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Abstract

This paper presents a pre-trained deep-learning surrogate model for the slope stability problem, which can be used to accelerate the
stochastic analysis of slope stability with spatial variability. One major innovation is that the model is trained with a big dataset (>12000
data) covering common soil properties, spatial variabilities, and slope shapes such that the trained model is ready to make predictions
without additional training or numerical simulations required. Other two minor contributions are: (1) special treatments for the irregular
and varying boundaries of slopes and (2) novel techniques that allow the use of non-uniform mesh in data acquisitions. The proposed
model is accurate with a mean-absolute-percentage-error of about 6% for the testing dataset. Seven cases of unseen data are also used to
verify the model performance, including cases of different soil parameters, slope angles, and even different slope surfaces (e.g., concave
and convex slopes, which are not used in training). The results show that the predict slope factor of safety is high consistent with the
values from finite element simulations, and so is the obtained probability density functions. But the surrogate model takes much less
computational effort (several minutes compared with hours of computing) – proving the effectiveness of our model for efficient stochastic
analyses.
� 2023 Production and hosting by Elsevier B.V. on behalf of The Japanese Geotechnical Society. This is an open access article under the CC BY-
NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

In geotechnical engineering, slope stability is given as a
factor of safety (FS), which is calculated with limit equilib-
rium methods such as the method of slides, or numerical
methods such as limit analysis (Chen, 1976), finite elements
limit analysis (Sloan, 1988) and displacement-based numer-
ical methods with the strength reduction method (Dawson
et al., 1999; Griffiths & Lane, 1999).
https://doi.org/10.1016/j.sandf.2023.101321
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The required model parameters in these numerical mod-
els cannot be accurately determined, which is due to the
poorly known model parameters and complex system of
equations that cannot be represented exactly. Therefore,
numerical simulation is an approximation of the actual sit-
uation (Atamturktur et al., 2011; Shields, 2013). Addition-
ally, soil properties vary spatially dramatically due to
sediment history and weathering attack. So stochastic anal-
ysis is often conducted to evaluate the probability density
function (PDF) of the FS (Pang et al., 2018; Rice &
Polanco, 2012). The spatial variability is often modelled
by the random field theory (Griffiths & Fenton, 2001).

Brute-force stochastic analysis typically relies on Monte
Carlo sampling (Kroese et al., 2014). As shown in Fig. 1
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mmons.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.sandf.2023.101321
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:haoding.xu@student.uts.edu.au
mailto:xuzhen.he@uts.edu.au
mailto:xuzhen.he@uts.edu.au
mailto:biswajeet.pradhan@uts.edu.au
mailto:daichao.sheng@uts.edu.au
https://doi.org/10.1016/j.sandf.2023.101321
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sandf.2023.101321&domain=pdf


Fig. 1. Flowchart of different stochastic analyse methods.
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(highlighted in yellow), this method involves generating
Nmc samples, evaluate their FS with numerical simulations,
and finally evaluating the failure probability. Each simula-
tion necessitates a calculation time of tFE. However, when
the sample size is large (i.e., for small probability events
or when the PDF is needed), the brute-force Monte Carlo
approach – the FS of each Monte Carlo sample is evalu-
ated by numerical models – is time-consuming and compu-
tationally intensive (Chen & Li, 2017; Zhang et al., 2017).
A variety of methods have been proposed to reduce the
computational cost, such as the subset simulation method
(Beck & Au, 2002) or using surrogate models to replace
the numerical simulations (He et al., 2020).

In recent years, training machine-learning models as sur-
rogate models (green in Fig. 1) has gained immense popu-
larity (Phoon & Zhang, 2022; Zhang et al., 2017). Kang
et al., (2016) trained support vector machines as surrogate
models in slope reliability analysis. He et al., (2020) used
artificial neural networks as surrogate models for slope sta-
bility analysis with spatial variability. Wang et al., (2020)
used extreme gradient boosting method to analyse the
earth dam slope stability problem. In these studies, a size
of Ntrain simulations are still required to for each specific
engineering case (Fig. 1). These Ntraindata are used to train
the machine-learning surrogate model for the specific engi-
neering case that can subsequently evaluate the structural
response with time of tML. Due to the fact that Ntrain and
tML are considerably less than Nmc and tFE, this method
(machine-learning-aided stochastic analysis) is far more
efficient than brute-force stochastic analysis methods. He
et al., (2022) developed a new framework in which deep-
learning models are trained as surrogate models with a
big dataset that covers all possible material properties
and boundary conditions for a particular kind of problem
(the bearing capacity of shallow strip footings in their
study). For any new engineering case, the deep-learning
model is ready to make predictions and is also very accu-
rate. Therefore, the small number of numerical simulations
and training processes are not needed anymore, leading to
a dramatic increase in the computational efficiency of the
deep-learning-aided stochastic analysis compared to the
traditional machine-learning-aided stochastic analysis and
brute-force stochastic analysis methods (as illustrated in
2

Fig. 1). Additionally, this framework separates the training
of models and the use of models such that the training of
models is left to academics so that practitioners can directly
use the models. This framework is made possible mainly
due to the rapid development of deep-learning techniques,
particularly the convolutional neural network (CNN) and
its variants. CNNs have successfully been used in image/
video classification (SravyaPranati et al., 2021), image/
video recognition(Szegedy et al., 2015) and even the pro-
gram ‘AlphaGo’ in mastering the game of Go (Silver
et al., 2016). CNNs are also widely applied in geotechnical
engineering, such as the prediction of wall deflection (Wu
et al., 2022), multi-layered soil slope stability (Wang &
Goh, 2022), and bearing capacity failure (He et al., 2022;
Wang et al., 2022). More recently, He et al., (2022) showed
that the locally connected neural networks (a variant of
CNN) perform better than CNNs alone for spatially vari-
able problems that are aligned.

In a very recent work, He et al., (2022) demonstrated the
success of their framework with the bearing capacity prob-
lem, which ‘‘luckily” has regular boundaries (rectangle
computation domain) and can be easily mapped into matri-
ces. After normalisation and discretisation, the inputs of
the problem (and also the inputs of the target function to
be approximated by machine learning) can be arranged
exactly as matrices, regardless of material properties and
boundary conditions. This framework cannot be readily
applied to other problems like slope stability problems
because of irregular boundaries – spatially variable mate-
rial parameters will not make matrices anymore. Most
importantly, when boundary condition changes (e.g., when
the slope angle changes), the number (or size) of inputs also
changes. Therefore, to use this framework, special treat-
ment is required.

Another limitation of He et al., (2022)’s work is that to
make input matrices, the soil domain is discretised as uni-
form quadrilaterals. When creating a training dataset with
numerical simulations, a uniform mesh must be used. How-
ever, to obtain accurate results in numerical simulations,
nonuniform meshes that are coarser in some regions and
finer in others are usually used.

Two innovations are presented in this paper: (1) special
treatments for the irregular and varying boundaries of
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slopes and (2) novel techniques that allow the use of non-
uniform mesh in data acquisition. We take the slope stabil-
ity problem as an example and train a deep-learning model
that can predict the slope safety factor of any shape. Addi-
tionally, we show that the model is valid for slopes repre-
sented by very complex curves. In the same as the
previous study (He et al., 2022), the model is valid for
any soil properties encountered in practice.

In Section 2, we introduce the slope stability problems.
The output is the FS as a scalar and the inputs are material
parameters represented as matrices with boundary condi-
tions embedded in these matrices. How the FS is calculated
from finite element (FE) simulations is explained in Sec-
tion 3. In Section 4, we explain the whole process of build-
ing deep-learning models, from a simple condition to the
final full problem. In Section 5, we verify the accuracy of
the trained deep-learning model and prove that it can be
used as an ideal surrogate model in slope stability
problems.
2. Slope stability: Inputs and outputs

Natural hills are often cut into straight slopes (angled at
b in Fig. 2), which are connected with the flat open lands at
the slope toe (origin O in Fig. 2), and are connected with
slope tops (angled at a) at the slope shoulder. We define
the vertical distance between slope toe and shoulder as
the slope height H .

The shear resistance between soil elements can sustain a
certain gravity load such that slopes remain stable. When
the shear resistance is not enough to sustain the gravity
load, landslides happen. In geomechanics, slope stability
is defined by a factor of safety (FS), which is the ratio
between the available shear strength and the acting shear
stress due to gravity along a potential (or actual) sliding
Fig. 2. Shape of slopes and spatially variable fields.

3

surface. The FS results from two competing effects – the
shear resistance and gravity load. If the soil elements are
modelled with the Mohr–Coulomb model with c denoting
the cohesion and / denoting the friction angle, the FS
can be conceptually expressed as

FS ¼ f ½c xð Þ;/ xð Þ; c xð Þ� ð1Þ
where c is the unit weight and x ¼ ðx; yÞ is the position vec-
tor. The dependence on x indicates the spatial variability of
soil properties and the soil parameters are all fields. The
heatmap in Fig. 2 illustrates a typical spatially variable
field. The soil parameters are spatially variable – the cohe-
sion, friction angle and the unit weight are all fields that are
functions of the coordinates (e.g., c xð Þ;/ xð Þ; c xð Þ). How-
ever, these soil parameters fields are only defined in the soil
domain. If we assume that at any position not in the soil
domain these soil parameters are still defined but with
value zeros (e.g., c xð Þ ¼ / xð Þ ¼ c xð Þ ¼ 0), then these fields
are defined in the unbounded domain. As a consequence,
soil slopes of different slope angles will have different soil
parameter fields, and Eq.1 takes only three functions
(e.g., c xð Þ;/ xð Þ; c xð Þ) as arguments and the dependence
of the FS on slope angles is embedded in the dependence
of these fields.

The FS is influenced by the relative magnitude of shear
resistance and gravity load. For homogenous slopes, this
relative magnitude is characterised by two dimensionless

numbers: cH
c

and / (Chen, 1976). For spatially variable

fields, we define some dimensionless fields, i.e., the dimen-

sionless unit weight field c0ðx0Þ ¼ cðxÞH
cr

, friction angle field

/ x0ð Þ and dimensionless cohesion field c0ðx0Þ ¼ cðxÞ
cr
), so a

dimensionless equation for the FS is obtained:

FS ¼ f ½c0 x0ð Þ;/ x0ð Þ; c0 x0ð Þ� ð2Þ
Here, cr is a reference strength and is chosen as the mean

of the cohesion field. x0 ¼ x
H is the dimensionless position

vector.
The FS ranges from zero (no shear resistance) to infinity

(gravity load is negligible). In risk analysis, we are only
interested in slopes with FS close to 1, but not interested
in very safe slopes, say FS > 5. Therefore, in this study,
we calculate a normalised factor of safety as
NFS ¼ 1� e�FS (Fig. 3). When the slope is very safe
(FS > 5), no matter how large the FS is, the NSF is the
same and is close to 1. So, when conducting numerical sim-
ulations, we just stop the simulation at FS = 5 and do not
need to calculate the exact FS when FS > 5. Additionally,
the NFS is within a defined range (from 0 to 1) and using it
as a target in machine learning helps to get more accurate
models.

The target function to be approximated (Eq. (2) takes
unbounded continuous fields as inputs (with a size of infin-
ity). We will use some assumptions and conduct discretisa-
tion to transform them into inputs with finite sizes. The FS
is a ratio evaluated along a potential sliding surface, which
is often in a limited region close to the slope. Only when the



Fig. 3. Normalised factor of safety (NFS) and the factor of safety (FS).

Table 2
Dimensionless material parameters and slope shape parameters.

Parameters Mean l COV m l0y l0x
c0 1 0–0.55 0.0312-1 0.44-1
/ 0-40� 0–0.15
c0 0–100 0–0.1
a 0-40�
b 45-90�
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slope angle is small and the friction angle is very small, the
sliding surface may potentially extend beyond the slope toe
to the left and deep below the toe (Fig. 7d). Therefore, we
limit the spatial dependence to a region of �0:7 � x0 � 3:3
and �0:7 � y0 � 3:3. It is shown in the next section that
finite element (FE) simulations with this size of domain
give accurate results against analytical solutions, even
when the friction angle is small. The whole domain is dis-
cretised into a mesh with squares of size Dl0 ¼ 0:0312, lead-
ing to a mesh with 128 � 128 elements. The straight slope
surfaces (angled at a and b) are represented by stair-step-
shaped lines (Fig. 2). After adopting finite-region depen-
dence and finite resolution, a dimensionless equation for
the NFS can be expressed below.

NFS ¼ f ½C0;U;C0� ð3Þ
where C0, U and C0 are discretised dimensionless fields of
soil properties and are represented by matrices of size 128
� 128.

To avoid building an over-complex model, we impose
some limits on these dimensionless fields by including val-
ues only possible in practice. (Phoon & Kulhawy, 1999)
reported typical soil parameters in Table 1. Because the ref-
erence strength is chosen as the mean of cohesion, the mean
of dimensionless cohesion fields is always 1 (Table 2). If we
limit the height of slopes up to 50 m, the dimensionless unit
weight has a mean c0 of 0–100 (Table 2). The upper limit for
the coefficient of variation (COV) of the dimensionless
parameters is chosen the same as the typical soil parame-
Table 1
Typical soil parameters.

Parameters Mean l Coefficient of variation m

c or su 10–700 kPa 0.1–0.55
/ 0-40� 0.05–0.15
c 13–20 kN/m3 0–0.1

4

ters (Table 1). But the lower limit is extended further to 0
to include the homogenous cases (COV = 0) and near-
homogenous cases (COV is very small).

The lower limit for the dimensionless vertical scale of

fluctuation should be l0y ¼ ly
H � 0:2 m

50 m ¼ 0:004. However, to

accommodate such a small spatial variability, we need a
similar resolution (Dl0 ¼ Dl

H ¼ 0:004) in FE models, which

will result in a discretised domain of size 1000 � 1000. It
will be a great burden to obtain input–output pairs with
such a big FE model. Therefore, in this study, we use a
slightly larger resolution Dl0 ¼ 0:0312, and impose this as
a lower limit for the dimensionless vertical scale of fluctu-
ation as in Table 2. Slopes can be made into different
shapes. Typical slope angle is b = 45-90� and the slope
top is a = 0-40�. Sample input–output pairs with slope
angles in these ranges (Table 2) will be prepared.

Next, the spatially variable inputs are prepared with
their dimensionless parameters defined in Table 2, and
the corresponding outputs (FSs) are calculated with FE
models. These input–output pairs are then fed into deep-
learning algorithms to train surrogate models.

3. FE models and calculation of safety factors

Displacement-based FE models (within Abaqus) are
used to estimate the output (NFS) for each input (C0, U
and C0). Instead of employing the strength reduction
method, which requires a rough guess of the FS before-
hand, we use the method of increasing gravity (Kaur &
Sharma, 2016; Pourkhosravani & Kalantari, 2011). The
FS is the ratio between the assumed work of external loads
(from gravity) and internal energy dissipation (from soil
strength) (Chen 1976). Thus, the FS could be intuitively
obtained by increasing the gravity, which should give sim-
ilar results as the strength reduction method. Also, we con-
duct some validations, which prove that the FSs from our
simulations agree with analytical solutions within a wide
range of parameters.
Vertical scale of fluctuation ly Horizontal scale of fluctuation lx

0.2–6.2 m 23–66 m
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The FE mesh is the same as in Fig. 2 with the straight
slope lines represented by stair-step-shaped lines. The bot-
tom boundary is fixed. The left and right boundaries can
move vertically. The elements not occupied by soils do
not enter the calculation.

When close to failure, the high gradient of deformation
near the slope toe often causes failure of convergence. So,
we choose a larger mesh size near the slope toe
(Dl0 ¼ 2 � 0:0312 as in the inset of Fig. 2). In the imple-
mentation, the whole domain is made of four parts, three
parts (I, II, and III) have smaller resolutions and Part IV
(�0:7 � x0 � 0:4 and 0 � y 0 � 0:3) has a larger resolution.
These four parts are connected into a whole assembly with
tie constraints. Another technique used to mitigate the
numerical instability (particularly profound when the fric-
tion angle is large) is numerical damping, which is intro-
duced such that the viscous dissipation is a fraction
(0.0002) of the strain energy.

Gravity is initially set to zero, and the stress within
slopes is zero. In the loading step, the gravitational acceler-
ation increases in linear increments. With increasing grav-
ity, the stress field will redistribute and is always in
equilibrium with gravity. When the stress field cannot bal-
ance the increasing gravity, failure occurs. The ratio
between the gravitational acceleration at the time of failure
(gt) and the real gravitational acceleration (g = 9.81 m/s2)
is the FS from our simulations. Due to the damping
applied, convergence is still possible after a failure happens.
Therefore, failure is determined in terms of a sudden
change of displacement. In Fig. 4, solid lines show the dis-
placement of the slope head uhead for three homogenous
slopes, and this displacement is a function of the gravity,
i.e., uheadðgtÞ. Following He et al., (2020), the failure can
be defined at the maximum second-order derivative of
logðuheadÞ with respect to gt (dots in Fig. 4). Dashed lines
are the estimated failure positions.
Fig. 4. Displacement/gravity curve for three homogenous slopes.

5

(Chen, 1976) gave a stability factor Nsð/; a; bÞ for
homogeneous slopes (no spatial variability), and a critical
height is calculated as Hc ¼ c

cNs. When the slope height

H is smaller than this critical height, slopes are stable.
Slopes become unstable if the height is higher than this crit-
ical height. So the FS from his limit analysis is expressed in
Eq. (4).

FS ¼ Hc

H
¼ c

cH
Ns ¼ Nsð/; a; bÞ

c0
ð4Þ

From the analytical solution, when / = 20�, a = 0�, and
b = 60�, the stability factor Ns is 10.39. So slopes with
c0 = 10.39 will have FS = 1 and NFS = 0.632. We con-
ducted 50 simulations with c and c generated with the
quasi-random sequence (He et al., 2021) according to the
limits in Table 1. The generated c and c sequences are
shown in Fig. 5. The slope height H is chosen such that
c0 = 10.39. FSs and NFSs are presented in Fig. 6a and
Fig. 6b, respectively. Our method can accurately predict
the FS compared with the analytical solution (only 5.11%
error for the FS and 2.91% for the NFS). These results also
show that our dimensional analysis is correct, the same
dimensionless fields will lead to the same FSFig. 5.

When the dimensionless unit weight varies, the FS varies
according to Eq.5. We conducted another 50 simulations with
/ = 20�, a = 0�, and b = 60� while c0 varies from 0 to 100 (the
selected range in Table 2). The NFSs from FE simulations
(Fig. 6c) are accurate compared with analytical results – only
0.58% mean absolute percentage error (MAPE).

Fig. 6d shows 50 results with c0 = 10.39, a = 0�, and
b = 60� while / varies from 0 to 40�. The MAPE for these
NFSs is 2.7%. When the friction angle / is small (less
than30�), the FSs from FE simulations agree well with ana-
lytical solutions. However, when the friction angle / is
Fig. 5. Generate 50 combinations of c and c with the quasi-random
sequence.



Fig. 6. Safety factors from FE simulations against analytical solutions.
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large (from 30� to 40�), the FE model predicts lower NFSs
than analytical solutions (i.e., conservative NFSs). The FSs
are even more conservative due to the exponential opera-
tion in the definition of NFS. However, this conservative
FS is preferred in practice. Additionally, these FS
are>1.5 (NFS > 0.8). As we mentioned, engineers usually
are not very interested in very safe slopes. So the mispredic-
tion of these large friction angles is not an issue for practi-
cal applications.

Fig. 6e and f show results when c0 = 10.39, / is 20�, 30�
or 40�, and a, b vary from 0 to 40� and 45-90�, respectively.
All results in Fig. 6 show that the FE model can give accu-
rate NFSs. There are in total 255 non-duplicate results
(Ndata1 = 255) as shown in Fig. 6. Compared with analytical
solutions, the MAPE of these NFSs is 3.6%, and these data
form part of the dataset to train the deep-learning models.

Our numerical scheme can not only accurately calculate
the FS, but also predict the sliding surface. Fig. 7 shows the
displacement field of four slopes at failure along with ana-
lytical sliding surfaces. h0, hh, and length of OB and OC are
calculated from the analytical method, and the log-spiral
sliding surface (black lines) is determined from these
parameters. Fig. 7a and b show two slopes with horizontal
slope top while with different friction angles. Fig. 7c is a
vertical slope with a sloped top a = 10�. Fig. 7d is a very
mild slope (b = 30�) with a low friction angle (/ = 0�).
6

From Chen, (1976)’s analysis, the sliding surface is gener-
ally a log-spiral passing through the slope toe (Fig. 7a-c),
while it passes below the slope toe only when the slope is
mild and the friction angle is small, which is captured by
the FE model as in Fig. 7d. Additionally, the sliding sur-
face is generally very close to the slope (Fig. 7a-c), and
its extent is relatively large only when the friction angle is
small. Fig. 7d shows that the domain size we chose
(�0:7 � x0 � 3:3 and �0:7 � y0 � 3:3) is large enough to
accommodate the largest possible sliding surface.
4. Deep-learning models for spatially variable slopes

The full slope stability problem (Eq. (3) is complex, so
we first studied reduced problems with fewer inputs, and
progressively investigated more complex conditions until
the full problem was considered. These problems are: (1)
undrained soil with a fixed slope shape, i.e., the friction
angle is a constant of zero, and the inputs are the dimen-
sionless cohesion field C0 and the dimensionless unit weight
field C0. The friction angle U is irrelevant. Additionally,
since the slope shape is fixed, some values of matrices (C0

and C0) are fixed to be zero. (2) Mohr-Coulomb soil with
fixed slope shape. This problem is slightly more complex
than the first problem. Although some values of matrices
are still fixed to be zero, the inputs have three fields (C0,



Fig. 7. Sliding surfaces from FE simulations against analytical solutions.
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U and C0). (3) The full problem Eq. (3), where the inputs
have three fields, and positions of zero-value entries of
matrices depend on the slope shapes.

For each problem, we followed the following four steps
to build machine-learning models: (1) generating represen-
tative inputs, (2) calculating NFSs, (3) choosing appropri-
ate architecture for deep neural networks, and (4) adjusting
hyperparameters.

The input for Eq. (3) can be aggregated into an array of
sizes (128, 128, N I), where N I is the number of input fields
that depends on the problem to be studied. N I = 2 for
undrained soil (input fields are c0 x0ð Þ and c0 x0ð Þ), and
N I = 3 for Mohr-Coulomb soil (input fields are c0 x0ð Þ,
/ x0ð Þ; and c0 x0ð Þ). In this study, three kinds of artificial neu-
ral networks are built to approximate the target function
Eq. (3) and are examined. Readers can be referred to He
et al., (2022) for the full description of these neural net-
works. In this paper, we focus on presenting technical parts
that are critical for later discussion.
Fig. 8. Illustration of de

7

In this study, we investigated three different neural net-
work structures: one-hidden-layer fully connected neural
networks, convolutional neural networks and locally con-
nected neural networks.

One-hidden-layer fully connected neural networks (FCN):
the input is firstly flattened into a vector with size as 16,384
N I, i.e., becomes a flatted layer with 16,384 N I neurons.
This flatted input layer is then connected to a hidden fully
connected layer with NF neurons. The output layer (one
neuron for the NFS) is lastly connected after the hidden
layer. In machine learning, deep fully connected networks
(neural networks with multiple fully connected layers) are
rarely used because they are computationally intensive
and are prone to overfitting. The dropout layer is added
with a rate R = 0.4.

Convolutional neural networks (CNN; Fig. 8a): the inputs
first pass through several stacks of convolutional layers and
average pooling layers. Ci is the size of channel in the ith
convolutional layer as shown in Table 3. A fully connected
ep neural networks.



Table 3
Deep-learning models and performance for undrained soil with fixed slope shape (FC: Fully connected; CNN: Convolutional neural network; LCN: Locally connected network).

Model M11 M12 M13 M14 M15 M16 M17 M18

description FC CNN CNN with more
channels

CNN with
more layers

LCN LCN with more channels in
the locally connected layer

LCN with more
convolutional channels

LCN with more
convolutional layers

Hyper- parameters
N I ¼ 2
NF ¼ 150

N I ¼ 2
C1 ¼ 8
C2 ¼ 16
C3 ¼ 32
NF ¼ 100

N I ¼ 2
C1 ¼ 16
C2 ¼ 32
C3 ¼ 64
NF ¼ 100

N I ¼ 2
C1 ¼ 8
C2 ¼ 16
C3 ¼ 32
C4 ¼ 64
NF ¼ 100

N I ¼ 2
C1 ¼ 32
C2 ¼ 16
CL ¼ 8
NF ¼ 400

N I ¼ 2
C1 ¼ 32
C2 ¼ 16
CL ¼ 16
NF ¼ 400

N I ¼ 2
C1 ¼ 64
C2 ¼ 32
CL ¼ 8
NF ¼ 400

N I ¼ 2
C1 ¼ 64
C2 ¼ 32
C3 ¼ 16
CL ¼ 8
NF ¼ 64
NF ¼ 400
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Fig. 9. Errors of different evaluation metrics with various hyperparameters for the fully connected networks.
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layer is followed by the last convolutional and average
pooling layers with NF neurons. An example of the convo-
lutional layers is illustrated in Fig. 8b. The convolutional
layer contains a set of filters (also called kernels) whose
hyperparameters are to be learned. The filters have shared
weights. The size of filters is smaller than the input size.
They convolve with the input data from layer k, and an
activation function is applied to generate the output data
from layer k, which is then passed to the subsequent layer.
Convolutional layers can extract features from the small
size of input data and can maintain the spatial relationships
between the inputs. In this study, the filter size is fixed as (3,
3) and the stride is fixed as (1, 1) in convolutional layers.

Pooling layers are usually followed by convolutional
layers to further decrease the dimensionality of the input
data and enhance feature extraction (He et al., 2022;
Wang & Goh, 2022; Wu et al., 2022). The filter size and
the stride size are often identical in pooling layers.
Fig. 8c illustrates two types of pooling layers: the maxi-
mum pooling layer and the average pooling layer. Maxi-
mum pooling extracts the maximum input data over the
filter size, while average pooling calculates the average
input data over the filter size. In this study, the filter size
and the stride are both fixed as (2, 2) in pooling layers
(He et al., 2022; Wang & Goh, 2022; Wu et al., 2022).

Locally connected neural networks (LCN): the inputs first
pass through several stacks of convolutional layers and
pooling layers as above. A locally connected layer with
the channel size CL is followed by these convolutional lay-
ers and pooling layers as shown in Table 3. In the locally
connected layer, each neuron is locally connected to a small
region in the previous layer (He et al., 2022). A fully con-
nected layer then connects the locally connected layer
and the final output layer with NF neurons. During the
convolutional operation, the filters (kernels) remain con-
stant across all positions. In other words, the same filter
(kernel) weights are shared in all the pixel positions, which
may overlook some minor differences in spatial arrange-
ments. Conversely, in a locally connected layer, the filters
(kernels) are distinct in different positions. This type of
9

layer can study different characteristics in different regions.
The locally connected layer has been successfully used in
the DeepFace for face recognition (Taigman et al., 2014).
The activation function for all the neurons is the rectified
linear unit (ReLU) in this study.
4.1. Undrained soil with a fixed slope shape

The complex full problem is firstly simplified by ignoring
U in Eq. (3) (zero for undrained soil) and fixing a = 0� and
b = 60�. A deep-learning model is expected to be built to
accurately predict the normalized factor of safety NFS
from random fields ðC0 ;C0Þ with fixed slope shape.

To obtain representative inputs, the quasi-random
sequence is firstly used to generate 100 combinations for
the five parameters: the COV of C0 (in the range 0–0.55),
the mean of C0 (in the range 0–100), the COV of C0 (in
the range 0–0.1), l0x (in the range 0.44–66) and l0y (in the

range 0.03–6.2). Then for each combination, 30 random
field samples are generated, which leads to a dataset of size
Ndata2 ¼ 3000. Log-normal distributions are used to gener-
ate random fields. It has been validated that distribution
types do not affect the results (He et al., 2022). The expo-
nential autocorrelation function is used as

qGðx; x0Þ ¼ expð� 2 x�x0j j
lx

� 2 y�y0j j
ly

Þ. Random field samples are

generated by the open-source software ‘GSTools’, which
uses the so-called randomization method. The spatial ran-
dom field is represented by a stochastic Fourier integral,
and its discretised modes are evaluated at random frequen-
cies (Müller et al., 2021).

The input–output dataset is often separated into train-
ing, validation, and test datasets in machine learning. The
training set is used to train the machine-learning models,
while the validation set is used to validate model perfor-
mance during training. The model is trained on the training
set and evaluated on the validation set after every epoch.
The test set is used to test the model only after completing
the training. It provides an unbiased final model perfor-



Fig. 10. NFS for undrained soil with fixed slope shape from FE
simulations and from the deep-learning model (M15, 3000 data,
black = training; red = validation, blue = test).
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mance metric in terms of accuracy, precision, etc. The test
dataset will not participate in the training process.

In this study, the ratio of the training, validation and
test datasets will be 70:15:15 (Gholamy et al., 2018;
Joseph, 2022). Therefore, for this condition (3000 input–
output pairs), the three datasets will be 2100, 450, and
450, respectively. Three evaluation metrics are compared
in this section: mean absolute percentage error (MAPE),
root mean square error (RMSE), and coefficient of deter-
mination (R2).

The first network examined is the one-hidden-layer
FCN. Because this reduced problem has a fixed slope shape
– some values of matrices (C0 and C0) are fixed to be zero
(blue area in Fig. 2), in the flatted layer, these zeros are
removed, which results in a flatted layer of smaller size.
Firstly, a fully connected network is built without the drop-
out layer. The number of neurons in the hidden layer is a
tuneable hyperparameter. Fig. 9a-c show the MAPE, R2
and RMSE of the trained FCN surrogate models with neu-
rons from 50 to 300. Increasing the size of hidden neurons
(from 50 to 300) means a more complex model and can
improve the accuracy. However, there is no obvious
improvement after the size exceeds 100. Also, when the size
of hidden neurons is 150, the error of the training dataset
(MAPE = 7.38%, RMSE = 0.0127, R2 = 0.997) is much
smaller than the validation (MAPE = 14.8%,
RMSE = 0.0371, R2 = 0.971) and test dataset
(MAPE = 11.2%, RMSE = 0.029, R2 = 0.978), which indi-
cates overfitting – the model is too close to the training
dataset and cannot generalise to unseen data. In addition,
Therefore, to solve this overfitting problem, a model (M11)
is built by adding a dropout layer after the fully connected
layer. The MAPEs of model M11 are 11.16%, 12.08%, and
12.72% (also shown in the bar chart in Table 3). The over-
fitting problem is solved with the dropout and M11 can be
considered a robust model. Subsequent tables and figures
only show the robust models.

In model M11, entries of the input matrices with zero
values have been removed before conducting machine
learning (blue area in Fig. 2). This can be considered as a
filter applied to the original input to remove the insignifi-
cant features. In fact, deep learning is a powerful tool, in
which filters are learnt automatically. For example, CNNs
can automatically learn filters and obtain high-level fea-
tures in image recognition. Considering the similarity
between the inputs of this study and images, CNNs are also
built in this study. It has been shown that average pooling
layers have better performance than maximum pooling lay-
ers in geotechnical predictions involving mainly continuous
numbers (He et al., 2022). Therefore, a CNN is firstly built
with three consecutive convolutional layers and average-
pooling layers. Parameters for the convolutions layer are
shown in column M12 of Table 3. The effect of the number
of neurons in the fully connected layer is examined, which
varies from 20 to 100. Similarly, increasing the size of hid-
den neurons in the fully connected layer can improve the
10
accuracy of the model, and a robust model is with
NF = 100, which is labelled as the model M12. This
CNN (MAPE = 10.09%, RMSE = 0.0161, and
R2 = 0.993 on the test dataset) performs better than the
FCN M1 (MAPE = 12.72%, RMSE = 0.0353, and
R2 = 0.976 on the test dataset).

In models M13 and M14, the number of channels and
the number of convolutional layers are increased, respec-
tively. The MAPEs of validation and test dataset are the
same as M12. So, increasing the complexity of models can-
not obtain better results in this situation. A test without a
dropout layer is also conducted, for which the error of the
training dataset (MAPE = 0.72%, RMSE = 0.0013,
R2 = 0.999) is far smaller than the validation dataset
(MAPE = 8.14%, RMSE = 0.0154, R2 = 0.994) and test
dataset (MAPE = 8.22%, RMSE = 0.0151, R2 = 0.995),
which means overfitting. Therefore, the dropout layer is
necessary in CNNs for this slope stability problem.

For this slope stability problem, CNNs performed well.
However, the filters in CNNs use shared parameters, while
the soil properties in different areas have different effects on
the NFS. Therefore, locally connected networks are
expected to have the capability to reflect this feature.
Table 3 contains the key parameters of locally connected
networks. Based on model M12, a locally connected net-
work is built by removing one convolutional layer and
one average pooling layer while adding a locally connected
layer between the second pooling layer and the fully con-
nected layer. A larger stride is used in the locally connected
layer to keep the number of trainable parameters low and
to improve computation because locally connected layers
often have a large number of trainable parameters. Simi-
larly, the hyperparameter NF – the number of neurons in
the fully connected layer is examined, which varies from
50 to 500. The MAPEs do not change after NF exceeds



Fig. 11. Possible combination of the means and standard deviations of
friction angles.
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200. The neural network with 400 neurons is labelled M15.
Fig. 10 compares the NFS obtained from FE simulations
and from model M15, which demonstrates the accuracy
of our deep-learning model. We also test three other locally
connected networks: M16 adopts a larger filter in the
locally connected layer, M17 and M18 have more channels
and more convolutional layers, respectively. The perfor-
mance of M16, M17and M18 indicate that increasing
model complexity cannot improve accuracy. The bar graph
Table 4
Deep-learning models, hyperparameters, and performance for Mohr-Coulomb

Model label &
description

M21: LCN M22: LCN with more channels in the
locally connected layer

Model structure
parameters

N I ¼ 3
C1 ¼ 32
C2 ¼ 16
CL ¼ 8
NF ¼ 400

N I ¼ 3
C1 ¼ 32
C2 ¼ 16
CL ¼ 16
NF ¼ 400

11
in Table 3 shows the MAPE of the robust models. In gen-
eral, locally connected networks give the best predictions
and FCNs have the largest errors.

In this section, three evaluation metrics, MAPE, RMSE,
and R2, consistently produce comparable results. R2 repre-
sents the proportion of the variation in the dependent vari-
able that can be predicted by the independent variable,
which reflects the overall fit of the model. MAPE and
RMSE represent the relative and absolute differences
between predicted and observed values. Fig. 9 illustrates
the MAPE, R2, and RMSE of the trained FCN surrogate
models. These three metrics provide the same conclusion
that the model tends to be stable when the size of neurons
exceeds 100. However, engineers typically place more
emphasis on the accuracy of the prediction result in a speci-
fic geotechnical case rather than the overall fitting of all
cases. Furthermore, RMSE is sensitive to outliers and
may exaggerate the error value with a significant influence.
In contrast, MAPE is less susceptible to outliers and is
more robust than RMSE. Hence, we have opted to employ
MAPE as the representative error metric in this study.
4.2. Mohr-Coulomb soil with a fixed slope shape

A more general problem is considered – Mohr-Coulomb
soils with a fixed slope shape. The inputs contain three
matrices (C0, U and C0). Similarly, the quasi-random
sequence is used to obtain 100 combinations for parame-
ters and each combination is used to generate 30 random
soil with fixed slope shape (LCN: Locally connected network).

M23: LCN with more
convolutional channels

M24: LCN with more
convolutional layers

N I ¼ 3
C1 ¼ 64C2 ¼ 32
CL ¼ 8
NF ¼ 400

N I ¼ 3
C1 ¼ 64
C2 ¼ 32
C3 ¼ 16
CL ¼ 8
NF ¼ 400



Fig. 12. NFS of Mohr-Coulomb soil with a fixed slope shape from FE
simulations and from the deep-learning model (M21, 6000 data,
black = training; red = validation, blue = test).

H. Xu et al. Soils and Foundations 63 (2023) 101321
field samples, which leads to another Ndata3 ¼ 3000 input
data. It must be noted that Table 2 specifies the possible
mean and COV of friction angles. All the dots in Fig. 11
represent possible combinations for the mean and standard
deviation. When the mean and standard deviation are both
very large (like 40� and 6�), it is possible to generate ran-
Table 5
Deep-learning models, hyperparameters, and performance for the full problem

Model label &
description

M31: LCN M32: LCN with more channels in the
locally connected layer

Model structure
parameters

N I ¼ 3
C1 ¼ 32
C2 ¼ 16
CL ¼ 8
NF ¼ 400

N I ¼ 3
C1 ¼ 32
C2 ¼ 16
CL ¼ 16
NF ¼ 400

12
dom field samples with friction angles as large as 60-80�
and even>90�, which is impossible in practice. Therefore,
we apply some constraints on the mean and standard devi-
ation of the friction angle (Fig. 11). When the mean of the
friction angle is less than 10�, the possible COV is still 0–
0.15. When the mean of the friction angle is>10�, the stan-
dard deviations decrease linearly from 1.5� to 0.3�.

From the previous problem, locally connected networks
perform best, so we will only examine locally connected
networks for this problem. All key hyperparameters of
neural networks are listed in Table 4. Considering that
the first problem is a subset of the present problem, the
total dataset contains Ndata2 þ Ndata3 ¼ 6000 data. A locally
connected network is firstly built similar to model M15 but
with inputs of three matrices. The optimal NF is 400 and
the MAPEs of training, validation and test are 3.05%,
6.12%, and 6.6%, respectively (also shown as M21 in the
bar graph in Table 4). To examine the effect of hyperpa-
rameters on the predicted results, several models are built
based on M21: Model M22 uses twice the channels in the
locally connected layer, and Model M23 and M24 increase
the number of channels and the number of convolutional
layers, respectively. The bar graph (Table 4) shows that
models M22 to M24 have no significant improvement in
prediction compared with M21. The NFSs obtained from
FE simulations and from the deep-learning model (M21)
are compared in Fig. 12. Our deep-learning surrogate
model has a low error of only 6.6% on the test dataset.
(LCN: Locally connected network).

M33: LCN with more
convolutional channels

M34: LCN with more
convolutional layers

N I ¼ 3
C1 ¼ 64
C2 ¼ 32
CL ¼ 8
NF ¼ 400

N I ¼ 3
C1 ¼ 64
C2 ¼ 32
C3 ¼ 16
CL ¼ 8
NF ¼ 400



Fig. 13. NFS of the full problem from FE simulations and from the deep-
learning model (M31, 12,255 data, black = training; red = validation,
blue = test).

Table 6
Parameters of slopes for validation.

Parameters

Case 1
The COV of C0 = 0.4, the mean ofC0 = 50, the COV ofC0 = 0.05,
the mean of U = 0, the COV of U = 0.05, l0x = 33, l0y = 3.1, a = 10�,
and b = 50�
Case 2
Same as Case 1 but the mean ofC0 = 90
Case 3
Same as Case 1 but b = 80�
Case 4
Same as Case 1 but a = 20�
Case 5
Same as Case 1 but the mean of U = 30�
Case 6
Same as Case 5 but concave slope surface
Case 7
Same as Case 5 but convex slope surface

Fig. 14. Slope surface shapes and random fields of soil parameters.
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4.3. The full problem

The above two reduced problems are all with a fixed
slope shape (a = 0� and b = 60�). In this section, the full
problem is considered – the inputs are three matrices (C0,
U and C0), and the distributions of zeros within these matri-
ces (position not occupied by soils) vary with different slope
shapes (i.e., angles a and b). The parameters that charac-
terise this problem are the COV of C0 (in the range 0–
0.55), the mean of C0 (in the range 0–100), the COV of C0

(in the range 0–0.1), the mean of U (in the range 0-40�),
the COV of U (in the range 0–0.15), l0x (in the range

0.44–66), l0y (in the range 0.03–6.2), a (in the range 0-40�),
and b (in the range 45-90�). Firstly, 200 combinations of
these nine parameters are generated using the quasi-
13
random sequence and 30 random field samples are gener-
ated for each combination, resulting in Ndata4 ¼ 6000 data.
All the input–output data prepared in this study is used for
training, i.e., Ndata1 þ Ndata2 þ Ndata3 þ Ndata4 ¼ 12255 data.
Similarly, we only test locally connected neural networks.
Firstly, model M31 is a locally connected network like
M15 and its accuracy is 6.27% on the test dataset (Table 5).
Models M32 to M34 are built to study the effect of hyper-
parameters. The results (The bar graph in Table 5) indicate
that model M31 is a good model and that any more com-
plex structures cannot improve the accuracy of predictions.
The NFSs from FE simulations and from the deep-learning
model (M31) are compared in Fig. 13.

For the full slope stability problem in this section, a
large dataset (>10,000 input–output pairs) is used to train
deep neural networks. This dataset covers all possible com-
binations of soil material parameters and boundary condi-
tions (slope angles in this study), and the trained model is
accurate with a MAPE of about 6%, so this deep-
learning model is an ideal surrogate model for stochastic
analysis of slopes considering spatial variability. Its accu-
racy and applications in stochastic analysis are further
demonstrated in the next section.

5. Verification and application

Seven particular cases are designed to verify the predic-
tive power of the trained deep-learning model and to
demonstrate how it can increase the computational effi-
ciency of stochastic analyses. The parameters are listed in
Table 6. Case 1 is a reference case, In Cases 2–5, only
one parameter is altered compared with the reference case.
We also test if our trained model is able to predict the FS of
slopes with curved slope surfaces. Cases 6 and 7 have the
same parameters as Case 5 but Case 6 has a concave slope
surface (Fig. 14a) and Case 7 has a convex slope surface
(Fig. 14b). The black dotted lines connecting the top and



Fig. 15. PDFs for seven cases of Mohr-Coulomb soils with different parameters and slope shapes (Histograms = PDFs from brute-force analyses; solid
and dotted lines = PDFs from deep-learning models).
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shoulder represent the slope angles b of the two curved
slope surfaces.

For each case, ten thousand samples are generated
according to the parameters (Table 6). Brute-force Monte
Carlo analyses are conducted for only 500 samples, and
each analysis will take about 5 h. However, the evaluation
of the NSF for the ten thousand samples with our deep-
learning model only costs several minutes, which is a great
improvement in computational efficiency.

The estimated PDFs for the seven cases are shown in
Fig. 15. The histograms represent the brute-force analyses
with 500 samples and the black lines represent the results
from the deep-learning model with ten thousand samples.
Fig. 15a shows that the NFS decreases with the increase
of c0 (Case 2 compared with Case 1), which is consistent
with the deterministic analysis in Section 3 (Fig. 6c). In
addition, larger c0 leads to a smaller spread of NFS.
Fig. 15b and c indicate that an increase in a and b will lead
to a decrease in NFS, which corresponds to the determin-
istic analysis in Fig. 6e and f. The increase of b here leads
to a wider spread of NFS while the increase of a leads to a
narrower spread of NFS. Fig. 15d shows the influence of
friction angle on the NFS. Similar to the deterministic
analysis (Fig. 6d), a larger friction angle will lead to safer
slopes.
14
Fig. 15e and f show how the shape of the slope surface
affects the stability. A slope with straight slope surfaces
(Case 5 and grey in Fig. 15e) is safer than slopes with
curved surfaces (Case 6 and 7). Comparing convex and
concave slopes, the concave (Case 6 and grey in Fig. 15f)
is slightly safer than the convex slope (Case 7 and blue in
Fig. 15f), which is because of the larger sliding mass of
the convex slope. PDFs from the deep-learning model
show good agreement with brute-force analyses and
achieve higher accuracy and detail. Therefore, our deep-
learning model is an ideal surrogate model for efficient
slope stability analysis.

6. Conclusion

This paper presents an accurate deep-learning surrogate
model for slope stability problems. A big dataset covering
the common soil properties, spatial variabilities, and
boundary conditions is used for training. Therefore, the
trained model is ready to make predictions without addi-
tional numerical simulations and training required.

We conducted dimensional analysis first. The factor of
safety is expressed as a function of several inputs – dimen-
sionless fields of soil parameters (cohesion, unit weight, and
friction angle), which are represented as matrices. Since
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slopes are of irregular shapes, a larger square simulation
domain is used to contain all possible slope shapes and is
discretised into 128 � 128 quadrilateral elements. The sim-
ulation domain outside slopes is assumed to have material
properties of zeros. So, different slopes are represented by
the distribution of different material parameters and zeros
with square matrices. Non-uniform meshes are used in
the FE simulations. A coarser mesh is adopted near the
toe of the slope to improve the convergence of calculation.

We rigorously verified our method of calculating the
factor of safety with FE models, in which gravity is
increased in linear increments. Over a wide range of param-
eters (e.g., various non-dimensional unit weights, friction
angles, and slope angles), our method predicts the factor
of safety accurately against the analytical solution.

Three conditions are considered from reduced problems
with fewer inputs to the full problem. A comparison of the
three kinds of artificial neural networks is conducted in the
first simplified condition. The mean absolute percentage
error is used as the training loss and evaluation criteria.
It is found that locally connected networks perform bests
(MAPE of about 6%), and CNNs come the next (about
10%). The error of fully connected networks is relatively
large (about 13%). Subsequent studies only consider locally
connected networks. The final full problem was trained
with over 12,000 input–output data and the locally con-
nected network gives accurate predictions (MAPE of
6.27%), so it can be used as an ideal surrogate model for
the slope stability problem.

Seven cases are designed to verify the performance of
the deep-learning model, including different soil parame-
ters, slope shapes, and two different kinds of slope surfaces
(e.g., concave and convex slopes). The results indicate the
probability density functions from deep-learning models
are highly consistent with brute-force Monte Carlo analy-
ses with FE simulations but take much less computing
effort.
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