
Quantum Machine Intelligence (2023) 5:23
https://doi.org/10.1007/s42484-023-00114-3

REVIEW ARTICLE

An invitation to distributed quantum neural networks

Lirandë Pira1 · Chris Ferrie1

Received: 15 November 2022 / Accepted: 13 May 2023
© The Author(s) 2023

Abstract
Deep neural networks have established themselves as one of the most promising machine learning techniques. Training such
models at large scales is often parallelized, giving rise to the concept of distributed deep learning. Distributed techniques
are often employed in training large models or large datasets either out of necessity or simply for speed. Quantum machine
learning, on the other hand, is the interplay between machine learning and quantum computing. It seeks to understand the
advantages of employing quantum devices in developing new learning algorithms as well as improving the existing ones.
A set of architectures that are heavily explored in quantum machine learning are quantum neural networks. In this review,
we consider ideas from distributed deep learning as they apply to quantum neural networks. We find that the distribution of
quantum datasets shares more similarities with its classical counterpart than does the distribution of quantum models, though
the unique aspects of quantum data introduce new vulnerabilities to both approaches. We review the current state of the art
in distributed quantum neural networks, including recent numerical experiments and the concept of circuit-cutting.

Keywords Deep neural networks · Machine learning · Quantum computing · Distributed deep learning · Quantum machine
learning

1 Introduction

By now we have sufficient evidence that classical computers
can learn. Decades of research in artificial intelligence (AI)
(Russell and Norvig 2010; Mitchell 1997; Bishop 2006) and
specifically deep learning (DL) (LeCun et al. 2015; Goodfel-
low et al. 2016; Schmidhuber 2015), have yielded powerful
learning algorithms that are now employed in everyday
tasks across several industries. With the rise of quantum
computers, the natural question that arises is whether quan-
tum computers, too, can learn. Quantum computing is the
paradigm of computation that employs concepts from quan-
tum mechanics (Nielsen and Chuang 2011). Attempting
to answer this question requires a thorough exploration of
quantum computing (QC) and machine learning (ML). With
several directions in its agenda, the emerging field of quan-
tum machine learning (QML) (Biamonte et al. 2016; Schuld
and Petruccione 2018; Wittek 2014; Ciliberto et al. 2018;
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Cerezo et al. 2022), explores the intersection of quantum
computing and machine learning. This interaction can have
various objectives depending onwhether the data or the envi-
ronment is either classical or quantum (Aïmeur et al. 2006;
Dunjko andBriegel 2018; Schuld andPetruccione 2018). The
direction we consider here is to consider whether quantum
computers can be used to provide benefits in training neural
networks specifically. This question, too, has been asked and
explored with various objectives in mind (Benedetti et al.
2019a). Present-day quantum computers are known as noisy
intermediate-scale quantum devices (NISQ) (Preskill 2018).
They are overshadowed by high error rates and a small num-
ber of qubits, which hinders their capabilities. However, there
is a growing debate over what algorithms these devices can
be used for. In this paper, we overview the concept of dis-
tributed quantum neural networks and suggest that this might
underpin the first real application of quantum computers
in the NISQ era. Drawing inspiration from artificial neural
networks (ANNs), quantum neural networks (QNNs) have
emerged as a new class of promising quantum algorithms.
While there are many approaches to training quantum neu-
ral networks, until recently they have all been inherently
sequential, aimed at training a quantum neural network on
a single quantum computer. Yet, training a classical neural
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network on a single core is not always feasible in large-
scale classical machine learning. When working with large
datasets or sophisticated models, training is often distributed
(Verbraeken et al. 2020). Dubbed distributed deep learning
(DDL), these techniques are employed either because of the
size of the dataset or because the model itself is too large
to be processed on a single core. Employing multiple cores
or even multiple machines overcomes this problem and typ-
ically leads to faster training time. Distributed deep learning
brings together high-performance computing communica-
tion protocols and the thriving field of deep neural networks
(Ben-Nun and Hoefler 2019; Chahal et al. 2020; Mayer and
Jacobsen 2020; Langer et al. 2020). One work that is often
cited as a large-scale success story is Goyal et al. (2017),
which trains the ImageNet dataset (Deng et al. 2009) across
256 graphical processing units (GPUs) in 1 h. In a single-
node fashion, training the ImageNet would normally take
several days.

The limitations motivating DDL are even more pro-
nounced in the quantum setting and an emerging set of tech-
niques is being developed tomirror the classical paradigm. In
this paper, we extend the ideas of distributed deep learning
to quantum neural networks by reviewing and consolidat-
ing the existing literature. Our aim is to make more concrete
the current set of vaguely similar ideas directing the research
toward amore unified and directed goal of distributed QNNs.
We define a distributedQNNas a learning algorithm employ-
ing multiple quantum computers (quantum processing units
(QPUs), by analogy), which we refer to as nodes. We iden-
tify some common themes in the distribution of QNNs and
discuss the implications.

The rest of this paper is organized as follows. The next
three Sections2, 3, and 4 give a primer on the ingre-
dients required to understand distributed QNNs. Notably,
Section2 introduces deep learning concepts and expands
on some of the well-known classical distributed deep
learning frameworks. Section3 introduces quantum com-
puting along with distributed quantum computing concepts.
Section4 overviews quantum machine learning with a focus
on quantum neural networks. Section5 gives a more detailed
overview of data parallelism considered through the quan-
tum lens while emphasizing two data encoding types and
their distributed forms: basis encoding in Section 5.1 and
amplitude encoding in Section 5.2. Section6 achieves the
same for model parallelism while briefly commenting on
vertical splitting of quantum circuits, and expanding more
on some of the recent works in the so-called “circuit-cutting”
schemes. In Section7we discuss the relevance of theseworks
in the NISQ era and provide an overview of software that
facilitates distributed deep learning as well as the quantum
approaches.

2 Distributed deep learning

2.1 A brief history of deep neural networks

Neural networks are the machinery behind the current most
prevalent machine learning method— deep learning (LeCun
et al. 2015). Fueled by the availability of big data and
the increase in processing power, this technology provides
an ecosystem for creating self-learning agents able to find
abstractions that are oftentimes not visible to other types of
ML algorithms.

2.1.1 Structure of neural networks

The building block of a neural network is the neuron. The
artificial neuron—verymuch inspired by the human biologi-
cal neuron— has a classical input–output structure. The first
architectural model was proposed in McCulloch and Pitts
(1943) in 1943, known as the McCulloch-Pitts (MP) neuron.
Each of the input values of a neuron x has a corresponding
weight coefficient w — which is the parameter that deter-
mines how important the input is to the output. The role of
a neuron is to connect with other neurons. A neural network
has an input layer, so-called hidden layers, and an output
layer. The depth of the network is determined by the number
of hidden layers. The reason deep learning architectures are
preferred to shallow ones, lies in the ability of hidden layers
to reach higher levels of abstraction, thus discovering more
intricate patterns in datasets. The ability to extract informa-
tion typically increases with the number of hidden layers,
and as long as new and useful information is extracted from
the data source, the number of layers is tuned accordingly.

Training begins by calculating the input sum of the
weighted parameters (and the bias b), thus:

z =
n∑

i=1

wi xi + b. (1)

The output can be noted as y = f (z). The function f is
known as the activation function, and it is highly non-linear.
The process of training the weights goes through two main
processes: the first one is computing gradients using the back-
propagation algorithm (Rumelhart et al. 1986; Hinton et al.
2006), and the second one is an optimization procedure gen-
erally using gradient descentmethods (Kingma andBa 2015;
Ruder 2016). From Eq. (1), the cost function (i.e., mean
squared error) can be defined as:

C(w) = 1

n

n∑

i=1

(y′(i) − yi )2 (2)
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where n is the number of samples, y′ is the predicted value
and y the actual value.

In its simplest form, given the one-directional transmis-
sion of information in a neural network, such a network is
called a feedforward neural network. In the stacked layers
of feedforward neural network architectures, the output of
a layer defines the input of the following. When a feed-
forward neural network has no hidden layers, it is called
a perceptron (Rosenblatt 1957). Besides feedforward neural
networks, there exists another class of neural networks called
Hopfield neural networks (Hopfield 1982), that represent a
class of recurrent and fully interconnected networks.

Several stacked layers of a neural network introduce
deep neural networks (DNNs) making such an architecture
a deep architecture. Even though deep learning is a much
older paradigm, the last decades have brought the inven-
tion of many widely applied deep learning architectures
(Goodfellow et al. 2016) based on feedforward and recurrent
networks, notably convolutional neural networks (CNNs),
several architectures of recurrent neural networks (RNNs)
— such as long-short term memory (LSTM) — genera-
tive adversarial networks (GAN), deep Boltzmann machines
(DBMs), variational autoencoders (VAEs) and others. Each
of the available architectures might be a better fit for dif-
ferent problems. CNNs for instance, work particularly well
with images and are applied to problems in computer vision
(Szeliski 2010; Krizhevsky et al. 2012). Computer vision
problems are machine learning applications that train the
computer program to identify images. Along with CNNs,
RNNs are usually the go-to candidates for natural language
processing (NLP) problems (Yin et al. 2017). NLP repre-
sents a set of problems that usually require the identification
of natural human language.

2.1.2 Scaling DNNs

It is evident that there are many problems for which neu-
ral networks are good candidates as a solution, including
classifying objects, image recognition, forecasting, medi-
cal diagnosis, and more. Inspired by the idea that classical
approaches of neural networks and deep learning are a
machine learning success story, these techniques have begun
their journey in the quantum world as well. The quantum
approaches and their achievements are further explored here
in Section4.

Oftentimes it suffices to have a single machine to perform
tasks. But, processing a task requires computational power.
More complex tasks require more computational power in
which case the processing system needs to be scaled in terms
of resources. For smaller scales of processing it remains con-
venient to add resources to the same processing machine.
This approach is known as scaling up, or vertical scaling
(Fig. 1a). In reality, any processingmachine can be scaled up,
however, the cost of advancing such an architecture becomes
exponential the higher the need to scale. A more pragmatic
solution is often given by scaling out, also known as horizon-
tal scaling (Fig. 1b). In simple terms, this means having the
required number of resources in different machines, rather
than in a singlemachine. At large scales, this solution is more
cost-efficient. This outlines the need for distributed systems.

It is often implied that a distributed system is running a
single process (task) at a time. In other words, all the partici-
pating devices are working toward one single output. Albeit,
the reliable distribution of resources and processes has its
own challenges. Having resources distributed to form a clus-
ter requires communication and synchronization protocols.
Relevant in this context, one issue that is prevalent directly

Fig. 1 Computational
architecture scaling. (a) is an
illustration of the scaling up
method of computation. In this
approach, the processing power
is increased as more core
processing units are added to a
single device. Whereas in (b),
the computational capacity is
scaling out, which represents
connecting distinct smaller
devices each with an individual
number of processing units to
achieve higher processing
capabilities. The latter is the
distributed approach we assume
for scalability here
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Fig. 2 Architecture overview of data parallelism andmodel parallelism
approaches in distributed neural network training. a) The dataset D is
split into three equal parts (D1, D2, D3) across n available devices (here
three nodes), where each device holds an identical copy of the entire
model M . b) The model M is split across n devices (here three nodes),

while each device holds a copy of the entire dataset D. In both scenar-
ios, parameters are subsequently synchronized among the devices either
asynchronously or synchronously. Gradients are exchanged using one
of the parameter exchange protocols such as the MPI

in the training of neural networks is the communication
overhead.

Another reason that motivates distributed training of deep
learning architectures, is the fact that either the dataset or the
model could get prohibitively large. It is because of these
two elements that can be paralleled, that there exist two tech-
niques of distribution: data parallelism andmodel parallelism
(Fig. 2). In these scenarios, either the dataset or the model
is split across nodes, respectively. Parallel or distributed pro-
cessing often has different connotations. Parallel processing
can be used in terms of multi-core processing in a single
device; while distributed processing refers to the processing
taking place in different nodes. The goal in either processing
remains the same: to output the result coming from all the
devices as if it were coming from one. This is why often-
times the two terms are used interchangeably. The data and
model-parallel distribution architectures can be used in either
context. In our theoretical assumptions, we assume that dis-
tribution takes place in different devices, which we will refer
to as nodes, while we refer to the collection of nodes in a
distributed architecture as cluster.

2.2 Distributed deep learning

When training a deep learning architecture, there are two ele-
ments that could become prohibitively large: the dataset or
the model (Ben-Nun and Hoefler 2019). Either the working
dataset or the model may be too large to fit into a single avail-
able device. Inspired by techniques from parallel computing,

the solution to overcoming this limitation is in distributing
the largest elements. The first to consider is data parallelism.
In this scenario, the dataset is split across the available nodes,
while each node holds an entire copy of the model. The sec-
ond approach, model parallelism, assumes the model is split
across the nodes, while each node holds an entire copy of the
dataset. The distribution of resources across several nodes
takes several forms (Fig. 2). The data and themodel approach
are inherently linked to other parameters to consider when
building a distributed architecture.

2.2.1 Data andmodel parallelism

Data parallelism techniques used to train neural networks
are very often focused on training CNNs (Zinkevich et al.
2010; Recht et al. 2011; Dean et al. 2012). For a categoriza-
tion based on the proposed architectures in the data-parallel
approach see Table 1 in Mayer and Jacobsen (2020). Model
parallelism on the other hand has been explored in several
works such as Refs. Coates et al. (2013) and Dean et al.
(2012). DistBelief (Dean et al. 2012) is a framework that
allows the training of a model in a parameter-server architec-
ture. In this type of setting, one parameter node orchestrates
the communication of the rest of the nodes in the cluster.
In the DDL scheme, data parallelism is used and explored
more than model parallelism, in part because it allows bet-
ter cluster utilization (Langer et al. 2020). Furthermore,
beyond data and model-parallel approaches, there are other
approaches to the classification of distributed protocols. One
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such notable architecture is pipeline parallelism (Huang et al.
2019; Narayanan et al. 2019) which involves pipelining the
network layers in different nodes. In someworks, there exists
a so-called domain parallelism approach which can be sub-
categorized as a data-parallel approach (Gholami et al. 2018).
In domain parallelism, the data points themselves are split
across different processors. It can also be inferred that there
exist hybrid approaches to distribution, which make use of
distributing both the model as well as the dataset (Gholami
et al. 2018; Xing et al. 2015; Jia et al. 2019). The DistBelief
architecture mentioned earlier is one such hybrid architec-
ture. A study in Krizhevsky et al. (2012) on parallelizing the
training of CNNs, proposes to split the two different types of
layers constituting the architecture of modern CNNs, in two
different ways: (i) one can apply data parallelism to convo-
lutional layers which contain the majority of computation,
and (ii) for fully connected layers which contain a small
amount of computation, model parallelism may be more
suited. In this work, however, we focus primarily on the dis-
tinctions between data andmodel distribution in the quantum
setting.

2.2.2 Centralized and decentralized architecture

When designing concrete architectures based on either dis-
tribution, there are a number of choices one can make. First
and foremost, the distributed architecture can be centralized
or decentralized, as in Fig. 3. In centralized architectures,
there is one appointed node that collects and broadcasts the
information. In the jargon of DDL, this analogy is known
as the parameter server architecture (Li et al. 2014; Gupta
et al. 2017). In contrast, a decentralized architecture does

not employ a parameter node that orchestrates commu-
nication (Sergeev and Balso 2018; Daily et al. 2018). It
instead, employs communication techniques such as the all-
reduce algorithm. In this scenario, each of the nodes has the
same role of calculating, sending, and receiving gradients.
It remains an open question as to whether the centralized
or the decentralized approach is more suited to which sce-
narios. Evidently, that depends on several factors, and there
may not be an architecture to fit all use cases. The obvi-
ous drawback of the parameter server method is that the
main nodes can quickly become communication bottlenecks,
potentially leading to failure. On the other hand, in a decen-
tralized architecture, the communication cost increases with
the number of nodes. This can lead to increased network
maintenance complexity. There are works that evaluate the
two approaches under certain conditions. For instance, Lian
et al. (2017) concludes that there exists a regime in which
decentralized algorithms outperform centralized ones in the
distributed setting, in the scenario when the communica-
tion in the network remains low. As quantum technology
evolves, it is likely that higher-level functions will con-
tinue to be performed by centralized classical devices, while
low-level computations are distributed among several QPU
nodes.

2.2.3 Synchronous and asynchronous scheduling

Another distinctive feature of the topology of choice is the
way in which parameters are exchanged— a problem known
as scheduling. In the scenario of the deep learning distri-
bution, the parameters that need to be exchanged are the
calculated gradients. The scheduling can take the form of

Fig. 3 Centralized and decentralized exchange of gradients in two dis-
tributed setting architectures. In a) we see the main node and three
secondary nodes sending gradients to the main node as well as receiv-
ing gradients broadcasted from the central node. This architecture is
known as the parameter server scheme. In b), four nodes each send and

receive gradients in an all-reduce scheme without the need for a central
node to orchestrate the communication. In both scenarios the dataset D
has been cut into n equal splits, while the model M remains intact in
every node
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synchronous or asynchronous scheduling. In the former, the
nodes wait on each other for the exchange of the gradients,
and gradients are exchanged onlywhen all theworking nodes
have finished the respective calculations. Given that some
nodes may be faster than others, this technique facilitates a
uniform exchange. The result is broadcasted at the same time
to all the nodes, once all the nodes have finished calculation
(Iandola et al. 2016; Coates et al. 2013). Asynchronous com-
munication, on the other hand, implies that the gradients are
exchanged as soon as respective nodes have finished their
designated calculations. When speaking of good cluster uti-
lization, it is asynchronous communication that comes into
the picture. In asynchronous communication, neither of the
nodes waits for the progress of the other nodes. The faster
nodes are not hindered by the slower ones. The result is
broadcasted to the nodes that have finished the communi-
cation without the barrier of waiting on the slower workers
(Recht et al. 2011; Dean et al. 2012; Keuper and Pfreundt
2015). There are evident advantages and disadvantages with
either of the techniques further discussed in Chahal et al.
(2020). Beyond the canonical approaches, there exist more
relaxed scheduling strategies such as the stale synchronous
(Gupta et al. 2017; Ho et al. 2013) and the non-deterministic
communication methods (Ben-Nun and Hoefler 2019). In
the context of quantum computation, new limitations arise
in communicating quantum information. However, classical
co-processors will likely be employed in any use of QPUs
and will be relied heavily upon in such hybrid scenarios to
optimize QNNs.

2.2.4 Communication protocols

When it comes to the exchange protocols used to facili-
tate communication, this is where techniques from high-
performance computing (HPC) come in. One of the most
used methods is the all-reduce algorithm that takes on vari-
ous forms depending on the architecture (Thakur et al. 2005).
Several out-of-the-box software packages provide access to
distributed training. As such, gradients are exchanged using
certain communication protocols. For instance, in Horovod
(Sergeev and Balso 2018), the training is supported in the
ring-allreduce architecture to facilitate data-parallel training
approach (Patarasuk and Yuan 2009). Horovod uses message
passing interface protocol (MPI) for sending and receiving
the gradients (Walker et al. 1996) among the nodes. As we
will see shortly, quantum information cannot be copied, so
the naive application of many communication protocols does
not apply to the communication of quantum information.
Generalizations exist but require many advances in quantum
technology infrastructure.

3 Essential quantum computing

3.1 Fundamental concepts

Quantum computing is based on the principles of quantum
mechanics. The idea of using the postulates of quantum
mechanics to build a new kind of computer was first intro-
duced in the 1980s in two seminal studies by Benioff (1980)
and Feynman (1982). Feynman’s proposal of quantum com-
putation is backed by the idea that our quantum universe can
only be simulated by quantum computers — in contrast to
classical computers. Another negative argument thatwemust
move to quantum from classical is the end of Moore’s law
(Prati et al. 2017; Markov 2014), which famously extrapo-
lated the trends of computing and predicted that computing
power will double every 2 years. To achieve this, transistors
have been shrinking in size at a comparable rate. However,
things can only shrink so much before they are the size of
an individual atom — at which point, control over them
would effectively render them as components of a quantum
computer.

There are, of course, positive arguments for quantum
computers as well, which often begin with the promise
of exponential speed-ups for some quantum algorithms
(Nielsen and Chuang 2011). By now, there are dozens of
quantum algorithms that can provide speed-ups over their
classical counterparts (Montanaro 2016). Training of neural
networks is one. But, before jumping straight into QNNs,
we first overview the basic quantum information concepts
required.

3.1.1 Quantum bits

In quantum computers, the information is processed via the
means of its building blocks called qubits. Unlike bits, qubits
have the ability to be in superposition and entanglement. The
parallel of a qubit in the classical world of computing is a bit.
A bit has two states 0 and 1, whereas a qubit has two states |0〉
and |1〉, and many other states as well. The two states |0〉 and
|1〉 technically form a basis in a two-dimensional complex
vector space (the |·〉 symbol denotes its vector nature). This
ability of a qubit to be in a continuum of its two basis states
is called superposition. Superposition simply represents a
linear combination of classical states:

|ψ〉 = α|0〉 + β|1〉. (3)

Coefficients α and β are complex numbers (α, β ∈ C)

and are often called amplitudes.
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Multiple qubits are represented as superpositions in a
higher-dimensional vector space. Forn qubits, the basis states
consist of all binary strings of length n: |b〉 = |b1b1 · · · bn〉.
Since there are 2n such basis vectors, the entire space has
dimension 2n and an arbitrary state of quantum information
can be written as

|ψ〉 =
2n∑

b=1

αb|b〉, (4)

where the amplitudesmust satisfy a normalization condition,

‖|ψ〉‖2 =
2n∑

b=1

|αb|2 = 1. (5)

3.1.2 Superposition and entanglement

Astate |ψ〉 fromEq. (4)may be simply one of the basis states.
In this case, there is no superposition and the information
could be represented by the bits labeling it. Often, quantum
computation is assumed to start in the so-called zero states
|00 · · · 0〉.

Two or more interacting qubits exhibiting properties of
correlation can be entangled, which is easiest to introduce
by example. The prototypical entangled state is the so-called
Bell state: |�+〉 = 1√

2
(|00〉 + |11〉). The state is entangled

because it cannot be written as two individual single-qubit
states. For a system of many qubits, most states are entan-
gled. The easiest way to interpret entangled states is as a
superposition of correlated classical states.

Understanding the entire nature of superposition and
entanglement is an open research question. But, suffice it
to say, at least some of each is necessary to achieve novelty
in a computation — otherwise, a classical computer could
straightforwardly replicate it. Since most quantum computa-
tions are assumed to begin in the unentangled state |00 · · · 0〉,
entanglement must be built up as the computation proceeds.

3.1.3 Quantum gates and circuits

The high-level ideas of computation remain the same in the
quantum setting as in the classical setting. Similar to classi-
cal computers that use gates, quantum computers manipulate
qubits via quantum gates. Gates map quantum states into
other quantum states. In digital logic, the NAND gate is uni-
versal — any other logical function can be implemented
using only this gate. Similarly, any quantum gate can be
decomposed into a sequence of one- and two-qubit gates
drawn from a small finite set of universal gates. As such, it is
both sufficient and convenient to distinguish between gates
that act on a single qubit and gates that act on two qubits.

Fig. 4 A sample quantum circuit in four qubits initialized in the ground
state |0〉. The gates are applied chronologically from left to right, rep-
resenting the arrow of time, followed by the measurement. Two-qubit
gates create entanglement, one-qubit gates create superposition

We will not need to know here which particular gates
can or are often used, so we will imagine them as abstract
and arbitrary. Quantum gates compose operations in a struc-
tured pattern forming quantum circuits. In Fig. 4 the colored
boxes represent one-qubit gates and two-qubit gates. The
boxes which go through two lines are two-qubit gates, while
the ones which go through only one line are one-qubit
gates.

In general, two-qubit gates create entanglement, which
requires either a physical connection between pairs of qubits
or some other communication that mediates the interaction.

3.1.4 Measurement

In Fig. 4, the final symbol on the quantum circuit is the mea-
surement. This is how quantum data is read. Measurement
transforms qubits into bits. It is both probabilistic and irre-
versible, destroying any entanglement or superpositions in
the process. For a general state as in Eq. (4), the outcome of
themeasurements is a single binary string b or its correspond-
ing basis state |b〉. The probability of observing that outcome
is |αb|2. A consequence of this is that quantum superpositions
cannot be read in the conventional sense. However, repeat-
edly measuring many equally prepared copies of quantum
data can give sufficient statistical information to reconstruct
it — a process referred to as tomography.

One of the most fundamental facts about qubits is that
no procedure exists which can create copies of them. This
fact is often referred to as the no cloning theorem. Since
many communication protocols are predicated on creating
and distributing copies of classical data, no-cloning presents
an immediate challenge to naive generalizations.

3.2 Distributed quantum computing

The core concept of distributed computation naturally
extends from classical to quantum computing. The under-
lying idea is that of using multiple quantum processors to
process quantum information (input), toward producing one
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single output.By connectingmultiple quantumdevices over a
network, one can achieve architectural scalability by scaling
out. The same principles of scaling as in Fig. 1 can apply
to quantum devices as well. Here we overview the main
techniques that facilitate and promote distributed quantum
computation. The idea of a scalable quantum architecture
peak with the ambitious project of the quantum internet
(Kimble 2008; Wehner et al. 2018; Cacciapuoti et al. 2020;
Cuomo et al. 2020; Rohde 2021) as one of the main goals for
distributed quantum computing.

The quantum internet implies quantum devices connected
in a quantum network style with classical and quantum
communication links. This network will thus allow commu-
nication between qubits on different devices apart from each
other. A crucial element in the functionality of the quantum
internet is quantum repeaters. Like classical repeaters, their
role is to propagate the signal into the further nodes. For
the same reason, they are placed between the nodes. How-
ever, unlike classical repeaters, quantum repeaters operate
very differently in how they perforate the signal. Quantum
repeaters perform the so-called entanglement swapping pro-
tocol which allows for entanglement distribution. There exist
quantum protocols that facilitate the exchange of classical
information such as quantumkey distribution and superdense
coding (Cacciapuoti et al. 2020). Whereas quantum com-
munication can occur over classical channels via quantum
teleportation (Nielsen and Chuang 2011). Informally, tele-
portation requires two classical bits and an entangled pair of
qubits to be transmitted between the sender and the receiver.
Other than the hardware challenges which currently hinder
most of the quantum research, the state of the development
of the quantum internet remains with many interesting open
challenges (Cacciapuoti et al. 2020).

At present day, there exist small quantum devices that can
be accessed via the cloud (IBM Quantum Experience 2022).
These cloud-based devices offer access to quantum compu-
tation via the Internet. Classically, cloud-based approaches
are certainly convenient due to their complete computation
infrastructure accessible via the Internet. However, a lot of
the discussion around cloud computation revolves around the
security of the network (Almorsy et al. 2016). On the quan-
tum front, there exists the idea of blind quantum computation
(Arrighi and Salvail 2006; Broadbent et al. 2009) which pro-
vides a barrier of encryption to either of the nodes accessing
the information transmitted. In this protocol which is appli-
cable in a cloud-based environment, the server receives an
encrypted algorithm from the client. In this way, the protocol
provides security under the assumption of hidden calcula-
tions. However, there are certain aspects the server will know
about the calculation such as the bandwidth of the calculation
size and allocated resources for execution. Much of the cur-
rent research in this area is focused on the verifiable aspects
of the blind computation (Fitzsimons 2016).

The long-term vision of a quantum network, where super-
position and entanglement are preserved, results in what can
simply be interpreted as a single (albeit very large) quantum
processor. Ensuring that the processor works well will surely
require concepts properly termed distributed quantum com-
putation in analogy with the classical techniques they will
borrow from. But, here we are interested in the bottom-up
problem, wherein we assume at some point in the nearer
future we will have access to multiple small QPUs, not nec-
essarily connected to a quantum internet, and ask: can we use
these in parallel to train a QNN?

4 Quantummachine learning

4.1 A brief overview of QML

Quantum machine learning encompasses a variety of algo-
rithms that are, broadly speaking, of variational nature, as
opposed to the more popular quantum algorithms, such as
Shor’s algorithm (Shor 1997) that are deterministic in nature.
Other kinds of algorithms which can be called determinis-
tic include Refs. Deutsch (1985), Deutsch and Jozsa (1992),
Grover (1997), Cleve et al. (1997), Brassard et al. (1998),
and Montanaro (2016). Here we are concerned with the
variational ones. Quantum machine learning is the emerg-
ing relationship between quantum computing and machine
learning. Collectively, the termQML is used interchangeably
in several distinct scenarios regarding the direction of the
field and the components used. The directions can take the
form of quantum phenomena improving machine learning
algorithms, or machine learning algorithms further improv-
ing quantum algorithms and designs. The two components
needed for this scenario to work — data and algorithms —
in either case, can be quantum or classical. Below we take a
look at the four main paradigms.

4.1.1 Four paradigms

The first big chunk and usually the entry point in QML is
called quantum-enhancedmachine learning. In this scenario,
machine learning analysis of classical data is processed on a
quantum computer. Dunjko et al. (2016) proposes an agent-
environment paradigm in four scenarios in which either is
Classical or Quantum (CC, CQ, QC, QQ) (Fig. 5) as an
attempt to give this new field more organization and per-
haps a direction. The context of quantum-enhanced machine
learning is desirable due to the power of quantum comput-
ers to work with complex linear and matrix computations,
as well as the idea of quantum parallelism. The inspiration
stems from the fact that the large amount of data needed for
machine learning algorithms to yield better results will har-
ness this power, consequentially leading to improvements in
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Fig. 5 The four quantum machine learning development paradigms
compared against data and algorithms type, either ofwhich is considered
to be classical or quantum. Classical ML on the upper-left corner for
context

runtime and convergence time (Lloyd et al. 2013). That is
also the main goal of this type of setup — speed-ups. How-
ever, in this case, data needs to be encoded into a quantum
state, then queried and retrieved from a quantum RAM —
that introduces issues of its own such as whether the time
cost of this action is too high to pay for, in turn, quantum
speed-ups.

The second direction, quantum-applied machine learning
is concerned with finding optimal ways to apply machine
learning in quantum experiments with the goal of enhanc-
ing their performance or finding solutions. These various
applications encompass accomplishments beyond quantum
computing applications such as particle physics, quantum
many-body physics, chemical and material physics, and
more (Carleo et al. 2019; Dawid et al. 2022). To zoom in,
some important implementations in quantum computing that
have shown promising results take place in quantum control
(Bukov et al. 2018;Niu et al. 2019), quantumerror-correction
(Nautrup et al. 2019; Torlai and Melko 2017), quantum state
tomography (Torlai et al. 2018; Xu and Xu 2018).

The third paradigm, quantum-inspired machine learning,
comes up with new ways to design and evaluate classi-
cal machine learning algorithms, that are primarily inspired
by quantum theory. As reviewed in Arrazola et al. (2020),
the complexity gap between classical and quantum algo-
rithms keeps changing with the new algorithms coming into
the picture and the complexity bounds are still somewhere
between polynomial and exponential. Due to their relevance
inmachine learning algorithms, the study in question reviews
the “flagship” algorithms of quantum computing - quantum
algorithms for linear algebra (Harrow et al. 2009; Kerenidis
and Prakash 2016). Arrazola et al. (2020) questions whether
these asymptotic bounds achieved via quantum processing in
several quantum-inspired algorithmsmay be useful in practi-
cal real-life applications. The study in Tang (2019) explores
the realm of linear-algebraic operations applied in recom-
mendation systems which build on the work of in Kerenidis

and Prakash (2016) that proves exponential improvements
over classical algorithms for recommendation systems.How-
ever, Tang (2019) narrows that gap by proving that another
class of classical algorithms reaches the same exponential
improvements.

The fourth category, quantum-generalizedmachine learn-
ing or fully quantum machine learning is the case where the
data, as well as the infrastructure, are bona fide quantum.
Given the still lagging state of the art of the two compo-
nents, this approach remains rather futuristic, to be answered
at its full scale at this point in time. Nevertheless, among the
first attempts to generalize classicalmachine learningmodels
have been proposed in line with unsupervised classification
protocols for quantum data (Sentís et al. 2019) and quantum
anomaly detection (Liu and Rebentrost 2018), among others.

4.1.2 Translational QML

Several of the classical machine learning algorithms have
been appropriated in the quantum realm: quantum support
vector machines (Anguita et al. 2003), quantum principal
component analysis (Lloyd et al. 2014), quantum reinforce-
ment learning (Dong et al. 2008), quantum algorithms for
clustering (Aïmeur et al. 2006), quantum recommendation
systems (Kerenidis and Prakash 2016) and many others. A
notable subroutine on which many such QML works are
based on is the so-calledHHLalgorithm (Harrow et al. 2009),
which proposes a solution to the linear systems of equations
using quantum operations. In turn, HHL achieves exponen-
tial improvement in time complexity over the best-known
classical algorithm for the same task. However, there are cer-
tain strict conditions that must be met that could otherwise
hinder the time advantage. For an analysis of its caveats, see
Aaronson (2015), while for an overview of the HHL in some
QML methods, see Duan et al. (2020).

More recently, QML research has slightly shifted focus
beyond computational complexity comparisons with the
classical counterparts, to the flavor of building better quan-
tum models (Schuld and Killoran 2022). In this context,
several works (Holmes et al. 2022; Sim et al. 2019; Abbas
et al. 2021; Wright and McMahon 2019; Du et al. 2020;
Banchi et al. 2021; Hubregtsen et al. 2021) explore express-
ibility, generalization power and trainability of amodel— all
crucial elements when building robust learning algorithms.
Attention is also given to the complexity bounds that shift
between classical and quantumdata for quantummodels (Liu
and Rebentrost 2018; Huang et al. 2021a, b).

4.2 Quantum neural networks

Quantum neural networks represent a class of hybrid
quantum-classical models that are executed in both quan-
tum processors as well as classical processors to perform
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one single task. QNNs are currently one of the most trending
topics in quantum machine learning (Beer et al. 2020). They
are often interchangeably referred to as variational or param-
eterized quantum circuits (VQCs or PQCs) (McClean et al.
2016; Bharti et al. 2022; Cerezo et al. 2021a). Several stud-
ies review more in-depth the increasing body of proposed
methods for implementing a QNN or similar model classes
(Schuld et al. 2014; Benedetti et al. 2019a; Mangini et al.
2021; Li and Deng 2021).

Some of the first works that address the question of quan-
tum neural networks do so from a biological perspective
extending on the idea of cognitive perspectives (Kak 1995;
Chrisley 1995;Lewenstein 1994).Others similarly early ones
do so from a hardware perspective (Behrman 2000; Ven-
tura and Martinez 2000). However, with more contemporary
approaches concerningQNNs, its definition has evolvedwith
now to refer to tangents in classical artificial neural network
research due to their parameters which require optimization
via a training procedure.

The QNN architecture has a structure that loosely resem-
bles that of classical neural networks, depicted in Fig. 6,
hence the analogous name. Evidently, when working with
classical data, a preliminary step is to encode the classical
data into quantum states. Otherwise, the first step of the QNN
training procedure is to define a cost function C , which as
in the classical case, maps the actual parameter values to
the predicted ones. This step is then followed by the circuit
with parameters U (θ) which need to be optimized using an
optimization strategy — often referred to as ansatz for the
parameterized quantum circuit (e.g., Kandala et al. 2017).
This step of the procedure resembles the multi-layered archi-
tecture of neural networks, as the ansatz can be composed of
multiple layers with the same architecture. The estimation
of the gradients C(θ) occurs in a quantum machine. The
optimization task is thus to minimize the value of the cost
function. This is followed by the measurement step which is

Fig. 6 A basic structure of the parameterized quantum circuits with
qubits and gates analogy, involving the data encoding stage, the ansatz
to be optimized, measurement, and an optimization scheme

used to introduce non-linearity. The output of the measure-
ment is then compared with the cost function dependent on
the task via the training procedure and then the parameters
are updated accordingly. Different types of classical optimiz-
ers are used for training θ often based on the gradient descent
methods (Cerezo et al. 2021a; Sweke et al. 2020).

Evidently, it is natural that there remain several open issues
in quantum neural network research. One of the main chal-
lenges for QNNs remains the linear-non-linear compatibility
between neural network computation and quantum mechan-
ics. Neural network computation is done in a non-linear
fashion, that is, the activation function that triggers each
neuron is non-linear, otherwise, the idea of layers in neu-
ral networks would serve no purpose. On the other hand,
quantum systems behave in a linear way, which gives rise
to the first incompatibility. Among other works and propos-
als in response to this caveat, Cao et al. (2017) designs a
quantum neuron as a building block to quantum neural net-
works based on the so-called repeat-until-success technique
to get past the linearities of quantum circuits. Several other
fundamental issues are discussed and summarized in All-
cock et al. (2020) including, the sequential nature of training
neural networks, which clashes with the parallel processing
power of quantum algorithms. In essence, taking advantage
of quantum superposition and managing to parallelize the
training of neural networks is a step in the right direction,
however, in training neural networks data is calculated and
stored at many intermediate steps — an inherent property
of the backpropagation algorithm. A recent approach sug-
gests using the rule called parameter-shift, which mimics
the way backpropagation works (Mitarai et al. 2018; Schuld
et al. 2019, 2020). Finally, the parameters needed for training
need to be encoded in quantum states, a process that is time-
consuming, and the topic of further discussion in Section 5.

To add to the discussion, QNNs are prone to the so-called
barren plateaus phenomenon (McClean et al. 2018; Cerezo
et al. 2021b) which entail flat region in the optimization land-
scape for evenmodest numbers of qubits and gates. Although
there has been progress toward escaping this phenomenon
be it by initialization methods (Grant et al. 2019) or newer
QNNarchitecture that are not prone to barren plateaus (Pesah
et al. 2021). Despite the inherent drawbacks, there are con-
tinuous attempts to resolve these issues and unite the two
paradigms of AI and QC due to the seemingly promising
rewards. To support this, there have been a number of notable
works which go along the lines of optimizing versions of
parameterized quantumcircuits for quantumdata (Cong et al.
2019; Beer et al. 2020). Furthermore, to align with the deep
learning architectures, there are several proposals that extend
the main deep architectures into quantum structures such as
RNNs (Bausch 2020), CNNs (Cong et al. 2019; Henderson
et al. 2019; Kerenidis et al. 2020), GANs (Lloyd and Weed-
brook 2018;Dallaire-Demers andKilloran 2018; Zoufal et al.
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2019) and more (Mangini et al. 2021). Further enhancing the
capabilities of these structures is one potential avenue where
the research will go. In the context of QNNs as well, there
is an emphasis on the expressibility, trainability, and gener-
alization power of these model classes.

However, whatever direction QNN research and applica-
tions take, the need to scale out will soon become apparent,
which brings us to distributed QNNs.

5 Data parallelism: splitting the dataset

The concept of data in quantum processing is very different
from that in the classical world. Straightforwardly, quantum
data is the data that is output from any quantum computer or
quantumprocessor. To explain it, one can contrast it with how
classical data works (Resch and Karpuzcu 2019). Classical
data can be saved in permanent storage,moved, and copied as
needed.On the other hand, quantumdata is rather short-lived.
Its lifetime endswith the end of the execution of a program.A
very different property is that quantum data cannot be copied
as per the no-cloning theorem. The no-cloning theorem does
not allow the creation of an identical copy of an arbitrary
quantum state (Wootters and Zurek 1982). The discussion
on quantum data is tightly linked to its processing mecha-
nism, such as a quantum random access memory (QRAM)
(Giovannetti et al. 2008b,b; Arunachalam et al. 2015). Being
able to retain quantum states longer or query them requires
storage capacities to be put in place. This becomes particu-
larly relevant in the discussion of quantummachine learning.
In what we call quantum-enhanced machine learning, clas-
sical data needs to a priori be encoded into quantum states,
which inherently is a time–costly process (Aaronson 2015).
Additionally, for many of the proposed approaches, the pres-
ence of a QRAM is a mandatory feature. On the other hand,
fully quantum machine learning that operates with quantum
data is starting to sprout, and there are reasons to believe that
it will be a more of an effective direction, as it removes the
need for quantum pre-processing.

As is the case with the enhanced QML algorithms work-
flow, the dataset first needs to be encoded into quantum states
(Schuld andPetruccione 2018). In this context, this is the case
when working with classical data and quantum algorithms
(CQ). As such, data encoding is a crucial part of designing
quantum machine learning algorithms. There exist several
methods of encoding classical data applied across several
works in QML that make use of data encodings frameworks
(Farhi andNeven 2018; Rebentrost et al. 2014;Havlíček et al.
2019; Harrow et al. 2009; Schuld et al. 2020; Wiebe et al.
2012; Lloyd et al. 2020; Schuld and Killoran 2019; Skolik
et al. 2021) and further push the ongoing research in this
domain. Some of the most explored encodings in the context
of QML include basis encoding, amplitude encoding, angle

encoding (tensor product encoding), andHamiltonian encod-
ing. We refer the reader to other encodings as well as more
in-depth analysis in Refs. Schuld and Petruccione (2018),
Weigold et al. (2020), and Weigold et al. (2021). Depending
on the purpose of the computation, there are certain tech-
niques better suited than the others. Weigold et al. (2020)
concludes that amplitude encoding allows for compact stor-
age and as such can be useful for storing a large amount of
data in a small number of qubits. Whereas basis encoding is
preferred should arithmetic computations take place. LaRose
and Coyle (2020) explores several encoding types in a noise-
less environment as well as under the influence of noise for
binary quantum classifiers. In general, encoding data into
quantum states is far from being a straightforward process.
This part of the workflow is often a bottleneck (Aaronson
2015) in achieving practical advantage. The research is still
ongoing and crucial to the success of quantummachine learn-
ing algorithms. Moreover, the question of data encoding
is relevant beyond QML, such as in quantum simulations,
another promising area of research.

Below we discuss two main data encoding techniques and
how they would perform in data-distributed equivalents.

First and foremost, let D be a classical dataset of size M ,
where each data point x is an N -feature vector.

D = {x (1), ...x (m), ..., x (M)} (6)

The process of data distribution begins with splitting D
into L available nodes:

D1 = {x (1), . . . , x (K )}, (7a)

D2 = {x (K+1), . . . , x (2K )}, (7b)

...

Dj = {x (( j−1)K+1), . . . , x ( j K )}, (7c)

...

DL = {x (L−1), . . . , x (M)}. (7d)

where D = D1+D2+· · ·+DL . Each of the L splits of data
is processed in a different node. They each hold an equal
amount K of different data points from the same dataset.
Here we consider classical data to be quantum data after it
is encoded into quantum states. When D is encoded into
quantum states using either of the available encoding tech-
niques, what is produced is quantum data. We can denote the
obtained quantum dataset with |D〉 (Fig. 7).

5.1 Basis encoding with data distribution

The first encoding technique we consider is the basis encod-
ing. This procedure has two substantial steps. Prior to
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Fig. 7 The split of the quantum dataset across three quantum nodes
(QPUs). The quantum model is kept unchanged and loaded into all
three nodes

encoding, each data point needs to be approximated to
some finite precision in bits. Typically, single-bit precision
is assumed for brevity. Otherwise, a constant number of
extra qubits is required. We will follow convention here and
assumed each feature is specified by a single bit such that
each data point is an N -bit string.

Each of the data points is encoded in a computational basis
state uniquely defined by its bit string. The entire dataset is
encoded as a uniform superposition of these computational
states. The dataset defined in Eq. (6) in the basis encoding
will result in the following quantum data:

|D〉 = 1√
M

M∑

m=1

|x (m)〉, (8)

where x (m) represents a single random data point in the
dataset. To encode the classical dataset D into a quantum
dataset, N qubits are required (and a constant factor more if
the features are represented with more bits). Preparing |D〉
requires O(NM) gates (Ventura and Martinez 2000).

Examples of basis encoding (Wiebe 2020) of QML tech-
niques employed for different tasks include neural networks
for classification (Farhi and Neven 2018; Schuld et al. 2017),
quantum data compression (Romero et al. 2017), quantum
Boltzmann machines (Amin et al. 2018), to name a few.

In the distributed context, assuming the split according to
Eq. (7), to encode each of the portions of the dataset (i.e.,
Eq. (7c)) it also requires N qubits for each of the dataset
chunks. We consider |D〉 to be one quantum state on LN
qubits. This will result in:

|D〉 = |D1〉 ⊗ |D2〉 ⊗ · · · ⊗ |Dj 〉 ⊗ . . . |DL〉 (9)

where each |Dj 〉 is,

|Dj 〉 = 1√
K

jK∑

m=( j−1)K+1

|x (m)〉. (10)

The preparation of each {Dj } requires O(NK ) gates since
each partition contains K data points. In total, across all parti-
tions, O(NK L) gates are needed. Replacing the parameters
from K L = M yields O(NM) gates, the same as in the
undistributed scenario. This is not surprising, of course, but
one still wonders what has been gained.

There are a few observations we can make. Firstly, using
this approach of data encoding to performdata distribution, in
the end, requires more qubits than the single-node approach.
While a single-node dataset requires N qubits, L splits of the
dataset require LN qubits. This way, the number of qubits
required grows with the number of splits. However, the total
number of the gates NM remains the same. In the end, what
has been achieved with this splitting technique is the reduc-
tion of gates per node, precisely by a factor of L .

Therefore, the positive aspect yielded in this procedure is
the lower depth of state preparation per each individual split
in comparison to the preparation of the larger circuit. Lower-
depth circuits obviously require less time to implement, but
also incur fewer errors, which again translates to time in the
error-corrected regime, but is far more relevant in the NISQ
era. Errors grow at least linearly in the depth of the circuit,
hence so-called shallow circuits are of great interest, a fact
we will discuss later.

More subtle is the notion of quantumness in the distributed
approach. While it is clear in splitting we may have lost the
naive parallelism afforded by quantum data, it is also likely
that a significant amount of entanglementwill also be lacking.
This can be naively inferred to as less quantum as a solution,
but not necessarily less powerful. As these considerations
will be relevant to all splitting procedureswe consider, further
discussion of parallelism and entanglement will be deferred
to Section 7.2.

5.2 Amplitude encoding with data distribution

Amplitude encoding is another widespread encoding tech-
nique that is widely used in the context of quantum machine
learning. This technique uses amplitudes of the quantum state
to encode the dataset (Schuld and Petruccione 2018).

All the data samples with their attributes are concatenated
and can be constructed as,

α =
(
x (1)
1 , . . . , x (1)

N , x (2)
1 , . . . , x (2)

N , . . . x ( j)
1 , . . . , x ( j)

N , . . . ,

x (M)
1 , . . . , x (M)

N

)
, (11)
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which is a single vector of lengthMN . Thedataset D encoded
in amplitudes can be characterized as:

|D〉 = 1

|α|
MN∑

i=1

αi |i〉, (12)

where |α| is the normalization, or length of the vector α:

|α|2 =
MN∑

i=1

α2
i , (13)

which is necessary recalling that all quantum states require
normalization.

Amplitude encoding is certainly a more compact way of
encoding data in comparison to the basis encoding given that
it requires log(MN ) qubits to encode the dataset defined in
Eq. (6). Regarding the splitting of the dataset, here, as well,
we assume Eq. (9). The full dataset will be a tensor product
of quantum splits which encodes each of the subsets of data.

Assuming L splits, and applying Eq. (7) and Eq. (9)
invokes the following in amplitude encoding, a |Dj 〉 split
will be characterized as:

Dj = {x (( j−1)K+1), . . . , x ( j K )}. (14)

then α j :

α j =(x (( j−1)K+1)
1 , . . . , x (( j−1)K+1)

N , . . . , x ( j K )
1 , . . . , x ( j K )

N )

(15)

where α ∈ R
K N . A split Dj can then be written:

|Dj 〉 = 1

|α j |
K N∑

i

α j,i |i〉. (16)

Consequently, encoding each of the splits L requires
log(K N ) qubits. Each split has K data points with N fea-
tures. Assuming an equal split of the dataset where K = M

L ,
all the splits L together subsequently yield L log(ML N ).
AssumingM � L , the total number of qubits is L log(MN ),
and again we see that data splitting has increased the number
of qubits need by a factor of L .

One thing to be noted about the splitting of the data vec-
tor in amplitude encoding is the role of the normalization
constant. Distribution of the dataset will result in L differ-
ent normalization constants per data split, which may in turn
disproportionately change the structure of data in L different
ways. Of course, it could also be the case that the variance in
the magnitude of the normalization constant is insignificant,
which we might expect for very large data sets.

An obvious splitting technique in amplitude encoding is
between data samples, such that each node receives a state
|Dj 〉 consisting of the feature vector x ( j) of a single data
point from D. Interestingly, arriving at this splitting is natural
when starting from the hybrid quantum-classical approach to
QNNs. There, the dataset is paired with labels y( j), for each
x ( j), which is compared to the output of the QML model in
a sequential fashion. One notable exception is a recent set
of simulated experiments (Huang et al. 2021a) which make
natural uses of TensorFlow’s built-in distributed computing
ecosystem to distribute the dataset over 30 nodes.

5.3 Data parallelism discussion

Basis and amplitude encoding are the prototypical techniques
for constructing quantum data. Due to the current limitations
of quantum hardware, other more “natural” encodings have
been considered dubbed hardware-efficient. Angle encoding
(Schuld and Killoran 2019; Skolik et al. 2021; Haug et al.
2023), which is done at the single-qubit level and hence does
not entangle states within feature vectors, is more akin to
basis encoding. Whereas, encoding at the Hamiltonian level
(Havlíček et al. 2019; Wecker et al. 2015; Cade et al. 2020;
Wiersema et al. 2020) typically involves two-qubit entan-
gling gates and, in the context of parallelization, more akin
to amplitude encoding.

The angle encoding technique was recently used in data
parallelization experiments to distinguish letters from the
MNIST database (Du et al. 2021). There, the authors devised
a protocol to execute multiple rounds of local gradient
training before communicating with a central node which
averaged the current parameter values before redistributing
them. The experiments investigated accuracy versus a num-
ber of local gradient evaluations, finding fewer local gradient
evaluations to perform better independent of the number of
local nodes. The overall speed-up to a given accuracy thresh-
old, however, scaled linearly with the number of local nodes.

A generic approach to encoding classical data is to
consider,

|Dj 〉 = Uenc(x
( j))|0〉, (17)

where Uenc is some encoding circuit. In this context we are
somewhat constrained in types of data splitting we ought to
consider. By the very nature of the setup, we already have
an implicit splitting between feature vectors. As noted, this
is typically processed in series, but in the hybrid quantum-
classical setting can be naively distributed using existing
classical protocols. In this style of splitting, no entanglement
is generated across features, while intradata entanglement
would presumably persist. However, we do note that even
within this paradigm, quantum training (with access to
QRAM, for example) may recover interdata entanglement
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(Liao et al. 2021; Pascanu et al. 2013; Shang andWah 1996).
On the other hand, further splittingwithin each feature vector
could be considered. However, detailed knowledge of Uenc

would be required, and this may consist of removing entan-
glement between features, which is likely the only advantage
the QML model is empowered by — be it computational or
expressive.Wemention the possibility, though, as such a split
might properly be considered a model splitting rather than a
data splitting, which is an excellent segue.

6 Model parallelism: splitting themodel

Model parallelism makes use of the idea of distributing
the neural network and its parameters. In quantum machine
learning, amodel can be understood as a parameterized quan-
tum circuit — i.e., a quantum circuit with variably specified
gates. How these circuits are “split” is superficially the same
as how models are split classically but differs greatly in the
details.

Classically, we can point out two types of model splits:
horizontal and vertical splitting as in Fig. 8a. In horizontal
splitting, it is the layers of the network that are split. While
vertical splitting is applied between the layers, leaving indi-
vidual layers unaffected. The latter feature makes vertical

splitting a more versatile technique. This is why classical
vertical splitting is generally preferred over horizontal split-
ting (Langer et al. 2020). This, however, cannot be used as a
naive heuristic for quantum scenarios, as we will see below.

The existing quantum literature in distributed QNNs
explores horizontal splits rather than vertical splits. Inter-
estingly, there are certain limitations in the classical analog
which make the horizontal splitting approach the last resort
to turn to for distribution (Langer et al. 2020). In addition, it
is often left implicit that model parallelism does not always
yield concurrent working nodes due to the inherent property
of data dependency in neural networks.

The straightforward model architectures we have con-
sidered in Fig. 8c involve splitting the quantum circuit
horizontally or vertically, although several other different
split methods can be approximated. Intuitively, splitting
the quantum circuit vertically may not necessarily yield an
advantage. As will be discussed below, each gate or wire cut
incurs a cost that grows exponentially.

In the case where a splitting strategy is restricted to com-
municating classical information between nodes, merging
the different parts of the circuit requires the exponentially
difficult task of quantum tomography. A strictly vertical split
then is maximally inefficient. As in the literature, then, we
will mostly focus on horizontal splitting.

Fig. 8 Model parallelism example architectures. a) Horizontal and
vertical split of a neural network model. b) A visual representation
of the DistBelief (Dean et al. 2012) architecture that features both
data and model parallelism as an example architecture of hybrid par-
allelism. Here the dataset as well as the model are split across the
available nodes. c) Quantum-inspired horizontal and vertical split of

a quantum circuit. The horizontally cut sub-circuits Nn would require
classical communication among the nodes. The vertical cuts Vn would
require quantum tomography. d) A visualization of the quantum-
inspired hybrid approach following the architecture of DistBelief in
b. The quantum circuit is split across 4 devices using both data and
model parallelism
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Fig. 9 The two of themain paradigms of horizontal splitting introduced
in the quantum circuit-cutting literature. In a) is depicted the paradigm
of splitting gates (or wires) incoherently (classically) as in Peng et al.
(2020).Whereas the architecture in b) splits the gates coherently (quan-
tumly) as in Marshall et al. (2022)

At present, there exist several architectures which can
be considered horizontal splits on the model. Generally
speaking, these works correspond to a few major classes of
horizontal splitting, as we will describe below. The taxon-
omy can be of different flavors, however below we choose to
differentiate between incoherent and coherent splitting, the
presence of communication throughout the calculation, and
sampling.

We summarize the general techniques in Fig 9. Consider
the gate G as a two-qubit gate whose action is to be split
across two separate quantum computing nodes. For any G
there are a number of recipes that allow exact or approximate
emulation using only pairs of gates Lk that act separately on
each node. The labels carry some “physical” meaning here
in that gates which act across subsystems are referred to as
“global” while gates that act individually on subsystems are
termed “local”. Properly, the action of the global gate G can
be computed as a sum of locally acting gates Lk :

G =
∑

k

ck Lk, (18)

where ck are known real-valued coefficients. Each term in the
sum requires a unique computation, the results of which need
to be combined in post-processing. The key differentiating
factor for how this is accomplished is whether it is achieved
using quantum measurements or not.

6.1 Incoherent versus coherent splitting

In horizontalmodel splitting, as depicted in Fig 9, either there
is a measurement or there is no measurement. Not depicted,
however, is the idea of simply cutting a wire (Peng et al.
2020), which is analogous to the measurement-based gate-

splitting scenario, which we discuss first. Note that, in the
jargon of quantum physics, things which preserve quantum
information are termed coherent while things that do not are
incoherent.

6.1.1 Incoherent splitting

Incoherent splitting refers to methods as depicted in Fig 9a.
In these schemes, the overall global circuit is simulated by a
sequence of local circuits that include a quantum measure-
ment of the qubits affected by the cut. Since themeasurement
is an operation that destroys quantum information — trans-
forming it into classical information — this approach is
called incoherent splitting.We note that it has elsewhere been
referred to as “time-like” splitting (Mitarai and Fujii 2021a),
but we will avoid this terminology as it references a concept
in relativistic physics.

Ideas similar to classical horizontal parallelism have
been proposed in the quantum circuits literature, oftentimes
unrelated to the quantum machine learning literature. An
equivalent to the idea of a horizontal circuit split has been
proposed in Peng et al. (2020). This solution is offered pre-
cisely to get across the limited number of qubits available on
individual devices. Overall, the scheme involves some clas-
sical computation to cut and distribute circuit descriptions
among the nodes and also to post-process the results of mea-
surements. The bulk of the overhead occurs in the number of
quantum circuits that need to be run, which grows exponen-
tially with the number of cuts. However, as they point out,
actual overhead could be much less depending on the struc-
ture of the circuit. In the extreme case where two clusters of
qubits have no entanglement across them, the splitting can
be achieved with no overhead at all. Some applications (e.g.,
Hamiltonian simulation) which fall between these extremes
are discussed.

These splitting methods were used in Chen et al. (2018)
to simulate random 56 qubit quantum circuits of depth 22
on a single personal computer. In Eddins et al. (2022),
the technique was referred to as entanglement forging
and used to enact 10 qubit quantum circuits with a sin-
gle 5 qubit nuclear magnetic resonance (NMR) quantum
processor.

Since measurements are made in an incoherent splitting
procedure, the problem of data analysis can be consid-
ered a statistical one. In response to this, Perlin et al.
(2020) introduced a maximum likelihood tomography to
approximate the result of the measurements which need
to be performed across all circuit splits. They found a
slightly enhanced performance in some numerical exper-
iments over the naive recombination of the measurement
data.

As noted in the canonical work of Peng et al. (2020), the
success of splitting techniqueswill depend highly on the exis-
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tent structure of the circuit to be split, assuming an optimal
(or at least sensibly obvious) choice of split location. The
examples considered possessed a clustering structure where
the cut location would obviously correspond to cluster links.
If such a structure needs to be first found, classical pre-
processing may become difficult. In Tang et al. (2021), the
authors introduce an automated tool, called CutQC, which
uses the framework of integer programming to optimize the
location of circuit cuts (effectively minimizing the number
required). They demonstrate the tool with various simula-
tions of quantum algorithms by obtaining not only orders of
magnitude speed-ups in simulation time, but also the ability
to go well beyond was is simulatable classically. In particu-
lar, they demonstrate the simulation of 100-qubit algorithms,
whereas full circuit simulations on typical classical hardware
are limited to roughly 30 qubits. Similarly, Saleem et al.
(2021) uses a graph-based approach to optimize the cut loca-
tions in the wire-cutting scenario.

The most recent example of incoherent wire-splitting is
Lowe et al. (2022), which utilizes randomized measure-
ments and one-way classical communication to create a
conceptually simple splitting procedure which again has an
exponential overhead in the number of wire cuts. The authors
were able to classically simulate a 129-qubit QAOA circuit
using this technique.

6.1.2 Coherent splitting

In contrast to incoherent splitting, Fig 9b depicts the same
cut location, but a simulation strategy that preserves quantum
information by using quantum gates rather than measure-
ments. Since quantum information is preserved in each
circuit, this is dubbed coherent. It was first introduced in
Mitarai and Fujii (2021a) where it was called “space-like”
cutting.

While conceptually similar toPeng et al. (2020), the coher-
ent splitting technique (Mitarai and Fujii 2021a) can achieve
some quantifiable advantages depending on which gates are
cut. In essence, efficiency comes down to how many terms
are in the sum of Eq. (18), and that depends on which G
is being split and how many times. Moreover, in a real
device, it may be more applicable to enact single-qubit gates
than perform measurements. The same authors improved
upon the gate decomposition technique, substantially reduc-
ing the number of local terms Lk in Eq. (18). They also
introduced a novel sampling technique we discuss further
below.

More recently, Piveteau and Sutter (2022) proposed a
method called “circuit knitting” which again is motivated
by the promise of using present-day quantum processors
through the partitioningof large quantumcircuits into smaller
sub-circuits. The resulting output of each sub-circuit is then
“knitted” using classical communication. This work is con-

ceptually different from all those previously discussed in that
those works considered only classical communication in the
final post-processing of the data. Piveteau and Sutter (2022)
found that classical communication is advantageous when
multiple instances of the same gate will be split. However,
prior entanglement between the nodes is necessary to realize
this advantage.

These ideas have further motivated explorations in specif-
ically splitting QNNs in the context of quantum machine
learning (Marshall et al. 2022). Rather than minimizing the
number of cuts as in previous work, Marshall et al. (2022)
focuses on minimizing the size of the sub-circuits needed to
approximate the result. They further test this hybrid circuit-
cutting architecture in the MNIST dataset, but training a
quantum classifier with 64 qubits using eight nodes (each,
of course having 8 qubits). Such a simulation directly on
64 qubits would be infeasible both in classical simulation
and in today’s quantum hardware. This work points out an
important additional feature of the idea of distribution in
QNNs. Notably, the problem of barren plateaus is eased
because sub-circuits have a smaller number of qubits lead-
ing to larger gradients. This has been corroborated in Tüysüz
et al. (2022), which explores parallel execution and combi-
nation of small sub-circuits in QNNs, finding an avoidance
of barren plateaus.

6.2 Model parallelism discussion

Here we have made a distinction between incoherent and
coherent splitting techniques. There are two points tomake in
this regard. First, it is not likely that one technique is strictly
better than the other and the use of either technique will
depend heavily on the context of the circuits being executed.
Indeed, Mitarai and Fujii (2021b) considers the case of a
hybrid technique in which multiple splits in a single circuit
may use a combination of both incoherent and coherent split-
ting. The second point is that this dichotomy is not the only
current differentiator in the horizontal splitting techniques
existing in the literature.

We have alluded to two other distinctions already. The first
is whether or not communication is used in the protocol. The
existence of communication is not strictly optional but borne
out of the necessity of cutting procedures. Communication
takes place in Refs. Piveteau and Sutter (2022) and Lowe
et al. (2022) in order to merge the different sub-circuits on
the fly rather than in post-processing. Again, since the cutting
protocol will depend on the context, the existence of commu-
nication will as well. Indeed the context may even preclude
communication due to technical limitations.

The second distinction requires more thought. Since the
coefficients ck are generically negative numbers, the total
sum may require high precision to accurately calculate
exactly or estimate. To get around this, let us rewrite Eq. (18)
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as follows,

G = N
∑

k

|ck |
N

ck
|ck | Lk, (19)

where N = ∑
k |ck |. From here we can see that the quanti-

ties pk = |ck |/N form a discrete probability distribution. By
treating the application of Lk as a randomvariable, the expec-
tation ofG can beMonte Carlo sampled, which may result in
fewer circuits to run. This was first considered byMitarai and
Fujii (2021b), where it was pointed out that the quantity N 2

corresponds to the overhead incurred due to splitting. Since
there is no loss in generality in making this move and stan-
dard probabilistic bounds can be straightforwardly applied,
it is likely that this sampling-based splitting approach will
be more favored.

Recall that in data parallelism, the same classical pro-
tocols are applied to quantum data parallelism. However,
we see that for model splitting, the resultant quantum proto-
col is fundamentally different as it requires potentially many
different models to be run serially and then post-processed.
Whereas, in classical horizontal splitting, the models do not
actually change — communication protocols are introduced
to retain the capacity of the full model. It is thus not likely
that powerful classical hybrid protocols utilizing both ver-
tical and horizontal model parallelism, such as DistBelief
(Dean et al. 2012) depicted in Fig. 8b, will be generalized
to the quantum setting. However, we can naively infer a
quantum hybrid architecture in which both quantum data and
quantum model are split as in Fig. 8d. Such a model might
be realized when distribution can be achieved with efficient
entanglement distribution or a fully coherent quantum com-
munication network is available.

Finally, we mentioned the implied classical-quantum
hybrid horizontal splitting technique of Bravyi et al. (2016),
which makes use of both quantum and classical resources to
simulate large quantumsystemswith “virtual qubits” running
in parallel to a quantum computer.

7 Discussion

This overview paper was an introduction to the distributed
techniques present in classical deep learning as applied to
the novel field of quantum neural networks. In this final dis-
cussion we mention some related ideas and comment on
the nascent topics of NISQ and quantum software before
concluding.

7.1 Related techniques

Beyond data parallelism, there exist other strategies that
go along the lines of optimizing the amount of data for

learning algorithms. Data reduction techniques, often known
as coreset techniques in classical machine learning (Bachem
et al. 2017), are a prime example. The main idea behind
coresets is that for a dataset D, there exists a subset S which
approximates D for a particular task. Importance sampling is
typically the first step in the process of finding such S. Core-
set techniques are typically algorithm-type specific, however,
can also be generalized. Making the same parallels to quan-
tum computation, the size of the datasets remains an obvious
problem when qubits are at a premium. The question of
whether one can use coreset techniques in hybrid quantum-
classical architectures has been explored in Harrow (2020);
Tomesh et al. (2021). Harrow (2020) work presents several
examples of hybrid algorithms making use of data reduction
techniques, notably in clustering, regression, and boosting.
Tomesh et al. (2021) builds on this work by extending it to
the realm of variational algorithms. The works in question
can certainly be part of the greater solution to handling large
quantumdatasets.Data reduction techniques are not typically
discussed in the context of distributed learning. The under-
lying principles that guide data reduction techniques are not
necessarily similar.

QNNs require classical optimization,which has been stud-
ied in a parallelized context in Self et al. (2021), where the
procedure is called information sharing. The novelty of their
proposal is in its application to a particular style of opti-
mizing, but the general idea could be considered a form of a
distributed QNNwhere the parameters are distributed across
nodes.Althoughmost optimizers are adaptive—meaning the
QNN parameters at one point in time depending on measure-
ment results at a previous point in time — many optimizers
require evaluation of costs at several simultaneous parameter
values. This suggests an obvious form of distribution, as in
Self et al. (2021).

7.2 NISQ and beyond

The primary motivation for many of the existing QML tech-
niques is to serve the needs, or limitations, of the NISQ
era. Recall, NISQ devices are both small (in qubit number)
and noisy (limiting circuit depth) (Preskill 2018; Chen et al.
2022), which is why shallow circuits are of great interest
Bravyi et al. (2018); Dunjko and Briegel (2018); Arute et al.
(2019). Many of the techniques we have discussed above are
suitable in the NISQ regime, not requiring a fixed (large)
number of densely interacting qubits and not restricted to
noiseless computation.

Combining the training ofQNNs acrossmany of the nodes
may yield advantages be it in terms of time complexity, or in
terms of generalization power, scalability, and explainability.
Of the twomain architectures, in classical deep learning, data
parallelism is the more explored one. That is for several rea-
sons. Firstly, it is practically easier to split the dataset rather
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than the model. When it comes to splitting the model there
exist different strategies which can be more suited to the task
at hand. Secondly, it is widely accepted that data parallelism
allows better cluster utilization (Langer et al. 2020).

Naive data splitting is straightforwardly applied when
using mature AI software packages (Huang et al. 2021a).
We expect such techniques to find use in the first NISQ
implementations of QNNs. However, the restricted size of
NISQ devices will also see the use of horizontal splitting
techniques. Incoherent splitting is likely more suited to early
NISQ devices since no new capabilities are required. In addi-
tion to reducing the demand on the number of qubits, splitting
techniques can reduce the depth of the circuit as well —
depending of course on the structure.

One may wonder why such techniques have not been
widely adopted and applied to existing devices. Typically,
the larger the dataset is, the more relevant it becomes to
distribute the dataset. Distributing smaller datasets may not
yield obvious advantages. In the initial works that here we
consider equivalent to model distribution, there are assump-
tions that can be made on the complexity of the datasets. For
instance, Marshall et al. (2022) observe that synthetic quan-
tum data performs better in their technique than classical
high-dimensional data. As it currently stands, the number of

qubits availablemay be sufficient, but the level of noise needs
to be reduced to allow for sufficiently deep circuits. Deter-
mining what types of data and what structural features of
circuits aremost suited to splitting is an open area of research.
What is clear, however, is that a principled approach to the
development of software for this purpose is needed.

7.3 Software tools

There exist a number of software packages and libraries that
implement distributed deep learning strategies. The Tensor-
flow software (Abadi et al. 2016), for instance, implements
distributed training techniques as an out-of-the-box feature.
In Tensorflow, there are several strategies for distributing
resources (Distributed training with TensorFlow 2022). For
instance, the MirroredStrategy as a distributed technique
makes use of all the available central processing units (CPU)
or GPU resources in a single device. MultiWorkerMirrored-
Strategy is a synchronous distributed strategy that makes
use of multiple devices, each potentially containing multiple
GPUs or CPUs. All of the aforementioned strategies sup-
port synchronous training. A few all-reduce implementations
of choice are also available. Other than the methods above,
there exists the ParameterServerStrategy which implements

Fig. 10 Architecture stack of an example software infrastructure run-
ning numerical experiments as in Xing and Broughton (2021). The
process is initiated by Kubernetes pulling the two docker images from
the container registry: the Tensorflow QCNN image and the Tensor-
board image (Tensorboard is Tensorflows’ graphical user interface of
results overview). The images were built locally and uploaded to the
container registry. After pulling the images Kubernetes creates pods
(which can be thought of as actual processors or in software as jobs), the
number of which is determined by the number of the replica parameter.
Parallelism is managed by the number of pods. Pods are then deployed

in Kubernetes nodes. Pod distribution over nodes is transparently man-
aged by Kubernetes. At the end of the job, the master pod writes to the
Google Cloud Storage bucket. At the same time, results get uploaded to
Comet.ml via RESTAPIs. Note that Tensorboard can be used as a visual
tool for reading the results without the need for external software. TFJob
operator, part of the Kubeflow project, is Kubernetes’ custom resource
that facilitates the deployment of Tensorflow instances in a Kubernetes
cluster. The entire process can be categorized into two parts: the deploy-
ment phase responsible for the setup, and the runtime or in our scenarios
of ML optimization, the training phase
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asynchronous communication. In addition to Tensorflow,
there exist a number of other libraries one of which is the
Horovod library (Sergeev and Balso 2018), that implements
the ring-allreduce algorithm across a distributed cluster
using NCCL (NVIDIA Collective Communication Library
(NCCL) 2022) as the communication library. Other software
that facilitates the same principles are MXNet (Chen et al.
2015), PyTorch (Paszke et al. 2017), CNTK (Seide andAgar-
wal 2016) etc. Amore complete list of software available that
support distributed deep learning can be found in Table 3 in
Mayer and Jacobsen (2020).

Tensorflow Quantum (Broughton et al. 2020) is the
quantum machine learning extension that allows simulating
hybrid quantum circuit models. As an example in terms of
how the distributed implementation would look in quantum
neural networks, TensorFlow Quantum provides a blog post
setting up the architecture (Xing and Broughton 2021) for
distributed training of QNNs. This example implements the
MultiWorkerMirroredStrategy. The backbone architecture of
these experiments is the quantum convolutional neural net-
work (QCNN) architecture developed in Cong et al. (2019).
Figure10 gives an overviewof the architecture stack enabling
such experiments. Furthermore, on the quantum front, quan-
tum software such as Qiskit (Aleksandrowicz et al. 2019)
or Pennylane (Bergholm et al. 2018) can be used either for
simulations or experiments on actual quantum devices (Fin-
gerhuth et al. 2018). Table 2 in Benedetti et al. (2019a)
summarizes some of the works which implement QNNs
across different quantum hardware platforms for different
tasks (Otterbach et al. 2017; Ristè et al. 2017; Grant et al.
2018; Tacchino et al. 2019; Benedetti et al. 2019b; Coyle
et al. 2020; Rocchetto et al. 2019; Ding et al. 2019; Ren et al.
2022).

In relation to the techniques useful for the distributed
approaches, Tang et al. (2021) mentioned above, develops
CutQC which is a software package that automates the loca-
tion of wire cuts when splitting a quantum circuit. In similar
lines, Parekh et al. (2021) builds Interlin-q on top of the real-
time quantum networks simulator QuNetSim (Diadamo et al.
2021). Interlin-q is a software package that helps in design-
ing distributed algorithms. It follows a general centralized
architecture where a client node is responsible for propagat-
ing information to the computing nodes, via a middle point
controller node.

7.4 Closing remarks

A lot of work in circuit-cutting schemes gives special atten-
tion to the role of entanglement when distributing qubits.
The question of entanglement is heavily addressed in dis-
tributed quantum computing and quantum internet research
(Cirac et al. 1999; Gyongyosi and Imre 2019). The first step
in distributed quantum networks is to establish entanglement

via entanglement distribution techniques. There exist sev-
eral strategies for entanglement distribution which can be
cost-effective (Streltsov et al. 2012). However, entanglement
can be fragile and lost over time and as such it needs robust
techniques for its preservation over long distances. This is a
crucial element to consider in distributed quantum machine
learning schemes as well. In the avenue of quantum neu-
ral networks, Sharma et al. (2022) demonstrates the crucial
role of entanglement in training QNNs. The work in ques-
tion expands on the data as a resource in classical machine
learning, by demonstrating entanglement as an asset in the
quantum setting. More concretely, the presence of entangle-
ment reduces the demand for quantum data, something that
was once thought to be of necessity in exponential order.
Following this, it is pivotal to account for entanglement as
a resource in distributed training. Such accounting directly
relates to the overhead in distributed quantum learning.

One possible avenue of development in the distributed
scenario is to see how the splitting of the circuit plays out
in different proposed quantum deep learning architectures,
beyond the feedforward QNNs. Some of the possible ques-
tions we are interested in exploring include a comparison of
classical versus quantum training time and training accu-
racy. Tangentially, we note that all of the proposals for
QNNs assume the circuit model of quantum computation.
Following classical DDL literature, there remain several sce-
narios to consider on the quantum front regarding parameter
scheduling, architectural centralization, and further into com-
munication protocols. It may also bemore natural to consider
distributed quantum computing in alternative models such as
measurement-based quantum computing (Raussendorf et al.
2003).

A natural descendant of the distributed architectures is the
concept of federated learning (McMahan et al. 2017) which
makes use of end-user data locally rather than assuming one
single central storage. This paradigm is proposed to mitigate
privacy and security issues that concern centralized training
architectures. Federated learning fromaquantumperspective
has been initiated in Refs. Chehimi and Saad (2021), Chen
and Yoo (2021), and Li et al. (2021). These techniques may
eventually overlap with the distributed QNN approach we
considered here.

In a recent issue of Quantum Science and Technology,
leaders in the field of quantum computing were asked, “What
would you do with 1000 qubits?” (Morello 2018). As in one
response (Perdomo-Ortiz et al. 2018), many have suggested
QML as one of the first applications that may provide an
advantage over classical techniques. However, this question
— and much of the reaction — was posed before distributed
techniques became popular in the quantum information com-
munity. Anything you can do with 1000 qubits, you can do
with ten 100-qubit devices and a bit of time. So perhaps this
threshold is much closer than many suspects.
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