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Abstract: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease character-
ized by the degeneration of motor neurons. Mutations in the cyclin F (CCNF) and fused in sarcoma
(FUS) genes have been associated with ALS pathology. In this study, we aimed to investigate the
functional role of CCNF and FUS in ALS by using genome editing techniques to generate zebrafish
models with genetic disruptions in these genes. Sequence comparisons showed significant homology
between human and zebrafish CCNF and FUS proteins. We used CRISPR/Cas9 and TALEN-mediated
genome editing to generate targeted disruptions in the zebrafish ccnf and fus genes. Ccnf-deficient ze-
brafish exhibited abnormal motor neuron development and axonal outgrowth, whereas Fus-deficient
zebrafish did not exhibit developmental abnormalities or axonopathies in primary motor neurons.
However, Fus-deficient zebrafish displayed motor impairments in response to oxidative and endo-
plasmic reticulum stress. The Ccnf-deficient zebrafish were only sensitized to endoplasmic reticulum
stress, indicating that ALS genes have overlapping as well as unique cellular functions. These ze-
brafish models provide valuable platforms for studying the functional consequences of CCNF and
FUS mutations in ALS pathogenesis. Furthermore, these zebrafish models expand the drug screening
toolkit used to evaluate possible ALS treatments.

Keywords: Amyotrophic Lateral Sclerosis (ALS); CCNF gene; FUS gene; Zebrafish models; CRISPR/Cas9
genome editing; TALEN-mediated genome editing; motor neuron development; oxidative stress
response; endoplasmic reticulum stress; neurodegenerative disease research; genetic mutations in
ALS; motor function analysis; Zebrafish embryonic development; stress-induced motor impairment;
ALS pathogenesis; CRISPR; TALEN; in vivo genome editing

1. Introduction

Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease char-
acterized by the progressive loss of motor neurons, resulting in muscle weakness, paralysis,
and, ultimately, respiratory failure. Although the precise etiology of ALS remains elusive, it
is well-established that genetic mutations play a significant role in its pathogenesis. Among
the numerous genes implicated in ALS, cyclin F (CCNF) and fused in sarcoma (FUS) have
emerged as key players in the disease.

CCNF encodes a regulatory protein involved in cell cycle control and protein degra-
dation pathways. Recent studies have shown that mutations in CCNF are associated with
ALS, both in familial and sporadic cases [1]. Mutated cyclin F exhibits aberrant protein
degradation functions, leading to the accumulation of misfolded proteins and impaired
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cellular homeostasis [2]. This disruption of protein quality control mechanisms contributes
to neuronal dysfunction and degeneration in ALS [3].

Similarly, FUS, which encodes the fused in sarcoma protein, is a RNA-binding protein
involved in the regulation of multiple cellular processes, including transcriptional regula-
tion, RNA processing, and transport, that have been linked to ALS [4,5]. Mutations in FUS
have been identified in both familial and sporadic ALS cases, highlighting its significance
in disease pathogenesis [6,7]. Pathogenic FUS mutations lead to the mislocalization and
aggregation of the protein, impairing its normal functions and causing cellular toxicity [8].

Animal models have an instrumental role to play in unravelling the underlying
mechanisms and functional consequences of CCNF and FUS mutations in ALS. Zebrafish
(Danio rerio) has emerged as a powerful model organism for studying neurodegenerative
diseases due to its genetic tractability, optical transparency, and conserved neurodevelop-
mental processes [9,10]. Utilizing genome editing tools, such as CRISPR/Cas9 (clustered
-regularly-interspaced-short palindromic repeats/CRISPR-associated protein 9) and TALEN
(transcription-activator-like effector nucleases), allows precise genetic modifications in ze-
brafish, enabling the generation of targeted disease models [11–13].

The use of genome editing tools offers several advantages to the study of the functional
roles of CCNF and FUS in disease [14]. Firstly, these techniques enable the generation of
zebrafish models with specific mutations in the targeted genes, recapitulating the genetic
alterations found in ALS patients. This approach facilitates the investigation of the causal
relationship between CCNF/FUS mutations and ALS pathology, providing insights into
the molecular mechanisms underlying motor neuron degeneration. Furthermore, genome
editing tools allow for the assessment of the functional consequences of CCNF and FUS
mutations in vivo.

Here we generated zebrafish models with disrupted Ccnf or Fus genes, to examine the
effects on motor neuron development, axonal outgrowth, and motor behaviors. The ability
to observe these phenotypic changes in a living organism provides a valuable platform to
study the impact of CCNF and FUS mutations on the nervous system in organisms exposed
to defined stressors.

2. Methods
2.1. Zebrafish Husbandry

The husbandry, breeding, and mating of wildtype and mutant zebrafish adhered to
established procedures [15]. Embryos and larvae were maintained at a constant temperature
of 28.5 ◦C in E3 medium supplemented with methylene blue, until they reached 5 days post-
fertilization (dpf), and were then transferred to dedicated tanks. To facilitate the removal of
chorions, a solution of 10 µL pronase was gently introduced to embryos within Petri dishes,
commencing at 1 dpf. This chorion removal process was exclusively applied to embryonic
stages that were analyzed before reaching 3 dpf. In the earliest stages (prior to 2 dpf),
the chorions were delicately detached using forceps. All zebrafish embryos and adult
individuals were cared for and handled in accordance with standard protocols approved
by the Animal Research Ethics Committee at Macquarie University (ARA: 2015-034).

2.2. Target Site Selection & Production of sgRNA

The selection of target sites for sgRNA production was conducted by following the
methodologies outlined in Aksoy et al. 2019 [16] and Aksoy et al. 2020 [17]. Primers were
listed in Supplementary Table S1.

2.3. Zebrafish-Specific Optimizations for Cas9-Mediated Mutagenesis

To optimize efficient mutagenesis by NHEJ-mediated indels in zebrafish, we imple-
mented zebrafish-specific optimizations [16]. We first compared co-injection of sgRNA
and Cas9 protein, instead of Cas9 mRNA. We found direct injection of active Cas9 protein
was 1.8-fold more effective in generating indels at the target site, compared to Cas9 mRNA
(Supplementary Figure S1; Cas9 mRNA, 29.56%, n = 100; Cas9 protein, 54.21%, n = 100).
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Furthermore, we did not find any difference between the survival of embryos injected with
Cas9 protein or Cas9 mRNA (Supplementary Figure S1). In this experiment, we initially
identified 14 DNA targets on exon-16 of zebrafish ccnf gene. We excluded 6 targets due to
the predicted possible off-targets in zebrafish genome. We determined the cutting efficiency
of the remaining 8 sgRNAs by using RFLP (Supplementary Table S2) and used the guide
RNA that showed the highest efficiency to generate stable lines. HRMA was used for rapid
genotyping of genome-edited zebrafish.

2.4. Design and Production of TALENs

The TALE-NT tool was used to design TALEN pairs to target the zebrafish fus
gene [18,19]. The results from TALE-NT were further filtered by availability of unique
restriction sites in the spacer region, repeat array length of 15–17 nucleotides and spacer
length of 14–16 nucleotides (Supplementary Table S3). Two TALENs designed to target
exon 9 of the zebrafish fus gene were assembled by utilizing the ‘golden gate’ approach
detailed in Cermak et al. 2011. Subsequently, TALEN mRNA was synthesized via an
in vitro transcription process employing the T7 mMESSAGE mMACHINE Kit (Ambion).
Each TALEN heterodimer, encoded by 100 picograms of mRNA, was introduced into the
cytoplasm of one-cell-stage zebrafish embryos of the wild-type strain [19]. The detailed
protocol is provided in Supplementary Methods S1. The primers used in the production of
TALENs and genotyping are provided in Supplementary Table S4.

2.5. Microinjection

On the day of injections, the injection mix was prepared as follows (Tables 1 and 2):

Table 1. CRISPR/Cas9 injection mix for zebrafish embryos.

Knock-Out Mix Knock-In Mix

Contents 1× (µL) [Final] (ng/µL) 1× (µL) [Final] (ng/µL)

Crispr sgRNA 3.5 75 3.5 75

Cas9 Protein 1.0 500 1.0 500

DNA Template - - 1 25

Phenol Red 0.5 n/a 0.5 n/a

Table 2. TALEN injection mix for zebrafish embryos.

Knock-Out Mix

Contents 1× (µL) [Final] (ng/µL)

TALEN Left Arm 2.5 500

TALEN Right Arm 2.5 500

Phenol Red 1.0 n/a

Zebrafish TAB WT embryos were collected and the components required for injection
were thoroughly mixed and allowed to incubate at room temperature for 5 min, resulting
in the formation of a complex, which was subsequently stored in ice. The prepared
injection mixture was then loaded into the needle and microinjected into zygotes using
established zebrafish injection protocols. Two nanoliters of the injection mixture was
delivered directly into the single cell, avoiding the yolk. The injected eggs were cultured in
1× egg water, placed within 100 mm plastic Petri dishes and maintained in an incubator
set at a temperature of 28 ◦C. It was ensured that the embryo density did not exceed
60 embryos per 25 mL of egg water per Petri dish. For comparative purposes, uninjected
embryos, constituting the control group, were also obtained from the same clutch and
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raised at a constant temperature of 28 ◦C. These embryos were collected for genotyping at
48–72 h post-fertilization (hpf).

2.6. Genotyping by RFLP

The successful hits from HRMA assay were further genotyped by restriction-fragment-
length polymorphism (RFLP) assay. In this assay, a site-specific restriction enzyme that
recognizes the double-strand break was used to detect indels. The failure of restriction
enzyme digestion suggests the occurrence of DNA sequence mutations in the target re-
gion. The positive hits from RFLP assay were further analysed by cloning, before Sanger
sequencing was used to confirm the mutations. RFLP was also utilised as a rapid screening
method when the specific change in the target region (whether it created a new restriction
site or deleted an existing restriction site) was known.

2.7. Genotyping by Sequencing

Sanger sequencing was used to determine the mutations introduced to the target
sequence. Both PCR fragments and plasmids were sequenced by Sanger sequencing. Apart
from generic sequencing primers, such as M13 forward, M13 reverse, T7 and SP6, specific
sequencing primers flanking the target region were designed using the Primer3Plus tool
(http://primer3plus.com/cgi-bin/dev/primer3plus.cgi (accessed on 1 May 2017)).

Samples were sequenced by Garvan Molecular Genetics Facility and Macrogen Ko-
rea using ABI3130x and ABI3730XL instruments, respectively. Sequence trace files were
analysed using SnapGene software 1.5.

2.8. Immunohistochemistry

Embryos and dissected brains were transferred to microcentrifuge tubes containing
4% PFA and fixed overnight at 4 ◦C. Following this fixation period, the PFA solution was
carefully removed, and the specimens were rinsed in PBST, followed by three additional
5-min washes at room temperature. For whole-mount immunofluorescence staining, these
specimens were subjected to a sequence of methanol washes, progressively transitioning
from 25% methanol in PBST to 50%, 75%, and ultimately 100% methanol. Following these
methanol washes, the samples were carefully stored in 100% methanol at a temperature of
−20 ◦C until they were ready for further use.

2.9. Motor Neuron Analysis

Whole mount larval sections were immunostained with SV2 (synaptic vesicle gly-
coprotein) (1:200). After whole-mount immunofluorescence staining with SV2 antibodies
(specifically staining caudal primary motor neurons), spinal motor neuron acorns were analysed.

2.10. Touch-Evoked Escape Response

Two zebrafish embryos (48 hpf) per well were plated in 48-well glass plates for
behavioral assays (400 µL per well). This density enables manual manipulation of zebrafish
larva with a probe. H2O2 or DTT were added to a final concentration 0.1–312,500 nM,
and covered with oxygen permeable seals. Following incubation for 24 h at 28.5 ◦C, each
zebrafish was lightly probed at the top of the tail to stimulate a touch-evoked escape
response. The extent of escape response was scored as described in Zhang et al. [20].

2.11. Locomotion Analysis

To conduct locomotion analysis, we employed the ZebraLab tracking system, com-
prising a ZebraBox for monitoring zebrafish embryos and larvae and a ZebraTower for
tracking adult fish (Viewpoint). In order to specifically track 6-day post-fertilization (dpf)
larvae, we placed them in a 24-multi-well plate within a ZebraBox equipped with enhanced
lighting conditions. The tracking procedure involved a cycle of 6 min of light, followed by
4 min of darkness, and then another 4 min of light. During this time, the locomotion of the
larvae was recorded, with the total distances traveled by each larva within the dark phase

http://primer3plus.com/cgi-bin/dev/primer3plus.cgi
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calculated (with the first light phase serving as an acclimatization period). The locomotion
analysis was conducted at the 6 dpf stage.

To further investigate swimming responses, larvae were transferred to 24-well plates
with one larva per well, and placed in 1 ml of E3 medium. Utilizing a high-sensitivity digital
camera (30 frames per second) in conjunction with the ZebraLab tracking software (https:
//www.viewpoint.fr/product/zebrafish/fish-behavior-monitoring/zebralab, accessed on
27 December 2023), we assessed if, there were changes in swimming behavior in response to
a stimulus (darkness) in mutant larvae compared to their wildtype counterparts. Movement
was monitored during alternating cycles of 15 min of 100% darkness, followed by 15 min
of 100% light.

2.12. Statistical Methods

In this study, quantitative data were derived from at least three independent exper-
iments or individuals. Descriptive statistics are provided as the mean ± standard error
of difference (SE of difference) for data pertaining to ‘n’ individuals or ‘n’ independent
experiments. The statistical analyses, including unpaired two-tailed Student’s t-tests and
one-way ANOVA, were carried out using GraphPad Prism 6.0 software (GraphPad Soft-
ware) to assess the significance of observed differences. Asterisks refer to the following
significance thresholds: p < 0.05 (*), p < 0.01 (**) and p < 0.001 (***).

3. Results
3.1. Zebrafish Model of Ccnf Deficiency

To determine the suitability of zebrafish as a model to study CCNF, we aligned the hu-
man and zebrafish Cyclin F genes (Figure 1A). While zebrafish Ccnf has 61% nucleotide and
53% amino acid identity with respect to human CCNF (Figure 1B), the functional domains
are well conserved. In particular, pairwise comparison of human and zebrafish amino acid
sequences shows a significant similarity starting at the early PEST sequence (Figure 1C),
which harbours two recently identified ALS-associated mutations (S621G, E521X; [1]. We
identified the phosphorylation sites in human CCNF using NetPhos 3.1, a neural network
predictor of phosphorylation sites [21,22]. Of the 36 predicted phosphorylation sites, more
than half of these sites (28 serine, 8 threonine sites) exclusively cluster within the PEST
domain (Supplementary Figure S2). Interestingly, 8 of these sites were around the newly
identified S621G mutation (1). Therefore, to further investigate the role of CCNF in ALS
pathology, we generated a premature stop codon in the PEST domain.

To generate a ccnf -deficient zebrafish model we targeted the start of the PEST domain
using CRISPR/Cas9 (Figure 2A,B). We raised injected embryos to adulthood (P0) and
screened their progeny (F1) for the desired genomic modifications using HRMA (Figure 2C)
and RFLP analysis of PCR amplicons (Figure 2D). A total of 11 of the 84 embryos raised to
adulthood successfully transmitted indels in the PEST domain to the F1 (13% efficiency).
Of the 11 F1 progeny showing indels (Supplementary Table S5), we focused on one line
with a frameshift creating a stop codon at the target site. Sequencing confirmed the
introduction of a 14bp-long insertion at position 623, resulting in a premature stop codon
(Figure 2B). We used HRMA, RFLP and sequencing to classify the wild-type, heteroyzygous
and homozygous ccnf mutants within the F2 progeny (Figure 2C,D). We observed the
nonsense-mediated decay of mutant mRNA transcript reducing mRNA expression in both
heterozygous and homozygous ccnf mutants (hereafter referred to as ccnf +/− and ccnf
−/−, respectively) (Figure 2E).

3.2. Zebrafish Model of FUS Deficiency

To identify which FUS functions are shared with other ALS-associated genes, we
generated a zebrafish model of FUS deficiency. Human and zebrafish Fus proteins share
approximately 60% amino acid sequence identity with evolutionary conserved domains
(Figure 3A,B). The C-terminal domains, including the RNA recognition motif (RRM), second
and third RGG-rich regions, zinc finger domain and nuclear localisation signal (NLS), are

https://www.viewpoint.fr/product/zebrafish/fish-behavior-monitoring/zebralab
https://www.viewpoint.fr/product/zebrafish/fish-behavior-monitoring/zebralab


Cells 2024, 13, 372 6 of 17

particularly well conserved (80–90%) (Figure 3C). Strikingly, the majority of the FUS vari-
ants that are found in familial ALS patients cluster in the C-terminal domain, particularly
within the NLS (Figure 3D). Therefore, to investigate the role of FUS in ALS neuropathology,
we targeted the highly conserved C-terminus of zebrafish FUS (Figure 4A,B).

NLS

F-Box Domain

Cyclin Domain (N-terminal)

Cyclin Domain (F-terminal)

PEST domain

F-Box Cyclin (N) Cyclin (C) PEST
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Figure 1

Main Figures

Figure 1. Schematic overview of CCNF protein.

(A) Graphical alignment of the functional domains in human and zebrafish CCNF proteins. (B) 

Conservation of full length human and zebrafish CCNF proteins. (C) A pair-wise comparison of 

the sequence similarity of human CCNF and zebrafish Ccnf displayed by LalnView (Duret et al. 

1996).

Figure 1. Schematic overview of CCNF protein. (A) Graphical alignment of the functional domains
in human and zebrafish CCNF proteins. (B) Conservation of full-length human and zebrafish CCNF
proteins. (C) A pair-wise comparison of the sequence similarity of human CCNF and zebrafish Ccnf,
displayed by LalnView [23].

We designed and injected TALEN RNAs, targeting the early RRM domain of the ze-
brafish fus (Figure 4A,B). Of the 38 embryos raised to adulthood, 9 successfully transmitted
indels to the F1 progeny, showing 24% germline transmission (Supplementary Table S6).
We identified carriers with mutations in the targeted region using HRMA, which were
then confirmed by Sanger sequencing. Of the F1 progeny showing desired indels, we
identified a line with 10 bp deletion after amino acid position 317, resulting in a frameshift
mutation and a premature stop codon at position 324 (Figure 4B). We used HRMA, RFLP
(Supplementary Figure S3) and sequencing to identify the wild-type, heteroyzygous and
homozygous FUS mutants within the F2 progeny (Figure 4C,D). As a result of nonsense-
mediated decay of mutant mRNA transcript, both heterozygous and homozygous FUS
mutants (hereafter referred to as fus+/− and fus−/−, respectively) showed reduced levels of
fus mRNA (Figure 4E).
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Figure 2. Generating ccnf-deficient zebrafish lines.

(A) Design of sgRNA targeting the PEST region of ccnf. (B) +14bp insertion at the CRISPR/Cas9

target site resulting with premature stop codon (C) High resolution melting analysis (HRMA) 

curves showing WT (ccnf +/+), heterozygous (ccnf +/-) and homozygous (ccnf -/-) zebrafish lines (D) 

RFLP assay showing the PCR amplicons of ccnf +/+, ccnf +/- and ccnf -/- digested with AvaII 

enzyme. (E) Quantification of ccnf +/- and ccnf -/- mRNA relative to ccnf +/+ mRNA in 4dpf embryos.

Figure 2. Generating ccnf -deficient zebrafish lines. (A) Design of sgRNA targeting the PEST region
of ccnf. (B) +14bp insertion at the CRISPR/Cas9 target site resulting with premature stop codon
(C) High resolution melting analysis (HRMA) curves showing WT (ccnf +/+), heterozygous (ccnf
+/−) and homozygous (ccnf −/−) zebrafish lines (D) RFLP assay showing the PCR amplicons of ccnf
+/+, ccnf +/− and ccnf −/− digested with AvaII enzyme. (E) Quantification of ccnf +/− and ccnf −/−

mRNA, relative to ccnf +/+ mRNA in 4dpf embryos.
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two species shows 60% identity in amino acids sequences. (C) A pair-wise comparison of the
sequence of human FUS and zebrafish Fus displayed by LalnView [8]. (D) Location of ALS-associated
FUS mutations.
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Figure 4. Generating fus-deficient zebrafish lines. (A) Design of sgRNA targeting the RRM region of
fus. (B) −10bp deletion at the TALEN target site resulting in a premature stop codon (*) (C) High
resolution melting analysis (HRMA) curves showing WT (fus+/+), heterozygous (fus+/−) and homozy-
gous (fus−/−) zebrafish lines (D) RFLP assay showing the PCR amplicons of fus+/+, fus+/− and fus−/−

digested with DraI enzyme. (E) Quantification of fus+/− and fus−/− mRNA, relative to fus+/+ mRNA
in 4dpf embryos.
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3.3. Phenotypic Characterization of ccnf- and fus-Deficient Zebrafish

Both ccnf and fus mutant zebrafish embryos had a morphologically normal appearance
and no significant differences in embryo lengths (Supplementary Figure S4A,B). Previous
overexpression and morpholino studies showed that zebrafish ccnf [24], and fus mor-
phants [25] display significant defects in primary motor neuron morphology. These defects
were characterised by severe aberrant branching and/or shortening of axons of motor
neurons. To assess if these defects are observed in heterozygous and homozygous ccnf
knockout embryos, we stained the 2dpf zebrafish embryos with SV2 antibody. Qualitative
assessment of motor neurons did not reveal any major differences between homozygous
ccnf mutants (ccnf −/−), heterozygotes (ccnf +/−) and wild-type controls. However, blinded
quantitative assessment of the motor neuron axon showed a modest but statistically signifi-
cant decrease in the length of primary motor neuron axons in homozygotes, compared to
wild-type controls (Figure 5A; ccnf +/+, 199.82 ± 17.43; ccnf +/−, 183.15 ± 21.23, p = 0.0008).
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Figure 5. Motor neuron axon growth and length. The average length of six motor neurons above the
yolk sac extension were analysed in all three genotypes of (A) ccnf (n = 41 fish) and (B) fus (n = 90).
Average motor axon length was analysed per genotype derived from three different clutches. Mean +
SEM. Statistical test used: Kruskal-Wallis test, followed by Dunn’s multiple comparisons test.
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Similarly, fus mutant motor neurons did not display qualitative defects when compared
to wild-type controls. In contrast to ccnf mutants, homozygous fus motor neurons did not
display any significant quantitative length defects (Figure 5B; fus+/+, 189.10 ± 17.78; fus+/−,
186.80 ± 15.30, fus−/−, 178.43 ± 22.60 p = 0.0811).

3.4. Stress Specific Defects in ccnf-Deficient Zebrafish

Oxidative or endoplasmic reticulum (ER) stress elicits a pathological stress response
in fus mutant cells. Previous studies implied oxidative stress and ER stress potentially had
a role in ALS pathology [26–32].

To assess motor activity of zebrafish embryos, we performed touch-evoked escape
response (TEER) assays, in which healthy zebrafish embryos show an escape (swimming)
response when touched on the tail. Embryos with impaired motor activity display reduced
or no response. Under basal conditions, both ccnf and fus mutants did not show any
obvious defect in motor activity, compared to the wild type controls. To determine if
ccnf or fus mutants were sensitised to oxidative stress, we established a TEER assay with
H2O2 (Figure 6). While ccnf deficiency was not exacerbated by 24 h treatment with H2O2
(Figure 6A), fus mutants displayed reduced TEER after treatment with H2O2, as expected
(Figure 6C) [33].
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Figure 6. Touch-evoked response of 2dpf zebrafish larvae treated with H2O2 and DTT. (A,B) Dose-
response curves for the effect of H2O2 and DTT on the touch-evoked escape response (CCNF; n = 24
zebrafish larvae per genotype and dose). (C,D) Dose-response curves for the effect of H2O2 and DTT
on the touch-evoked escape response (FUS; n = 24 zebrafish larvae per genotype and dose).
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In contrast, both mutants were similarly sensitised to ER stress induced by 24 h
treatment with DTT, which resulted in reduced TEER at doses that did not impair ccnf
+/− and fus+/− mutants or wild-type controls. (Figure 6B,D). Although FUS is required
for the response to both stressors, CCNF appears to be specifically required for the ER
stress response.

3.5. ccnf-Deficient Zebrafish Embryos Display Reduced Photomotor Response

To further assess more complex motor functions in zebrafish embryos, we used the
photo-motor response (PMR) screening assay. This method measures a range of motor
behaviours by subjecting 6 dpf embryos, placed in 24-well plates, to a 4-min darkness
response test alternating between light and dark cycles (Supplementary Figure S5). Only
offspring from the same clutch were used in each test to control for potential genetic and/or
batch effects (n = 287 and n = 440 for ccnf and fus, respectively).

Both ccnf and fus mutant zebrafish displayed diminished activity patterns during
the PMR assay. In the ccnf mutants, the swimming trajectories showed reduced ac-
tivity, notably in ccnf −/− homozygotes (Supplementary Figure S6), which were sig-
nificantly lower than wild-type. (Figure 7A,B; ccnf −/−, distance 867.27 mm ± 26.51;
velocity: 3.61 mm/s ± 0.11, n = 60; ccnf +/+, distance 1213.61 mm ± 18.57; velocity:
5.06 mm/s ± 0.08, n = 89, p < 0.0001). This aligns with our observations of the TEER
responses to ER-stress, suggesting the lack of the PEST region substantially dampens
the photomotor response in zebrafish embryos. Interestingly, ccnf +/− mutants also dis-
played a reduced motor activity, compared to the wild-type controls (Figure 7A,B; ccnf
+/−, distance 1046.19 mm ± 15.02; velocity: 4.36 mm/s ± 0.06, n = 138; ccnf +/+, distance
1213.61 mm ± 18.57; velocity: 5.06 mm/s ± 0.08, n = 89, p < 0.0001). Post-hoc analysis also
revealed that ccnf −/− mutants travelled shorter distances than heterozygous ccnf +/−

mutants, indicating the lack of PEST region significantly impairs the photomotor response
in zebrafish embryos (p < 0.01).
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Figure 7. Photomotor response of ccnf and fus knockout larvae. (A,B) Quantification of average
swimming speed (during 4-min in darkness and total distance swum during the 4-min in darkness)
revealed that ccnf −/− travelled shorter distances than both ccnf +/− and ccnf +/+. (C,D) Quantifi-
cation of average swimming speed (during 4-min in darkness and total distance swum during the
4-min in darkness) revealed that fus−/− travelled shorter distances than both fus+/− and fus+/+.
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Similarly, the fus mutants, and particularly the fus −/− group, exhibited reduced
activity in their swimming trajectories (Figure 7C,D; fus−/−, distance 874.47 mm ± 28.39;
velocity: 3.64 mm/s ± 0.12, n = 107; fus+/+, distance 1164.57 mm ± 21.92; velocity:
4.85 mm/s ± 0.09, n = 112, p < 0.001 Supplementary Figure S7). However, unlike the ccnf
mutants, the fus+/− group did not exhibit any significant reduction in motor activity when
compared to the wild-type. (Figure 7C,D; fus+/−, distance 1143.67 mm ± 14.68; velocity:
4.77 mm/s ± 0.06, n = 221; fus+/+, distance 1164.57 mm ± 21.92; velocity: 4.85 mm/s ± 0.09,
n = 112, p = 0.7369).

4. Discussion

We employed genome editing tools, namely the CRISPR/Cas9 system for CCNF and
the TALEN system for FUS, to study the phenotypic consequences of gene disruptions on
ALS-relevant whole organism phenotypes.

Genome editing tools such as CRISPR/Cas9 and TALENs have revolutionized the field
of molecular biology by enabling precise modifications of the genome. These tools offer
unprecedented opportunities to investigate gene function in vivo, allowing researchers to
study the consequences of gene disruptions, deletions, or modifications. In the context of
neurodegenerative diseases like ALS, genome editing tools provide a powerful means to
create animal models that closely resemble human pathology and uncover the functional
impact of disease-associated gene mutations.

Although the use of CRISPR/Cas9 has become ubiquitous in genome editing, TAL-
ENs remain a powerful system for generating disease models. CRISPR/Cas9 and TALEN
systems show both advantages and limitations when applied in genome editing studies.
The CRISPR/Cas9 system offers simplicity and is versatility, and relatively low cost, and
the TALEN system provides a more customizable approach with potentially higher speci-
ficity [34]. The applications of different genome editing strategies are discussed in greater
detail by Denes et al. [35].

4.1. Phenotypic Characterization of CCNF and FUS Mutants

While ccnf-deficient zebrafish displayed no significant morphological defects during
embryonic development, further analyses revealed alterations in motor behaviors. Fur-
thermore, in the context of the stress response, ccnf-deficient zebrafish exhibited reduced
motor activity, specifically when endoplasmic reticulum (ER) stress was induced by DTT
treatment. Interestingly, oxidative stress induced by H2O2 did not significantly affect
the motor activity of ccnf mutants. These observations suggest that CCNF may play a
specific role in protecting against ER stress-induced motor impairments. The differential
response to stressors highlights the complexity of stress pathways and the need for further
investigations with a larger panel of diverse stressors, as this will elucidate the precise
mechanisms through which CCNF influences motor neuron function.

Similarly, fus-deficient zebrafish displayed no morphological defects during embry-
onic development, which is consistent with previous studies that used genome editing
to disrupt the fus gene in zebrafish [33]. These genetic models allow the anaylsis of nat-
urally bred and raised embryos. Therefore, the stronger developmental abnormalities
observed in morphants may be due to the mechanical stress of microinjection or the off
target/nonspecific effects of morpholino reagents [24,33,36]. The lack of morphological
abnormalities indicates that FUS may not be essential for early zebrafish development.
However, phenotypic analyses revealed motor impairments in fus mutants and photomotor
response assays demonstrated compromised locomotion activity. Both oxidative stress
(H2O2) and ER stress (DTT) treatments disrupted motor activity in fus mutants. These
findings suggest that FUS is involved in stress response pathways and plays a role in main-
taining proper motor neuron function in challenging conditions. In our study, the potential
for nonsense-mediated decay is considered, especially in relation to the RNA stability
(Figures 2E and 4E). This cellular mechanism, which targets aberrant mRNA transcripts
for degradation, could significantly influence the phenotypic outcomes of the ccnf and fus
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gene mutations in our zebrafish models, and offer insight into the broader implications of
gene editing for gene expression dynamics.

4.2. Comparison of CCNF and FUS Models

Although both the ccnf and fus mutants exhibited reduced motor activity in stress con-
ditions, there were notable differences in their phenotypic characteristics. The ccnf mutants
specifically showed impaired motor activity in response to ER stress induced by DTT treat-
ment, while fus mutants displayed motor impairments in both oxidative stress (H2O2) and
ER stress conditions. These distinct stress response profiles indicate overlapping yet distinct
roles for CCNF and FUS in stress pathways and motor neuron function. Furthermore,
the phenotypic changes observed in the zebrafish models were less pronounced when
compared to previous studies employing overexpression of mutant proteins [36–38]. This
highlights the importance of studying gene disruptions in an endogenous context, with the
aim of better understanding the true contribution of these genes to disease manifestation.
The use of genome editing tools, such as CRISPR/Cas9 and TALENs, allows for more
accurate and physiologically relevant investigations of gene function.

4.3. Role of Cellular Stress in ALS Pathogenesis

The role of cellular stressors, such as oxidative stress and ER stress, has been implicated
in ALS manifestation. Previous studies have reported increased oxidative stress and
ER stress in ALS models and patients, suggesting their involvement in motor neuron
degeneration. In our study, we utilized oxidative stress and ER stress to elicit motor
impairments in zebrafish larva by using the TEER assay. The disrupted TEER activity, in
response to stressors in both ccnf and fus mutants, indicates the sensitivity of motor neurons
to cellular stress and highlights the potential role of stress pathways in ALS pathology.

Moreover, our findings support the two-hit hypothesis [39,40], which suggests that
a single hit to a disease-associated gene may not be sufficient to manifest significant ALS
pathology, meaning that additional stressors or genetic hits may be required to elicit a motor
phenotype. The observed motor impairments in the zebrafish mutants in stress conditions
demonstrate the importance of stress response pathways in motor neuron function and
the potential contribution of stressors to ALS pathology. The stable fus deficient models
generated in this study may help resolve the complex roles of FUS in ALS, as recognized in
a recent review by Aksoy et al. [5]. This is particularly important as most previous studies
utilized transient knockdown or overexpression of FUS.

5. Conclusions

In conclusion, our study, which used genome editing tools, demonstrated the func-
tional roles of CCNF and FUS in motor neuron biology, and in particular their involvement
in stress response pathways. The zebrafish models featuring disrupted ccnf and fus genes
will be invaluable resources for further explorations of ALS pathology, and have the clear
potential to contribute to the development of novel therapeutic interventions. By leveraging
the precision of CRISPR/Cas9 and TALEN systems, we have significantly advanced our
comprehension of gene function within the context of neurodegenerative diseases.

Our findings underscore the critical role of stressors in ALS pathogenesis. Stress-
induced motor impairments observed in both ccnf and fus mutants underscore the sig-
nificance of stress response pathways in motor neuron function, and also underline the
potential contribution of stressors to ALS-related motor neuron degeneration.

The zebrafish models we have generated serve as promising platforms for identifying
potential therapeutic targets and conducting compound screenings that aim to ameliorate
the motor phenotype associated with ALS. As we continue to delve into this field, our
ongoing research promises to make substantial contributions to the development of effective
treatments for ALS and other related disorders, offering hope to those affected by these
devastating neurodegenerative diseases.
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