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Abstract: Cloud computing (CC) benefits and opportunities are among the fastest growing technolo-
gies in the computer industry. Cloud computing’s challenges include resource allocation, security,
quality of service, availability, privacy, data management, performance compatibility, and fault tol-
erance. Fault tolerance (FT) refers to a system’s ability to continue performing its intended task in
the presence of defects. Fault-tolerance challenges include heterogeneity and a lack of standards, the
need for automation, cloud downtime reliability, consideration for recovery point objects, recovery
time objects, and cloud workload. The proposed research includes machine learning (ML) algorithms
such as naïve Bayes (NB), library support vector machine (LibSVM), multinomial logistic regression
(MLR), sequential minimal optimization (SMO), K-nearest neighbor (KNN), and random forest
(RF) as well as a fault-tolerance method known as delta-checkpointing to achieve higher accuracy,
lesser fault prediction error, and reliability. Furthermore, the secondary data were collected from
the homonymous, experimental high-performance computing (HPC) system at the Swiss Federal
Institute of Technology (ETH), Zurich, and the primary data were generated using virtual machines
(VMs) to select the best machine learning classifier. In this article, the secondary and primary data
were divided into two split ratios of 80/20 and 70/30, respectively, and cross-validation (5-fold) was
used to identify more accuracy and less prediction of faults in terms of true, false, repair, and failure
of virtual machines. Secondary data results show that naïve Bayes performed exceptionally well
on CPU-Mem mono and multi blocks, and sequential minimal optimization performed very well
on HDD mono and multi blocks in terms of accuracy and fault prediction. In the case of greater
accuracy and less fault prediction, primary data results revealed that random forest performed very
well in terms of accuracy and fault prediction but not with good time complexity. Sequential minimal
optimization has good time complexity with minor differences in random forest accuracy and fault
prediction. We decided to modify sequential minimal optimization. Finally, the modified sequential
minimal optimization (MSMO) algorithm with the fault-tolerance delta-checkpointing (D-CP) method
is proposed to improve accuracy, fault prediction error, and reliability in cloud computing.

Keywords: cloud computing; delta-checkpointing; fault tolerance; fault classification and prediction;
machine learning; reliability; Weibull distribution

1. Introduction

Motivation. CC debuted in information technology and has since evolved into a
popular business model for providing IT infrastructure, components, and applications [1].
The five distinct characteristics of CC are on-demand self-service, extensive network access,
resource pooling, rapid elasticity, and measured service. In addition, four deployment
models are available: private clouds, community clouds, public clouds, and hybrid clouds.
In addition, it provides three service models: SaaS, PaaS, and IaaS [2].
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In providing cloud security assistance, FT is a significant challenge. Several previous
studies attempted to incorporate the various FT frameworks and cloud solutions proposed,
but certain accounts proved to be limited. The ability of a system to perform properly
in the presence of internal faults is referred to as FT [3,4]. In fault tolerance, there are
four types of system faults: transient faults, intermittent faults, permanent faults, and
Byzantine faults [5–7]. The FT technique taxonomy is divided into three major groups:
reactive methods (RAMs), proactive methods (PRMs), and resilient methods (RMs) [5].
Methods in the above taxonomy include checkpointing (CP)/restarting, replication, retry,
task resubmission, custom exception handling, rescue workflow, N-version and recovery
block, software rejuvenation, preemptive migration, self-healing, prediction, ML, and fault
induction [3].

Reliability has always been a major challenge in distributed systems. It is critical
to provide highly accessible and dependable CC services to maintain client confidence
and satisfaction while avoiding revenue losses. Although various solutions for cloud
reliability have been proposed, there are no comprehensive studies that cover all aspects
of the problem [8]. Improving cloud service reliability is a critical feature of CC that has
received a great deal of attention from the research community [9].

The Antarex secondary dataset is made up of trace data collected from the homony-
mous experimental HPC system at ETH Zurich during fault injection to perform ML-based
fault detection experiments on HPC systems. The dataset is divided into two sections:
one for CPU and memory-related benchmark apps and fault programs and another for
hard-drive-related apps and fault programs. The Antarex dataset is divided into four
folders: one for each dataset block, namely CPU/memory and HDD, in single-core and
multi-core forms [10]. The Weibull distribution approach is used to generate the primary
dataset. The Weibull distribution is also commonly used as a time-to-failure model in
reliability. It extends the exponential model by incorporating non-constant failure rate
functions. This includes both rising and decreasing failure rate functions and has been used
effectively to explain both initial burning failures and wear-out failures [11].

ML has played an active part in the RAMs area, mapping the recovery time to a
function that can be improved (i.e., by converging the recovery time to a fraction of
milliseconds). The recovery time will decrease as the system learns to deal with new
errors. Researchers have recently become more interested in resilient approaches. The
resilience of a system is defined as the speed with which it can recover and resume regular
operation following a system outage or failure. RSMs include techniques for responding to
clients despite failure, monitoring system state, and learning and adapting from faults and
predictions. The learning and adaptation of a system are based on ML in RSMs. Resilient
approaches include techniques that deal with the ability to respond to clients despite failure,
monitoring system status, learning and adapting from faults, and forecasting. In resilient
approaches, the learning and adaptability of a system based on ML are used [5].

Contributions. Our work makes numerous contributions. We began by acquiring the
HPC fault dataset and evaluating a fault classification method based on supervised ML.
This dataset and all test environment details are publicly available for use by the community.
The Antarex secondary dataset is based on trace data from the homonymous experimental
HPC system at ETH Zurich during fault injection, which was used to undertake ML-based
fault prediction studies for researchers. The dataset was then separated into two sections:
one for CPU and memory-related benchmark apps and fault programs and another for hard-
drive-related applications and fault programs. The Antarex dataset has four folders: one
for each dataset block, namely CPU/M\memory and HDD, in single-core and multi-core
forms [10].

Second, we generated a primary dataset through the Weibull distribution approach.
The Weibull distribution is also often employed as a time-to-failure model for reliability.
It extends the exponential model by including non-constant failure rate functions. This
contains both rising and falling failure rate curves and has been successfully utilized to
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explain both initial burnings and wear-out failures [11]. We coded different parameters in
the Java platform for primary data generated using the Weibull distribution approach.

Third, our evaluation is based on the Antarex secondary datasets that we acquired
from the ZONODO website and generated primary datasets using the Weibull distribution
approach [10,11]. We present the results of our experiments, whose purpose was for fault
classification and fault prediction to detect which of the ML algorithms gives better results
in terms of high accuracy and less fault prediction.

As a fourth and final contribution, reliability was achieved using the MSMO classifier
and D-CP fault-tolerance approach to achieve high accuracy, less fault prediction, and suc-
cessful execution of VMs that have a good impact on users related to the CC environment.

Organization. The remainder of the paper is structured as follows. The first section
provides an overview of this research study. In the following section, we contextualize
our work on literature review, and in Section 3, we demonstrate the problem statement.
Section 4 discusses the research methodology, Section 5 discusses results and findings,
Section 6 is based on discussion, and Section 7 concludes this research.

2. Literature Review

Shahid et al. [12] suggested that in recent years, CC has emerged as a distinct trend.
Distributed systems have evolved into large-scale computer networks as a result. Cloud
computing companies such as International Business Management Corporation (IBM),
Amazon, Yahoo, and Google provide cloud services to customers worldwide. End users are
not required to install programs on their local personal computers (PCs) under this novel
paradigm; instead, apps and services are delivered to them on demand. CC is facing several
challenges. Data protection, data recovery and availability, administrative capabilities,
regulatory compliance, security, and the ability to adjust the burden, control execution,
fault tolerance, cloud computing governance, interoperability, and portability are examples.

Gupta et al. [13] suggested that FT is a difficult research area that is being pursued
alongside distributed grid computing. This is due to the long time it takes computer-
intensive grid systems to solve a single problem. The FT of CC is flexible, which leads to
unanticipated tasks, which leads to faults. To improve CC dependability and resilience,
defects should be properly investigated and managed. In computer systems, there are two
types of FT: hardware and software.

Shahid et al. [3] suggested that the taxonomy types of FT techniques be divided
into three key groups: RAMs, PRMs, and RSMs. Cloud FT advice in the future will
emphasize clever and resilient solutions. Previously, many FT researchers used ML to
demonstrate intelligence and resilience in various ways. As a third group, they added
resilient approaches on their own.

Mukwevho and Celik [14,15] suggested that downtime in the cloud might be defined
as not dropping the in-storage conference state in the case of a disaster, such as a host
server breakdown or a network system disaster, rather than stopping the service entirely.
A detailed outage at one data center may have an impact on other businesses. Each
organization has different SLAs for clouds, and the FT supplier must guarantee that the
SLAs are satisfied for all organizations.

Edemo [16] recommended this strategy as an effective reactive method, particularly
for long-running programs. CP is the practice of maintaining app status after any effective
completion or storing the preliminary failure-free state. This strategy is implemented at
several levels, including the device, app, and library levels.

Kamiri and Mariga [17] suggested that ML is a subfield of artificial intelligence that
deals with the creation of algorithms and procedures that allow a computer to learn and
gain intelligence through experience. The research methodology used in ML research is
critical because it influences the accuracy and dependability of the results. ML models
learn from historical data, which can be primary or secondary in nature. As a result, there
is a vast knowledge base from which robots can learn and make decisions.
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Sarker [18] suggested that the process of learning a function that translates input to
output was introduced using sample input–output pairs. It uses labeled training data and a
set of training examples to infer a function. When specific goals are specified to be achieved
from a specific set of inputs, i.e., a task-driven method, supervised learning occurs. The
most common supervised tasks are classification (data separation) and regression (fitting
data). For example, supervised learning is used to predict the class label or sentiment of a
piece of text, such as a tweet or product review.

Butt et al. [19] investigated ML as the logical evaluation of computations and quan-
tifiable models used by computer systems to perform a particular attempt without the
need for explicit instructions based on models and acceptance. It falls under the umbrella
of computerized reasoning. ML is so important in the cloud that it will be used by all
clouds soon.

Sun et al. [20] suggested that ML has recently grown at a breakneck pace, attracting
a large number of academics and practitioners. It has emerged as one of the most promi-
nent research areas, with applications in a wide range of industries including machine
translation, speech recognition, image recognition, recommendation systems, and so on.

Kochhar et al. [21] suggested the NB classifier is one of the most useful ML algorithms.
The NB classifier is based on the Bayes theorem, which requires significant independence
(naïve) between qualities or features (predictors). Because it requires little work to develop
and has no complicated repeating parameter setting or computation, the naïve Bayesian
classification model is very useful for very large datasets. Despite its simplicity, the NB
classifier is one of the most widely used algorithms because it frequently outperforms more
complicated and refined classification algorithms.

Chang and Lin [22] proposed that LIBSVM is a support vector machines library. The
goal is to make applying SVM to applications as simple as possible for users. LIBSVM
has been widely used in ML and other fields. LIBSVM has grown to be one of the most
widely used SVM programs. LIBSVM provides support for a variety of SVM formulations
for classification, regression, and distribution estimation. LIBSVM is widely used in
numerous fields.

Mohamad [23] found that based on many independent factors, MLR is used to esti-
mate the probability of multiple possible outcomes for a categorical dependent variable
with more than two categories. The MLR model compares various categories using a
combination of binary logit models. The multinomial logit model is composed of k-1 binary
logit models that assess the influence of predictors on the likelihood of success in that
category for k response variable categories.

C.R. LI and J. GUO [24] proposed that the SMO limits B to only two multipliers that
can be calculated analytically and do not require any extra matrix storage. There are
two methods for determining which multipliers to optimize. The first heuristic prioritizes
unbound multipliers that are more likely to violate the KKT specifications. The second-
choice heuristic, after selecting the first Lagrange multiplier, selects the second Lagrange
multiplier that maximizes the difference between the two prediction errors. To save training
time, the SMO technique is based on a single-program multiple data (SPMD) paradigm. It
divides the entire dataset into smaller subsets and uses several processors to update the
error array of each subset in parallel.

Sen et al. [25] suggested that the KNN saves all available records and predicts the class
of new occurrences in probability using similarity measures from the nearest neighbors.
Unlike other classification techniques that construct a mapping function or internal model,
this classification technique is known as a lazy learning method because it stores the data
members in inefficient data structures such as hash tables, reducing the computation cost
to check and apply the appropriate distance function between the new observation and all
k amount of different data points stored and then come to any conclusion about the label of
the new data point. The results are generated by applying simple majority support to the
KNN of each new data point.
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In the work by Attallah et al. [26], the proposed methodology tolerates VM CPU
faults to achieve maximum CC infrastructure reliability and availability. CPU faults can
occur during VM operation. The proposed model’s main goal is to track changes in CPU
utilization and make a decision when a high value of CPU utilization is detected. It either
moves the faulty VM to a different destination host or manages loads on the destination
host so that the faulty VM can be moved.

S. Suguna and K. Devi [27] suggested virtual machine fault tolerance (VMFT). The
machine tolerates failure in this method based on the VMs reliability. It delivers reliability
and availability while also shortening service times. When the application is calculated
on a VM, the VM that produces the proper logical output in the shortest amount of time
is regarded as the best VM among all VMs, and that VM is used for further application
processing. The suggested VMFT approach is implemented using a cloud sim tool. The
time it takes to execute the program is used to measure the reliability of a single-node VM.
The node that returns the result on time is designated as the reliable VM.

Sarker [18] the proposed RF classifier is a well-known ensemble classification approach
used in machine learning and data science in a wide range of application fields. This method
employs a parallel ensemble, which entails fitting multiple decision tree classifiers to
different data sets sub-samples concurrently, with the conclusion or final result determined
by majority voting or averages. As a result, over-fitting is reduced, and forecast accuracy
and control are improved. As a result, the RF learning model with multiple decision trees
outperforms a single decision tree model regularly. It generates a series of decision trees
with a controlled variance using a combination of bootstrap aggregation (bagging) and
random feature selection. Table 1 shows a summary of the literature review.

Table 1. A Summary of the Literature Review.

Ref Author Name Year Benefits Drawbacks

[12] Muhammad Asim Shahid et al. 2020

They identify the need for FT
efficiency metrics in algorithms in

this article, which is one of the main
concerns in cloud environments.

They do not provide quality of
service in terms of reliability.

[13] Vipul Gupta et al. 2019

In this article, they show that the
accuracy value of the fault tolerance

is 79%, which is better than in the
existing method.

They do not provide
classification techniques for

selecting fault-tolerance nodes
based on virtual machine

success/failure.

[14] Rakesh et al. 2020
In this article, reactive FT

mechanisms were found to likely
result in failure.

In this article, they do not
implement machine learning

algorithms for better fault
prediction, so they are not

providing high accuracy and less
fault prediction.

[15] Sam Goundar and Akashdeep
Bhardwaj 2018

This article discusses fault-tolerance
systems for cloud computing

environments and examines whether
or not they are effective in a cloud

environment.

They do not address accuracy
and fault prediction to achieve

reliability.

[16] Mihiretu Kebede Edemo 2019

The author created a fault-tolerance
architecture that can effectively use

versions in real-time cloud
computing systems.

The limitation is that the
architecture cannot tolerate
faults if an equal number of

versions fail in each subpart at
the same time, especially if the

number of failed versions
exceeds the number of error-free

versions in all subparts.

[17] Jackson Kamiri and Geoffrey Mariga 2021

The primary goal of this paper was
to investigate current machine

learning research methods, emerging
themes, and the implications of those
themes in machine learning research.

They do not offer content
analysis for machine learning

applications such as supervised
learning, text analytics,

classification, and prediction.
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Table 1. Cont.

Ref Author Name Year Benefits Drawbacks

[18] Iqbal H. Sarker 2021

The author provides a
comprehensive overview of machine

learning algorithms, which can be
used to improve an application’s

intelligence and capabilities.

There is a lack of analysis on
machine learning algorithms.

[19] Umer Ahmed Butt et al. 2020

They present an analysis of CC
security threats, issues, and solutions

that used one or more ML
algorithms in this review paper.

There is a lack of a proposed
solution to achieve reliability

based on VM failure.

[20] Shiliang Sun et al. 2019 In this article, they use of ML
algorithms to improve accuracy.

There is a lack of challenges and
open problems in ML

optimization methods.

[21] Deepak Kochhar et al. 2017

The proactive fault-tolerance
technique is used in this article, and
they propose using the NB classifier

to classify the nodes.

There is a lack of use of other
classification algorithms to

improve accuracy and achieve
less fault prediction.

[22] Chih-Chung Chang and Chih-Jen Lin 2022
In this article, they present the

implementation of LibSVM and
discuss all issues.

There is a lack of ensuring good
system reliability.

[23] Nor Amira Mohamad et al. 2016 This study used MLR model to
determine fault prediction.

There is a lack of use of other
classification algorithms to
determine fault prediction.

[24] C.R. LI and J. GUO 2015
The authors of this paper proposed
an improved version of SVM that

can avoid falling into endless loops.

The article was unable to
determine the optimal parameter

in an n-way that can speed up
training.

[25] Pratap Chandra Sen et al. 2020

This paper attempts to compare
various types of classification

algorithms and provides a thorough
review of all supervised learning

classifications.

There is a lack of a proposed
solution to achieve reliability

based on VM failure.

[26] Salma M.A. Attallah et al. 2020

The main goal of the proposed
model is to track changes in CPU
utilization and make a decision

when a high value of CPU utilization
is identified.

There is a lack of a proposed
solution to achieve reliability

based on VM failure.

[27] S. Suguna and K. Devi 2015
The authors proposed a virtual

machine fault-tolerance technique in
this article to achieve reliability.

In this article, the authors only
achieved one virtual machine
result that was successful, and

the remaining were failures.

3. Problem Statement

Reliability is a continuous metric that changes with each computing step. One of
the most important service characteristics is reliability, which must be met in CC for a
stable operation. The main backup duplication is a critical FT software strategy used to
meet reliability requirements. The dependability of overall task completion is the result of
specific activities, and for too many thousands or millions of computing operations, this
can quickly become a fading variety. A cloud system’s reliability is an assessment of how
effectively the cloud system provides the service to the user based on the criteria listed
above [8].

There is a need to design and implement ML models that can resolve FT issues by
acquiring high accuracy, less fault prediction, and achieving optimum reliability based on
successfully running VMs without any failure.

Mathematical Equation for Reliability

In complex systems, the analyst requires a mathematical approach to determine
the importance of each VM. Reliability is an appropriate measure for determining the
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relative importance of each virtual machine to the overall system reliability. The reliability
importance, IRi, of component i in an n-VM system is given as follows [8]:

RIi(t) =
∂Rs(t)
∂Ri(t)

(1)

where Rs (t) is the reliability at a given time, t; and Ri (t) is the VM reliability at the same
time, t [8].

RI measures the rate of change of system reliability in relation to VM reliability at a
given time t. The RI can also be used to calculate the likelihood that a component will
cause a system failure at time t. The calculated reliability importance in Equation (1) can be
influenced by both reliability and the current position of a system component [8].

4. Research Methodology

This section focuses on the proposed methodology. In this section, the research design,
data collection procedure, and data analysis techniques are all explained in detail. The
architecture of the data analysis techniques is also incorporated and explained.

4.1. Research Design

The following research design was followed.

4.1.1. Data Collected and Generated

The secondary dataset contains trace data collected from the ETH Zurich homonymous,
experimental HPC system, and the generated primary dataset contains repair and failure
virtual machine data to conduct an ML-based approach for FT reliability in CC.

4.1.2. Machine Learning Algorithms

This research is based on supervised ML algorithms to achieve high accuracy and
less fault prediction error. It is defined by its use of labeled datasets to train algorithms to
classify data or predict outcomes accurately.

4.1.3. Fault-Tolerance Approach

In this research, FT is used to identify the failure and repair of VMs. Virtual machines
are used in a CC system to handle user requests for services. A user request cannot be
completed if the virtual machine fails. D-CP mechanisms are used to mitigate the impact of
VM failure.

4.1.4. Reliability

In CC, reliability is defined as a cloud computing system’s capacity to complete the
intended job or deliver a necessary service for a certain amount of time under predeter-
mined conditions. In this research, reliability is achieved based on ML and the FT method.
Reliability means that all VMs have been run successfully without any failure.

4.2. Implementation View of Research Framework

The research framework diagram was designed to understand the flow of the proposed
research. In the beginning, the secondary data acquisition was completed from external
sources, and primary data were generated through the Weibull distribution approach. The
secondary data set was cleaned out and then processed. The primary dataset was clean.

Figure 1 demonstrates that a genuine, competent, and effective solution has been
designed to achieve high accuracy, less fault prediction error, and achieve reliability in
cloud computing from ML and D-CP techniques.
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4.3. Acquired Secondary Data

We acquired Antarex HPC fault dataset secondary data through the ZENODO website,
and this dataset is published in articles. This dataset and all test environment details are
publicly available for use by the community. The Antarex secondary dataset is based on
trace data from the homonymous, experimental HPC system at ETH Zurich during fault
injection, which is used to undertake ML-based fault prediction studies for researchers.

CPU-Mem mono- has (Instances 4005), CPU-Mem multi- (Instances 4380), HDD mono-
(Instances 3244), and HDD multicores (Instances 2493) dataset. This dataset block has eight
attributes (timestamp, type, args, seqNum, duration, cores, error, and isFault) and various
instances. These instance types are numeric and nominal bases [28]. Table 2 shows a short
overview of the secondary dataset.

Table 2. Short Overview of the Secondary Dataset.

Dataset
Directories Attributes Attributes

Names + Types Instances

CPU-Mem Mono 8 1. Timestamp Nume 2. Type Nomi 4005
CPU- Mem Multi 8 3. Args Nomi 4. Seqnum Nume 4380

HDD Mono 8 5. Duration Nume 6. Cores Nume 3244
HDD Multi 8 7. Error Nomi 8. isFault Nomi 2493
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4.3.1. Exploratory Data Analysis on Secondary Dataset

In the Antarex secondary dataset, we used exploratory data analysis (EDA). The goal
of EDA is to tackle specific tasks such as detecting missing and incorrect data, mapping and
understanding the underlying structure of the data, and identifying the most important
variables in the dataset. The dataset is divided into two sections: CPU and memory-
related benchmark apps and fault programs as well as hard-drive-related apps and fault
programs. Antarex datasets are organized into four folders: one for each dataset block,
namely CPU/memory and HDD, in single-core and multi-core forms [28].

4.3.2. Data Pre-Processing on Secondary Dataset

Data pre-processing is necessary before applying ML algorithms to secondary datasets.
This dataset has duplicate values in three attributes named args, seqNum, and duration.
Furthermore, this dataset has some none values and empty rows. All duplicate values,
none values, and empty rows were removed using the Remove Duplicates option in Excel
after applying data pre-processing of the CPU-Mem mono- (Instances 1740), CPU-Mem
multi- (Instances 1408), HDD mono- (Instances 568), and HDD multicores (Instances 551).

4.4. Generated Primary Data

We generated a primary dataset through the Weibull distribution approach. The
Weibull distribution is also often employed as a time-to-failure model for reliability. It
extends the exponential model by including non-constant failure rate functions. This
contains both rising and falling failure rate curves and has been successfully utilized to
explain both initial burnings and wear-out failures [11]. We coded different parameters
in the Java platform for primary data generated using the Weibull distribution approach.
Table 3 is a summary of the parameters of the primary dataset generated, and Table 4
shows a short overview of the primary dataset. This primary dataset has seven attributes:
failure host ID (FHID), host failure time (HFT), last failure time (LFT), distribution (Dis),
distribution happen time (DHT), failure time/repair time (FTime/RTime), and status and
total (1400) instances. These instance types are numeric and nominal bases.

Table 3. Overview of the Parameters of Primary Data Generated.

User Port NO Host NO Network Host Distribution

1 16 192 Mips, Ram, Storage, and Bandwidth Weibull (this includes both rising and
decreasing failure rate functions).

Table 4. Short Overview of the Primary Dataset.

Attributes Attributes
Names

Attributes
Type Instances

7

9. FHID 10. HFTIME
Numeric

and
Nominal

1400
11. LFT 12. DIS
13. DISHT 14. FTIME/RTIME
15. STATUS

4.5. Data Analysis Techniques

Different ML-based techniques were used in this study for fault classification and
prediction. Fault classification and prediction were carried out using various classifiers
from NB, LibSVM, MLR, SMO, KNN, and RF algorithms.

4.5.1. Naïve Bayes

The NB classifier represents, employs, and learns well-defined probabilistic knowledge.
The method is intended for supervised induction tasks where the performance goal is to
correctly predict the class of test cases, and the training examples include class information.



Sensors 2023, 23, 1965 10 of 55

A naïve classifier is a type of Bayesian network that is based on two basic simplifying
assumptions. It assumes, in particular, that the predictive qualities are conditionally
independent of the class and that no hidden or latent features influence the prediction
process. As a result, Figure 2 depicts the graphic shape of a naïve Bayesian classifier, with
all arcs pointing from the class attribute to the observable, predictive attributes [29].
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In Equations (2)–(4), the Bayes’ rule is used to compute the probability of each class
given a vector of observed values for the predictive qualities and then predicts the most
likely class.

p(C = c|X = x) = p(C=c)p(X=x|C=c)
p(x=x)

p(X = x|C = c) = p(Λi Xi = xi|C = c)
= Πi p(Xi = xi|C = c)

(2)

Let C represent the random variable representing an instance’s class and X represent a
vector of random variables representing the observed attribute values. Let c represent a
specific class label and x represent an observed attribute value vector.

p = (X = x C = c) = g(x; µc, σc), where (3)

g(x; µ, σ) = x =
1√
2πσ

e− n(x− σ)2

2xσ2 (4)

We can write the probability density function for a normal (or Gaussian) distribution
for continuous attributes.

4.5.2. Library Support Vector Machine

LIBSVM is an SVM library. The goal is to make applying SVM to applications as
simple as possible for users. LIBSVM is widely used in machine learning and a variety of
other fields. LIBSVM is commonly used in two steps: first, training a data set to generate a
model and then using the model to predict information from a testing data set. LIBSVM
provides support for a wide range of SVM formulations for classification, regression, and
distribution estimation. Figure 3 depicts the LIBSVM code organization for training [22].

In Equation (5), where e = [1... 1], T is the vector of all ones; Q is a l by l positive
semidefinite matrix, Qij yiyjK(xi, xj); and the kernel function is as follows:

K(xi, xj)(xi)T(xj) (5)
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4.5.3. Multinomial Logistic Regression

Softmax is an abbreviation for MLR. Because of the hypothesis function it employs,
regression is a supervised learning technique that can be used to solve a variety of problems,
including text categorization. It is a regression model that applies logistic regression to
classification problems with multiple possible outcomes [30]. The multinomial logistic
classifier is depicted in Figure 4.
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In Equation (6), MLR is employed where the objective function of the classifier is given
as above.

4.5.4. Sequential Minimal Optimization

To train an SVM, a very large quadratic programming (QP) optimization problem
must be solved. SMO divides the enormous QP problem into the smallest feasible QP
problems. These minor QP issues are handled analytically, which eliminates the need for a
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time-consuming numerical QP optimization as an inner loop. SMO’s memory requirements
scale linearly with training set size, allowing it to handle extremely large training sets.
SMO scales the training set size for various test problems somewhere between linear and
quadratic because matrix computation is avoided, whereas the traditional chunking SVM
technique scales the training set size somewhere between linear and cubic. Because SVM
evaluation consumes the majority of SMO’s computing time, SMO is the fastest for linear
SVMs and sparse data sets. In real-world sparse data collections, SMO can be more than
1000 times faster than chunking [32]. Figure 5 depicts the overall architecture of SMO
inference and training.
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In Equations (7)–(9) the QP problem for training an SVM is as given below:

w(λ) =
I

∑
i=1

λi −
1
2

I

∑
i=1

I

∑
i=1

yiyjK
(
xi − xj

)
λiλj (7)

0<−λ i
<
−C, i = 1, . . . , 1, (8)

l

∑
i=l

yiλi = 0 (9)

In Equation (6), the QP problem for training an SVM is maximized and subject to (7)
and (9).

4.5.5. K-Nearest Neighbor

The KNN classification method is widely used. It is widely used because of its
simplicity and quick calculation time [34]. The choice of value k is critical in this method,
as shown in Figure 6. The two parameters that must be accessible to different k values are
training and validation error rates [35].
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• Determine the parameter K defining the number of nearest neighbors [35];
• Calculate the distance between the query and all training examples [35];
• Using the kth minimum, sort the distance and find the closest neighbors [35];
• Gather the closest neighbors category [35];
• Use the majority in the category of nearest neighbors as the instance’s prediction

value [35].

Data are used by fine and medium classifiers to categorize new data points based on
similarity measurements.

• Fine and Medium KNN: The fine and medium KNN algorithms use the Euclidean dis-
tance function to calculate the nearest neighbors, as shown in Equations (10) and (11).

d =
√
(x1 − y1)

2 + (x2 − y2)
2 (10)

√
∑k

i=1(xi − yi)
2 (11)

To calculate the NNs, the fine and medium KNN algorithms employ the Euclidean
distance function, as indicated in Equations (10) and (11).

4.5.6. Random Forest

This method generates a large number of collaborative decision trees. In this algorithm,
decision trees serve as pillars. RF is a set of decision trees that were defined during the
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pre-processing stage. After constructing many trees, the best feature from a random subset
of features is chosen. Another idea generated by the decision tree algorithm is the creation
of a decision tree. As a result, these trees combine to form a random forest, which is used to
classify new objects based on the input vector. Each built decision tree is used to categorize.
Figure 7 depicts the flowchart of a random forest classifier [36].

Sensors 2023, 23, x FOR PEER REVIEW 15 of 57 
 

 

 
Figure 7. Flowchart of Random Forest Classifier [36]. 

The mathematical formula for RF classifiers is shown below in Equation (12). 

nij = wICj − wleft(j)Cleft(j) – wright(j)Cright(j)  

ni sub(j) = the importance of node j 

w sub(j) = weighted number of samples reaching node j 

C sub(j) = the impurity value of node j 

left(j) = child node from left split on node j  

right(j) = child node from right split on node j                                                

(12) 

The mathematical formula for RF classifiers is shown below in (12). 

4.6. Parameters Configuration of ML Classifiers 

ML classifiers have been configured by applying different parameters to achieve ac-

curacy and fault prediction by class. Table 5 shows the different parameters of ML classi-

fiers with values. 

  

Figure 7. Flowchart of Random Forest Classifier [36].

The mathematical formula for RF classifiers is shown below in Equation (12).

nij = wiCj − wle f tjCle f tj − wrightjCrightj
ni sub(j) = the importance of node j

w sub(j) = weighted number of samples reaching node j
C sub(j) = the impurity value of node j

le f t(j) = child node from left split on node j
right(j) = child node from right split on node j

(12)

The mathematical formula for RF classifiers is shown below in (12).

4.6. Parameters Configuration of ML Classifiers

ML classifiers have been configured by applying different parameters to achieve
accuracy and fault prediction by class. Table 5 shows the different parameters of ML
classifiers with values.
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Table 5. Parameter Configuration of ML Classifiers.

Classifiers Configuration Parameters Values

NB

Batch size 100
Debug False
Display model in old format False
Do not check capabilities False
Num decimal places 2
Use kernel estimator False
Use supervised discretization False

LIBSVM

SVM type C-SVC (Classification)
Degree 3
EPS 0.001
Gamma 0.0
Kernel type radial basic function
Normalize False
Seed 1

MLR

Batch size 100
Do not check capabilities False
Num decimal places 4

Ridge 1.0 × 10−8

SMO

C complexity parameter 1.0

Epsilon 1.0 × 10−12

Filter type normalize training data
Kernel Polykernel −10 1.0−C 25,007
Num folds 1
Random seed 1
Tolerance parameter 0.001

KNN

KNN 1
Batch size 100
Cross validate False
Nearest neighbor search
algorithm linear NN search

RF

Batch size 100
Max depth 0
Num decimal places 2
Num features 0
Num iterations 100
Seed 1

4.7. Modified Sequential Minimal Optimization

The original SMO algorithm has low accuracy and a high fault prediction error. This
research has to resolve FT issues by acquiring high accuracy with less fault prediction
error to apply to D-CP to achieve reliability by acquiring high accuracy with less fault
prediction error from SMO. The block diagram of an MSMO classifier is shown in Figure 8.
High accuracy and less fault prediction errors are based on the primary dataset that has
been generated. High accuracy and less fault prediction error are evaluated in min α1, α2
using an objective function. High accuracy & less fault prediction error have been made by
applying objective functions through algorithm parameters and kernel parameters. The C
parameter is determined as a trade-off between fitting the training data and maximizing
the separating margin. C has a value between 0.01 and 100. The random seed is set at 2.
The only parameter for the polynomial kernel is the exponent, which controls the degree of
the polynomial. By default, the kernel computes the exponent as (x*y).
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4.8. Delta Checkpointing

D-CP is a common basic FT mechanism that works by saving a VMs execution state
as an image file regularly. However, due to the limited network resources available in
data centers, transferring a large number of CP image files can quickly become congested.
This study used a D-CP approach to address this issue, in which the base system is only
saved once the first CP is completed, and subsequent CP images only contain incrementally
modified pages [9]. The D-CP interval is the amount of time that passes between CPs [37].

Description of D-CP Algorithm

The main benefit of using CP is that it allows the cloud computing resources to be
used for other customers’ requests while reducing profit loss caused by other methods of
fault tolerance. CP interval and latency are two parameters that have a significant impact
on the CP algorithm. The CP interval is the amount of time between one CP and the next.
CP latency is the amount of time it takes to save a CP.

The CP algorithm assumes that the length of the CP interval must not be fixed while
the customer’s task is being executed. At the time of the current CP, the algorithm calculates
the next CP interval. This is determined by the failed history of the VM on which the task
is run. If the failure history is poor, the algorithm will shorten the CP interval. Furthermore,
if the failure history is good, the algorithm will extend the CP interval. Equations (13)–(18)
values are based on the D-CP algorithm.

τji (13)

The execution time of task j on VM i.

τΥji (14)
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The remaining execution time of task j on VM i.

Fi(x1) (15)

Failure probability of VM i.
Fi(x0) (16)

Probability of no failure of VM i.
h (17)

CP interval.
z (18)

Number of failures during the task execution.

4.9. Reliability

The dependability of each VM will be assessed, and cloudlets will be assigned to
the most reliable VM. It is the cloud broker’s responsibility to assign cloudlets to cloud
providers. To evaluate VM reliability, we first determine whether cloudlets executed
successfully or failed within the time limit. Then, we update the reliability of each VM
based on success and failure cloudlets. Finally, we select the most dependable VM from the
list of available VMs and assign cloudlets to it [38].

In the equation, (19) represents the VM’s reliability, and (20) to (21) represents the
host’s reliability, where MMi is the available memory ratio, CPi is the available MIPS ratio,
BWi is the available bandwidth ratio, and Ri is the reliability of the ith VM.

Σcloudleti RAMi + CPUi + BWi
No. of Cloudlet

(19)

Reliability of VM.

MMi =
Available RAMi

Total RAM
(20)

Now, (20) is used to calculate the VMs available RAM ratio.

Ri =
CPUi + MMi + BWi

3
(21)

(21) The Ri reliability of ith in the VM is found.
Similarly, as shown in Equations steps (22)–(24), the availability of MIPS ratio CPi and

bandwidth ratio BWi can be calculated as the ratio of available MIPS to total MIPS and
available bandwidth to total bandwidth.

Σvmireliabilityvmi
3

(22)

Reliability of host.

CPi =
Available MIPSi

Total MIPS
(23)

Next, (23) is used to obtain the ratio of available MIPS in the VM.

BWi =
Available BWi

Total BW
(24)

Then, (24) is used to find the BWi available bandwidth ratio in the VM.

5. Results and Findings

Data analysis is performed in this section. Classification results using NB, LibSVM,
MLR, SMO, and RF with confusion matrix and graphical representations results are in-
corporated into this section. Finally, MSMO results, which are the main algorithm of this
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research study, are also included here. This research focuses on a comparative analysis of
conventional, ML algorithms, and FT techniques for high accuracy, less fault prediction
error, and reliability.

The secondary dataset archive includes four directories: one for each dataset block,
namely CPU/memory and HDD, in single-core and multi-core variants [10]. A significant
difference was observed in the four directories of the secondary dataset based on results,
the difference is CPU-Mem multicores have good results against the remaining directories
such as CPU-Mem mono, HDD mono, and HDD multi.

According to the comparisons, the primary dataset has good results against the sec-
ondary dataset, so in this research, the primary dataset results were sufficient to consider
in terms of modification of the ML algorithm.

ML classifiers were used before using the FT Delta-CP approach. Data were trained
on 80/20, 70/30, and 5-fold cross-validation using NB, LibSVM, MLR, SMO, KNN, and
RF classifiers, and the desired results in the classification (secondary and primary) were
achieved. The results are compared based on NB, LibSVM, MLR, SMO, KNN, and RF in
terms of accuracy, fault prediction error, and data validation by class using the following
Equations (25)–(36). Secondary dataset (CPU-Mem multi) results proved that NB out-
performed LibSVM, MLR, SMO, KNN, and RF. Furthermore, the primary dataset results
proved that RF outperformed, but the time complexity was not good. According to the
primary dataset results, RF and SMO have minor point values difference between results,
but SMO yielded good time complexity. The software environment we used is WEKA 3.8.6
with Remove Percentage Filter.

Accuracy =
TP + TN

TP + TN + FP + FN
(25)

In Equation (25), the accuracy is defined as above.

Recall or True− Positive Rate =
TP

TP + FN
(26)

In Equation (26), the recall or true-positive rate is defined as above.

True−Negative Rate =
TN

TN + FP
(27)

In Equation (27), the true-negative rate is defined as above.

Precision =
TP

TP + FP
(28)

In Equation (28), the precision is defined as above.

False− Positive Rate =
FP

TN + FP
(29)

In Equation (29), the false-positive rate is defined as above.

MCC =
TP.TN − FP.FN

√
(TP + FP)(TP + FN)(TN + FP)(TN + FN)

(30)

In Equation (30), the Matthews correlation coefficient is defined as above.

F−Measure =
2PPV × TPR

PPV + TPR
(31)
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In Equation (31), the F-measure is defined as above.

F1 Score =
2 ∗ Precision ∗ Recall

Precision + Recall
(32)

In Equation (32), the F1 score is defined as above.

• The RMSE is a commonly used measure of the difference between predicted and
observed values by a model or estimator [39];

• MAE is a distinct measure of two continuous variables [39];
• The relative absolute error normalizes the total absolute error by dividing it by the

total absolute error of the simple predictor [40];
• The relative squared error normalizes the total squared error by dividing it by the

simple predictor’s total squared error [40].

RMSE =

√
1
n ∑n

i=1

(
yi − ŷi

)2
(33)

In Equation (33), the RMSE is defined as follows.

MAE =
1
n

n

∑
i=1
|yi − ŷi| (34)

In Equation (34), the MAE is defined as follows.

Ei =
∑n

j=1

∣∣∣P(ij) − Tj

∣∣∣
∑n

j=1
∣∣Tj − T

∣∣ (35)

In Equation (35), the RAE is defined as follows.

Ei =

√√√√√∑n
j=1

(
P(ij) − Tj

)2

∑n
j=1
(
Tj − T

)2 (36)

In Equation (36), the RSE is defined as follows.

5.1. Simulation Setup of ML Classifiers to Achieve High Accuracy and Less Fault Prediction

WEKA stands for Waikato environment for knowledge analysis and refers to software
written in Java by the University of Waikato in New Zealand and distributed under the
GNU general public license. This software consists of a collection of [41] machine learning
algorithms [42] and data pre-processing and transformation tools, including discretization
and sampling methods [41]. Table 6 shows the configuration description for an experiment.

Table 6. Configuration Description of Experiment.

System

Processor Intel (R) Core (TM) i7 2620M CPU 2.7 GHz

RAM 8.00 GB

Windows 8.1 Platform

IDE WEKA (3.8.6)

Weka Interface Explorer

Java Version 17.0.2
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5.2. Comparison of Classification Models on Secondary Dataset

We present the results associated with different classifiers using ISFAULT class in the
secondary dataset. For classification models, we opted for NB, LibSVM, MLR, RF, KNN,
and SMO with the poly kernel.

The secondary data results of each classifier are shown in Figures 9–72, with the
80/20, 70/30, and 5-fold cross-validation in terms of high accuracy and less fault prediction.
Furthermore, data validation was 60% training, 20% testing, and 20% validation. In the
secondary data results, CPU-Mem mono gave the highest percentage of accuracy and less
fault prediction to the NB classifier in terms of 80/20 (77.01%), 70/30 (76.05%), and 5 -old
cross-validation (74.88%) and CPU-Mem multi in terms of 80/20 (89.72%), 70/30 (90.28%),
and 5-fold cross-validation (92.83%). Furthermore, for HDD mono, the SMO classifier gave
the highest percentage of accuracy and less fault prediction fault in terms of 80/20 (87.72%),
70/30 (89.41%), and 5-fold cross-validation (88.38%) and HDD-multi in terms of 80/20
(93.64%), 70/30 (90.91%), and 5-fold cross-validation (88.20%). According to the results, the
difference is that CPU-Mem multicores have good results against the remaining directories
of CPU-Mem mono, HDD mono, and HDD multi.
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Figure 13. Confusion Matrix of NB Classifier based on CPU-Mem Mono in Accuracy and Fault Prediction.
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Figure 25. Accuracy by Class (True/False) of CPU-Mem Multi on ML Classifiers.
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Figure 26. Fault Prediction by Class (True/False) of CPU-Mem Multi on ML Classifiers.
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Figure 27. Accuracy by Class (True/False) of CPU-Mem Multi on ML Classifiers Related to Data
Validation Results.
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Figure 28. Fault Prediction by Class (True/False) of CPU-Mem Multi on ML Classifiers Related to
Data Validation Results.
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Figure 29. Confusion Matrix of NB Classifier based on CPU-Mem Multi in Accuracy and
Fault Prediction.
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Figure 30. Confusion Matrix of LibSVM Classifier based on CPU-Mem Multi in Accuracy and
Fault Prediction.

Sensors 2023, 23, x FOR PEER REVIEW 29 of 57 
 

 

 

Figure 30. Confusion Matrix of LibSVM Classifier based on CPU-Mem Multi in Accuracy and Fault 

Prediction. 

 

Figure 31. Confusion Matrix of MLR Classifier based on CPU-Mem Multi in Accuracy and Fault 

Prediction. 

 

Figure 32. Confusion Matrix of SMO Classifier based on CPU-Mem Multi in Accuracy and Fault 

Prediction. 

Figure 31. Confusion Matrix of MLR Classifier based on CPU-Mem Multi in Accuracy and
Fault Prediction.
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Figure 37. Classifier Errors of MLR Classifier based on CPU-Mem Multi in Accuracy and
Fault Prediction.
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Figure 39. Classifier Errors of KNN Classifier based on CPU-Mem Multi in Accuracy and
Fault Prediction.
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Figure 40. Classifier Errors of RF Classifier based on CPU-Mem Multi in Accuracy and Fault Prediction.
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Figure 41. Accuracy by Class (True/False) of HDD Mono on ML Classifiers.
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Figure 42. Fault Prediction by Class (True/False) of HDD Mono on ML Classifiers.
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Figure 43. Accuracy by Class (True/False) of HDD Mono on ML Classifiers Related to Data
Validation Results.
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Figure 44. Fault Prediction by Class (True/False) of HDD Mono on ML Classifiers Related to Data
Validation Results.
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Figure 57. Accuracy by Class (True/False) of HDD Multi on ML Classifiers.
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Figure 58. Fault Prediction by Class (True/False) of HDD Multi on ML Classifiers.
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Figure 59. Accuracy by Class (True/False) of HDD Multi on ML Classifiers Related to Data
Validation Results.
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Figure 60. Fault Prediction by Class (True/False) of HDD Multi on ML Classifiers Related to Data
Validation Results.
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Figure 61. Confusion Matrix of NB Classifier based on HDD Multi in Accuracy and Fault Prediction.
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5.2.1. Secondary Dataset CPU-Mem Mono Block-I

Figures 9–12 depict a comparison of the results of NB, LibSVM, MLR, SMO, KNN, and
RF in CPU-Mem-mono-related detailed accuracy by class (true/false) and prediction on
test-split additional data validation.

The confusion matrix is used to calculate accuracy, precision, recall, and F-measure.
It is used as an efficient technique for the classification of attributes based on qualitative
response categories. Figures 13–18 show the confusion matrix related to accuracy and
fault prediction achieved through NB, LibSVM, MLR, SMO, KNN, and RF. The following
confusion matrix indicates that the NB classification model gave the highest percentage of
accuracy and less fault prediction for CPU-Mem mono.

Figures 19–24 represent the error of the classifier that shows the values corresponding
to true-positive, true-negative, false-positive, and false-negative values. In Figures 19–24,
the square box represents the errors in the actual class versus the predicted class.

5.2.2. Secondary Dataset CPU-Mem Multi Block-II

Figures 25–28 depict a comparison of the results of NB, LibSVM, MLR, SMO, KNN,
and RF in CPU-Mem multi related to detailed accuracy by class (true/false) and prediction
on test-split additional data validation.

The confusion matrix is used to calculate accuracy, precision, recall, and F-measure.
It is used as an efficient technique for the classification of attributes based on qualitative



Sensors 2023, 23, 1965 42 of 55

response categories. Figures 29–34 show the confusion matrix related to accuracy and
fault prediction achieved through NB, LibSVM, MLR, SMO, KNN, and RF. The following
confusion matrix indicates that the NB classification model gave the highest percentage of
accuracy and less fault prediction for CPU-Mem multi.

Figures 35–40 represent the error of the classifier that shows the values corresponding
to true-positive, true-negative, false-positive, and false-negative values. In Figures 35–40,
the square box represents the errors in the actual class versus the predicted class.

5.2.3. Secondary Dataset HDD Mono Block-III

Figures 41–44 depict a comparison of the results of NB, LibSVM, MLR, SMO, KNN,
and RF in HDD mono related to detailed accuracy by class (true/false) and prediction on
test-split additional data validation.

The confusion matrix is used to calculate accuracy, precision, recall, and F-measure.
It is used as an efficient technique for the classification of attributes based on qualitative
response categories. Figures 45–50 show the confusion matrix related to accuracy and
fault prediction achieved through NB, LibSVM, MLR, SMO, KNN, and RF. The following
confusion matrix indicates that the SMO classification model gave the highest percentage
of accuracy and less fault prediction for HDD mono.

Figures 51–56 represent the error of the classifier that shows the values corresponding
to true-positive, true-negative, false-positive, and false-negative values. In Figures 51–56,
the square box represents the errors in the actual class versus the predicted class.

5.2.4. Secondary Dataset HDD Multi Block-IV

Figures 57–60 show the result comparison of NB, LibSVM, MLR, SMO, KNN, and
RF in HDD-multi-related detailed accuracy by class (true/false) and prediction on further
test-split data validation.

The confusion matrix is used to calculate accuracy, precision, recall, and F-measure.
It is used as an efficient technique for the classification of attributes based on qualitative
response categories. Figures 61–66 show the confusion matrix related to accuracy and
fault prediction achieved through NB, LibSVM, MLR, SMO, KNN, and RF. The following
confusion matrix indicates that the SMO classification model gave the highest percentage
of accuracy and less fault prediction for HDD multi.

Figures 67–72 represent the error of the classifier that shows the values corresponding
to true-positive, true-negative, false-positive, and false-negative values. In Figures 67–72,
the square box represents the errors in the actual class versus the predicted class.

5.3. Comparison of Classification Models on Primary Dataset

We present the results associated with different classifiers using the STATUS class in
the primary dataset. For classification models, we opted for NB, LibSVM, MLR, RF, KNN,
and SMO with the poly kernel.

In the primary data results, we notice that the RF classifier gives the highest percentage
of accuracy and less fault prediction in terms of 80/20 (97.14%), 70/30 (96.19%), and 5-fold
cross-validation (95.85%), but the algorithm complexity (0.17 s) is not good. SMO gives
the second highest accuracy and less fault prediction in terms of 80/20 (95.71%), 70/30
(95.71%), and 5-foldscross-validation (95.71%), and the algorithm complexity is good (0.3 s).
The difference between the accuracy and lesser fault prediction between RF and SMO is
just 0.13%, and the time complexity difference is 14 s.

Figures 73–76 show the result comparison of NB, LibSVM, MLR, SMO, KNN, and RF
in primary-dataset-related detailed accuracy by class (repair/failure) and prediction on
further test-split data validation.
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Figure 73. Accuracy by Class (Repair/Failure) of Primary Dataset on ML Classifiers.
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Figure 74. Fault Prediction by Class of (Repair/Failure) of Primary Dataset on ML Classifiers.
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Figure 75. Accuracy by Class (Repair/Failure) of Primary Dataset on ML Classifiers Related to
DV Results.
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Figure 76. Fault Prediction by Class of (Repair/Failure) of Primary Dataset on ML Classifiers Related
to DV Results.

The confusion matrix is used to calculate accuracy, precision, recall, and F-measure.
It is used as an efficient technique for the classification of attributes based on qualitative
response categories. Figures 77–82 show the confusion matrix related to accuracy and
fault prediction achieved through NB, LibSVM, MLR, SMO, KNN, and RF. The following
confusion matrix indicates that the RF classification model gave the highest percentage of
accuracy and less fault prediction on the primary dataset, but the algorithm complexity
(0.17 s) is not good.
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Figure 77. Confusion Matrix of NB Classifier based on Primary Data in Accuracy and Fault Prediction.
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SMO gives the second-highest accuracy and less fault prediction, and the algorithm
complexity is good (0.3 s). The difference in accuracy and lesser fault prediction between
RF and SMO are just 0.13%, and the time complexity difference is 14 s. Figures 83–88
represent the error of the classifier that shows the values corresponding to true-positive,
true-negative, false-positive, and false-negative values. In Figures 83–88, the square box
represents the errors in the actual class versus the predicted class.
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5.4. Modified Sequential Minimal Optimization Results

In this subsection, the results of the classification of the primary dataset results are
shown in Figures 89–92, indicating that the MSMO classification model gives the highest
accuracy and less fault prediction in terms of 80/20 (96.42%), 70/30 (96.42%), and 5-fold
cross-validation (96.50%). The MSMO time complexity of the algorithm is 0.44 s after
modification.
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Figure 89. Comparison of ML Classifiers with MSMO Accuracy by Class (Repair/Failure) of
Primary Dataset.
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Figure 90. Comparison of ML Classifiers with MSMO Fault Prediction by Class (Repair/Failure) of
Primary Dataset.
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Figure 92. Comparison of ML Classifiers with MSMO Fault Prediction by Class of Primary Dataset
Related to DV Results.

Figures 89–92 show the result comparison of NB, LibSVM, MLR, SMO, MSMO, KNN,
and RF in primary-dataset-related detailed accuracy by class (repair/failure) and prediction
on further test-split data validation.

The confusion matrix is used to calculate accuracy, precision, recall, and F-measure.
It is used as an efficient technique for the classification of attributes based on qualitative
response categories. Figure 93 shows the confusion matrix related to accuracy and fault
prediction achieved through MSMO. The following confusion matrix indicates that the
MSMO classification model gave the highest percentage of accuracy and less fault prediction
error for the primary dataset against NB, LibSVM, MLR, SMO, KNN, and RF.

Figure 94 represents the error of the classifier that shows the values corresponding to
true-positive, true-negative, false-positive, and false-negative values. In the Figure 94, the
square box represents the errors in the actual class versus the predicted class.
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Figure 93. Confusion Matrix of MSMO Classifier based on Primary Data in High Accuracy and Less
Fault Prediction Error.
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5.5. Simulation Setup of D-CP to Achieve Reliability

To achieve reliability, we integrated the MSMO classifier results with the D-CP fault-
tolerance technique. D-CP can learn from previous data and execute them.

We used a cloud simulation 3.0.3 toolkit. It is a simulation tool to mimic CC scenarios.
We extended the cloud simulation simulator with a fault-tolerance D-CP method to achieve
reliability. Table 7 shows the hardware specifications for an experiment.

Table 7. Hardware Specifications for Experiment.

System

Processor Intel (R) Core (TM) i7 2620M CPU 2.7 GHz

RAM 8.00 GB

Windows 8.1 Platform

IDE-1 Eclipse IDE for Java Developer Release 2021-09 (4.21.0)

IDE-2 Cloud simulation 3.0.3
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5.6. Delta-Checkpointing Results

In this step, we configured the CP configuration file, the number of cloud users, and
the cloud simulation library; created a data center, a broker, and a cloudlet; and submitted
the VM list to the broker using the D-CP method. A data center with a recovery scheduler,
CP scheduler, CP image index, data center destroyer, VMs, and cloudlets was included
in the simulated platform. Each simulated VM has unique properties in our execution
environment. Table 8 shows the parameters that affect D-CP reliability through VMs.

Table 8. Parameters of D-CP and VMs.

Parameters Values

Number of cloud users 1

Number of data centers 1

Number of VMs 11

VM frequency 1000 MIPS

VM memory (RAM) 4 GB

VM bandwidth 10 Gbps

VM storage 1000 GB

The results of D-CP techniques for achieving reliability are shown in Table 9. It
indicates that all VMs were successfully executed without VM failure because the D-CP
mechanism regularly saves the VMs execution state as a CP image during failure-free
execution. In the event of a failed event, the VM is restarted from an intermediate state
using the previously saved CP image. The amount of computation lost as a result is
reduced. The status (success/failure) determines the dependability of the multiple nodes
VMs. Multiple nodes, all of which are reliable VMs, were successfully executed. Table 9
shows the results of achieved reliability through the ML & D-CP approach.

Table 9. Shows Achieved Reliability Results Based on ML and D-CP.

Cloudlet ID Status DC ID VM ID Time Start Time Finish Time

69 SUCCESS 1029 282 36,534 0 36,534

98 SUCCESS 1029 1385 36,640 0 36,640

74 SUCCESS 1029 780 37,189 0 37,189

40 SUCCESS 1029 1121 37,575 0 37,575

105 SUCCESS 1029 774 37,855 0 37,855

0 SUCCESS 1029 2992 38,030 0 38,030

44 SUCCESS 1029 375 38,225 0 38,225

87 SUCCESS 1029 3771 38,226 0 38,226

77 SUCCESS 1029 457 38,302 0 38,302

142 SUCCESS 1029 2064 38,535 0 38,535

128 SUCCESS 1029 3227 38,758 0 38,758

6. Discussion

It is not easy to achieve the FT model’s reliability in CC. Only a few FT models are
based on reliability. Furthermore, ML has not been extensively considered for FT reliability.
There was a need to design and implement a model using ML and FT methods that achieved
high accuracy, less fault prediction, and maximum reliability.

This study was conducted to achieve high accuracy, less fault prediction, and achieve
reliability. To ensure the smooth execution of the research, the MSMO classifier with a D-CP
approach was developed.
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The primary data were subjected to an MSMO classifier. MSMO classifier results show
that the proposed strategy outperformed the existing classifier in terms of accuracy and
fault prediction. In the primary data, the obtained results were compared to the existing NB,
LibSVM, MLR, SMO, KNN, and RF classifiers. The most important parameter for judging
the classifier’s performance level is high accuracy with less fault prediction. To eliminate
VM failure, the MSMO classifier results were integrated into the delta-checking approach.

Simulated results were compared with NB, LibSVM, MLR, SMO, KNN, and RF clas-
sifiers, and it was proven that the proposed classifier performed more accurately and
rapidly, with 96.5% correctly classified instances compared to the available classifiers. The
innovation of the proposed research is in the many techniques that were correlated to
high accuracy and less fault prediction to achieve reliability. MSMO was proposed by
applying parameter tuning, which can be acknowledged as a novel approach, and D-CP
was proposed by applying different parameters of CP.

7. Conclusions

The data was analyzed and the results were presented in section five. Section five
includes classification results from NB, LibSVM, MLR, SMO, and RF with a confusion
matrix and graphical representations. Finally, the MSMO results, which are the main
algorithm of this research study, are included here. This research compares traditional, ML,
and FT techniques in terms of high accuracy, low fault prediction error, and reliability.

The secondary dataset was collected from the homonymous experimental HPC system
at ETH Zurich during fault injection and is used by researchers to conduct ML-based fault
prediction studies. The dataset is divided into two sections: one for CPU and memory
benchmark applications and fault programs, and another for hard drive-related applications
and fault programs. The dataset archive is divided into four directories, one for each dataset
block (CPU/Memory and HDD in single-core and multi-core variants). According to the
findings, there is a significant difference in the four directories of the secondary dataset.
The distinction is that CPU-Mem Multi-cores outperform the other directories.

The primary dataset was created using the Weibull distribution method. The Weibull
distribution is a popular time-to-failure model for reliability. It adds non-constant failure
rate functions to the exponential model. The model, which includes both rising and falling
failure rate curves, has been used to successfully explain both initial burn-out and wear-out
failures. Based on the comparisons, the primary dataset outperforms the secondary dataset,
implying that the primary dataset is adequate for modifying the ML algorithm in this
study. This study demonstrated that the ML-based approach significantly improved FT
reliability in CC, resulting in higher accuracy and less fault prediction for users. The pr
posed approach increases the credibility of the FT for reliability.

7.1. Research Contribution

This research study made the following significant contributions:

1. The challenges of CC and challenges of FT that may compromise the success of
reliability in the CC environment were identified from the literature review;

2. The reliability of VMs in terms of node failure could have a negative impact on users;
3. The MSMO classifier and D-CP FT approach was used to achieve high accuracy, less

fault prediction, and successful execution of VMs, which all have a positive impact on
users in the CC environment.

7.2. Limitations

1. Antarex secondary data collection is possible, but more computational resources are
required because this is an HPC fault dataset; however, we can download this dataset
through the ZONODO website;

2. The Weibull distribution was not provided to generate a fault dataset for primary
data generation;

3. An effort was made to achieve the primary dataset using the Weibull distribution;
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4. Achievement of high accuracy and less fault prediction compared to the proposed
MSMO classifier results was not available in the computing environment to prove the
reliability of the results.

7.3. Future Directions

1. Using the Weibull distribution approach, a graphical user interface can be created to
generate the primary dataset in cloud simulation 3.0.3;

2. Tuning parameters can be automatically adjusted using code, but keep in mind that
to find the best tuning parameter value, the code must not become stuck;

3. Random forest can be implemented to achieve high accuracy and low fault prediction,
but more work on the algorithm’s complexity is required. Comparative analysis can
also be performed with this proposed work;

4. Deep learning algorithms can also be used to achieve high accuracy while predicting
fewer faults. The sample size should be increased. The larger the sample size, the
more accurate and reliable the results. When the dataset is large, DL techniques
outperform ML techniques;

5. Reinforcement learning can be used to implement or improve the FT capability of a
system. Such ideas are easily adaptable to cloud environments;

6. To achieve reliability, the D-CP approach can be combined with deep learning and
reinforcement learning.
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