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Abstract
Additive Manufacturing (AM) is modernizing the manufacturing industry by enabling the layer-by-layer deposition process to
manufacture objects in nearly any form with minimum material waste. However, components developed utilizing the AM
process have dimensional constraints. To address this issue, AM-produced metal materials can be coupled with various welding
processes. This article focuses on the foundations, highlighting the distinguishing features, capabilities, and challenges of welding-
based AM processes by categorizing them into two major groups; arc welding-based AM like Cold Metal Transfer (CMT), Gas
Metal Arc Welding (GMAW), Gas Tungsten Arc Welding (GTAW), Plasma Arc Welding (PAW), and high-energy density
welding based AM like Laser Beam Welding (LBW) and Electron Beam Welding (EBW). The prior study findings of welding-
based AM metal components on mechanical characteristics and microstructural characterization have been addressed. This
work will aid researchers, academicians, and professional welders since it gathers vital information on welding-based AM
processes. Furthermore, current research in the arena of welding-based AM and its future opportunities has been discussed.
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Introduction

Additive Manufacturing (AM) is a revolutionary
manufacturing method that emerged in the 1980s1 AM is
the manufacturing process that can be recognized as a 3D
printer or rapid prototyping, where the components are
developed layer-by-layer and digitally controlled.2–4 AM
is a near-net-shape fabrication technology that can sig-
nificantly increase design freedom and shorten the lead
time of production, completely different from traditional
fabrication techniques like casting, forging, and ma-
chining. As a result, AM offers excellent prospects for
intelligent production in the forthcoming Industry
4.0 era.5,6 In general, the process variables and alloy
compositions are two key components for influencing the
microstructures of metals produced through AM.7

Figure 1 depicts the four phases of “plan,” “do,”
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“check,” and “act” in the framework of AM to continue
producing quality and customer satisfaction.

All AM procedures depend deeply on materials because
of their inherent ability to influence performance and shape.
Metal, polymer, ceramic, and natural materials have all been
used in various AM methods, as indicated in Figure 2.
Based on these homogeneous material systems, AM
methods with heterogeneous materials, such as all varieties
of composites, and multiple materials, have been built
successfully to get better qualities.

With its characteristics, this technique has achieved
significant development for metal materials as well as
polymer materials. It is capable of processing an extensive
range of metals, alloys, and ceramics.8–10 It is divided into
seven classes based on the stacking mechanism: material
extrusion, powder bed fusion (PBF), material jetting, vat
photopolymerization, sheet lamination, binder jetting, and
direct energy deposition.11,12

AM is a valuable method for creating scaffolds that are
essential in bone tissue creation.13,14 It is quickly be-
coming an extensively acknowledged approach in med-
icine because it provides high complexity, patient-
specific design, on-demand and cost-effective manufac-
ture, and high productivity.15 Arora et al.16 have dis-
cussed that AM has contributed to the fight against
COVID-19 by manufacturing face shields, ventilators for
testing, 3-D bio-printing, antimicrobial polymers, face
masks, oxygen valves, lung prototypes, and so on. The
application of AM in construction has recently received a
lot of interest. The big robotic arm and scaffold systems
have been developed to print construction parts from
comprehensive materials, metals, or polymers.17 Kli-
myuk et al.18 have concluded that the ability to use 3D
printing is an alternate technique for producing punch
components for single-piece and small-batch manufac-
ture. Nadagouda et al.19 have highlighted 3D printing
applications in four environmental fields, including

sustainable engineering, wastewater, air quality, water,
and alternative energy sources. Figure 3 represents the
diverse industrial adoption of AM.

The modern world has seen enormous developments in
AM research, along with applications and other aspects of it.
To fully enable the value of AM, however, some obstacles
must be removed. The main problems are the compatibility
of raw materials, the absence of testing facilities, and the
incidence of numerous flaws in AM-fabricated parts.20 AM
is proficient in creating specialized and high-end products.
Energy usage, production costs, and lead times are all
improved with the use of AM to meet sustainability stan-
dards. Aside from that, AM technologies are seen as being
environmentally sustainable because they result in reduced
material waste, CO2 emissions, and a stronger circular
economy.21 The qualification and certification processes for
AM have been hampered despite the technology’s rapid
growth due to the multiple flaws found in printed parts.
Contrarily, neural networks have drawn a lot of interest as a
deep learning technique over the past 10 years and have
proven to be quite effective when processing image data.22

Since the exceptional post-COVID-19 situation prompted

Figure 1. PDCA cycle combined with AM.110

Figure 2. Material system used in AM processes.111
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international automakers to adopt on-shoring, Sheriff
Muhammad et al.23 have concentrated on AM im-
plementation in the automotive supply chain’s procurement
stage to create auto components. To examine the adoption of
AM in such settings, future research should take into ac-
count the effects of the collaboration amongst AM service
providers in the automotive supply chain. It is difficult to
recreate the space environment using physical variables like
gravity, atmospheric pressure, and temperature in a labo-
ratory setting. Therefore, creating proper AM space tech-
nologies is a huge task for scientists.24 AM methods deal
with complicated problems such as poor surface quality,
flaws, and decreased corrosion resistance. These issues
preclude AM parts from being used in real-time operating
applications. These problems are typically solved using
post-processing techniques such as laser shock peening,
laser polishing, traditional machining techniques, and heat
treatments.25

Welding methods

Welding is an important manufacturing procedure be-
cause it allows for the easy production of complicated
structures. Because it is practically incredible and time-
consuming to create complicated components as separate
parts, the effect of welding technology has expanded
dramatically everywhere in current years.26 It is com-
monly employed in the last stages of casting production
and in the fabrication of connecting components.27 There
are three forms of welding: fusion welding, non-fusion
welding, and resistance welding. Because of its fast
welding speed, continuous lengthy welding, and strong
mechanical qualities of weldments, GMAW is a widely
utilized welding technology with widespread application
in industries.28 TIG, TAGS, or GTAW, also known as
tungsten arc inert gas shielded welding, is a type of arc

welding that uses an inert gas to shield the electrode and a
non-consumable tungsten electrode.29 PAW employs a
sharply restricted arc to create a keyhole inside the molten
pool. As a result, the PAW technique has a substantially
higher process efficiency than the typical TIG welding
process.30 The electric field between the base electrode
and anode accelerates electrons generated by the electron
gun cathode in EBW. These accelerated electrons are
directed to a welding location in the workpiece.31 In
LBM, a unique light composed of photons created either
by gas or solid-state is concentrated on an incredibly tiny
diameter, resulting in a high energy density that is utilized
for welding.32 Friction Stir Welding (FSW) is a powerful
solid-state joining technique. It is deliberated as a green
and environmentally friendly welding process because of
no requirement for filler material or shielding gas. Fur-
thermore, there is no arc flash, fumes, or dispersion in this
welding technique.33,34 It has certain benefits over con-
ventional fusion welding processes. FSW is a novel and
very successful solid-state joining process developed in
1991 by TWI in Cambridge, England, for combining
aluminum alloys.35 Ultrasonic Metal Welding (USMW)
is a solid-state welding technology that produces met-
allurgical bonding between similar or different materials
without melting.36

Welding and AM are both examples of surface growth
difficulties because they both require the deposition of
thermally extended material on the surface of a surface
and result in the buildup of longitudinal residual stress
after the operation.37 The difference between normal
welding and welding-based AM processes was nicely
illustrated in Figure 4. Thermal conductivity occurs in
more dimensions in welding (Figure 4(a)) than in
welding-based AM processes, where heat must be de-
rived in most cases in one direction: to the bottom of the
component (Figure 4(b)).

Figure 3. Industrial adoption of AM.112
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Arc welding-based additive manufacturing

WAAM is incredibly inexpensive since the equipment is
current welding equipment, and the filler metals, which are
comparable to those used in welding, can also be purchased
off the layer.38 Because of the rapid deposition rates and
minimal geometrical constraints, this is particularly ideal for
near-net shape manufacture of large components as well as
incremental manufacturing.39 Figure 5 illustrates how the
alternate layers were deposited in opposing directions to
maintain the geometric tolerance.

Wire Arc Additive Manufacturing (WAAM) is a metal-
part manufacturing technology that uses directed energy
deposition and arc welding. The CNC machine or an in-
dustrial robot guides the welding flame along a deposition
path, allowing 3D forms to be created. The experimental
setup for robot-guided WAAM is shown in Figure 6.

The arc welding-based AM can be classified into
GMAW, GTAW, and PAW-established technologies.
Figure 7 shows the representation of these three heat
sources.

Gas metal arc welding-based additive manufacturing
process

In GMAW-AM, an electric arc is formed between the
consumable electrode and the workpiece, melting the wire
electrode and depositing it above the substrate surface as a
result of the relative motion of the worktable and the
GMAW torch. The feature of metal deposited in GMAW-
AM is mainly indicated by surface form, dimensional
quality, relative density, mechanical characteristics, hard-
ness, and so on.40 Vinoth et al.41 fabricated the stainless
steel plate using robot GMAW with ER 316 L consumable
wires. The WAAM plate is built one layer at a time on that
same plate, as seen in Figure 8.

Reimann et al.42 used the GMAW welding procedure to
create intricate, three-dimensional free-form constructions.

Figure 9 depicts an additively built, topology-optimized
component that has been cleaned but has not yet been taken
from the substrate.

Shengfu et al.43 used YHJ507M wire to create a hollow
pipe with many branches (see Figure 10). When compared
to the qualities of the casting pipe junction, the tensile
strength of the 10-directional pipe joint improved by 12.4%.

Nagamatsu et al.44 have fabricated the hollow turbine
blade using GMAW based AM approach which is presented
in Figure 11.

Le andMai et al.45 constructed the thin-walled models on
SS400 steel plates using an industrial robot GMAW-AM
process. The tensile properties of thin-walled 308 L
stainless steel are shown in Figure 12.

Lee et al.46 explored the impact of heat input, current
ratio, and voltage ratio on bead shape under nine distinct
deposition circumstances. Figure 13 depicts the results of
hardness measurements under various situations. Com-
parisons were made between the maximum and minimum
heat input circumstances as well as the current-to-voltage

Figure 4. Heat transfer (a) welding (b) welding-based AM.113

Figure 5. Graphical illustration of the layer sequence.114
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ratio. It displays a current to voltage ratio of 0.21 for the blue
line and 0.15 for the red line. The two lines are placed at
80 HV, and no discernible difference is seen despite the
different current to voltage ratios. Furthermore, the rate of
heat input makes little influence. The hardness test revealed

that the hardness did not alter as a result of the welding
different heat input and current-to-voltage ratio.

Suarez et al.47 used the GMAW technique to produce
bimetallic walls of mild steel and 316 L stainless steel in
both overlying and stacked solutions. The manufacture of

Figure 6. Experimental setup for robot-guided WAAM.115

Figure 7. Representation of WAAM: (a) MIG, (b) TIG (c) PAW.116
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defect-free bi-metallic walls from various sheets of steel is a
novel procedure that is detailed here for the first time. The
superimposed wall and the intermetallic structure were
shown in Figure 14. They have found the finer bainitic
structure on the SS-ER70 sample.

Colegrove et al.48 used a rolling technique on GMAW-
AM of ER70S-6 steel to minimize residual stress and grain
size. The microstructure of the AM-ed wall is shown in
Figure 15. The rolling technique flattened the columnar
grains generated during deposition by applying compres-
sive force.

Yuan et al.49 invented a multi-directional WAAM
technology for producing complicated metal components
with robotic GMAW. The suggested multidirectional
WAAM technology can greatly reduce production time and
cost when compared to current WAAM approaches. Ac-
cording to Pattanayak and Sahoo,50 high deposition is a
substantial advantage of GMAW-AM, but it is also related
to higher heat input, causing residual strains and distortions.
As a result, intensive testing and process modeling are
required to analyze the thermal characteristics of GMAW-
AM to diminish residual stresses and distortions.

Cold metal transfer (CMT) arc welding-based
additive manufacturing

WAAM is a reasonably simple method for enabling non-
vertical material deposition, as welding apparatus paired
with an industrial robot manipulator established in various
labs and industries. Figures 16(a)–(b) illustrate the dis-
tinction between raising the welding gun’s height incre-
mentally over a few centimeters versus all at once.

Wall constructions were created utilizing CMT arc
welding-based AM utilizing two types of ER2319 welding
wires, one with and one without Cd components. With Cd
elements, the yield strength in the deposition and building
directions is raised by 5.5% and 9.3%, respectively, as
compared to without Cd elements.51 Mohiuddin and Mo-
hideen52 employed robotic CMT technology to additively
build the 1.25Cr 0.5Mo 14 mm wall component. In various
zones and orientations, the microstructure and mechanical

Figure 8. Cross-sectional view of the GMAM Plate.

Figure 9. Additively manufactured component.

Figure 10. Hollow pipe (a) CAD model (b) fabricated part.
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characteristics of fabricated wall sections were investigated.
Plangger et al.53 studied the viability of immediately pro-
ducing a near-net form structural part on a subassembly for
use in crane building without post-machining. The hardness
values vary from 220 Hv to 440 Hv, with a single outlier of
180 Hv for the middle region. Tian et al.54 employed direct
current CMT welding with Ti-6Al-4V and AlSi5 wires for
WAAM. Ti alloy was placed initially, followed by Al alloy
on top of the Ti layer. Figure s17(a)–(d) depict the com-
ponent’s cross-sectional microstructure, which may be
separated into three areas: the Al alloy region (area A), the
interface layer between the Al and Ti alloys (area B), and the
Ti alloy (area C). Figure 17(a) shows the component’s
morphology. Al and Ti alloys contact was clearly visible.
Area A contained the porosity. The round pores had an
average diameter of 70 microns. A lengthy, discontinuous
strip of Ti(Al1-xSix)3 was shown in Figure 17(b). During the
flow process, the strips were struck by the liquid Al alloy,
resulting in the breakage of some strips and the formation of
Ti(Al1-xSix)3 phases with varying lengths. Strip and block-
shaped intermetallic compounds were created in the

interface layer, as seen in Figure 17(c). The basket-wave
structure of the Ti alloy during deposition is depicted in
Figure 17(d).

Ti alloy was placed initially, followed by Al alloy on top
of the Ti layer. Using the CMTwelding machine, Xu et al.55

created the Ti-6Al-4V wall. The columnar grain structure of
the WAAMed Ti-6Al-4V was observed all beside the build
direction (Figure 18). The microstructure inside the grains
was made up of fine laths, and the breadth of the paths was
significantly finer than in the wrought plate sample.

Gas tungsten arc welding based additive
manufacturing process

An arc forms between a non-consumable tungsten
electrode connected to the negative and the substrate
connected to the positive terminal in GTAW-AM, re-
sulting in a molten pool on the substrate surface. The filler
wire is inserted via its leading edge into the molten pool,
where it melts and is deposited on the substrate surface.56

Gokhole et al.57 investigated the use of a GTAW-based
AM technique to create thin-walled metallic construc-
tions. They investigated the impact of control factors on
output metrics including deposition height and breadth.
According to their findings, 80⸰ is the better decision, and
as the tilt angle increases, the deposition width and height
decrease. Rodriguez et al.58 have performed GTAW-
based AM for fabricating the stainless steel parts.
Table 1 includes the average mechanical properties de-
termined in those samples.

Veeman et al.59 have studied the mechanical and mi-
crostructural characterization of functionally graded mate-
rial walls using GTAW-based AM. According to the
experimental results, the fabricated wall possesses superior

Figure 11. Turbine blade (a) fabricated part (b) after finishing.

Figure 12. Tensile properties of 308 L stainless steel.

Figure 13. Hardness comparison.

Rathinasuriyan et al. 7



attributes such as tensile strength and hardness. Paskual
et al.60 have studied the capabilities of AM and mechanical
properties obtained by the TIG-AM. Tensile strength tests
reveal that anisotropy reappears in terms of elongation at
break, which is below the limit in the transverse direction
(PT). However, yield and ultimate strengths transcend this
limit and exhibit uniformity in both directions. Oropeza
et al.61 used TIG welding to evaluate the characteristics of
nanoparticle-enhanced aluminium 7075 wire on overlay and
3D-printed component samples. When 3D printed and
single-layer overlay microstructures are compared, the
printed condition has bigger grains with a textured structure,
as seen in Figure 19.

Plasma arc welding-based additive manufacturing
process

AM applications that employ arc welding technologies are
becoming increasingly widespread due to the higher pro-
ductivity that these processes may achieve when compared
to laser deposition. Among these methods, plasma trans-
ferred arc (PTA) deposition requires less heat than GTAW
and GMAWand allows for more precise control of the feed
rate. Martina and colleagues.62 Alberti et al.63 studied the
possibility of PTA for AM thin wall production. They
determined that PTA may be utilized to successfully create
thin walls of Ni-based superalloys without crack nucleation
caused by stacked deposition heat cycles. Wang et al.64 used
plasma arc AM to create crack-free Ti-Al alloy samples, and
the influence of substrate temperature on as-deposited TiAl
alloy was also examined. They discovered that as substrate
temperature rises, microstructural lamellar spacing and
colony size tend to increase. Li et al.65 effectively deposited
the metal portion in the shape of the Chinese character “中”

using the self-adaptive double electrode micro PAW control

system. Thus, it was established that the system shields the
PAW deposition process from interferences caused by torch
stand-off distance and that this method has the potential to
be used to repair complicated surface metal components.

Veiga et al.66 investigated the mechanical qualities of the
PAW-WAAM wall constructed in compliance with aviation
requirements. The tensile test results of specimens retrieved
from the titanium alloy wall were generated under the identical
PAW-WAAM process parameters. According to the results of
the testing, UTS and yield stress are lesser in the vertical
compared to the horizontal direction. Artaza et al.67 used
WAAM-PAW to build Ti6Al4V walls to study the deposition
process under various air conditions. The impacts of relating
heat treatment to WAAM-produced components in various
media have been investigated. The core microstructure of all
three heat-treated materials under consideration displayed fine
acicular alpha and beta phases.

High-energy density (HED) welding-based
additive manufacturing

Many firms depend on HED beam welding methods in-
cluding laser beams and electron beams. Patterson et al.68

state that these methods are widely employed in many
welding and AM applications containing a wide-ranging of
materials Table 2 lists the advantages of HED methods over
arc welding procedures.

Electron beam welding (EBW) based
additive manufacturing

Individually fabricating pieces using Laser Additive
Manufacturing (LAM) and electron beamwelding (EBW) is
a viable method for creating big components with less
internal stress. Fortuna et al.69 created the bulk components
on austenitic stainless steel by using the electron beam wire-
feed additive technique. Figure 20 depicts the overall ap-
pearance of cylindrical blanks on substrates that were
created using various process settings.

Weglowski et al.70 used a universal EB machine to
conduct the EBAM with a wired procedure. A wire feeder
and a 4.9 m3 working chamber are included in the apparatus.
Figure 21 displays the macrostructure images of the EBAM
LNM 307 plate.

Wanjara et al.71 performed the additive repair using an
electron beam gun with a 60 kVaccelerating voltage. For the
construction of the wall structure (Figure 22), 142 layers of
single beads were needed to achieve a bead height of 50 mm
with a wire deposition rate of 25 mm3/sec.

Bimetallic structural gradient material was created by
Osipovich et al.72 utilizing an in-house AM wire-feed EBW
machine. The substrate was a rectangular AISI 304 plate
with a thickness of 12 mm, and the feedstock materials were

Figure 14. Microstructure analysis of the GMAM-ed SS-ER70.
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copper C11000 and 304 SS wires with a diameter of 1 mm.
Figure 23 depicts the height disparity of microhardness in
the SS/copper wall cross-section.

The substrate was a rectangular AISI 304 plate with a
thickness of 12 mm, and the feedstock materials were
copper C11000 and 304 SS wires with a diameter of 1 mm.
Figure 31 depicts the height disparity of microhardness in
the SS/copper wall cross-section. Panchenko et al.73 ex-
plored the phase composition, microstructure, mechanical
characteristics, and fracture processes in EBAM-produced
chromium-nickel stainless steel before and after post-built
Solid Solution Treatments (SST). Coarse Nb-based particles
had little effect on the deformation pattern but do help with
pore development (Figure 24).

Kalashnikova et al.74 used their self-developed wire-feed
EB-based AM equipment to create block-shaped samples.

The hardening patterns of aluminum-silicon alloy
A04130 and aluminium magnesium alloy
AA5056 produced using EBM technology were investi-
gated. After the EBAM process, the base metal of the
AA5056 alloy is represented by big elongated grains that
develop epitaxially. The average grain size ranges from
132.5 m to 76.1 m in height and breadth to 52.7 m and
30.4 m in height and width, respectively (Figure 25).

Laser beam welding-based additive manufacturing

It is a fabrication method that is an important part of In-
dustry 4.0, which seeks to use numerous sensors for con-
tinuous process control. The geometric inaccuracy of
produced components is the current LBAM difficulty.
Francis and Bian et al.75 created the Deep Learning

Figure 16. (a–b) Construction of square box using WAAM.117

Figure 15. Microstructure of wall (a) GMAW deposited (b) rolled.
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technique to improve accuracy and forecast distortion. Du
et al.76 used wire-based laser AM to investigate the di-
mensional properties of thin-walled Ti-6Al-4V compo-
nents. The outcome demonstrates that as the number of
layers is increased, the thickness of the layer on thin-walled
parts progressively rises at first before stabilizing quickly.
Zhang et al.77 developed a novel AM method that uses low-
power pulsed laser-assisted welding to fabricate metal
components. The results show that the rational range of the

laser power in LBW-based AM was about 200W to 400W,
to assure the forming quality. Caiazzo78 studied the effects
of changing the laser power and processing speed while
depositing a single trace of Ti-6Al-4V wire across a sub-
strate. The geometrical responses, including dilution, trace
height, breadth, and depth, were taken into consideration. It
was determined that, for a particular processing speed, laser
power has no influence on trace height but noticeably has an
effect on trace width. Miao et al.79 have investigated the

Figures 17. (a–d) Cross-sectional morphology of component.

Figure 18. Microstructure of BM: (a) Wrought Ti-6Al-4V; (b) WAAMed Ti-6Al-4V.118
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microstructure advancement and mechanical properties of
the LAHAM sample. Figure 26 depicts the microstructure
of a LAHAM sample perpendicular to the scanning di-
rection. They discovered that the laser Zone (LZ) contains
finer granules than the HAZ, which is due to the increased
cooling rate and enhanced fluid movement in the laser zone.

Brandl et al.80 created the Ti-6AL-4V cylinder using
laser-based WAAM and assessed the mechanical charac-
teristics of the deposited plates concerning aerospace ma-
terial requirements. They have acquired an average hardness
rating of 355 ± 28 HV0.5 in constructed conditions. The
effects of laser amplification with both a leading and the
following laser beam on CMT-based WAAM have been
researched by Nasstrom et al.81 The topological capabilities
of WAAM are found to be best enhanced by a trailing
laser beam.

Comparison study

The applicability of WAAM in numerous areas has in-
creased the need for study in this area. According to theWeb
of Science, more than 60 review articles (including con-
ferences and proceedings) on this topic have been published
in the last 4 years (2018–2021), with the majority of them
published in 2021. Almost 40% of the evaluations in these

review articles focused on wire arc additive manufacturing
of any given alloy as shown in Figure 27.

Due to its benefits, including the capacity to manufacture
complicated parts and the ability to save material throughout
the manufacturing process, AM technology is outstanding for
welding technology. It’s a novel development in the industry
that AM-produced components may be combined with
welding and small-to medium-sized pieces.82 The features of
different types of arc welding heat sources used in AM in-
cluding GTAW, GMAW, and PAWare shown in Table 3.83,84

Table 4 summarizes the parameters that were considered
for the arc and beam welding-based AM technique. In
comparison to alternative laser-based deposition tech-
niques, Kindermann et al.85 showed that CMT-based
WAAM-produced heat-treatable in 718 alloys demon-
strates greater strength and adequate responsiveness.

Elmer et al.86 employed several wire-feed AM methods
to compare the high deposition rate disparities between laser
and electron beam heat sources. They concluded that laser-
wire AM utilized the least amount of energy per unit length
of weld and provided the most control over the melt pool
and surface quality. Table 5 displays the hardness, tensile,
and qualitative parameters of various WAAMs.

Nagasai et al.87 developed 308 L austenitic stainless steel
cylindrical components using two separate arc welding

Figure 19. Microstructure (a) single layer overlay (b) 3D printed parts.

Table 1. Mechanical properties of stainless steels parts.

Direction YS (MPa) UTS (MPa) Elongation (%)

Vertical 322.2 539.9 43.1
Horizontal 365.5 590.3 42.3

Rathinasuriyan et al. 11



techniques. The mechanisms and effects of the processes on
the microstructure and mechanical properties were inves-
tigated. Figure 28 depicts micrograph images of GMAW
and CMT components generated by the image analysis tool
ImageJ. The photos clearly illustrate that the volume
fraction of the phase in the GMAW is substantially smaller
than in the CMT.

Aldalur et al.88 investigated the thermal expansion be-
havior of Invar specimens made with GMAW-based and
PAW-based WAAM technologies. Because of the lower
heat input of the deposition process, the Invar material
generated by PAW included a larger concentration of nio-
bium carbides than the sample produced by GMAW. The
microstructure images for the WAAM process are shown in
Figure 29.

Recent developments in welding-based
additive manufacturing

Initially, AM may combine multiple fusion welding pro-
cesses such as GMAW, CMT, GTAW, PAW, EBW, and
LBW. It entails melting followed by solidification, whereas
solid-state AM techniques include substantial plastic

Table 2. Advantages and disadvantages of HED welding.68

Advantages Disadvantages

Low heat input Difficulty in improving fusion zone characteristics by employing filler material
Narrow heat-affected zone High solidification rates
Deep penetration Difficulty in employing filler material to increase fusion zone properties
High depth-to-width aspect ratios Higher initial equipment investment
Reduced distortion
Extraordinary energy transfer efficiency
Less consumable costs

Figure 20. Cylindrical blanks with different deposition velocities (a) 0.10 (b) 0.23 (c) 0.18.

Figure 21. Macrostructure of EBAM LNM 307 plate.

Figure 22. EBW-AM fabricated Ti6Al4V wall.

12 Composites and Advanced Materials



deformation. Currently, the widespread acceptability of
fusion welding-based AM is limited. Moreover, these
techniques typically yield extremely textured columnar
grains with anisotropic mechanical properties. Because they
overcome the difficulties associated with fusion welding-
based AM techniques, solid-state welding-based AM
methods are gaining appeal as an alternative to these

approaches.89 Some of the solid-state AM methods are
friction stir additive manufacturing (FSAM), ultrasonic
additive manufacturing (UAM), and additive friction stir
deposition (AFSD).90–92 AFSD provides a deformation
processing path to metal, with material addition and
bonding accomplished by severe plastic deformation at
extreme temperatures.93 In recent years, FSAM based on the
FSW principle has been developed as one of the revolu-
tionary solid-state AM technologies, and preliminary re-
search has shown that it can overcome restrictions,
particularly for light alloy additive manufacturing.94 Table 6
depicts an approximate history of research in the field of
friction-based additive methods (FATs). The list is not full,
but it clearly shows that, despite the early introduction of
FATs, fewer academics have investigated this highly novel
topic.

There are two approaches to FSAM: stacked-based
FSAM and powder-based AFSD. Both methods have the
same principle, but their processing is different. Metal plates
or layers are linked one by one in stacked-type FSAM. To
assure the connecting of two stacked layers at the same time,
the tool pin is made longer than the created layer. The
graphical procedure of the FSAM technology is shown in
Figure 30.95

Figure 31 depicts a macrograph of the weld and a
hardness profile along the material’s center line. They de-
termined that a significant improvement in hardness may beFigure 23. Microhardness with the distance from the substrate.

Figure 24. SEM pictures of the EBAM specimens: (a) as-built (b) SST for 1 h (c) SST for 5 h (d) SST for 10 h.
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detected over the whole layer thickness when related to the
base material.

Zhang et al.96 created an integrated model in FSAM to
forecast microstructures and mechanical characteristics.
They concluded that re-heating and re-stirring in FSAM
enhanced hardness and yield strength. Zhao et al.97

conducted the FSAM on 2195-T8 aluminum–lithium
alloy sheets with a thickness of 2 mm. The impact of tool
pin parameters on interfacial bonding properties among
additively built layers has been explored. Figure 32
depicts microstructure pictures of the five tools’
constructions.

They discovered that cylindrical pins and conical pins
with three flats are unsuitable for the FSAMmethod because
they provide extremely poor material mixing characteristics
along the bonding contact. Ultrasonic additive
manufacturing (UAM) is a solid-state AM method that uses
metal foil feedstock to generate near-net-form objects. Han
et al.98 explored how the welding power affects the strength
of as-welded UAM steel. The shear strength of a cobalt-
chromium-coated sonotrode is increased. Batista et al.99

investigate and develop a unique resistance spot welding
process in zinc-coated steel sheets using additive
manufacturing (AMSW), which is used in the car industry.

In contrast, spot welding was also accomplished using the
usual resistance spot welding process (RSW). The outcomes
demonstrated that when the best settings were used, the
AMSW had 34.47% greater shear tensile stress and 28.57%
higher tensile stress with a transverse load to the weld spot
than the standard RSW.100–109

Insights, discussions, and
future perspectives

The manufacturing industry is being revolutionized by AM,
which enables the layer-by-layer deposition process to
fabricate structures in almost net shape and with minimal
material waste. But there are dimensional restrictions on
parts made using the AM technique. According to current
studies, to solve this issue, metal materials produced using
AM can be combined with various welding techniques. This
article intends to review the basic concepts, the effect of
process parameters, possible materials, and an under-
standing of defect formation of the welding-based AM. In
addition, the effects of these methods on the mechanical
properties and microstructures have been addressed. AM
technique differs from the welding technique in that it offers
advantages such as sophisticated component manufactur-
ability, material savings, and configurable components
throughout the process. AM is closely related to welding,
and the collaboration is helpful to the progress of both
technologies. This manufacturing technique has signifi-
cantly increased as a result of the strong economic and
scientific interest. In general, the use of welding-based AM
to create parts with non-porous, and good fatigue strength is
promising for many industries.

The previous sections of this review article detail the
many aspects of the state of the research in the area of
welding-based AM. In summary, numerous concepts are
being introduced in AM that has been widely employed in
arc welding with filler material. As a result, clarification of
fundamental terminology is critical to creating a shared

Figure 25. Base metals in as-built samples of (a) AA5056 and A04130 (b) after EB-AM.

Figure 26. Microstructure of LAHAM sample.79
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backdrop between welding and AM. In general, there has
been less research into beam welding-based AM techniques
than arc welding-based AM techniques. One of the biggest
problems is that fusion welding-based AM cannot produce
incredibly complicated structures. The hybridization of the
arc with beam welding-based AM was discovered to

increase the process capabilities and support the production
of high-quality metallic parts. However, the hybridization of
beam and arc for AM has not received much attention.
Welding and AM have many characteristics, and this
complementarity is advantageous to the development of
both technologies. Therefore, it is hoped that research into

Figure 27. Emphasis of review articles of WAAM process.119

Table 3. Characteristics of various WAAM processes.

WARM Heat source Features

GMAW-
based

GMAW Low arc stability, wire electrode, deposition rate: 3–4 kg/h, and spatter
CMT-GMAW Low heat input, wire electrode, deposition rate: 2–3 kg/h, zero spatters, and high process tolerance
TandemGMAW Easy control, two-wire electrodes, deposition rate: 6–8 kg/h

GTAW-
based

GTAW Separate wire feed process, wire, and torch rotation are needed, non-consumable electrode, deposition
rate: 1–2 kg/h and

PAW-based Plasma Distinct wire feed process, wire, and torch rotation are desirable, non-consumable electrodes, and
deposition rate: 2–4 kg/h

Table 4. Process parameters for different welding based AM process.

Sl
No

Welding-based AM
process Process parameters Ref.

1 GMAW-AM Current, arc voltage, wire feed rate, deposition rate, contact tip-to-layer angle, stand-off
distance, and gas flow rate

Rajkumar
et al.122

2 GTAW-AM Current, wire feeding speed, frequency, gas flow rate, the electrode to filler wire, travel
speed, and gas flow rate

Guo et al.123

3 PAW-AM Deposition rate, wire travel speed, intensity, and average energy Martina et al.62

4 LBW-AM Defocusing amount, power, wire feeding speed, and scanning speed Ning et al.124

5 EBW-AM Accelerating voltage, beam current, scanning frequency, beam rate, beam sweep, and
wire-feed rate

Fuchs
et al.125
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the application of various welding techniques for the var-
ious materials produced by AM will increase. Future re-
search predicts that combining AM technology with
welding techniques will increase in popularity.

This technology has very promising prospects. The main
areas of research in the near future will be on the devel-
opment of newer materials, the fabrication of intricate
patterns, the management of grain and phase changes, and
microstructure through a greater variety of alloys and

composites, among other things. Optimization and neural
networks have demonstrated outstanding successes over the
past 10 years in a variety of fields, particularly those in-
volving applications involving image data, which offers up
new opportunities for the subject of welding-based AM.
The FSAM process has numerous advantages, such as good
mechanical and microstructural characteristics, structural
efficiency, and environmentally friendly processing, which
is evident after examining the existing literature. The FSAM

Table 5. Summary of AM builds parameters and resulting properties.

Sl.No Description Properties LBW-AM EBW-AM

1 Build properties Microhardness (HV) 214 172.6
Microhardness (HRB) 92.5 83.1

2 Tensile test results in the longitudinal direction Yield stress 444.0 283.4
UTS 617.8 565.4
Elongation to failure (%) 47.7 46.3

3 Tensile test results in transverse direction Yield stress 482.0 342.0
UTS 657.8 584.0
Elongation to failure (%) 46.2 49.6

4 Qualitative Cost of equipment Medium High
Deposition rate Low Medium
Surface finish High Low

Figure 28. Austenite and ferrite phases (a) GMAW (b) CMT
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Figure 29. SEM micrographs for WAAM process (a) GMAW (b) PAW

Table 6. Timeline of friction additive techniques.121

Sl.No Year Development

1 2002 Patented friction joining for AM
2 2005 Stated the additive FSW method
3 2006 FSW/P applied for AM of components
4 2011 Friction-based AM and termed friction deposition
5 2012 FSAM can achieve components with low production and low waste
6 2015 Fabrication of magnesium-based alloys using FSAM
7 2016 Granted patent on AFS
8 2017 Fabrication of Inconel 625 using AFS

Figure 30. Schematic arrangement of FSAM technique.

Rathinasuriyan et al. 17



process is more flexible in the future for engineering ap-
plications because of these characteristics. Further study is
needed to develop FSW-based AM technologies that may
overcome the limitations of fusion welding. To develop
cutting-edge methods, researchers should focus on building
FSW-based AM processes.

Conclusion

The application of AM processes in combination with
standard welding processes such as GMAW, CMT, GTAW,

EBW, LBW, FSW, and USW on raw materials including
wire, plates, and sheets (excluding powder) has been in-
vestigated. The following findings may be drawn from this
review article:

(i) A high deposition is a key advantage of GMAW-
based AM, but it is also accompanied by higher
heat input, which results in residual strains and
distortions. AM based on CMT welding is ap-
propriate for large-scale stainless steel products
with low-medium mechanical characteristics

Figure 31. Macrograph and hardness profile of AA5083 alloy fabricated using FSAM.120

Figure 32. Interfacial formations of the builds manufactured with different tools (a) convex (b) conical (c) cylindrical pin with concave
(d) flared pin and (e) cylindrical pin.97
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needs. TIG and PAW-AM techniques might be
utilized for small-medium titanium and stainless
steel with medium-high mechanical needs.

(ii) AM based on laser beam welding used the mini-
mum amount of energy and provided the best
control over the melt pool and surface quality. The
LBW-AM component has greater hardness, tensile
strength, and qualitative characteristics than the
EBW-AM component.

(iii) FSW-based AM can convert raw materials into
functional products with improved mechanical and
microstructural properties while consuming little
material, emitting minimal emissions, and wasting
minimal energy.
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