
Citation: Xu, K.; Guo, Y.; Lei, G.;

Zhu, J. A Review of Flywheel Energy

Storage System Technologies.

Energies 2023, 16, 6462. https://

doi.org/10.3390/en16186462

Academic Editor: Abdul-Ghani Olabi

Received: 15 August 2023

Revised: 30 August 2023

Accepted: 4 September 2023

Published: 7 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

energies

Review

A Review of Flywheel Energy Storage System Technologies
Kai Xu 1,*, Youguang Guo 1,* , Gang Lei 1 and Jianguo Zhu 2

1 School of Electrical and Data Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia;
gang.lei@uts.edu.au

2 School of Electrical and Information Engineering, University of Sydney, Camperdown, NSW 2006, Australia;
jianguo.zhu@sydney.edu.au

* Correspondence: kai.xu@student.uts.edu.au (K.X.); youguang.guo-1@uts.edu.au (Y.G.);
Tel.: +61-2-95142650 (Y.G.)

Abstract: The operation of the electricity network has grown more complex due to the increased
adoption of renewable energy resources, such as wind and solar power. Using energy storage
technology can improve the stability and quality of the power grid. One such technology is fly-
wheel energy storage systems (FESSs). Compared with other energy storage systems, FESSs offer
numerous advantages, including a long lifespan, exceptional efficiency, high power density, and
minimal environmental impact. This article comprehensively reviews the key components of FESSs,
including flywheel rotors, motor types, bearing support technologies, and power electronic converter
technologies. It also presents the diverse applications of FESSs in different scenarios. The progress of
state-of-the-art research is discussed, emphasizing the use of artificial intelligence methods such as
machine learning, digital twins, and data-driven techniques for system simulation, fault prediction,
and life-assessment research. The article also addresses the challenges related to current research and
the application of FESSs. It concludes by summarizing future directions and trends in FESS research,
offering valuable information for further advancement and improvement in this field.

Keywords: flywheel energy storage systems (FESSs); flywheel rotors; flywheel motors; power electronic
converters; machine learning

1. Introduction

The demands for environmental protection and the promotion of low-carbon devel-
opment have led to a gradual increase in the proportion of renewable energy sources,
mainly wind and solar, in the power grid. Wind and solar energy have become the primary
research subjects because the energy system has been more actively targeting these two
energy sources. The statistics in Figure 1 show that global power generation from wind and
solar sources has grown from 505.6 TWh in 2011 to 2894.4 TWh in 2021 [1]. The installed
annual capacity for wind and solar energy is shown in Figure 2. Installed wind and solar
capacity increased by 900 GW between 2015 and 2021, which is equivalent to an average
annual growth rate of 18% [1]. In the next ten years, the anticipated installation capacities
of wind and solar energy will increase at average annual rates of 14% and 18%, respectively.

However, integrating wind and solar energy into the existing power grid poses chal-
lenges for efficiency, stability, and reliability. Because most renewable energy sources are
intermittent, fluctuations in power generation, load disturbances, and other problems
must be considered. Energy storage systems (ESSs) can alleviate the problems associated
with renewable energy power generation technology. Electrical energy storage systems
(EESSs) enable the transformation of electrical energy into other forms of energy, allowing
electricity to be stored and reused when needed. These systems provide greater flexibility
in the operation of the grid, as electrical energy can be stored and released according to
the demand for power, effectively addressing the intermittent nature of renewable energy
sources [2–4]. There are many applications of EESSs, including transportation systems,
portable devices, distributed energy, renewable energy, and power networks [5–7].
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Figure 1. Wind and solar energy generation growth in the past decade [1]. 

 
Figure 2. Installed capacity of wind and solar energy: (a) wind capacity, (b) solar capacity [1]. 

Various ESSs are operated based on different electric energy storage technologies, 
each with its distinct structure and setup. In general, ESSs can be divided into mechanical 
energy storage [8], electrochemical energy storage [9–11], thermochemical energy storage 
[12,13], magnetic energy storage [14], hydrogen energy storage [15], and thermal energy 
storage [16]. Mechanical ESS is the most used worldwide because it flexibly converts and 
manipulates stored energy when needed for mechanical work [17]. Mechanical ESS in-
cludes pumped water storage systems (PHSS), flywheel ESS (FESS), compressed air ESS 
(CAESS), and gravity ESS (GESS) [8]. Table 1 compares the technical characteristics of the 
most used energy storage methods. Each system has its characteristics in terms of effi-
ciency, specific energy, specific power, discharge loss, response time, and rated power 
[18]. 

In Table 1, various methods of energy storage are compared in terms of their technical 
characteristics. Clearly, FESS is one of the most promising short-term high-power energy 
storage technologies because of its high efficiency, substantial instantaneous power, fast 
response time, and long service. FESSs have many advantages compared with other en-
ergy storage units. These include high energy efficiency, rapid response times, a large 
amount of instantaneous power, low maintenance costs, a long service life, and environ-
mental benefits [19,20]. However, FESSs have some disadvantages, mainly in terms of 
their low instantaneous power output. The loss caused by a permanent magnet in an FESS 
using a permanent-magnet motor is difficult to eliminate [21–23]. 

Currently, many countries are conducting research and development in the field of 
FESSs, with the United States leading the way in terms of investment, size, and speed of 
progress. Active Power’s 250–2000 kW Cleansource Series UPS FESS, Beacon Power’s 25 
MW Smart Energy Matrix, Boeing Phantom Plant’s 5 kWh FESS device, Amber Kinetics’s 8 kW 
FESS for utility applications, and SatCon Technology’s 315–2200 kVA Series Rotary UPS 

Figure 1. Wind and solar energy generation growth in the past decade [1].
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Figure 2. Installed capacity of wind and solar energy: (a) wind capacity, (b) solar capacity [1].

Various ESSs are operated based on different electric energy storage technologies, each
with its distinct structure and setup. In general, ESSs can be divided into mechanical energy
storage [8], electrochemical energy storage [9–11], thermochemical energy storage [12,13],
magnetic energy storage [14], hydrogen energy storage [15], and thermal energy storage [16].
Mechanical ESS is the most used worldwide because it flexibly converts and manipulates
stored energy when needed for mechanical work [17]. Mechanical ESS includes pumped
water storage systems (PHSS), flywheel ESS (FESS), compressed air ESS (CAESS), and gravity
ESS (GESS) [8]. Table 1 compares the technical characteristics of the most used energy storage
methods. Each system has its characteristics in terms of efficiency, specific energy, specific
power, discharge loss, response time, and rated power [18].

In Table 1, various methods of energy storage are compared in terms of their technical
characteristics. Clearly, FESS is one of the most promising short-term high-power energy
storage technologies because of its high efficiency, substantial instantaneous power, fast
response time, and long service. FESSs have many advantages compared with other energy
storage units. These include high energy efficiency, rapid response times, a large amount
of instantaneous power, low maintenance costs, a long service life, and environmental
benefits [19,20]. However, FESSs have some disadvantages, mainly in terms of their low
instantaneous power output. The loss caused by a permanent magnet in an FESS using
a permanent-magnet motor is difficult to eliminate [21–23].

Currently, many countries are conducting research and development in the field of
FESSs, with the United States leading the way in terms of investment, size, and speed
of progress. Active Power’s 250–2000 kW Cleansource Series UPS FESS, Beacon Power’s
25 MW Smart Energy Matrix, Boeing Phantom Plant’s 5 kWh FESS device, Amber Kinetics’s
8 kW FESS for utility applications, and SatCon Technology’s 315–2200 kVA Series Rotary
UPS FESS can be effectively used to stabilize power systems, improve power quality, and
regulate peak wind power generation and peak full frequency [24]. Research on high-
temperature superconducting FESSs is being carried out by Boeing, ATZ, other German
companies, ISTEC Japan, and KEPRI South Korea.
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Table 1. Comparison of the main energy storage methods and features [25].

Features
Energy Storage Methods and Technologies

Compressed Air
Energy Storage

Chemical Battery
Energy Storage

Superconducting
Magnetic Energy

Supercapacitor
Energy Storage

Flywheel Energy
Storage

Efficiency (%) 40~60 70~80 80~95 80~95 85~95

Specific energy
(Wh/kg) - 3~15 1~10 0.2~10 5~150

Specific power
(W/kg) - 100~700 1000 7000~18,000 180~1800

Charging time hours hours hours minutes minutes

Discharge time 1~20 h 1 min~hours 10 ms~15 min 0.1 s~1 min 15 s~15 min

Discharge depth deep shallow deep deep deep

Response time minute milliseconds milliseconds milliseconds milliseconds

Service life (Year) >20 3–15 >20 >20 >20

Maintenance
cycles frequent <6 months frequent >10 years >10 years

Operating
temperature (◦C) 35~50 −10~+300 4.2~77 K −30~+50 −40~+50

Environment
requirements high medium extremely high high low

Environmental
features no contamination contamination no contamination no contamination no contamination

The first section of this article highlights the significance of renewable energy tech-
nology in contemporary global development and the challenges inherent in advancing
renewable energy technologies. The second section delves into FESS’s operating principles
and primary components, including flywheel rotors, electric motors/generators, bearings,
and power electronic converters. The third section explores the various applications of
FESSs in various contexts. The final section summarizes the development challenges cur-
rently faced by FESSs and outlines their future trends and associated technical prerequisites.

2. The Operation Principles and Components of Flywheel Energy Storage Systems
2.1. Structure of Flywheel Energy Storage Systems

FESS technology can be categorized into two types. The first type comprises large-
capacity flywheels, which are typically supported by conventional rolling and sliding
bearings. The primary characteristics of this device include its substantial storage capacity
and low operating speed. Generally, these devices are utilized for short-term high-power
discharges and power peak shaving. The second type covers small-capacity flywheels
supported by magnetic bearings, which are designed for high-speed energy storage. These
bearings are distinguished by their compact structure, high energy density, and efficiency.
In recent years, FESSs with magnetic bearings have evolved from their original small and
medium power capacities towards much higher power levels. The development focus for
FESSs is on achieving higher speeds and greater power.

The key technologies underpinning an FESS include flywheel rotor technology, sup-
port bearing technology, integrated electric motor/generator technology, bidirectional
energy converter technology, vibration control for the electromagnetic bearing–flywheel
rotor system, and vacuum chamber technology. The flywheel rotor is a critical component
of an FESS, typically constructed of materials with high strength and low density. Bearings
provide support for the shaft. Magnetic and combined bearings are currently research
focal points for support technologies that can minimize friction loss and enhance system
efficiency. Integrated electric motors/generators serve dual functions, acting as motors and
generators within a single component. This dual functionality allows seamless switching
between electrical and power generation modes, facilitating the mutual conversion of
mechanical and electric energy. The input or output of electric energy is modulated and
controlled by the electronic power device. This device can adjust the flywheel motor to
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meet various operational requirements. The casing serves three primary purposes: estab-
lishing a vacuum environment to minimize loss of wind resistance, providing protection to
personnel in case of a malfunction during flywheel rotation, and ensuring safety protocols.
Figure 3 presents a structural diagram of an FESS.
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2.2. Operating Principles of Flywheel Energy Storage Systems

In FESSs, electric energy is transformed into kinetic energy and stored by rotating
a flywheel at high speeds. An FESS operates in three distinct modes: charging, discharging,
and holding. Charging mode: During this phase, the flywheel rotor absorbs external energy
and stores it as kinetic energy. The flywheel continues to accelerate until it reaches its target
speed. Discharging mode: In this mode, the process is reversed. Generators extract kinetic
energy from the flywheel rotors, convert this energy back into electric energy form, and
then deliver the appropriate current and voltage to power electrical equipment, facilitated
by power control devices. As energy is drawn from the flywheel rotor, it starts to decelerate,
continuing to do so until it reaches a predetermined speed. Holding mode: Once the
flywheel reaches its target speed, it neither absorbs nor releases energy. If we disregard
any energy loss, its energy remains constant. Through these modes, the flywheel system
effectively manages the input, output, and storage of energy.

2.3. Flywheel Rotors

Electric energy is stored in the flywheel rotor as kinetic energy. The shape and material
of the flywheel directly affect the amount of energy that can be stored. The stored energy is
directly proportional to the square of the angular velocity and the moment of inertia of the
flywheel. When the flywheel rotates, the kinetic energy is expressed as

E = Jω2/2 (1)

where J is the moment of inertia of the flywheel and ω is the angular velocity of the
flywheel. The centrifugal force experienced by the flywheel rotor increases as flywheel
speed increases. If this speed exceeds a critical threshold, the flywheel rotor can be damaged
due to the tensile stress induced by the centrifugal force. The critical speed of a flywheel
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is primarily determined by the strength of the materials used in its construction. The
maximum energy storage density of a flywheel is expressed as

e = K × σ/ρ (2)

where e is the energy storage density of the flywheel, in Wh/kg, K is the shape coefficient
of the flywheel, ρ is the density of the material, in kg/m3, and σ is the tensile strength
of the material, in MPa. Figure 4 shows different shapes with their corresponding shape
coefficients [17]. Table 2 lists the maximum energy storage of flywheels with different
materials, where the energy storage density represents the theoretical value based on an
equal-thickness-disc flywheel rotor.
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Table 2. Maximum energy storage of flywheel rotor materials [25].

Materials
Energy Storage of Different Materials

σ/GPa ρ/kg·m−3 e/Wh·kg−1

E glass fiber/resin 3.5 2540 231.9

S glass fiber/resin 4.8 2530 320.6

Kevlar 3.8 1450 441.1

Spectra fiber/resin 3.0 970 520.6

Carbon fiber
T-1000/resin 10 1800 945.7

High-strength steel 2.7 7800 56.8

Aluminum alloy 0.6 2700 36.1

The storage capacity and reliability of an FESS can be improved by choosing the proper
materials and structural designs for flywheel rotors. Currently, design and manufacturing
technology for two materials, metal and composite materials, is well established. By
designing flexible and diverse structures, it is possible to increase the shape coefficients of
flywheels. Compared with metals, composite materials offer high strength, greater energy
storage density, and extended service life. However, their winding process is more intricate,
making the creation of flywheels with intricate designs challenging. Active Power’s FESS
employs 4340 plates of steel as the material for its rotor. The flywheel rotor is integrally
connected to the motor/generator and magnetic bearings. This flywheel can achieve speeds
of up to 7700 revolutions per minute. On the other hand, carbon composites, low-carbon
steel, and concrete are used to design flywheel rotors for utility-scale applications [27].

Methods for optimizing the thickness distribution of the flywheel rim and selecting
the appropriate material for the flywheel in a multilayer interference assembly of a specific
size are provided. These methods aim to enhance energy storage density to its maximum
potential [28]. Boeing used a composite flywheel rotor characterized by a three-layer
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circular winding ring structure. This was designed using various carbon fiber specifications
adapted to the force characteristics inherent in each flywheel layer [24]. The mechanical
characteristics of both singular and multilayered materials ideal for high-speed energy
storage were studied. For the constant-stress section of the flywheel, materials with low
density, low modulus, and high strength were utilized. In contrast, materials with high
density, modulus, and strength were used for the flywheel’s constant-thickness section [29].

2.4. Flywheel Motors

The FESS employs an integrated electric motor/generator because of its dual function-
ality. It can operate as either a motor or a generator, depending on the system’s operating
conditions. In FESSs, this integrated motor/generator serves as the pivotal component
for electromechanical energy conversion. During the charging process, the integrated
electric motor drives the flywheel rotor, accelerating the rotor’s speed. In contrast, in the
discharging process, the integrated generator extracts the kinetic energy from the flywheel
rotor, converting it into electric energy, which is then fed back into the power supply. For
the FESS, there are specific requirements set for the integrated electric motor/generator:

• It must be suitable for high-speed operation;
• The rotor structure should exhibit robust strength;
• It must ensure satisfactory power stability and high reliability;
• The input/output power should align with the flywheel’s charge and discharge needs;
• The motor/generator should have minimal losses across a wide speed range, offer

high efficiency, and be user-friendly in its operation;

In FESSs, there are three main types of motors: induction motors (IM), switched
reluctance motors (SRM), and permanent-magnet (PM) motors. Table 3 is a performance
comparison of the three types of motors.

Table 3. Performance comparison of the three types of motors [25].

Features

Flywheel Motors

Induction
Motor Switched Reluctance Motor Permanent

Magnet Motor

Output power high medium and low medium and low

Specific power (kW/kg) medium (~0.7) medium (~0.7) high (~1.2)

Rotor losses copper and iron iron loss very low

Spinning losses Removable by annulling flux Removable by annulling flux Non-removable, static flux

Efficiency (%) High (91~94) High (90) Very High (95~97)

Control methods Vector control Synchronous: vector control.
Switched: DSP

Sinusoidal:
vector control.

Trapezoidal: DSP

Size (l/kW) 1.8 2.6 2.3

Torque ripple medium high medium

Maximum speed (rpm) 900~15,000 >15,000 >30,000

Demagnetization no no yes

Cost low low high

l/kW—length (l) per unit power.

2.4.1. Induction Motors for Flywheel Energy Storage Systems

Induction motors are often chosen for FESSs due to their simplicity, robustness, cost-
effectiveness, and high-power capabilities. Their advantages have become even more
pronounced with advances in power electronics technology and modern motor drive sys-
tems. However, there are challenges. The nonlinearity and strong coupling characteristics
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of induction motors make their control systems more intricate. Consequently, their speed
regulation might be less precise. A notable concern during high-speed and prolonged
operations is the persistent induced current in the rotor, leading to potential overheating.
Induction motors have many benefits but can also be characterized by their lower efficiency
and limiting speed.

Induction motors have been extensively explored for FESS applications [30,31]. Among
these, homopolar inductor motors (HIMs) have gained significant attention as innovative
induction motors specifically designed for FESS. Much research has focused on the charac-
teristics of the new multiunit outer rotor HIM, the electromagnetic properties of HIM, and
the equivalent magnetic circuit model of HIM [32–34]. Other areas of investigation include
dual-rotor induction motors (DRIMs) and axial flux induction motors (AFIMs) for FESS.
The AFIM design employs a thin, multilayer plate and a solid rotor of two stators, whereas
the outer rotor of the DRIM can double as a flywheel rotor [35–37]. These typical induction
motor structures are presented in Figures 5 and 6 [30,38–40].
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2.4.2. Switched Reluctance Motors for Flywheel Energy Storage Systems

A switched reluctance motor (SRM) is the synthesis of a synchronous reluctance
motor and contemporary power electronic technology. An SRM features a double salient
pole structure, with neither windings nor permanent magnets on the rotor. Its robust
and simplistic design makes it suitable for high-speed operation. Moreover, it boasts
high temperature resistance, cost-effectiveness in manufacturing, reliability, and minimal
maintenance requirements. However, its drawbacks include pronounced torque ripples,
elevated noise levels, suboptimal efficiency, and notable rotor wind friction losses.

2.4.3. Permanent-Magnet Motors for Flywheel Energy Storage Systems

The permanent-magnet synchronous motor (PMSM) and the permanent-magnet brush-
less direct current (BLDC) motor are the two primary types of PM motors used in FESSs. PM
motors boast advantages such as high efficiency, power density, compactness, and suitability
for high-speed operations. However, they do have drawbacks: permanent magnets are costly,
and their performance can be significantly impacted by temperatures. With ongoing advance-
ments in PM materials such as neodymium (NdFeB) and samarium–cobalt (SmCo) magnets,
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the application of PM motors continues to expand. Specifically, BLDCs are favored for their
ease of control and high efficiency. However, as their speed increases, the current waveform
of BLDC motors is affected by inductance, deviating from the ideal square-wave shape. This
leads to greater torque ripples, increased motor vibrations, and a drop in efficiency. On the
other hand, PMSMs are prized for their smooth torque generation, coupled with their high
power factor and reduced inverter capacity.

In FESS research, the axial flux permanent-magnet motor (AFPMM) has been studied
extensively. Notable investigations have explored the design of an oil-immersed cooling
stator with concentrated non-overlapping windings, 3D finite element method (FEM) anal-
yses of the back electromotive force, ultra-high-speed AFPMM designs, and the impact
of the tilt angle of the PMs on cogging torque and axial force [30,41,42]. Numerous in-
novative designs have been proposed for PMSMs for FESSs. These include a novel rotor
with breathable gear sleeves to secure PMs in the rotor hub, equivalent magnetoresistive
optimization to reduce rotor losses, and a bidirectional permanent-magnet synchronous
motor/generator (PMSM/G) to reduce system losses during idle periods [43–46]. In addi-
tion, the application of bearingless PMSMs in FESSs has been studied. This includes the
analysis of static electromagnetic attributes of internal bearingless PMSMs (IBPMSMs) with
V-shaped PMs for electric vehicle FESSs and the conception of an ironless PM motor for
magnetically levitated shaftless flywheels [47,48].

In research on BLDC motors for FESSs, recent advances have focused on several key
areas. These include the development and optimization of an external rotor BLDC motor
that lacks an iron core, the introduction of a parallel structure that employs the multiwind-
ing approach to reduce winding losses, and the design of a BLDC motor integrated with
radial flux ring windings [49–51]. Other emerging PM motor types have also been found in
FESS applications. For example, researchers have explored a new five-phase BFSPM for
FESSs and generators with iron or hollow core stators [52,53]. Illustrations of some PM
motor structures can be seen in Figures 7–9 [47,54–57].
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For low-speed and high-power FESS applications, integrated electric motors/generators
are predominantly based on asynchronous motors. In most high-speed FESS applications, PM
motors are used, and SRMs are typically used only occasionally, such as in high-temperature
environments.



Energies 2023, 16, 6462 9 of 32Energies 2023, 16, x FOR PEER REVIEW 9 of 32 
 

 

 
Figure 9. Structures of (a) a switched reluctance motor [57] and (b) a PM brushless DC motor [50]. 

For low-speed and high-power FESS applications, integrated electric motors/genera-
tors are predominantly based on asynchronous motors. In most high-speed FESS applica-
tions, PM motors are used, and SRMs are typically used only occasionally, such as in high-
temperature environments. 

2.4.4. Control Strategies for Flywheel Energy Storage Systems 
Control strategies for FESSs are crucial to ensuring the optimal operation, efficiency, 

and reliability of these systems. Control strategies for FESSs, including the speed control 
strategy for FESSs based on proportional-integral (PI) direct torque control (DTC) as well 
as intelligent nonlinear adaptive controllers with excellent noise immunity and dynamic 
adaptive control for FESSs, are discussed in [49,59–61]. Furthermore, recent studies have 
been conducted on DFIM power control strategies based on artificial neural networks 
(ANN) as well as the attitude control strategy based on small induction BLDC motors to 
achieve accurate control of the braking torque of the flywheel system [62]. Control strate-
gies for PM motors are also investigated. These include model predictive control (MPC) 
strategies under the influence of uncertainty; speed control with nonlinear MPC control 
strategies; DC bus voltage fast control strategies for medium and high-speed PMSM/Gs 
for FESSs; modeling of double-air-gap AFPMMs with weak magnetic operation and sen-
sorless DTC; and an optimal energy-harvesting strategy based on a high-speed BLDC gen-
erator [63–67]. 

2.5. Flywheel Bearings 
The energy storage capacity of an FESS can be enhanced by increasing the speed and 

size of the flywheel rotor. However, a significant limitation of FESSs comes from the bear-
ings that support the flywheel rotor. Although high-strength composite materials can be 
employed to achieve high energy storage densities in flywheels, the rotor often lacks suit-
able high-speed bearings for optimal energy storage. Consequently, the technology be-
hind the bearings that support the flywheel system plays a crucial role in determining the 
efficiency of energy storage and the overall life of the system. Support bearings are classi-
fied into three main types: mechanical, magnetic, and combination bearings. A meticu-
lously designed bearing system can reduce system losses and increase the efficiency of 
ESSs. 

2.5.1. Mechanical Bearings 
Mechanical bearings suffer from high friction, significant losses, and reduced longev-

ity under high-speed conditions, necessitating periodic maintenance and lubrication. On 
the other hand, mechanical bearings are recognized for their robust support strength and 
compact design. However, they face substantial friction losses and reduced speeds, mak-
ing them best suited for low-speed, high-capacity FESSs or as protective bearings. The 
mechanical bearing category includes sliding bearings, rolling bearings, oil film damping 
bearings, and ceramic bearings. The former two are frequently used as protective bearings 
for FESSs, whereas the latter two can be incorporated into specific FESS applications. 

Figure 9. Structures of (a) a switched reluctance motor [57] and (b) a PM brushless DC motor [50].

2.4.4. Control Strategies for Flywheel Energy Storage Systems

Control strategies for FESSs are crucial to ensuring the optimal operation, efficiency,
and reliability of these systems. Control strategies for FESSs, including the speed control
strategy for FESSs based on proportional-integral (PI) direct torque control (DTC) as well
as intelligent nonlinear adaptive controllers with excellent noise immunity and dynamic
adaptive control for FESSs, are discussed in [49,59–61]. Furthermore, recent studies have
been conducted on DFIM power control strategies based on artificial neural networks
(ANN) as well as the attitude control strategy based on small induction BLDC motors
to achieve accurate control of the braking torque of the flywheel system [62]. Control
strategies for PM motors are also investigated. These include model predictive control
(MPC) strategies under the influence of uncertainty; speed control with nonlinear MPC
control strategies; DC bus voltage fast control strategies for medium and high-speed
PMSM/Gs for FESSs; modeling of double-air-gap AFPMMs with weak magnetic operation
and sensorless DTC; and an optimal energy-harvesting strategy based on a high-speed
BLDC generator [63–67].

2.5. Flywheel Bearings

The energy storage capacity of an FESS can be enhanced by increasing the speed and size
of the flywheel rotor. However, a significant limitation of FESSs comes from the bearings that
support the flywheel rotor. Although high-strength composite materials can be employed to
achieve high energy storage densities in flywheels, the rotor often lacks suitable high-speed
bearings for optimal energy storage. Consequently, the technology behind the bearings that
support the flywheel system plays a crucial role in determining the efficiency of energy
storage and the overall life of the system. Support bearings are classified into three main types:
mechanical, magnetic, and combination bearings. A meticulously designed bearing system
can reduce system losses and increase the efficiency of ESSs.

2.5.1. Mechanical Bearings

Mechanical bearings suffer from high friction, significant losses, and reduced longevity
under high-speed conditions, necessitating periodic maintenance and lubrication. On
the other hand, mechanical bearings are recognized for their robust support strength
and compact design. However, they face substantial friction losses and reduced speeds,
making them best suited for low-speed, high-capacity FESSs or as protective bearings. The
mechanical bearing category includes sliding bearings, rolling bearings, oil film damping
bearings, and ceramic bearings. The former two are frequently used as protective bearings
for FESSs, whereas the latter two can be incorporated into specific FESS applications.

2.5.2. Magnetic Bearings

Magnetic bearings are notable for their long lifetime, rapid response speed, impressive
load capacity, reduced losses, and adaptability to high-speed operations. However, their
primary downside is their complex control systems. To mitigate the potential failure
or overloading of magnetic bearings, the inclusion of auxiliary mechanical bearings is
imperative [9]. Magnetic bearings utilize magnetic forces to lift the shaft, eliminating
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mechanical contact between the rotor and the stator. Compared with traditional bearings,
magnetic bearings exhibit several distinctive characteristics:

1. The absence of mechanical friction in magnetic bearings allows for high-speed oper-
ation. The maximum speed of a flywheel rotor supported by magnetic bearings is
constrained only by the strength of the rotor material.

2. Magnetic bearing systems are characterized by minimal losses, high efficiency, and
negligible friction losses. They either require minimal power or are self-sustaining,
which contributes to reduced energy loss during prolonged energy storage.

3. The need for lubrication and sealing is eliminated with magnetic bearings. This
minimizes lubricant contamination, obviates lubricant storage and filtration, and
simplifies the system design.

4. The non-contact nature of magnetic bearings ensures an extended lifespan and circum-
vents issues commonly encountered in conventional bearings due to contact wear.

Because of the advantages of magnetic bearings for high-speed FESSs, they are used
by most high-speed FESSs. In general, there are three types of magnetic bearings, and their
typical structures are illustrated in Figure 10.
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Permanent-magnet bearings (PMBs) utilize the fundamental principle that permanent
magnets inherently repel each other to achieve radial or axial suspension between the
bearing stator and the rotor. Typically, the design incorporates one or more rings of
permanent magnets oriented radially or axially. One of the standout features of PMBs is
their low energy loss and cost effectiveness, as they function without the need for an external
power supply. However, the Earnshaw theorem highlights an inherent instability in PMBs.
Consequently, PMBs often necessitate complementary support from mechanical bearings,
superconducting magnetic bearings, or other bearings.

Active magnetic bearings (AMBs) comprise a rotor, a position sensor, a controller, and
an actuator. Through the utilization of feedback control technology in AMBs, the axial
and radial positions of the primary shaft are determined by adjusting the intensity of the
electromagnetic force. This type of bearing offers the flywheel rotor numerous advantages,
such as stable suspension, reduced noise, superior control capability, high stiffness, and
extended operating lifespan. However, AMBs face challenges. They exhibit high power
amplifier losses and possess intricate bearing design and control requirements. Integrating
AMBs with mechanical bearings can mitigate control complexity, making the system more
economical, practical, and stable. However, this integration requires sophisticated control
strategies that are vulnerable to electromagnetic interference. Internationally, companies
like Beacon Power have implemented AMB technologies.

Superconducting magnetic bearings (SMBs) are based on an axisymmetric model that
fosters the interaction of electromagnetic forces between high-temperature superconductors
(HTS) and PMs. Rotor suspension is achieved through diamagnetism and superconductor
pinning. Typically, the stator employs an HTS yttrium barium copper oxide (YBCO)
block, while the rotor utilizes the PM. SMBs offer several advantages, such as intrinsic
stability, negligible friction loss, and extended operational life. However, the need for
a low-temperature refrigerator increases the volume of the system and associated costs.
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Leading HTS-FESS research entities include Boeing from the United States, the ISTEC from
Japan, and ATZ from Germany. Although these teams predominantly use SMBs, they
also incorporate PMBs and electromagnetic bearings [71]. Table 4 lists the advantages
and disadvantages of the three single-magnet bearings described above. In practical
applications, it is common to combine several bearings.

Table 4. Characteristics of three single-magnet bearings.

Bearing Type
Advantages and Disadvantages of Bearings

Advantages Disadvantages

PMB No power supply is required,
a simple structure Stable suspension cannot be achieved alone

AMB Wear-free, low noise, no lubrication required,
highly controllable

Amplifier losses are large, and the design and
control are complex

SMB Self-stabilizing Requires a low-temperature chiller, large,
and high-cost

In summary, FESSs typically employ the following combinations of bearings:

• PMBs paired with mechanical bearings;
• Active magnetic bearings combined with mechanical bearings;
• Electromagnetic bearings combined with permanent-magnet bearings. In this setup,

the PMB supplies the axial unloading force, while the electromagnetic bearing modu-
lates the radial displacement of the flywheel rotor;

• Superconducting bearings paired with permanent-magnet bearings, where PMs and
HTSs are predominantly used as stators and rotors, respectively.

2.5.3. Research on Flywheel Energy Storage System Bearings

Currently, the predominant approach in FESS technology is the use of combined
bearings rather than relying solely on single bearing types. The rationale behind this
trend is evident in several significant applications: Boeing’s FESS is mainly built around
the HTS-magnetic bearing paradigm [24]. Many companies, such as Active Power in
the United States, Urenco in Europe, and Piller in Germany have adopted a blend of
electromagnetic suspension bearings in conjunction with mechanical bearings for their
FESS designs. ATZ, based in Germany, has chosen a hybrid support methodology that
integrates high-temperature SMBs with PMBs. The ISTEC in Japan has pioneered a hybrid
support system that combines the strengths of both HTS and AMB [72,73]. The Central
Japan Railway Company has made progress with the development of flywheel systems
that boast a capacity of 50 kW. Their design integrates a high-temperature SMB composite
mode in conjunction with AMB support [74]. The Korean electric power company has
unveiled a 35 kwh FESS that uses a combined bearing support structure. This structure
amalgamates a high-temperature SMB, an angular contact ball bearing, and an active
electromagnetic damper. The Korean Institute of Machinery and Materials has introduced
an FESS equipped with two radial AMBs and a thrust magnetic bearing. In particular,
the thrust bearing design is a hybrid of PMB and AMB [75]. These varied applications
underline the industry’s inclination towards integrated bearing solutions, illustrating the
evolution and innovation in FESS technology.

For recent research in the field of magnetic bearings tailored for FESSs, SMBs have
garnered substantial attention for FESS applications. Research areas include the dynamic
performance of SMB levitation within Halbach arrays designed for flywheel design and
regulation. This also includes the exploration of suspending substantial flywheel rotors
using SMBs without any mechanical touch. Furthermore, a study investigated the impact of
magnetic nonlinearities on the pivotal speeds of rotors as they traverse a superconducting
bearing, in addition to the vibration mitigation properties of rotor systems equipped with
electromagnets [76–79]. There is a growing research focus on HTS magnetic bearings. These
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research projects involve improving the efficacy of FESSs within metro rail systems, delving
into the 3D transient modeling of bulk HTS components for PMB deployments, and empirical
evaluations of HTS magnets in the context of solar power generation systems [80–82]. Many
studies have thoroughly examined the integration of AMB with FESSs from a design point
of view. Studies have investigated a unified 5-DOF AMB for a shaftless, hub-less, high-
strength steel FESS. They have also explored control techniques for flywheel systems utilizing
AMB with various combinations of variable weighting as well as three-dimensional dynamic
electromagnetic dynamics using the h-method [83,84].

In addition, many studies have been conducted on bearing control. The stability of
SMB and AMB suspension bearings has been examined using a rotor dynamic model and
a decoupling algorithm. A study is being conducted to develop an adaptive resonance
controller and a nonlinear compensation method to improve the operational performance
of a flywheel with a PM bias magnetic bearing. A first-principle state-space model was
derived for the MPC of suspended-AMB FESSs [85–87].

2.6. Power Electronic Converter

The bidirectional converter is a pivotal component within FESSs. A schematic represen-
tation of a bidirectional converter tailored for FESSs can be found in Figure 11. The role of
this apparatus is to proficiently drive the electric motor/generator, facilitating the conversion
of electrical energy into its mechanical counterpart and marking the charging mode of the
FESS. Within this process, the alternating current (AC) undergoes rectification to produce
direct current (DC), which subsequently gets transformed back into AC via the inverter,
thereby augmenting the flywheel’s rotational speed. Furthermore, for effective operation, the
FESS must modulate both the voltage and frequency of its electric energy output, ensuring
alignment with user requirements. As the FESS releases energy externally, a deceleration in
the flywheel’s speed is observed. Consequently, the generator’s output voltage and frequency
experience continuous variations in sync with the fluctuating speed of the FESS. To cater to the
requirements of the power grid or other relevant users, the bidirectional converter ingeniously
transforms the generator’s variable-frequency and variable-voltage AC into a steady-voltage
and consistent-frequency AC or a fixed-voltage DC.
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Typically, a bidirectional converter comprises a rectifier, an inverter, a frequency modu-
lator, and a voltage regulator. Diverse topologies related to the energy converters for FESSs
are shown in Figure 12. These include the Back-to-Back (BTB) topology, configurations
that integrate a boost converter with the DC link, multilevel converters manifesting as
the neutral point clamped (NPC) topology, the fusion of DC-DC with NPC, and the BTB
topology coupled with NPC within the FESS paradigm [89–93]. A high-speed FESS has
several requirements for its bidirectional converter, including:

• To have a fast response speed and energy storage speed, it is necessary to control the
speed of the integrated electric motor/generator within a wide speed range;

• When stored energy is released, it works in coordination with the integrated electric
motor/generator to make the output frequency and voltage meet the load requirements;
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• To improve the energy storage efficiency of the FESS, the bidirectional converter must
have high efficiency over a wide speed range when charging and discharging;

• Furthermore, the output harmonic of the bidirectional converter should be small to
reduce harmonic interference with the power grid and to the reduce harmonic loss of
the motor or generator.
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An IGBT or MOSFET is the fundamental component of a bidirectional converter.
To control the on–off settings of power switching devices for motor drive and output
power control, pulse width modulation (PWM) or pulse amplitude modulation (PAM) is
used. A bidirectional converter adopts either a DC-AC or a DC-DC-AC structure if the
input/output of the FESS is a DC bus. In the case of AC input/output, a bidirectional
converter is similar to a four-quadrant frequency converter and adopts an AC-DC-AC
or AC-AC configuration. In power electronic converter topology studies, the three-level
converter and the multilevel boost modular cascade converter were studied for FESSs, and
can provide higher efficiency, lower du/dt values, lower total harmonic distortion (THD),
and greater voltage stability [95,96]. Other related studies have been designed from the
perspective of control strategies and power electronic converters. The FESS multipulse
high-magnetic-field system was combined with a genetic algorithm (GA) to develop a new
phase-locked-loop (PLL) structure [97].

To improve the efficiency of an FESS, a new two-winding BLDC generator was combined
with a buck converter, which can effectively maintain the DC bus voltage and solve the
limitations of the boost converter [98]. For high-efficiency bidirectional converters for FESS
applications, a new bidirectional converter topology was proposed, which was coupled with
fast-shutdown SCRs, IGBTs, and novel control logic to realize zero switching loss through zero
voltage conversion (ZVT) and zero current conversion (ZCT) [99]. A control strategy for a
DC-DC Z-source converter was examined, and the results indicate that the Z-source converter
is an effective alternative to the buck converter to solve this problem [100]. A proposal for
an improved C-dump converter for the BLDC machine for FESSs was discussed, and the
converter can achieve a bidirectional energy flow and recover the energy extracted from the
shutdown stage of the machine [101].

3. Flywheel Energy Storage System Applications

An FESS is suitable for various applications ranging from large-scale power grids to
small-scale households. Rather than large-scale manufacturing equipment, FESS arrays are
generally used to achieve high-power and high-capacity storage, allowing a more flexible
power configuration. The typical applications of FESSs include improving power quality,
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such as grid frequency regulation and wind power smoothing, pulse power applications,
high-quality uninterruptible power supply (UPS) applications, locomotive energy recycling,
and attitude control in the aerospace industry. Several main application scenarios for FESSs
are described below.

3.1. Power Quality

Compared with many other ESSs, FESS technology offers economic advantages in
power quality and frequency regulation. A total of two 20 MW/5 MWh FESS commercial
demonstration power stations have been established in the United States. In response
to the integration of more fluctuating new energy into the grid, an optimal FESS control
strategy was studied to meet the requirements of long-term frequency regulation and real-
time frequency regulation [102,103]. To improve the quality of the power grid, a method
of frequency-raising control of the microgrid with an FESS was proposed. Considering
the coupling of voltage and frequency caused by the resistance characteristics of the
impedance of the grid, a voltage-coordinated control strategy was studied. Adjustment
of flywheel-driven microgrids with fuzzy control has been studied to improve frequency
control [104]. To solve the problems of prediction error and inaccurate modeling, an FESS
system control for the transformer was implemented based on a two-level hierarchical
control framework [105]. Using a low-speed FESS, wind farms based on voltage-source-
converter (VSC) high-voltage DC (HVDC) can enhance their ride-through capabilities.
Energy-fed voltage source converters based on FESSs have been proposed to balance the
standby power of HVDC systems in the event of faults on different AC sides [106,107].

In recent years, wind and solar power have developed rapidly, resulting in clean
and low-carbon energy. As a result of natural conditions, wind power generation fluctu-
ates frequently. With the introduction of energy storage technology, wind power can be
smoothly controlled, its voltage and frequency characteristics can be improved, and better
renewable energy applications can be realized. A doubly fed induction motor wind power
system uses a squirrel cage induction motor FESS for connection to the three-phase AC
grid, and analysis shows that, when overclocked, the FESS absorbs and stores 30% of the
wind power generated [108]. The FESS can effectively compensate for wind fluctuations
and improve the quality of the power grid. When an FESS is regulated by an optimization
algorithm for energy management, the component of high-frequency disturbance from
wind power is reduced by 92% [109]. Using modern control algorithms, 50 sets of 50 kW
FESSs were configured in a 9 MW wind farm to achieve smooth control of wind power [110].
An integrated power grid model was presented to optimize the power of the flywheel and
the energy rating as well as to connect to the FESS [111–113]. In the application of FESSs
at the home scale, peak shaving, valley filling, and standby power supply functions are
performed [114]. To achieve a unity power factor, an FESS system was designed based on
the induction motors of the squirrel cage and uses the control to decouple the active and
reactive power control [115,116].

There is an investigation of the energy management of FESSs in wind farms based on
predictions [117]. The appropriate risk assessment method was investigated for integrated
wind power systems, which can provide a quantitative analysis of the reliability of FESSs in
the operation of the power system [118]. To achieve coordinated wind farm control based on
an FESS matrix, a hierarchical control strategy was developed based on Lyapunov stability
theory and the adaptive control strategy of neural networks [119]. A simple distribution-
ratio-sensitive algorithm was used to realize the FESS scheduling control strategy, and
the algorithm combines the characteristics of a directed graph and an undirected graph
to achieve the consensus evaluation control strategy [120]. For automatic adjustment to
minimize flywheel power loss and robust management of the ESS, an adaptive real-time
control strategy was adopted to compensate for the prediction error of wind energy [121].
The DC link voltage oscillation can be effectively suppressed using the FESS unit control
function during an unbalanced power grid fault [122]. A dynamic model of an FESS was
presented using flywheel technology to improve the storage capacity of the active power
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distribution system [123]. To effectively manage the energy stored in a small-capacity FESS,
a monitoring unit and short-term advanced wind speed prediction were used [124].

3.2. High-Quality Uninterruptible Power Supply

Approximately 97% of the flickering of the AC voltage occurs within 3 s, the start-up
time for the standby generator set is less than 10 s, and the working time of the transition
power supply is adequate. In this regard, a high-power FESS with a short operation time can
completely replace a traditional battery energy storage system. To guarantee 5 s of power
switching without power failure, the German company Piller installed a 7 kWh/5 MW
FESS at the Dresden semiconductor factory [19]. The UPS system developed with this
FESS is one of the most mature products in the world. Active Power, Piller, VYCON, and
Powerthru are some suppliers. The flywheel of the Active Power motor is a reluctant motor
with a rotation speed of 7700 revolutions per minute. The VYCON product operates at
a speed of 36,000 revolutions per minute and the suspension system is electromagnetic. The
FESS of the Powerthru is capable of 53,000 revolutions per minute and uses synchronous
reluctance motors and molecular pumps [125–127].

3.3. Pulse Power Supply

Nuclear energy is expected to be the main energy source after oil, coal, and natural
gas. If the deuterium in seawater is converted into energy through nuclear fusion, it would
be sufficient to meet human energy needs for the next few billion years. Nuclear fusion can
be controlled in two ways: magnetic confinement and inertial confinement. To generate
and maintain the magnetic field, the power supply to the field coil is the most important
and critical system outside the main device. The power supply system is estimated to have
an average power capacity of hundreds of megawatts [125]. To reduce the impact on the
public power grid, large FESS generator sets are generally used to produce power because
of their large capacity and short working time. The FESS and generation system applied to
the Tokamak power supply is a typical high-power pulse power supply, distinguished by
the independent settings of the motor and generator [126].

3.4. Energy Recovery, Storage, and Utilization

In the 1970s, FESSs spearheaded a research surge in the United States in anticipation of the
oil crisis, and the super-vehicle flywheel battery plan was introduced. For accelerating vehicles,
the FESS has a capacity of 500 Wh, and the flywheel speed is generally between 20,000 and
40,000 revolutions per minute [127]. A hybrid-drive DC motor power structure with an FESS
and a battery was proposed by Whitelaw as early as 1972. The University of Sussex studied
the problem of powering flywheel-assisted electric vehicles in the 1980s [128,129]. To optimize
the distribution of braking torque to electric torque in the system, a GA-based control strategy
is used to realize the current distribution between the battery and the flywheel [130]. FESSs
have been used to extend the battery life of electric vehicles, and the control effects of FESSs
have been compared with different configurations and different control strategies [131]. A rail
transit vehicle has a large mass and a great deal of braking kinetic energy. By introducing
braking recovery and energy storage systems, energy conservation and emission reduction
goals can be achieved [132]. According to Radcliff, the investment payback period for a 1 MW
FESS applied to the London Underground is five years. Using a 2.9 kWh/725 kW FESS, light
rail vehicles can save up to 31% of their energy [133]. By connecting the FESS to the DC power
grid, it is possible to save 21.6% of the energy, reduce the voltage drop of a substation by
29.8%, and reduce capacity by 30.1% [134].

As the multi-electric locomotive system accelerates and decelerates, there is no need to
exchange energy between the battery and the power system [135]. A study was conducted
on the application of FESSs to heavy-haul locomotives. As a result of the distributed
control unit, it is possible to realize an efficient power redistribution strategy in the train
traction system to achieve intelligent management of the energy control system [136]. Using
an FESS, a DC bus control strategy was developed for the electrified railway traction system.
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By implementing energy storage technology, DC-powered trains can increase their energy
utilization rate, thus improving their efficiency [137].

3.5. Commercial FESS Systems and Advantages of Using FESSs

Table 5 summarizes key attributes of various commercial FESS systems, including rotor
materials, energy and power density, energy storage duration, and specific applications
where these systems are deployed. Table 6 outlines specific scenarios where FESS systems
demonstrate advantages. For example, the table may include instances where FESSs are
favorable due to their rapid charge/discharge capabilities, long operational lifetimes, or
other unique attributes that make them well-suited for certain applications.

Table 5. A summary of commercial FESS systems.

Manufacturer Rotor Material Energy Power Duration Application

Hitachi ABB [138] - - 2 MW - Wind

Active Power [139] Steel 2.83 kW 675 kW 15 s Various

Amber Kinetics [140] Steel 32 kW 8 kW 4 h Various

Bacon Power [141] Composite 25 kWh 100 kW 15 min Grid

Caterpillar [142] - 5 kWh 675 kW 15 s UPS

Vycon [143] Steel 0.52 kWh 125 kW 15 s UPS

Piller Group [144] Steel 2.9 kWh 625 kW 15 s Various

Powerthru [145] Composite 0.53 kWh 101 kW 10–25 s Defense

Rotonix [146] Composite 12 kWh 1.1 MW - Various

Stornetic [147] Composite 3.6 kWh 80 kW 260 s Grid
s—seconds, min—minute, h—hours.

Table 6. Applications and the advantages of using FESSs.

Applications Advantages of Using FESSs

UPS
FESSs can quickly supply stored energy to fill short-term gaps when the main
power source fails, making them ideal for critical systems like hospitals, data

centers, and industrial processes.

Frequency Regulation FESSs can quickly absorb or discharge energy to help maintain a stable frequency,
thus aiding in grid stability.

Renewable Energy Integration
FESSs can store excess energy generated by renewable sources. Their ability to

charge and discharge quickly makes them well-suited for dealing with the
intermittent nature of these energy sources.

Public Transportation Systems
In electric trains or trams, FESSs can capture the energy generated during braking
and then reuse it for acceleration or other energy needs, thus improving the overall

efficiency of the system.

Peak Shaving
FESSs can store energy during periods of low demand and release it during peak

hours. This can be particularly beneficial for industries with fluctuating power
requirements, reducing their peak demand charges.

Load Leveling in Microgrids
For small-scale localized grids, FESSs can serve to balance loads and supply,

particularly when these microgrids are powered by renewable energy sources with
fluctuating outputs.

High-Cycling
Operations

FESSs are less susceptible to wear and tear from frequent cycling (charging and
discharging) compared with other forms of energy storage like batteries, making
them suitable for applications requiring frequent energy charge/discharge cycles.

High-Power, Short-Duration Applications
In industrial processes that require a high amount of power in a short period, like

laser cutting or electric arc furnaces, FESSs can efficiently deliver the required
energy burst.



Energies 2023, 16, 6462 17 of 32

4. Achievements, Challenges, Future Trends, and Case Study
4.1. Achievements and Challenges

Modern FESS technology has evolved over the years, yet there remains potential for
further advancements. Driven by fluctuating fossil fuel prices and the renewable energy
generation market, FESSs have seen small-scale application in areas such as hybrid auto-
motive power, wind energy production, and grid frequency modulation. However, further
knowledge accumulation is necessary, particularly concerning large-capacity flywheels and
low-loss bearings suited for grid-scale energy adjustments.

Due to the properties of the materials and advances in their processing techniques,
carbon-fiber composites exhibit impressive attributes. However, their elevated costs impede
large-scale applications. In addition, current flywheels present significant mechanical,
electrical, and power-converter-associated losses. Consequently, using existing technologies
to reduce system losses remains a persistent challenge that requires ongoing research and
enhancement in FESSs. Table 7 summarizes the key achievements of and challenges for
FESSs based on the latest research.

Table 7. A summary of achievements of and challenges FESSs.

Achievements Challenges

Features Details Features Details

High Energy Density

Modern FESS units can store
a considerable amount of energy,
comparable to chemical batteries,
making them suitable for various

applications ranging from grid
support to transportation.

High Initial
Costs

The upfront costs, particularly for
advanced systems with magnetic
bearings and vacuum enclosures,

can be a deterrent to
widespread adoption.

Fast Charge/Discharge Rates

Their rapid charge and discharge
capabilities make FESSs ideal for

applications requiring instant
high power, like UPS systems and

frequency regulation.

Complex Engineering

Maintaining a rotating mass at
very high speeds requires
precision engineering and

advanced materials, adding to the
complexity and cost.

Long Lifespan

Flywheels can endure a large
number of cycles without

significant wear, extending their
operational life and reducing

long-term costs.

Safety Concerns

Flywheels storing a large amount
of energy can be potentially
hazardous in case of failure,

leading to strict safety
requirements for their installation

and operation.

Environmental Friendliness

Flywheels do not contain harmful
chemicals and are generally easier

to recycle, making them an
environmentally responsible

choice for energy storage.

Size and Weight

The energy-to-weight ratio for
FESSs is still generally less

favorable than for some other
storage options, making them less
practical for mobile applications.

Efficiency

Advances in materials science for
the flywheels have led to higher

rotational speeds and thus
increased efficiency in energy

storage and retrieval.

Limited Energy Storage Time

Flywheels are not ideal for
long-term energy storage, limiting

their application in scenarios
requiring extended periods

of storage.

Operational Reliability

The mechanical nature of FESSs,
as opposed to the chemical

processes in batteries, leads to
fewer failure modes, contributing

to operational reliability.

Regulatory
Hurdles

As a relatively new technology in
the public sphere, there may be

regulatory challenges that need to
be addressed, including standards
for safety, integration into existing

grids, and
environmental assessments.

4.2. Future Trends

FESSs are gaining renewed attention as potential alternative solutions across various
domains. FESSs are not currently a widely accepted energy storage method, and their higher
capital costs compared with those of electrochemical cells are a significant factor [148,149].
However, as associated technologies mature, the cost of FESSs is predicted to decrease.
Advanced FESS exploration is a vibrant and ongoing area of research, with expectations
of continuous advancements in FESS performance. Regarding the flywheel itself, primary
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research objectives include enhancing energy density and specific power, cutting down
initial costs, and minimizing self-discharge losses. Here are some research directions in
this field.

4.2.1. FESS Material and Component Optimizations

• Advanced Flywheel Material Technologies

Compared with technologies such as batteries and supercapacitors, FESSs contain
moving parts, introducing a greater degree of uncertainty regarding failure modes. Specifi-
cally, composite flywheels exhibit this vulnerability due to their elevated operational speeds
and inconsistent mechanical characteristics. The rotor’s tensile strength determines the
wheel’s maximum speed. As a result, extensive research has been conducted on materi-
als with higher tensile strengths to enhance their energy storage capacity. However, the
challenge with lightweight materials, especially emerging carbon-fiber composites, lies
in their cost, which impedes the progression and adoption of flywheel technology [150].
New, innovative, steel-based designs address the safety concerns associated with highly
stressed rotors and can be equated with monolithic steel rotors [151]. Steel flywheels, due
to their high mass density, not only possess an elevated energy density but also outperform
composite materials in thermal conductivity and the availability of design data. As a result,
high-strength steel flywheels are ideal for large-scale stationary ground-level applications.

• Superconducting Magnetic Bearing Technologies

Conventional bearings often cause energy losses due to friction. In contrast, SMBs address
this issue by allowing the bearing to levitate, significantly reducing mechanical losses. Future
research needs include improving the levitation stability of SMBs, reducing the cryogenic
needs of SMBs, which currently entail substantial costs, and incorporating advanced cooling
strategies to ensure that superconductors remain below their critical temperatures.

• Advanced High-Power-Density Motor Design Technologies

As the focus shifts towards miniaturization and efficiency, motors boasting higher
power densities could pave the way for compact FESS designs without sacrificing energy
storage capabilities. Research could explore novel materials that enhance heat dissipation,
enabling these motors to maintain peak efficiencies over extended periods.

• High-Power-Density Drive Technology

Silicon carbide (SiC) power electronics are pivotal for energy systems that prioritize
efficiency, compactness, and dependability. SiC devices outperform traditional silicon due
to their wider band gap, enabling higher voltages, frequencies, and temperatures, faster
switching, and reduced resistance. This results in enhanced efficiency, which is crucial for
FESSs to optimize energy storage and release. Additionally, SiC’s superior thermal efficiency
reduces the cooling needs of FESSs, leading to a streamlined and economical design.

Their ability to operate at higher frequencies allows for downsized components in the
electronic system. In addition, their resilience to tough conditions and extreme stresses
makes them ideal for various FESS applications, from grids to aerospace. As FESSs evolve,
the integration of SiC could be the key to refining its efficiency, compactness, and overall
performance, promoting its broad adoption in contemporary energy storage scenarios.

4.2.2. FESS Control Systems

• Multi-level and Wide-range Control Schemes for FESSs

The multilevel control strategy for flywheel energy storage systems (FESSs) encom-
passes several phases, such as the start-up, charging, energy release, deceleration, and
fault detection phases. This comprehensive approach guarantees the safety, efficiency, and
effectiveness of the system during operation. With technological progress, we anticipate
the integration of further optimization and automation into FESS control schemes [152].
For optimal management of wide-range speed changes in FESSs, several control strategies
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are imperative: initiating the flywheel smoothly from rest to prevent wear; maintaining
a consistent speed regardless of external load; adjusting speeds safely and efficiently during
energy cycles; and rapidly responding to immediate grid demands. Synchronizing these
strategies ensures consistently high FESS performance across diverse conditions.

• FESS Arrays for Large Power Applications

A standalone FESS often fails to meet energy storage or release demands because of
its limited capacity. To address this, multiple FESS units can be combined to create an FESS
array, necessitating efficient parallel flywheel array control and energy management. Addi-
tionally, the use of multiphase machines coupled with multilevel power electronic inverters
offers a promising solution. In particular, the active NPC type of multilevel inverter has
emerged as an optimal choice [153].

4.2.3. FESS Loss, Failure Modes, and Containment

Current flywheels experience significant losses, including mechanical losses such as
from resistance, bearings, and friction, as well as electrical losses such as hysteresis, eddy
current, and copper losses, not to mention those associated with power converters [154].
However, by optimizing the design of the system, these mechanical and electromagnetic
losses can be contained within an acceptable range. Specific strategies include refining
the design of the vacuum chamber, enhancing the synergy between magnetic levitation
bearings and mechanical ball bearings, and analyzing and improving the motor inverter
system’s efficiency. A system model grounded on the multiphysics coupling effect must
be crafted to analyze the coupled challenges posed by electromagnetic thermomechanical
multiphysics fields within FESSs.

4.2.4. FESS Safety and Longevity

Safety is a top priority for systems that operate at high velocities and store substan-
tial energy. It is crucial to invest in research focused on fail-safes, surveillance systems,
and materials resilient to the strains of rapid rotation. Additionally, cost-effective pro-
duction of flywheels, particularly those equipped with SMBs and high-power motors,
will be a significant area of exploration to make the technology more widely available
and affordable.

4.2.5. FESS Hybrid Systems

FESSs have limited storage capacity, making them primarily suitable for lower-range
grids. Therefore, further research is crucial to integrate FESSs with other systems. A promising
approach is to merge FESSs with alternative storage mechanisms, such as batteries, to develop
hybrid ESSs that leverage the advantages of each technology.

4.2.6. FESSs based on Artificial Intelligence

Artificial intelligence (AI) techniques are pivotal in developing predictive simulations
that allow precise projections of an FESS’s behavior in diverse scenarios. Recent studies in
this domain have delved into its various aspects, such as the use of reinforcement learning
for power system generation control with FESS, the introduction of innovative machine
learning (ML) models for safety assessments in FESS, the use of deep learning to diagnose
flywheel bearing problems using the optimized variational mode decomposition energy
entropy, and the use of deep reinforcement learning for hierarchical energy optimization in
FESS arrays on wind farms [155–159]. ML methodologies offer a multifaceted approach to
optimizing and understanding the complexities of FESSs, with ongoing research presenting
promising advancements in the field.

• Applications of AI in FESSs

AI algorithms can predict when the flywheel and other components are likely to fail
based on a host of factors, such as temperature, speed, and operational hours. This allows for
maintenance to be carried out on time, avoiding unscheduled downtime. Figure 13 shows
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a novel ML model for safety risk analysis in a flywheel–battery hybrid ESS. This research
introduced an innovative ML methodology specifically designed to enhance the reliability and
longevity of the rolling bearing, a key mechanical component in FESSs. The proposed method
employed a robust combination of initial feature selection, principal component analysis
(PCA), and empirical mode decomposition (EMD) to create a precise health indicator for the
bearing. This research was supplemented by a Kriging-model-based prediction to estimate
the remaining useful life (RUL) of the bearing [156].
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To address the complex challenges of diagnosing bearing faults in FESSs, the research
method of integrated parameter-optimized variational mode decomposition (VMD) with
energy entropy and deep learning, notably, the inverted residual convolutional neural
network (IRCNN) model, offers a comprehensive solution for fault detection. Figure 14
shows a fault-diagnosis process for flywheel bearings based on WMD energy entropy
and deep learning. The approach also has broader applications, providing diagnostic
insights for train traction motor bearings and thereby contributing to more efficient use
of regenerative braking energy, which has implications for both energy conservation and
emissions reduction. The efficacies of the proposed chaotic-sparrow-search-algorithm VMD
method, energy entropy feature extraction, and the IRCNN model have been empirically
verified, achieving an impressive diagnostic rate [157].
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AI-based controllers can manage the charging and discharging cycles of FESSs more
efficiently than traditional controllers. They can adapt to variable inputs from renewable
energy sources and provide a stable output. A reinforcement-learning method for power
system generation control with an FESS is shown in Figure 15. The research presented
a fuzzy-vector reinforcement-learning (FVRL) method to mitigate the challenges of fre-
quency deviations in power systems, a concern exacerbated by the increasing share of
volatile and uncertain renewable energy sources. Integrated with an FESS, the FVRL al-
gorithm combines dual fuzzy controls, dual Q-learnings (QLs), and vector operations to
optimize automatic generation control commands. The proposed FVRL algorithm sig-
nificantly outperforms existing control methods, including the proportional-integral (PI)
method, five different reinforcement-learning (RL) methods, and the deep Q-network
(DQN) method across multiple case studies and performance metrics. Specifically, FVRL
excels in terms of frequency regulation, reducing both area control error and frequency de-
viation, thereby enhancing systemic reliability and stability [155]. Figure 16 shows a PMSM
control schematic of a battery–flywheel compound ESS. A novel control strategy integrating
PI vector control with BP and RBF neural networks was proposed for flywheel motor speed
regulation. The BP neural network, characterized by its superior self-learning and fault
tolerance capabilities, was employed to determine the reference current due to its proven
high approximation accuracy. On the other hand, the RBF neural network, recognized
for its rapid convergence and pronounced anti-noise capabilities, was chosen to derive
the control voltage, further ensuring that the local optimization issues were effectively
circumvented. The combination of these neural network techniques with PI vector control
offers a promising approach for achieving precise and reliable flywheel charging [130].
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• Effects of AI on FESSs

The integration of AI into FESSs promises transformative benefits, significantly boost-
ing efficiency, reducing operational costs, and enhancing system reliability. Advanced
algorithms can fine-tune energy conversion processes and perform predictive maintenance,
leading to sustainability and long-term cost savings. AI’s capacity to adapt rapidly to
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variable energy inputs, particularly from renewable sources, also makes it a linchpin for
ensuring grid stability. However, this revolutionary approach is not without its challenges.
The ethical and security considerations associated with increased automation and data
collection cannot be ignored. Risks related to data privacy and potential system vulnera-
bilities require rigorous attention to prevent cyber-attacks that could compromise broader
electrical grids. Additionally, the incorporation of AI in FESSs necessitates a reassessment
of existing regulatory frameworks to ensure that these technologically advanced systems
meet evolving safety and reliability standards. In summary, while AI offers compelling
advantages for the future of FESSs, these benefits come with the imperative to address new
ethical, security, and regulatory challenges. Careful planning and oversight are crucial for
harnessing the full potential of AI in ESSs.
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• Digital Twin Modeling of FESSs based on Data-driven Methods

A digital twin is a digital model of objects from existing or future physical entities.
It can perceive, diagnose, and predict the states of physical objects in real time through
measurement, simulation, and data analysis; regulate the behavior of physical objects
through optimization and instructions; evolve itself through mutual learning between
relevant digital models; and improve the decision-making of stakeholders in the life cycles
of physical objects. Figure 17 shows a digital twin modeling scheme for an FESS.
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For this FESS, it has a real-time virtual model that mimics the physical system’s
behavior. Using digital twins, researchers can monitor the real-time performance of an FESS,
make predictions about its future behavior, and apply corrective actions proactively. In
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terms of data-driven modeling of an FESS, machine learning and neural network algorithms
can be used to solve the problem caused by the interaction of multiphysics coupling and
the fundamental harmonic electromagnetic field. Instead of relying solely on theoretical
models, data-driven approaches utilize large amounts of data to predict faults. They
can analyze historical data to predict a component’s failure or the system’s performance
degrading. Figure 18 shows a data-driven FESS health management scheme.
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In the data preparation process, through finite element analysis and experimental
data analysis of the the PM motor, the identification of parameters and sensitivity analysis
are carried out to obtain the sensitivities of the perceptible quantities (including voltage,
current, electrical frequency, speed, and temperature array) and identified parameters
and conduct data standardization. Data acquisition sets up a test platform, plans the
motor temperature measurement array, obtains controllable temperature array information
through the controllable temperature cooling system, obtains controllable bus voltage
information from the controller connected to the power cabinet, and obtains mechanical
torque information from the coupling torque measuring instrument. Based on the results,
a reduced-order model of the FESS can be constructed to achieve a fast response and
feedback on the state of the system.

4.3. Case Study

In this case study, a grid-connected electric vehicle (EV) charging station equipped
with photovoltaic (PV) generators and an FESS was proposed, as shown in Figure 19 [160].
The main goal of the PV system and the flywheel sizing is to meet EV charging and office
building loads while maximizing benefits over the system’s lifetime.
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Figure 19. Schematic of a PV/flywheel-based EV charging system [160].

This study presented a model to optimize the design of a workplace EV charging
station using a novel hybrid system of FESSs and PV panels. The model assesses the
viability of using this hybrid system in EV charging stations, compared with more tradi-
tional systems like lithium-ion and PV hybrid systems and grid-only power sources. The
comparison was conducted in three climatically diverse locations: Rabat and Benguerir in
Morocco and Brest in France. The analysis considered multiple factors, including financial
metrics, investment costs, and technical parameters over a 20-year operational lifetime.
Figure 20 compares the total investment costs of two systems, Bat-PVHS (Battery and
Photovoltaic Hybrid System) and FL-PVHS (Flywheel and Photovoltaic Hybrid System),
across the three different climate regions. Due to the longer lifespan of the flywheel system,
which is twice as long as for the battery, the total lifetime investment for the FL-PVHS is
slightly favorable compared with the Bat-PVHS. Figure 21 contrasts the lifetime operation
costs of the Bat-PVHS, FL-PVHS, and standard grid-only (GO) system. The data show that
both hybrid systems have lower lifetime operation costs compared with the GO system.
Additionally, the flywheel system’s lifetime costs are nearly on par with those of the battery
system, suggesting similar profitability for both.
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Figure 21. Comparison of lifetime operation costs.

Figure 22 compares the cumulative cash flows of the two hybrid systems: Bat-PVHS
and FL-PVHS. Initially, the Bat-PVHS had higher investment costs, but the FL-PVHS caught
up over time due to its slower degradation and lower associated losses. Once the battery in
the Bat-PVHS had to be replaced, the flywheel system became more cost effective, reaching
a return on investment more quickly than the battery system.
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In conclusion, this case study presented an optimization model aimed at reducing
operational costs for a workplace EV charging station equipped with FESS and PV energy
sources. The model includes practical cost elements such as deterioration due to aging,
temperature variations, and other operation-specific losses. It also provides a thorough
economic analysis, covering initial investment costs and annual costs influenced by inflation.
This study compared the lifetime costs of two systems—FL-PVHS and Bat-PVHS—across
three climate zones. The results confirm that the flywheel hybrid system is nearly as
cost-effective as the battery hybrid system in various climates. Both of these are more
profitable than a standard GO system, especially in terms of the levelized cost of electricity.
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Given the current rise in global energy prices and consumer inflation, this study concludes
that investment in renewable energy sources like PVs and ESSs is increasingly becoming
financially beneficial. This is particularly relevant as the technology for the proposed ESS is
mature and not constrained by raw material availability.

5. Conclusions

This paper analyzed the importance of energy storage systems for the current problems
faced by renewable energy sources, represented by wind and solar energy. The advantages
of FESSs were demonstrated by comparing flywheel energy storage systems with other
different energy storage methods. This article has offered a holistic overview of FESS’s
crucial components and their varied applications. Furthermore, the paper has emphasized
advances in research, particularly the integration of artificial intelligence tools into system
simulations and fault prognostics. Although current challenges in FESS research and
application are acknowledged, this article foresees evolving trends and potential paths that
can guide the future trajectory of FESS innovations. This insight will prove instrumental for
steering further progress in the realm of energy storage systems. Finally, current problems
and future developmental trends in FESSs were summarized and discussed.
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