer to a graphical 
and acyclic representation of a causal model.

From conditional independence to causal effects: Chains, forks and 
colliders

Once created, the causal structure of a DAG can be analysed graphically to yield two 
key insights. Firstly, the DAG implies a number of conditional independence relationships 
between the variables that would be expected in the data if the model is a good approxima-
tion of the system under study. Secondly, the DAG can help make causal inferences. DAGs 
provide a way to identify sets of variables to include as controls in a statistical model in order 
to build an estimator for a causal effect. This process of identifying variable sets from the 
causal structure in order to estimate a causal effect is known as identification. Being able 
to focus on identification separately to the estimation of causal effects is a distinguishing 
feature of the DAG based approach (Weidlich et al., 2022). While most work with causal 
models has focused on identification and estimation of causal effects, or the discovery of 
causal structures from data, this paper will explore the affordances of the implied conditional 
independence relationships of a causal DAG for the development of a stronger (ie, more 
formalised) theory.

It is worth taking a moment to be precise about language, as many different fields, each 
with their own lexicon, have contributed to the study of causal models. Key to understanding 
causal modelling is a notion of conditional independence, which implies that two variables 
do not influence one another under certain conditions. This is a property of the causal struc-
ture, or probability space, of the model. When translated to actual data, this property of 
conditional independence between two variables implies that under certain conditions (often 
termed controlling for a variable) these variables exhibit independence (ie, are not associ-
ated or correlated). Depending upon the field, controlling for a variable can sometimes be 
called conditioning on that variable, or adjusting for it. However, all of these phrases mean 
the same thing; that we are including knowledge of the controlling variable into our model. 
Controlling for a variable can be achieved using various statistical techniques, such as using 
stratification to split the analysis by the different levels of the control variable and then pool 
the results, or including the variables as predictors or regressors in a regression model 
(Lübke et al., 2020). Here we will use the term most common to education, controlling for, to 
indicate the inclusion of information about a variable into a causal model.

F I G U R E  1   A Directed Acyclic Graph representing the causal relationships between Prior Learning, Available 
Time, Effort and Performance.

Available Time Prior Learning 

Performance Effort 
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1107CAUSAL MODELS, THEORY & DATA

Having clarified this point of terminology, we are now ready to demonstrate how it 
becomes possible to move from a graphical causal structure to practical applications. Put 
simply, the graphical analysis of any DAG, no matter how complex, can be broken down 
into three elementary patterns with their own implications for conditional independence: the 
chain; the fork; and the collider, which correspond to mediation, confounding and endoge-
nous selection respectively.

The chain (causal mediation)

A chain describes the pattern A → B → C. If we have a chain in our DAG then we would 
expect to see an association between the variables A and C due to the influence of A on B 
which flows through to C. However, we would expect to see the influence along this path 
‘broken’ if we control for B (indicated graphically by placing a box around the relevant varia-
ble: A → ·· B  → C), which serves to block the causal path. This can be articulated as A ⫫ C 
| B (A and C are conditionally independent on B).

In Figure 1, the pattern Prior Learning → Effort → Performance is an example of a chain. 
We would expect to see an association (ie, a dependence) in the data between Prior Learn-
ing and Performance due to the proposed influence that our model suggests flows along this 
path. Note that Figure 1 also proposes a direct influence of Prior Learning on Performance. 
However, if we control for Effort this would block the causal influence of Prior Learning on 
Performance along that mediating path. Performing this form of control can therefore be 
used to isolate the direct causal effect of Prior Learning on Performance and so to create 
experiments that can be used to test the causal claim.

The fork (confounding)

A fork describes the pattern A ← B → C. Here we would expect to see an association between 
the variables A and C due to the common influence of B on both A and C, not due to a direct 
causal flow between A and C. However, we would expect to see the influence along this path 
‘broken’ if we condition on B as we would now be looking at the relationship between A and C 
within specific levels of B (eg, that could have been created by a stratification process). This 
can be articulated as A ⫫ C | B (A and C are conditionally independent on B).

In Figure  1 we can see an example of a fork pattern in the Effort ← Prior Learning 
→ Performance component of the diagram. We would expect to see an association (ie, a 
dependence) in the data between Prior Learning and Performance due to the influence along 
this path, as well as the direct influence of Effort on Performance. As a result, we would 
expect to see an association between Effort and Performance, but this would not be due to 
a direct causal influence, rather it would be due to the confounding Prior Learning variable. 
However, if we control for Prior Learning then this would block the influence of Effort on 
Performance along that alternative path, which can be used to isolate the direct causal effect 
of Effort on Performance.

The collider (endogenous selection)

A collider, also recently called an ‘inverted fork’ by Weidlich et  al.  (2022), describes the 
pattern A → B ← C. We would not expect to see an association arise between the variables 
A and C if we had theorised a pattern of this form. However, in this case we would expect to 
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KITTO et al.1108

see an association arise if we were to control for B. To understand how this occurs imagine 
a scenario where B is the result of adding together A and C, where A and C are independent 
of each other. Suppose further that our control enabled us to only analyse high values of B. 
Under the condition of B being high a low value of A would imply that C must be high. Intro-
ducing knowledge of B (controlling for B) created a dependence between A and C that was 
previously absent. This can be articulated as A ⫫ C | B (A and C are conditionally dependent 
on B).

In Figure 1 Available Time → Effort ← Prior Learning is an example of a collider pattern. 
We would not expect Available Time and Prior Learning to be associated in the data. 
However, if we control for Effort this opens up the path between Available Time and Prior 
Learning. If we examine only students exhibiting low Effort, then knowing a student has low 
Prior Learning implies they likely do not have much Available Time, because they should 
hopefully be putting in more Effort if they could. Because we have conditioned on the collider 
Effort it has opened up the flow of information (and association) between the variables Prior 
Learning and Available Time, where previously they were independent.

From DAG to statistical tests

Having developed a graphical representation of our theoretical understanding of perfor-
mance, we can then translate our theory into practical information for a statistical modeller 
using the do-calculus. For instance, the DAG in Figure 1 lets the statistical modeller know that 
if they want to estimate the direct causal effect of Effort on Performance they should control 
for Prior Learning (and not Available Time), and inspect the resulting coefficient between 
Effort and Prior Learning. These kinds of causal models lie somewhere between statistical 
models, which attempt to identify associations between phenomena without the notion of the 
direction of influence, and the physical models of the ‘hard’ sciences, which explicitly state 
the dynamics of the system (Peters et al., 2017).

A causal DAG is a good theoretical representation of the system under study if the 
claims that it makes about conditional independence are in fact observed in the data that 
are collected for the variables described. That is, when we control for certain variables we 
should see that other pairs of variables have very low measures of association (ie, are inde-
pendent). In Figure 1 we would expect Available Time and Performance to be independent, 
when controlling for both Effort and Prior Learning. We would also expect Available Time and 
Prior Learning to be unconditionally independent. Each causal DAG produces a set of these 
implications, in the form of conditional independence relationships, that can be then tested 
using a dataset. This could be done by using a test for statistical independence, such as 
Pearson's chi-squared test, on each pair of variables stratified by the given conditional vari-
ables. Numerous software packages, such as bnlearn (Scutari, 2010), and DoWhy (Sharma 
& Kiciman, 2019) provide functions to perform this type of test automatically.

The link between causal models and SEM

A Structural Equation Model (SEM) uses a functional representation of the relationships 
between variables, rather than the (non-parametric) graphical representation in a DAG. The 
causal relationship A → B in a DAG would be represented as A B = βA+ ε in an SEM, introducing 
the parameters A β and A ϵ  , and placing the cause(s) on the right-hand side of the equation 
and the effect on the left. We now show how the causal DAG in Figure 1 can also be repre-
sented,  this time with parameterisation, using a SEM. Setting Prior Learning to A L  , Available 
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1109CAUSAL MODELS, THEORY & DATA

Time to A A, Effort to A E and Performance to A P  , with coefficients A β
0
,β

1
 , A β

2
 , A β

3
 and errors A ε

0
 , A ε

1
 the 

model structure is defined as follows:

E = β
0
L+β

1
A+ ε

0�

P = β
2
E+β

3
L+ ε

1�

This pair of equations encodes the causal paths of the DAG by placing the immediate 
causes of each variable on the right-hand side of the equation. So the path Available Time 
→ Effort is represented by the presence of A on the right-hand side of the equation with E on 
the left-hand side. Both representations address a key ingredient not captured by statistical 
correlations alone; the direction of the flow of influence between variables. In DAGs this is 
shown with the direction of the arrows, and in SEMs with the side of the equation the varia-
bles are on, where the flow is from the right-hand side to the left-hand side. Crucially, each 
model highlights the variables that are not directly causally related through the omission of 
a variable in the right-hand side of a structural equation or the absence of an arrow between 
two variables. As such both models contain a series of implications about the conditional 
independence in the joint probability distribution of the variables. If the variables are meas-
urable this can be tested in the data. SEMs are becoming more widely used in educational 
data science, and so are a useful bridge into causal thinking. In particular, SEM path anal-
ysis is highly reminiscent of the approach of Pearl, once the causal DAG is parameterised. 
This leads to an important question: what is the difference between the two approaches? It 
is common to see a number of different claims that SEMs cannot handle nonlinear relation-
ships, or are essentially equivalent to regression, but Bollen and Pearl (2013) provide a defin-
itive argument that dispels many of these myths, arguing that the two modelling approaches 
are in fact equivalent, even though the foundations of causal inference are often considered 
more rigorous. While there has also been a reluctance from some to imbue SEM parameters 
with causal interpretations, perhaps made permissible by the symmetric interpretation of 
the “=” sign, this is not a necessity. Indeed, as discussed convincingly by Pearl (2012), the 
founders of SEM very much thought of them as ways to demonstrate causal relationships 
between variables under study.

Causal discovery

So far we have examined how modelling the causal structure of a system can provide test-
able implications for a dataset in the form of conditional independence relationships, which 
can then inform strategies for making causal inferences. It is also possible to move in the 
other direction, beginning with the conditional independence relationships found in a dataset. 
There are several algorithms for moving from observed conditional independence relation-
ships to a causal model, using a process known as causal discovery (Pearl, 2009). Uncer-
tainty in the inferred causal structure is handled by generating a class of equivalent causal 
models, all of which could potentially produce data with the same conditional independence 
relationships. This exploratory, rather than confirmatory, approach to causal modelling can 
scope the space of potential causal models that explain the data. The space of potential 
models can also help to inform future work into improving our theoretical understanding, as 
the uncertain edges or sections of the DAG indicate where better data or more experiments 
are needed. The subsequent results can then be fed back into the body of knowledge, with 
new data refining and improving the model.

Interestingly, a careful search of past learning science literature reveals an ongoing set of 
attempts to argue that causal models could help us to make better use of educational data, 
particularly in this causal discovery context. Perhaps the earliest example is a Masters thesis 
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KITTO et al.1110

by Brokenshire (2007) that dates back to before the advent of both LA and Pearl's seminal 
book (Pearl, 2009). This work attempted to formalise our models of SRL through the use 
of discovery-based methods which extract a causal relationship from input data and even 
appeared in an AI in Education paper (Brokenshire & Kumar, 2009) but failed to find traction 
in the field. A later paper arguing that causal models would help LA practitioners to intervene 
in educational systems was written by one of Brokenshire's supervisors (Kumar et al., 2015), 
and explored models of writing analytics (WA) and metacognitive reasoning using this same 
causal discovery-based approach. However, this line of research never made it into the 
standard learning sciences literature, and appears to have halted. It is time to build on these 
early results. This paper aims to renew interest in this promising early work.

EXAMPLE 1: TURNING AN EDUCATIONAL PROTO-THEORY INTO A 
TESTABLE CAUSAL MODEL

Rather than following the causal discovery model of Brokenshire and Kumar, here we will 
explore a method more closely related to the human centred approach that first appeared in 
Hicks et al. (2022). In that paper we argued that the process of constructing a DAG can help 
data analysts to communicate with educational experts, meeting in the middle space of a 
field that all too often sees people from different backgrounds talking past one another. Thus, 
causal models can help us to think more clearly about educational data. In this first example, 
we will demonstrate how the attempt to construct a causal DAG can help an analyst to turn 
an educational proto-theory into a testable formal model. This approach works because the 
TCM implies that the move from a proto-theory to a formal theory requires an imposition of 
new constraints. We show here how the constraints of causal DAGs can help provide a scaf-
fold for incrementally formalising a proto-theory.

To demonstrate our argument, we will make use of the Zimmerman (1989) model of SRL, 
which was also considered by Brokenshire (2007) as a part of his causal discovery method. 
We acknowledge that this is a simple SRL model, and that a number of more recent and 
detailed competing models have been proposed (Panadero, 2017). We believe that causal 
modelling could help to make these various hypothesised models explicit, taking them from 
a proto-theory stage to testable formal models. We have chosen the Zimmerman  (1989) 
model merely for its simplicity in this example demonstration, and reserve a similar process 
of formalising the other models for future work.

Figure 2 has a representation of the proto-theory developed by Zimmerman. We define 
this as a proto-theory because of two characteristics that it possesses. First, it is explanatory, 
defining causal relationships between three constructs to explain the phenomena of students 
using various strategies to self-regulate their learning. However, it provides no precise model 
of how they will impact upon one another. Second, it is difficult to empirically test the hypoth-
esised relationships between phenomena depicted by the nodes of the model, as a number 
of choices must be made in formalising them and the associated model of their behaviour 
such that they can be computationally represented and tested. In particular, a number of 
decisions need to be made about how the various feedback loops in Figure 2 should be 
represented in an empirically testable computational model.

How might DAGs be used to move towards a more formal theory that can be tested for 
explanatory adequacy as per the TCM? Rather than focussing upon the variables them-
selves, here we will focus upon the structure of the model proposed by Zimmerman. We 
start by noting that Figure 2 contains a causal loop in the form of the feedback cycle depicted 
from Self → Behaviour → Environment → Self. A causal DAG requires that these loops 
be untangled by sequencing the feedback process into two separate epochs where nodes 
update from one epoch to the next (see Figure 3). The first epoch (t = 0) includes the nodes 
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1111CAUSAL MODELS, THEORY & DATA

S0 (Self at t = 0), B0 (Behaviour at t = 0) and E0 (Environment at t = 0), and the second epoch 
(t = 1) likewise includes the nodes S1, B1 and E1. However, formalising this model requires 
a number of specific choices to be made, and the point at which we initiate a causal path 
can have a demonstrable impact upon the resulting model. In this case, reproducing the 
model of Figure 2 over two different epochs results in three different DAGs, depending upon 
which node we use to initiate the causal path. We now explore the implications of these 
possible formalisations, by drawing three different causal paths that initiate from S0, E0 or B0 
(see Figure 3a–c respectively). This will enable us to point to a possible battery of testable 
predictions that are made by each model, which in turn creates possibilities for empirically 
choosing between them as data are acquired. These tests will also help us to determine what 
data we should collect, to move forward in formalising the theory of SRL.

In formalising the model in Figure 2 we are required to be more specific about which 
variable influences which, and how those influences propagate over time. In each case there 
are five edges to draw in order to reproduce the structural relationships of the proto-theory: 
S → S, S → B, B → S, B → E and E → S. There are three ways in which this formalisation can 
be carried out:

•	 Figure 3a: Using “Self” (S0) as the starting point (depicted here with a thicker boarder), we 
can draw the path S0 → B0 → E0 within epoch A t = 0 without creating any loops. From there, 
the paths S0 → S1, E0 → S1 and B0 → S1 must be drawn from A t = 0 to A t = 1 .

•	 Figure 3b: Using “Environment” (E0) as the starting point lets us draw the path E0 → S0 → B0 
within epoch A t = 0 without creating any loops. From there the paths S0 → S1, B0 → S1, and 
B0 → E1 must be drawn from A t = 0 to A t = 1 .

•	 Figure 3c: Using “Behaviour” (B0) as the starting point lets us draw the paths B0 → E0 → S0 
and B0 → S0 within epoch A t = 0 . From there the paths S0 → S1 and S0 → B1 must be drawn 
from A t = 0 to A t = 1 .

Each formalised model generates its own set of testable implications, which are statements 
about the conditional independence of variables in the DAG. The three different approaches 
produce different testable implications, generated using the software tool DAGitty (Textor 
et al., 2016) which are listed in Table 2. No statement about conditional independence was 
shared amongst all three DAGs. This could be used to help test these theories by seeing 

F I G U R E  2   A triadic model of SRL, adapted from Zimmerman (1989).

Self 

Behaviour Environment 

Strategy use 

Enac�ve feedback 
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KITTO et al.1112

how closely the implications of each DAG align with a dataset. Each statement of the form A 
⫫ B | C (A and B are independent, given the value of C) can be tested by regressing both A 
and B on C and then examining the correlation between the residuals.

Framing the phenomena of SRL in the language of a formalised model helps to check 
the theory's capacity to explain the phenomena it hypothesises, using the implied condi-
tional independence relationships. With data, we could start to test the implications of this 
model to see which of the proposed formalised models best fits the data. The S0 initiating 
model matches Zimmerman's description of the ‘enactive feedback’ paths (the dashed paths 
in Figure 2), as these are the paths that traverse from one epoch to the next in Figure 3a. 
The E0 initiating model makes intuitive sense, with the ‘environment’ preceding the other 
variables temporally which would indicate a causal influence of environment upon the other 
variables. For a similar reason the B0 initiating model seems least intuitive; we must ask how 
a student's behaviour could influence the environment in which they are learning, a feat that 
is possible, but unlikely for this type of SRL model.

While this discussion centred around a toy example, we believe that the approach 
demonstrated shows promise for informing future work on SRL. Molenaar et al. (2022) have 
recently published an overview of how SRL has been measured over the past 5 years, track-
ing the emergence of Multimodal Learning Analytics as the source of a wide variety of data 
that could be used to model SRL. With the emergence of these new and more comprehen-

F I G U R E  3   Formalised Causal DAGs of Zimmerman's triadic SRL model, using (a) ‘Self’, (b) ‘Environment’ 
or (c) ‘Behaviour’ as the initial node. Dashed lines correspond to the dashed lines in Figure 2.
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1113CAUSAL MODELS, THEORY & DATA

sive multimodal data streams, research on SRL is entering the age of big data. We believe 
that causal modelling has the potential to support theory generation by both informing this 
process of data collection, and then by supporting teams as they test between available 
theories of SRL based upon their collected data. We reserve this exciting avenue for future 
work.

In summary, the example in this section has demonstrated how moving towards a more 
formal model places us in a position where it becomes possible to ask more sophisticated 
questions, and to then direct our analysis by working to answer the resulting avenues that 
seem most promising.

EXAMPLE 2: TOWARDS A CAUSAL MODEL OF REFLECTIVE 
WRITING PERFORMANCE

How might we use causal models to enhance and extend an existing LA model? The previ-
ous section's analysis helps us to identify places where a proto-theory could be made more 
precise, providing testable predictions along the way. In this section we shall make use of a 
previous model of reflective writing performance, demonstrating how causal models can help 
us to formulate a set of new more precise hypotheses and predictions about what future data 
collection might demonstrate.

Within LA, the subfields of Automated Writing Evaluation (AWE) (Shermis & Burstein, 
2013) and Writing Analytics (WA) (Gibson & Shibani, 2022) focus on the automated analysis 
of written texts for the purpose of generating automated feedback to support personal learn-
ing. A stream of activity within this body of work centres around Reflective Writing Analyt-
ics (RWA) which seeks to identify reflective elements in student generated texts  (Gibson 
et al., 2016; Buckingham Shum et al., 2017; Gibson et al., 2017; Kovanović et al., 2018; 
Ullmann, 2019; Barthakur et al., 2022)

Recent work has sought to develop a learning progression scale that can be used to 
measure the depth of reflection in writing, tracking individual changes and differences 
between learners. Liu et al. (2021) hypothesised a formal model of reflective writing capa-
bility consisting of four sub-variables: Context; Feelings; Challenges and Changes that 
was  based upon an extension of the model proposed by Gibson et al.  (2017). A SEM, in 
the form of a Confirmatory Factor Analysis (CFA) was constructed to quantify the relative 

T A B L E  2   List of testable implications from each DAG. Implications in bold are unique to that particular DAG.

Initiating at ‘Person’ Initiating at ‘Environment’ Initiating at ‘Behaviour’

S0 ⫫ E0 | B0 B0 ⫫ B1 | S1 B0 ⫫ B1 | S0

S0 ⫫ E1 | B1 B0 ⫫ E0 | S0 B0 ⫫ E1 | B1

S0 ⫫ E1 | S1 B1 ⫫ E0 | S0 B0 ⫫ E1 | S0

S0 ⫫ B1 | S1 B1 ⫫ E0 | S1 B0 ⫫ S1 | S0

S1 ⫫ E1 | B1 B1 ⫫ E1 | S1 B1 ⫫ E0 | S0

E0 ⫫ E1 | B1 B1 ⫫ S0 | S1 E0 ⫫ E1 | B1

E0 ⫫ E1 | P1 E0 ⫫ E1 | B0 E0 ⫫ E1 | S0

E0 ⫫ B1 | S1 E0 ⫫ E1 | S0 E0 ⫫ S1 | S0

B0 ⫫ E1 | B1 E0 ⫫ S1 | S0 E1 ⫫ S0 | B1

B0 ⫫ E1 | S1 E1 ⫫ S0 | B0

B0 ⫫ B1 | S1
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KITTO et al.1114

contributions that (i) textual features make to reflection factors and (ii) reflection factors make 
to the overall depth of a student's written reflection. The validity of the model was evaluated 
using reflections from two sets of masters-level reflective writing assessments in two differ-
ent fields (Pharmacy and Data Science). The results of this analysis are depicted in Figure 4, 
and demonstrated that a number of the automatically extracted textual features in students' 
reflective writing were robustly present across the two different educational contexts. These 
features were shown to correlate to the latent sub-variables, and thus to contribute to the 
latent Capability for Written Reflection variable, which was itself shown to correlate with 
the grades which were awarded to the students. However, a few of the low-level traces 
extracted from the student reflections were specific to the learning context: LIWC.percept, 
LIWC.focusfuture and LIWC.Analytic. Note also that the Feelings variable was considered 
non-significant in the Data Science context. Thus, the two resulting SEMs provide a number 
of insights about Capability for Written Reflection, and how it might be measured in the 
reflective text that a student generates.

The CFA models in Figure 4 are already quite formal, connecting theory (reflective writing 
constructs) to data (automatically extracted textual features in student writing) in a way that 
quantifies the relative weights of association. They make clear statements about what influ-
ences the quality of a student's reflection, and how these can be computationally extracted 
from the text a student generates using natural language processing. However, we have two 
sets of results obtained from fitting variables to our data, and our model currently makes no 
claims about why the differences between the two different educational scenarios occurred. 
To improve this situation, it would help to develop a causal theoretical model that could 
be applied across both educational contexts, checked for its explanatory adequacy across 
new datasets, and evaluated against a set of well-defined criteria for its predictive power 
(Borsboom et al., 2021).

To move towards this more formal causal model we can start by generating the DAG 
depicted in Figure 5. Here, we see that the arrows from the intermediate latent variables 
to the Capability For Written Reflection variable have been reversed (when compared to 
Figure  4), representing our belief that they causally determine it (and not the other way 
around). We have also added a measurable variable, Reflection Quality, which explicitly 
links to the measurable grade that a student obtains for their reflection. To join the two 
models from Figure 4, we have taken account of the two different assessment models that 
were present in the task itself. The Data Science assessment prompt asked students to 
write a ‘performance review’ and had no focus upon feelings at all, but in contrast the Phar-
macy task included a specific prompt to explain how students felt during their placement (Liu 
et al., 2021 provide more details about the assessments of these two tasks). We note that 
both models in Figure 4 link the Feelings variable only weakly to the quality of a reflection 
(and in the Data Science context this link is not significant), suggesting that a causal chain 
through this variable is unlikely to have a strong effect upon Capability for Written Reflection. 
Thus, the difference in reflection quality was not well captured by the Feelings variable, but 
rather in the textual features associated with the Challenges and Changes variables. Our 
new extended model hypothesises that it is a new latent variable, Educators intent, which 
influences an observable Assessment document, and so frames students' understanding 
of the task, and hence the quality of their written reflections through the Challenges and 
Changes pathways, as depicted in Figure 5. If a new reflective writing dataset was gener-
ated, with a different assessment design, this new model would help us to make predictions 
about what features in a student's reflective writing might change, and how we would expect 
these to affect the quality of the reflection so produced.

To summarise, using DAGs to generate Figure 5 has enabled us to take an additional 
step in formalising our theory, introducing a construct and associated measurable from a 
broader learning context than just the student's reflective capabilities and performance (via 
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1115CAUSAL MODELS, THEORY & DATA

F I G U R E  4   The Confirmatory factor analysis models of capability for written reflection that emerged from the 
(a) pharmacy dataset and (b) data science dataset. These quantify the relative contributions that textual features 
make to reflection factors, and to the overall depth of written reflection (reproduced from Liu et al., 2021).
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KITTO et al.1116

Educator's intent which shapes the Assessment document). Our existing data enable us 
to hypothesise that this pathway has impacted the student reflections, and in particular the 
textual features that they contain, in addition to the quality of the resulting reflections. We 
now have the start of a hybrid sociotechnical systems model, incorporating a theoretically 
grounded, formal model of reflective writing that makes explicit a ‘theory of change’ behind 
an intervention around assessment design. This theory makes testable predictions about 
how student writing will change in response to assessment design. The machinery of causal 
modelling will then enable more in-depth probing of this extended theory through the implied 
conditional independence relationships of the DAG. For instance, controlling for the new 
Assessment Document variable should result in weaker association between the latent 
constructs Challenges and Changes (due to the fork pattern emanating from Assessment 
Document), but not between Feelings or Context (due to the collider at Capability for written 
reflection). This can be tested in the data, or through experiment, to validate or refute the 
model.

DISCUSSION: CAUSAL MODELS AS A CONCEPTUAL 
FRAMEWORK TO ASSIST WITH THEORY DEVELOPMENT

The previous two examples illustrate the utility of striving for a causal understanding of our 
systems, with DAGs providing a mechanism for making explicit claims about how causality 
flows through a model. Causal models rendered as DAGs can assist us, not only conceptu-

F I G U R E  5   Our proposed new Directed Acyclic Graph for written reflection, adding a measurable node for 
reflection quality (operationalised as its grade), and for Assessment document to account for the two contexts. 
Arrows are redrawn to depict the flow of causation, and dashed paths indicate that an effect was significant in one 
CFA but not the other.
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1117CAUSAL MODELS, THEORY & DATA

ally but also quantitatively, to map the educational constructs developed by theorists to the 
data that we can now collect. Our claim is that causal models offer the learning sciences a 
bridge that will help us to develop more rigorous and testable educational theories. We now 
turn to a discussion of the implications that we consider most interesting about this approach.

Theory versus data in the domain of education: The clicks to 
constructs problem

We commenced this paper by discussing the large amount of data now available in educa-
tion. However, big data does not necessarily equate with useful data. Historically, the click-
stream data collected from educational environments were often first instrumented to aid 
developers in debugging software. This means that it is rarely well structured for describing 
educationally relevant phenomena. All too frequently, educational institutions have expended 
significant effort on storing large volumes of data, only to discover that many of the variables 
required for modelling educational phenomena are missing when the time finally comes to 
analyse it for actionable insights (Kitto et al., 2020). Applying data science methods to this 
type of data can be seen as following in the big data tradition advocated by Norvig. However, 
there is no guarantee that the specific features of machine-perceptible human behaviour 
being logged are plausible proxies for a learning phenomenon, as represented by an educa-
tional theory. While this approach can sometimes yield interesting insights in education, 
it more frequently leads to results that are either obvious to educators and already well 
understood, or impossible to link to concepts that the field can interpret and test. A mapping 
is often necessary between these two representational layers, but this can be challenging 
to generate after the application of a brute force approach. With no guarantee that the right 
data have been collected, the analyst is in danger of fixating upon variables that have no 
relevance to the field of education. Instead these variables are quite likely to be artefacts of 
the EdTech system in which the data were collected.

In LA, this challenge of mapping the low-level ‘data exhaust’ left on platforms to the higher 
order constructs that are the discourse of theory and pedagogy is increasingly referred to 
as the ‘clicks to constructs’ problem (Buckingham Shum & Crick, 2016). Wise et al. (2021) 
have provided a schematic that summarises the concept visually (see Figure 6). It is widely 
recognised that these types of models are necessary to assist the field in designing for the 
capture of useful data. However, despite a general recognition of its importance, modelling 
approaches that facilitate the mapping of educationally relevant constructs to low-level digital 
traces (and vice versa) are still difficult to find.

In this paper we have demonstrated how the apparatus of causal reasoning and DAGs 
forces us to be explicit about the relationships that we hypothesise exist between educa-
tional constructs and their measurable proxies, so providing a mechanism that helps us link 
clicks to constructs. Diagrams like Figure 6 are naturally generated in the construction of a 
DAG. Thus, causal models show promise for helping us to ensure that we only collect the 
data we need, and can clearly articulate why we need it if challenged.

Thinking explicitly about complex educational constructs to formalise 
theoretical representations

The rigorous nature of the causal modelling apparatus forces us to be very precise in formu-
lating a model. We must think explicitly about the complex educational constructs that we 
are constructing in our models, working carefully to specify the decisions that we are making 
and their statistical implications. As such this approach can assist with removing some of 
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KITTO et al.1118

the ambiguity inherent in the proto-theories that often arise in the learning sciences. Causal 
modelling enables us to move towards more formal theories that can be experimentally tested 
(Borsboom et al., 2021). This increase in rigour comes with two significant advantages. First, 
more rigorously formulated models are easier to communicate. Their explicit nature means 
that the specific assumptions and hypotheses that they make can be explored by other 
researchers and challenged if considered inappropriate. Second, the use of well-defined 
theoretical constructs makes the resulting data analysis less prone to a potential failure to 
replicate. This is because an analysis that starts with the construction of a DAG is explic-
itly linked to empirical constructs that are derived from our theoretical understanding of a 
system. The resulting models are less brittle, as they are less likely to result from overfitting 
to the data that are available. Thus, thinking explicitly about the constructs in our model and 
how they are causally related often forces us to reject data which do not fit into that model, 
and can even tell us that data of a certain type might be missing.

It is particularly interesting to consider the lessons we have learned from the ‘no loop’ 
requirement of DAGs in Example 1. The models that resulted from applying this requirement 
(in Figure 3) could be considered more complex than that of the original Zimmerman model 
as that proto-theory consisted of only three nodes. A critic might challenge the DAG-based 
approach on the basis of the complexity it is likely to induce in more sophisticated educa-
tional proto-theories. The learning sciences contain many loops and complex feedback 
cycles, and so it could be claimed that the acylic requirement of DAGs is too strict, and that 
this will limit their potential domain of application. We acknowledge that this is a potentially 
legitimate concern. However, there are two ways in which we would like to respond to this 
critique. First, it is important to recognise that this complexity is already present in a model 
with cycles. It is abstracted into a diagram, but the presence of a feedback cycle necessarily 
adds to the model complexity. In converting this model to a DAG we have explicitly recog-
nised this complexity, which enables us to control for it in the modelling process. Second, we 

F I G U R E  6   Schematic diagram of the ‘clicks to constructs’ challenge in the context of collaborative learning 
analytics (reproduced from Wise et al., 2021).
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1119CAUSAL MODELS, THEORY & DATA

would like to emphasise that we do not by any means suggest that causal modelling should 
be the only approach adopted by the learning sciences for theory development. Rather, 
that it can be a useful method to apply that can assist with theory development by forcing 
us to be more explicit in our modelling. Sometimes however, this very explicitness may be 
detrimental, and other modelling approaches may be more appropriate. Other methods are 
available, and indeed, Peters (2017, p. 28) suggests that if feedback behaviour is the primary 
area of interest then a dynamic systems approach may be more appropriate. Nonetheless, 
in attempting to more formally model our educational proto-theory we have learned that it is 
still possible to make use of the causal apparatus in a situation with a loop. Further, working 
to explicitly specify how a causal influence flows from one epoch to the next has helped us to 
make a number of claims about conditional independence in our system that are potentially 
testable. While the resulting formal model is structurally more complex than the proto-theory, 
in this case we consider it more informative. It is also more testable using computational 
models and data analysis.

It would be beneficial if tools were developed that enabled both views of a system. That 
is, we can envisage a scenario where a model with loops constructed by subject matter 
experts could be further refined in a tool that asked for clarification about the source of a 
causal flow over epochs that disentangled this loop structure. Toggling between both views 
of the system (ie, the loop and the causal DAG) would enable various users to explore the 
implications of their hypotheses, and facilitate theory building while minimising the need to 
view the resulting models in their full complexity. We consider this an avenue likely to be 
fruitful in future tool development.

Causal modelling as an aid to interdisciplinary theory building in the 
learning sciences

One of the key challenges facing interdisciplinary fields such as the learning sciences is the 
extreme diversity that arises, in disciplinary assumptions, languages, methodologies and 
symbolic representations, as people from a wide range of fields interact and collaborate. 
When researchers from the social sciences interact with those from data science and AI 
there is much room for misunderstandings to occur. We must learn to build common ground 
across these highly diverse fields, but the language of data modelling and statistics often 
feels incompatible with many of the research methods that are used in the learning sciences. 
Moving from proto-theories to more formal theories requires symbolic representations that 
can assist in the joint sensemaking that has to occur between all stakeholders, and DAGs 
provide an intuitively graspable artefact that supports this form of communication between 
disciplinary perspectives. Elsewhere, we have argued in more detail that DAGs, from infor-
mal sketches to more rigorous models, offer visual affordances that scaffold conversations 
between data and educational experts, comparable to the way that concept maps and other 
diagramming schemes relieve cognitive load by providing a form of shared, persistent, but 
malleable, external memory aid (Hicks et al., 2022). Similarly, the recent work by Weidlich 
et al. (2022) demonstrates how causal models can help modellers and educators to work 
together to identify sources of bias in various models, and ways in which they might be 
ameliorated. In attempting to construct a DAG we will sometimes construct competing models 
that are empirically testable, and these can be interrogated and challenged by educational 
experts. Indeed, if multiple models emerge from an attempt to construct a DAG, then this 
can be seen as a measure of our underlying uncertainty about the educational system under 
study (Boerebach et  al., 2013), which in turn expresses a need for further research and 
data collection. The emergence of an artefact that can be interrogated by researchers with-
out expertise in the data sciences therefore offers promise for providing a more equitable 
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conversation between experts from all domains. Indeed, we consider the potential benefits 
of causal modelling for interdisciplinary communication to be one of its least discussed but 
most compelling advantages.

Why has causal inference failed to gain traction in the learning 
sciences?

It is interesting to note that causal modelling was first used to analyse educational data and 
make causal inferences more than 15 years ago, before LA had even become a field of study 
(Brokenshire, 2007; Brokenshire & Kumar, 2009). And yet this approach failed to gain trac-
tion at the time—why so? We consider it likely that it was the sheer innovativeness of this 
approach when first introduced to the field which made it difficult for this method to thrive. 
Three problems are likely to have hampered its broader adoption.

1.	A lack of expertise: As a very new and quite mathematically sophisticated method, this was 
a difficult approach for non-experts to apply. The classic book on the topic (Pearl, 2009) 
had not even been published, and few people were aware of causal modelling as an alter-
native method for making causal claims.

2.	A lack of data: Similarly, far less educational data were available at the time of this early 
work, which made it far more difficult to implement these models in authentic contexts. As 
such, the complexity required to formulate DAGs and then implement statistical tests of 
their predictions was difficult to justify.

3.	A lack of tools: As a highly novel method, many of the tools now available for perform-
ing causal analysis had yet to be developed, making it much harder to implement this 
approach. Recent advances, such as DAGitty for turning DAGs into statistical models 
(Textor et al., 2016), and the DoWhy python library (Sharma & Kiciman, 2019), which is 
built to support end to end causal modelling, will continue to accelerate the adoption of 
these methods across data science.

Each of these issues is far less problematic today, and for this reason we believe that the 
time has come to develop a stream of research applying causal inference methods, espe-
cially causal modelling, to the learning sciences. With more resources available for learning 
about causal inference, far more educational data, and new more intuitive tools, this method 
is a promising candidate for helping us to bridge between theory and data, one which we 
consider ripe for further development in the toolkit of the learning sciences.

CONCLUSION

Theory is a difficult concept, one that has many different meanings across the wide range of 
fields that have fed into the learning sciences. Here we have argued that causal modelling 
can help education with theory construction, by providing a rigorous approach for turning a 
number of educational proto-theories into more formalised models that are ready for testing 
with data. Thus, causal modelling provides a well-defined avenue for linking between theory 
and data, one that enables us to give prominence to both, moving beyond a largely futile 
debate between the two cultures of statistical thinking in the process. This approach helps 
us to escape the common assumption that RCTs are the only way in which to demonstrate 
causal influences between variables. It also helps us to determine what data we should 
collect, and why, through the formulation of explicit predictions in our educational models. In 
short, the time has come for the learning sciences to take causal modelling very seriously 
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indeed, as we are now in a position where causal models can be used to work towards a 
more rigorous, reproducible, and communicable notion of theory in the field. We encourage 
others to pursue this promising line of work.
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