
Citation: Javanshir, A.; Nguyen, T.T.;

Mahmud, M.A.P.; Kouzani, A.Z.

Training Spiking Neural Networks

with Metaheuristic Algorithms. Appl.

Sci. 2023, 13, 4809. https://doi.org/

10.3390/app13084809

Academic Editor: Habib Hamam

Received: 17 March 2023

Revised: 3 April 2023

Accepted: 6 April 2023

Published: 11 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Training Spiking Neural Networks with Metaheuristic
Algorithms
Amirhossein Javanshir 1 , Thanh Thi Nguyen 2 , M. A. Parvez Mahmud 3 and Abbas Z. Kouzani 1,*

1 School of Engineering, Deakin University, Geelong, VIC 3216, Australia
2 School of IT, Deakin University, Burwood, VIC 3125, Australia
3 School of Electrical, Mechanical and Infrastructure Engineering, The University of Melbourne,

Parkville, VIC 3010, Australia
* Correspondence: kouzani@deakin.edu.au

Abstract: Taking inspiration from the brain, spiking neural networks (SNNs) have been proposed to
understand and diminish the gap between machine learning and neuromorphic computing. Super-
vised learning is the most commonly used learning algorithm in traditional ANNs. However, directly
training SNNs with backpropagation-based supervised learning methods is challenging due to the
discontinuous and non-differentiable nature of the spiking neuron. To overcome these problems,
this paper proposes a novel metaheuristic-based supervised learning method for SNNs by adapting
the temporal error function. We investigated seven well-known metaheuristic algorithms called
Harmony Search (HS), Cuckoo Search (CS), Differential Evolution (DE), Particle Swarm Optimization
(PSO), Genetic Algorithm (GA), Artificial Bee Colony (ABC), and Grammatical Evolution (GE) as
search methods for carrying out network training. Relative target firing times were used instead of
fixed and predetermined ones, making the computation of the error function simpler. The perfor-
mance of our proposed approach was evaluated using five benchmark databases collected in the UCI
Machine Learning Repository. The experimental results showed that the proposed algorithm had a
competitive advantage in solving the four classification benchmark datasets compared to the other
experimental algorithms, with accuracy levels of 0.9858, 0.9768, 0.7752, and 0.6871 for iris, cancer,
diabetes, and liver datasets, respectively. Among the seven metaheuristic algorithms, CS reported the
best performance.

Keywords: spiking neural network; metaheuristic; classification

1. Introduction

In recent years, artificial neural networks (ANNs) have become the best-known ap-
proach in artificial intelligence (AI) and have achieved superb performance in various
application fields, such as video processing [1], computer vision [2], autonomous driving
drones [3], natural language processing (NLP) [4], medical diagnosis [5], game playing [6],
and text processing [7]. The emergence of deep learning (DL) has again brought enormous
attention to ANNs. They have become state-of-the-art models and won different machine
learning (ML) challenges. Despite being inspired by the brain, these networks lack biolog-
ical plausibility and have structural differences. The human brain can learn from a few
samples and generalizes well. It stores a large amount of information and has amazing en-
ergy efficiency. For many years, a belief in neuroscience was that neurons encode essential
information via frequencies of spikes. Recent neurophysiological findings show that the
precise timing of action potentials is also necessary for effective information processing
in brain systems [8,9]. ANN models can be divided into three generations based on their
computational units, as shown in Figure 1. First-generation ANNs utilize the traditional
McCulloch and Pitts neuron model as computational units, in which the output value is a
binary variable (‘0’ or ‘1’). The second generation is characterized by the use of continu-
ous activation functions in neural networks, such as perceptron and Hopfield. The third

Appl. Sci. 2023, 13, 4809. https://doi.org/10.3390/app13084809 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13084809
https://doi.org/10.3390/app13084809
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-0170-6801
https://orcid.org/0000-0001-9709-1663
https://orcid.org/0000-0002-6292-1214
https://doi.org/10.3390/app13084809
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13084809?type=check_update&version=1

Appl. Sci. 2023, 13, 4809 2 of 22

generation of neural algorithms is represented by spiking neural networks (SNNs) [10].
In this model, information is encoded into spikes inspired by neuroscience. Moreover,
this neuron model mimics biological neurons and synaptic communication mechanisms
based on action potentials [11]. In spiking neurons, inputs are integrated into a membrane
potential only when spikes are received and generate spikes when the membrane potential
reaches a certain threshold voltage. These operations enable event-driven computation
and are exceptionally energy efficient [12,13], which makes them appealing for real-time
embedded AI systems and edge computing solutions [14].

Appl. Sci. 2023, 13, x FOR PEER REVIEW 2 of 22

use of continuous activation functions in neural networks, such as perceptron and Hop-
field. The third generation of neural algorithms is represented by spiking neural networks
(SNNs) [10]. In this model, information is encoded into spikes inspired by neuroscience.
Moreover, this neuron model mimics biological neurons and synaptic communication
mechanisms based on action potentials [11]. In spiking neurons, inputs are integrated into
a membrane potential only when spikes are received and generate spikes when the mem-
brane potential reaches a certain threshold voltage. These operations enable event-driven
computation and are exceptionally energy efficient [12,13], which makes them appealing
for real-time embedded AI systems and edge computing solutions [14].

Figure 1. Three generations of ANNs: multilayer perceptron, McCulloch–Pitts neuron, and SNNs.

Table 1 shows the differences between SNNs and ANNs in terms of neurons and in-
formation processing.

Table 1. Comparison of SNNs and ANNs.

 Spiking Neural Network Artificial Neural Network

Neuron
Spiking neuron (e.g., Integrate-and-Fire,

Hodgkin–Huxley, Izhikevich)
Artificial neuron (sigmoid,

ReLU, tanh)
Data Processing Spike-based Frame-based
Time Processing Continues Sampled

Existing works reveal that SNNs are executed on neuromorphic chips handling
spike-based accumulate (AC) operations. Thus, SNNs can save energy by orders of mag-
nitude compared with ANNs that are dominated by energy-hungry multiply-and-accu-
mulate (MAC) operations on conventional dense computing hardware, such as GPUs. Re-
cently, many neuromorphic processors have been developed, such as IBM’s TrueNorth
[15], Intel’s Loihi [16], and SpiNNaker [17], to implement SNNs. In recent years, SNNs
have received extensive attention in numerous applications, including the brain–machine
interface [18], machine control and navigation systems [19], event detection [20], and pat-
tern recognition [21].

Although they offer many advantages, there are still some barriers to overcome.
Learning strategies in SNNs are integrated with various elements of a neural network,
including how information is encoded and the neuron model. Thus, training an SNN is
difficult due to the non-differentiable nature of activation functions [22] (Figure 1). In re-
cent years, tremendous efforts have been devoted to the training algorithms of SNNs.
Conventionally, there are two main approaches to training SNNs: converting ANNs to
SNNs and directly training SNNs. In the first case, conventional ANNs are fully trained,
using backpropagation (BP), before being converted to an equivalent model consisting of

Figure 1. Three generations of ANNs: multilayer perceptron, McCulloch–Pitts neuron, and SNNs.

Table 1 shows the differences between SNNs and ANNs in terms of neurons and
information processing.

Table 1. Comparison of SNNs and ANNs.

Spiking Neural Network Artificial Neural Network

Neuron
Spiking neuron (e.g.,
Integrate-and-Fire,

Hodgkin–Huxley, Izhikevich)

Artificial neuron (sigmoid,
ReLU, tanh)

Data Processing Spike-based Frame-based

Time Processing Continues Sampled

Existing works reveal that SNNs are executed on neuromorphic chips handling spike-
based accumulate (AC) operations. Thus, SNNs can save energy by orders of magnitude
compared with ANNs that are dominated by energy-hungry multiply-and-accumulate
(MAC) operations on conventional dense computing hardware, such as GPUs. Recently,
many neuromorphic processors have been developed, such as IBM’s TrueNorth [15], In-
tel’s Loihi [16], and SpiNNaker [17], to implement SNNs. In recent years, SNNs have
received extensive attention in numerous applications, including the brain–machine inter-
face [18], machine control and navigation systems [19], event detection [20], and pattern
recognition [21].

Although they offer many advantages, there are still some barriers to overcome. Learn-
ing strategies in SNNs are integrated with various elements of a neural network, including
how information is encoded and the neuron model. Thus, training an SNN is difficult
due to the non-differentiable nature of activation functions [22] (Figure 1). In recent years,
tremendous efforts have been devoted to the training algorithms of SNNs. Convention-
ally, there are two main approaches to training SNNs: converting ANNs to SNNs and
directly training SNNs. In the first case, conventional ANNs are fully trained, using back-
propagation (BP), before being converted to an equivalent model consisting of spiking

Appl. Sci. 2023, 13, 4809 3 of 22

neurons [23,24]. This method is often referred to as rate-based learning, since, commonly,
the analog outputs of traditional ANNs are converted to spike trains through rate encod-
ing. The advantage here is that training happens in the ANN domain, leveraging widely
used machine learning frameworks, such as PyTorch and TensorFlow, which have short
training times and can be applied to complex datasets. Although some progress in SNN
conversion has been made, such as threshold balancing [25,26], weight normalization [27],
and a soft-reset mechanism [28], all of these methods require a large number of time steps,
which significantly increases the latency and energy consumption of the SNN. Another
disadvantage of such a learning approach is that it is not biologically plausible.

The second category is direct training methods, which include unsupervised and
supervised learning rules; in either case, they utilize the full advantage of spiking neu-
rons. Spike Timing Dependent Plasticity (STDP), an unsupervised learning mechanism,
is a biologically plausible mechanism for synaptic learning in SNNs [29,30]. STDP-based
learning rules modify the weight of a synapse connecting a pair of pre-and post-synaptic
neurons based on the degree of correlation between the respective spike times [31]. Diehl
and Cook [32] utilized STDP to train a two-layer SNN with lateral inhibitions in an unsu-
pervised learning style. Masquelier and Thorpe [33] applied STDP to multilayer neural
networks inspired by ventral visual pathways to enable unsupervised feature learning.
Although unsupervised STDP training is attractive for the real-time hardware implemen-
tation of several emerging and non-von Neumann architectures, it is not yet suitable for
challenging cognitive tasks due to its inaccuracy/scalability issues.

Supervised learning is the most widely used learning algorithm in traditional ANNs.
However, directly training SNNs with backpropagation-based supervised learning meth-
ods is challenging due to the discontinuous and non-differentiable nature of the spiking
neuron [34]. To circumvent this problem, several approaches, such as SpikeProp [35], the
Tempotron learning rule [36], and ReSuMe [37], have been proposed. SpikeProp [35] is
the primary spike-based method for backpropagating multilayer SNNs. Tempotron [36]
can perform binary classification tasks in analogy to a perceptron. The remote supervised
method (ReSuMe) [37] and the spike pattern association neuron (SPAN) [38] are classical
spike sequence learning rules. However, these methods suffer from two major drawbacks,
namely, overfitting problems and falling into local minima, which limit the practical usage
of SNNs.

In recent years, metaheuristic algorithms have emerged as promising methods for
training ANNs and deep learning [39]. In contrast to gradient-based algorithms, they can
easily escape the local minimum, since their design considers two contradictory criteria:
exploring a search space and exploiting the most efficient one [40]. They can accurately
formulate the optimal estimation of ANN components, such as hyperparameters, weights,
number of layers, number of neurons, and learning rate. To overcome the drawbacks
of gradient descent in training SNNs, using metaheuristic algorithms for the learning
process of SNNs has received increasing attention. Pavlidis et al. (2005) applied the parallel
differential evolution strategy for training supervised SNNs [41]. They tested their model
for solving the XOR problem, which did not reveal its advantages. For a linear and non-
linear classification challenge, Vazquez and Garro (2011) used the PSO algorithm to train
SNNs [42]. They observed that the same class of input patterns produced the same rate of
fire. In another work, Vazquez and Garro (2015) used an artificial bee colony algorithm to
train SNNs [43]. However, the accuracy was still lower than state-of-the-art performance
on benchmark datasets.

The main research question of this work is: ‘How to develop a supervised learning
method to address the challenge of gradient descent with spiking neurons?’ In this paper, a
novel metaheuristic-based supervised learning method for SNNs based on adapting the
temporal error function is introduced for solving classification problems. The procedure is
as follows: each input pattern is converted into a spike, then the Integrate-and-Fire neuron
is stimulated and emits a spike when it reaches its threshold, and finally, the temporal
error function is computed. We used seven well-known algorithms, from modern to simple

Appl. Sci. 2023, 13, 4809 4 of 22

ones, called evolutionary algorithms (EAs), such as Genetic Algorithm (GA), Differential
Evolution (DE) and Grammatical Evolution (GE), and swarm intelligence algorithms (SIAs),
such as Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC). There are
also nature-based methods, such as the Cuckoo Search algorithm (CS), and a family of
physical algorithms, such as Harmony Search (HS). To define target firing times, relative
target firing times were used instead of fixed and predetermined ones. The key benefit is
that our proposed model makes predictions with only a single output spike, making the
computation of the error function simpler. The main finding was that, due to the success of
the metaheuristic algorithms, we effectively avoided the significant drawbacks of the gradi-
ent descent training method falling into local minima. The outcome is that our proposed
approach demonstrated competitive accuracy on UCI datasets. All seven metaheuristic
algorithms converged to the optimal solution; however, the CS algorithm reported the
highest results and showed a faster convergence rate for most evaluated datasets. To the
best of our knowledge, this is the first study to investigate seven metaheuristic algorithms
for training SNNs. The following are the contributions of this paper:

• This work proposes a novel metaheuristic-based supervised learning method for
multilayer SNNs to classify UCI datasets.

• This work uses seven well-known metaheuristic algorithms for the training of SNNs
in order to overcome the issue of falling into local minima associated with gradient
descent training.

• To simplify the computation of the error function, our proposed model makes predic-
tions with only a single output spike. Moreover, this work uses relative target firing
times instead of fixed and predetermined ones.

• To evaluate the efficiency of our proposed model, the trained network was tested on
five benchmark classification datasets. The model performance was comparable to
state-of-the-art methods, with accuracy levels of 0.9858, 0.9768, 0.9591, 0.7752, and
0.6871 for iris, cancer, wine, diabetes, and liver datasets, respectively. Among the
seven metaheuristic algorithms, CS showed the most satisfactory performance.

The rest of the paper is organized as follows. Section 2 describes a theoretical frame-
work and concepts of metaheuristic algorithms. Section 3 explains the SNN model and the
proposed methodology for training multilayer spiking neural networks with temporal error.
Section 4 describes the experimental configuration of this work and compares the efficiency
of the proposed approaches against several existing metaheuristic and non-metaheuristic
SNN learning models. Section 5 presents a discussion of the results. In the last section,
conclusions are drawn and future research directions are indicated.

2. Materials and Methods
2.1. Metaheuristic Algorithms

This section describes the theoretical frameworks and concepts of five well-known
metaheuristic algorithms. Metaheuristic algorithms are well-known optimization methods
that attempt to find the best solution out of all possible solutions to an optimization
problem [44]. These algorithms draw inspiration from various sources based on search
strategy, being single-solution-based or nature-inspired to improve fitness, but most of
these algorithms are nature-inspired. We have applied population-based algorithms in this
work, which operate on multiple solutions. In contrast to single-solution-based algorithms,
such as local search, simulated annealing, and tabu search, population-based algorithms
have a high exploration (global search) ability. In the case of metaheuristics based on
population, they can be classified into three basic categories: evolutionary algorithms,
swarm-based algorithms, and physics-based algorithms [45]. Over the last few years,
several metaheuristic algorithms have been developed that have been inspired by the
behavior of swarms (insects, birds, and fish), by phenomena observed in physics and
chemistry, or by the dynamics of natural selection through the use of operators, such as
selection, crossover, and mutation. Among all these metaheuristic algorithms, we have
selected seven well-known and widely used algorithms in optimization problems, namely,

Appl. Sci. 2023, 13, 4809 5 of 22

Genetic Algorithm (GA), Differential Evolution (DE), Grammatical Evolution (GE), Particle
Swarm Optimization (PSO) and Artificial Bee Colony (ABC), Cuckoo Search (CS), and
Harmony Search (HS). These algorithms are practical when dealing with a significant and
complex problem with many local minima. Owing to their global search abilities, they are
less likely to be trapped in local minima. Secondly, they are flexible, and their performance
is not dependent on a particular type of problem.

2.1.1. Genetic Algorithms

Genetic algorithms are evolutionary algorithms that are influenced by natural selec-
tion. They simulate the process of natural selection by choosing the best individuals in a
population [46]. A random selection of individuals is used as a search space of chromosome
values in a GA. This indicates that the parameters of a network are the chromosomes of
one individual. Each generation has a population with a particular number of individuals.
After computing the individuals’ fitness values, the best ones have priority to be chosen for
the next generation [47]. A typical GA is presented in pseudo-code format in Algorithm 1.

Algorithm 1. Genetic Algorithm

1: Set parameters
2: Determine fitness function
3: Create individuals in initial population
4: Evaluate the fitness function of the individuals
5: While meet stopping criteria do
6: Generation = generation + 1
7: Select the best individuals
8: Applying crossover and mutation operator and generate new individuals
9: Examine the fitness of new individuals
10: End while
11: Return the best solution

2.1.2. Differential Evolution

Differential evolution (DE) is a sort of metaheuristic-based search technique that
optimizes a problem by finding the best solution among the candidates. Compared to GA,
it has lower computational complexity and efficient memory utilization [48]. Algorithm 2
depicts the DE procedure. CR and F represent the crossover rate and mutation, respectively.

Algorithm 2. Differential Evolution

1: Set parameters
2: Determine fitness function
3: Create individuals in initial population
4: While meet stopping criteria do
5: Generation = generation + 1
6: For each individual do
7: Create three numbers: 1 ≤ n1, n2, n3 ≤ popluation size, where n1 6= n2 6= n3 6= i
8: Randomly generate integer (j ∈ [1; n])
9: For each parameter i
10: yi,j = xn1,j + F.

(
xn2,j − xn3,j

)
if rand j < CR

ui,j = xi,j otherwise
11: End for
12: Exchange individual xj with child ui individual, if individual ui is better
13: Exchange individual xi by child ui individual
14: End for
15: End while

Appl. Sci. 2023, 13, 4809 6 of 22

2.1.3. Cuckoo Search

The Cuckoo Search algorithm is a recently created metaheuristic that was influenced
by various cuckoo species’ brood reproductive strategies, and its searching strategy uses
Levy flight behaviors. It adheres to the following three rules: to begin with, each cuckoo
lays an egg, which is then stored in a nest. Secondly, the most suitable nest will be passed
down to the next generation. Lastly, the number of host nests is kept fixed, and the cuckoo
egg is identified with the host bird [49]. Algorithm 3 depicts this search technique.

Algorithm 3. Cuckoo Search

1: Begin
2: Set parameters
3: Determine fitness function
4: Create population of n host nests
5: Examine fitness and rank eggs
6: While meet stopping criteria do
7: Give a cuckoo randomly by Levy
8: Assess its fitness
9: Select a nest among n
10: If Fi > Fj
11: Exchange j by the new solution
12: End if
13: Abandon a fraction (Pa) of worst nests
14: Keep better solution
15: Assess fitness, rank the solution, and discover the current best
16: End while
17: End

2.1.4. Particle Swarm

Particle swarm optimization is a technique that employs the concept of swarm intelli-
gence. The solutions are named a flock of birds (also called particles) that move through
the problem space. The particle tracks the coordinates of each particle in the problem
space. They are connected to the best value (pbest). The global best value (gbest) is another
best value that is derived whenever a particle considers the whole population to be its
neighbors [50]. Algorithm 4 depicts this search technique.

Algorithm 4. Particle Swarm Optimization

1: Begin
2: Set parameters
3: Determine fitness function
4: Initialize a population of particles
5: Evaluate fitness
6: If fitness value is better than pBest
7: Update pBest
8: End
9: Assign pBest to gBest
10: Compute particle velocity
11: Update particle position
12: End

2.1.5. Harmony Search

Harmony search (HS) is a metaheuristic-based method for finding the optimal state
of harmony. Three techniques are used in this algorithm, including randomization, pitch
adjustment, and harmony memory consideration [51]. Algorithm 5 depicts the pseudo-code
of the HS.

Appl. Sci. 2023, 13, 4809 7 of 22

Algorithm 5. Harmony Search

1: Determine fitness function
2: Initialize harmony memory
3: Examine the fitness function
4: While meet stopping criteria do
5: If rand < HMCR
6: Memory consideration
7: If rand < PAR
8: Adjust value
9: End if
10: Else
11: Select random value
12: End if
13: Replace the worst solution in memory
14: End while

2.1.6. Artificial Bee Colony

Harmony Artificial Bee Colony (ABC) is a swarm-based metaheuristic algorithm
that was inspired by the intelligent search behavior of bees. This algorithm can find the
optimum values in the search space of a given optimization problem [52]. The search space
is explored and exploited by three types of bees: employed, onlookers, and scouts. One
advantage of this algorithm is that only three control parameters are needed: population
size, the maximum cycle number (MCN), and the value of the ‘limit’. Algorithm 6 depicts
the pseudo-code of the ABC.

Algorithm 6. Artificial Bee Colony Algorithm

1: Initialize the populations of solutions
2: Determine fitness function
3: Set cycle to 1
4: For each employed bee do
5: Produce new solutions, evaluate the fitness value
6: Apply selection process and calculate the possibility value
7: For each onlooker bee do
8: Select a solution depending on the possibility
9: Produce new solution and evaluate the fitness value
10: Determine the abandoned solution, if exist, replace it with a new randomly produced
solution for the scout bee
11: Keep better solution
12: Cycle = cycle + 1
13: End for

2.1.7. Grammatical Evolution

Grammatical Evolution (GE) is a type of genetic programming (GP) that takes inspira-
tion from the biological evolutionary process [53]. The fundamental difference between
GE and traditional GP is that the former utilizes linear genotypes, performs genotype-
to-phenotype mappings, and uses a grammar to create solutions. One advantage of this
algorithm is that it allows a distinction between solution and search spaces. This allows GE
to avoid the problem of getting stuck in local optima that traditional GP has. Algorithm 7
depicts the pseudo-code of the GE.

Appl. Sci. 2023, 13, 4809 8 of 22

Algorithm 7. Grammatical Evolution Algorithm

1: Population = new_population (pop_size)
2: Solution_found = false
3: Create individuals in initial population
4: Evaluate the fitness function of the individuals
5: While termination condition not satisfied do
6: Perform Mapping Process (Population)
7: Evaluate (Population)
8: If Solution _found then
9: Perform Genetic Operators (Population)
10: End if
11: End while
12: Return the best solution

3. SNN Model and Learning Method
3.1. Spiking Neuron Model

There are several spiking neuron models, such as Leaky Integrate-and-Fire (LIF) [54],
Izhikevich [55], the Morris–Lecar model [56], the FitzHugh–Nagumo model [57], and
Hodgkin–Huxley (HH) [58], each having its advantages and disadvantages. Some of them
are simple but not biologically accurate, whereas others are biologically plausible but costly
to simulate.

The neuron model used in this paper is the Integrate-and-Fire (IF) model because
of the limited resources needed to implement it and the speed of simulation. The IF is a
low-computing-cost and one-dimensional neuron model. The membrane potential of the
jth neuron in the lth layer is determined by:

Vl
j(t) = ∑

i
ωl

ij ∑
t
τ=1 Sl−1

i (τ) (1)

where Sl−1
i denotes the spike train and ωl

ij is the input synaptic weight. An output spike

occurs when the membrane voltage surpasses the firing threshold Vl
j(t) ≥ Vth. Figure 2a

depicts an overview of an IF neuron.
Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 22

Figure 2. (a) An overview of an IF neuron. Whenever the membrane voltage exceeds the firing
threshold, an output spike occurs. (b) Schematic representation of rate and temporal coding. In a
temporal-based encoding, information is encoded through specific spike times, whereas the rate
encoding is based on a spiking feature during a time interval.

3.2. Information Coding
The initial phase of an SNN is the transformation of the original features into spikes

to feed the spiking networks. The encoding strategy has a significant effect on network
performance. Selecting the best coding strategy depends on the application, hardware
limitations, and neuron model [59]. Rate coding is one of the traditional strategies used
for encoding information in SNNs, which is based on the spike firing rate. Another popu-
lar coding strategy is temporal coding, which encodes information in spike times [60,61].
Figure 2b depicts the schematic of rate and temporal coding. Temporal encoding can be
represented mathematically as follows: 𝑌(𝑥) = ቂ௔ᇲି௔)௠ ∗ 𝑥ቃ + ቂ(௔∗ே)ି(௔ᇲ∗௡)௠ ቃ (2)

where 𝑥 is the original feature value and the maximum and minimum values that 𝑥 can
take are 𝑁 and 𝑛 . The range between 𝑁 and 𝑛 is denoted by 𝑚 , and 𝑌 is the spike
temporal transformation over the lower and upper temporal interval bounds [𝑎, 𝑎ᇱ].

In this work, a type of temporal coding called rank-order encoding is used to trans-
form features into spikes [62]. It assumes that strongly activated neurons will tend to fire
earlier than weakly activated ones. As compared to rate coding, rank-order coding pro-
vides more information with fewer spikes. Another benefit of rank-order coding, com-
pared to rate coding, is that it requires fewer simulation time steps for training. With the
use of rank-order coding, the IF neuron can fire at most one spike: the most-activated neu-
rons fire first, while less-activated neurons fire later. Since the network decision is based
on the first spike in the output layer, the earlier spikes carry more information.

3.3. Construction of the Error Function
Supervised learning algorithms are based on knowledge of the target values. They

try to minimize the error between the desired output (target) and the actual output in

Figure 2. (a) An overview of an IF neuron. Whenever the membrane voltage exceeds the firing
threshold, an output spike occurs. (b) Schematic representation of rate and temporal coding. In a
temporal-based encoding, information is encoded through specific spike times, whereas the rate
encoding is based on a spiking feature during a time interval.

Appl. Sci. 2023, 13, 4809 9 of 22

3.2. Information Coding

The initial phase of an SNN is the transformation of the original features into spikes
to feed the spiking networks. The encoding strategy has a significant effect on network
performance. Selecting the best coding strategy depends on the application, hardware
limitations, and neuron model [59]. Rate coding is one of the traditional strategies used for
encoding information in SNNs, which is based on the spike firing rate. Another popular
coding strategy is temporal coding, which encodes information in spike times [60,61].
Figure 2b depicts the schematic of rate and temporal coding. Temporal encoding can be
represented mathematically as follows:

Y(x) =
[

a′ − a)
m

∗ x
]
+

[
(a ∗ N)− (a′ ∗ n)

m

]
(2)

where x is the original feature value and the maximum and minimum values that x can
take are N and n. The range between N and n is denoted by m, and Y is the spike temporal
transformation over the lower and upper temporal interval bounds [a, a′].

In this work, a type of temporal coding called rank-order encoding is used to transform
features into spikes [62]. It assumes that strongly activated neurons will tend to fire earlier
than weakly activated ones. As compared to rate coding, rank-order coding provides
more information with fewer spikes. Another benefit of rank-order coding, compared to
rate coding, is that it requires fewer simulation time steps for training. With the use of
rank-order coding, the IF neuron can fire at most one spike: the most-activated neurons fire
first, while less-activated neurons fire later. Since the network decision is based on the first
spike in the output layer, the earlier spikes carry more information.

3.3. Construction of the Error Function

Supervised learning algorithms are based on knowledge of the target values. They try
to minimize the error between the desired output (target) and the actual output in order
to achieve optimal results. The error function shows the deviation between desired and
actual outputs. We determine a temporal fitness function as:

ej =
tp − t′p

tmax
(3)

where tp, t′p are the actual firing time and the target firing time of the output neuron,
respectively, and tmax is the maximum simulation time.

Now, we can define the squared error for C categories (a measure to evaluate the
ability of the solution):

Es =
1
2 ∑C

j=1

(
ej
)2

=
1
2 ∑C

j=1 (
tp − t′p

tmax
)2 (4)

The temporal fitness function is considered as the objective function to evaluate each
individual. The objective is to minimize the squared error.

3.4. Target Firing Time

As mentioned before, we consider the first readout neuron to fire to classify the input.
Instead of defining a predefined target firing time, we use a relative approach to estimate

the target firing times [63]. For the input in the ith category, we can determine
{

tpi = τ

tpj = tmax
for (j 6= i), where the desired firing time for the winning neuron is 0 < τ < tmax. The right
readout neuron is pushed to fire early in this approach.

Appl. Sci. 2023, 13, 4809 10 of 22

The length of the simulation time is determined by the number of classes. To define
the duration of the simulation time, we can set time windows (TWs):

Simulation Time = {TW1 , TW2 , . . . , TWm} (5)

where m is the number of classes that consist of the classification problem. The duration of
each TW is determined by:

TW =
Simulation time

Number o f classes
(6)

The schematic of the learning process in the SNN based on a metaheuristic algorithm
is presented in Figure 3. Figure 4 illustrates the schematic of the readout neuron.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 22

order to achieve optimal results. The error function shows the deviation between desired
and actual outputs. We determine a temporal fitness function as: 𝑒௝ = ௧೛ି௧೛ᇲ௧೘ೌೣ (3)

where 𝑡௣, 𝑡௣ᇱ are the actual firing time and the target firing time of the output neuron,
respectively, and 𝑡௠௔௫ is the maximum simulation time.

Now, we can define the squared error for C categories (a measure to evaluate the
ability of the solution): 𝐸௦ = ଵଶ ∑ (𝑒௝)ଶ஼௝ୀଵ = ଵଶ ∑ (௧೛ି௧೛ᇲ௧೘ೌೣ)ଶ஼௝ୀଵ (4)

The temporal fitness function is considered as the objective function to evaluate each
individual. The objective is to minimize the squared error.

3.4. Target Firing Time
As mentioned before, we consider the first readout neuron to fire to classify the input.

Instead of defining a predefined target firing time, we use a relative approach to estimate
the target firing times [63]. For the input in the 𝑖௧௛ category, we can determine ቄ ௧೛೔ୀఛ ௧೛ೕୀ௧೘ೌೣ
for (𝑗 ≠ 𝑖), where the desired firing time for the winning neuron is 0 < 𝜏 < 𝑡௠௔௫. The right
readout neuron is pushed to fire early in this approach.

The length of the simulation time is determined by the number of classes. To define
the duration of the simulation time, we can set time windows (TWs):

Simulation Time = {𝑇𝑊ଵ,𝑇𝑊ଶ, …, 𝑇𝑊௠} (5)

where m is the number of classes that consist of the classification problem. The duration
of each TW is determined by: 𝑇𝑊 = ௌ௜௠௨௟௔௧௜௢௡ ௧௜௠௘ே௨௠௕௘௥ ௢௙ ௖௟௔௦௦௘௦ (6)

The schematic of the learning process in the SNN based on a metaheuristic algorithm
is presented in Figure 3. Figure 4 illustrates the schematic of the readout neuron.

Figure 3. Generic schemes explaining the learning process of SNNs with metaheuristic algorithms. Figure 3. Generic schemes explaining the learning process of SNNs with metaheuristic algorithms.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 11 of 22

Figure 4. Generic scheme of readout neuron.

4. Experimental Results and Evaluation
To evaluate the accuracy of the suggested approach, five experiments were imple-

mented. The datasets used were provided by the UCI Machine Learning Repository [64]
and were named Pima Indians Diabetes (Diabetes), Iris Plant, Breast Cancer, Wine, and
Liver. Each dataset was split into two groups of nearly equal size named the training set
and the testing set. Table 2 shows the characteristics of the UCI benchmark datasets that
were used in this work.

Table 2. Specification of the UCI benchmark datasets.

Name Source Size Features Classes Training/Testing
Iris UCI 150 4 3 75 75

Breast Cancer UCI 683 9 2 350 333
Diabetes UCI 786 8 2 384 384

Wine UCI 178 13 3 105 73
Liver UCI 345 6 2 200 145

4.1. Iris Plant
The Iris dataset contains 150 samples, divided into three categories (Iris setosa, Iris

virginica, and Iris versicolor), each having 50 samples with four attributes. The dataset is
divided into 75 samples for training and testing. The dataset was encoded into spikes over
the simulation times.

4.2. Breast Cancer
The BCW dataset contains 683 instances, divided into two categories (benign and

malignant cell tissues), with 458 benign (65.5%) and 241 (34.5%) samples, respectively.
Each class had nine features encoded into spikes over the simulation times. The dataset
was split into two parts, training and test datasets, with 342 and 341 samples, respectively.

4.3. Diabetes
The Diabetes dataset contains 768 samples belonging to two classes (with or without

signs of diabetes). It includes eight quantitative variables. The dataset was divided into
two parts, training and test datasets, which contained equal numbers of samples (384).

4.4. Wine
The Wine dataset contains 178 instances, divided into three categories, with 13 fea-

tures. The dataset was divided into two parts: training and test datasets, with 105 and 73
samples, respectively. The dataset was encoded into spikes over simulation times.

Figure 4. Generic scheme of readout neuron.

4. Experimental Results and Evaluation

To evaluate the accuracy of the suggested approach, five experiments were imple-
mented. The datasets used were provided by the UCI Machine Learning Repository [64]
and were named Pima Indians Diabetes (Diabetes), Iris Plant, Breast Cancer, Wine, and
Liver. Each dataset was split into two groups of nearly equal size named the training set
and the testing set. Table 2 shows the characteristics of the UCI benchmark datasets that
were used in this work.

Table 2. Specification of the UCI benchmark datasets.

Name Source Size Features Classes Training/Testing

Iris UCI 150 4 3 75 75
Breast
Cancer UCI 683 9 2 350 333

Diabetes UCI 786 8 2 384 384
Wine UCI 178 13 3 105 73
Liver UCI 345 6 2 200 145

Appl. Sci. 2023, 13, 4809 11 of 22

4.1. Iris Plant

The Iris dataset contains 150 samples, divided into three categories (Iris setosa, Iris
virginica, and Iris versicolor), each having 50 samples with four attributes. The dataset is
divided into 75 samples for training and testing. The dataset was encoded into spikes over
the simulation times.

4.2. Breast Cancer

The BCW dataset contains 683 instances, divided into two categories (benign and
malignant cell tissues), with 458 benign (65.5%) and 241 (34.5%) samples, respectively. Each
class had nine features encoded into spikes over the simulation times. The dataset was split
into two parts, training and test datasets, with 342 and 341 samples, respectively.

4.3. Diabetes

The Diabetes dataset contains 768 samples belonging to two classes (with or without
signs of diabetes). It includes eight quantitative variables. The dataset was divided into
two parts, training and test datasets, which contained equal numbers of samples (384).

4.4. Wine

The Wine dataset contains 178 instances, divided into three categories, with 13 features.
The dataset was divided into two parts: training and test datasets, with 105 and 73 samples,
respectively. The dataset was encoded into spikes over simulation times.

4.5. Liver

The Liver dataset contains 345 samples belonging to two classes. It includes six quantita-
tive variables. The dataset was divided into two parts, training and test datasets, with 200 and
145 samples, respectively. The dataset was encoded into spikes over simulation times.

All the experiments and performance analyses were programmed in Python. This
was run on an Intel corei7 CPU 1.60 GHz processor with 16 GB RAM. In this experiment,
the threshold of all neurons in all layers was set to 100. We set the maximum simulation
time as tmax = 256 and initialized the synaptic weights with random values drawn from
uniform distributions in the range [0, 1]. There were also specific parameters associated
with each metaheuristic algorithm, as presented in Table 3. We tested various values for
each parameter and selected the one that led to the highest accuracy. Each algorithm was
tested for 20 iterations.

Table 3. Specific parameters of the metaheuristic algorithms.

Algorithm Parameters

GA Epoch = 20, Population size = 100, Crossover rate = 0.6, Mutation
rate = 0.05

DE F = 0.9, CR = 0.8
PSO Vmax = 4, Vmin = −4, c1 and c2 = 2, Xmax = 10, Xmin = −10
CS Pa = 0.25, Xmax = 10, Xmin = −10
HS Par = 0.4, HMCR = 0.9, BW = 0.01

ABC Population size = 100, MCN = 20, LIM = 100
GE Population size = 100, Boundaries ∈ [0, 255]

In this work, we present a metaheuristic-based supervised learning method for SNNs,
as shown in Figure 5. The following sequential steps describe the learning procedure of the
proposed method:

(1) The first step is to transform the analog input into a spike train. Here, we used
temporal coding for the entry layer. These spikes are then fed to the first layer of the
network, where the IF neuron receives incoming spikes through synaptic weights
and emits a spike to the neurons in the next layer when it reaches the threshold

Appl. Sci. 2023, 13, 4809 12 of 22

(Equation (1)). We initialized the input-hidden synaptic weights based on random
values in the range [0, 1].

(2) For the classification task with the N class, each output neuron was assigned to a
different class. After the forward pass was completed, the output neuron in the
readout layer that fired earlier determined the class of the stimulus. Thus, to be able
to train the network in the backward pass, we defined a temporal fitness function
for the output layer by comparing its actual firing time and the target firing time
(Equation (3)).

(3) During the training phase, we used metaheuristic algorithms to update the synaptic
weights. The temporal fitness function was considered as the objective function
to evaluate each individual. The next step is to calculate the squared error for N
classes using Equation (4). This calculated error determines the fitness value of each
individual and drives supervised learning based on metaheuristic algorithms. After
completing the forward and backward steps on the current input, the membrane
potentials of all the IF neurons are reset to zero, and the network gets ready to process
the next input. In order to evaluate the performance of the system, after the training
phase, the weights were updated, fixed, and the testing datasets were fed into the
network so that the classification accuracy of the testing datasets could be calculated.
The first output neuron to fire determines the decision of the network.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 22

Figure 5. The process of training an SNN using metaheuristic algorithms.

The learning curve of the proposed method is illustrated in Figure 6. It illustrates the
changes in the learning accuracy value over 20 iterations. It is clear that, as iterations in-
crease, all algorithms eventually converge. The learning curve results of the algorithms
are displayed in various colors. The red line indicates the learning curve of GA, the green
line indicates that of PSO, the purple line that of HS, the blue line that of DE, the orange
line that of SC, the black line that of GE, and the brown line that of ABC. The learning
curves show that CS outperformed these experimental algorithms in five datasets,
namely, Iris, Cancer, Wine, Diabetes, and Liver. For example, for the Iris dataset, the ac-
curacy was increased at iteration 2 from 0 to 15. The accuracy was then increased to 99.76
at iteration 6 and remained unchanged until all iterations were completed.

The classification accuracy (CA) obtained with different metaheuristic algorithms
was calculated as: 𝐶𝐴 = ௡ே (7)

where N and n are the total number of categories and the number of accurate classes,
respectively.

Figure 5. The process of training an SNN using metaheuristic algorithms.

The learning curve of the proposed method is illustrated in Figure 6. It illustrates
the changes in the learning accuracy value over 20 iterations. It is clear that, as iterations

Appl. Sci. 2023, 13, 4809 13 of 22

increase, all algorithms eventually converge. The learning curve results of the algorithms
are displayed in various colors. The red line indicates the learning curve of GA, the green
line indicates that of PSO, the purple line that of HS, the blue line that of DE, the orange
line that of SC, the black line that of GE, and the brown line that of ABC. The learning
curves show that CS outperformed these experimental algorithms in five datasets, namely,
Iris, Cancer, Wine, Diabetes, and Liver. For example, for the Iris dataset, the accuracy was
increased at iteration 2 from 0 to 15. The accuracy was then increased to 99.76 at iteration 6
and remained unchanged until all iterations were completed.

Appl. Sci. 2023, 13, 4809 14 of 22Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 22

(a)

(b)

(c)

(d)

Figure 6. Cont.

Appl. Sci. 2023, 13, 4809 15 of 22
Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 22

(e)

Figure 6. The training curve of the proposed algorithm on seven datasets, including (a) Iris, (b)
Cancer, (c) Diabetes, (d) Liver, and (e) Wine. The red line indicates the learning curve of GA, the
blue line that of DE, the green line that of PSO, the orange line that of SC, the purple line that of
Harmony Search, the black line that of GE, and the brown line that of ABC.

5. Discussion
The performance of the metaheuristic-based supervised learning was evaluated on

five datasets provided by the UCI Machine Learning Repository: Pima Indians Diabetes
(Diabetes), Iris Plant, Breast Cancer, Wine, and Liver. The population size and the number
of iterations for all datasets were set to 100 and 20, respectively. We investigated the per-
formance of seven meta-heuristic algorithms named the Cuckoo Search Algorithm, Ge-
netic Algorithm, Differential Evolution, Harmony Search, Particle Swarm Optimization,
Grammatical Evolution, and Artificial Bee Colony as training algorithms for SNNs. We
employed a relative approach to estimate target firing times instead of defining a prede-
fined target firing time.

According to the learning curve in Figure 6, it can be observed that all algorithms
converged to the optimal solution; however, the CS algorithm showed a faster conver-
gence rate, particularly for the four datasets Iris, Cancer, Wine, and Diabetes. After only
six iterations, the CS algorithm converged to the optimal solution. For liver classification,
the DE algorithm had a faster convergence rate after only six iterations.

The trained network was then tested on the test dataset. Figure 7 shows the training
and testing results of UCI datasets among all metaheuristic designs. Based on the classifi-
cation accuracy achieved by the seven metaheuristic algorithms, it is evident that all of the
algorithms gave comparable performances. For the Iris dataset, the classification accuracy
of CS was the highest; the training and testing classification accuracies were 99.31% and
98.58%, respectively. In contrast, GE achieved the lowest classification accuracy; training
and testing accuracies were 95.76% and 94.67%, respectively. For the Cancer dataset, the
classification accuracy of CS on the training and testing sets was 98.87% and 97.68%, which
results were superior to those for the other algorithms. For the Liver dataset, the classifi-
cation accuracy of GA on the training and testing sets was 69.97% and 68.12%—higher
than CS and PSO, but lower than DE. For the Wine and Diabetes datasets, CS achieved
much better accuracy than the other algorithms.

Figure 6. The training curve of the proposed algorithm on seven datasets, including (a) Iris(b) Cancer,
(c) Diabetes, (d) Liver, and (e) Wine. The red line indicates the learning curve of GA, the blue line
that of DE, the green line that of PSO, the orange line that of SC, the purple line that of Harmony
Search, the black line that of GE, and the brown line that of ABC.

The classification accuracy (CA) obtained with different metaheuristic algorithms was
calculated as:

CA =
n
N

(7)

where N and n are the total number of categories and the number of accurate classes, respectively.

5. Discussion

The performance of the metaheuristic-based supervised learning was evaluated on
five datasets provided by the UCI Machine Learning Repository: Pima Indians Diabetes
(Diabetes), Iris Plant, Breast Cancer, Wine, and Liver. The population size and the number
of iterations for all datasets were set to 100 and 20, respectively. We investigated the
performance of seven meta-heuristic algorithms named the Cuckoo Search Algorithm,
Genetic Algorithm, Differential Evolution, Harmony Search, Particle Swarm Optimization,
Grammatical Evolution, and Artificial Bee Colony as training algorithms for SNNs. We
employed a relative approach to estimate target firing times instead of defining a predefined
target firing time.

According to the learning curve in Figure 6, it can be observed that all algorithms
converged to the optimal solution; however, the CS algorithm showed a faster convergence
rate, particularly for the four datasets Iris, Cancer, Wine, and Diabetes. After only six
iterations, the CS algorithm converged to the optimal solution. For liver classification, the
DE algorithm had a faster convergence rate after only six iterations.

The trained network was then tested on the test dataset. Figure 7 shows the training
and testing results of UCI datasets among all metaheuristic designs. Based on the classifica-
tion accuracy achieved by the seven metaheuristic algorithms, it is evident that all of the
algorithms gave comparable performances. For the Iris dataset, the classification accuracy
of CS was the highest; the training and testing classification accuracies were 99.31% and
98.58%, respectively. In contrast, GE achieved the lowest classification accuracy; training
and testing accuracies were 95.76% and 94.67%, respectively. For the Cancer dataset, the
classification accuracy of CS on the training and testing sets was 98.87% and 97.68%, which
results were superior to those for the other algorithms. For the Liver dataset, the classifica-
tion accuracy of GA on the training and testing sets was 69.97% and 68.12%—higher than
CS and PSO, but lower than DE. For the Wine and Diabetes datasets, CS achieved much
better accuracy than the other algorithms.

Appl. Sci. 2023, 13, 4809 16 of 22Appl. Sci. 2023, 13, x FOR PEER REVIEW 16 of 22

(a)

(b)

(c)

96.51 97.23 96.98 99.31 98.21 95.76 99.06

95.43 96.67 96.42 98.58 97.43 94.67 98.33

0

20

40

60

80

100

ABC HS DE CS PSO GE GA

IRIS dataset

Training classification rate Testing classification rate

69.45

97.13 96.74 98.87

71.32

94.81 97.5

68.23

96.12 95.12 97.68

70.12

93.12 96.81

0

20

40

60

80

100

ABC HS DE CS PSO GE GA

Cancer dataset

Training classification rate Testing classification rate

70.52 71.76
76.83 78.92

72.47 74.34 77.98

68.87 70.52
75.81 77.52

71.52 72.76 76.34

0

20

40

60

80

100

ABC HS DE CS PSO GE GA

Diabetes dataset

Training classification rate Testing classification rate

Figure 7. Cont.

Appl. Sci. 2023, 13, 4809 17 of 22
Appl. Sci. 2023, 13, x FOR PEER REVIEW 17 of 22

(d)

(e)

Figure 7. Classification rate of the training and testing results for seven datasets, including (a) Iris,
(b) Cancer, (c) Diabetes, (d) Liver, and (e) Wine.

Furthermore, in order to validate the efficiency of the proposed algorithm, five ex-
periments were performed, and the quantitative results were compared with other super-
vised learning algorithms using multilayer feedforward SNNs. In Table 3, the various
models for developing supervised SNNs are compared in terms of learning type and ap-
proaches, spiking neuron models, encoding methods, and accuracy based on the five da-
tasets: Pima Indians Diabetes (Diabetes), Iris Plant, Breast Cancer Wisconsin, Wine, and
Liver. The gradient descent algorithm SpikeProp [65], Enhanced-Mussels Wandering Op-
timization (E-MWO) [66], SpikeTemp [67], Growing-Pruning (GP) [68], and multi-SNN
with Long-Term Memory SRM [69] were chosen for comparison.

Table 4 shows that the proposed model outperformed the other algorithms in terms
of classification accuracy. The suggested approach achieved optimal results on four clas-
sification test datasets. As shown by the simulation results in Table 4, for the Iris dataset,
the classification accuracy of our proposed model was 98.58%, which was higher than for
all the other models. Close to our result, the multi-SNN with Long-Term Memory SRM
had an accuracy of 97.2%. For the Breast Cancer dataset, the classification accuracy of the
proposed algorithm was 97.68%. The accuracy of SpikeProp was 97%, which was around
0.68% lower than our best model. SpikeTemp, a rank-order based learning method for

68.21 64.13
70.31 66.69 68.46 69.23 69.97

66.32 62.77
68.71 65.26 67.51 68.41 68.12

0

20

40

60

80

100

ABC HS DE CS PSO GE GA

LIver dataset

Training classification rate Testing classification rate

88.12
79.43

91.56 96.57
89.54 87.62

93.12

86.12
77.23

90.44
95.91

88.79 85.67
91.54

0

20

40

60

80

100

ABC HS DE CS PSO GE GA

Wine dataset

Training classification rate Testing classification rate

Figure 7. Classification rate of the training and testing results for seven datasets, including (a) Iris,
(b) Cancer, (c) Diabetes, (d) Liver, and (e) Wine.

Furthermore, in order to validate the efficiency of the proposed algorithm, five experi-
ments were performed, and the quantitative results were compared with other supervised
learning algorithms using multilayer feedforward SNNs. In Table 3, the various models
for developing supervised SNNs are compared in terms of learning type and approaches,
spiking neuron models, encoding methods, and accuracy based on the five datasets: Pima
Indians Diabetes (Diabetes), Iris Plant, Breast Cancer Wisconsin, Wine, and Liver. The
gradient descent algorithm SpikeProp [65], Enhanced-Mussels Wandering Optimization (E-
MWO) [66], SpikeTemp [67], Growing-Pruning (GP) [68], and multi-SNN with Long-Term
Memory SRM [69] were chosen for comparison.

Table 4 shows that the proposed model outperformed the other algorithms in terms
of classification accuracy. The suggested approach achieved optimal results on four clas-
sification test datasets. As shown by the simulation results in Table 4, for the Iris dataset,
the classification accuracy of our proposed model was 98.58%, which was higher than
for all the other models. Close to our result, the multi-SNN with Long-Term Memory
SRM had an accuracy of 97.2%. For the Breast Cancer dataset, the classification accuracy
of the proposed algorithm was 97.68%. The accuracy of SpikeProp was 97%, which was

Appl. Sci. 2023, 13, 4809 18 of 22

around 0.68% lower than our best model. SpikeTemp, a rank-order based learning method
for SNNs, however, obtained the lowest accuracy of 92.1%. For the Diabetes dataset, our
best model scored 77.52%, which was higher than the scores for all the other models.
For the Wine dataset, the classification accuracy of our proposed model was 95.91%, but
0.9% lower than SpikeProp. For the Liver dataset, our best model achieved an accuracy
of 68.71%. The accuracies of SpikeProp and multi-SNN were 65.1% and 64.7%, respec-
tively. SpikeTemp and Growing-Pruning (GP) obtained the lowest accuracies of 55.2% and
59.79%, respectively.

Table 4. Summary of the models for developing supervised SNNs—their learning techniques, neuron
models, and encoding strategies, along with their accuracy rates on the UCI dataset.

Work Learning Type Learning
Technique

Spiking Neuron
Model

Encoding
Information Dataset Accuracy

SpikeProp [65] Supervised Gradient descent rule Spike Response
Model

Gaussian Receptive
Field population

encoding

Iris 0.961
Cancer 0.97

Diabetes 0.762
Liver 0.651
Wine 0.968

E-MWO [66] Supervised
Enhanced-Mussels

Wandering Optimization
algorithm

Spike Response
Model

Min–max data
normalization

Iris 0.913
Cancer 0.949

Diabetes 0.706

GPSNN
[68]

Supervised Two-stage learning Leaky
Integrate-and-Fire

Modified
population coding

Iris 0.965
Cancer 0.964

Diabetes 0.7161
Liver 0.5979

Multi-SNN
[69]

Supervised Gradient descent rule
Long-term memory

Spike Response
Model

Population coding

Iris 0.972
Cancer 0.949

Diabetes 0.718
Liver 0.647

SpikeTemp [67] Supervised
Enhanced

rank-order-based
learning

Integrate-and-Fire
Gaussian Receptive

Field population
encoding

Iris 0.95
Cancer 0.921

Diabetes 0.703
Liver 0.522

This work Supervised Metaheuristic-based
supervised learning Integrate-and-Fire Temporal coding

Iris CS_SNN = 0.9858
Cancer CS_SNN = 0.9768

Diabetes CS_SNN = 0.7752
Liver DE_SNN = 0.6871
Wine CS_SNN = 0.9591

We also compared the efficiency of the proposed algorithm with some existing non-
spiking models for solving classification problems with medical data. Darabi et al. (2021)
presents a thermogram-based Computer-Aided Detection (CAD) system for breast cancer
detection [70]. In this CAD system, the Random Subset Feature Selection (RSFS) algorithm
and a hybrid of the minimum Redundancy Maximum Relevance (mRMR) algorithm
and GA with the RSFS algorithm are utilized for feature selection. The experimental
results demonstrate that using the RSFS algorithm for feature selection and kNN and SVM
algorithms as classifiers have 85.36% and 75% accuracy, respectively. Additionally, using
hybrid GA and RSFS algorithms for feature selection and kNN and SVM algorithms for
classifiers yielded 83.87% and 69.56% accuracy, respectively.

In another study, Zarei et al. (2021) proposed a novel segmentation method for breast
cancer detection using infrared thermal images [71]. The evaluation results showed that
the average Dice similarity coefficient, Jaccard index, and Hausdorff distance in the FCM
segmentation algorithm were 89.44%, 80.90% and 5.00, respectively. These values were
89.30%, 80.66%, and 5.15 for the MS segmentation algorithm, and 91.81%, 84.86%, and 4.87
for the MGMS segmentation algorithm. Salman et al. (2018) proposed a hybrid classification
optimization method for improving ANN classification accuracy [72]. Three optimization
approaches named GA, PSO, and Fireworks Algorithm (FWA) were used in this work. They
achieved an accuracy of 98.42% on the breast cancer datasets. In general, our proposed
approach demonstrated competitive accuracy on the UCI datasets.

Appl. Sci. 2023, 13, 4809 19 of 22

6. Conclusions

In this paper, we have demonstrated how different metaheuristic algorithms called
Cuckoo Search, Genetic Algorithm, Harmony Search, Differential Evolution, Particle Swarm
Optimization, Artificial Bee Colony, and Grammatical Evolution, can be applied to train a
spiking neural network. This approach effectively avoids some problems, such as getting
stuck in local minima and over-fitting. In the input layer, a temporal coding scheme is
used to transform input data into spikes. Leaky Integrate-and-Fire neurons are employed
to simulate the hidden and output layer neurons. The training process for the neurons
was carried out using metaheuristic algorithms. We employed dynamic approaches to
determine the target firing times for each input. The performance of our approach was
evaluated on five UCI Machine Learning Repository datasets. The CS successfully obtained
accuracies of 0.9858, 0.9768, 0.9591, and 0.7752 for the Iris, Cancer, Wine, and Diabetes
datasets, respectively. DE showed the best performance for the Liver dataset (0.6871). The
classification accuracy of the proposed learning model was compared to some existing
non-metaheuristic training algorithms. Several issues need to be tackled before an SNN
can be used for various tasks, including the design of a learning algorithm. Future work
will include conducting experiments on more complex pattern-recognition problems, such
as face and voice recognition, with more complex datasets and investigation of the impact
of different encoding schemes on classification accuracy. Furthermore, designing a multi-
objective fitness function using algorithms, such as Bayesian optimization, is needed to
produce the most accurate and smallest SNNs.

Author Contributions: Conceptualization: A.J., T.T.N., M.A.P.M., and A.Z.K.; methodology: A.J.,
T.T.N., M.A.P.M., and A.Z.K.; investigation: A.J., T.T.N., M.A.P.M., and A.Z.K.; implementation: A.J.;
validation: A.J.; writing—original draft preparation: A.J.; writing—review and editing: A.J., T.T.N.,
M.A.P.M., and A.Z.K.; supervision: T.T.N., M.A.P.M., and A.Z.K.; project administration: A.Z.K. All
authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare that they have no known competing financial interests or
personal relationships that could have appeared to influence the work reported in this paper.

References
1. Zhang, C.; Lu, Y. Study on artificial intelligence: The state of the art and prospects. J. Ind. Inf. Integr. 2021, 23, 100224. [CrossRef]
2. Apostolidis, E.; Adamantidou, E.; Metsai, A.I.; Mezaris, V.; Patras, I. Video summarization using deep neural networks: A survey.

Proc. IEEE 2021, 109, 1838–1863. [CrossRef]
3. Syed, F.; Gupta, S.K.; Hamood Alsamhi, S.; Rashid, M.; Liu, X. A survey on recent optimal techniques for securing unmanned

aerial vehicles applications. Trans. Emerg. Telecommun. Technol. 2021, 32, e4133.
4. Khurana, D.; Koli, A.; Khatter, K.; Singh, S. Natural language processing: State of the art, current trends and challenges. Multimed.

Tools Appl. 2023, 82, 3713–3744. [CrossRef] [PubMed]
5. Giger, M.L. Machine learning in medical imaging. J. Am. Coll. Radiol. 2018, 15, 512–520. [CrossRef]
6. Skinner, G.; Walmsley, T. Artificial intelligence and deep learning in video games a brief review. In Proceedings of the 4th

International Conference on Computer and Communication Systems (ICCCS), Singapore, 23–25 February 2019; pp. 404–408.
7. Wu, H.; Liu, Y.; Wang, J. Review of text classification methods on deep learning. Comput. Mater. Contin. 2020, 63, 1309. [CrossRef]
8. Maass, W. Networks of spiking neurons: The third generation of neural network models. Neural Netw. 1997, 10, 1659–1671.

[CrossRef]
9. Jang, H.; Simeone, O.; Gardner, B.; Gruning, A. An introduction to probabilistic spiking neural networks: Probabilistic models,

learning rules, and applications. IEEE Signal Process. Mag. 2019, 36, 64–77. [CrossRef]
10. Wang, S.; Cheng, T.H.; Lim, M.H. A hierarchical taxonomic survey of spiking neural networks. Memetic Comput. 2022, 14, 335–354.

[CrossRef]
11. Yamazaki, K.; Vo-Ho, V.-K.; Bulsara, D.; Le, N. Spiking Neural Networks and Their Applications: A Review. Brain Sci. 2022, 12,

863. [CrossRef]

https://doi.org/10.1016/j.jii.2021.100224
https://doi.org/10.1109/JPROC.2021.3117472
https://doi.org/10.1007/s11042-022-13428-4
https://www.ncbi.nlm.nih.gov/pubmed/35855771
https://doi.org/10.1016/j.jacr.2017.12.028
https://doi.org/10.32604/cmc.2020.010172
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1109/MSP.2019.2935234
https://doi.org/10.1007/s12293-022-00373-w
https://doi.org/10.3390/brainsci12070863

Appl. Sci. 2023, 13, 4809 20 of 22

12. Belatreche, A. Biologically Inspired Neural Networks; OmniScriptum Publishing: Riga, Latvia, 2010.
13. Deng, L.; Tang, H.; Roy, K. Understanding and bridging the gap between neuromorphic computing and machine learning. Front.

Comput. Neurosci. 2021, 15, 665662. [CrossRef]
14. Roy, K.; Jaiswal, A.; Panda, P. Towards spike-based machine intelligence with neuromorphic computing. Nature 2019, 575, 607.

[CrossRef]
15. Merolla, P.A.; Arthur, J.V.; Alvarez-Icaza, R.; Cassidy, A.S.; Sawada, J.; Akopyan, F.; Modha, D.S. A million spiking-neuron

integrated circuit with a scalable communication network and interface. Science 2014, 345, 668–673. [CrossRef]
16. Davies, M.; Srinivasa, N.; Lin, T.H.; Chinya, G.; Cao, Y.; Choday, S.H.; Liao, Y. Loihi: A neuromorphic manycore processor with

on-chip learning. IEEE Micro 2018, 38, 82–99. [CrossRef]
17. Furber, S. Large-scale neuromorphic computing systems. J. Neural Eng. 2016, 13, 051001. [CrossRef]
18. Liao, J.; Widmer, L.; Wang, X.; Di Mauro, A.; Nason-Tomaszewski, S.R.; Chestek, C.A.; Jang, T. An energy-efficient spiking neural

network for finger velocity decoding for implantable brain-machine interface. In Proceedings of the 4th International Conference
on Artificial Intelligence Circuits and Systems (AICAS), Incheon, Republic of Korea, 13–15 June 2022; pp. 134–137.

19. Tang, G.; Michmizos, K.P. Gridbot: An autonomous robot controlled by a spiking neural network mimicking the brain’s
navigational system. In Proceedings of the International Conference on Neuromorphic Systems, Knoxville, TN, USA, 23–26 July
2018; pp. 1–8.

20. Osswald, M.; Ieng, S.H.; Benosman, R.; Indiveri, G. A spiking neural network model of 3D perception for event-based neuromor-
phic stereo vision systems. Sci. Rep. 2017, 7, 40703. [CrossRef]

21. Tavanaei, A.; Ghodrati, M.; Kheradpisheh, S.R.; Masquelier, T.; Maida, A. Deep learning in spiking neural networks. Neural Netw.
2019, 111, 47–63. [CrossRef]

22. Dora, S.; Kasabov, N. Spiking Neural Networks for Computational Intelligence: An Overview. Big Data Cogn. Comput. 2021, 5, 67.
[CrossRef]

23. Cao, Y.; Chen, Y.; Khosla, D. Spiking deep convolutional neural networks for energy-efficient object recognition. Int. J. Comput.
Vis. 2015, 113, 54–66. [CrossRef]

24. Hu, Y.; Tang, H.; Pan, G. Spiking deep residual networks. IEEE Trans. Neural Netw. Learn. Syst. 2021, 1–6. [CrossRef]
25. Diehl, P.U.; Neil, D.; Binas, J.; Cook, M.; Liu, S.C.; Pfeiffer, M. Fast-classifying, high-accuracy spiking deep networks through

weight and threshold balancing. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Killarney,
Ireland, 12–16 July 2015; pp. 1–8.

26. Sengupta, A.; Ye, Y.; Wang, R.; Liu, C.; Roy, K. Going deeper in spiking neural networks: VGG and residual architectures. Front.
Neurosci. 2019, 13, 95. [CrossRef] [PubMed]

27. Rueckauer, B.; Lungu, I.A.; Hu, Y.; Pfeiffer, M.; Liu, S.C. Conversion of continuous-valued deep networks to efficient event-driven
networks for image classification. Front. Neurosci. 2017, 11, 682. [CrossRef] [PubMed]

28. Han, B.; Srinivasan, G.; Roy, K. Rmp-snn: Residual membrane potential neuron for enabling deeper high-accuracy and low-latency
spiking neural network. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA,
USA, 13–19 June 2020; pp. 13558–13567.

29. Caporale, N.; Dan, Y. Spike timing—Dependent plasticity: A Hebbian learning rule. Annu. Rev. Neurosci. 2008, 31, 25–46.
[CrossRef] [PubMed]

30. Mozafari, M.; Ganjtabesh, M.; Nowzari-Dalini, A.; Thorpe, S.J.; Masquelier, T. Bio-inspired digit recognition using reward-
modulated spike-timing-dependent plasticity in deep convolutional networks. Pattern Recognit. 2019, 94, 87–95. [CrossRef]

31. Kheradpisheh, S.; Ganjtabesh, M.; Thorpe, S. STDP-based spiking deep convolutional neural networks for object recognition.
Neural Netw. 2018, 99, 56–67. [CrossRef]

32. Diehl, P.U.; Cook, M. Unsupervised learning of digit recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci.
2015, 9, 99. [CrossRef]

33. Masquelier, T.; Thorpe, S.J. Unsupervised learning of visual features through spike timing dependent plasticity. PLoS Comput.
Biol. 2007, 3, e31. [CrossRef]

34. Taherkhani, A.; Belatreche, A.; Li, Y.; Cosma, G.; Maguire, L.; McGinnity, T. A review of learning in biologically plausible spiking
neural networks. Neural Netw. 2020, 122, 253–272. [CrossRef]

35. Bohte, S.M.; Kok, J.N.; La Poutre, H. Error-backpropagation in temporally encoded networks of spiking neurons. Neurocomputing
2002, 48, 17–37. [CrossRef]

36. Ponulak, F.; Kasiński, A. Supervised learning in spiking neural networks with ReSuMe: Sequence learning, classification, and
spike shifting. Neural Comput. 2010, 22, 467–510. [CrossRef]

37. Gütig, R.; Sompolinsky, H. The tempotron: A neuron that learns spike timing–based decisions. Nat. Neurosci. 2006, 9, 420–428.
[CrossRef]

38. Mohemmed, A.; Schliebs, S.; Matsuda, S.; Kasabov, N. Span: Spike pattern association neuron for learning spatio-temporal spike
patterns. Int. J. Neural Syst. 2012, 22, 1250012. [CrossRef]

39. Ojha, V.K.; Abraham, A.; Snášel, V. Metaheuristic design of feedforward neural networks: A review of two decades of research.
Eng. Appl. Artif. Intell. 2017, 60, 97–116. [CrossRef]

https://doi.org/10.3389/fncom.2021.665662
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1126/science.1254642
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1088/1741-2560/13/5/051001
https://doi.org/10.1038/srep40703
https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.3390/bdcc5040067
https://doi.org/10.1007/s11263-014-0788-3
https://doi.org/10.1109/TNNLS.2021.3119238
https://doi.org/10.3389/fnins.2019.00095
https://www.ncbi.nlm.nih.gov/pubmed/30899212
https://doi.org/10.3389/fnins.2017.00682
https://www.ncbi.nlm.nih.gov/pubmed/29375284
https://doi.org/10.1146/annurev.neuro.31.060407.125639
https://www.ncbi.nlm.nih.gov/pubmed/18275283
https://doi.org/10.1016/j.patcog.2019.05.015
https://doi.org/10.1016/j.neunet.2017.12.005
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.1371/journal.pcbi.0030031
https://doi.org/10.1016/j.neunet.2019.09.036
https://doi.org/10.1016/S0925-2312(01)00658-0
https://doi.org/10.1162/neco.2009.11-08-901
https://doi.org/10.1038/nn1643
https://doi.org/10.1142/S0129065712500128
https://doi.org/10.1016/j.engappai.2017.01.013

Appl. Sci. 2023, 13, 4809 21 of 22

40. Kaveh, M.; Mesgari, M.S. Application of meta-heuristic algorithms for training neural networks and deep learning architectures:
A comprehensive review. Neural Process. Lett. 2022, 1–104. [CrossRef]

41. Pavlidis, N.G.; Tasoulis, O.K.; Plagianakos, V.P.; Nikiforidis, G.; Vrahatis, M.N. Spiking neural network training using evolutionary
algorithms. In Proceedings of the International Joint Conference on Neural Networks, Montreal, QC, Canada, 31 July–4 August
2005; Volume 4, pp. 2190–2194.

42. Vázquez, R.A.; Garro, B.A. Training spiking neurons by means of particle swarm optimization. In Proceedings of the International
Conference in Swarm Intelligence, Chongqing, China, 12–15 June 2011; pp. 242–249.

43. Vazquez, R.A.; Garro, B.A. Training spiking neural models using artificial bee colony. Comput. Intell. Neurosci. 2015, 2015, 18.
[CrossRef]

44. Rere, L.M.; Fanany, M.I.; Arymurthy, A.M. Metaheuristic algorithms for convolution neural network. Comput. Intell. Neurosci.
2016, 2016, 13. [CrossRef]

45. Ghasemi-Marzbali, A. A novel nature-inspired meta-heuristic algorithm for optimization: Bear smell search algorithm. Soft
Comput. 2020, 24, 13003–13035. [CrossRef]

46. Holland, J.H. Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial
Intelligence; MIT Press: Cambridge, MA, USA, 1992.

47. Slowik, A.; Kwasnicka, H. Evolutionary algorithms and their applications to engineering problems. Neural Comput. Appl. 2020,
32, 12363–12379. [CrossRef]

48. Pant, M.; Zaheer, H.; Garcia-Hernandez, L.; Abraham, A. Differential Evolution: A review of more than two decades of research.
Eng. Appl. Artif. Intell. 2020, 90, 103479.

49. Mareli, M.; Twala, B. An adaptive Cuckoo search algorithm for optimisation. Appl. Comput. Inform. 2018, 14, 107–115. [CrossRef]
50. Shami, T.M.; El-Saleh, A.A.; Alswaitti, M.; Al-Tashi, Q.; Summakieh, M.A.; Mirjalili, S. Particle swarm optimization: A compre-

hensive survey. IEEE Access 2022, 10, 10031–10061. [CrossRef]
51. Ala’a, A.; Alsewari, A.A.; Alamri, H.S.; Zamli, K.Z. Comprehensive review of the development of the harmony search algorithm

and its applications. IEEE Access 2019, 7, 14233–14245.
52. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC)

algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]
53. O’Neill, M.; Ryan, C. Grammatical evolution. IEEE Trans. Evol. Comput. 2001, 5, 349–358. [CrossRef]
54. Gerstner, W.; Kistler, W.M.; Naud, R.; Paninski, L. Neuronal Dynamics: From Single Neurons to Networks and Models of Cognition;

Cambridge University Press: Cambridge, MA, USA, 2014.
55. Izhikevich, E.M. Simple model of spiking neurons. IEEE Trans. Neural Netw. 2003, 14, 1569–1572. [CrossRef]
56. Lecar, H. Morris-lecar model. Scholarpedia 2007, 2, 1333. [CrossRef]
57. Izhikevich, E.M.; FitzHugh, R. Fitzhugh-nagumo model. Scholarpedia 2006, 1, 1349. [CrossRef]
58. Hodgkin, A.L.; Huxley, A.F. A quantitative description of membrane current and its application to conduction and excitation in

nerve. J. Physiol. 1952, 117, 500. [CrossRef]
59. Javanshir, A.; Nguyen, T.T.; Mahmud, M.P.; Kouzani, A.Z. Advancements in Algorithms and Neuromorphic Hardware for

Spiking Neural Networks. Neural Comput. 2022, 34, 1289–1328. [CrossRef]
60. Kiselev, M. Rate coding vs. temporal coding-is optimum between? In Proceedings of the International Joint Conference on Neural

Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 1355–1359.
61. Brette, R. Philosophy of the spike: Rate-based vs. spike-based theories of the brain. Front. Syst. Neurosci. 2015, 9, 151. [CrossRef]
62. Tang, H.; Cho, D.; Lew, D.; Kim, T.; Park, J. Rank order coding based spiking convolutional neural network architecture with

energy-efficient membrane voltage updates. Neurocomputing 2020, 407, 300–312. [CrossRef]
63. Kheradpisheh, S.R.; Masquelier, T. Temporal backpropagation for spiking neural networks with one spike per neuron. Int. J.

Neural Syst. 2020, 30, 2050027. [CrossRef]
64. Dua, D.; Graff, C. UCI Machine Learning Repository, Irvine, CA. University of California. 2019. Available online: https:

//archive.ics.uci.edu/ml (accessed on 1 October 2022).
65. Bohte, S.M.; Kok, J.N.; La Poutré, J.A. SpikeProp: Backpropagation for networks of spiking neurons. ESANN 2000, 48, 419–424.
66. Abusnaina, A.A.; Abdullah, R.; Kattan, A. Supervised training of spiking neural network by adapting the E-MWO algorithm for

pattern classification. Neural Process. Lett. 2019, 49, 661–682. [CrossRef]
67. Wang, J.; Belatreche, A.; Maguire, L.P.; McGinnity, T.M. Spiketemp: An enhanced rank-order-based learning approach for spiking

neural networks with adaptive structure. IEEE Trans. Neural Netw. Learn. Syst. 2015, 28, 30–43. [CrossRef]
68. Dora, S.; Sundaram, S.; Sundararajan, N. A two-stage learning algorithm for a growing-pruning spiking neural network for

pattern classification problems. In Proceedings of the International Joint Conference on Neural Networks (IJCNN), Killarney,
Ireland, 12–15 July 2015; pp. 1–7.

69. Lin, X.; Zhang, M.; Wang, X. Supervised learning algorithm for multilayer spiking neural networks with long-term memory spike
response model. Comput. Intell. Neurosci. 2021, 2021, 8592824. [CrossRef]

70. Darabi, N.; Rezai, A.; Hamidpour, S.S.F. Breast cancer detection using RSFS-based feature selection algorithms in thermal images.
Biomed. Eng. Appl. Basis Commun. 2021, 33, 2150020. [CrossRef]

https://doi.org/10.1007/s11063-022-11055-6
https://doi.org/10.1155/2015/947098
https://doi.org/10.1155/2016/1537325
https://doi.org/10.1007/s00500-020-04721-1
https://doi.org/10.1007/s00521-020-04832-8
https://doi.org/10.1016/j.aci.2017.09.001
https://doi.org/10.1109/ACCESS.2022.3142859
https://doi.org/10.1007/s10898-007-9149-x
https://doi.org/10.1109/4235.942529
https://doi.org/10.1109/TNN.2003.820440
https://doi.org/10.4249/scholarpedia.1333
https://doi.org/10.4249/scholarpedia.1349
https://doi.org/10.1113/jphysiol.1952.sp004764
https://doi.org/10.1162/neco_a_01499
https://doi.org/10.3389/fnsys.2015.00151
https://doi.org/10.1016/j.neucom.2020.05.031
https://doi.org/10.1142/S0129065720500276
https://archive.ics.uci.edu/ml
https://archive.ics.uci.edu/ml
https://doi.org/10.1007/s11063-018-9846-0
https://doi.org/10.1109/TNNLS.2015.2501322
https://doi.org/10.1155/2021/8592824
https://doi.org/10.4015/S1016237221500204

Appl. Sci. 2023, 13, 4809 22 of 22

71. Zarei, M.; Rezai, A.; Falahieh Hamidpour, S.S. Breast cancer segmentation based on modified Gaussian mean shift algorithm for
infrared thermal images. Comput. Methods Biomech. Biomed. Eng. Imaging Vis. 2021, 9, 574–580. [CrossRef]

72. Salman, I.; Ucan, O.N.; Bayat, O.; Shaker, K. Impact of metaheuristic iteration on artificial neural network structure in medical
data. Processes 2018, 6, 57. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1080/21681163.2021.1897884
https://doi.org/10.3390/pr6050057

	Introduction
	Materials and Methods
	Metaheuristic Algorithms
	Genetic Algorithms
	Differential Evolution
	Cuckoo Search
	Particle Swarm
	Harmony Search
	Artificial Bee Colony
	Grammatical Evolution

	SNN Model and Learning Method
	Spiking Neuron Model
	Information Coding
	Construction of the Error Function
	Target Firing Time

	Experimental Results and Evaluation
	Iris Plant
	Breast Cancer
	Diabetes
	Wine
	Liver

	Discussion
	Conclusions
	References

