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Abstract

The development of advanced and intelligent measurement instruments in recent years
has increased the intelligence of modern energy systems, especially power systems.
Besides, with the advancement of energy conversion technologies, these systems benefit
from multi-carrier energy resources. Accordingly, this paper presents a model of smart
city which considers various components, including smart transportation system (STS),
microgrid (MG), and smart energy hub (SEH) with the ability of energy transformation.
The proposed model addresses the islanded operation of a smart city that makes it a smart
island. This island deploys the energy carriers of electricity, heat, gas and water as well. In
addition, STS includes electric vehicle (EV) parking lots as well as metro system (MS) that
can interactively exchange energy. More precisely, the different components of the smart
island are modelled on the assumption of energy interdependency. In the proposed model,
the water supply unit in SEH is provided which can be effective in reducing the cost of
components by supplying water to them. In order to exchange energy within STS, metro
stations have been optimally allocated using intelligent water drops (IWD) optimization
method. In addition to smart island modelling, this paper quantifies the uncertainties
within STS and MG using cloud theory. Eventually, the proposed model is simulated to
ensure its effectiveness and accuracy.

1 INTRODUCTION

1.1 Aims and scope

In the contemporary world cities are getting bigger and more
populated. According to the statistics, about ten billion people
or 70% of the world population are expected to live in cities
throughout the world by 2050 [1, 2]. It seems as a major
challenge to deal with massive needs of future communities.
Therefore, it is predictable that almost all cities will be faced
with major challenges such as economic development, less-
ening emissions, energy efficiency, and effectively harnessing
the distributed energy resources (DERs), to name a few. These
challenges each appears to be an obstacle on the way to sustain-
able development. Fortunately, in the last decade, a new concept
known as smart city is developed, which makes us able to con-
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structively cope with above mentioned challenges. There exist
several descriptions for smart city, however, all of them have
some main features in common. In fact, various descriptions
verify that a smart city utilizes multilateral communications
between sensors as well as benefits from integrated and con-
nected infrastructures to improve the welfare of residents [1,
3–5]. Moreover, smart cities have the ability to optimize the
use of integrated sources of energy [6]. This, basically, takes
place on the Internet of Things (IoT) framework. Fitted with
the IoT technology, all elements present in the smart city can
communicate and interact with others which means that every
single element can plays a role in the energy management of the
whole system [7]. This, along with similar capabilities of such
systems, makes its management really complex and difficult,
thus necessitating the automation and smart control of the
system [1]. Therefore, since the energy and water facilities
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are vitally important to sustainability of cities among six key
dimensions of smart cities [3], this work focuses on smart
energy management of a water and energy hub.

1.2 Background

Smart cities have attracted numerous researchers’ attention in
recent years. The main reason of that lies behind the necessity
of finding novel solutions for extensive challenges that future
cities will be likely to face with. With this in mind, researchers
have been trying to develop their ideas upon different aspects of
the smart city. In this way, some recent works that more focus on
smart energy management are outlined here to provide better
understanding from what have been done so far.

To begin with, smart cities consist of different components
that closely work together. The two major part of the smart city
include the smart grid (SG) and smart transportation system
(STS). The former is made up of different components such
as smart buildings, microgrids, storages, and distributed and
renewable energy resources, while the latter encompasses the
metro system (MS) and electric vehicles (EVs) [1, 3]. These het-
erogeneous elements and the synergies between them impose
both challenges and opportunities on smart cities that should
be addressed in its energy management. It should be noted
that STS puts a huge amount of electric demand on the smart
grid as both electric trains (ETs) and geographically distributed
EVs massively consume electric energy. On the other hand, the
elements of transportation system can effectively support the
smart grid by feeding energy to the grid [8, 9]. More specifically,
the intermittent behaviour of renewable energy sources (RESs)
causes energy shortage during some periods of a day. There-
fore, the elements of transportation system, as a promising solu-
tion, can productively contribute to the balance between gener-
ation and consumption of the whole grid [1, 10]. This usually
takes place through vehicle-to-anything (V2X) and anything-to-
vehicle (X2V) technologies [8, 11, 12], and is mainly due to the
emergence of high technology batteries [13]. It is worth noth-
ing that EV-related technologies have some strengths and weak-
nesses that all described by authors in [14, 15]. Furthermore,
authors in [16] comprehensively discussed the potentials of STS
in a smart city. An IoT-based approach for distributional coor-
dination of STS and SG is proposed in [17] to provide smart
city with a holistic framework. Considering the importance of
efficient operation of STS, researchers in [18] developed sev-
eral tasks to boost power and driving efficiency as well as to
beneficially harvest the regenerative braking energy (RBE). To
provide better understanding, RBE appears to be the most effi-
cient way of improving the performance of STS as it can be
simply obtained via traction motors installed on ETs [1, 19].
In fact, this type of motors has the ability to reproduce the
energy while ETs are decelerating [13]. RBE can be consumed
by EVs in a real-time manner provided that the availability of
ETs, that is, arrival and departure times is specified or opti-
mally scheduled [20]. More efficiently, it is crucial to coordinate
energy storages systems or EVs parking lots and RBE which
is the scope of the author’s works in [19]. This helps the sys-

tem to ignore the complexity of scheduling but escalating the
costs [21].

In 2007 a concept of energy hub (EH) was introduced to the
field of energy management with the aim of modelling and ana-
lyzing multi-carrier energy systems (MCESs) [22]. The founda-
tion of this concept appears to be the interdependent opera-
tion of power and water grid, gas network, and heating systems
[9, 23, 24]. This naive concept has been considerably developed
by the evolution of more advanced measuring devices. In fact,
development of intelligent devices, emerges a novel concept so-
called smart energy hub (SEH) whose aim is to optimally coor-
dinate the number of different forms of energy within inte-
grated systems like smart cities [22]. In general, SEH consists
of three key parts including (a) multi-energy storage systems,
(b) conversion units which allow SEH to convert electricity, gas,
and heat to each other, although very pricy to transform some
energy forms such as electricity power to gas (c) and obviously
inputs and outputs [23]. Since the first purpose of modelling
EHs is to optimally operate multi-energy systems, some works
try their best to integrate EHs and optimize energy networks
[9, 23–25]. From the operator’s perspective, aggregated energy
management of a network of EHs is more capable of flexibil-
ity compared to individually management of an EH [26]. An
innovative and robust method to model interconnected SEHs is
proposed in [25]. Some studies conducted a survey of the role of
combined heat and power (CHP) units as well as EVs on EHs,
similar to what authors have done in [27]. A comprehensive
and practical framework for smart MCESs considering trans-
portation systems and associated traffic flow is presented in [9].
MCESs is claimed to have a lot to offer to smart city, because of
the reliable, environmentally-friendly and cost-efficient energy
services delivery [26]. As mentioned before, there are synergies
between SEHs as the vital components of MCES, and other
components in the smart city. This is addressed and focused by
authors in [24].

Besides many advantages of SEHs including emission reduc-
tion, flexibility and reliability improvement as well as simulta-
neously providing users with different carriers [23, 28], there
exist several drawbacks in the wide use of such systems. On
top of all, the cost of implementation and operation of SEHs is
noticeably high. This necessitates the adoption of verified opti-
mization methods [22, 29]. Furthermore, the wide use of IoT-
based communication as well as high penetration of renewable-
based generation, escalate the risk of cyber-attack and malicious
activity throughout the system [30], thus showing the impor-
tance of cyber security considerations, for example, the role of
blockchain technology in intelligent transportation [31].

The focus of this research paper is more on the island
mode operation of RES-based microgrid. It is noteworthy to
address some related research works, although, to the best of
the authors’ knowledge, the existing literature fails to propose
an optimal model for islanded microgrids incorporating SEH
and STS. Authors in [22] surveyed the integration of distributed
energy resources (DERs) such as demand response and stor-
ages into SEHs. In [32] writers stepped forward with a frame-
work for islanded mode MCESs based on DERs. Using deep
learning algorithms for demand response (DR) as the most
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FIGURE 1 The schematic smart island

favourable type of DERs, authors in [33] proposed a smart
approach to manage the energy of a smart city. Furthermore,
some researchers have studied the optimized operation of com-
bined energy hubs considering RESs and DRs [34]. The pro-
posed model is tried to provide optimal efficiency and cost by
forming a proper structure for EHs. The study in [35] is devoted
to smart island where a stochastic energy management model
for MCES is introduced. This model considers reinforcement
machine learning method to optimize the operation. Similarly,
the deep reinforcement learning algorithm is utilized by writ-
ers in [36] to optimally schedule MCESs from prosumers’ view-
point.

1.3 Features and capabilities

Considering the above literature review, it is safe to say that
the operation of a smart island deserves more consideration in
terms of modelling and optimizing the multi-carrier exchanges.
In addition to electricity, gas and heat, water demand should be
addressed in order to develop a comprehensive model of smart
islands and capture the possibility of sea water adoption. The
model also considers the potential source of electricity in she,
that is, EVs and RBE which both are provided by STS. How-
ever, the allocation of EVs’ parking lots and metro station is a
bit challenging and need to be performed using a proper opti-
mization method [37]. Figure 1 illustrates the graphical model
of smart island.

This paper utilizes intelligent water drops (IWDs) algorithm
as a novel and effective method to allocate aforementioned sta-
tions within the smart city. Moreover, the cloud theory (CT) is
employed here to capture the uncertainties associated with dif-
ferent components of the smart city. Therefore, the authors of
this paper have made three main contributions to the research
filed as outlined below:

∙ A comprehensive model of a smart island considering the
financial and energy exchanges between all components is
proposed. As stated, Smart Island refers to a system being

operated in stand-alone mode that easily accesses water
sources.
• Given the fact that the island accesses water, the model

considers multi-carrier exchanges including electricity,
heat, gas, and water to propose an integrated management
of MCESs using SEH concept.

∙ The intrinsic uncertainty of the system, especially when it
comes to the intermittent output of RESs and the unpre-
dictable behaviour of STS’s elements, has been tried to be
taken into consideration via cloud theory, as an advanced
method with the ability of converting qualitative parameters
into quantitative ones.

1.4 Paper organization

The rest of the paper is organized as follow: the model of
the smart island is proposed in Section 2, while the stochas-
tic framework based on cloud theory is described in Section 3.
Section 4 is devoted to how the problem is solved by IWDs
algorithm. In Sections 5 and 6, the simulation of the model and
some remarks as a conclusion are presented, respectively.

2 MATHEMATICAL FORMULATION
OF SMART ISLAND

As mentioned earlier, this section is devoted to the develop-
ment of mathematical formulation for the smart island and its
transactions. It is noteworthy that this paper considers the multi-
carrier energy exchanges of STS and microgrids (MGs). These
transactions include vehicles to metro and microgrids (V2M
& V2MG), as well as metro to microgrids and hubs (M2MG
& M2H). Additionally, the transactions within STS, metro
to vehicles (M2V), is addressed by the proposed model. The
models and their limits of the above modes are defined in the
following.

2.1 The definition of M2MG

The M2MG technology enables metro system to sell the surplus
energy obtained from RBE to the grid and make profit for
the metro owner. Conversely, the metro system can fulfil the
required amount of energy by purchasing that from the grid.
Here the profit of MS equals to the profit it makes through
M2MG minus the cost of technology establishment. This net
profit can be calculated by (1) where the two profit and cost
terms are computed by (2) and (3), respectively. The constraint
demonstrated by Equation (4) guarantees the daily energy
balance of MS. As the total RBE produced by MS is limited, it
is necessary to meet the constraint of Equation (5).

∙ Objective functions

Pro fitM2MG = Pro fitMMG − costMGM (1)
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Pro fitMMG =
∑
n,t

(
B2n

i,t .P
M2MG

n,t

)
∀n ∈ ℧n, t ∈ ℧t (2)

costMGM =
∑
s,t

(
B2n

i,t .P
MG2M

n,t

)
∀n ∈ ℧n, t ∈ ℧t (3)

∙ Constraints

Dnewmetro
n,t = Dmetro

n,t − PMG2M
n,t − P

V 2M ,dch
v,r ,n,t

∀n ∈ ℧n, r ∈ ℧r , ∀v ∈ ℧v , ∀t ∈ ℧t
(4)

PM2MG
n,t ≤ Prb

n,t ∀n ∈ ℧n, t ∈ ℧t (5)

2.2 The definition of M2V

As stated, the energy exchange between MS and EVs is per-
formed via M2V technology. In this regard, Equation (6) shows
the total profit of M2V considering the fact that charging and
discharging of EVs are taken into account as the financial out-
come and income of MS, respectively. Equations (7) and (8) con-
fine the amount of energy exchanged.

∙ Objective functions

Pro fitM2V =
∑

n∈℧n,r∈℧r

B2n
i ×

(
P

V 2M ,ch
v,r ,n,t − P

V 2M ,dch
v,r ,n,t

)
∀n ∈ ℧n, r ∈ ℧r , ∀v ∈ ℧v , ∀t ∈ ℧t

(6)

∙ Constraints

P
V 2M ,ch
v,r ,n,t ≤ Prb

n,t (7)

Dnewmetro
j ,t = Dmetro

j ,t −
∑

u∈℧u , f ∈℧ fl

B2n
i ×

(
P

V 2M ,ch
v,r ,n,t − P

V 2M ,dch
v,r ,n,t

)
∀n ∈ ℧n, r ∈ ℧r , ∀v ∈ ℧v , ∀t ∈ ℧t

(8)

2.3 The definition of V2M and V2MG

Through V2X technologies, EVs can make a huge profit by
energy exchange. This can be found in Equation (9) where the
profit of EVs comprise the earnings from V2M and V2MG
(Equations (10), (11)), however, the degradation cost of bat-
teries should be considered as Equation (12). Equations (13)–
(21) represent the different constraints that limit the energy
exchanges of EVs.

∙ Objective functions

Pro fitV = Pro fitV 2MG + Pro fitV 2M −
∑

v∈℧v

Cost
deg

f
(9)

Pro fitV 2MG =
∑

t∈℧t ,v∈℧v

(
B1v,t × PV 2MG

v,t

)
(10)

Pro fitV 2MG =
∑

t∈℧t ,v∈℧v

(
B2v,t × PV2M

v,t

)
(11)

Cost
deg
v = Bv

deg ×
∑

n∈℧n,r∈℧r ,t∈℧t h
(
P

V 2MG ,dch
v,r ,t + P

V 2M ,dch
v,r ,n,t

)
∀v ∈ ℧v

(12)
∙ Constraints

E1v2mg
t = E1v2mg

t−1 + P
V 2MG ,ch
v,r ,t × 𝜂ch

es − P
V 2MG ,dch
v,r ,t × 𝜂dch

es

∀r ∈ ℧r , ∀v ∈ ℧v , ∀t ∈ ℧t
(13)

E2v2m
t = E2v2m

t−1 +
∑

n∈℧n,r∈℧r

(PV 2M ,ch
v,r ,n,t × 𝜂ch

es − P
V 2M ,dch
v,r ,n,t × 𝜂dch

es )

−
∑

v∈℧v ,r∈℧r

br
v,r ,n,t × (RLev

v,r − RC ev
v,r ),

∀v ∈ ℧v , r ∈ ℧r , ∀n ∈ ℧n, ∀t ∈ ℧t (14)

Eev
total

= E1v2mg
v,t + E2v2m

v,t ∀v ∈ ℧v , t ∈ ℧t (15)

PV 2MG
v,t = E1v2mg

v,t + E1v2mg

v,t−1 ∀v ∈ ℧v , t ∈ ℧t (16)

PV 2M
v,t = E1v2m

v,t + E1v2m
v,t−1 ∀v ∈ ℧v , t ∈ ℧t (17)

b
ev,ch
v,r ,n,t + b

ev,dch
v,r ,n,t = bbev

v,r ,n,t ∀v ∈ ℧v , t ∈ ℧t (18)

b
ev,ch
v,r ,n,t R

ev,ch
min ≤ R

ev,ch
v,r ,n,t ≤ b

ev,ch
v,r ,n,t R

ev,ch
max

∀n ∈ ℧n, r ∈ ℧r , ∀v ∈ ℧v , ∀t ∈ ℧t
(19)

b
ev,dch
v,r ,n,t R

ev,dch
min ≤ R

ev,dch
v,r ,n,t ≤ b

ev,dch
v,r ,n,t R

ev,dch
max

∀n ∈ ℧n, r ∈ ℧r , ∀v ∈ ℧v , ∀t ∈ ℧t
(20)

C ev
min,v ≤ Eev

total ,v
≤ C ev

max,v ∀v ∈ ℧v , t ∈ ℧t (21)

2.4 The water unit model

To model the water demand it is necessary to define the struc-
ture of water demand supplement. The proposed model con-
siders the desalination unit as well as primary/secondary tanks.
Having been desalinated, the water is transferred to the primary
tank. The secondary tank, which is connected bilaterally to the
primary one and the water grid as well, enjoys two sets of input
and output. The water stored in the secondary tank is injected
to the hub through one of these outputs. Figure 2 schematically
illustrates this system. Equations (22)–(28) provide the formu-
lation that govern the desalination unit of SEHs.
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FIGURE 2 The water demand supplement system of smart island

∙ The operational constraint of Primary tank

V dt
max,t = V dt

max,t−1 +W
d ,in

t −W
d ,out

t t ∈ ℧T

(22)
∙ The operational constraint of secondary tank

V st
t = V st

t−1 +W
d ,out

t −W
s,out

t t ∈ ℧T (23)

∙ The capacity limitation of Primary tank

0 ≤ V DT
t ≤ V dt

max,t t ∈ ℧T (24)

∙ The capacity limitation of secondary tank

V st
min ≤ V st

t ≤ V st
max t ∈ ℧T (25)

∙ Input bounds of the unit

W
d ,in

min .I
d

t ≤ W
d ,in

t ≤ W
d ,in

max .I
d

t t ∈ ℧T (26)

∙ Output bounds of the unit

0 ≤ W
d ,out

t ≤ W
d ,out

max t ∈ ℧T (27)

∙ Consumed power of the unit

Pwdu
t = W

d ,in
t .C F wdu t ∈ ℧T (28)

2.5 Microgrid objective function

Here, the objective function aims to minimize the total cost of
the smart island. All in all, the profits of M2MG, M2V and V2X
form the total profit of the island that should be subtracted from
total cost according to Equation (29). Equation (30) demon-
strates the balance between the output and input power of MG

that should be asserted to be true for all given time slots upon
each component.

∙ Objective function

costTotal = costMetro − (Pro fitEV + Pro fitM2MG

+ Pro fitM2V ) (29)

∙ Constraints

PMG
exchange

= Load MG −
∑

n∈℧n,v∈℧v ,t∈℧t

PM2MG
n,t

+ PV 2MG
v,t − Pseh

t + PMG2V
n,t (30)

2.6 The constraints of SEH

The boundaries of active power input into SEH at time t is
determined by Equation (31). Equation (32) prevents the pro-
cessing electric power to be violated from the nominal capacity,
while Equation (33) represents the capacity of storages within
SEH. The limits for charging and discharging power rates are
guaranteed by Equations (34) and (35). Equation (36) con-
trols the state of charging or discharging. The balance of SEH
in terms of heat and electricity is attained by applying Equa-
tions (37) and (38). When it comes to the balance between gas
and power, Equation (39) adjusts the input to SEH. Last but not
least, Equations (40)–(42) represent the restrictions of energy
transformation within SEH.

Pseh
min,t ≤ Pseh

t ≤ Pseh
max,t , ∀t ∈ ℧t (31)

Les
min ≤ Les

t ≤ Les
max , ∀t ∈ ℧t (32)

Les
t =

(
1 − 𝜂loss

es

)
Les

t−1 + P
es,ch
t − P

es,dch
t , ∀t ∈ ℧t (33)

1

𝜂ch
e

Res
minb

seh,ch
t ≤ Pch

t ≤
1

𝜂ch
e

Res
maxb

seh,ch
t , ∀t ∈ ℧t (34)

𝜂dch
e Res

minb
seh,dch
t ≤ Pdch

t ≤ 𝜂dch
e Res

maxb
seh,dch
t , ∀t ∈ ℧t (35)

0 ≤ b
seh,ch
t + b

seh,dch
t ≤ 1 , ∀t ∈ ℧t (36)

P
seh,e
t + Pwdu

t = 𝜂T
e . Pseh

t + 𝜂
G∕E

chp
.G

chp,in
t

+ P
es,dch
t − P

es,ch
t , ∀t ∈ ℧t

(37)

P
seh,h
t = 𝜂

G∕H

chp
.G

chp,in
t + 𝜂

G∕H

boi
.G

chp,in
t , ∀t ∈ ℧t (38)

G
seh,in
t = G

boiler ,in
t + G

chp,in
t , ∀t ∈ ℧t (39)
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FIGURE 3 Cloud model for normal distribution [38]

𝜂T
e Pseh

t ≤ C T , ∀t ∈ ℧t (40)

𝜂
G∕H

chp
.G

chp,in
t ≤ CCHP , ∀t ∈ ℧t (41)

𝜂
G∕H

boiler
.G

boiler ,in
t ≤ C B , ∀t ∈ ℧t (42)

3 CLOUD THEORY BASED
STOCHASTIC FRAMEWORK

In this paper, cloud theory (CT) is adopted to effectively capture
the uncertainty associated with some parameters in the prob-
lem. Generally speaking, the aim of CT is to convert qualita-
tive parameters into quantitative ones representing uncertainties
mathematically. It is worth noting that this concept is carried out
based on fuzzy theory. Equation (43) shows the basic concept
of CT.

CL (k) ∶ m → [0, 1], ∀k ∈ m, k → CL (k) (43)

Where L appears to be the language value of domain m, and
CL stands for the mapping process or cloud. Here the model is
known as the normal cloud model, as the cloud obeys normal
distribution. There are three main characteristics to specify the
cloud (CL(k)) as shown in Figure 3:

a. Expectation (Ex): This variable specifies the mean value of
the cloud, which is easily computed in realistic problems.

b. Entropy (En): This variable not only limits the fluctuation of
the cloud and determines the bandwidth, but also shows the
degree of variable’s fuzziness.

c. Hyper Entropy (HEn): This variable specifies the dispersion
and diversity of the cloud’s drops. More specifically, HEn can
be referred to as the entropy of the En which is the entropy
itself. This feature makes CT superior to other similar meth-
ods including Monte Carlo simulation (MCS) in capturing
the uncertainties. Figure 4 demonstrates the idea of HEn.

FIGURE 4 The idea of HEn for normal distribution [38]

Having been determined, Ex, En and HEn constitute the
model of the cloud drop (ki, mi). Here, ki is the random variable,
while mi can be described as the membership degree. The latter
also represents the probability of drops in the cloud member-
ship. Following steps show how cloud drops are generated:

Step I: Generate a normal random value (En’i), while En

and HEn are the expected value and hyper entropy,
respectively.

Step II: Generate a normal random value (ki), while Ex and
En’i are the expected value and hyper entropy, respec-
tively.

Step III: Using the Equation (44), compute the value of mi to
obtain a drop model:

mi = e
−

(ki−Ex )2

2(En′
i
)
2

(44)

Step IV: Repeat the three previous steps until D drops are
generated. Then, since this method utilizes forward-
backward approach to produce the cloud, above pro-
cess should be adopted inversely in order to do map-
ping between the qualitative and quantitative data.

Step V: After completion the process of drops generation
((ki,mi); i = 1, 2,…, D), the three discrete character-
istics are obtained by the following calculation:

Ex =
1
D

D∑
i=1

ki (45)

Eni =

√
(ki − Ex )
−2 ln(mi )

(46)

En =
1
D

D∑
i=1

Eni (47)

He =

√√√√ 1
D

D∑
i=1

(Eni − En)2 (48)
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ESAPOUR ET AL. 661

4 PROBLEM SOLVING METHOD

Behaviours in nature have always inspired engineering and
mathematical methods. Among the methods developed based
on swarm intelligence, the intelligent water drops (IWDs) algo-
rithm is based on the dynamic of river systems and the coop-
eration of these drops. This algorithm is designed to model
actions within a river and turns and twists. Two important fea-
tures of IWD are soil and velocity, which are known as vari-
ables in the period of IWD. At the beginning of the movement
and the path, the values of both are specified, which means
the former is equal to zero and the latter has an specific initial
value. Depending on the amount of soil, the IWD speed can
vary. Obviously, the higher the amount of soil between the two
points is, the lower the speed would be. In fact, velocity has an
inversely proportional non-linear relationship with the soil. The
time required for this distance can be calculated through the
linear motion equation. Therefore, the travel time between two
points is inversely related to the distance between the two points
and is directly related to velocity. Also, because there is less soil
in areas where more IWDs are available, it can be said that soil
is a source of information that remains in the memory of the
environment and water drops [38], [39].

With this in mind, the IWD must identify its next step in
the new situation by a mechanism. Given the above descrip-
tion, routes with less soil will have a better chance of being
traversed by the IWD. The IWD algorithm uses graph repre-
sentation to solve the problem. The set of vertices and edges
are shown as (N, E). Therefore, each IWD finds the appropri-
ate solution by passing the vertices through the edges. When all
IWDs find their solution, an iteration of the problem ends. By
finding the optimal one among the solutions obtained in an iter-
ation, the globally-optimal solution is found. Considering the
best solution, the amount of soil in the route decreases based
on its quality. Subsequent iterations are also performed with
new IWDs. The algorithm stops performing when it reaches
the maximum number of iterations or the optimal global solu-
tion with a desired quality. It should be noted that this method is
able to find the optimal solution when sufficient number of iter-
ations is performed [38]. In this algorithm, two types of param-
eters, static and dynamic, are considered. Static parameters are
constant throughout the solving steps, while dynamic param-
eters are reinitialized in each iteration. Based on Figure 5, the

FIGURE 5 General steps of IWD algorithm

TABLE 1 Constant parameters in IWD algorithm

Notation Value Parameter (s)

av, bv, cv 1, 0.01,1 Velocity updating

as, bs, cs 1, 0.01,1 Soil updating

𝜇m 0.9 Local soil updating

𝜇IWD 0.9 Global soil updating

soil (i, j) InitSoil (User selected)
= 10000

Initial soil on each edge

VLint (IWD) InitVel (User selected)
= 200

Initial velocity of each IWD

IWD algorithm finds the globally-optimal solution in four gen-
eral iterative steps.

Step I: This step is devoted to graph representation and the
specification of the static and dynamic parameters
of the algorithm. Static parameters include the initial
quality of the optimal solution which is equal to neg-
ative infinity (−∞) in the initial conditions, the maxi-
mum number of iterations, and the number of IWDs,
which is usually equal to the number of vertices. In
addition, Table 1 shows the other constant parame-
ters in this algorithm. Now, the dynamic parameters
including the list of vertices traversed by each IWD
(TV(IWD)), should be set. It should be stated that
none of the IWDs initially have soil. IWDs must be
distributed haphazardly on graph vertices before the
next step get performed. At this point, the first ver-
tex traversed by each IWD is determined. In the next
steps, the list of visited points will be updated.

Step II: The goal of this step is to find the local solutions for
IWDs:
- Firstly, find the next vertex for an IWD so that

the constraints of the problem are not violated.
Also, the destination node should not be previously
listed as traversed by that IWD. The probability of
selecting the targeted node is calculated by Equa-
tion (49). The newly passed vertices are added to
the TV(IWD) list.

PIWD
j ( j ) =

f
(
soil (i, j )

)∑
k∉TV (IWD) f

(
soil (i, k)

) (49)

Such that:

f (soil (i, j )) =
1

𝜀s + g
(
soil (i, j )

) (50)

And:

g(soil (i, j )) =⎧⎪⎨⎪⎩
soil (i, j ) i f min

l∉TV (IWD)
(soil (i, l )) ≥ 0

soil (i, j ) − min
l∉TV (IWD)

(soil (i, l )) else

(51)
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662 ESAPOUR ET AL.

- The velocity of IWDs moving from i toward j

is updated by below equation. Thus, VL
t+1(IWD)

denotes the next value for this parameter.

VL
t+1(IWD) = VLt (IWD)

+
av

bv + cv . soil 2(i, j )

(52)

- Using the following equations, the amount of soil
loaded by IWD (Δsoil (i,j)) is calculated. In these
equations the heuristic undesirability HUD(j) is
determined according to the problem.

Δsoil (i, j ) =
as

bs + cs .time2
(
i, j ;VL

t+1(IWD)
)
(53)

Such that:

time
(
i, j ;VL

t+1(IWD)
)
=

HUD( j )
VL

t+1(IWD)
(54)

- The updated soil of the routs, and the amount of soil
loaded by IWDs are calculated by Equation (55).

soil (i, j ) = (1 − 𝜌n ).soil (i, j ) − 𝜇m.Δsoil (i, j )

soil IWD = soil IWD + Δsoil (i, j )
(55)

Step III: This step aims to find the best solution for IWDs,
which includes several stages:
- Firstly, the globally optimal solution of the current

iteration, denoted by SIt, is calculated based on all
obtained solutions in a given iteration. It should be
noted that the function f represents the quality of
the solutions.

SIt = arg max
∀S IWD

f (S IWD ) (56)

- Next, update the soil in the routs that make up the
SIt in this iteration. The number of vertices passed

in this solution is represented by NS.

soil (i, j ) = (1 + 𝜇IWD ) . soil (i, j )

−𝜇IWD .
1

(NS−1)
. soil IWD

It
∀(i, j ) ∈ S It

(57)

- Now the total optimal solution GS can be obtained
through comparing the best solution of each itera-
tion as the following equation:

GS =

{
SIt i f q(SIt ) ≥ q(GS )

GS otherwise
(58)

Step IV: After performing the previous steps, if the iteration
number does not still reach Itmax, go to the next itera-
tion and perform the calculations from the beginning,
step I. It is also worth recalling that the static param-
eters are constant throughout the whole procedure,
while the dynamic parameters need to be recalculated.

5 NUMERICAL CASE STUDY

In this section the proposed model of the smart island is eval-
uated. As mentioned above, the model comprises SEH, MGs
with different RESs (wind, solar and tidal units), and STS. More-
over, the elements within STS such as EV parking lots and MS
are able to exchange energy with each other through dispersed
stations that should be optimally allocated. To this end, six loca-
tions are candidated for the establishment of three parking lots.
Table 2 gives the specifications of the EV fleets in detail [1, 40].
To evaluate the performance of each part of the smart island
model, three distinct cases are briefly analyzed in the following.
The cases include the energy exchange of STS, MG and SEH.
Additionally, the uncertainty effects imposed to SEH is consid-
ered as a separate case study.

As mentioned before, SEH has its own energy transactions
with other components. Figure 6 gives the amount of water
demands of MS stations supplied by SEH in a 24-h period
of time. It is worth mentioning that a CHP unit provides the

TABLE 2 The EVs fleets specifications

Capacity (kWh) Charge/discharge rate (kW)

Fleet

Number

of EVs Access time Min Max Min Max

1 40 7–8, 12–13, 15–17 219 1644 7.3 292

2 63 7–10, 12–14, 17–19 263 1973 7.3 496

3 54 7–10, 12–14, 17–19 251 1902 7.3 386

4 33 12–14, 16–18 208 1610 7.3 234

5 54 7–10, 12–14, 17–19 251 1902 7.3 386

6 39 7–9, 12–14, 16–18 219 1644 7.3 292
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ESAPOUR ET AL. 663

FIGURE 6 The amount of water demanded by metro stations

FIGURE 7 Power generation of the elements of SEH

electricity demands of these stations. With this in mind, during
the hours that the generation exceeds the energy demand, SEH
is able to sell its additional energy to MG. Conversely, SEH pur-
chases the required energy from MG in some hours. The CHP
and boiler energy generation, along with the energy exchange
of SEH is depicted in Figure 7. Obviously, the positive and neg-
ative values imply MG-to-SEH and SEH-to-MG direction of
energy exchanges, respectively. From SEH point of view, pur-
chasing electricity from MG is more affordable in some periods,
meaning that SEH supplies its own demands from MG rather
than CHP. However, when the expense of generating electric-
ity by CHP is lower than that of buying from MG, SEH would
rather supplying the demands from MG, and even sell the excess
amount of generated energy to make profit. As seen in Figure 7
this is the case in the period between hours 15 and 24.

Different components of the smart island are subject to
uncertainties. The proposed model tries to address the uncer-
tainty associated with EVs’ arrival time to the stations that
depends on the traffic jam. Additionally, the intermittent out-
put of wind and solar generations and the varying demand of
SEH for heat and power are considered. This subsection aims
to examine the impact of aforementioned sources of uncertainty
on the smart island. As stated in the previous sections, the cloud
theory (CT) as an effective method, is employed to capture these
uncertainties in the model. Since the components of the smart
island are interdependent, the variations within each component
may influence the rest of the island. The comparison between

FIGURE 8 SEH’s cost in deterministic and stochastic conditions

FIGURE 9 Metro’s cost in deterministic and stochastic conditions

the costs of SEH in two conditions, stochastic and determinis-
tic, are made in Figure 8. It is observed that the cost of SEH
in the stochastic model is about 1.6% more than determinis-
tic condition. Also, Figure 9 compares these costs for MS and
shows that there is an over 31% increase when the system is ana-
lyzed in the stochastic manner. The considerable rise in MS cost
is mainly due to the numerous interactions that this system has
with other components whether within STS or not. This asserts
that uncertainties are more likely to impact MS.

6 CONCLUSION

The main purpose of this paper is to model a smart island con-
taining several components such as smart energy hub (SEH),
microgrid (MG), and smart transportation system (STS). Based
on the model, these components interactively exchange multi-
carrier energy including power, heat, gas and water. To provide
an example, the total cost of the metro system (MS) lessens
by providing the required water from SEH. Furthermore, the
optimal allocation of exchange points within MS is addressed
in this paper which significantly decreases the total cost. In
addition, since the uncertainties associated with different com-
ponents markedly impact the performance of the island, the
authors have reported the analysis of uncertain conditions. It
can be seen that in the proposed model, STS is more suscep-
tible to uncertainties because of the unpredictable road traffic
and the varying outputs of the renewable energy sources (RESs)
within MG. Accordingly, future works and researches can be
devoted to improving the accuracy of uncertainty quantification.
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664 ESAPOUR ET AL.

It is worth bearing in mind that the future grids would embrace
various sources of energy and they are likely not to be limited
to those mentioned here. Therefore, in addition to developing
more precise models for handling uncertainties, there is a need
to develop a model considering different sources and carriers
such as gas captured from electrolysers or chemical reactions.
The role of storages and their impacts on system operation is
also worth considering.

NOMENCLATURE

Sets/Indices

JV ∕v Set/index of EV fleets. J v= {1,…,6}.
J r∕r Set/index of city routes. J r= {1,…, 12}.
J t∕t Set/index of time. J t= {1,…,24}.
J n∕n Set/index of metro stations. J n= {1, …,6 }.

Constants

Bv
deg The degradation cost of EV fleet batteries.

Eev
s,r EV energy consumption while being driven

towards station s via the route r.
Res

max,R
es
min Maximum and minimum rate of storage bat-

teries charging.
Les

max,L
es
min Maximum and minimum level of storage bat-

teries charger.
Pseh

max, P
seh

min Maximum and minimum input or output
power of smart energy hub

av , bv , cv The updating coefficients of velocity in IWD
algorithm.

as , bs , cs The updating coefficients of soil in IWD algo-
rithm.

𝜇m, 𝜇IWD The updating coefficients of local and global
soil in IWD algorithm.

C ev
max,C ev

min Maximum and minimum capacity of the EV
fleet batteries.

R
ev,ch
max,Rev,ch

min Maximum and minimum charging rate of EV
fleet batteries.

R
ev,dch
max ,Rev,dch

min Maximum and minimum discharging rate of
EV fleet batteries.

P
seh,e
t ,Pseh,h

t Smart energy hub demands (Electricity and
heat) in time slot t.

B1n
v ,B2n

v ,B2n
i V2MG, V2M, and M2V/M2MG energy

exchange bidding prices
CCHP/CB/CT Nominal capacity of the

CHP/boiler/transformer.
D The number of drops in the cloud theory.

Itmax The maximum number of iterations in IWD
algorithm.

Variables

br
v,r ,n,t Binary variable related to the

city routes
Eev

total
The total energy exchanges
of EV fleets

RLev
v,r The amount of EV charging

of by the recharging lines
RC ev

v,r The EV electricity consump-
tion in the traffic of residen-
tial roads

Prb
n,t Maximum amount of regen-

erative braking energy (RBE).
Pseh

t The energy exchange
between SEH and the grid in
time slot t.

G
seh,in
t The input gas power of SEH

in time slot t.
G

boiler ,in
t ,G

chp,in
t The input gas power of CHP

and boiler in time slot t.
S es

t The remaining energy of
storages in SEH in time slot
t.

V dt
max,t Maximum volume of desali-

nation tank.
V st

t Secondary tank water volume
during time slot t.

V dt
t Desalination unit water vol-

ume in time slot t.
W

d ,out
t Desalination unit output

water in time slot t.
W

s,out
t The output of secondary tank

in time slot t.
W

d ,in
t The input of desalination unit

in time slot t.
W

d ,out
max Maximum output water of

desalination unit.
Pwdu

t Consumed power of the
water desalination unit

LS
IWD

The amount of soil loaded by
each IWD.

SIt ,GS The optimal solution of each
iteration, and the total opti-
mal solution

E1v2mg,E2v2m The capacity of EV fleet bat-
teries during V2MG, V2M

b
seh,ch
t ,bseh,dch

t The binary variables of charg-
ing and discharging modes of
smart energy hub storages.

P
seh,e
t ,Pseh,h

t Smart energy hub demands
(Electricity and heat) in time
slot t.

Dnewmetro
j ,t ,Dmetro

j ,t Metro demand after/before
making changes in the base
profile.

PV 2MG
v,t ,PV 2M

v,t V2MG, and V2M, energy
exchange.

PM2MG
n,t ,PMG2M

n,t Energy exchanges between
metro and microgrid.

P
V 2M ,ch
v,r ,n,t ,PV 2M ,dch

v,r ,n,t Charging and discharging
power while V2M exchang-
ing.
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ESAPOUR ET AL. 665

R
ev,ch
v,r ,n,t ,Rev,dch

v,r ,n,t Charging and discharging
rates of vehicle v on the
route r, at station n, at time t,
respectively.

V st
max ,V st

min Maximum and minimum
volume of desalination sec-
ondary tank.

W
d ,in

max ,W d ,in
min Maximum and minimum

input water of desalination
tank.

P
V 2MG ,ch
v,r ,t , P

V 2MG ,dch
v,r ,t Charging and discharging

power while V2MG exchang-
ing.

b
ev,ch
v,r ,n,t ,bev,dch

v,r ,n,t , bbev
v,r ,n,t Binary variables related to the

charging, discharging of the
EVs.

Pr o fitM , Pr o fitV , Pr o fitV 2MG ,
Pr o fitM2V , Pr o fitM2MG The profits of metro, EV

fleet, V2MG, M2V, M2MG,
and M2V, respectively.

𝜂loss
es ,𝜂ch

es , 𝜂dch
es The loss efficiency of

SEH storages, and charg-
ing/discharging efficiencies.

𝜂T
e ,𝜂ch

e , 𝜂dch
e ,𝜂G∕H

boiler
,𝜂G∕H

chp
,𝜂G∕E

chp
Transformer and charg-
ing/discharging efficiency,
and energy conversion effi-
ciency of: Gas/heat conver-
sion of the boiler; Gas/heat
conversion of the CHP;
Gas/electricity conversion of
the CHP.

cost v
deg,cos tM2MG ,costsbt ,costMetro The costs of EV batteries

degradation, M2MG, storage
batteries and metro demand
supply, respectively.

P
es,ch
t /P

es,dch
t Charging/discharging power

of the storage batteries in
time slot t.

ki Random value related to the
cloud theory

mi The membership degree
related to the cloud theory

NS The number of nodes in the
solution SIt

PIWD The probability of the next
move of each IWD

soil (i, j) The amount of soil on each
edge in IWD algorithm.

TV(IWD) The list of vertices traversed
by each IWD

VL(IWD) The velocity of each IWD.

FUNDING INFORMATION

None.

CONFLICT OF INTEREST

There is no conflict of interests.

DATA AVAILABILITY STATEMENT

Data would be available as per request from the authors.

REFERENCES

1. Parhoudeh, S., Baziar, A., Lopez, P.E., Moazzen, F.: Optimal stochastic
energy management of smart city incorporating transportation system and
power grid. IEEE Trans. Ind. Appl. (2020). https://doi.org/10.1109/TIA.
2020.3012938

2. Konstantinou, C.: Towards a secure and resilient all-renewable energy
grid for smart cities. IEEE Consum. Electron. Mag. 11(1), 33–41 (2021).
https://doi.org/10.1109/MCE.2021.3055492

3. Bokolo, A.J., Majid, M.A., Romli, A.: A trivial approach for achieving Smart
City: A way forward towards a sustainable society. In: 2018 21st Saudi Com-

puter Society National Computer Conference (NCC), Riyadh, Saudi Arabia, pp.
1–6 (2018)

4. Hayashi, Y., et al.: Versatile modeling platform for cooperative energy man-
agement systems in smart cities. Proc. IEEE. 106(4), 594–612 (2018)

5. Zhang, T., Pota, H., Chu, C.-C., Gadh, R.: Real-time renewable energy
incentive system for electric vehicles using prioritization and cryptocur-
rency. Appl. Energy. 226, 582–594 (2018)

6. Tom, R.J., Sankaranarayanan, S., Rodrigues, J.J.P.C.: Smart energy manage-
ment and demand reduction by consumers and utilities in an IoT-fog-
based power distribution system. IEEE Internet Things J. 6(5), 7386–7394
(2019)

7. Choi, J.S.: A hierarchical distributed energy management agent framework
for smart homes, grids, and cities. IEEE Commun. Mag. 57(7), 113–119
(2019)

8. Datta, U., Kalam, A., Shi, J.: The strategies of EV charge/discharge man-
agement in smart grid vehicle-to-everything (V2X) communication net-
works. In: Advanced Communication and Control Methods for Future
Smartgrids, p. 177, Intech Open, London (2019)

9. Xie, S., Hu, Z., Wang, J., Chen, Y.: The optimal planning of smart multi-
energy systems incorporating transportation, natural gas and active distri-
bution networks. Appl. Energy. 269, 115006 (2020)

10. Collotta, M., Sun, Y., Di Persio, L., Ebeid, E.S.M., Muradore, R.: Smart
Green Applications: From Renewable Energy Management to Intelli-
gent Transportation Systems. Multidisciplinary Digital Publishing Institute,
Basel, Switzerland (2018)

11. Alonso, J.I.G., Personal, E., Parejo, A., García, S., García, A., León, C.:
Forecasting recharging demand to integrate electric vehicle fleets in smart
grids. In: Advanced Communication and Control Methods for Future
Smartgrids. p. 199, Intech Open, London (2019)

12. Siano, P.: Demand response and smart grids—A survey. Renew. Sustain.
Energy Rev. 30, 461–478 (2014)

13. Aymen, F., Mahmoudi, C.: A novel energy optimization approach for elec-
trical vehicles in a smart city. Energies. 12(5), 929 (2019)

14. Cirimele, V., Diana, M., Freschi, F., Mitolo, M.: Inductive power transfer for
automotive applications: State-of-the-art and future trends. IEEE Trans.
Ind. Appl. 54(5), 4069–4079 (2018)

15. Rostami, M.A., Kavousi-Fard, A., Niknam, T.: Expected cost minimiza-
tion of smart grids with plug-in hybrid electric vehicles using optimal dis-
tribution feeder reconfiguration. IEEE Trans. Ind. Inf. 11(2), 388–397
(2015)

16. Pop, M.-D., Proștean, O.: A comparison between smart city approaches in
road traffic management. Procedia-Social Behav. Sci. 238, 29–36 (2018)

17. Amini, M.H., Mohammadi, J., Kar, S.: Distributed holistic framework for
smart city infrastructures: Tale of interdependent electrified transportation
network and power grid. IEEE Access 7, 157535–157554 (2019)

18. González-Gil, A., Palacin, R., Batty, P., Powell, J.P.: A systems approach to
reduce urban rail energy consumption. Energy Convers. Manag. 80, 509–
524 (2014)

19. Wang, X., Luo, Y., Zhou, Y., Qin, Y., Qin, B.: Hybrid energy management
strategy based on dynamic setting and coordinated control for urban rail

 17518695, 2023, 3, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/gtd2.12500 by N

ational H
ealth A

nd M
edical R

esearch C
ouncil, W

iley O
nline L

ibrary on [18/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1109/TIA.2020.3012938
https://doi.org/10.1109/TIA.2020.3012938
https://doi.org/10.1109/MCE.2021.3055492


666 ESAPOUR ET AL.

train with PMSM. IET Renewable Power Gener. 15, 2740–2752 (2021).
https://doi.org/10.1049/rpg2.12199

20. Jafari, M., Kavousi-Fard, A., Niknam, T., Avatefipour, O.: Stochastic syn-
ergies of urban transportation system and smart grid in smart cities con-
sidering V2G and V2S concepts. Energy. 215, 119054 (2021)

21. Aguado, J.A., Racero, A.J.S., de la Torre, S.: Optimal operation of electric
railways with renewable energy and electric storage systems. IEEE Trans.
Smart Grid. 9(2), 993–1001 (2016)

22. Liu, T., Zhang, D., Dai, H., Wu, T.: Intelligent modeling and optimiza-
tion for smart energy hub. IEEE Trans. Ind. Electron. 66(12), 9898–9908
(2019)

23. Ma, S., Zhou, D., Zhang, H., Weng, S., Shao, T.: Modeling and operational
optimization based on energy hubs for complex energy networks with
distributed energy resources. J. Energy Resour. Technol. 141(2), 022002
(2019)

24. Sheikh, M., et al.: Synergies between transportation systems, energy hub
and the grid in smart cities. IEEE Trans. Intell. Transp. Syst. 1–15 (2021).
https://doi.org/10.1109/TITS.20213069354

25. Sobhani, S.O., Sheykhha, S., Madlener, R.: An integrated two-level
demand-side management game applied to smart energy hubs with stor-
age. Energy. 206, 118017 (2020)

26. Coelho, A., Neyestani, N., Soares, F., Lopes, J.P.: Wind variability mitiga-
tion using multi-energy systems. Int. J. Electr. Power Energy Syst. 118,
105755 (2020)

27. Rastegar, M., Fotuhi-Firuzabad, M.: Load management in a residential
energy hub with renewable distributed energy resources. Energy Build.
107, 234–242 (2015)

28. Kleinschmidt, V., Hamacher, T., Perić, V., Hesamzadeh, M.R.: Unlocking
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