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Effective properties of periodic plate-array metacylinders
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We use semianalytic methods to model a periodic structure of plate-array cylinders (metacylinders), and derive
several of the medium’s effective material properties in the quasistatic limit. Subject to s-polarized [transverse-
electric (TE)] light, the anisotropic dispersion of the crystal manifests as a Maxwell Garnett equation for the
effective permittivity at leading order. This is performed both for the case of no material contrast between
interior and exterior regions, and a nonunity normalized refractive index. In each case, the leading order
effective permittivity is a function of the difference between Bloch wave and plate-array angles. As such, we
envisage the metamaterial as being mechanically tunable through uniform mechanical rotation of the constituent
metacylinders.
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I. INTRODUCTION

Composite materials can be treated as effectively continu-
ous and homogeneous when the characteristic cell, and hence
the crystalline elements therein, are of a subwavelength scale.
The long-range uniformity of the crystalline elements gives
rise to effective properties at the macroscale, a process not
dissimilar to magnetism induced by the long-range ordering of
magnetic dipoles. One such example is the classical photonic
crystal of dielectric cylinders, for which the leading order
estimate of the effective permittivity is given by the Lorentz-
Lorenz formula [1,2]. The same analysis can be applied to
metamaterials, for which the uniformity of the constituent
“meta-atoms” gives rise to exotic effective properties. These
include negative effective permeability μeff and a magnetic
response [3], negative effective permittivity εeff [4], and hence
left-handed materials [5–7]. These in turn have been proposed
to facilitate a myriad of devices, including flat lenses [8],
invisibility cloaks [9,10], and a superlens utilizing all-angle
negative refraction [11].

Of recent interest have been metamaterials that allow
for a tunable response [13–15], particularly active metasur-
faces that hold pixel-level programmability [16]. One such
example is two-dimensional (2D) crystals of meta-atoms
of a multilayered cylindrical geometry [17,18]. The hyper-
bolic metamaterial of [17] can be tuned to significantly
enhance the scattering cross section compared to a cylinder of
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homogeneous composition. Very recently, the authors of [18]
considered a crystal of metamaterial cylinders consisting
of both graphene and multilayered metasurfaces, and were
able to demonstrate a number of exotic features, including
a tunable hyperbolic dispersion relation and a double neg-
ative response. In [17,18] the tunability is demonstrated by
changing the material parameters to modify the macroscopic
response. The review articles [19,20] discuss alternative
methods for achieving tunability, including geometrical or
structural tuning of the crystalline elements or unit cell. The
macroscopic response of a composite metasurface depends on
the size and orientation of its constituent elements, provid-
ing scope to alter the effective material parameters actively
via mechanical adjustment. As pointed out in [20], such
mechanical adjustments can be challenging because a phys-
ical mechanism is necessary to manipulate the crystalline
elements. A number of methods have been proposed for me-
chanical reconfiguration, including mechanical deformation
of an elastic substrate or matrix [21–24] and use of pneumatic
actuators [25]. Alternative methods include thermomechan-
ical [26], electromechanical, [27] and photoresponsive [28]
control, among others.

In this article, we present an analysis of a periodic medium
that is composed of plate-array cylinders; see Fig. 1 for typical
eigenmodes of the crystal and Fig. 2(a) for a 3D schematic.
The plate-array cylinders consist of a dielectric sandwiched
between a set of metallic, closely spaced thin plates. The
analysis is performed in the quasistatic limit of vanishing
wave number, such that the wavelength is much larger than
the characteristic cell dimension. In this limit the plate-array
cylinders, or “metacylinders”, are described by an effective
medium model. The acoustic mode is used to determine the
homogenized properties of the crystal, and for this mode it
is assumed that there exists a linear relationship k ∝ k0 as
k0 → 0, where k is the wave number in the bulk exterior
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FIG. 1. Longitudinal magnetic fields Hz of the plate-array crystal
in the zeroth cell for different plate-array orientations, corresponding
to the Eigenmodes of (22). Color maps here and throughout are from
[12].

and k0 is the Bloch wave number of the eigenmodes. The
plate-array medium induces anisotropic dispersion of light
through the crystal which, due to the long-range uniformity
of the crystalline elements, manifests as an acoustic branch
that is elliptical. The eccentricity of these elliptical solutions
is a function of the effective permittivities along the principal
crystalline axes, a result of the metacylinder favoring scat-
tering in a direction perpendicular to the plate array [29,30].
Here it is shown that the effective electrical permittivity is a
function of the crystalline filling fraction, the material con-
trast and, crucially, the difference in angle between the Bloch
mode and the uniform plate-array medium. It is due to this
angular dependence that we label this crystal a mechanically
programmable metasurface.

This paper is organized as follows: Section II defines the
structure of the periodic medium and the zeroth cell. Sec-
tion III provides the formulas for the interior and exterior
fields, before matching these at the cylindrical surface to yield
a linear system of equations for the unknown coefficients. The
crystal is homogenized in Sec. IV, in which the infinite system
is truncated to form an 8 × 8 “dipole” matrix. Section V
details the expansion of the dipole matrix determinant, from
which a pair of Maxwell Garnett equations for the permittivity
are recovered at leading order for the cases of no material
contrast and nonunity material contrast. This is followed by
comparison with numerics conducted using both a multipole
implementation and FEM computations. We state our conclu-
sions in Sec. VI. Appendixes A and B detail the plate-array
homogenization and the small wave number expansions of the
dipole matrix elements, respectively.

II. CRYSTALLINE STRUCTURE

The periodic medium, depicted in Fig. 2(a), consists
of metacylinders of a plate-array microstructure, and is of

FIG. 2. (a) A portion of the crystal consisting of plate-array
metacylinders arranged in a square lattice. (b) Metacylinder geome-
try: plates are depicted in dark gray and interstitial dielectric in light
blue. Plate number and thickness are for illustrative purposes only.

infinite extent in the (x, y) plane. The metacylinders are of a
circular cross section of uniform radius a, have uniform plate-
array orientation δ, and extend infinitely in z without twist
or bend. The crystal is subject to s-polarized [or equivalently
transverse-electric (TE) polarized] light under normal inci-
dence, i.e., (Ex, Ey, Hz ). We assume time-harmonic solutions
of the form

V(r, t ) = V(r)e−iωt (1)
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where V can be either H or E and r is the position vector
in two-dimensional cylindrical coordinates r = (r, θ ). Using
the ansatz (1), we need only solve for the magnetic or elec-
tric field in the plane, and do so by eliminating for H in
Maxwell’s equations to yield the following pair of Helmholtz
equations [31]:(∇2 + n2

r k2
)
H int

z = 0 in r < a, (2)

(∇2 + k2)H ext
z = 0 in r > a, (3)

where the interior and exterior regions have been regarded
separately with superscripts “int” and “ext”, k = |k|, and ∇2

is the Laplacian in two-dimensions. In Eq. (2), which applies
before homogenization of the plate array, the quantity nr refers
to the refractive index of the interior interstitial medium be-
tween the plates normalized with respect to that of the exterior
bulk. We add that, in homogenizing the periodic medium in
the quasistatic limit, we will eventually assume that the crys-
talline structure is dilute; this corresponds to the area fraction
f � 1 of the cylinders. In fact, we find that it is possible with
our method to consider area fractions f � 0.5.

A schematic of the metacylinder is provided in Fig. 2(b),
which details the plate-array geometry and unit cell structure.
The plates are oriented at an angle δ with respect to the x axis,
which defines the directions of the primed coordinates (x′, y′):
x′ is parallel and y′ is perpendicular to the plate array. The
plates in Figs. 2(a) and 2(b) are only illustrative; the meta-
cylinder is homogenized under the assumptions that there are
a large number of plates occupying the circular cross section,
that the plates are very thin, and that the spacing between
the plates dp is small. The metacylinder is therefore treated
as an effective medium, with a modified wave equation in the
interior and a pair of continuity conditions at the surface. This
homogenization is carried out in Sec. III B and Appendix A.

III. FIELD EQUATIONS

A. The exterior domain

Solutions satisfying (3) can be written as a sum over the di-
rect lattice of multipole expansions in cylindrical harmonics:

H ext
z =

∑
j

∑
m∈Z

b j,mψ̂ j,m(k, r j ), (4)

which holds in the region exterior to the set of cylinders.
Here b j,m are the multipole moments of cylinder j, the func-
tion ψ̂ j,m = Hm(kr j )eimθ j represents an outgoing wave, and
Hm(x) ≡ H (1)

m (x) is the Hankel function of the first kind, such
that (4) satisfies the Sommerfeld radiation condition [32]:

lim
r→∞ r

1
2

(
∂

∂r
− ik

)
H ext

z (r, θ ) = 0. (5)

The outer sum in (4) is over all cylinders j and the inner sum
is over multipole moments, with m = 0 being the monopole
moment, m = ±1 the dipole moments, etc. Eq. (4) is known as
the Wijngaard formula [33], which asserts that in the absence
of any external sources the total field exterior to a set of
cylinders may be written as the sum over the scattered fields
in their respective cylinder coordinates r j = (r j, θ j ).

The periodicity of the lattice implies that waves in propa-
gation through the crystal will be of Bloch-periodic form:

b j,m = b0,meik0·R j , (6)

where the direct lattice vectors R j = (Rj, φ j ). Separating the
j = 0 and j 
= 0 terms in (4) and applying Graf’s addition
theorem [34] [p. 363, Eq. (9.1.79)], allows for the total field
in the exterior domain to be written in the well-known form
[1]

H ext
z (k, r) =

∑
m∈Z

bmHm(kr)eimθ

+
∑
m∈Z

bm

∑
q∈Z

Sm−q(−1)m−qJq(kr)eiqθ , (7)

where bm ≡ b0,m refers to the zeroth cell of coordinates (r, θ )
and

Sl (k, k0) =
∑
j 
=0

Hl (kRj )e
ilφ j eik0·R j (8)

is the lattice sum in direct space. Equation (7) can be simpli-
fied by writing Sl = SJ

l + iSY
l , where

SJ
l (k, k0) =

∑
j 
=0

Jl (kRj )e
ilφ j eik0·R j , (9)

SY
l (k, k0) =

∑
j 
=0

Yl (kRj )e
ilφ j eik0·R j . (10)

It can be shown that

SJ
l (k, k0) = −δl,0. (11)

Substitution of (9)-(11) into (7) yields the following expres-
sion for the total field in the exterior domain:

H ext
z (k, r) =

∑
m∈Z

ibmYm(kr)eimθ

+
∑
m∈Z

ibm

∑
q∈Z

SY
m−q(−1)m−qJq(kr)eiqθ . (12)

The sum SY
l is conditionally convergent at all orders l , but

in previous work by Chin et al. [35] has been recast as an
absolutely convergent sum in reciprocal space:

SY
l (k, k0)Jl (kξ ) = −Y0(kξ )δl,0

− 4

A
il

∑
h

Jl (Qhξ )

Q2
h − k2

eilθh , (13)

where ξ is an arbitrary vector in the unit cell such that |ξ| <

|R j | for all j 
= 0, Qh = (Qh, θh) = Kh + k0, where Kh are
the reciprocal lattice vectors, and A is the unit-cell area. The
derivation of (13) is not provided here but is given in detail
in [1,35,36], and comes from a consideration of the spatial
and spectral domains’ Green’s functions. The convergence
of (13) has been accelerated by successive integrations as in
[37]. The following relation of SY

l can be seen from (8) and is
particularly useful:

SY
−l = SY ∗

l , (14)

where ∗ denotes the complex conjugate.
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B. The interior domain

The plate array within the cylinders is replaced by an ef-
fective medium description encapsulated by three equations:
a one-dimensional wave equation in the interior and a pair
of continuity conditions at the surface. Assuming that the
interplate spacing dp is much smaller than both the length of
the plates and the wavelength (i.e., nrkdp � 1), the Helmholtz
equation in the interior domain (2) can be expanded in powers
of the small parameter ζ = nrkdp to yield the following wave
equation at second-order:

(
∂2

∂x′2 + n2
r k2

)
H int

z (x′, y′) = 0, (15)

where nr is the refractive index of the interstitial medium
between the plates normalized with respect to the background
medium, and (x′, y′) are the plate-array coordinates. A caveat
of this homogenization is that a Neumann boundary condition
on the plates’ surfaces is necessary to ensure the omission
of the second-order derivative in the y′ coordinate in (15),
hence the choice of metallic plates and of TE polarization. The
derivation of (15) is provided in Appendix A and alternatively
in [29,38].

Solutions of (15) comprise the superposition of forwards
and backwards traveling waves:

H int
z (x′, y′) = C(y′)einr kx′ + D(y′)e−inr kx′

(16)

where C(y′), D(y′) are the waves’ amplitudes. In order to ap-
ply the matching conditions on the cylindrical boundary r = a
it is necessary to replace the primed plate-array coordinates
with polar coordinates:

H int
z (a, θ ) = C(θ )einr ka cos(θ−δ) + D(θ0)e−inr ka cos(θ−δ), (17)

where we have used x′ = r cos(θ − δ) and replaced the am-
plitudes C(y′), D(y′) with equivalent quantities C(θ ), D(θ )
that have an explicit dependence on the angular coordinate.
By symmetry about the y′ axis,

C(θ ) = C(π + 2δ − θ ), (18a)

D(θ ) = D(π + 2δ − θ ), (18b)

which is an expression of the fact that the surfaces of the
semicircles θ ∈ [δ − π/2, δ + π/2] and θ ∈ [δ + π/2, δ +
3π/2] are connected by the interior plate array. Writing y′ =
a cos(θ − δ − π/2), we approximate these amplitudes by ex-
pansions in Chebyshev polynomials:

{C(θ ), D(θ )} =
∞∑

n=0

{cn, dn}Tn

(
y′

a

)

=
∞∑

n=0

{cn, dn} cos

[
n

(
θ − δ − π

2

)]
, (19)

which satisfies (18). Here the {x, y} notation is shorthand for
the respective equations for quantities x and y. Substitution of
(19) into (17) and utilizing the Jacobi-Anger expansion [39]
[Eq. (3.89)] allows for the field on the interior boundary to be
expressed as

H int
z (a, θ )

=
∞∑

n=0

cn cos

(
n

(
θ − δ − π

2

)) ∑
m∈Z

imJm(nrka)eim(θ−δ)

+
∞∑

n=0

dn cos

(
n

(
θ−δ−π

2

)) ∑
m∈Z

(−i)mJm(nrka)eim(θ−δ)

(20)

for which we note the necessity of the interior field being
expressed in multipole expansions of regular waves so as to
avoid the occurrence of a singularity as a → 0.

Assuming that both the wave number k and the interstitial
spacing dp are small, the homogenized wave equation (15)
will break down under two scenarios. The first is that in which
the relative index nr � 1, in which case the small parameter
ζ � O(1) and the homogenization carried out in Appendix A
is no longer valid. What is more, the plate-array cylinders un-
dergo resonance at and above nrka = π/2 (the wave number
at which an integer number of half wavelengths navigate the
centralmost channel), and as nr is increased the resonant wave
number is pushed towards k = 0. This invalidates the assumed
linear relationship between k and k0 as k0 → 0. The second
scenario in which (15) fails is when nr � 1, in which case
there is an additional small parameter in the equation (A3),
nrk. Assuming nrk  ζ and using ansatz (A5), one will in-
stead recover Laplace’s equation at leading order rather than
an equation of the form (15). To avoid both scenarios we keep
nr = O(1) in our computations.

C. Continuity conditions

The effective medium description is closed by a pair of
continuity conditions across the cylindrical surface. These are
of the form

H ext
z = H int

z on r = a, (21a)

∂H ext
z

∂r
= cos(θ − δ)

1

n2
r

∂H int
z

∂x′ on r = a, (21b)

where (21a) is the field continuity and (21b) the flux continu-
ity of the magnetic field through the cylinder. The latter flux
condition arises from a consideration of the interior flux com-
ponent along the radial direction, whereas the former arises
from continuity of the tangential field components through the
curved surface; see [40] [Eqs. (2.7)–(2.16)] or [41]. Substitu-
tion of (12) and (20) into (21a) and (21b) and making use
of the orthogonality of the cylindrical harmonics allows us to
form an infinite system of equations for the unknowns bm, cn,
and dn:

ibp
Yp(ka)

Jp(ka)
+

∑
m∈Z

ibmSY
m−p(−1)m−p − 1

2
eip( π

2 −δ)
∞∑

n=0

[cn(−1)n + dn(−1)p]
Jp−n(nrka) + Jp+n(nrka)

Jp(ka)
= 0, (22a)
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ibp

Y ′
p(ka)

J ′
p(ka)

+
∑
m∈Z

ibmSY
m−p(−1)m−p − 1

2
eip( π

2 −δ)
∞∑

n=0

[cn(−1)n + dn(−1)p]
J ′

p−n(nrka) + J ′
p+n(nrka)

nrJ ′
p(ka)

= 0. (22b)

Here, the prime refers to the derivative with respect to the
radial coordinate. The first two terms in both (22a) and (22b)
resemble the Rayleigh system under Dirichlet and Neumann
boundary conditions, respectively [1,41]. The system formed
by (22) is truncated as (m, p) ∈ [−M − 1, . . . , M] and n ∈
[0, . . . , M], where M is the truncation point of the multipole
and Chebyshev expansions, so as to arrive to a system of
equations of dimension (4M + 4). Setting the determinant of
the truncated system to zero recovers the dispersion relation
between k and k0.

IV. DIPOLE APPROXIMATION

A. The dipole system

Under the assumption that the crystal is dilute it is reason-
able to approximate the solutions (12) and (20) by the first
few terms in their respective expansions. Truncating (22) at
M = 1 we are left with only the (m, p) ∈ [−2,−1, 0, 1] and
n ∈ [0, 1] terms (we retain one quadrupole moment to ensure
that the matrix is square), which form the following 8 × 8
system of equations:

T :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

M2 + SY
0 −SY

1 SY
2 −SY

3 C−2,0 C−2,1 D−2,0 D−2,1

−SY ∗
1 M1 + SY

0 −SY
1 SY

2 C−1,0 C−1,1 D−1,0 D−1,1

SY ∗
2 −SY ∗

1 M0 + SY
0 −SY

1 C0,0 C0,1 D0,0 D0,1

−SY ∗
3 SY ∗

2 −SY ∗
1 M1 + SY

0 C1,0 C1,1 D1,0 D1,1

M ′
2 + SY

0 −SY
1 SY

2 −SY
3 C′

−2,0 C′
−2,1 D′

−2,0 D′
−2,1

−SY ∗
1 M ′

1 + SY
0 −SY

1 SY
2 C′

−1,0 C′
−1,1 D′

−1,0 D′
−1,1

SY ∗
2 −SY ∗

1 M ′
0 + SY

0 −SY
1 C′

0,0 C′
0,1 D′

0,0 D′
0,1

−SY ∗
3 SY ∗

2 −SY ∗
1 M ′

1 + SY
0 C′

1,0 C′
1,1 D′

1,0 D′
1,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b−2

b−1

b0

b1

c0

c1

d0

d1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0. (23)

Here, the following quantities have been defined:

Mp = Yp(ka)

Jp(ka)
, M ′

p = Y ′
p(ka)

J ′
p(ka)

, (24a)

{Cp,n, Dp,n} = Ip,n
Jp−n(nrka)+Jp+n(nrka)

2Jp(ka)
, (24b)

{C′
p,n, D′

p,n} = Ip,n

J ′
p−n(nrka)+J ′

p+n(nrka)

2nrJ ′
p(ka)

, (24c)

where Ip,n = (−1){n,p}ip+1e−ipδ . Mp and M ′
p are referred to

as the boundary coefficients and Cp,n, C′
p,n, Dp,n and D′

p,n are
the interior coefficients. Examining (24a) it is clear from the
Bessel function relations [42] that M−p = Mp and M ′

−p = M ′
p.

Lattice sums of a negative order have been replaced by the
complex conjugate of lattice sums of positive order by (14).

B. Homogenization

In homogenizing an isotropic medium the standard ap-
proach [1,40,43–46] is to examine the behavior of the lowest
wave number band in the limit k0 → 0, for which it is assumed
that there exists a proportionality between the bulk exterior
wave number and Bloch wave number of the form

k = αk0, (25)

where k0 = |k0| and α is a scalar coefficient. The physical
interpretation of α comes from a consideration of the phase
difference across the unit cell [43], with a corresponding phase

refractive index:

neff = 1

α
(26)

for which the label effective asserts that the periodic medium
can be described as effectively continuous with macroscopic
material parameter neff. Thus,

k = 1

neff
k0. (27)

The form of α, and hence neff, is deduced by utilizing the
following expansion [2]:

α = α0 + α2(k0d )2 + O(k0d )4, (28)

where classically the leading order term α0 encapsulates the
dependence on the area fraction f of the cylinders, or the
dielectric contrast across the cylindrical surface [1]. α2 spec-
ifies the wave number dependence of α and provides the
first dynamic correction term to the medium’s effective per-
mittivity. At finite frequency this dependence is assumed to
be quadratic, hence α1 = 0. Herein we seek to determine
only the leading order term α0 and hence only the leading
order effective permittivity in the form of a Maxwell Garnett
equation.

For an anisotropic medium on the other hand, the meaning
of α is connected with the definition of the effective dielectric
tensor, which when diagonalized along the principal axes is of
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the form

εeff =
(

ε1 0
0 ε2

)
, (29)

where ε1 and ε2 are the principal permittivities of the crystal.
Assuming that the material is magnetically isotropic, (29) can
be recast in terms of an effective refractive index tensor:

neff =
(

n1 0
0 n2

)
, (30)

where n1 and n2 are the principal refractive indices of the
crystal such that n1 = √

ε1, n2 = √
ε2. The relationship (27)

in vector form is

k = n−1
eff k0 =

(
1√
ε1

0

0 1√
ε2

)
k0. (31)

To obtain an equation of the form (25) we take the magnitude
of the left- and right-hand sides:

|k| =
(

1

ε1
cos2(θ0 − δ) + 1

ε2
sin2(θ0 − δ)

) 1
2

|k0|

= α|k0|, (32)

where we have written the Bloch vector k0 as

k0 =
(

k0 cos(θ0 − δ)

k0 sin(θ0 − δ)

)
. (33)

The definition (33) aligns the principal axes of the crystal
with the rotated plate-array coordinates. Denoting the prin-
cipal axes’ directions as 1 ≡ x′ and 2 ≡ y′, then the principal
permittivities can be recovered from (32) by choosing θ0 = δ

for εx′ and θ0 = δ + π/2 for εy′ . The remaining challenge is
to deduce the form of α by substitution of (32) into the dipole
system (23), and examining the behavior of |T| = 0 in the
limit k0 → 0, where T is the 8 × 8 matrix given in (23).

In determining the small k0 expansion in α the coefficients
(24) and lattice sums (13) require series expansions in small
k and k0. The boundary coefficients (24a) occur for orders
p ∈ [0, 1, 2], for which the small k expansions are available in
Appendix B 1. The interior coefficients (24b) and (24c) occur
for orders p ∈ [−2, . . . , 1], n ∈ [0, 1], and like the boundary
coefficients require small k expansions for ratios of Bessel
functions. These can be found in Appendix B 2.

The method by which the lattice sums are approximated
requires a series expansion of (13) to order k0 for orders l ∈
[0, . . . , 3]. This involves separation of the h = 0 and h 
= 0
terms before using Graf’s addition theorem [34] on the latter
sum to yield an expansion in terms of k0. Subsequently, the
method makes use of a set of recurrence relations for the
lattice sums inherent in the expression to arrive to leading
order approximations. This is carried out in Appendix B 3, and
follows the method set out in [40].

V. RESULTS

We seek the leading order terms for small k, k0 in the
expansion of |T| = 0. This is achieved by implementing the
approximations (B1)–(B4), (B10), (32), and (28) into (23).
Computing the determinant of this 8 × 8 matrix by hand is

intractable, so we make use of Wolfram Mathematica [47]
to carry out the expansion of |T| analytically. This script is
available in the Supplemental Material [48]. By replacing a
with the area fraction of the metacylinders f , according to
a =

√
f d2/π , then solving for α0 we arrive at a Maxwell

Garnett equation that describes the leading order behavior
of the crystal. We distinguish between the cases nr = 1 and
nr 
= 1 in the following two subsections, since the resulting
effective material parameters take a much more elegant form
in the first case.

A. The case nr = 1

In the case of nr = 1 the leading order term in the expan-
sion of |T| is of the form

T−12 = 2153e2iδπ2{(1 + f )α2
0 − 1 − f cos[2(δ − θ0)]}

f 6k12
0 d12α12

0

(
α2

0 − 1
) ,

(34)

where Tν denotes the O(kν
0 ) term. Solving (34) for α0 by

equating the left-hand side to zero, we have

α0 =
√

1 + f cos[2(δ − θ0)]

1 + f
. (35)

The form of (35) makes clear that the anisotropy of the crystal
is a leading order effect and is due to the interplay of the differ-
ence in incident and plate-array angles and the area fraction of
the cylinders. We can also define an associated scalar effective
permittivity:

ε0
eff = 1 + f

1 + f cos[2(δ − θ0)]
. (36)

Equation (36) has the form of a Maxwell Garnett equation,
and is related to the elements of the effective permittivity
tensor by way of (32)

εx′ = 1, (37a)

εy′ = 1 + f

1 − f
. (37b)

Accordingly, light propagating through the crystal will find
it to be transparent along the x′ direction and will undergo
refraction along the y′ direction as a function of f . It is in-
teresting to note that in this case the permittivity along the
y′ direction is the inverse of the scalar effective permittiv-
ity for an array of perfect magnetic conductors [1] (that is,
cylinders with Dirichlet boundary conditions). Equations (37)
correspond to the square of the semiminor and semimajor axes
of the index ellipse [49]:

x′2

εx′
+ y′2

εy′
= 1. (38)

From this, we expect elliptical solutions for the dispersion of
light with eccentricity:

e =
√

2 f

1 + f
, (39)
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FIG. 3. First dispersion surface k = αk0 and corresponding effective permittivity εeff for parameters (a), (b) δ = π/2, f = 0.5 and (c), (d)
δ = π/4, f = 0.3 in the portion of the Brillouin zone (k0,x, k0,y ) ∈ [−0.2, 0.2]. Principle axes are labeled in red.

which increases with larger area fraction f . Equation (39)
tends to zero as f → 0, meaning isotropy is recovered at small
area fraction because the scattering is so weak.

The anisotropy of the crystal is visualized by the
first dispersion surfaces in Figs. 3(a) and 3(c) and the
corresponding effective permittivities in Fig. 3(b) and 3(d)
for parameters (a),(b) δ = π/2, f = 0.5 and (c),(d) δ = π/4,
f = 0.3. Examining first the dispersion surfaces (a),(c) we
observe that the eccentricity of the elliptical surface contours
falls from e = 0.816 when f = 0.5 to e = 0.679 when
f = 0.3, a consequence of the scattering by the metacylinders
being weaker at smaller area fraction. Complementary to

these are the permittivity surfaces (b),(d), which illustrate
how the transport of light through the crystal is subject to its
propagation direction, with the values along the x′ and y′ axes
equaling those calculated by (37) i.e., transparent along x′
and at a maximum along y′.

B. The case nr �= 1

In the case of nr 
= 1 the leading order term in the expan-
sion of |T| is of the form

T−12 = 214π2e2iδ
(
2n2

r + 1
){

n2
r ( f 2 − 1) − f 2 − 1 − 2 f cos[2(δ − θ0)] + (1 + f )

[
n2

r + 1 + f
(
n2

r − 1
)]

α2
0

}
n2

r f 6k12
0 d12α12

0

(
α2

0 − 1
) . (40)
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Equating the left-hand side to zero and solving for α0 gives

α0 =
√

n2
r + 1 − f 2

(
n2

r − 1
) + 2 f cos[2(δ − θ0)]

n2
r (1 + f )2 − f 2 + 1

. (41)

The corresponding Maxwell Garnett equation is

ε0
eff = n2

r (1 + f )2 − f 2 + 1

n2
r + 1 − f 2

(
n2

r − 1
) + 2 f cos[2(δ − θ0)]

, (42)

such that along the principal axes

εx′ = n2
r (1 + f )2 − f 2 + 1

n2
r + 1 − f 2

(
n2

r − 1
) + 2 f

, (43a)

εy′ = 1 + f

1 − f
. (43b)

Equations (43) admit elliptical solutions of eccentricity:

e =
√

4 f

(1 + f )
(
n2

r (1 − f ) + f + 1
) , (44)

which trivially reduces to (39) when nr = 1, as do Eqs. (41)–
(43) reduce to their nr = 1 counterparts. Note that due to the
presence of n2

r in the denominator of (44) the eccentricity of
the elliptical dispersion surfaces will fall for nr increasing
and rise for nr decreasing. In other words, a lattice of large
material contrast will tend to either the isotropic of anisotropic
scattering of light depending on the composition of the interior
material relative to that of the exterior. In fact, if we replace
n2

r by

n2
r = τ + 1

τ − 1
(45)

in (23), where 1/τ represents the “dielectric contrast” across
the interface between the interstitial dielectric and the exterior
bulk [2], we arrive to

α0 =
√

τ − f 2 + f (τ − 1) cos[2(δ − θ )]

(1 + f )( f + τ )
. (46)

Then along x′

εx′ = τ + f

τ − f
, (47)

and εy′ = (1 + f )/(1 − f ) as before. Equation (47) is of the
form of the Lorentz-Lorenz or Clausius-Mossotti equation for
an array of dielectric cylinders [1,46] and obeys Keller’s the-
orem [50]; by replacing τ with −τ we obtain 1/εx′ along
x′. Keller’s theorem is not obeyed along any other direction
due to the anisotropy induced by the plate-array, which is
expressed through the cos[2(δ − θ )] term at leading order.

The effects of a nonunity material contrast on the
anisotropic dispersion of light is visualized in Fig. 4 for δ =
π/2 and f = 0.5 for relative index (a),(b) nr = 3 and (c),(d)
nr = 1/3. Examining the dispersion surfaces, Figs. 4(a) and
4(c), we note that the eccentricity has fallen in the case of
nr = 3 with respect to the result quoted in Fig. 3(a) under
the same area fraction, and likewise increased with respect
to the same result in the case of nr = 1/3. The respective
permittivity surfaces, Figs. 4(b) and 4(d), illustrate the same

effect, with the effective permittivity in Fig. 4(b) varying more
smoothly between x′ and y′ than in Fig. 4(d).

This parameter space is explored in Fig. 5 in which the
effective permittivity, as approximated by the Maxwell Gar-
nett equation (42), is plotted over the range of relative angle
δ − θ0 ∈ [0, π ] for varying (a)–(c) f and (d)–(f) nr . These
types of phase portraits are useful for visualising the steepness
in the effective permittivity between the principal axes at
δ − θ0 = 0 and δ − θ0 = π/2, and in this way illustrate the
strength of the anisotropic scattering of light by the crystal.
Figures 5(a)–5(c) demonstrate how the eccentricity of the
resulting elliptical dispersion surfaces falls as the relative re-
fractive index is increased from nr = 1/3 to nr = 3, as the
surface contours flatten and widen across the angular range.
Likewise in Figs. 5(d)–5(f) an increase in the area fraction f
gives rise to narrowing surface contours about δ − θ0 = π/2.

C. Numerical validation

In order to validate the leading order approximations (35)
and (41), we carry out a comparison between a numerical im-
plementation of system (22) truncated at M = 6, and a finite
element (FEM) implementation. These codes are available in
the Supplemental Material [48]. Provided in Figs. 6(a) and
6(b) is the portion of the acoustic band along N → � → X
(see inset) for a plate-array cylinder aligned at angle δ = π/2,
such that the path within the Brillouin zone follows the prin-
cipal crystalline axes. Panel (a) depicts the acoustic band as a
function of f and panel (b) as a function of nr . The FEM com-
putations were carried out using COMSOL MULTIPHYSICS [51],
for which a cylinder of 100 plates of thickness wp = a/100
and interplate spacing dp = a/100 was used.

Overall there is good agreement between the leading order
approximations and the multipole and FEM computations,
particularly as k, k0 → 0. In the case of nr = 1 [Fig. 6(a)]
the approximation (35) is exact along N → � for which
θ0 = δ and αx′ = 1. On � → X , θ0 = δ + π/2 and αy′ ≈√

(1 − f )/(1 + f ). In this direction the divergence away from
linear increases as the area fraction approaches its maximum
value of f = 0.5 (black line), for which the quasistatic ap-
proximation remains accurate until k ≈ 1; even when the
crystal is not dilute the quasistatic approximation remains a
good estimation of the acoustic band’s gradient as k0 → 0.

In the case of nr 
= 1 [Fig. 6(b) for which f = 0.3] the
acoustic band along N → � is perturbed away from the light
line as the relative index is moved away from unity. The
divergence between the linear and the multipole/FEM compu-
tations is also a function of the relative index, although in both
cases shown the linear approximation remains accurate until
k ≈ 2. Along � → X the divergence between the quasistatic
and multipole and FEM treatments can also be ascribed to the
relative index, which plays a role exclusively in the higher or-
der term α2 along y′. In the case nr = 2, although we approach
the resonance at k = 2.5416, the acoustic band, as computed
by the multipole method, converges to the FEM result at
M = 6. There is some divergence between the multipole and
FEM computations in the case of nr = 1/2, although this is
likely due to the finite inter-plate spacing and plate number
used in the FEM computations.
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FIG. 4. First dispersion surface k = αk0 and corresponding effective permittivity εeff for parameters δ = π/2, f = 0.5 and (a),(b) nr = 3,
(c),(d) nr = 1/3 in the portion of the Brillouin zone (k0,x, k0,y ) ∈ [−0.2, 0.2]. Principle axes are labeled in red.

VI. CONCLUDING REMARKS

In this paper we have presented a periodic medium of
plate-array metacylinders which, in treating the plate-array
as an effective medium, has been reduced to an elegant and
computationally efficient semianalytical formalism. The peri-
odic structure comprises a mechanically tunable metamaterial
wherein the principal axes’ orientation is dictated by the uni-
form plate-array angle. A dipole system approximates the
acoustic band as k, k0 → 0, for which a pair of leading order
Maxwell Garnett equations describe the medium’s principal
effective permittivities in terms of the area fraction f and
relative index nr .

Although there is good agreement between the quasistatic
approximations and multipole and FEM treatments, the lead-
ing order approximations fail to capture the wave number
dependence of α. The higher order term α2 is necessary
to resolve the quadratic behavior of the acoustic band at
higher wave numbers, as depicted in Figs. 6(a) and 6(b). The

determination of this higher order correction is left as an open
problem.
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FIG. 5. ε0
eff plotted as a function of (a)–(c) varying f and constant nr (labeled) and (d)–(f) varying nr and constant f (labeled). All solutions

are symmetric by virtue of the 2 cos[2(δ − θ0 )] term in (42). Note the change in color scale from panel to panel.

APPENDIX A: PLATE-ARRAY HOMOGENIZATION

Under rotation to the primed cylinder coordinates (x′, y′)
the Helmholtz equation in the interior domain (15) is(

∂2

∂x′2 + ∂2

∂y′2 + n2
r k2

)
H int

z (x′, y′) = 0 (A1)

and the boundary condition on the perfectly conducting plates
is of the form

∂

∂y′ H
int
z (x′,±ndp) = 0 (A2)

for all n ∈ Z, which represents the plates in both directions
about the center of the plate array. We introduce the new
coordinate y′′ where 0 < y′′ < 1, such that any point in the in-
terstitial medium can be written as (x′, y′) ≡ (x′, ndp + dpy′′).
In double-primed coordinates (A1) reads(

1

n2
r k2

∂2

∂x′2 + 1

ζ 2

∂2

∂y′′2 + 1

)
H int

n,z (x′, y′′) = 0 (A3)

with plate boundary condition

∂

∂y′′ H
int
n,z = 0 on y′′ = 0, 1, (A4)

where the subscript denotes the interstitial space between the
nth plate and its nearest neighbor. Note that the small param-
eter ζ = nrkdp remains small at finite nr as long as kdp � 1.
By expanding the solution in powers of the small parameter
squared,

H int
n,z (x′, y′′) = H0

n (x′, y′′) + ζ 2H1
n (x′, y′′) + O(ζ 4), (A5)

then at leading order (A3) is ∂2/∂y′′2(H0
n ) = 0. As (A4) ap-

plies at all orders of the field expansion (A5) we surmise that
H0

n ≡ H0
n (x′) only. At next order (A3) reads(

∂2

∂x′2 + n2
r k2

)
H0

n (x′) + n2
r k2 ∂2H1

n

∂y′′2 = 0 (A6)

whereby integration over y′′ in 0 � y′′ � 1 and making use of
the boundary condition (A4) yields(

∂2

∂x′2 + n2
r k2

)
H0

n (x′, y′) = 0, (A7)

which is just (15). Equation (A7) makes clear that the interior
field is approximated by its leading order term in the power
series expansion (A5), and that any dependence on the y′
coordinate is not sensitive to changes over the scale dpy′′. See
[29,30,38].
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(a) Varying f , nr = 1

(b) Varying nr, f = 0.3

FIG. 6. Acoustic bands for a plate-array cylinder of angle δ =
π/2. Shown are the linear Dipole approximations (35) and (41) (sold
lines), the multipole system (22) (crosses), and FEM computations
(squares).

APPENDIX B: APPROXIMATE FORMULAS

1. Approximations of boundary coefficients

The boundary coefficients (24a) are approximated as the
following series expansions in small k for p ∈ [0, 1, 2]:

M0 = 2γ

π
+ 2

π
log

(
ka

2

)
, (B1a)

M1 = − 4

π (ka)2
+ −3 + 4γ

2π
+ 2

π
log

(
ka

2

)
, (B1b)

M2 = − 32

π (ka)4
− 32

3π (ka)2
+ −83 + 72γ

36π
+ 2

π
log

(
ka

2

)
,

(B1c)

and

M ′
0 = − 4

π (ka)2
+ −3 + 4γ

2π
+ 2

π
log

(
ka

2

)
, (B2a)

M ′
1 = 4

π (ka)2
+ 5 + 4γ

2π
+ 2

π
log

(
ka

2

)
, (B2b)

M ′
2 = 32

π (ka)4
+ 16

3π (ka)2
+ 5 + 72γ

36π
+ 2

π
log

(
ka

2

)
.

(B2c)

All approximations (B1), (B2) have been truncated so as to
exclude all terms of O(ka)2.

2. Approximations of interior coefficients

The interior coefficients (24b) and (24c) are approxi-
mated as the following series expansions in small k for p ∈
[−2, . . . , 1], n ∈ [0, 1]:

{C−2,0, D−2,0} = e2iδn2
r

(
1 − 1

12
(ka)2

(
n2

r − 1
))

, (B3a)

{C−2,1, D−2,1} = e2iδnr

(
± 2

ka
∓ 1

6
(ka)

(
n2

r − 1
))

, (B3b)

{C−1,0, D−1,0} = ieiδnr

(
± 1 ∓ 1

8
(ka)2

(
n2

r − 1
))

, (B3c)

{C−1,1, D−1,1} = ieiδ

(
1

ka
− 1

8
(ka)

(
n2

r − 1
))

, (B3d)

{C0,0, D0,0} = −1 + 1

4
(ka)2(n2

r − 1
)
, (B3e)

{C0,1, D0,1} = 0, (B3f)

{C1,0, D1,0} = ie−iδnr

(
∓ 1 ± 1

8
(ka)2

(
n2

r − 1
))

, (B3g)

{C1,1, D1,1} = ie−iδ

(
1

ka
− 1

8
(ka)

(
n2

r − 1
))

, (B3h)

and

{C′
−2,0, D′

−2,0} = e2iδnr

(
1 − 1

6
(ka)2

(
n2

r − 1
))

, (B4a)

{C′
−2,1, D′

−2,1} = e2iδnr

(
± 1

ka
∓ 1

12
(ka)

(
3n2

r − 2
))

, (B4b)

{C′
−1,0, D′

−1,0} = ieiδ

(
± 1 ∓ 3

8
(ka)2(n2

r − 1
))

, (B4c)

{C′
−1,1, D′

−1,1} = −ieiδ 1

4
(ka)nr, (B4d)

{C′
0,0, D′

0,0} = nr

(
− 1 + 1

8
(ka)2

(
n2

r − 1
))

, (B4e)

{C′
0,1, D′

0,1} = 0, (B4f)

{C′
1,0, D′

1,0} = ie−iδ

(
∓ 1 ± 3

8
(ka)2

(
n2

r − 1
))

, (B4g)

{C′
1,1, D′

1,1} = −ie−iδ 3

8
(ka)nr . (B4h)

All approximations (B3), (B4) have been truncated so as to
exclude all terms of O(ka)3.
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3. Approximations of lattice sums

The following method for approximating the lattice sums (13) follows that set out by Poulton [40]. By separating the h = 0
and h 
= 0 terms and making use of Graf’s addition theorem [34] on the latter summation, we arrive to the expression

SY
l = −Y0(kξ )

J0(kξ )
δl,0 − il 4

d2

eilθ0

k2
0 − k2

Jl (k0ξ )

Jl (kξ )
− il

Jl (kξ )

4

d2

∑
h 
=0

∑
m∈Z

(−1)mJl+m(Khξ )Jm(k0ξ )ei(l+m)ψh−imθ0

Q2
h − k2

, (B5)

where Kh = (Kh, ψh). The denominators (Q2
h − k2)−1 are approximated by the expansion in small k as

(
Q2

h − k2)−1 = K−2
h

(
1 − 2

k0

Kh
cos(ψh − θ0) + 2

k2
0

K2
h

cos(2(ψh − θ0)) + k2
0 + k2

K2
h

)
. (B6)

By combining (B5) and (B6) we obtain the approximation formulas for the lattice sums of all requisite orders 0–3. Orders 0–2
are available in Chap. 4 of [40]. Order 3 is approximated as

SY
3 ≈ 4ie3iθ0

d2

{
1

k2
0 − k2

J3(k0ξ )

J3(kξ )
− k0d3S1,0,3

J2(k0ξ )

J3(kξ )
+ k2

0d4S2,0,4
J1(k0ξ )

J3(kξ )

}

+ 4ie−iθ0

d2

{(
k2

0d4S2,4,4 − d2S4,4,2 − (
k2

0 + k2
)
d4S4,4,4

)
J1(k0ξ )

J3(kξ )
− k0d3S3,4,3

J0(k0ξ )

J3(kξ )
− k0d3S5,4,3

J2(k0ξ )

J3(kξ )

}
, (B7)

where

Sl,m,n(ξ ) =
∑
h 
=0

Jl (Khξ )eimψh

(Khd )n
. (B8)

Expressions for sums of the form (B8) are found using the lattice sum recurrence relations found in Chap. 3 of [40]. The
remaining sums not found in [40] are of the form

S4,4,4 = σ̃
(4)
2

12π

(
ξ

2d

)4

− σ
(4)
4

5π

(
ξ

2d

)6

, (B9a)

S5,4,3 = σ
(4)
4

5π

(
ξ

2d

)5

, (B9b)

where the quantities σ̃
(4)
2 = 4.078 451 161 161 4 − π/2 and σ

(4)
4 = 3.151 212 002 153 9 are numerical evaluations of static lattice

sums [52]. Combining (B7), (B9) and the remaining sums found in [40], and making use of series expansions for the ratios of
Bessel functions embedded in (B7), we obtain

SY
3 = 4i

d2

k3
0

k3

{
e3iθ0

(
1

k2
0 − k2

+ 3d2

8π

)
+ e−iθ0

(
3d2σ̃

(4)
2

4π2
− 2σ̃

(4)
2

πk2
0

)}
, (B10)

which is correct to O(k0). The approximation (B10) has undergone validation by numerical comparison with the accelerated
summation of (13).
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