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Abstract
We propose a new scalable method to approximate the intractable likelihood of the 
Potts model. The method decomposes the original likelihood into products of many 
low-dimensional conditional terms, and a Monte Carlo method is then proposed to 
approximate each of the small terms using their corresponding (exact) Multinomial 
distribution. The resulting tractable synthetic likelihood then serves as an approxi-
mation to the true likelihood. The method is scalable with respect to lattice size and 
can also be used for problems with irregular lattices. We provide theoretical justi-
fications for our approach, and carry out extensive simulation studies, which show 
that our method performs at least as well as existing methods, whilst providing sig-
nificant computational savings, up to ten times faster than the current fastest method. 
Finally, we include three real data applications for illustration.
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1 Introduction

The Potts model, a special type of Markov random fields (MRF) model, is often 
used to describe spatial dependence over a lattice. As such, it has been used exten-
sively in image analysis problems, see for example Hurn et  al. (2003); Pereyra 
et al. (2013); Pal and Pal (1993); Li and Singh (2009); Storath et al. (2015) and in 
social networks modelling (Everitt 2012). The Ising model, which is a two state 
Potts model, is also closely related to the Boltzmann Machine (Hinton 2014), a 
popular building block in deep learning algorithms (Goodfellow et al. 2016).

It is well known that the normalising constant in the Potts model is intractable 
even for moderately sized lattices (Zhu and Fan 2018). The considerable amount 
of statistical literature on how to overcome this problem can be approximately 
divided into two categories: approximation-based approaches and simulation-
based approaches.

Approximation-based approaches aim to transform the intractable likelihood 
of the Potts model to a tractable form by imposing some assumptions on the 
model. The Pseudo likelihood (PL) method of Besag (1975) is one of the earli-
est attempts. PL approximates the intractable Potts likelihood by the product of 
full conditional probabilities. Under this approach, the normalizing constant is 
then trivial to compute. However, PL no longer a proper likelihood function, but 
can be considered a type of composite likelihood (Varin et  al. 2011), and has 
been documented to be unstable when dependence is strong (Geyer and Thomp-
son 1992). The method is popular in practice, particularly for large lattices due 
to its concise form. Cressie and Davidson (1998) proposed a partially ordered 
Markov models, taking advantage of the structure to avoid the need to compute 
the normalizing constant. However, the method is only applicable to a subset of 
MRFs, therefore not flexible enough for use in practice. Reeves and Pettitt (2004) 
proposed a method for general factorizable models. Although this approach is 
exact, it is only applicable to small sized lattices. Friel et al. (2009) extended the 
work of Reeves and Pettitt (2004) to larger lattices by sacrificing some depend-
encies. The full lattice is divided into many sublattices and the sublattices are 
assumed to be independent, they call this the reduced dependence approximation 
(RDA). The authors reported that the method can be efficiently applied to binary 
MRFs, but concluded that the extension to the q-state Potts models may not be 
computationally tractable. Another similar idea can be found in Bartolucci and 
Besag (2002), where a recursive algorithm using the product of conditional prob-
abilities was presented, but again their method is only applicable to small lattices. 
More recently, Zhu and Fan (2018) proposed a method (RCoDA) that decom-
poses the large lattice into a sequence of nested subsets of smaller lattices, and 
used a sequence of much smaller Potts models to approximate each sublattice. 
The method scales well with the sizes of lattices, but can exhibit similar biases as 
those observed from the pseudo-likelihood model.

Simulation-based approaches calculate the intractable likelihood via simu-
lation of the Potts models. Gelman and Meng (1998) proposed path sampling 
to approximate ratio of normalizing constants. Green and Richardson (2002) 
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advocated the thermodynamic integration (TDI) approach, which relies on Monte 
Carlo simulations. This approach computes a look-up table offline and can be 
used with many different posterior computation methods. Some other similar 
simulation-based methods can be found in Geyer and Thompson (1992); Gu and 
Zhu (2001); Liang (2007) and references therein. Another group of methods rely 
on generations of auxiliary variables. Such methods include Møller et al. (2006); 
Murray (2006, 2007); Liang (2010); Liang et  al. (2016). As perfect simulation 
(Propp and Wilson 1996) step is usually required, these methods are computa-
tionally very expensive. Liang et  al. (2016) extended the exchange algorithm 
of Murray (2006) to overcome the issue of obtaining perfect samples, using an 
importance sampling procedure coupled with a Markov chain running in paral-
lel. Grelaud et  al. (2009) adopted approximate Bayesian computation (ABC) to 
tackle the intractable normalizing constant. The method was established on the 
fact that the sufficient statistics of the Potts model can be readily computed. Atch-
adé and Liu (2010) adopted Wang-Landau algorithm (Wang and Landau 2001) to 
estimate the normalizing constant. Everitt (2012) developed a sequential Monte 
Carlo ABC method to deal with the same issue. For model selection, Moores 
et al. (2015) adopted ABC as a pre-process step to fit the function between sum-
mary statistics and spatial dependence parameter and then employed this function 
to learn the parameter of interest. Furthermore, Moores et al. (2020) proposed an 
indirect likelihood approach based on an approximation of the score function.

Often in applications of MRFs, particularly those found in image analyses, the 
size of the random field can be extremely large, the rows and columns of the lattices 
can sometimes be in the order of thousands (Moores et al. 2020). Generally speak-
ing, simulation-based approaches tend to be less scalable than approximation-based 
approaches since simulation of large Potts models is time-consuming. Among the 
approximation-based methods, according to our experience, PL (Besag 1975) and 
RCoDA (Zhu and Fan 2018) are the most scalable methods with respect to lattice 
size. However, both methods can suffer from bias and/or coverage issues, see Zhu 
and Fan (2018) for further details.

In this article, we are aiming to propose an approach which is capable of handling 
very large lattices, and is also extendable to irregular lattices. We directly approxi-
mate the density function of the Potts model using a synthetic likelihood. All the 
components of the synthetic likelihood function, taken as the density function of 
a Multinomial distribution, are then obtained using Monte Carlo simulations. The 
simulation component in our approach is much less time consuming than existing 
simulation-based approaches. Our method integrates strong points of both approxi-
mation and simulation based approaches, and it is both scalable and extendable to 
non-regular lattices which are important for real applications. Our procedure also 
shares some connections with the literature on approximate Bayesian computation 
(Sisson et al. 2018), see for example Fan et al. (2014) and Grazian and Fan (2019), 
where the intractable likelihoods have been replaced by flexible density approxima-
tions. The Matlab code for our method is available at Github.

The paper is structured as follows. Section 2 presents the background on the Potts 
model and the proposed synthetic likelihood approximation. Section 3 provides the-
oretical results for the proposed method, such as unbiasedness. Section  4 performs 
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simulation studies in various scenarios, both small lattice and large lattice under differ-
ent neighbourhood structures. Three real examples are demonstrated in Sect. 5 and we 
conclude with some discussions and summary in Sect. 6.

2  Synthetic likelihood with piecewise conditional distribution

The Potts model plays an important role in modelling spatially correlated data, it is 
widely used to describe spatial dependencies defined on a lattice. A Potts model is usu-
ally defined on a regular lattice. For example, in texture analysis (Bharati et al. 2004), a 
photograph is analysed to extract its texture. We demonstrate our method in the context 
of square lattice, such as the left panel in Fig. 1. However, our method is not restricted 
to this type of lattices. Let Z = {Zi}

n2

i=1
 denote a set of hidden (or auxiliary) variables, 

the prior distribution �(Z ∣ �) is specified as the Potts model parameterized by � ≥ 0 , 
where the parameter � controls the strength of spatial correlation, higher values of � 
indicate stronger correlation. The Zi s are discrete, and in a q-state Potts model, they 
take values from the set {1, 2,⋯ , q} . Specifically, the likelihood of the Potts model 
�(Z ∣ �) is given as,

where i ∼ j indicates that i and j are neighbours in some pre-defined 
neighbourhood structure, �

∑
i∼j I(Zi = Zj) is the energy function and 

C(�) =
∑

Z
exp{�

∑
i∼j I(Zi = Zj)} is the normalizing constant. I(⋅) is indicator func-

tion where I(Zi = Zj) = 1 if Zi = Zj , otherwise I(Zi = Zj) = 0 . The normalizing con-
stant C(�) is a function with respect to � , and therefore cannot be ignored in the 
Bayesian analyses. The calculation of normalizing constant C(�) involves a summa-
tion over all possible values of Z . For a q-state Potts model defined on a n × n lat-
tice, the number of possible realizations of Z is qn2 . Thus even for a moderate sized 
lattice, this number becomes too large to enumerate over. Wu (1982) provides more 
details on the properties of the Potts model.

(1)�(Z ∣ �) =
1

C(�)
exp

{
�
∑
i∼j

I(Zi = Zj)

}
,

Fig. 1  Left: vectorization of Z = (Z1,… ,Z9) by column for a 3 × 3 lattice. The dashed circles cor-
respond to the structure of �(Z

i
∣ Z1∶(i−1), �) , and the dashed lines show the dependence structure of 

�(Z
i
∣ Z1∶(i−1) ∩ �i), �) for the first order neighbourhood, i = 5 . Middle: the first order neighbourhood 

dependence structure for general Z
i
 . Right: partial conditional dependence of Z

i
 given Z

i−1 and Z
i−n
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The Potts model can be employed as a hidden state model to model spatial corre-
lation (Feng 2008), which is governed by the inverse temperature � . The spatial cor-
relation in the Potts model is manifested via the form of Eq. (1). That is, the pixel’s 
value is conditionally independent given the values of pixels in its neighborhood. 
Under the setting of hidden state model, the posterior distribution of a q-component 
Potts spatial mixture model takes the form

where �(yi ∣ �, Zi) is the component distribution for the observed data yi conditional 
on the model parameters � and Zi , �(�) is the prior for the model parameters and 
�(�) denotes the prior for the parameters of the Potts model, often referred to as a 
hyper-prior. Equations of the form in (2) are often used in applications where the 
goal is to cluster or segment several (or q) pieces of an image, and the component 
distribution can take the form of a Gaussian density. In some applications Z may 
also be directly observed. In these cases, the posterior distribution will become

The goal is to make inference for the inverse temperature parameter � , which con-
trols the degree of spatial dependence.

In both cases, the main problem associated with inference using the Potts model 
is the intractable normalizing constant C(�) in the likelihood function. The intrac-
tability of the normalizing constant causes difficulties for the inference on � . Algo-
rithm 1 provides a Markov chain Monte Carlo (MCMC) algorithm to sample from 
the posterior distribution of � in the Potts model. In step 3, two normalizing con-
stants are involved in the calculation of r. The intractability of the normalizing con-
stant leads to unknown r resulting in difficulties with the MCMC procedure. In what 
follows, we describe an approach involving an approximate likelihood function to 
overcome this issue.

(2)�(Z, �,� ∣ �) ∝

⎛
⎜⎜⎝

n2�
i=1

�(yi ∣ �, Zi)

⎞
⎟⎟⎠
�(Z ∣ �)�(�)�(�),

(3)�(� ∣ Z) ∝ �(Z ∣ �)�(�).
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2.1  Decomposing the likelihood function

Consider a regular lattice for Z , which is vectorized by column. See an example in 
Fig. 1 (left panel), where a 3 × 3 lattice is labelled as Z1,… , Z9 by column. Then in 
general, for an n × n lattice, we have Z = (Z1, Z2,⋯ , Zn2−1, Zn2) and without loss of 
generality, write the likelihood function of the Potts model as

where Z1∶(i−1) denotes the set {Z1, Z2,⋯ , Zi−1}.
We make two approximations to Eq. (4). Firstly, we propose to omit �(Z1 ∣ �) from 

the likelihood function �(Z ∣ �) . Although it is possible to approximate �(Z1 ∣ �) using 
simulation approaches similar to the rest of this paper, it is computationally heavy. 
As n increases, the contribution to the likelihood function �(Z ∣ �) is asymptotically 
approaching 0. Secondly, we use �(Zi ∣ (Z1∶(i−1) ∩ �i), �) to approximate each of the 
terms �(Zi ∣ Z1∶(i−1), �) , where �i denotes the full neighbourhood of Zi . Since we know 
that the Potts model has a Markovian property where the conditional distribution of 
Zi given {Z1,⋯ , Zi−1, Zi+1,⋯ , Zn2} only depends on its neighbourhood �i . With these 
changes, we now work with the composite likelihood �C(Z ∣ �) with the following 
form,

The middle panel in Fig. 1 illustrates the standard first order neighbourhood of Zi , 
which is given by {Zi−n, Zi−1, Zi+1, Zi+n} and the set Z1∶(i−1) ∩ �i is demonstrated in 
the right panel of Fig. 1. The full extent of the approximation for each piece centered 
on i, is illustrated in the left panel of Fig. 1, for i = 5 , the original dependence on 
Z1,… , Z4 reduces to only Z2 and Z4 after we take the neighbourhood into considera-
tion. The impact of such an approximation will be discussed in the Sect. 3 where 
some theoretical properties of the proposed method will be provided.

2.2  Approximation using monte carlo simulation

The term �(Zi ∣ (Z1∶(i−1) ∩ �i), �) in the Eq. (5) is typically challenge to compute. In 
a q-state Potts model, each Zi can take any value 1, 2,… , q . It is possible to consider 
all possible outcomes for the combinations of Zi, Zi−n and Z(i−1) . But as q gets large 
or number of conditional item increases, this quickly becomes cumbersome. For 
example, there are ql different combinations of the conditional items given l condi-
tional items. Fortunately, the sufficient statistics in the Potts model, which is simply 
the number of pairs with the same values between neighbouring observations, i.e., ∑

i∼j I(Zi = Zj) , vastly reduces the dimension of the approximation without any loss 

(4)�(Z ∣ �) = �(Z1 ∣ �)

n2∏
i=2

�(Zi ∣ Z1∶(i−1), �),

(5)
�
C
(Z ∣ �) ≜

n
2∏

i=2

�(Z
i
∣ (Z1∶(i−1) ∩ �i), �) ≈ �(Z1 ∣ �)

n
2∏

i=2

�(Z
i
∣ Z1∶(i−1), �)

= �(Z ∣ �).
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of information with respect to the inference of the parameters of interest. Note that 
this also makes the approximation independent of the value of Zi , as the physical 
value of Zi is irrelevant. What matters is whether the neighbouring values are the 
same or not. For the first order neighbourhood dependence structure, we can use the 
following

where Si ≜ I(Zi = Zi−1) + I(Zi = Zi−n) denotes the sufficient statistics whose distri-
bution will be approximated. In the case under the first order neighbourhood, the 
distribution is conditioned on only two cases: Zi−1 = Zi−n and Zi−1 ≠ Zi−n . The 
sufficient statistics Si takes possible values {0, 1, 2} , so we need to approximate 
�(Si = 0 ∣ �),�(Si = 1 ∣ �) and �(Si = 2 ∣ �) under cases where Zi−1 = Zi−n and 
Zi−1 ≠ Zi−n respectively.

The posterior distribution attached to Eq. (6) is given as,

The distribution of Si is clearly a Multinomial distribution with three parameters, the 
respective probabilities which we denote as pi1(�) , pi2(�) and pi3(�) , which depends 
on the value of � . Hereafter we use M(⋅) to denote the Multinomial distribution. 
These parameters are unknown for now. According to the homogeneity of the Potts 
model Feng et al. (2012), the parameters can be suppressed to be p1(�) , p2(�) and 
p3(�) and the density can be denoted as �(S ∣ Zi−1, Zi−n, �) for simplicity.

Here we propose to obtain an estimator of �(Si ∣ Zi−1, Zi−n, �) via Monte Carlo 
simulation. For any fixed value of � , an n × n Potts model can be simulated using 
a number of algorithms, see for example the Swendsen and Wang algorithm 
(Swendsen and Wang 1987) and Wolff’s algorithm (Wolff 1989). The samples 
Zi, i = 1,… , n2 and their respective {Zi−1, Zi−n} can then be used to estimate the 
parameters in the Multinomial distribution. We provide theoretical support for the 
use of the Multinomial distributions as part of the synthetic likelihood in Theo-
rem 1, where it is shown that as the number of Monte Carlo samples increase, the 
synthetic likelihood using Multinomial pieces converges pointwise to �C(Z ∣ �) . 
Together with Theorem 2, we have that �C(Z ∣ �) converges pointwise in � , to the 
true Potts likelihood for large lattices �(Z ∣ �).

Note that pixels on the boundaries of the lattice have different structures as they 
are truncated by the boundary, these truncated distributions can be estimated sepa-
rately in a similar fashion. Algorithm 2 provides detailed description of the Monte 
Carlo based approach which provides unbiased estimates for pj(�), j = 1,… , 3.

(6)�C(Z ∣ �) =

n2∏
i=2

�(Zi ∣ (Z1∶(i−1) ∩ �i), �) ∝

n2∏
i=2

�(Si ∣ Zi−1, Zi−n, �).

(7)�C(� ∣ Z) ∝ �(�)

n2∏
i=2

�(Si ∣ Zi−1, Zi−n, �).
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 When the above procedure is repeated for different � , it will produce a look-up 
table for a dense grid of � values. Let �𝜖 = (𝛽l, 𝛽1,⋯ , 𝛽M−1, 𝛽u) denote the grid of � , 
where �l and �u are the lower and upper bound respectively, � = �u−�l

M
 is the step size 

of the grid. With the Monte Carlo estimation of �(S ∣ Zi−1, Zi−n, �) , a grid likelihood 
function is defined as below, for 𝛽 ∈ [𝛽k −

𝜖

2
, 𝛽k +

𝜖

2
]

Note that Gibbs sampling rather than perfect sampling is adopted in Step 1 of Algo-
rithm 2. The reason is mainly computational, because perfect sampling is compu-
tationally expensive. The posterior distribution for � arising from the Monte Carlo 
approximation is a step function. We analyse the error introduced to the posterior 
distribution due to the use of the grid approach in Theorem 2. And note that this 
error diminishes with O(M−2) but at the cost of increased computational effort.

Our procedure to estimate the Potts model involves two main ingredients. The 
first is the breaking down of the large spatial model into smaller, more manageable 
pieces. The second is the use of data simulation to approximate the distributions of 
these smaller pieces. The second ingredient in our procedure is similar in spirit to 
the so-called synthetic likelihood of Wood (2010), or density estimation approxi-
mate Bayesian computation (ABC) in the ABC literature (Fan et al. 2014; Papama-
karios et  al. 2019; Alsing et  al. 2019), where either parametric or non-parametric 
synthetic likelihoods are used in conjunction with Monte Carlo simulations of the 
data. In our situation, the Multinomial distribution is exact for the distribution of 
the summary statistics, so a nonparametric approach is not needed. We refer to our 
approximation procedure as Synthetic Likelihood with Piecewise Conditional Dis-
tribution (SLPCD).

(8)𝜋CG(Z ∣ 𝛽) ∝

n2∏
i=2

M(p̂1(𝛽k), p̂2(𝛽k), p̂3(𝛽k) ∣ Zi−1, Zi−n).
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2.3  Bayesian inference

Given the composite grid likelihood function, posterior distribution of � is derived 
as,

Posterior samples of � can be drawn by Algorithm 3 via MCMC targetting Equation 
(9).

We make the conjecture that the individual conditional densities can be estimated 
from a Potts model of any size. That is, the strength of spatial dependence � is invar-
iant to the size of the lattice, at least locally the subsets (Z1∶(i−1) ∩ �i) are not effected 
by observations far away and hence the size of the lattice. As far as we know, the 
literature does not touch upon this aspect. The theoretical clue for the conjecture is 
that all the pixels in the lattice are homogeneous regardless the size of the lattice. 
Therefore, the conditional distribution of p(Zi ∣ �i) is homogeneous. Moreover, we 
observe empirically that this appears to be a reasonable assumption. Table 1 shows 
the estimated Multinomial probabilities �̂�(S ∣ Zi−1 = Zi−n, 𝛽) for the Ising model, 
using three different lattice sizes 32 × 32 , 128 × 128 and 512 × 512 . The differences 
are negligible between the three lattice sizes. Similarly, Table  2 demonstrates the 
estimated Multinomial probabilities �̂�(S ∣ Zi−1 = Zi−n, 𝛽) for the Potts model with 
q = 4 . In this and subsequent simulations, we have found that the size of the lattice 
indeed has little impact on the approximation of �(S ∣ Zi−1, Zi−n, �) . Consequently, 
we only need to simulate the Potts model on small lattices in order to approximate 
Potts model of any size. This provides a huge computational saving, as there is no 
need to re-run simulations every time a lattice of a different size is presented. This is 
a computational advantage compared to the well known method of thermodynamic 
integration (TDI) proposed in Green and Richardson (2002), which is harder to 

(9)�CG(� ∣ Z) ∝ �CG(Z ∣ �)�(�).
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use in larger lattices because a Monte Carlo estimate of the total number of pairs is 
needed, requiring repeated simulation of entire lattices.

Actually, the two main ingredients of SLPCD correspond to the two categories 
of approaches in the literature. The breaking-down step of SLPCD corresponds to 
composite likelihood approaches. It decomposes the intractable likelihood func-
tion into some manageable small pieces. The Monte-Carlo step of SLPCD corre-
sponds to simulation-based approaches. It estimates parameters via Monte Carlo 
simulation. Therefore, SLPCD combines two categories of approaches into one, 
and avoids the limitations of each category. That is, SLPCD can is scalable with 
lattice size because each ingredient of it is scalable with lattice size.

2.4  Generalization to the higher order neighbourhood

The SLPCD approach described in previous sections can be generalized to 
the higher order neighbourhood Potts models. Here we consider the sec-
ond order neighbourhood structure (Besag 1974; Hurn et  al. 2003). Formally, 
the second order neighbours of Zi,j includes the eight nearest neighbours, i.e., 
Zi,(j+1), Zi,(j−1), Z(i−1),j, Z(i+1),j, Z(i−1),(j−1), Z(i+1),(j−1), Z(i−1),(j+1) and Z(i+1),(j+1) . Figure  2 

Table 1  The estimations of p̂1
1
(𝛽), p̂1

2
(𝛽), p̂1

3
(𝛽) in �(S ∣ Z

i−1 = Z
i−n, �) for Ising model

Simulations using different sized lattices, 32 × 32 , 128 × 128 and 512 × 512

32 × 32 128 × 128 512 × 512

� p̂
1

1
(𝛽) p̂

1

2
(𝛽) p̂

1

3
(𝛽) p̂

1

1
(𝛽) p̂

1

2
(𝛽) p̂

1

3
(𝛽) p̂

1

1
(𝛽) p̂

1

2
(𝛽) p̂

1

3
(𝛽)

0.050 0.474 0.000 0.526 0.475 0.000 0.525 0.475 0.000 0.525
0.100 0.451 0.000 0.549 0.450 0.000 0.550 0.450 0.000 0.550
0.150 0.425 0.000 0.575 0.425 0.000 0.575 0.425 0.000 0.575
0.200 0.398 0.000 0.602 0.400 0.000 0.600 0.400 0.000 0.600
0.250 0.376 0.000 0.624 0.375 0.000 0.625 0.376 0.000 0.624
0.300 0.352 0.000 0.648 0.351 0.000 0.649 0.351 0.000 0.649
0.350 0.325 0.000 0.675 0.326 0.000 0.674 0.327 0.000 0.673
0.400 0.302 0.000 0.698 0.303 0.000 0.697 0.303 0.000 0.697
0.450 0.281 0.000 0.719 0.279 0.000 0.721 0.279 0.000 0.721
0.500 0.254 0.000 0.746 0.255 0.000 0.745 0.255 0.000 0.745
0.550 0.236 0.000 0.764 0.231 0.000 0.769 0.232 0.000 0.768
0.600 0.206 0.000 0.794 0.208 0.000 0.792 0.208 0.000 0.792
0.650 0.184 0.000 0.816 0.185 0.000 0.815 0.185 0.000 0.815
0.700 0.162 0.000 0.838 0.162 0.000 0.838 0.162 0.000 0.838
0.750 0.139 0.000 0.861 0.139 0.000 0.861 0.139 0.000 0.861
0.800 0.116 0.000 0.884 0.115 0.000 0.885 0.115 0.000 0.885
0.850 0.085 0.000 0.915 0.089 0.000 0.911 0.089 0.000 0.911
0.900 0.056 0.000 0.944 0.062 0.000 0.938 0.063 0.000 0.937
0.950 0.037 0.000 0.963 0.046 0.000 0.954 0.046 0.000 0.954
1.000 0.030 0.000 0.970 0.035 0.000 0.965 0.035 0.000 0.965
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shows the second order neighbourhood structure (the left panel) and the corresponding 
piecewise conditional dependence structure (the right panel).

The difference between the second order and the first order is that there are four 
rather than two conditional elements in each conditional dependence structure, 
which are now {Zi−1, Zi−n+1, Zi−n, Zi−n−1} . This results in more conditional distribu-
tions to estimate. For example, we need to consider when all four dependent obser-
vations are the same, or when two of them are the same and the other two are the 
same as each other but different to the first two, and so on. However, the main proce-
dure remains the same as the first order neighbourhood structure. As a consequence, 
the details for the second order neighbourhood structure will be omitted. In both the 
first order and the second order neighbourhood structures, we only described the 
typical terms (Right panels of Figs. 1 and 2).

Table 2  The estimations of p̂1
1
(𝛽), p̂1

2
(𝛽), p̂1

3
(𝛽) in �(S ∣ Z

i−1 = Z
i−n, �) for Potts model with q = 4

Simulations using different sized lattices, 32 × 32 , 128 × 128 and 512 × 512

32 × 32 128 × 128 512 × 512

� p̂
1

1
(𝛽) p̂

1

2
(𝛽) p̂

1

3
(𝛽) p̂

1

1
(𝛽) p̂

1

2
(𝛽) p̂

1

3
(𝛽) p̂

1

1
(𝛽) p̂

1

2
(𝛽) p̂

1

3
(𝛽)

0.050 0.891 0.000 0.109 0.891 0.000 0.109 0.891 0.000 0.109
0.100 0.880 0.000 0.120 0.880 0.000 0.120 0.880 0.000 0.120
0.150 0.869 0.000 0.131 0.869 0.000 0.131 0.869 0.000 0.131
0.200 0.856 0.000 0.144 0.856 0.000 0.144 0.857 0.000 0.143
0.250 0.844 0.000 0.156 0.844 0.000 0.156 0.843 0.000 0.157
0.300 0.829 0.000 0.171 0.829 0.000 0.171 0.829 0.000 0.171
0.350 0.812 0.000 0.188 0.812 0.000 0.188 0.812 0.000 0.188
0.400 0.795 0.000 0.205 0.795 0.000 0.205 0.795 0.000 0.205
0.450 0.775 0.000 0.225 0.775 0.000 0.225 0.775 0.000 0.225
0.500 0.754 0.000 0.246 0.754 0.000 0.246 0.754 0.000 0.246
0.550 0.731 0.000 0.269 0.731 0.000 0.269 0.731 0.000 0.269
0.600 0.705 0.000 0.295 0.705 0.000 0.295 0.705 0.000 0.295
0.650 0.677 0.000 0.323 0.677 0.000 0.323 0.677 0.000 0.323
0.700 0.646 0.000 0.354 0.646 0.000 0.354 0.646 0.000 0.354
0.750 0.612 0.000 0.388 0.612 0.000 0.388 0.612 0.000 0.388
0.800 0.575 0.000 0.425 0.575 0.000 0.425 0.575 0.000 0.425
0.850 0.534 0.000 0.466 0.534 0.000 0.466 0.534 0.000 0.466
0.900 0.488 0.000 0.512 0.488 0.000 0.512 0.488 0.000 0.512
0.950 0.437 0.000 0.563 0.437 0.000 0.563 0.437 0.000 0.563
1.000 0.378 0.000 0.622 0.378 0.000 0.622 0.378 0.000 0.622
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3  Theoretical property of SLPCD

Theorem 1 deals with the validity of using a synthetic likelihood in the form of Mul-
tinomial distribution, where the Multimomial distribution is estimated via Monte 
Carlo. Theorem 2 studies the error introduced by the lookup table for �.

Theorem  1 For any fixed � ≥ 0 , �̃�𝛽(S ∣ P̂) be the Multinomial synthetic likeli-
hood with parameters P̂ = (p̂1 … , p̂K) as estimated according to Algorithm 2, and 
��(S ∣ P0) denotes the Multinomial likelihood under the true parameters P0 , then

where N is the number of Monte Carlo samples.

A proof is given in the Appendix A. Theorem  1 says that when the Multino-
mial distribution is used to model each piece of the likelihood function in 7, and if 
an unbiased estimate for the parameters in the Multinomial distribution is used to 
approximate the density at each � , then as the number of Monte Carlo samples, N, 
increases, the estimated density approaches to the density under the true parameter.

Then, we study the effect of using � over a grid in a lookup table. Theorem 2 
describes the error bound between the posterior samples drawn from posterior dis-
tribution (9) using grid values of � , and posterior distribution attached to Eq. (7).

Theorem  2 For all � ∈ [�l, �u] , assume that the first derivative of the poste-
rior distribution is bounded and continuous: ∣ 𝜋�

C
(𝛽 ∣ Z) ∣≤ K1 < ∞ . Define 

F(�) ≜ ��C(� ∣ Z) and assume the second derivative of F(�) is bounded and con-
tinuous, ∣ F��(𝛽) ∣≤ K2 < ∞ . Then as N → ∞ , such that for some constant K which 
is a function of K1 and K2,

dKL(�̃�𝛽(S ∣ P̂),𝜋𝛽(S ∣ P0))
N⟶∞
��������������������������→ 0,

lim
M→∞

∣ �CG(�) − � ∣= 0

Fig. 2  The second order neighbourhood structure for Z
i
 (left panel ) and the corresponding conditional 

dependence structure (right panel)
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where M is the number of equal-spaced grid points in [�l, �u] and �CG(�) is the expec-
tation of � derived from the Algorithm  3. Further, define G(�) ≜ �2�C(� ∣ Z) and 
assume the second derivative of G(�) is continuous and bounded ∣ G��(𝛽) ∣≤ K3 < ∞ . 
Then for some constant K′ which is a function of K1,K2 and K3,

where �CG(�) is the variance of � obtained from the Algorithm 3.

Theorem 2 demonstrates that the error of expectation and the variance between 
posterior distribution (9) approximated using M grid values of � and the composite 
posterior distribution in (7) are bounded, and vanish as M → ∞ . A proof is given in 
the Appendix B.

4  Simulation study

In this section, simulation results for the first and second order neighbourhood lat-
tices using different methods are presented. Various scenarios are included to evalu-
ate the performance: different values of q and different lattice sizes. Approximation-
based approaches, such as the pseudo-likelihood (PL) method of Besag (1975), the 
reduced dependence approximation (RDA) of Friel et al. (2009) and the conditional 
subset method (RCoDA) of Zhu and Fan (2018) will be compared to SLPCD. At 
the same time, simulation-based approaches, such as the thermodynamic integration 
method of Green and Richardson (2002) (TDI) (when computationally feasible, this 
method can be taken as the gold standard, ignoring the sampling error of the Potts 
samples) will be demonstrated as well. These methods represent existing methods 
that are flexible enough to cope with large lattices. To make all the approaches com-
parable, we adopt all the above likelihood functions to derive corresponding poste-
rior distributions and draw samples from them.

The root mean squared error (RMSE) measure, defined as

is selected to evaluate the quality of estimations, where 𝛽i is taken as the mean of the 
posterior samples produced by the MCMC algorithm using the ith simulated data 
set.

It is well known that the Potts models exhibit the phenomenon of phase transition. 
That is, there exists a critical point �crit in the parameter space, where for 𝛽 > 𝛽crit , 
the Potts models will transit from a disordered to an ordered pattern or phase. The 
sites in the Potts model will eventually all be in a single state as � increases. The 
property of �crit has been widely discussed in the literature (Potts 1952). For a gen-
eral q-state model, the precise value of the critical value is difficult to determine. 
Under the first order neighbourhood lattice structure, for q ∈ {2, 3, 4} , Potts (1952) 

lim
M→∞

∣ �CG(�) − �C(�) ∣= 0,

RMSE =

√√√√ 1

T

T∑
i=1

(𝛽 − 𝛽i)
2,



762 W. Zhu, Y. Fan 

1 3

developed the exact solution of critical points �crit = log(1 +
√
q) which is about 

0.88 for the Ising models ( q = 2 ). Here we consider the set of values 0.1, 0.2,… , 1 
for � . Under the scenario of q = 3 , we have to omit the results of the method RDA, 
which cannot be easily extended to the case for higher values of q.

For the simulation study, three different lattice sizes are considered, including 32 
× 32, 128 × 128 and 256 × 256. We used T = 200 simulated datasets across a grid 
of � values. Using the lookup tables produced from Algorithm 2, we used a Random 
walk Metropolis-Hastings algorithm to sample the posterior distribution �(� ∣ Z) , 
where we take the prior for � ∼ U(0, 1) . We used a Gaussian random walk proposal 
distribution, setting the variance/tuning parameter to be �2 = 0.0152 , and ran the 
MCMC for 6000 iterations, keeping the final 4000 iterations for inference.

Table 3 shows the resulting RMSE and the standard error of the estimates. Both 
the SLPCD and TDI perform consistently well compared to the other methods 
across different lattice size when � is under or slightly larger than the critical values. 
Overall, RMSE reduces as the size of the lattice increases for all the methods, with 
negligible differences between the methods for large lattices. In terms of spatial cor-
relation strength � , SLPCD and TDI perform better as � increases, whereas PL and 
RCoDA have the opposite behavior. Overall, the most performance gain in SLPCD 
(and TDI) over PL and RCoDA is seen for higher values of � in smaller lattices. The 
performance seems to be consistent across q. Note that, when the true � is signifi-
cantly larger than the critical value, the performance of both TDI and SLPCD dete-
riorate noticeably. The reason is that both these approaches rely on the MCMC sim-
ulation of the Potts model. The simulation of Potts model at large � values becomes 
unstable and extremely time-consuming, where convergence can be difficult to mon-
itor, (see for example Møller et al. (2006)). We suggest not to use simulation-based 
methods when there is evidence of phase transition.

Phase transition also exists in the second order neighbourhood Potts models. The 
critical values for the second order Potts models cannot be obtained in closed form. 
Zhu and Fan (2018) concluded that the critical values for the second order Potts 
models should be smaller than 0.4. Therefore, all the simulations were implemented 
for the Potts models with 𝛽 < 0.5 . For more details about critical values of the sec-
ond order Potts models, see Zhu and Fan (2018).

Under the similar conditions adopted in the simulation study of the first order 
neighbourhood, Table 4 shows RMSE for all the feasible methods under scenarios 
of q = 2 and q = 3 . Overall, SLPCD outperforms other methods with respect to 
RMSE. Again, the most marked differences in performance is observed at higher 
values of � and in smaller fields. All the methods improve their performance as size 
increases. However, it can be seen that SLPCD continues to outperform compet-
ing methods in the larger fields. SLPCD appears to work better under the second 
order neighbourhood structure compared to the first order neighbourhood structures. 
Overall, SLPCD outperforms all other methods considered under the second order 
neighhourhood structure. This might be because in the second order neighbourhood 
structure, the partial dependence now includes more observations around Zi com-
pared to the first order, hence retaining more dependencies.
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Table 3  RMSE ( ×10−2 ) and the standard errors (the values in the brackets) of � for the Potts models with 
the first order neighbourhood structure.  Bold fonts highlight the smallest RMSE

q � 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

322 2 RCoDA 3.9 4.7 4.8 5.3 5.3 5.7 5.7 5.1 6.5 7.6
(3.8) (4.6) (4.7) (5.1) (5.1) (5.2) (4.9) (4.5) (2.5) (7.5)

PL 4.3 4.6 4.4 4.9 4.8 4.6 4.6 5.3 3.5 5.7
(4.0) (4.6) (4.4) (4.5) (4.6) (4.5) (4.3) (4.9) (3.4) (5.6)

TDI 4.0 4.2 4.2 4.3 3.8 3.7 3.6 3.2 2.6 4.8
(3.7) (4.1) (4.1) (4.1) (3.8) (3.1) (3.2) (3.2) (2.5) (4.8)

RDA 4.0 4.3 4.2 4.3 3.8 3.7 3.6 3.2 1.0 5.1
(3.9) (4.3) (4.2) (4.3) (3.8) (3.7) (3.6) (3.2) (0.1) (0.1)

SLPCD 3.7 4.6 4.4 4.3 3.9 3.7 3.1 2.8 2.8 5.5
(3.7) (4.5) (4.4) (4.2) (3.9) (3.7) (3.0) (2.7) (2.7) (5.5)

3 RCoDA 3.9 4.7 5.1 5.1 5.3 4.9 4.9 4.6 4.9 5.5
(3.6) (4.6) (4.7) (4.8) (4.4) (4.4) (4.8) (4.1) (2.0) (5.4)

PL 4.4 4.6 4.7 4.9 5.1 4.4 4.2 4.7 3.6 4.2
(4.2) (4.6) (4.6) (4.4) (4.2) (4.2) (4.0) (4.4) (3.6) (4.2)

TDI 4.0 4.4 4.5 4.5 4.5 3.9 3.4 3.4 2.4 2.5
(3.8) (4.0) (4.1) (4.1) (4.1) (3.4) (3.4) (3.1) (2.4) (1.3)

SLPCD 3.9 4.5 4.6 4.3 3.9 3.8 3.2 3.4 2.7 5.1
(3.9) (4.5) (4.6) (4.3) (3.9) (3.8) (3.2) (3.4) (2.5) (2.8)

1282 2 RCoDA 1.1 1.2 1.1 1.4 1.2 1.4 1.6 1.7 3.0 2.6
(1.0) (1.2) (1.1) (1.2) (1.2) (1.3) (1.3) (1.3) (1.1) (1.7)

PL 1.1 1.1 1.1 1.2 1.1 1.1 1.2 1.2 1.1 1.4
(1.0) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.3)

TDI 1.1 1.1 1.0 1.0 0.9 0.9 0.8 0.7 0.9 4.1
(1.1) (1.1) (1.0) (1.0) (0.9) (0.8) (0.7) (0.7) (0.9) (0.7)

SLPCD 1.1 1.2 1.1 1.1 0.9 1.0 0.9 0.6 0.9 4.2
(1.0) (1.2) (1.0) (1.0) (0.9) (0.9) (0.8) (0.6) (0.8) (1.1)

3 RCoDA 1.1 1.2 1.1 1.1 1.1 1.2 1.2 1.3 1.7 2.0
(1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (1.1) (0.7) (1.3)

PL 1.1 1.2 1.1 1.1 1.1 1.0 1.1 1.1 1.0 1.0
(1.1) (1.1) (1.1) (1.1) (1.1) (1.0) (1.1) (1.1) (1.0) (1.0)

TDI 1.1 1.1 1.0 1.0 1.0 0.9 0.8 0.8 0.6 1.2
(1.1) (1.1) (1.1) (1.1) (0.9) (0.8) (0.8) (0.6) (0.6) (0.3)

SLPCD 1.2 1.1 1.2 1.1 0.9 0.9 1.0 0.8 0.7 3.3
(1.2) (1.1) (1.1) (1.1) (0.9) (0.9) (0.9) (0.8) (0.6) (1.0)
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4.1  Computation time

All the four algorithms RCoDA, PL, TDI and SLPCD were implemented by the 
current authors in Matlab. The detailed information of the CPU of our machine is 
as follow: Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz. RDA was implemented 
in C language since the code was kindly provided by the authors (modified for 
our purposes). Table 5 shows a comparison of computation times for the differ-
ent algorithms. All methods were implemented for the first order neighbourhood 
structure Ising models.

From Table 5, generally, PL, TDI and SLPCD are the fastest methods. While 
only SLPCD and TDI are scalable with respect to the lattice size. One of the rea-
sons of the fast computation is that both TDI and SLPCD require look-up tables 
to be pre-calculated. At the moment, computational time for look-up tables are 
ignored in Table 5. The advantage of SLPCD over TDI lies in that the look-up 
table of SLPCD takes much less time than TDI.

SLPCD is more efficient than TDI in two aspects. First of all, as we mentioned 
before, one n × n Potts model sample provides approximate n2 samples in the 
SLPCD approach, whereas it is only one sample in TDI. In this sense, SLPCD is 

The results are based on 200 simulated data sets for each 322 , 1282 and 2562 lattices. Both scenarios 
under q = 2 and q = 3 are shown

Table 3  (continued)

q � 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

2562 2 RCoDA 0.6 0.5 0.6 0.6 0.6 0.8 0.9 1.3 2.6 2.4

(0.6) (0.5) (0.6) (0.6) (0.6) (0.7) (0.6) (0.6) (0.7) (0.8)

PL 0.6 0.5 0.6 0.6 0.5 0.6 0.6 0.6 0.5 0.6

(0.6) (0.5) (0.5) (0.6) (0.5) (0.5) (0.5) (0.5) (0.5) (0.6)

TDI 0.5 0.5 0.6 0.5 0.5 0.4 0.4 0.4 0.4 4.1

(0.5) (0.5) (0.5) (0.5) (0.5) (0.4) (0.4) (0.4) (0.3) (0.6)

SLPCD 0.7 0.6 0.5 0.5 0.5 0.5 0.5 0.4 0.9 4.3

(0.6) (0.6) (0.5) (0.5) (0.5) (0.4) (0.4) (0.3) (0.3) (0.4)

3 RCoDA 0.6 0.6 0.5 0.7 0.6 0.6 0.7 0.7 1.0 1.8

(0.6) (0.6) (0.5) (0.6) (0.6) (0.6) (0.7) (0.6) (0.4) (0.7)

PL 0.6 0.5 0.6 0.6 0.5 0.6 0.6 0.6 0.5 0.5

(0.6) (0.5) (0.6) (0.5) (0.5) (0.5) (0.5) (0.6) (0.5) (0.5)

TDI 0.6 0.6 0.5 0.5 0.5 0.5 0.4 0.4 0.3 1.1

(0.6) (0.6) (0.5) (0.5) (0.5) (0.5) (0.4) (0.4) (0.3) (0.2)

SLPCD 0.6 0.6 0.6 0.6 0.5 0.5 0.6 0.4 0.3 3.4

(0.6) (0.6) (0.5) (0.6) (0.5) (0.5) (0.5) (0.4) (0.2) (0.7)
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n2 times more efficient than TDI. Moreover, once the look-up tables were gener-
ated, they can be applied to infer about any size of the Potts model under SLPCD 

Table 4  RMSE ( ×10−2 ) and standard errors (in bracket) of � for a second order neighbourhood depend-
ence. Bold fonts highlight the smallest RMSE

The results are based on 200 simulated data sets for each 322 , 1282 and 2562 lattices. Both scenarios 
under q = 2 and q = 3 are shown

� = 0.1 � = 0.2 � = 0.3 � = 0.4

q = 2 q = 3 q = 2 q = 3 q = 2 q = 3 q = 2 q = 3

322 RCoDA 3.9 3.9 4.7 4.7 4.8 5.1 3.2 2.6
(3.0) (3.2) (3.0) (3.1) (2.9) (2.9) (2.2) (2.5)

PL 4.3 4.4 4.6 4.6 4.4 4.7 2.6 2.0
(2.6) (3.0) (2.4) (2.6) (2.0) (2.3) (1.8) (1.8)

TDI 4.0 4.0 4.2 4.4 4.2 4.5 2.4 1.2
(3.0) (2.8) (2.6) (2.5) (2.2) (2.1) (1.0) (1.2)

SLPCD 3.1 2.9 3.1 2.6 2.0 2.1 0.9 1.2
(2.7) (2.9) (2.2) (2.5) (1.5) (2.0) (0.8) (1.1)

1282 RCoDA 1.1 1.1 1.2 1.2 1.1 1.1 0.6 0.7
(0.8) (0.9) (0.8) (0.8) (0.6) (0.7) (0.6) (0.6)

PL 1.1 1.1 1.1 1.2 1.1 1.1 0.6 0.5
(0.6) (0.8) (0.6) (0.7) (0.5) (0.6) (0.4) (0.4)

TDI 1.1 1.1 1.1 1.1 1.0 1.0 0.5 0.3
(0.9) (0.8) (0.6) (0.6) (0.5) (0.5) (0.4) (0.3)

SLPCD 0.9 0.8 0.7 0.6 0.8 0.5 0.5 0.3
(0.7) (0.8) (0.5) (0.6) (0.4) (0.5) (0.4) (0.3)

2562 RCoDA 0.6 0.6 0.5 0.6 0.6 0.5 0.5 0.5
(0.4) (0.5) (0.4) (0.4) (0.3) (0.4) (0.3) (0.3)

PL 0.6 0.6 0.5 0.5 0.6 0.6 0.3 0.2
(0.3) (0.4) (0.3) (0.3) (0.2) (0.3) (0.2) (0.2)

TDI 0.5 0.6 0.5 0.6 0.6 0.5 0.2 0.2
(0.5) (0.4) (0.3) (0.3) (0.2) (0.2) (0.2) (0.1)

SLPCD 0.4 0.4 0.5 0.3 0.8 0.2 0.4 0.1
(0.4) (0.4) (0.3) (0.3) (0.2) (0.2) (0.2) (0.1)

Table 5  Computation times in 
seconds per iteration of MCMC

RDA was not implemented for the large lattice

Size 32×32 64×64 128×128 256×256

RCoDA 0.014 0.018 0.034 0.075
PL 0.001 0.003 0.010 0.036
TDI 0.006 0.006 0.006 0.006
RDA 0.015 0.029 – –
SLPCD 0.00006 0.00006 0.00007 0.00007
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whereas TDI has to generate a different look-up table for each different size of the 
Potts models. Hence, SLPCD outperforms TDI overall and thus all other methods 
in terms of computational time.

Clearly, it is unfair to ignore pre-calculation times in TDI and SLPCD as shown 
in Table 5. As we just mentioned, TDI needs to calculate the look-up tables when-
ever the size of the Potts model changes. Therefore, the pre-calculation time must be 
taken into account when considering computational efficiency. On the other hand, 
SLPCD can apply its look-up table to any lattice size. Thus, the time consumed 
on computing look-up tables can be ignored. Thus, SLPCD is scalable with respect 
to lattice size. There are two quantities that affect the computational cost to produce 
the look-up tables of SLPCD. Firstly, the denseness of the grid for � and secondly, 
the Monte Carlo sample size. In this paper, the step size of � was set to be 0.001 
when the look-up tables were calculated. For the second factor, 500 small ( 32 × 32 ) 
Potts models were generated which provided 512,000 relevant samples in total. This 
means 512,000 samples are generated to approximate the Multinomial distributions 
for each � . It takes 18.7 seconds to generate 512,000 samples. There are 1000 � ’s 
for a grid of size 0.001 in the interval of [0, 1]. Therefore, the pre-calculation takes 
around 5 hours. However, since parallel computing is now easily accessible, and 
computation for each � can be done simultaneously, this will further reduce the pre-
calculation time.

5  Real data examples

In this section, we present some real data examples of where Potts models are used. 
The first involve a texture analysis on a regular grid. In the second example, we 
demonstrate the use of SLPCD on an irregular lattice and a final example involves 
segmentation of a satellite image.

5.1  Texture analysis

Texture analysis is an important branch of computer vision and image segmenta-
tion (Bharati et al. 2004). Regions or patches on an image can be characterised by 
their texture content. Using measures such as gray scale on a photographic image, 
values at each pixel of the image can be used to segment the images into regions 
of similar textures. The Potts model is a natural choice for incorporating the spatial 
dependence when segmenting images (Haindl et al. 2012), which can then be used 
in applications such as texture synthesis where one may reproduce or enlarge the 
texture image. Another application is in object detection, where one may be inter-
ested in separating for example, weeds from grass in an automatic weed control sys-
tems (Watchareeruetai et al. 2006).

Here we consider the grass image available from the website http:// sipi. usc. 
edu/ datab ase/ datab ase. php? volume= textu res. The image was originally studied in 
Brodatz (1966) and was recently analyzed in Zhu and Fan (2018). Without loss of 

http://sipi.usc.edu/database/database.php?volume=textures
http://sipi.usc.edu/database/database.php?volume=textures
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generality, we take the first 256 rows and 256 columns as our data of interest, shown 
in Fig. 3.

Similarly to Zhu and Fan (2018), we use a two-component Gaussian mixture 
model of the form in Eq. (2), where �(yi ∣ �,Zi) is taken as the Gaussian distribu-
tion for yi conditional on the model parameters � = (�1, �2) , and 
�j = (�j, �

2
j
), j = 1, 2 and Zi , �(�) and �(�) denote the prior and hyper prior for the 

unknown parameters and yi denotes the actual pixel value of the grass image. We 
set vague prior distributions for mean parameters and standard deviation parame-
ters, that is �j ∼ N(0.5, 1002) and �2

j
∼ IG(0.001, 0.001), j = 1, 2 . Noninformative 

prior distribution is set on parameter � , that is � ∼ U[0, 4] . Given the posterior 
distribution as Eq. (2), the conditional distribution for each parameter is given as 
below,

where Ci is the set of index belonging to group i. A Gibbs sampler with Random 
Walk Metropolis-Hastings algorithm  was adopted to draw posterior samples. In 
total, 6000 MCMC iterations was conducted, while keeping the latter 4000 itera-
tions for further inference. It takes 0.59 seconds to run one iteration. The computa-
tion time is order of n2 in general. We fitted the Ising model with both the first order 
and the second order neighborhood structure respectively. The results are shown in 
Table 6.

Table 6 indicates that TDI and SLPCD obtain similar posterior distributions of 
all the parameters. This suggests that SLPCD performs very well in practice since 

(10)�(Zi ∣ ⋅) ∝�(yi ∣ Zi, �Zi)�(Zi ∣ �, �Zi), for i = 1,⋯ , n2;

(11)�(� ∣ ⋅) ∝�CG(� ∣ �)�(�);

(12)�(�i ∣ ⋅) ∝
∏
j∈Ci

�(yj ∣ �i), for i = 1, 2,

Fig. 3  A 256 × 256 image of 
grass taken from Brodatz (1966)
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TDI is the only algorithm that computes the full dependence structure in the Potts 
model and can be considered as the benchmark. PL and RCoDA provides more 
similar results, while the mixture components parameters are not too different to 
those obtained by SLPCD and TDI, the estimates of � are higher from these other 
two approaches.

We proceed to assess the performance of the competing methods using the 
average in-sample posterior predictive mean squared error (MSE). Specifically, at 
each MCMC iteration, we generate the posterior predictive estimate of the image 
using the current estimate of parameters in the MCMC chain. We then com-
pute the average of the squared pixel-by-pixel difference between the simulated 
image and the true image. The average posterior predictive error is then taken 
as the average over all the MCMC iterations. We obtained the value of 0.0150 
for SLPCD, 0.0346 for PL, 0.0328 for RCoDA and 0.0296 for TDI in the first 
order model. This indicates that SLPCD outperforms the others. The correspond-
ing average MSE for the second order models were 0.0151, 0.0368, 0.0343 and 
0.0300 respectively, showing that SLPCD is again the best.

Although the above MSE is not an absolute measurement of goodness of fit, 
these values indicate the relative goodness of fit for all the approaches. SLPCD 
performs better than PL, RCoDA and TDI for this grass image. As an additional 
evaluation of our models, Fig. 4 provides visual representations of classifications 
based on the posterior estimates given by PL, RCoDA and TDI respectively. Vis-
ually, the differences can be difficult to discern and similar images were produced 
by all four methods. Results from PL appears to be most different from the other 
three methods.

Table 6  Posterior means and 
standard deviations (in brackets) 
for grass data for RCoDA, PL, 
TDI and SLPCD respectively

(F) denotes first order neighbourhood structure. (S) denotes the sec-
ond order neighbourhood structure

�1 �2 �1 �2 �

RCoDA-(F) 0.265 0.620 0.014 0.018 1.280
(0.0028) (0.0017) (0.00037) (0.00029) (0.022)

PL-(F) 0.251 0.609 0.013 0.019 1.364
(0.0022) (0.0015) (0.00026) (0.00027) (0.017)

TDI-(F) 0.302 0.650 0.017 0.013 0.841
(0.0015) (0.0010) (0.00022) (0.00014) (0.0033)

SLPCD-(F) 0.301 0.650 0.017 0.013 0.853
(0.0016) (0.0011) (0.00023) (0.00015) (0.0032)

RCoDA-(S) 0.252 0.611 0.013 0.019 0.567
(0.0025) (0.0016) (0.00029) (0.00030) (0.0080)

PL-(S) 0.236 0.599 0.011 0.021 0.600
(0.0022) (0.0015) (0.00027) (0.00029) (0.0066)

TDI-(S) 0.303 0.649 0.017 0.013 0.373
(0.0015) (0.0010) (0.00021) (0.00016) (0.0013)

SLPCD-(S) 0.317 0.662 0.011 0.019 0.370
(0.0008) (0.0012) (0.00011) (0.00022) (0.0006)
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Figure 4 is also a showcase of how to generate a similar texture to the ground 
truth texture. In this process, a good estimator of � , which controls the interaction in 
the texture, would be beneficial.

5.2  Lung cancer pathology example on an irregular lattice

Digital pathology imaging of tumor tissues capturing histological details in high 
resolution, is fast becoming a routine clinical procedure. Statistical methods can 
be developed to utilize these high-resolution images to assist patient prognosis 
and treatment planning. Researchers have designed a pipeline to predict cell types 
in pathology images, details of the project can be found at https:// qbrc. swmed. 
edu/ proje cts/ cnn/. The predicted images of cell types can be further employed to 
study spatial pattern and interactions between different cell types. It is reported 
in Li et  al. (2018) that the spatial pattern and interaction may reveal important 
information about tumor cell growth and its micro-environment. We consider the 
problem of modelling a pathology image with irregular locations involving three 
different types of cells: lymphocyte, stromal, and tumor cells. The pathology is 
pre-processed by ConvPath (https:// qbrc. swmed. edu/ proje cts/ cnn/). The image 
of interest was collected by the Non-small-cell lung cancer (NSCLC) project 
(https://biometry.nci.nih.gov/cdas/nlst/). This image is a lung cancer pathology 
image. The original pre-processed image is of 1000 × 1000 , and there are many 
empty pixels in the image. The original image is very sparse, it is not ideal to 
illustrate our approach. Thus, we downsampled the original image to 100 × 100 , 
see Fig. 5. We employed a 10 × 10 window to scan the original image and count 
the number of cells of each type. The 10 × 10 window would be replaced by the 
most frequent cell type. This results in the downsampled image as shown by 
Fig. 5.

An irregular lattice is considered as a generalization of a regular lattice. More 
specifically, in a regular lattice, the boundary area consists of four edges where the 
pixels have a reduced number of neighbours. Examples of a regular and irregular 

Fig. 4  Results of the classifications. Respectively ground truth, SLPCD, PL, RCoDA and TDI from left 
to right. The first row correspond to first order neighbourhood structure, the second row correspond to 
second order neighbourhood structure

https://qbrc.swmed.edu/projects/cnn/
https://qbrc.swmed.edu/projects/cnn/
https://qbrc.swmed.edu/projects/cnn/
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Fig. 5  Lung cancer pathology image. Lymphocyte, stromal, and tumor cells are marked in red, green and 
blue, respectively. Patches of white can be seen in the image which correspond to no cell

Fig. 6  An 8 × 8 lattice. Left panel: regular lattice. Right panel: irregular lattice
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lattice are demonstrated in Fig.  6 (left panel). An irregular lattice can always be 
included inside a regular lattice, as shown in the right panel of Fig. 6. In irregular 
lattices, the boundary area is constituted of more irregular edges which may lead 
to more pixels having a reduced number of neighbours. For instance, pixel A in the 
right panel of Fig. 6 has only two neighbours, whereas it would have four neigh-
bours in a regular lattice.

In summary, the irregularity changes the boundary area, leading to extra irregular 
pixels which generates special conditional distributions in SLPCD. The special pix-
els can be handled naturally in the algorithm of SLPCD, see Sec. 2.4.

Figure 5 shows the distribution of different cell types in the lung cancer pathol-
ogy image. We use a Potts model defined on irregular lattice with q = 3 in order to 
model the different cell types. We aim to estimate spatial correlation of this Potts 
model for further clinical diagnosis. Li et al. (2018) proposed a Potts mixture model 
to fit this figure where they partition the lattice into several subregions, and in each 
region a spatial correlation is estimated. These estimated � are further used in sur-
vival analysis. Here we will estimate the spatial correlation for the entire region. The 
prior distribution of � is set to be uniform distribution over [0, 0.9]. The proposal 
distribution is chosen to be �∗ ∼ N(� t, 0.0052) . In total, 6000 MCMC iterations 
were implemented and the first 2000 iteration were abandoned as burnin. It takes 
5 × 10−3 for each iteration.

As other approaches, such as PL, RCoDA and TDI are not suitable for irregular 
lattices, only SLPCD can be used here to estimate � . Posterior mean of � is esti-
mated to be 0.358 and standard deviation of � is estimated as 5.8 × 10−4 . Further 
work will be needed to extend the use of SLPCD in the lung cancer pathology analy-
sis context and is beyond the scope of this paper.

5.3  Satellite remote sensing image

Massive satellite remote sensing image data are available nowadays. Such images 
can be utilized in various domain areas, for example in land use estimation (Small 
2001), ocean color monitoring (McClain 2009) and vegetation mapping (Molnár 
et al. 2007). Due to the large size of the satellite images, automatic algorithms are 
always preferred to complete such tasks. In this example, we demonstrate via a real 
satellite remote sensing image, which will be classified into three clusters which 
denote different vegetation type. Such analyses can be used by environmental sci-
entists to estimate global levels of plant biomass and monitor land use monitoring 
(Moores et al. 2020). We aim to classify all the pixels in the remote sensing image 
into different land types, such as water and forest.

The remote sensing images of Sydney was downloaded from from the USGS/
EROS EarthExplorer website (https:// earth explo rer. usgs. gov/). The downloaded 
image is shown in the left panel of Fig. 7. The size of this image is 1600 × 1600. 
We use hidden Potts model with q = 3 to model this image and apply SLPCD to 
implement parameter inference. The prior distribution of � is set to be the uniform 
distribution over the interval of [0,  0.9]. The proposal distribution of � is chosen 

https://earthexplorer.usgs.gov/
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to be �∗ ∼ N(0, 0.0022) . Totally, 2000 MCMC iterations have been conducted and 
1000 iterations are thrown away as burnin. It takes 2.14 seconds to run one itera-
tion, since the observation is a multivariate normal distribution. The posterior mean 
and standard deviation of � is 0.416 and 5.7 × 10−4 respectively. The right panel of 
Fig. 7 shows the MAP estimated image segmentation of vegetation types. Given the 
estimation, scientists can monitor land use over a specific area.

6  Discussion and conclusion

In this paper, we proposed a synthetic likelihood to approximate the likelihood func-
tion of the Potts model. Our method avoids calculation of the intractable normal-
izing constant. Instead, the likelihood function is transformed to be the product of 
many conditional density functions and the distribution of the corresponding sum-
mary statistics is approximated through Monte Carlo simulations.

SLPCD was proposed on account of three considerations. Firstly, it is fast. It 
takes much less time than comparable methods with and without counting in the cal-
culation of the look-up tables, as discussed in Sect. 4.1. Our simulation studies show 
that the computational savings did not come at a cost of accuracy. The two other 
defining features of SLPCD are its ability to scale up to larger lattices, and ability 
to handle irregular lattices. These capacities are important in the context of modern 
images with higher and higher resolutions, and ever more complex.

Our simulation results show that SLPCD performs similarly to TDI, which is the 
only method that is exact, in the sense that there are no added approximations to the 
likelihood. In this sense, SLPCD has outperformed all other approximation methods. 
Our simulations suggest that the SLPCD approach is both reliable and very efficient.

Fig. 7  Left: a satellite remote sensing image of Sydney. Right: the MAP estimate of the vegetation types 
for Sydney. The yellow color denotes water (ocean/river), blue color denotes forest and the light blue 
color denotes developed areas (industrial/residential)
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It is noticeable that the look-up table can be utilized in different fashions. Through-
out our simulation studies, a grid of � ’s were considered due to the simplicity of uni-
variate setting. As the step size of the chosen grid is 0.001, the granularity of estimation 
cannot be finer than 0.001. There are two alternatives to achieve finer granularity of 
estimation. The first approach is to utilize the current look-up table. For the values of � 
which are not in the look-up table, the corresponding PCD could be obtained by inter-
polation. This approach is as computationally efficient as our current implementation. 
However, as dimension of parameters increases, interpolation could be problematic. 
The second approach is not to use a look-up table at all. For any value of � , an online 
estimation of its corresponding PCD can be obtained via Monte Carlo simulation. This 
approach in theory can eliminate the errors caused by interpolation. The disadvantage 
is that it is computationally intensive for Markov chain Monte Carlo algorithms but 
maybe feasible using variational Bayesian inference where the number of likelihood 
evaluations are much smaller. This approach is particularly useful as the dimension of 
parameters increases.

Appendix A Proof of Theorem 1

Proof Let Si denote the sufficient statistic of �(Zi ∣ Zi−1, Zi−n, �) , P̂ denote the param-
eters estimated from the Monte Carlo simulation and P0 denote the true parameters 
in the Multinomial distribution. As p̂Si is a consistent estimator of p0,Si , we have that 
for ∀ 𝜖, 𝛿 > 0 , ∃ N∗ > 0 s.t. for ∀ N > N∗,

As p0,Si > 0 , it is straightforward to see

Dropping notational dependence on � , working with Kullback-Leibler (KL) diver-
gence and the Multinomial distribution with K categories, we have

Combining the above Equations with Eq. (A1), we can conclude that 
KL

(
�(Si ∣ P0) → 0 as N → ∞ , where N is the sample size of Monte Carlo simula-

tion. Since S is sufficient for Z , then we can replace each piece inside �C(Z ∣ �) with 
the Multinomial likelihood over Si without loss of information (Cam 1964).   ◻

P
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Appendix B Proof of Theorem 2

Proof According to Algorithm 3, �CG(� ∣ Z) is a step function where for some speci-
fied value M, �CG(� = �∗ ∣ Z) = �C(�k ∣ Z) , for �∗ ∈

[
�k −

(�u−�l)∕M

2
, �k +

(�u−�l)∕M

2

]
 . 

In other words, �CG(� ∣ Z) is a discrete approximation of �C(� ∣ Z).
Then we have,

where Q� =
∑M

k=1
�C(� = �k ∣ Z) is the normalizing constant of �CG(� ∣ Z) . Obvi-

ously, Ql ≤ Q𝜖 < ∞ and Q� is the numerical integration of ∫ �u
�l

�C(� ∣ Z)d� . Accord-
ing to the error bound theory of numerical integration,

Similarly, �∗
CG

(�) is the numerical integration of �C(�) with mid-point rule. Thus,

Combining the above, we have

As reported in Varin et  al. (2011), the estimator from the composite likelihood is 
unbiased, that is, �C(�) = � . Therefore,
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Similarly for the variance, we have

and

Therefore,

  ◻
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