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Abstract

Monitoring trends in animal populations in arid regions is challenging due to

remoteness and low population densities. However, detecting species’ tracks
or signs is an effective survey technique for monitoring population trends

across large spatial and temporal scales. In this study, we developed a simula-

tion framework to evaluate the performance of alternative track-based moni-

toring designs at detecting change in species distributions in arid Australia.

We collated presence–absence records from 550 2-ha track-based plots for
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11 vertebrates over 13 years and fitted ensemble species distribution models to

predict occupancy in 2018. We simulated plausible changes in species’ distri-
butions over the next 15 years and, with estimates of detectability, simulated

monitoring to evaluate the statistical power of three alternative monitoring

scenarios: (1) where surveys were restricted to existing 2-ha plots, (2) where

surveys were optimized to target all species equally, and (3) where surveys

were optimized to target two species of conservation concern. Across all moni-

toring designs and scenarios, we found that power was higher when detecting

increasing occupancy trends compared to decreasing trends owing to the rela-

tively low levels of initial occupancy. Our results suggest that surveying 200 of

the existing plots annually (with a small subset resurveyed twice within a year)

will have at least an 80% chance of detecting 30% declines in occupancy for

four of the five invasive species modeled and one of the six native species. This

increased to 10 of the 11 species assuming larger (50%) declines. When plots

were positioned to target all species equally, power improved slightly for most

compared to the existing survey network. When plots were positioned to target

two species of conservation concern (crest-tailed mulgara and dusky hopping

mouse), power to detect 30% declines increased by 29% and 31% for these spe-

cies, respectively, at the cost of reduced power for the remaining species. The

effect of varying survey frequency depended on its trade-off with the number

of sites sampled and requires further consideration. Nonetheless, our research

suggests that track-based surveying is an effective and logistically feasible

approach to monitoring broad-scale occupancy trends in desert species with

both widespread and restricted distributions.

KEYWORD S
desert, detectability, ensemble models, indigenous tracking, sign-based tracking, simulation,
statistical power, threatened species

INTRODUCTION

Biodiversity monitoring is crucial for determining trends in
species and populations and how they respond to threat or
management intervention (Possingham et al., 2012; Yoccoz
et al., 2001). To be effective, monitoring must have clearly
articulated objectives defined early in the design process
(Lindenmayer et al., 2020), have sites positioned to overlap
with the distribution or potential distribution of focal spe-
cies (Steenweg et al., 2016), have sufficient resources to be
sustained for the time needed to detect changes in ecologi-
cal systems (Lindenmayer & Likens, 2018), account for
biases such as imperfect detection (Mackenzie &
Royle, 2005), and have adequate statistical power to detect
a change of interest when one actually occurs (Southwell,
Einoder, Lahoz-Monfort, Fisher, et al., 2019). Failing to
account for these requirements can waste scarce conserva-
tion resources that would be otherwise better spent directly
on management (McDonald-Madden et al., 2010).

An important consideration in the design of any mon-
itoring program that seeks to detect a trend or change in
a population is statistical power. Statistical power is the
probability of correctly rejecting the null hypothesis of no
change when a change in fact occurs (Taylor et al., 2007).
It is influenced by many decisions during monitoring
design, such as the choice of sampling method(s), the
number and location of sites, and the intensity and fre-
quency of sampling (Field et al., 2005). Limited budgets
and logistical constraints impose trade-offs in these deci-
sions that influence power; for example, increasing the
number of sites might come at the cost of the time spent
sampling sites. Many studies have used spatial prioritiza-
tion tools to optimize survey locations (Amorim
et al., 2014; Moran-Ordonez et al., 2018) or used simula-
tion to determine the number of sites needed to detect
population change (Southwell, Einoder, Lahoz-Monfort,
Fisher, et al., 2019; Steenweg et al., 2016). However, to
the best of our knowledge, no studies have combined
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these components into a single monitoring design
framework.

Monitoring in arid regions around the world poses
considerable challenges due to limited accessibility, the
relatively sparse distribution and large movement
patterns of species, and the difficulty in detecting individ-
uals during surveys (Dickman et al., 2018). High varia-
tion in population dynamics in response to irregular
rainfall-induced pulses in food resources also makes
monitoring challenging (Letnic & Dickman, 2010;
Moseby et al., 1999; Yang et al., 2010). In Australia, very
little biodiversity monitoring has occurred in arid
regions, despite the fact that these areas have experienced
a substantial loss of species in recent decades: an esti-
mated 60% of native mammal species in arid Australia
are now extinct (Burbidge & McKenzie, 1989; Woinarski
et al., 2014) and native species continue to be threatened
by habitat degradation, changed fire regimes, introduced
herbivores, and invasive predators. Large-scale monitor-
ing coordinated across tenures is needed to understand
further changes in the status, trends, and distributions of
species in arid zones in response to climate change,
threats, and management intervention.

Track-based monitoring offers a practical and rapid
way to monitor cryptic species, or those found at low
densities, over large spatial scales (Allen et al., 1996;
Moseby et al., 2020; Southgate et al., 2005). It is relatively
simple to implement and more cost-effective than trap-
ping individuals or attempting direct counts
(Caughley, 1977; Engeman, 2005). In arid Australia, a
standardized 2-ha plot track-based monitoring protocol
(also known as sign plots, tracking plots, sandplots; here-
after referred to as 2-ha plots) has been widely adopted
by environmental consultants, Indigenous ranger groups,
nongovernmental organizations (NGOs), and some gov-
ernment agencies for both surveillance and targeted
monitoring of native (including threatened) and invasive
species (Moseby et al., 2009; Southgate & Moseby, 2008).
The approach is best suited to sandy substrates, favoring
mammal, bird, and reptile species whose tracks are read-
ily distinguishable, and builds on the strong tracking tra-
dition of Indigenous Australians who continue to be the
custodians of most desert regions.

Despite its widespread use over the last decade or
more, 2-ha plot monitoring is usually conducted by indi-
vidual organizations without any overarching coordina-
tion or attempt to collate and interrogate data across
regional or national scales. Here, we suggest that a
wider attempt to pool track-based data across arid
Australia and coordinate monitoring efforts across juris-
dictions and organizations could significantly contribute
to an understanding of regional or national population
trends in arid zone species if designed correctly.

A coordinated national or regional 2-ha plot monitoring
program would strengthen the quality and consistency
of tracking protocols, showcase the conservation work
being conducted by Indigenous and other groups in
Australian deserts, promote more widespread and con-
sistent use of the 2-ha plot technique, allow analysis of
spatiotemporal trends, enable better understanding of
ecological processes operating over large temporal and
spatial scales, and enable the evaluation of broad-scale
management actions (such as prescribed burning or
predator control).

In this paper, we describe a general simulation
framework for deciding where and how much survey
effort is needed to detect changes in species occupancy.
We applied our simulation framework to evaluate the
performance of alternative 2-ha plot monitoring designs
at detecting change in the distribution of vertebrates
across a vast area (�700,000 km2) of arid South
Australia (SA). We collated 2-ha-plot data collected over
the past 13 years in SA and fitted species distribution
models (SDMs) to these data to predict the current dis-
tribution of 11 threatened and invasive vertebrates.
Based on these maps, we simulated plausible changes in
these distributions over the next 15 years, ranging from
10%–90% increases/decreases in occupancy. We then
simulated monitoring data at 2-ha plots using realistic
estimates of detectability and calculated the statistical
power of three alternative monitoring scenarios: (1) sur-
veys were restricted to existing 2-ha plots, (2) surveys
were repositioned to optimally target all species equally,
and (3) surveys were repositioned to optimally target
two species of conservation concern.

We used our simulation approach to explore four
questions: (1) Which predictors best explain the distri-
bution of threatened and invasive species in arid SA?
(2) How does the number of sites, within-year sam-
pling, and monitoring frequency influence the power
to detect occupancy trends? (3) Does power increase
when new monitoring sites are established in regions
with highest predicted occupancy? (4) Does the
weighting of species change the optimal locations for
surveys and power? Our approach will assess the likely
performance of the existing 2-ha plot network at
detecting population trends and prioritize regions to
establish new plots depending on how species are
weighted. Although we apply our simulation frame-
work to evaluate a 2-ha plot network in arid Australia,
it could easily be used to inform key design decisions
for any large-scale biodiversity monitoring program
where occupancy is the state variable of interest.
Detecting population trends when they occur is crucial
for avoiding species extinctions and for triggering
timely management interventions.

ECOLOGICAL APPLICATIONS 3 of 18
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METHOD

Study area

Our study area (728,481 km2) included the sandy inland
deserts of SA that fall within the Arid Lands and the
Alinytjara Wilurara (AW) landscape regions (Figure 1a).
The Arid Lands cover over half of SA, encompassing the
state’s northeast corner where pastoralism is the domi-
nant land use. The AW landscape region in the state’s
northwest is composed mainly of Indigenous plus conser-
vation lands. The study area covers nine bioregions, with
habitats including low plains, stony plains, sandy desert

dune fields, and ephemeral inland river systems. The
region is extremely arid, with <200 mm annual rainfall
in some parts. Rainfall rarely follows predictable cycles
and is usually the result of episodic weather events
(Morton et al., 2011).

Target species

We held a 1-day workshop with relevant land manage-
ment organizations to identify target species and objec-
tives of any future 2-ha plot monitoring program in arid
SA. In total, 15 species were of interest to decision
makers, covering a range of taxa that we categorized into
three broad groups:

1. Introduced species: camel (Camelus dromedarius),
red fox (Vulpes vulpes), cat (Felis catus), rabbit
(Oryctolagus cuniculus), and cow (Bos taurus, Bos
indicus). Species in these groups have widespread
distributions, and their sign is frequently recorded.
Monitoring their distribution is important for under-
standing the level of threat they pose and informing
management outcomes and priorities.

2. Native species with widespread distributions and
of cultural significance to traditional owners:
dingo (Canis familiaris dingo), bustard (Ardeotis
australis), emu (Dromaius novaehollandiae), large
macropods (Osphranter rufus, Osphranter robustus,
Macropus fuliginosus), echidna (Tachyglossus
aculeata), goanna (Varanus spp.), and malleefowl
(Leipoa ocellata). Although species in this group
have large distributions, they are not all common.
For example, the malleefowl is of conservation
concern because of ongoing population declines
despite its large geographic range (Benshemesh
et al., 2020).

3. Native species with limited distributions: crest-tailed
mulgara (Dasycercus cristacauda), dusky hopping
mouse (Notomys fuscus) and great desert skink
(Liopholis kintorei). These species were considered pri-
orities for regional conservation managers due to their
conservation concern.

Collating and processing 2-ha-plot data

We negotiated data sharing agreements with data holders
and collated 17 separate 2-ha-plot data sets collected
between 2005 and 2018 (Figure 1b). In total, surveys were
conducted by six to eight experienced field ecologists fol-
lowing a standardized protocol, with Indigenous ranger
teams for some sites (Moseby et al., 2009). Observers

F I GURE 1 Location (black dots) of 2-ha plots in (a) Australia

and (b) South Australia. The gray shaded region shows our study

area. The black dotted line is the dog-proof fence, which was used

as a predictor in species distribution models. Salt lakes or pans,

which are inhospitable for our target species, were masked from

the study area.
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searched each plot (100 � 200 m) for 25–30 min, with
species recorded as present if there was evidence of
tracks, diggings, burrows, or scats. Detected signs were
aged as being 1–2 days old, 3–7 days old, or >7 days.

We pooled these data, producing a combined data set
of 400 plots in the SA Arid Lands region and 150 plots in
the AW region. Surveys in the AW NRM region were
sometimes repeated within years. We collapsed these
repeats and recorded a species as present if it was
recorded at least once. We assumed a species was present
regardless of the recorded age of sign/track.

Initial inspection of the data set revealed that the
names of species or animal types had been idiosyncrati-
cally recorded (i.e., there was inconsistency between
scientific and common names, diverging capitalization,
and alternate punctuation or nomenclature). We created
a naming key to group synonymous names using
the tidyverse package in R (R Development Core
Team, 2014) (Appendix S1).

Some species, such as hopping mice, could not be iden-
tified from their tracks to the species level in the field, but
some species are known to have relatively distinct and sep-
arated geographic ranges. In consultation with experts, we
assigned hopping mouse records as Notomys fuscus if they
were recorded within this species’ known geographic
range. We discarded hopping mouse records from outside
of this range because we could not confidently distinguish
between two species that coexist in the southwest of the
study area: Notomys alexis and Notomys mitchelli. Similarly,
sympatric goanna species can be difficult to distinguish
from tracks, as can sympatric large kangaroos; most
records of these animals are made at the genus level, with
only a small number of species records. We therefore
grouped all goanna and kangaroo detections at the genus
level.

Environmental predictors

We compiled a list of 20 environmental predictors used
in previous studies that modeled the distribution of our
target species (Table 1). Because our aim was to produce
occupancy maps at a landscape scale, we were limited to
predictors that were mapped across SA. We considered
both static and dynamic variables. Static variables included
climatic variables (eight Bioclim variables), terrain vari-
ables (elevation, topographic ruggedness, slope) and envi-
ronmental variables (soil clay content, vegetation type,
distance to permanent natural water features, distance to
nearest agricultural land tenures, soil bulk density, soil
calcrete content). We digitized a map of a 5400-km fence
that runs through the middle of the study region to protect
the sheep industry from dingoes (Figure 1). This fence is

thought to limit the distribution of larger-bodied species,
such as dingoes, emus, and cattle. We included two
dynamic variables in our SDMs: total annual rainfall and
mean Normalized Difference Vegetation Index (NDVI) for
each survey year. We calculated total annual rainfall in
the year prior to the first survey so that the effect of a
1-year lag could be explored (see Table 1 for descriptions
of each variable). We obtained raster layers of each vari-
able and extracted values at 2-ha plots using the raster
package (Hijmans & van Etten, 2012) in R after
resampling each to a resolution of 1 km. We standardized
all covariates by their mean and standard deviation prior
to model fitting.

Fitting SDMs

We developed dynamic SDMs to predict species occupancy
across the study area. We fitted models using the complete
data set and predicted occupancy in 2018. Prior to model
fitting, we reduced our candidate set of predictors follow-
ing two steps. First, we assessed the univariate importance
of each predictor on species occupancy by fitting general-
ized additive models (GAMs). We calculated pairwise
Spearman correlation coefficients and removed predictors
with the lowest univariate importance from highly corre-
lated pairs (jrj > 0.7) (Dormann et al., 2013). Second, to
avoid overfitting, we removed predictors with the lowest
univariate importance until the ratio between the number
of predictors (including quadratic terms) and the number
of presences/absences (whichever was lowest) was greater
than 20 (Harrell, 2001). This resulted in a unique set of
predictors for each species. At this point, the great desert
skink, echidna, and malleefowl were excluded from our
analysis due to insufficient detections.

We adopted an ensemble approach to building SDMs
(Araujo & New, 2007) by fitting models using three algo-
rithms: generalized linear models (GLMs), boosted
regression trees (BRTs), and random forests (RFs).
Ensemble modeling is considered best practice in many
fields of forecasting (such as climate science) because
multimodel averages often yield better predictions than a
single model (Johnson & Omland, 2004). For each algo-
rithm we assumed a binomial error distribution with
logit link. GLMs were fitted to predictors with both linear
and quadratic terms using backward stepwise selection to
find the combination of terms with the lowest ranked
AIC value (Akaike, 1973). BRTs were estimated using the
dismo package (Hijmans et al., 2011), with a tree com-
plexity of 2, a bag fraction of 0.75, and a learning rate of
0.01 (Elith et al., 2008). RFs were fitted with 1000 trees
and a minimum node size of 20 in the randomForest
package (Liaw & Wiener, 2002).

ECOLOGICAL APPLICATIONS 5 of 18
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TAB L E 1 Summary of predictor variables used to build species distribution models. Predictor variables are grouped as climatic,

topographic, or environmental; they were selected on the basis of reviews of previous work (cited in Column 6, “Justification”) that
examined the distribution(s) of species considered in this study.

Predictor Source Resolution Range/unit
Static/

dynamic Justification

Climatic

Annual mean
temperature

BioClim (Bio1)a 1 km 14.4 to 23.4 (�C) Static Relevant to vegetation
growth (Roy-Dufresne
et al., 2019; Legge
et al., 2017)

Annual rainfall Australian Water
Availability Project
(AWAP) (Jones
et al., 2009)

5 km 0.70 to 335.6
(mm)

Dynamic Relevant to vegetation
growth and soil water
content (Southgate &
Moseby, 2008; Allen
et al., 2018; Letnic &
Dickman, 2006;
Roy-Dufresne
et al., 2019)

Temperature annual
range

BioClim (Bio7)a 1 km 23.4 to 34.5 (�C) Static Relevant to vegetation
growth

Temperature
seasonality

BioClim (Bio4)a 1 km 3.9 to 6.7 (�C) Static Relevant to vegetation
growth (Roy-Dufresne
et al., 2019)

Isothermality (mean
diurnal range/
annual temperature
range)

BioClim (Bio3)a 1 km 0.42 to 0.52 Static Relevant to vegetation
growth

Mean diurnal
temperature range

BioClim (Bio2)a 1 km 11.4 to 15.9 (�C) Static Relevant to vegetation
growth

Maximum temperature
in warmest month

BioClim (Bio5)a 1 km 28.9 to 39.9 (�C) Static Some species (i.e., rabbit)
cannot tolerate
extremely high
temperatures (Roy-
Dufresne et al., 2019;
McDonald et al., 2015)

Minimum temperature
in coldest month

BioClim (Bio6)a 1 km 1.3 to 6.6 (�C) Static Some species (i.e., rabbit)
cannot tolerate
extremely low
temperatures (Roy-
Dufresne et al., 2019;
Southgate et al., 2007)

Precipitation in wettest
month

BioClim (Bio13)a 1 km 40.7 to 146.0
(mm)

Static Relevant to vegetation
growth and soil water
content

Topographic

Elevation GeoScience Australia 100 m �20.7 to 981.5
(m)

Static Can influence vegetation
type and temperature
(Southgate et al., 2007;
Skroblin et al., 2019)

Terrain roughness GeoScience Australia 100 m 0 to 558.6 Static McDonald et al. (2015);
Legge et al. (2017);
Skroblin et al. (2019)

Slope GeoScience Australia 100 m 0 to 21.8 (�C) Static Can influence runoff and
moisture availability

(Continues)
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Model evaluation

We conducted cross-validation to measure the predictive
performance of our models. We calculated four different
performance measures for each SDM: sensitivity (propor-
tion of observed presences that are correctly predicted);

specificity (proportion of observed absences that are cor-
rectly predicted); true skill statistic (TSS), which indicates
how well the model separates presences from absences;
and area under the receiver operating characteristic curve
(AUC). An AUC value of 0.5 indicates a model
performing no better than a randomly generated one,

TAB L E 1 (Continued)

Predictor Source Resolution Range/unit
Static/

dynamic Justification

Environmental

Percentage soil clay
content

CSIRO, Australiab 1 km 4.3 to 54.9 (%) Static Can be a proxy for
drainage, fertility, and
vegetation type (Allen
et al., 2018;
Roy-Dufresne
et al., 2019; Stafford
Smith & Morton, 1990;
Roy-Dufresne
et al., 2019)

Soil bulk density CSIRO, Australiab 1 km 0.82 to 1.61 Static Can be a proxy for
drainage, fertility, and
vegetation type

Soil calcrete CSIRO, Australiab 1 km �0.3 to 1 Static Can be a proxy for
drainage, fertility, and
vegetation type
(Southgate et al., 2007)

Distance to nearest
permanent water
features

GeoScience Australia 1 km 0 to 1.96 Static Permanent water can be a
good proxy source to
find perennial
vegetation and
vegetation with greater
percentage of water
content (Roy-Dufresne
et al., 2019; Allen &
Fleming, 2012)

Annual NDVI Google Earth Engine
(Gorelick et al., 2017)

1 km �945 to 5511 Dynamic Can be a more direct
measure of vegetation
condition and soil
moisture than rainfall
(McDonald et al., 2015;
Young et al., 2022)

Distance to agricultural
areas

South Australia
Government Data
Directoryc

1 km 0 to 408 (km) Static Pasture is an important
source of food for some
species such as rabbits
(McDonald et al., 2015;
Roy-Dufresne
et al., 2019)

Dog-proof fence Government of South
Australia Department of
Primary Industries and
Regions

1 km 1 (inside fence),
0 (outside
fence)

Static The fence may limit
movement of larger-
bodied species

ahttp://www.worldclim.org/bioclim.
bhttp://www.asris.csiro.au/.
chttps://data.sa.gov.au/data/dataset/land-use-aclump.
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whereas an AUC of 1 indicates optimal performance
(Pearce & Ferrier, 2000). Cross-validation was conducted
with the packages PresenceAbsence (Freeman &
Moisen, 2008) and ecospat (Di Cola et al., 2017).

Predicting probability of occurrence

We predicted the probability of occupancy of each species in
SA using an ensemble approach. We resampled all raster
layers at a resolution of 1 km and predicted the probability of
occupancy in 2018 with each of the three algorithms using
the yearly raster layers of mean NDVI and total rainfall for
that year. We calculated the ensemble projection by averag-
ing across the three algorithms, weighted by their cross-
validation TSS score (Araujo & New, 2007). To avoid
predicting outside of the environmental domain sampled,
we masked predictions to within a 50-km buffer around the
sampled 2-ha plots. We checked that the environmental
domain of the 2-ha plots was representative of this prediction
space (Appendix S2). We also masked out dry lakes, pans,
andwater bodies where species were unlikely to occur.

Simulating changes in occupancy and
estimating statistical power

We used a spatially explicit simulation tool developed by
Southwell, Einoder, Lahoz-Monfort, Gillespie, et al.
(2019) to estimate the statistical power of alternative
2-ha-plot monitoring designs at detecting future occu-
pancy trends. The tool runs in R (R Development Core
Team, 2014) and requires occupancy raster layers as a
starting point for simulating likely trends in occupancy
(either increasing or decreasing) over a monitoring hori-
zon. Users specify species-specific estimates of detection
probabilities for a given sampling method, the direction
and magnitude (i.e., the effect size) of likely occupancy
trends, and the location, frequency (i.e., survey years),
and duration of surveys (i.e., number of days).

Using these inputs, the tool simulates likely detec-
tion histories for target species as the result of two
binomial processes: whether a species is present or not
at a plot, given by the probability of occupancy, and, if
present, whether it is detected or not, given by the
probability of detection and the number of repeated
visits. Detection histories are simulated n times; statisti-
cal power is calculated as the proportion of those times
that the modeled trend in occupancy is detected from
the simulated data sets (Figure 2). A more detailed
description of the simulation framework can be found
in Southwell, Einoder, Lahoz-Monfort, Gillespie,
et al. (2019).

We used the ensemble SDMs developed as described
earlier to initiate simulations and provide a realistic snap-
shot of the current distribution of priority species. We
obtained single-visit detection probabilities for 2-ha-plot
surveys for seven species (hopping mouse, dingo, fox, cat,
camel, rabbit, kangaroo) from Southgate et al.
(unpublished) (Appendix S3). For species without detec-
tion estimates, we assumed that detectability was equal
to the most similar species listed previously in terms of
body mass and size of the sign/track (Garrard
et al., 2013). For example, we assumed that the detect-
ability of the crest-tailed mulgara and dusky hopping
mouse sign was equal to the hopping mouse. A full list of
detectability estimates is provided in Appendix S3.

Monitoring scenarios

We estimated power for three alternative 2-ha-plot moni-
toring design scenarios that focused on different target
species groups. In Scenarios 1 and 2, the monitoring
objective was to detect simulated changes in occupancy
across all three species target groups (introduced species,
native species with widespread distributions, and native
species with limited occupancy). In Scenario 3, the moni-
toring objective was to detect simulated changes in occu-
pancy for species of conservation concern (dusky
hopping mouse, crest-tailed mulgara).

In Scenario 1, we surveyed existing 2-ha plots only. In
Scenarios 2 and 3, we identified new locations for 2-ha
plots using the spatial prioritization tool Zonation
(Lehtomaki & Moilanen, 2013). Zonation uses a reverse
stepwise heuristic to iteratively remove cells from the
landscape based on the biodiversity value (in this case
occupancy), connectivity, and representation of biodiver-
sity features (in our case, species). Cells are ranked from
0 (lowest priority) to 1 (highest priority) (Cabeza
et al., 2004).

We ran Zonation using the ensemble SDMs as biodi-
versity features (1-km resolution). We ran all analyses
using the “core area” function with a warp factor of 1000
(the number of cells removed each iteration). In Scenario 2,
we ran the prioritization for all species to ensure ade-
quate representation. In Scenario 3, we ran Zonation for
the two native species with limited distributions only
(dusky hopping mouse, crest-tailed mulgara), so that the
positioning of plots in the landscape targeted just these
species. In both scenarios, we randomly selected plot
locations from the top ranked 10% of cells in the
landscape.

For all three scenarios, we varied the number of plots
surveyed from 50 to 700, the number of within-year
repeats from one to three, and the survey frequency from
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1 to 5 years. We also explored a monitoring design where
there was a simple trade-off between survey frequency
and the number of plots, such that the total number of
plots surveyed over the monitoring horizon remained
constant (see Appendix S6 for details). For each scenario
and design, we tested power to detect both increasing
and decreasing trends in species occupancy, ranging from
10% to 90% of current levels. In all cases, we ran 1000
simulations (n) for each scenario, species, and effect size
and conducted a two-tailed test with a type I error rate of
α = 0.05 to calculate power. A summary of the simula-
tion framework is presented in Figure 2.

RESULTS

All species listed at the stakeholder workshop were
detected at least once during surveys. After collapsing
within-year surveys, the most commonly detected species
was the dingo (n = 878), followed by the rabbit

(n = 804), fox (n = 780), camel (n = 635), cow (n = 582),
cat (n = 534), dusky hopping mouse (n = 304), crest-
tailed mulgara (n = 266), emu (n = 257), goanna
(n = 203), kangaroo (n = 186), bustard (n = 79),
echidna (n = 35), great desert skink (n = 19), and
malleefowl (n = 18). We fitted SDMs to 11 of these species;
the bustard, echidna, great desert skink, and malleefowl
were excluded due to relatively few detections.

Predictor variables

Climate variables showed the highest cross-validated uni-
variate importance for most species compared to topo-
graphic or environmental variables. For the climatic
predictors, isothermality was ranked in the top three
predictors for nine of the 11 species, followed by tempera-
ture seasonality (seven species), mean diurnal tempera-
ture range (four species), annual mean temperature (two
species), and a 1-year lag in yearly rainfall (two species).

F I GURE 2 Conceptual diagram of spatially explicit power analysis framework.

ECOLOGICAL APPLICATIONS 9 of 18
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The most important topographic predictors were soil clay
content and soil calcrete content; however, these were
ranked in the top three variables for only two species
each. The dog-proof fence had little influence on the dis-
tribution of species except for the emu. The ensemble
univariate response of predictors for each species is
presented in Appendix S4.

Species distribution models

Mean predictive performance of the ensemble SDMs was
high (AUC, range 0.87–0.95) for all species (Appendix S5).
RF was consistently the best performing algorithm in
terms of AUC, TSS, sensitivity, and specificity compared to
BRTs and GLMs. Our ensemble SDMs predicted rabbits
and dingoes to be most widespread across arid SA. Foxes
and cats were also relatively widespread but had lower
predicted occupancy in the northeast part of the study
region. In contrast, dusky hopping mice and crest-tailed
mulgara were predicted to occur in the central and north-
east of the study region (Figure 3).

Number of 2-ha plots, within-year repeats
and frequency

Across all scenarios, power increased as the number of
plots and within-year surveys increased (Figure 4). Our
simulations suggest that surveying 100 plots twice per year
has a greater than 80% chance at detecting 30% declines in
occupancy for one of the 11 species modeled (fox) over the
next 15 years (Figure 5). This increased to eight of the
11 species when we assumed a 50% decline in occupancy
(kangaroo, emu, and goanna had <80% power). Increasing
the number of plots to 200 improved power to detect
declines in all species. There was less than an 80% chance
at detecting 30% declines in five of the 11 species (fox,
dingo, cow, rabbit, and camel) and a 50% decline in ten of
the 11 species. Surveying 500 plots twice per year detected
30% declines in all species except for the kangaroo.

For any given effect size and number of plots,
there was a higher chance of detecting increasing
occupancy trends compared to decreasing trends.
Power decreased for all species as the years between
surveys increased when the number of plots surveyed
remained constant (Figure 5). In contrast, power was
generally stable or increased as the years between sur-
veys increased when there was a simple trade-off in
the number of sites and survey frequency. This was
because the number of plots surveyed on each occa-
sion increased by a large amount as the years between
surveys increased.

Optimal location of 2-ha plots

Targeted monitoring toward regions ranked in the top
10% by Zonation resulted in gains in power for most
species (Figure 6). When all target species groups
were included in the prioritization (Scenario 2), power
to detect 30% declines in occupancy increased for the
most widespread native species and two species with
restricted distributions—crest-tailed mulgara (14%),
kangaroo (20%), dusky hopping mouse (16%), emu (21%),
and goanna (15%)—compared to when the existing
network of plots were monitored (Figure 5). When plots
were positioned based on the predicted distribution of
the two range-restricted species (dusky hopping mouse
and crest-tailed mulgara; Scenario 3), the power to detect
30% declines in these species increased by 31% and 29%,
respectively, compared to when the existing network of
plots was surveyed (Figure 5). In this scenario, only
around 150 plots are needed to detect 30% declines in
the occupancy of these two species with approximately
90% power.

DISCUSSION

While 2-ha-plot surveys have been conducted across
arid Australia for almost two decades, there has been no
attempt to assess the survey effort needed at regional or
national scales to detect occupancy trends over time. In
this study, we collated 2-ha-plot data from 17 data sets
in arid SA, screened data for inconsistencies in species
records, developed SDMs, identified new regions for sur-
veys using spatial prioritization software assuming three
monitoring scenarios (focusing on all or one of three
species target groups), and applied a spatially explicit
simulation tool to evaluate the likely performance of
alternative monitoring designs at detecting occupancy
trends. Many studies have used spatial prioritization
tools to optimize survey locations (Amorim et al., 2014;
Moran-Ordonez et al., 2018) or used statistical methods
to determine the number of sites needed to detect popu-
lation change (Southwell, Einoder, Lahoz-Monfort,
Fisher, et al., 2019; Steenweg et al., 2016). However, to
our knowledge, this is the first study that combines
these components into a single monitoring design
framework.

Influence of design decisions on power

For any given monitoring design and effect size, there
was a higher chance at detecting increasing occupancy
trends compared to decreasing trends. This is because
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F I GURE 3 Predicted probability of occupancy for target species from ensemble species distribution models ranging from 0 (light gray)

to 1 (dark blue). Predictions are constrained to the study area, with salt lakes or pans, which are inhospitable for these species, masked as

white.
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species occupancy at the start of simulations was closer
to zero than one, which meant that an increasing trend
resulted in a larger absolute change in occupancy for a
given effect size. The implication of this result is that
designing a monitoring program to detect increases in
species occupancy may not have sufficient power to also
detect declines. Having adequate power to detect declines
is especially important to ensure that populations do not
unknowingly reach critically low levels. Our simulations
suggest that monitoring 200 plots of the existing network

has an 80% chance at detecting 30% declines in five of the
11 species. These species included four introduced species
and the dingo, which are widespread and relatively com-
mon. Surveying 200 plots annually should be feasible
given that 187 plots were surveyed on average each year
in our data set. However, if the goal is to detect 30%
declines in the rarer species with limited distributions,
then more of the existing 2-ha-plot network should be
surveyed or new plots should be established in areas with
the higher predicted occupancy for these species. For

F I GURE 4 Statistical power (y-axis) to detect occupancy trends in 11 species over 15 years depending on number of 2-ha plots surveyed

each year (x-axis), the magnitude of change (30% or 50%), the direction of change (increasing or decreasing), and the number of within-year

repeat surveys (1–3). The dashed horizontal line represents 80% power.
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example, the power to detect 30% declines in the crest-
tailed mulgara and dusky hopping mouse when 200 of
the existing sites were monitored was 0.69 and 0.62,
respectively. However, this increased to 0.94 and 0.88 in
Scenario 3 when 150 plots were repositioned in the top
10% of habitat for these species.

Although power was highly sensitive to the number
of plots, it was influenced to a lesser extent by the num-
ber of repeat surveys within a year. Across all species and
scenarios, increasing the number of within-year surveys
increased the power to detect occupancy trends. The gain
in power was generally greater when the number of
within-year surveys increased from one to two compared
to two to three. Importantly, sign can go undetected by
observers during 2-ha-plot surveys even by experienced
field ecologists. Plots, or a subset of plots, should there-
fore be surveyed twice a year across different parts of the
landscape so that detectability can be explicitly accounted

for when estimating occupancy trends (MacKenzie
et al., 2002). However, given the remoteness of most 2-ha
plots, it will not be practically feasible to resurvey all
plots twice each year. There is little guidance in the
occupancy-detection literature on how monitoring effort
should be spent between the number of sites surveyed
and the number of repeat surveys. Mackenzie and Royle
(2005) recommended surveying more sites less inten-
sively for rare species and fewer sites more intensively for
common species. To explore this further, we ran an addi-
tional scenario that changed the proportion of plots
resurveyed with the total number of plots fixed at
200 (Appendix S7). We found that resurveying only a
small subset of the 200 (i.e., <20) was still sufficient to
account for detectability when estimating occupancy
trends, resulting in very little loss of power.

An important consideration in any monitoring pro-
gram is the survey frequency. More effort can sometimes

F I GURE 5 Power (y-axis) to detect 30% declines (left) and 30% increases (right) in occupancy when the time between surveys increases

from 1 to 5 years. In the top row, the same number of plots are surveyed in each survey year regardless of the time between surveys. In the

bottom row, the number of plots surveyed in each survey year increases as the time between surveys increases so that the total number of

surveys over 15 years remains constant.
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be allocated to the number of plots, or the time spent at
plots, if monitoring is not required regularly (Einoder
et al., 2018). We explored monitoring scenarios where the
survey frequency varied from 1 to 5 years with and with-
out a simple trade-off in the number of plots surveyed on
each occasion (Appendix S6). Not surprisingly, surveying
less frequently reduced power, assuming the same num-
ber of plots is surveyed on each occasion. In contrast,
power stabilized or increased slightly as survey frequency
increased when a simple trade-off with the number of
plots was imposed. However, this result should be treated
with caution because the optimal survey frequency will
depend critically on the relationship between frequency
and the number of sites, and it is unlikely to be linear in
practice. The most appropriate survey frequency should
also depend on additional factors not considered in our

framework, such as logistical constraints, the status of
target species (i.e., it might be more important to monitor
threatened species with small populations more fre-
quently), and the generation length of target species.
Monitoring frequency should also be synchronized, if
possible, with natural peaks and troughs in populations,
which is particularly challenging in arid Australia
because “boom-bust” cycles are irregular and difficult to
anticipate (Dickman et al., 2018).

Using the spatial prioritization software Zonation, we
evaluated power with plots targeted toward regions of
highest predicted occupancy across all species (Scenario 2)
as well as only toward two species of conservation con-
cern (Scenario 3). Optimizing the locations of plots across
all species generally increased power for most when com-
pared to the existing network (Scenario 2), with the

F I GURE 6 Top 10% of cells prioritized by Zonation (green; top row) when all species are weighted equally (left) and when the species

with limited distributions, crest-tailed mulgara and dusky hopping mouse, are prioritized (right column). The bottom row shows the change

in power to detect 30% declines in occupancy when 200 plots are targeted toward the highest ranked cells compared to existing plots.
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exceptions of the cat and the camel, because these species
are widespread and common. However, gains in power
were relatively small, probably because the existing net-
work is relatively extensive and already targets high-
quality habitat (Pedler et al., 2016). Repositioning plots to
target the dusky hopping mouse and crest-tailed mulgara
(Scenario 3) further increased power for these species,
but this came at the cost of decreasing power for others,
such as the cat and emu, which were predicted to be less
prevalent in this part of the study region. Optimizing site
locations also did not increase power to sufficient levels
to detect 10% declines in these species. This component
of our analysis demonstrates how the monitoring objec-
tive and target species must be defined early in the design
stage because they have substantial influence on survey
location and effort.

We could not fit SDMs for four species (bustard,
malleefowl, echidna, great desert skink) because either
there were too few detections or detections were too
clumped in geographic space. We also grouped kangaroo
and goanna detections at the genus level due to the lim-
ited number of recordings at the species level. These spe-
cies were most likely absent from plots as opposed to
being misidentified or overlooked due to low rates of
detection. Power to detect decreasing occupancy trends
in these species with 2-ha-plot surveys will therefore be
low unless an extremely large number of plots is
established. Alternatively, if this level of survey effort is
not feasible, then alternative survey approaches should
be considered for those species that are more sensitive to
population change, such as abundance or activity mea-
sures derived from live or camera trapping. For example,
malleefowl are being successfully monitored across their
distribution with a high level of power by recording the
number of active nesting mounds, with sites carefully
selected to encompass a range of habitat and manage-
ment regimes (Benshemesh et al., 2018, 2020).

Further considerations

Our analysis highlighted key considerations for the
implementation of a regional or national 2-ha-plot moni-
toring program. First, the rate of false positives will affect
inferences about occupancy trends. We expect the rate of
false positives to be relatively low in our data set since
most of the 2-ha-plot data used here were collected by six
to eight skilled and highly trained field ecologists. How-
ever, ensuring observers are adequately trained in the
monitoring method and protocol is crucial to the success-
ful implementation of a future 2-ha-plot monitoring pro-
gram. Second, even if species were identified correctly,
there were inconsistencies in our data set in how species

were recorded. We attempted to reduce this source of
error by screening species names, grouping or separating
species if necessary (such as dusky hopping mouse); how-
ever, this was not always possible. This is potentially a
major source of data loss if individuals or groups moni-
tor 2-ha plots without a standardized protocol and data
screening. Finally, we did not specify the exact location
to establish new monitoring sites; rather, we used Zona-
tion to identify regions that maximize power. The exact
placement of sites within the top 10% of the study area
will likely depend on logistical constraints and alterna-
tive monitoring objectives across organizations. For
example, we assumed that the goal of monitoring was to
detect trends in occupancy, but sites could be further
stratified across vegetation types or fire histories within
these regions to answer local questions about the influ-
ence of threats or about management effectiveness.

CONCLUSION

We provide a simulation framework that can inform
decisions about where, when, and how to conduct a
monitoring program to maximize power to detect
changes in species distributions. Using this framework,
we demonstrated that 2-ha-plot surveys were suitable
for monitoring species with either large or limited distri-
butions in Australia’s deserts, as long as their sign was
readily identified and they were detected frequently
enough. However, the type of distribution, the rarity/
commonness of signs, and the monitoring objective
including the target species are critical for determining
the best monitoring design. For our study area, survey-
ing approximately 200 existing plots resulted in a high
power to detect regional trends of 50% declines in occu-
pancy for 10 of the 11 species modeled, covering intro-
duced species and native species with large and
restricted distributions.

Our simulation framework tool is flexible enough to
accommodate either decreasing or increasing occupancy
trends for multiple species. Although we presented one
case study, our framework could be used in a range of
ecological settings, including terrestrial and marine eco-
systems where the aim is to detect trends in occupancy
over time. A key requirement is sufficient presence–
absence data to fit SDMs and predict species occupancy
across a region of interest. If such maps or estimates are
not available, habitat suitability indices could be devel-
oped using expert opinion, which could then be updated
over time as data become available. We also simulated
linear trends in occupancy over time across a range of
plausible scenarios. Our framework could be extended to
include more complicated range dynamics, such as
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contractions, expansions, or shifts due to climate change.
Finally, we modeled trends in occupancy rather than
trends in abundance over time. We therefore assumed a
1:1 relationship between occupancy and abundance
(Stanley & Royle, 2005), meaning that all occupied cells
declined in the same way regardless of how many indi-
viduals were within them. An important area of future
research is to expand the framework so that it can esti-
mate power to detect changes in both occupancy and
abundance/density data. Incorporating spatially explicit
power analysis into conservation planning will result in
more robust monitoring and, ultimately, lead to more
confident and faster detection and reporting of popula-
tion changes when they occur.
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