
IQP Sampling and Verifiable Quantum Advantage:
Stabilizer Scheme and Classical Security

Michael J. Bremner*1, Bin Cheng†1, and Zhengfeng Ji‡2

1Centre for Quantum Computation and Communication Technology, Centre for Quantum
Software and Information, School of Computer Science, Faculty of Engineering and Information

Technology, University of Technology Sydney, NSW, Australia
2Department of Computer Science and Technology, Tsinghua University, Beijing, China

Abstract

Sampling problems demonstrating beyond classical computing power with noisy interme-
diate scale quantum (NISQ) devices have been experimentally realized. In those realizations,
however, our trust that the quantum devices faithfully solve the claimed sampling problems
is usually limited to simulations of smaller-scale instances and is, therefore, indirect. The
problem of verifiable quantum advantage aims to resolve this critical issue and provides us
with greater confidence in a claimed advantage. Instantaneous quantum polynomial-time
(IQP) sampling has been proposed to achieve beyond classical capabilities with a verifiable
scheme based on quadratic-residue codes (QRC). Unfortunately, this verification scheme
was recently broken by an attack proposed by Kahanamoku-Meyer.

In this work, we revive IQP-based verifiable quantum advantage by making two major
contributions. Firstly, we introduce a family of IQP sampling protocols called the stabilizer
scheme, which builds on results linking IQP circuits, the stabilizer formalism, coding theory,
and an efficient characterization of IQP circuit correlation functions. This construction
extends the scope of existing IQP-based schemes while maintaining their simplicity and
verifiability. Secondly, we introduce the Hidden Structured Code (HSC) problem as a well-
defined mathematical challenge that underlies the stabilizer scheme. To assess classical
security, we explore a class of attacks based on secret extraction, including the Kahanamoku-
Meyer’s attack as a special case. We provide evidence of the security of the stabilizer scheme,
assuming the hardness of the HSC problem. We also point out that the vulnerability observed
in the original QRC scheme is primarily attributed to inappropriate parameter choices, which
can be naturally rectified with proper parameter settings.

1 Introduction

Quantum computing represents a fundamental paradigm change in the theory of computation,
and promises to achieve quantum speedup in many problems, such as integer factorization [1]

*Michael.Bremner@uts.edu.au
†Bin.Cheng@student.uts.edu.au
‡jizhengfeng@tsinghua.edu.cn

1

ar
X

iv
:2

30
8.

07
15

2v
1

 [
qu

an
t-

ph
]

 1
4

A
ug

 2
02

3

and database search [2]. However, many quantum algorithms are designed to be implemented
in the fault-tolerant regime, which are too challenging for our current noisy intermediate-scale
quantum (NISQ) era [3]. Experimentally, we can perform random-circuit sampling [4, 5, 6, 7]
and boson sampling [8, 9] at a scale that is arguably beyond the capability of classical simulation.
But when it comes to verifiability, although these experiments can use some benchmarking
techniques such as cross-entropy benchmarking [5] to certify the quantum devices, they can-
not be efficiently verified in an adversarial setting without modification of the underlying
computational task.

Classical verification of quantum computation is a long-standing question, which was first
asked by Gottesman [10]. In the context of verifying arbitrary quantum computation, there have
been a plethora of important results [11, 12, 13, 14, 15, 16, 17, 18, 19]. The more relevant context
of this work is generating a test of quantumness. The goal is to create a computational task
that is beyond the capabilities of classical computing, that uses minimal quantum and classical
computing to generate and verify. A motivating example is given by Shor’s algorithm for integer
factorization [1], which is appealing in that hard instances can be easily generated and verified
classically yet finding the solution is beyond the capabilities of classical computers. However,
this also has the drawback that the quantum solution also seems to be beyond the capabilities of
NISQ devices.

Recently, there have been tests of quantumness that combine the power of both interactive
proofs and cryptographic assumptions [20, 21, 22]. This class of cryptographic verification
protocols usually uses a primitive called trapdoor claw-free (TCF) functions, which has the
following properties. First, it is a 2-to-1 function that is hard to invert, meaning that given
y = f (x) = f (x′), it is hard for an efficient classical computer to find the preimage pair (x, x′).
Second, given a trapdoor to the function f (x), the preimage pair can be efficiently found on
a classical computer. We will refer to this class of verification protocols as the TCF-based
protocols. The TCF-based protocols require the quantum prover to prepare the state of the form
∑x |x⟩ | f (x)⟩. Although a recent experiment implemented a small-scale TCF-based protocol on
a trapped-ion platform [23], implementing this class of protocols is still very challenging for the
current technology.

Another class of verification protocols is based on instantaneous quantum polynomial-time
(IQP) circuits initiated by Shepherd and Bremner [24]. IQP circuits are a family of quantum
circuits that employ only commuting gates, typically diagonal in the Pauli-X basis. In IQP-
based verification protocols, the verifier generates a pair consisting of an IQP circuit UIQP
and a secret key s ∈ {0, 1}n. After transmitting the classical description of the IQP circuit
to the prover, the verifier requests measurement outcomes in the computational basis. Then,
the verifier uses the secret to determine whether the measurement outcomes are from a real
quantum computer. Such a challenge seems hard for classical computers, as random IQP
circuits are believed to be computationally difficult to simulate classically with minimal physical
resources, assuming some plausible complexity-theoretic assumptions such as the non-collapse
of polynomial hierarchy [25, 26, 27].

The use of random IQP circuits for the verification protocol is problematic due to the anti-
concentration property [28, 26]. To address this issue, the Shepherd-Bremner scheme employs
an obfuscated quadratic-residue code (QRC) to construct the pair (UIQP, s) [29]. While the
Shepherd-Bremner scheme was experimentally attractive, it suffered from a drawback as its
cryptographic assumptions were non-standard and lacked sufficient study compared to TCF-
based protocols. This was especially apparent when in 2019 Kahanamoku-Meyer discovered

2

a loophole in the Shepherd-Bremner scheme, enabling a classical prover to efficiently find the
secret, which subsequently allows the prover to generate data to spoof the test [30]. Given the
potential of IQP-based protocols to achieve verifiability beyond classical computing using fewer
resources than, say, Shor’s algorithm, it is crucial to investigate the possibility of extending and
rectifying the Shepherd-Bremner construction.

In this work, we propose a new IQP-based protocol, which we refer to as the stabilizer scheme.
Our construction allows the verifier to efficiently generate an IQP circuit, UIQP = eiπH/8, and a
secret, s, so that the correlation function relative to the secret has a magnitude equal to 2−g/2,
where g is a tunable integer. The stabilizer scheme is based on the interplay between IQP circuits,
stabilizer formalism and coding theory, and it significantly strengthens previous constructions
based on quadratic-residue codes [24] or random small IQP circuits [28]. Our characterization
on IQP circuits builds upon and integrates several previous results [31, 32], which tackle this
problem from the perspective of binary matroids and Tutte polynomials. In order to explore
the classical security, we formulate the Hidden Structured Code problem, which captures the
hardness of classical attacks based on secret extraction. Then, we investigate a general class
of such classical attacks, which includes Kahanamoku-Meyer’s attack as an instance. We give
positive evidence that this class of classical attacks takes exponential time to generate the data
with correct correlation relative to the secret. Specifically, we show that a generalization of
Kahanamoku-Meyer’s attack, named Linearity Attack, fails to break the stabilizer scheme if
the parameters are chosen appropriately. Additionally, we have designed a new obfuscation
technique called column redundancy, which can even be used to fix the recently-found weakness
in the Shepherd-Bremner construction [33]. Specifically, Claim 3.1 in Ref. [30] states that the
attack algorithm for the Shepherd-Bremner construction succeeds in O(n3) time on average,
which turns out to be true only under certain parameter choices. This can be naturally rectified
with proper parameter settings enabled by our column redundancy technique. Our results
provide positive evidence for the security of the IQP-based verification protocols.

This paper is organized as follows. In the rest of the Introduction, we first give the general
framework of IQP-based verification protocols. Then, we state our main results in more detail,
followed by discussing the related works. In Section 2, we give the preliminaries, including sta-
bilizer formalism, necessary results from coding theory and the Shepherd-Bremner construction.
In Section 3, we give the characterization of the state generated by IQP circuits with θ = π/4
and the correlation function ⟨Zs⟩ with θ = π/8. Then, in Section 4, we present the stabilizer
construction for the IQP-based protocols. In Section 5, we analyze the classical security of
the stabilizer scheme and explore the classical attacks based on secret extraction. Finally, we
conclude and give open problems in Section 6.

1.1 IQP-based verification protocol

Here, we focus on a specific family of IQP circuits, the X program [24], where all local gates
are diagonal in the Pauli-X basis. One can represent this family of IQP circuits by a time
evolution of the Hamiltonian H, which consists of only products of Pauli X’s. For example,
for H = X1X2X4 + X3X4 + X1X3, the corresponding IQP circuit is given by UIQP = eiθH =
eiθX1X2X4 eiθX3X4 eiθX1X3 . In the general case, the evolution time for each term in H can be different,
but we focus on the case where θ = π/8 for all terms in this work. One can also use an m-by-n
binary matrix to represent the IQP Hamiltonian, where m is the number of local terms and n is
the number of qubits. Each row of the matrix represents one local term and the locations of 1’s

3

Alice
verifier, classical

Bob
prover, (supposedly) quantum

1 Generate the pair and
calculate classically

Hamiltonian

evolution time
2 Prepare

3 Measure all qubits in the basis
and sample

4 Calculate the correlation function
from Bob’s samples

5 If is within an allowed
error of Alice’s precomputed
value , then accept.

Figure 1: Schematic for IQP-based verification protocol in the case θ = π/8.

indicate the qubits that it acts on. The matrix representation for H in the previous example is
given by

H =

1 1 0 1
0 0 1 1
1 0 1 0

 . (1.1)

General framework. The general framework for the IQP-based verification protocol is shown
in Fig. 1. Here, the verifier first generates the pair of IQP Hamiltonian H and the secret
s ∈ {0, 1}n. She computes the correlation function ⟨Zs⟩ := ⟨0n|U†

IQPZsUIQP|0n⟩ relative to the
secret, which can be achieved classically efficiently [28, 31]. Then, the classical description of the
Hamiltonian H is sent to the prover, while the secret is kept on the verifier’s side. The verifier
also instructs the prover the evolution time for each term of the Hamiltonian. After that, the
prover repeatedly prepares the state eiθH |0n⟩, measures all qubits in the computational basis,
and obtains a set of samples x1, . . . , xT ∈ {0, 1}n, which will be sent back to the verifier. From
the prover’s measurement samples, the verifier estimates the correlation function relative to s by

⟨Z̃s⟩ :=
1
T

T

∑
i=1

(−1)xi ·s . (1.2)

If the value of ⟨Z̃s⟩ is within an allowed error of the ideal value ⟨Zs⟩, then the verifier accepts
the result and the prover passes the verification.

In order to ensure the effectiveness of the verification process, two key challenges must be
addressed. The first one is to evaluate the ideal correlation function, so that the verifier can
compare it with the value obtained from the prover’s measurement outcomes. The second one
is to design a suitable pair (H, s), so that the correlation function ⟨Zs⟩ is sufficiently away from
zero. Otherwise, the verifier may need to request a super-polynomial number of samples from
the prover to make the statistical error small enough, making the protocol inefficient.

4

Evaluating the correlation function. To evaluate the correlation function, first note that the
Hamiltonian can be divided into two part H = Hs + Rs based on the secret s. Here, Hs anti-
commutes with Zs, i.e., {Zs, Hs} = 0, and the redundant part Rs commutes with Zs, i.e.,
[Rs,Zs] = 0. Correspondingly, the matrix representations satisfy Hs s = 1 and Rs s = 0. Due
to these commutation relations, the value of the correction function only depends on the Hs,
i.e. [28, 31],

⟨Zs⟩ = ⟨0n|ei2θHs |0n⟩ . (1.3)

Then, one can observe an intriguing point from this expression. When θ = π/8, the IQP circuit
is non-Clifford and there is complexity-theoretic evidence that the IQP circuits in this setting is
hard to simulate classically [26]. However, ei2θHs becomes a Clifford circuit, which means that
the correlation function can be computed classically efficiently! Indeed, ⟨Zs⟩ = ⟨0n|ei(π/4)Hs |0n⟩
actually corresponds to an amplitude of the Clifford circuit ei(π/4)Hs . In this way, the verifier can
evaluate the correlation function efficiently using the Gottesman-Knill algorithm [34].

1.2 Main results

In this subsection, we briefly overview the main results of the paper in the following and refer
the reader to later sections for the detailed analysis. The main objective of this work is to devise
a new scheme of the IQP-based verification protocol that strengthens its classical security and
invalidates the known attacks. To achieve this, we start by studying the properties of the state
eiπH/4 |0n⟩. Given a binary matrix H = (c1, . . . , cn), we first transform it into an IQP Hamiltonian
H. By Theorem 3.1, the stabilizer tableau of |ψ⟩ = eiπH/4 |0n⟩ is given by (G, In, r), where the
X part is a Gram matrix G = HTH, the Z part is an identity matrix In, and the phase column r
depends on the Hamming weight of columns in H.

Next, we compute the correlation function | ⟨Zs⟩ | and connect it to a property of the code
Cs generated by columns of Hs. Let C⊥s be the dual code of Cs, Ds := Cs

⋂ C⊥s be the self-dual
intersection and consider g := dim(Cs) − dim(Ds). We then prove in Theorem 3.2 that the
magnitude of the correlation function | ⟨Zs⟩ | is 2−g/2 if the self-dual intersection Ds is a doubly-
even code, and 0 if it is an unbiased even code. Moreover, it can be proved that Ds must be in
one of the two cases, and thus the above gives a complete characterization of the magnitude
of the correlation function. Interestingly, the g number happens to be the rank of the Gram
matrix Gs = HT

s Hs associated with Hs (Proposition 2.5), which also characterizes the overlap
between |0n⟩ and eiπHs/4 |0n⟩ from a group-theoretic perspective (Proposition 2.1). Theorem 3.2
is an effective merging of a number of results that were first discussed by Shepherd in Ref. [31],
with a particular focus on coding theory. Originally, Shepherd studied IQP circuits from the
perspective of binary matroids, codes, and Tutte polynomials.

With these results established, the construction of (H, s) for the verification protocol can be
formulated as follows. Let Hn,m,g = {(H, s)} be a family of pairs of an IQP matrix H ∈ Fm×n

2
and a secret s ∈ Fn

2 so that the corresponding correlation function satisfies | ⟨Zs⟩ | = 2−g/2; the
precise definition is presented in Definition 4.1. Here, the parameters n and m correspond to the
size of the IQP circuits, and g corresponds to the value of the correlation function relative to the
secret. Other than these three parameters, no other structure is imposed on the IQP circuits in
this family. We give an efficient algorithm to sample random instances fromHn,m,g, which we
call the stabilizer construction (Meta-Algorithm 1).

5

Essentially, the stabilizer construction is to randomly generate an obfuscated code and a
secret, so that the corresponding correlation function is sufficiently away from zero, to enable
efficient verification. Specifically, we reduce this problem to sampling two matrices D and F, so
that D is a generator matrix of a random doubly-even code, and F consists of g random columns
satisfying the constraints DTF = 0 and rank(FTF) = g. Jointly, columns in D and F span a linear
subspace that contains the all-ones vector, which must be a codeword because Hs s = 1. We
give an efficient algorithm to sample such matrices D and F.

To explore the classical security, we consider a general class of classical attacks based on
secret extraction. Given (H, s) ∈ Hn,m,g, extracting the secret s from H leads to finding the
hidden code Cs from a larger obfuscated code. Such a hidden substructure problem seems hard
for a classical computer, and we formulate the following conjecture.

Conjecture 1.1 (Hidden Structured Code (HSC) Problem). For certain appropriate choices of n, m, g,
there exists an efficiently samplable distribution over instances (H, s) from the familyHn,m,g, so that no
polynomial-time classical algorithm can find the secret s given n, m and H as input, with high probability
over the distribution onHn,m,g.

To support this conjecture, we extend Kahanamoku-Meyer’s attack to target general IQP
circuits with θ = π/8, and we call this attack the Linearity Attack. This generalized attack
uses linear algebraic techniques to search for a candidate set of secrets, and performs classical
sampling according to this candidate set. By choosing appropriate parameters, random instances
drawn by our stabilizer scheme turns out to invalidate the Linearity Attack, since the search for
the candidate set takes exponential time. As a result, the stabilizer scheme is secure against the
Linearity Attack. Moreover, our analysis suggests that choosing a different set of parameters
for the QRC-based construction can fix the recent loophole in the original Shepherd-Bremner
scheme. This refutes the Claim 3.1 in Ref. [30], which states that the QRC-based construction
can be efficiently broken classically in general.

1.3 Related works

The first explicit construction recipe of (H, s) for the case θ = π/8 is given by Shepherd and
Bremner [24]. In the their construction, Hs is constructed from a specific error-correcting code,
the quadratic-residue code (QRC) [29], which guarantees that the correlation function is always
1/
√

2, a value sufficiently away from zero as desired. Formally, letHQRC
n,m,q = {(H, s)} be a family

of pairs of an IQP matrix H ∈ Fm×n
2 and a secret s so that Hs generates a QRC of length q (up

to row permutations) and H is of full column rank. What the Shepherd-Bremner construction
achieves is to randomly sample instances fromHQRC

n,m,q, where n = (q + 3)/2.
However, it turns out that this set of parameters can only give easy instances. In Ref. [30],

Kahanamoku-Meyer gave a secret-extraction attack (KM attack) against the Shepherd-Bremner
construction. With his attack, a classical prover can find the secret s efficiently with high proba-
bility. Once the secret is found, the prover can easily pass the test by generating appropriately
biased data in the direction of the secret, without the need of actually simulating the IQP circuits.
In Ref. [28], Yung and Cheng proposed to circumvent the attack by starting with a small ran-
domized IQP circuit and using the obfuscation technique in the Shepherd-Bremner scheme to
hide that small IQP circuit [24]. The verifier cannot directly use a fully randomized IQP circuit
because the correlation function will be close to zero for most choices of secrets in that case,
due to the anti-concentration property of IQP circuits [26]. Small correlation functions make

6

it difficult for the verifier to distinguish between an honest quantum prover and a cheating
classical prover outputting random bit strings. This poses a challenge, to balance the security
given by randomized constructions with the scale of the correlation functions that enables easy
verification. This challenge is not fully resolved by the heuristic construction in Ref. [28].

In addition, Shepherd studied IQP circuits with tools of binary matroids and Tutte poly-
nomials, and derived some related results to this work [31]. Specifically, the amplitude of
the IQP circuit ⟨0n|eiθH |0n⟩ is expressed in terms of the normalized Tutte polynomial, and its
computational complexity is studied in various cases. When θ = π/4, the magnitude of the
related Tutte polynomial can be efficiently evaluated using Vertigan’s algorithm [35], which is
similar to the Gottesman-Knill algorithm [34]. This idea was further explored by Mann [32],
which related computing the amplitude to the bicycle dimension and the Brown’s invariant
using results of Ref. [36]. But when θ = π/8 (and any other values except for the multiple of
π/4), computing the amplitude is #P-hard in the worst case. Moreover, Ref. [31] also derived
similar relation to Eq. (1.3), in the language of the normalized Tutte polynomial. Therefore, it
was proved that the correlation function is efficiently classical computable when θ = π/8, and
suggests that this could be used to perform hypothesis test for access to quantum computers,
although no new construction was proposed in Ref. [31].

2 Preliminaries

2.1 Notations

We mainly work on the field F2. We use bold capital letters such as H to denote a matrix and bold
lower-case letters such as s to denote a vector. If not stated otherwise, a vector is referred to as a
column vector, and a row vector will be added the transpose symbol, like pT. The (Hamming)
weight of a vector x is denoted as |x|. The inner product between two vectors x and s is denoted
as x · s; sometimes we will also use H · s to denote the matrix multiplication. We use col(H) and
row(H) to denote the columns and rows of a matrix H, respectively. We use c(H) and r(H) to
denote the number of columns and the number of rows of a matrix H, respectively. The rank of
a matrix H is denoted as rank(H). We use ker(H) to denote the kernel space of H, i.e., the space
of vector v such that Hv = 0. We call two square matrices A and B congruent if there exists an
invertible matrix Q satisfying A = QTBQ, denoted as A ∼c B. We call such an transformation
congruent transformation.

The all-ones vector will be denoted as 1, with its dimension inspected from the context; the
similar rule applies to the all-zeros vector (or matrix) 0. The n× n identity matrix is denoted
as In. For a vector x, we define its support as {j : xj = 1}. We define [n] := {1, 2, . . . , n}. If not
stated otherwise, a full-rank matrix is referred to a matrix with full column rank.

We denote the linear subspace spanned by a set of vectors {c1, . . . , ck} as ⟨c1, . . . , ck⟩. Given
linear subspaces V = ⟨c1, . . . , cl⟩ and U = ⟨c1, . . . , ck⟩ with k < l, we denote the complement
subspace of U in V with respect to the basis {c, . . . , cl} by (V/U)c1,...,cl ; namely, (V/U)c1,...,cl :=
⟨ck+1, . . . , cl⟩. Usually, we are not interested in a specific basis, so we use V/U to denote a
random complement subspace of U in V, i.e., V/U ←R {⟨ck+1, . . . , cl⟩ : V = ⟨c1, . . . , cl⟩, U =
⟨c1, . . . , ck⟩}, where←R denotes a random instance from a set. We let V\U := {v : v ∈ V, v ̸∈
U} be the ordinary complement of two sets.

7

2.2 Stabilizer formalism

Overlap of two stabilizer states. Given two stabilizer states |ψ⟩ and |ϕ⟩, let Stab(|ψ⟩) and
Stab(|ϕ⟩) be their stabilizer groups, respectively, which are subgroups of the n-qubit Pauli group.
Let {P1, . . . , Pn} be the generators of Stab(|ψ⟩) and {Q1, . . . , Qn} be those of Stab(|ϕ⟩). Note that
the set of generators is not unique. Then, the overlap | ⟨ψ|ϕ⟩ | is determined by their stabilizer
groups [37].

Proposition 2.1 ([37]). Let |ψ⟩ and |ϕ⟩ be two stabilizer states. Then, ⟨ψ|ϕ⟩ = 0 if their stabilizer
groups contain the same Pauli operator of the opposite sign. Otherwise, |⟨ψ|ϕ⟩| = 2−g/2, where g is the
minimum number of different generators over all possible choices.

For completeness, we provide an alternative proof in Appendix A. In particular, this implies
that ⟨Zs⟩ = ⟨0n|eiπHs/4|0n⟩ has magnitude either 0 or 2−g/2, where n − g is the maximum
number of independent Pauli-Z products in the stabilizer group of eiπHs/4 |0n⟩.

Tableau representation. A stabilizer state or circuit can be represented by a stabilizer tableau,
which is an n-by-(2n+ 1) binary matrix. The idea is to use 2n+ 1 bits to represent each generator
of the stabilizer group. First, a single-qubit Pauli operator can be represented by (x, z); (0, 0)
corresponds to I, (1, 0) corresponds to X, (0, 1) corresponds to Z and (1, 1) corresponds to Y.
For stabilizer generators, the phase can only be ±1 since the stabilizer group does not contain
−I. So, one can use an extra bit r to represent the phase; r = 0 is for +1 while r = 1 is for −1.
Then, an n-qubit stabilizer generator can be represented by 2n + 1 bits,

(x1, . . . , xn, z1, . . . , zn, r) . (2.1)

For example, the vector for −X1Z2 is (1, 0, 0, 1, 1). Any stabilizer state can be specified by n
stabilizer generators, which commute with each other. Therefore, the state is associated with the
following tableau, x11 · · · x1n z11 · · · z1n r1

...
. . .

...
...

. . .
...

...
xn1 · · · xnn zn1 · · · znn rn

 , (2.2)

whose rows define the stabilizer generators. The first n columns are called the X part, the
(n + 1)-th to 2n-th columns are called the Z part, and the last column are called the phase
column of the stabilizer tableau. As an example, the |0n⟩ state is stabilized by ⟨Z1, . . . , Zn⟩, and
its stabilizer tableau is given by,0 · · · 0 1 · · · 0 0

...
. . .

...
...

. . .
...

...
0 · · · 0 0 · · · 1 0

 . (2.3)

We will call it the standard stabilizer tableau of |0n⟩.

2.3 Coding theory

We present some results regarding coding theory here, with the proof presented in Appendix B.
We only consider linear codes over F2 in this paper. A linear code, or simply a code C of length m

8

is a linear subspace of Fm
2 . One can use a generator matrix H to represent a code, with its columns

spanning the codespace C. The dual code is defined as C⊥ := {v ∈ Fm
2 : v ·w = 0 for w ∈ C}.

The dual code of a linear code is also a linear code. It is not hard to see that C⊥ = ker(HT),
which implies dim(C) + dim(C⊥) = m. A code C is weakly self-dual if C ⊆ C⊥ and (strictly)
self-dual if C = C⊥, in which case dim(C) = m/2.

A code C is an even code if all codewords have even Hamming weight and a doubly-even
code if all codewords have Hamming weight a multiple of 4. It is not hard to show that a
doubly-even code is a weakly self-dual code. Moreover, we have the following proposition.

Proposition 2.2. The all-ones vector is a codeword of C if and only if its dual code C⊥ is an even code.

We define the notion of (un)biased even codes, which will be useful in the stabilizer charac-
terization of IQP circuits (Section 3).

Definition 2.3. A code C is called a biased even code if it is an even code where the number of
codewords with Hamming weight 0 and 2 modulo 4 are not equal. It is called an unbiased even
code otherwise.

Let the (maximum) self-dual subspace of C be D := C ⋂ C⊥, which is itself a weakly self-dual
code. Note that D must be an even code, since all codewords are orthogonal to themselves and
hence have even Hamming weight. We have the following lemma.

Lemma 2.4. A weakly self-dual even code is either a doubly-even code or an unbiased even code. For the
former case, all columns of its generator matrix have weight 0 modulo 4 and are orthogonal to each other.
For the latter case, there is at least one column in the generator matrix with weight 2 modulo 4.

One can apply a basis change to the generator matrix H, resulting in HQ, where Q is an
invertible matrix. This will not change the code C. Define the Gram matrix of the generator
matrix by G := HTH. A basis change on H transforms G into QTGQ, which is a congruent
transformation. The rank of Gram matrix is also an invariant under basis change. It can be
related to the code C in the following way.

Proposition 2.5. Given a generator matrix H, let its Gram matrix be G = HTH and the generated code
be C. Let D = C ⋂ C⊥, where C⊥ is the dual code of C. Then, rank(G) = dim(C)− dim(D).

2.4 Shepherd-Bremner construction

In the Shepherd-Bremner construction, the part Hs is constructed from the quadratic-residue
code. The quadratic residue code is a cyclic code. Its cyclic generator has 1 in the j-th position
if j is a non-zero quadratic residue modulo q. The size parameter q of the QRC is a prime
number and q + 1 is required to be a multiple of eight [24]. For q = 7, the cyclic generator
reads (1, 1, 0, 1, 0, 0, 0)T, because j = 1, 2, 4 are quadratic residues modulo 7. The basis for the
codespace of QRC is generated by rotating the cyclic generator, which is the last 4 columns of

9

the following matrix,

HQRC
s =

1 1 0 0 0
1 1 1 0 0
1 0 1 1 0
1 1 0 1 1
1 0 1 0 1
1 0 0 1 0
1 0 0 0 1

. (2.4)

The first column is added so that the secret is easy to find, i.e., s = (1, 0, 0, 0, 0)T.
After obtaining the initial HQRC

s , the verifier needs to hide the secret and make the IQP
circuit look random, while leaving the value of the correlation function unchanged. In the
Shepherd-Bremner construction, the verifier will first add redundant rows Rs, which are rows
that are orthogonal to s, to obtain the full IQP matrix

H =

(
HQRC

s
Rs

)
. (2.5)

Its corresponding Hamiltonian Rs commutes with Zs and hence will not affect the correlation
function. After initializing H and s, the verifier needs to apply obfuscation to hide the secret. The
obfuscation is achieved by randomly permuting rows in H and performing column operations
to H and changing s accordingly.

Definition 2.6 (Obfuscation). Given an instance (H, s), the obfuscation is defined as the trans-
formation

H← PHQ s← Q−1s , (2.6)

where P is a random row-permutation matrix and Q is a random invertible matrix.

Note that row permutations will not change the value of the correlation function, since the
gates in IQP circuits commute with each other. As for the column operations, it can be shown
that if the secret s is transformed accordingly, to maintain the inner-product relation with the
rows in H, then the value of the correlation function remains unchanged [24, 28].

In the Shepherd-Bremner scheme [24], the measure of success is given by the probability
bias Ps⊥ := ∑x·s=0 p(x), the probability of receiving bit strings that are orthogonal to the secret
s, where p(x) is the output probability of the IQP circuit. This measure is equivalent to the
correlation function, since Ps⊥ = 1

2 (⟨Zs⟩ + 1) [31, 38]. Due to the properties of QRC, ⟨Zs⟩
always equals 1/

√
2 (in terms of probability bias, 0.854).

3 Stabilizer characterization of IQP circuits

In this section, we establish the connection between IQP circuits, stabilizer formalism and
coding theory, which turns out to be useful in constructing the IQP circuits for the verification
protocol. For θ = π/8, we show that the stabilizer tableau of the Clifford operation ei2θHs has a
nice structure that allows us to determine the value of ⟨Zs⟩ = ⟨0n|ei2θHs |0n⟩ efficiently. As an
application, we analyze the Shepherd-Bremner construction with this framework.

We first give the form of the stabilizer tableau of eiπH/4 |0n⟩.

10

Theorem 3.1. Given a binary matrix H = (c1, . . . , cn) and transforming it into an IQP Hamiltonian
H, the stabilizer tableau of the state |ψ⟩ = eiπH/4 |0n⟩ can be expressed as, c1 · c1 · · · c1 · cn

...
. . .

...
cn · c1 · · · cn · cn

1 · · · 0
...

. . .
...

0 · · · 1

r1
...

rn

 . (3.1)

Here, if one uses 00, 01, 10, 11 to represent |cj| = 0, 1, 2, 3 (mod 4), then rj is equal to the first bit.

This theorem can be proved by starting from the standard tableau of |0n⟩, and keeping track
of the stabilizer tableau after applying each terms of eiπH/4 (i.e., each row of H). The complete
proof is delayed to Appendix C. We will call Eq. (3.1) the IQP (stabilizer) tableau and it is of the
form (G, In, r). We apply the above theorem to Hs, in which case the X part is Gs = HT

s Hs.
Next, we relate the correlation function to the code generated by Hs, denoted as Cs. Note that

Hss = 1 means that the all-ones vector is a codeword of Cs. From Proposition 2.2, this means
that the dual code C⊥s is an even code and the intersection Ds := Cs

⋂ C⊥s is a weakly self-dual
even code. Then, Ds will be either a doubly-even code or an unbiased even code, according to
Lemma 2.4.

Theorem 3.2. Given an IQP matrix Hs and a vector s, so that Hs s = 1. Denote the code generated by
columns of Hs by Cs and its dual code by C⊥s . Let Ds := Cs

⋂ C⊥s . Then, transforming Hs into an IQP
Hamiltonian Hs, the magnitude of the correlation function ⟨Zs⟩ = ⟨0n|eiπHs/4|0n⟩ is 2−g/2 if Ds is a
doubly-even code and zero if Ds is an unbiased even code. Here, g := dim(Cs)− dim(Ds) is also the
rank of the Gram matrix Gs = HT

s Hs.

We leave the proof in Appendix C. Interestingly, from a group-theoretic perspective, the
rank of the Gram matrix g is also the minimum number of different generators over all possible
choices of the stabilizer groups between |0n⟩ and eiπHs/4 |0n⟩ (Proposition 2.1). Furthermore,
we note that this result integrates several results in Ref. [31] concisely, with a particular focus
on coding theory, so that it aligns better with our objective of constructing IQP circuits for
the verification protocol. Ref. [31] studies the IQP circuits with θ = π/4 with a reworking of
Vertigan’s algorithm for evaluating the magnitude of the Tutte polynomial of a binary matroid
at the point (−i, i) [35]. There, the amplitude ⟨x|eiθH |0n⟩ is considered for θ = π/4 and any
IQP Hamiltonian H, where the all-ones vector may not be a codeword of the code generated
by the binary matrix H. Such an amplitude has been further studied in Ref. [32], which gives
the expression of the phase of the amplitude by applying results of Ref. [36]. In the language of
binary matroids, the dual intersection Ds is the bicycle space of the matroid represented by Hs
and its dimension dim(Ds) is also known as the bicycle dimension [35, 32]. Finally, we note that
although computing the magnitude suffices for our later construction, the sign of the correlation
function can also be computed efficiently, as shown in Ref. [32]. In addition, when g = O(log n),
the correlation function has an inverse polynomial scaling. In this case, one can use the random
sampling algorithm in Ref. [28] to determine the sign efficiently.

To show the usefulness of the stabilizer characterization, we apply these two theorems to
analyze the Shepherd-Bremner construction. Combined with the properties of QRC, we have
the following corollary (with proof presented in Appendix C).

Corollary 3.3. Let q be a prime such that 8 divides q + 1. Let HQRC
s be a matrix whose first column is 1

(of length q), and whose remaining columns are the basis of the quadratic-residue code of length q, formed

11

by the cyclic generator (i.e., in the form of Eq. (2.4)). Then, translating HQRC
s into an IQP Hamiltonian

Hs, the stabilizer tableau of |ψs⟩ = eiπHs/4 |0n⟩ can be expressed as the following form, 1 · · · 1
...

. . .
...

1 · · · 1

1 · · · 0
...

. . .
...

1 · · · 1

1
...
1

 . (3.2)

As a result, the corresponding stabilizer group is given by,

⟨−Y1X2 · · ·Xn,−X1Y2X3 · · ·Xn, . . . ,−X1X2 · · ·Xn−1Yn⟩ , (3.3)

where n = (q + 3)/2. Moreover, the correlation function ⟨Zs⟩ = ⟨0n|ψs⟩ has a magnitude 1/
√

2.

4 Stabilizer construction

In this section, we present the stabilizer construction, which is a systematic way to construct
IQP circuits with θ = π/8 for verification. In fact, the goal is to generate a pair (H, s), such that
they satisfy certain conditions, which stem from Theorem 3.2. We first define the family of pairs
that we would like to sample from.

Definition 4.1. Let Hn,m,g = {(H, s)} be a family of pairs of an IQP matrix H ∈ Fm×n
2 and a

secret s ∈ Fn
2 satisfying the following conditions. (1) Ds = Cs

⋂ C⊥s is a doubly-even code, where
Cs is the code generated by columns of Hs and C⊥s is its dual code; (2) rank(HT

s Hs) = g; (3)
rank(H) = n.

In this definition, the size of the IQP circuits are determined by n and m, which correspond
to the number of qubits and gates, respectively. Additionally, condition (1) is to guarantee that
the correlation function ⟨Zs⟩ corresponding to instances ofHn,m,g is nonzero, and condition (2)
states that its magnitude is given by 2−g/2. Therefore, the familyHn,m,g includes all instances of
IQP circuits of a certain size that have correlation function ±2−g/2 with respect to some secret
s. Note that the rank of the Gram matrix HT

s Hs should be g = O(log n) for the protocol to be
practical. The reason for considering IQP matrices H with full column rank will be made clear
when we discuss the classical security of the IQP-based verification protocol (Section 5.1.2).

Moreover, we give an efficient classical sampling algorithm to sample instances fromHn,m,g,
which is the stabilizer construction (Meta-Algorithm 1).

Theorem 4.2. There exists an efficient classical sampling algorithm that sample fromHn,m,g, given the
parameters n, m and g.

For the algorithmic purpose, we set two additional parameters, m1 and d, which are the
number of rows in Hs and the dimension of Ds, respectively. These are random integers
satisfying certain natural constraints (see Appendix D). The rank of Hs is then equal to r = g + d.
The stabilizer construction works by sampling Hs and Rs in certain ‘standard forms’, up to
row permutations and column operations. Note that the ‘standard forms’ of Hs and Rs are not
necessarily unique.

We first discuss Rs. To ensure that rank(H) = n, observe that in any H of full column rank,
the redundant rows Rs can always be transformed by row permutations into a form, where

12

Parameters: n, m, g
Output: (H, s) ∈ Hn,m,g

1: Randomly sample m1 and d with certain constraints ▷ Appendix D
2: Sample D ∈ F

m1×d
2 and F ∈ F

m1×g
2 satisfying certain conditions ▷ Appendix D

3: Initialize Hs ← (F, D, 0m1×(n−r)), where r = g + d
4: Sample a secret s from the solutions of Hs s = 1

5: H ←
(

Hs
Rs

)
, where Rs is a random matrix with m− m1 rows satisfying Rss = 0 and

rank(H) = n
6: Perform obfuscation as in Definition 2.6

Meta-Algorithm 1: Stabilizer construction

the first n − r rows form a basis of Fn
2 together with the rows in Hs. Therefore, up to row

permutations, the first n− r rows of Rs are sampled to be random independent rows that are
orthogonal to s and lie outside the row space of Hs. The remaining rows in Rs are random rows
orthogonal to s.

Next, we discuss sampling (Hs, s), which is the core of the stabilizer construction. Essentially,
we want to randomly generate a (possibly redundant) generator matrix Hs of a code Cs, so that
its dimension is r, its intersection Ds with the dual code is a doubly-even code with dimension
d = r− g and the all-ones vector is a codeword. The last condition guarantees that a secret s can
always be found. Note that, we allow rank(Hs) < n. That is, we allow Hs to be a “redundant”
generator matrix of Cs, instead of a full-rank one. This is called adding column redundancy
to the full-rank generator matrix of Cs, because after the obfuscation process, there will be
redundant linear combinations in the columns of Hs. We give a more formal discussion of
column redundancy in Appendix E.

For such a generator matrix Hs, there is an invertible matrix Q to perform a basis change so
that

HsQ = (F, D, 0m1×(n−r)) , (4.1)

where D ∈ F
m1×d
2 is a generator matrix of the doubly-even code Ds, and columns in F ∈ F

m1×g
2

span Cs/Ds. In addition, it can be shown that rank(FTF) = rank(QTHT
s HsQ) = rank(HT

s Hs) =
g. Moreover, although there might be no unique standard form of Hs, the Gram matrix has a
unique standard form. First note that row permutations have no effect on the Gram matrix,
since PTP = I for a permutation matrix P. So we focus on column operations. As shown in

Ref. [39], there exists an invertible matrix Q, so that QTHT
s HsQ = diag

(
Ig, 0

)
or diag

(
g/2⊕
i=1

J, 0

)
,

depending on whether at least one diagonal element of HT
s Hs is 1 or not, where J :=

(
0 1
1 0

)
.

However, for the construction purpose, we need to ensure that the all-ones vector is a codeword
of Cs. Therefore, in Appendix D, we give a slightly different standard form of HT

s Hs, which can
be achieved by Hs in the form of (F, D, 0).

In summary, sampling (Hs, s) is reduced to generating an Hs = (F, D, 0) so that the Gram
matrix HT

s Hs is in the standard form presented in Appendix D. Then, a secret s is sampled from

13

the solutions of Hs s = 1. Sampling such an Hs is further reduced to sampling D and F, so that
D is a generator matrix for a random doubly-even code and F is a random matrix satisfying
DTF = 0, rank(FTF) = g and that 1 is in the column space of (F, D). We claim that sampling
such D and F can be done efficiently, with details deferred to Appendix D.

5 Classical attacks and security

In this section, we examine the classical security of our protocol, i.e., the possibility that an
efficient classical prover can pass the test. A straightforward classical attack is to simulate the
IQP circuit sent by the verifier. We do not expect this to be efficient, since there is generally no
structure to be exploited by a classical simulation algorithm. For example, due to the obfuscation
as in Eq. (2.6), the geometry of the IQP circuit can be arbitrary, which implies that the treewidth
in a tensor network algorithm cannot be easily reduced [40].

Here, we focus on another class of classical attacks based on extracting secrets. Given an IQP
matrix H, once the hidden secret s is found, a classical prover can first calculate the correlation
function ⟨Zs⟩ efficiently. Then, he generates a sample x which is orthogonal to s with probability
(1 + ⟨Zs⟩)/2 and not orthogonal to s with probability (1− ⟨Zs⟩)/2. The generated samples will
have the correct correlation with the secret s and hence pass the test. Kahanamoku-Meyer’s
attack algorithm for the Shepherd-Bremner construction is an instance of this class [30].

But generally, this attack may not be efficient. From a code perspective, the stabilizer
construction is to sample a random code satisfying certain constraints, and hide it by adding
redundancy and performing obfuscation. Finding the secret allows one to find the hidden
subcode, which should be a hard problem in general. In particular, we formulate the following
conjecture.

Conjecture 5.1 (Hidden Structured Code (HSC) Problem, Restatement of Conjecture 1.1). For
certain appropriate choices of n, m, g, there exists an efficiently samplable distribution over instances
(H, s) from the familyHn,m,g, so that no polynomial-time classical algorithm can find the secret s given
n, m and H as input, with high probability over the distribution onHn,m,g.

Naturally, sampling instances with uniform distribution fromHn,m,g is more favorable, since
it does not put any bias on specific instances. For the underlying distribution induced by the
stabilizer construction (Meta-Algorithm 1), it seems that it is uniform or close to uniform, as
the output instances are random instances satisfying certain natural constraints imposed by the
structure of the familyHn,m,g. Though, we do not have a rigorous proof for this claim. Moreover,
a similar conjecture was given in Ref. [24] for the familyHQRC

n,m,q, where the problem is to decide
whether a given H is from the family HQRC

n,m,q or not. They conjectured that such a problem is
NP-complete. Here, to better align with the classical attack, we consider the problem of finding
the secret s instead.

To support Conjecture 5.1, we first generalize Kahanamoku-Meyer’s attack algorithm to
target any IQP-based verification protocols with θ = π/8. We show that this generalized attack,
named the Linearity Attack, fails to break our construction. Furthermore, our analysis reveals
that the loophole of the original Shepherd-Bremner construction stems from an improper choice
of parameters. The Shepherd-Bremner construction can be improved by the column redundancy
technique, which enables random sampling from the familyHQRC

n,m,q with any possible parameters
and thereby fixes the loophole.

14

1: procedure EXTRACTSECRET(H)
2: Initialize S← ∅. ▷ candidate set
3: repeat
4: Uniformly randomly pick d ∈ Fn

2 .
5: Construct Hd and Gd = HT

dHd
6: for each vector si ∈ ker(Gd) do
7: if si passes certain property check then ▷ To be specified
8: Add si to S.
9: end if

10: end for
11: until some stopping criterion is met.
12: return S
13: end procedure

Meta-Algorithm 2: The EXTRACTSECRET(H) procedure of Linearity Attack.

5.1 Linearity Attack

Classical attacks based on secret extraction aim to mimic the quantum behavior on certain
candidate set S. Observe that given an IQP circuit represented by the binary matrix H, a
quantum prover can output a sample x, which has the correlation function ⟨Zs⟩ in the direction
of s for every s, even if it is not the secret of the verifier. If a classical prover can also generate
samples that have the correct correlation with every s, then he has the power to classically
sample from an IQP circuit, which is implausible [25, 26]. However, he has the knowledge
that the verifier will only check one secret. Therefore, a general attack strategy for him is to
first reduce the set of candidate secrets from {0, 1}n to a (polynomial-sized) subset S, and then
generate samples that have the correct correlation with every vector in the candidate set.

Here, we discuss Linearity Attack, which is an instance of classical attacks based on secret
extraction and generalizes the attack algorithm in Ref. [30]. It consists of two steps. First, it
uses linear algebraic techniques to construct a candidate set S. Then, the prover calculates the
correlation function for every vector in S, and outputs samples that have the correct correlation
with those vectors.

5.1.1 Secret extraction

Overview. The secret extraction procedure in the Linearity Attack is presented in Meta-
Algorithm 2, which is a generalized version of the procedure described in Ref. [30]. The
algorithm begins by randomly selecting a vector d and eliminating rows in H that are orthogo-
nal to d, resulting in Hd. Subsequently, the algorithm searches for vectors that satisfy certain
property check in ker(Gd), where Gd = HT

dHd represents the Gram matrix associated with d. In
what follows, we discuss some technical details and defer the analysis to Section 5.2.

Secret extraction in Kahanamoku-Meyer’s attack. Meta-Algorithm 2 differs slightly from
the approach described in Ref. [30]. In the original algorithm, the classical prover begins by
constructing a matrix M ∈ Fl×n

2 through linear combinations of rows in H. Specifically, after

15

sampling the vector d, the classical prover proceeds to sample l random vectors e1, . . . , el . Then,
the j-th row of M is defined by,

mT
j := ∑

pT∈row(H)
p·d=p·ej=1

pT . (5.1)

After that, the original algorithm searches for the vectors that can pass certain property check in
ker(M) instead.

Our secret extraction algorithm is a generalization and simplification to the original approach.
In Appendix G.1, we show that rows in M belong to the row space of Gd. Therefore, to minimize
the size of ker(M), one can simply set M = Gd, eliminating the need to sample the vectors
e1, . . . , el .

Property check. Next, we discuss the property checks designed to determine whether a vector
in ker(Gd) can serve as a potential secret or not. In the context of the Shepherd-Bremner con-
struction targeted in Ref. [30], the property check is to check whether si in ker(M) corresponds
to a quadratic-residue code or not. To accomplish this, the prover constructs Hsi for the vector si
and performs what we refer to as the QRC check, examining whether Hsi generates a quadratic-
residue code (with possible row reordering). However, determining whether a generator matrix
generates a quadratic-residue code is a nontrivial task. Consequently, the algorithm in Ref. [30]
attempts to achieve this by assessing the weight of the codewords in the code generated by Hsi .
In a quadratic-residue code, the weight of the codewords will be either 0 or 3 (mod 4). But still,
there will be exponentially many codewords, and checking the weights of the basis vectors is
not sufficient to ensure that all codewords have weight either 0 or 3 (mod 4). So in practice, the
prover can only check a small number of the codewords.

For instances derived from the stabilizer construction, the prover will have less information
about the code Cs; he only has the knowledge that this code has a large doubly-even subcode,
as quantified by the rank of Gs. Therefore, the property check for Meta-Algorithm 2 involves
checking whether the rank of HT

si
Hsi falls below certain threshold and whether self-dual intersec-

tion Dsi is doubly-even. However, determining an appropriate threshold presents a challenge
for the classical prover, who can generally only make guesses. If the chosen threshold is smaller
than the rank of Gs, then the secret extraction algorithm will miss the real secret, even if it lies
within ker(Gd).

Stopping criteria. Lastly, various stopping criteria can be employed in the secret extraction
procedure. One approach is to halt the procedure once a vector successfully passes the property
check, as adopted in Ref. [30]. Alternatively, the procedure can be stopped after a specific
number of repetitions or checks. In our implementation, we utilize a combination of these two
criteria. If no vectors are able to pass the property check before the stopping criterion is reached,
an empty candidate set S is returned, indicating a failed attack. Conversely, if the candidate set
S is non-empty, the attack proceeds to the classical sampling step to generate classical samples.

5.1.2 Classical sampling

Classical sampling based on multiple candidate secrets is nontrivial. Mathematically, the
problem is formulated as follows.

16

Problem 5.2. Given an IQP circuit C and a candidate set S = {s1, . . . , st}, outputs a sample x so that

E[(−1)x·si] = ⟨Zsi⟩ , (5.2)

for i = 1, . . . , t, where E[·] is over the randomness of the algorithm.

Note that E[(−1)x·si] is the expectation value of Eq. (1.2). We may allow a polynomially-
bounded additive error in the problem formulation, considering the inevitable shot noise due to
finite samples. The complexity of this problem depends on various situations. To the best of
our knowledge, we are not aware of an efficient classical algorithm that solves this problem in
general. In Appendix G.2, we present two sampling algorithms that will work in some special
cases. A sufficient condition for these two sampling algorithms to work is that the candidate set
is an independent subset of {0, 1}n.

Naive sampling algorithm. In this work, we mainly focus on the case |S| = 1, in which case
the problem is easy to solve, yet remains worth discussing. A naive sampling algorithm is as
follows. To generate samples with the correct correlation on s, one just needs to output samples
that are orthogonal to the candidate vector s′ with probability βs′ = (⟨Zs′⟩+ 1)/2 and otherwise
with probability 1− βs′ . One can prove that if the candidate secret from the EXTRACTSECRET

procedure is the real secret s, then the generated samples using this strategy will have the
correlation function approximately ⟨Zs⟩ with the real secret. Otherwise, the correlation function
with the real secret will be zero. We have the following lemma (see Appendix F for the proof).

Lemma 5.3. Given a matrix H and two vectors s ̸= s′, let ⟨Zs⟩ and ⟨Zs′⟩ be their corresponding
correlation functions, as defined in Eq. (1.3). If a sample x is generated to be a vector orthogonal to s′

with probability βs′ = (⟨Zs′⟩+ 1)/2 and otherwise with probability 1− βs′ , then E[(−1)x·s] = 0.

The above lemma holds even if Hs = Hs′, in which case s and s′ are said to be equivalent
secrets. Equivalent secrets have the same non-orthogonal and redundant part, and the correlation
functions ⟨Zs⟩ and ⟨Zs′⟩ are the same. It is clear that the number of equivalent secrets is given
by 2n−rank(H), which will be 1 if H is of full column rank. When there are multiple equivalent
secrets, it could be the case that the vector s′ is returned by the secret extraction procedure,
because it can also pass the property check, even if it is not the real secret itself. In this case, our
previous classical sampling algorithm can only give samples with zero correlation function on
the real secret s, according to Lemma 5.3.

Sampling according to H. To address this issue, we propose a second classical sampling
algorithm. Observe that linear combination of rows in Rs gives vectors that are orthogonal to
s and summation of an odd number of rows in Hs gives vectors that are not orthogonal to s.
We denote the former set of vectors S0(s) and the latter S1(s). The identification of these sets
relies on determining the submatrices Hs and Rs. To achieve this, it suffices to find a vector s′

that is equivalent to the real secret s. Therefore, upon receiving the candidate secret s′ from the
secret extraction procedure, the classical prover proceeds by computing ⟨Zs′⟩ and βs′ , followed
by identifying S0(s′) and S1(s′). A sample x is drawn from S0(s′) with probability βs′ and from
S1(s′) with probability 1− βs′ . If the vector s′ is equivalent to s, then this sampling algorithm
will generate samples with the correct correlation function with respect to the real secret s, as
opposed to the naive sampling algorithm.

17

This also explains why we consider IQP matrices of full column rank in the stabilizer
construction. If the classical prover is given an IQP matrix H that is not full-rank, he can always
apply an invertible matrix Q so that HQ = (H′, 0), where H′ is of full column rank. Then,
he runs the secret extraction algorithm on H′. Once a candidate secret is found, he can use it
to identify the corresponding S0 and S1 from the original matrix H, as well as computing the
correlation function. Finally, if the identification matches that of the real secret, then using the
second classical sampling algorithm will allow him to pass the test.

5.2 Analysis

Here, we present analysis on the secret extraction of Linearity Attack.

Probability of sampling a good d. First, we have the following proposition.

Proposition 5.4. Given an IQP matrix H and two vectors d and s, we have Gsd = Gd s, where
Gs = HT

s Hs and Gd = HT
dHd. Therefore, s lies in ker(Gd) if and only if Gsd = 0, which happens with

probability 2−g over all choices of d, where g = rank(Gs) is the rank of Gs.

The proof is given in Appendix G.3. This proposition tells us that if the random d does not
satisfy Gsd = 0, then the verifier’s secret s will not lie in ker(Gd). In this case, Meta-Algorithm 2
will not be able to find the correct secret from the kernel of Gd, and it has to be started over with
a new d.

If the correlation function with respect to the real secret has inverse polynomial scaling,
i.e., 2−g/2 = Ω(1/ poly(n)), then the probability of sampling a good d is also large, which is
2−g = Ω(1/ poly(n)). This might appear advantageous for the attacker. But note that a classical
attack cannot determine whether the sampled d is good or not before he can find the real secret.
In fact, he even cannot definitively determine whether a vector si in ker(Gd) that passes the
property check is the real secret or not.

Size of ker(Gd). The next question is, how large is the size of ker(Gd). This is important
because the steps before the property check takes O(n3) time, which comes from the Gaussian
elimination used to solve the linear system to find the kernel of Gd. However, for the property
check, the prover will potentially need to check every vectors in ker(Gd), which takes time
proportional to its size. It is important to note that checking the basis vectors of ker(Gd) is not
sufficient to find the real secret s, because the linearity structure is not preserved under taking
the Gram matrix. Even if s ∈ ker(Gd), the basis vectors of the kernel space can all have high
ranks for their associated Gram matrices. Below, we give an expected lower bound for the size
of ker(Gd), with the proof presented in Appendix G.4.

Theorem 5.5. Given (H, s) ∈ Hn,m,g, randomly sample a vector d. Then, the size of ker(Gd) is greater
than 2n−m/2 in expectation over the choice of d.

Therefore, the size of ker(Gd) is increased exponentially by increasing n. The increase of n
can be achieved by adding column redundancy, i.e., adding more all-zeros columns in Eq. (4.1).
But in the stabilizer construction, the column redundancy cannot be arbitrarily large. Recall
that to make the IQP matrix H full rank, one needs to add at least n− r redundant rows, where
r = rank(Hs). If H is not full rank, then as we discussed in Section 5.1.2, the classical prover can
always perform column operations to effectively reduce the number of columns n, and hence
reduce the dimension of ker(Gd).

18

(a) (b)

Figure 2: (a) The dimension of ker(Gd) for g = 1, 3, 5 and the number of rows m = 200. The
asterisks indicate the expected lower bound n−m/2. (b) The success probability of the attack.
Here, we set the threshold for the rank in the property check to be the same as g.

Suggested parameter regime. Based on the above analysis, it is important to choose a good
parameter regime to invalidate the Linearity Attack. Suppose the expected security parameter is
λ, meaning that the expected time complexity of a classical prover is Ω(2λ). Then, generally we
require n−m/2 ≥ λ for ker(Gd) to be sufficiently large, and the number of redundant rows
m−m1 ≥ n− r for H to be full-rank, where m1 is the number of rows in Hs. Specifically, for
the stabilizer construction, given n and g, we randomly choose the parameter r ≥ g. Then, we
require that the number of rows in Hs and H satisfies

m1 ≤ n− 2λ + r m1 + n− r ≤ m ≤ 2(n− λ) , (5.3)

respectively. In addition, since m is the number of gates in the IQP circuit, we will require
sufficiently large n and m = Ω(n) to invalidate classical simulation.

Numerical simulation. In Fig. 2 (a), we plot the dimension of ker(Gd) for g = 1, 3, 5 and
m = 200. For each number of columns n, we sample 100 instances fromHn,m,g with the stabilizer
construction (Meta-Algorithm 1). Then, a random d is sampled and we calculate the dimension
of ker(Gd). The asterisks are the expected lower bound n− m/2, as shown in Theorem 5.5.
The numerical experiment demonstrates good agreement with the theoretical prediction. In
Fig. 2 (b), we present the numerical results for the success probability of the attack. Although to
invalidate the attack, the maximum number of property checks should be 250 or larger, we set it
to be 215 for a proof of principle in the numerical experiment. For each number of columns n, we
sample 100 random instances fromHn,m,g, where m = 200. Then, the Linearity Attack is applied
to each instance and the success probability is defined as the fraction of successfully attacked
instances, which is the instance that the attacker can classically generate samples to spoof the
test. As one can see, the success probability decreases to zero as n exceeds m/2 + 15 = 115, as
expected.

Challenge. In addition, we have posted a challenge problem as well as the source code for
generation and verification on GitHub1, to motivate further study. The challenge problem

1https://github.com/AlaricCheng/stabilizer_protocol_sim

19

https://github.com/AlaricCheng/stabilizer_protocol_sim

is given by the H matrix of a random instance from Hn,m,g with n = 300 and m = 360; the
g parameter is hidden because in practice, the prover can only guess a value. One needs to
generate samples with the correct correlation function in the direction of the hidden secret to
win the challenge.

5.3 A fix of the Shepherd-Bremner construction

Finally, we would like to remark why the attack in Ref. [30] can break the Shepherd-Bremner
construction and how we can fix it by adding column redundancy. LetHQRC

n,m,q = {(H, s)} be a
family of pairs of an IQP matrix H ∈ Fm×n

2 and a secret s so that Hs generates a QRC of length q
(up to row permutations) and H is of full column rank. What the construction recipe of Ref. [24]
does is to randomly sample instances from HQRC

n,m,q, where n = (q + 3)/2 and m ≥ q, leaving a
loophole for the recent classical attack [30]. To see why the parameter regime is as above, we
first note that the length of QRC is q, implying that the number of rows in Hs is q and hence
m ≥ q. Moreover, the dimension of a length-q QRC is (q + 1)/2, which implies that the rank of
Hs is (q + 1)/2. But an all-ones column was added in the construction (see Eq. (2.4)), which is
an codeword of QRC, leading to n = (q + 3)/2.

In the Shepherd-Bremner construction, the rank of Gram matrix Gs associated with the real
secret s is 1 according to Corollary 3.3. Therefore, the probability of choosing a good d is 1/2 (as
also shown in Theorem 3.1 of Ref. [30]). However, since the number of columns and the number
of rows in H is n = (q+ 3)/2 and m ≥ q, respectively, the size of ker(Gd) is generally small. As a
result, the prover can efficiently explore the entire ker(Gd), and if no vector passes the property
check, the prover can simply regenerate d and repeat the secret extraction procedure. The
numerical results in Ref. [30] indicated that the size of ker(Gd) is indeed constant when applied
to the Shepherd-Bremner construction, which suggests that an efficient classical prover can pass
the test and hence break the original construction. Specifically, for the challenge instance posted
in Ref. [24], m is taken to be 2q. Then, according to Theorem 5.5, the dimension of ker(Gd) is
expected to be constant, making it susceptible to the attack.

To address this issue, the original Shepherd-Bremner construction can be enhanced by
introducing additional column redundancy to extend the number of columns n, which can
achieve random sampling from familiesHQRC

n,m,q with any n ≥ (q + 1)/2 (Appendix E). This hides
the dimension information of the hidden QRC. Combined with other obfuscation techniques
in the Shepherd-Bremner construction, this achieves random sampling from HQRC

n,m,q with any
possible parameters.

Below, we propose a parameter regime that can invalidate the attack in Ref. [30]. Given the
length q of the QRC, we have r = (q + 1)/2 and m1 = q [29]. So, the first formula in Eq. (5.3)
gives n ≥ (q− 1)/2 + 2λ and the second formula gives the range of the number of redundant
rows n− (q + 1)/2 ≤ m2 ≤ 2n− 2λ− q. In this way, the size of ker(Gd) will be larger than 2λ

in general, offering a viable solution to fortify the Shepherd-Bremner construction against the
attack. Note that the column redundancy technique was used in Ref. [28] to scramble a small
random IQP circuit into a large one, to maintain the value of the correlation function, although
its connection to the classical security was not explored. Moreover, a multi-secret version was
explored in Ref. [41], which was shown to be more vulnerable to the classical attack instead.

We perform numerical experiment to support our previous analysis. When m = 2q, n can be
as large as r + q and the expected kernel dimension of Gd is r. In Fig. 3 (a), we plot the kernel
dimensions under the setting n = r + q and m = 2q, with q = 103, 127, 151 and 167. For each

20

(a) (b)

Figure 3: (a) The dimension of ker(Gd) for q = 103, 127, 151, 167. Here, the number of rows
and columns are m = 2q and n = r + q, where r = (q + 1)/2 is the dimension of QRC. (b) The
success probability of the attack. The asterisks denote the points (q + 15, 0).

parameter set, 100 instances are sampled fromHQRC
n,m,q, and then a random d is sampled for each

instance and we evaluate the dimension of ker(Gd). We also plot the expected lower bound
n−m/2 for a comparison. In Fig. 3 (b), we plot the success probability versus the number of
columns (qubits) n. Here, m is set to be 2q and n is increased from r = (q + 1)/2 to r + q. For
each value of n, 100 random instances fromHQRC

n,m,q are sampled, and the success probability is
the fraction of successful attacks among them. We set the security parameter to be 15 for a proof
of principle, meaning that the maximum number of QRC checks is set to be 215. The success
probabilities drop down to zero when n > q + 15, as expected. Our analysis and numerical
results demonstrate that Claim 3.1 in Ref. [30], which originally states that the QRC-based
construction can be broken efficiently by the KM attack, turns out to be false under appropriate
choices of parameters.

6 Discussion

In this work, we give the stabilizer scheme for the IQP-based protocols for verifiable quantum
advantage, which focuses on the case θ = π/8 in the IQP circuits. With the connection between
IQP circuits, stabilizer formalism and coding theory, we study the properties of correlation
functions and IQP circuits. Based on these properties, we give an efficient procedure to sample
generator matrices of random codes satisfying certain conditions, which lies at the core of our
stabilizer scheme. Then, one needs to hide and obfuscate this generator matrix into a larger
matrix. We propose a new obfuscation method called column redundancy, which uses the
redundant generator matrix to hide the information of the dimension of the hidden code.

To explore the classical security of our protocol, we consider a family of attacks based on
extracting secrets. We conjecture that such attacks cannot be efficient classically for random
instances generated by our stabilizer scheme. To support this conjecture, we extend the recent
attack algorithm on the QRC-based construction to the general case for θ = π/8, which we call
the Linearity Attack. Our analysis shows that this attack fails to find the secret in polynomial
time by choosing instances from a good parameter regime. Notably, our column redundancy
technique also fixes the loophole in the original Shepherd-Bremner construction. Our work

21

paves the way for cryptographic verification of quantum computation advantage in the NISQ
era.

There are several open problems for future research. The most important one is to rigorously
prove the security of the IQP-based verification protocols. In Conjecture 5.1, we state that
classical attacks based on secret extraction is on average hard. It would be favorable to prove
the random self-reducibility of the problem, so that the hardness conjecture can be relaxed to
the worst-case scenario. For example, recently a worst-to-average-case reduction was found for
computing the probabilities of IQP circuits and it would be interesting to see if the techniques
of Ref. [42] could be leveraged to gain insight into the validity of Conjecture 5.1. Before one
can rigorously prove the hardness of classical attacks, one might gain intuition by considering
other possible classical attacks. In terms of implementing the protocol in practice, generating
instances according to a given architecture and noise analysis are also important open problems.
We believe that the mathematical structure of the stabilizer scheme provides a promising avenue
for the use of certain cryptographic techniques to improve the security of IQP-based protocols,
and to construct instances that can be readily implemented with current technology.

Acknowledgement. We thank Ryan Snoyman for sharing his honors thesis, where he also con-
sidered the same problem and made some insightful observations. We also thank Earl Campbell,
Ryan Mann, Mauro Morales and Man-Hong Yung for helpful discussions. BC acknowledges
the support from the Sydney Quantum Academy. MJB acknowledges the support of Google.
MJB acknowledges support by the ARC Centre of Excellence for Quantum Computation and
Communication Technology (CQC2T), project number CE170100012. ZJ acknowledges the
support of a startup funding from Tsinghua University.

References

[1] P.W. Shor. Algorithms for quantum computation: discrete logarithms and factoring. In
Proceedings 35th Annual Symposium on Foundations of Computer Science. IEEE Comput. Soc.
Press, 1994. 1

[2] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings of
the twenty-eighth annual ACM symposium on Theory of computing - STOC ’96, pages 212–219,
Philadelphia, Pennsylvania, United States, 1996. ACM Press. 1

[3] John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2:79, August
2018. arXiv: 1801.00862. 1

[4] Sergio Boixo, Sergei V. Isakov, Vadim N. Smelyanskiy, Ryan Babbush, Nan Ding, Zhang
Jiang, Michael J. Bremner, John M. Martinis, and Hartmut Neven. Characterizing quantum
supremacy in near-term devices. Nat. Phys., 14(6):595–600, June 2018. 1

[5] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends,
Rupak Biswas, Sergio Boixo, Fernando G. S. L. Brandao, David A. Buell, Brian Burkett,
Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth,
Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff,
Keith Guerin, Steve Habegger, Matthew P. Harrigan, Michael J. Hartmann, Alan Ho,
Markus Hoffmann, Trent Huang, Travis S. Humble, Sergei V. Isakov, Evan Jeffrey, Zhang

22

Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V. Klimov, Sergey Knysh,
Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry
Lyakh, Salvatore Mandrà, Jarrod R. McClean, Matthew McEwen, Anthony Megrant, Xiao
Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley,
Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C. Platt, Chris
Quintana, Eleanor G. Rieffel, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J.
Satzinger, Vadim Smelyanskiy, Kevin J. Sung, Matthew D. Trevithick, Amit Vainsencher,
Benjamin Villalonga, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut
Neven, and John M. Martinis. Quantum supremacy using a programmable superconduct-
ing processor. Nature, 574(7779):505–510, October 2019. 1

[6] Qingling Zhu, Sirui Cao, Fusheng Chen, Ming-Cheng Chen, Xiawei Chen, Tung-Hsun
Chung, Hui Deng, Yajie Du, Daojin Fan, Ming Gong, Cheng Guo, Chu Guo, Shaojun
Guo, Lianchen Han, Linyin Hong, He-Liang Huang, Yong-Heng Huo, Liping Li, Na Li,
Shaowei Li, Yuan Li, Futian Liang, Chun Lin, Jin Lin, Haoran Qian, Dan Qiao, Hao Rong,
Hong Su, Lihua Sun, Liangyuan Wang, Shiyu Wang, Dachao Wu, Yulin Wu, Yu Xu, Kai
Yan, Weifeng Yang, Yang Yang, Yangsen Ye, Jianghan Yin, Chong Ying, Jiale Yu, Chen
Zha, Cha Zhang, Haibin Zhang, Kaili Zhang, Yiming Zhang, Han Zhao, Youwei Zhao,
Liang Zhou, Chao-Yang Lu, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Quantum
computational advantage via 60-qubit 24-cycle random circuit sampling. Science Bulletin,
page S2095927321006733, October 2021. 1

[7] Yulin Wu, Wan-Su Bao, Sirui Cao, Fusheng Chen, Ming-Cheng Chen, Xiawei Chen, Tung-
Hsun Chung, Hui Deng, Yajie Du, Daojin Fan, Ming Gong, Cheng Guo, Chu Guo, Shaojun
Guo, Lianchen Han, Linyin Hong, He-Liang Huang, Yong-Heng Huo, Liping Li, Na Li,
Shaowei Li, Yuan Li, Futian Liang, Chun Lin, Jin Lin, Haoran Qian, Dan Qiao, Hao Rong,
Hong Su, Lihua Sun, Liangyuan Wang, Shiyu Wang, Dachao Wu, Yu Xu, Kai Yan, Weifeng
Yang, Yang Yang, Yangsen Ye, Jianghan Yin, Chong Ying, Jiale Yu, Chen Zha, Cha Zhang,
Haibin Zhang, Kaili Zhang, Yiming Zhang, Han Zhao, Youwei Zhao, Liang Zhou, Qingling
Zhu, Chao-Yang Lu, Cheng-Zhi Peng, Xiaobo Zhu, and Jian-Wei Pan. Strong Quantum
Computational Advantage Using a Superconducting Quantum Processor. Phys. Rev. Lett.,
127(18):180501, October 2021. arXiv:2106.14734. 1

[8] Scott Aaronson and Alex Arkhipov. The computational complexity of linear optics. In
Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, STOC ’11,
page 333–342, New York, NY, USA, 2011. Association for Computing Machinery. 1

[9] Han-Sen Zhong, Hui Wang, Yu-Hao Deng, Ming-Cheng Chen, Li-Chao Peng, Yi-Han Luo,
Jian Qin, Dian Wu, Xing Ding, Yi Hu, Peng Hu, Xiao-Yan Yang, Wei-Jun Zhang, Hao Li,
Yuxuan Li, Xiao Jiang, Lin Gan, Guangwen Yang, Lixing You, Zhen Wang, Li Li, Nai-Le
Liu, Chao-Yang Lu, and Jian-Wei Pan. Quantum computational advantage using photons.
Science, 370(6523):1460–1463, December 2020. 1

[10] https://www.scottaaronson.com/blog/?p=284. At first sight, this seems a simple question.
One may ask the quantum cloud to run a classical intractable task which is feasible for a
quantum computer. This idea is not practical as it is equivalent to separating BQP (bounded-
error quantum polynomial time) and P (polynomial time), one of the most important open
problem in quantum complexity theory. 1

23

[11] A. Broadbent, J. Fitzsimons, and E. Kashefi. Universal blind quantum computation. In 2009
50th Annual IEEE Symposium on Foundations of Computer Science, pages 517–526, Oct 2009. 1

[12] Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi. Measurement-based and universal
blind quantum computation. Lecture Notes in Computer Science (including subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6154 LNCS:43–86, 2010. 1

[13] Dorit Aharonov, Michael Ben-Or, and Elad Eban. Interactive Proofs For Quantum Compu-
tations, 2008. 1

[14] Dorit Aharonov, Michael Ben-Or, Elad Eban, and Urmila Mahadev. Interactive Proofs For
Quantum Computations, 2008. 1

[15] Zhengfeng Ji. Classical verification of quantum proofs. In Proceedings of the Forty-Eighth
Annual ACM Symposium on Theory of Computing, STOC ’16, pages 885–898, New York, NY,
USA, 2016. Association for Computing Machinery. 1

[16] Joseph F. Fitzsimons and Elham Kashefi. Unconditionally verifiable blind quantum compu-
tation. Physical Review A, 96(1), jul 2017. 1

[17] Joseph F. Fitzsimons, Michal Hajdušek, and Tomoyuki Morimae. Post hoc verification of
quantum computation. Phys. Rev. Lett., 120:040501, Jan 2018. 1

[18] Ben W. Reichardt, Falk Unger, and Umesh Vazirani. Classical command of quantum
systems. Nature, 496(7446):456–460, 2013. 1

[19] Urmila Mahadev. Classical Verification of Quantum Computations. In 2018 IEEE 59th
Annual Symposium on Foundations of Computer Science (FOCS), pages 259–267, Paris, October
2018. IEEE. arXiv: 1804.01082. 1

[20] Zvika Brakerski, Paul Christiano, Urmila Mahadev, Umesh Vazirani, and Thomas Vidick. A
Cryptographic Test of Quantumness and Certifiable Randomness from a Single Quantum
Device. arXiv:1804.00640 [quant-ph], April 2018. arXiv: 1804.00640. 1

[21] Zvika Brakerski, Venkata Koppula, Umesh Vazirani, and Thomas Vidick. Simpler Proofs of
Quantumness. arXiv:2005.04826, May 2020. arXiv: 2005.04826. 1

[22] Gregory D. Kahanamoku-Meyer, Soonwon Choi, Umesh V. Vazirani, and Norman Y.
Yao. Classically-Verifiable Quantum Advantage from a Computational Bell Test.
arXiv:2104.00687, April 2021. arXiv: 2104.00687. 1

[23] Daiwei Zhu, Gregory D. Kahanamoku-Meyer, Laura Lewis, Crystal Noel, Or Katz, Ba-
haa Harraz, Qingfeng Wang, Andrew Risinger, Lei Feng, Debopriyo Biswas, Laird Egan,
Alexandru Gheorghiu, Yunseong Nam, Thomas Vidick, Umesh Vazirani, Norman Y. Yao,
Marko Cetina, and Christopher Monroe. Interactive cryptographic proofs of quantumness
using mid-circuit measurements. Nat. Phys., August 2023. arXiv:2112.05156. 1

[24] Dan Shepherd and Michael J Bremner. Temporally unstructured quantum computation.
Proc. R. Soc. A, 465(2105):1413–1439, may 2009. 1, 1.1, 1.3, 2.4, 2.4, 5, 5.3, E

24

[25] Michael J. Bremner, Richard Jozsa, and Dan J. Shepherd. Classical simulation of commuting
quantum computations implies collapse of the polynomial hierarchy. Proc. R. Soc. A,
467(2126):459–472, feb 2011. 1, 5.1

[26] Michael J. Bremner, Ashley Montanaro, and Dan J. Shepherd. Average-Case Complexity
Versus Approximate Simulation of Commuting Quantum Computations. Phys. Rev. Lett.,
117(8):080501, August 2016. 1, 1.1, 1.3, 5.1

[27] Michael J Bremner, Ashley Montanaro, and Dan J Shepherd. Achieving quantum supremacy
with sparse and noisy commuting quantum computations. Quantum, 1:8, 2017. 1

[28] Man-Hong Yung and Bin Cheng. Anti-Forging Quantum Data: Cryptographic Verification
of Quantum Cloud Computing. arXiv:2005.01510 [quant-ph], May 2020. arXiv: 2005.01510.
1, 1.1, 1.1, 1.3, 2.4, 3, 5.3, E

[29] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of error-correcting
codes. Elsevier, 1977. 1, 1.3, 5.3, C.3, D

[30] Gregory D. Kahanamoku-Meyer. Forging quantum data: classically defeating an IQP-based
quantum test. arXiv:1912.05547, December 2019. arXiv: 1912.05547. 1, 1.2, 1.3, 5, 5.1, 5.1.1,
5.1.1, 5.1.1, 5.1.1, 5.3, 5.3, 3, G.1, G.2

[31] Dan Shepherd. Binary Matroids and Quantum Probability Distributions. arXiv:1005.1744
[quant-ph], May 2010. arXiv: 1005.1744. 1, 1.1, 1.1, 1.2, 1.3, 2.4, 3

[32] Ryan L. Mann. Simulating quantum computations with Tutte polynomials. npj Quantum
Inf, 7(1):141, September 2021. arXiv:2101.00211. 1, 1.3, 3

[33] Ref. [41] studies the multi-secret version of adding column redundancy and draws a
conclusion that it makes the Shepherd-Bremner construction even more vulnerable. This is
not in contradiction to our results, since we consider the single-secret version of adding
column redundancy. 1

[34] Daniel Gottesman. The heisenberg representation of quantum computers. 1998. 1.1, 1.3

[35] Dirk Vertigan. Bicycle Dimension and Special Points of the Tutte Polynomial. Journal of
Combinatorial Theory, Series B, 74(2):378–396, November 1998. 1.3, 3

[36] R. A. Pendavingh. On the evaluation at (-i,i) of the Tutte polynomial of a binary matroid. J.
Algebr. Comb., 39(1):141–152, February 2014. 1.3, 3

[37] Scott Aaronson and Daniel Gottesman. Improved Simulation of Stabilizer Circuits. Phys.
Rev. A, 70(5):052328, November 2004. arXiv: quant-ph/0406196. 2.2, 2.1, A

[38] Xi Chen, Bin Cheng, Zhaokai Li, Xinfang Nie, Nengkun Yu, Man-Hong Yung, and Xinhua
Peng. Experimental Cryptographic Verification for Near-Term Quantum Cloud Computing.
Sci. Bull., 66(1):23–28, 2021. arXiv: 1808.07375. 2.4

[39] Yong-Hyuk Kim and Keomkyo Seo. Two Congruence Classes for Symmetric Binary
Matrices over F2. WSEAS Trans. Math., 7(6):339–343, June 2008. 4, D

25

[40] Igor L. Markov and Yaoyun Shi. Simulating Quantum Computation by Contracting Tensor
Networks. SIAM J. Comput., 38(3):963–981, January 2008. arXiv: quant-ph/0511069. 5

[41] Ryan Snoyman. A Proof of Quantumness, 2020. Honor thesis, UNSW. 5.3, 33

[42] Ramis Movassagh. The hardness of random quantum circuits. Nat. Phys., July 2023. 6

A Derivation of the overlap of two stabilizer states

Here, we would like to prove Proposition 2.1, which was discussed in Ref. [37]. Recall that given
two stabilizer states |ψ⟩ and |ϕ⟩, we have:

1. ⟨ψ|ϕ⟩ = 0 if their stabilizer groups contain the same Pauli operator of the opposite sign.
That is, if there exists a Pauli operator P, such that P ∈ Stab(|ψ⟩) and −P ∈ Stab(|ϕ⟩),
then ⟨ψ|ϕ⟩ = 0.

2. Suppose the condition of the first case does not hold. Let g be the minimum number of
different generators (i.e., the number of i s.t. Pi ̸= Qi). Then, |⟨ψ|ϕ⟩| = 2−g/2.

Proof of Proposition 2.1. First, suppose Stab(|ψ⟩) = ⟨P1, · · · , Pn⟩ and Stab(|ϕ⟩) = ⟨Q1, · · · , Qn⟩.
Then, we can write the states as,

|ψ⟩⟨ψ| =
(

I + P1

2

)
· · ·
(

I + Pn

2

)
(A.1)

|ϕ⟩⟨ϕ| =
(

I + Q1

2

)
· · ·
(

I + Qn

2

)
. (A.2)

The square of the overlap is then given by,

| ⟨ψ|ϕ⟩ |2 = Tr(|ψ⟩⟨ψ| |ϕ⟩⟨ϕ|) = Tr
(

I + P1

2
· · · I + Pn

2
I + Q1

2
· · · I + Qn

2

)
. (A.3)

1. Suppose Q1 = −Pn. Then, we have,

I + Pn

2
I − Pn

2
= 0 . (A.4)

Thus, ⟨ψ|ϕ⟩ = 0 in this case.

2. Suppose that Pi = Qi for i > g and that the group ⟨P1, · · · , Pg⟩ is not equal to ⟨Q1, · · · , Qg⟩.
By commutation, we can group the same generators, which gives,

I + Pi

2
I + Qi

2
=

I + Pi

2
I + Pi

2
=

I + Pi

2
, (A.5)

for i > g. This will eliminate the terms related to Qg+1, · · · , Qn. Then,

| ⟨ψ|ϕ⟩ |2 = Tr
(

I + P1

2
· · · I + Pn

2
I + Q1

2
· · ·

I + Qg

2

)
(A.6)

=
1
2g ⟨ψ|(I + Q1) · · · (I + Qg)|ψ⟩ . (A.7)

26

For every term QiQj · · ·Qk ̸= I in the expansion, there exists a Pauli operator P ∈ Stab(|ψ⟩)
that anticommutes with it; otherwise, the term will be in the stabilizer group of |ψ⟩. For
such an operator Q, we have ⟨ψ|Q|ψ⟩ = 0. Indeed, notice that

⟨ψ|Q|ψ⟩ = ⟨ψ|QP|ψ⟩ = − ⟨ψ|PQ|ψ⟩ = − ⟨ψ|Q|ψ⟩ , (A.8)

which implies ⟨ψ|Q|ψ⟩ = 0. Finally, we have,

| ⟨ψ|ϕ⟩ |2 =
1
2g ⟨ψ|I|ψ⟩ =

1
2g , (A.9)

and |⟨ψ|ϕ⟩| = 2−g/2.

B Proofs for coding theory

We first prove the following proposition.

Proposition B.1. The all-ones vector is a codeword of C if and only if its dual code C⊥ is an even code.

Proof. Suppose 1 ∈ C. Then for every c ∈ C⊥, we have c · 1 = 0, which means that |c| is even
and hence C⊥ is an even code. Conversely, suppose C⊥ is an even code. Then, all codewords
will be orthogonal to the all-ones vector, and thus it is in C.

To prove that a weakly self-dual even code is either a doubly-even code or an unbiased even
code, we will need the following lemma.

Lemma B.2. Given two vectors c1, c2 ∈ Fm
2 with even parity and c1 · c2 = 0, let c3 = c1 + c2. Then,

|c3| = 0 (mod 4) if |c1| = |c2| (mod 4) and |c3| = 2 (mod 4) if |c1| ̸= |c2| (mod 4).

Proof. Let |c1| = a + 4k1 and |c2| = b + 4k2, where 0 ≤ a, b < 4. Let the size of joint support of
c1 and c2 be k12. Then, c1 · c2 = k12 = 0 (mod 2), which means that k12 is an even number. So,

|c3| = a + b− 2k12 + 4(k1 + k2) = a + b (mod 4) . (B.1)

• If |c1| = |c2| (mod 4), we have a = b = 0 or 2. In either case, |c3| = 0 (mod 4).

• If |c1| ̸= |c2| (mod 4), we have a = 0 and b = 2 or a = 2 and b = 0. In either case, |c3| = 2
(mod 4).

One can adapt the proof of this lemma to show that a doubly-even code is a weakly self-dual
code. To see this, suppose C is a doubly-even code, and c1, c2 ∈ C. Then, we have |c1| = 4k1
and |c2| = 4k2. Suppose c3 = c1 + c2, which gives |c3| = 4(k1 + k2)− 2k12. Since c3 is also a
codeword of a doubly-even code, we have |c3| = 0 (mod 4), which implies that k12 is even and
thus c1 · c2 = 0.

Now, we are ready to prove Lemma 2.4.

27

Proof. Let D be a weakly self-dual even code spanned by {c1, · · · , cd}. Then, ci’s are all even-
parity and orthogonal to each other. Any codeword of D can be written as c = a1c1 + · · ·+ adcd.
According to Lemma B.2, in the linear combination of c, if there is an odd number of ci’s with
weight 2 modulo 4, then c will have weight 2 mod 4, and otherwise, c will have weight 0 mod
4. Therefore, if all ci’s have weight 0 modulo 4, then D is doubly-even. If there exist ci’s with
weight 2 modulo 4, then D is an unbiased even code.

Given a generator matrix H, the rank of its Gram matrix G = HTH is an invariant under a
basis change. That is, rank(QTGQ) = rank(G) for Q invertible. It may be tentative to consider
this as a direct consequence of Sylvester’s law of inertia, but this is not the case since we are
working in F2. Nevertheless, this can be proven as follows. First, the column space of GQ is a
subspace of G, which implies rank(GQ) ≤ rank(G). On the other hand, the column space of
G is a subspace of GQ, because GQQ−1 = G, which implies rank(G) ≤ rank(GQ). Therefore,
we have rank(G) = rank(GQ). Applying this reasoning again gives rank(G) = rank(GQ) =
rank(QTGG).

The rank of the Gram matrix measures how close a code C is to being a self-dual code. In
particular, rank(G) = dim(C)− dim(D), where D := C ⋂ C⊥, which is the Proposition 2.5 in
the main text.

Proof of Proposition 2.5. Suppose H ∈ Fm×n
2 and let g = rank(G), where G = HTH. Let r =

dim(C) and d = dim(D), where d ≤ r ≤ n. We first prove for the case r = n. In this case, every
codeword in c ∈ C can be expressed as c = Ha for a unique a ∈ Fn

2 and the correspondence
is one-to-one. Then, we claim that Ha ∈ D is equivalent to a ∈ ker(G) and thus d is equal to
the dimension of ker(G), which is d = r − g. Indeed, if Ha ∈ D, we have Ga = HTHa = 0,
which means that a ∈ ker(G). Conversely, if a ∈ ker(G), we have HTHa = 0, which means that
Ha ∈ C⊥. Since Ha ∈ C, this implies Ha ∈ D.

Now, we consider the case r < n. In this case, there always exists an invertible matrix Q
such that HQ = (H′, 0m×(n−r)) and H′ ∈ Fm×r

2 is a generator matrix of C that is of full column
rank. Moreover,

rank(G) = rank(QTGQ) = rank(H′TH′) . (B.2)

Then, applying the previous reasoning to H′ yields that d = r− rank(H′TH′) = r− g.

C IQP circuits and stabilizer formalism

C.1 IQP stabilizer tableau

Theorem 3.1 can be proven in the following way. First, we start with the standard tableau of
|0n⟩, which is 0 . . . 0 1 . . . 0 0

...
. . .

...
...

. . .
...

...
0 . . . 0 0 . . . 1 0

 , (C.1)

corresponding to the stabilizer generators {Z1, · · · , Zn}. Then, we apply the local terms in
eiπH/4 one by one, and keep track of the change of the stabilizer tableau. We have the following
lemma which gives the form of Zj conjugated by eiπH/4.

28

Lemma C.1 (Evolution of Zj). Let H = (c1, c2, · · · , cn) be a binary matrix. Then, translating H into
the IQP Hamiltonian H and after the conjugation of eiπH/4, we have,

eiπH/4Zje−iπH/4 = i|cj|
n

∏
k=1

X
cj·ck
k Zj , (C.2)

where |cj| is the Hamming weight of cj.

For example, let

H =

1 1 0 0
0 1 0 1
1 0 0 1

 . (C.3)

Then, after the conjugation of eiπH/4, we have

Z1 → (−1)(X1X2)(X1X4)Z1 = −Z1X2X4 . (C.4)

Proof. First, note that eiπH/4 = ∏pT∈row(H) eiπXp/4, where Xp := Xp1 ⊗ · · · ⊗ Xpn . For each row
pT, if pj = 1, then

eiπXp/4Zje−iπXp/4 = eiπXp/2Zj = iXpZj ; (C.5)

and if pj = 0, Zj will remain unchanged. We suppose pj = 1 for later illustration. Then, we
apply the operator corresponding to another row p′T, which gives,

ieiπXp′/4XpZje
−iπXp′/4 = iXpeiπXp′/4Zje

−iπXp′/4 . (C.6)

If p′j = 1, we have that the post-evolution stabilizer is given by i2XpXp′Zj. In general, let Hj be
the submatrix of H that consists of all rows whose j-th entry is 1. Then, after the conjugation of
eiπH/4, we have

eiπH/4Zje−iπH/4 = i|cj| ∏
pT∈row(Hj)

XpZj . (C.7)

For the Pauli X’s in the above, whether there is the Xk component depends on the number of
1’s in both the j-th and k-th column of H. Indeed, the exponent of Xk is equal to cj · ck. This
completes the proof.

Next, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Since Zj is the j-th stabilizer generator fo |0n⟩, Lemma C.1 actually gives
the j-th stabilizer generator of |ψ⟩ = eiπH/4 |0n⟩. We can also write it in the following form,

(−1)rj
n

∏
k=1

icj·cj X
cj·ck
k Zj , (C.8)

where 2rj + cj · cj = |cj| (mod 4) (note that the inner product is taken over F2). Therefore, if
one uses 00, 01, 10, 11 to represent |cj| = 0, 1, 2, 3 (mod 4), then rj is equal to the first bit. Finally,
from this form of stabilizer generators, we can write down the stabilizer tableau of |ψ⟩ asc1 · c1 . . . c1 · cn 1 . . . 0 r1

...
. . .

...
...

. . .
...

...
cn · c1 . . . cn · cn 0 . . . 1 rn

 . (C.9)

29

C.2 Correlation function

Here, we prove Theorem 3.2 which connects the correlation function ⟨Zs⟩, the code Cs generated
by Hs and the rank of the Gram matrix G = HT

s Hs.

Proof of Theorem 3.2. First, Hss = 1 implies that C⊥s is an even code and so is Ds. When θ = π/8,
we have

⟨Zs⟩ = ⟨0n|ei2θHs |0n⟩ (C.10)

= ⟨0n| ∏
pT∈row(Hs)

ei2θXp |0n⟩ (C.11)

= ⟨0n| ∏
pT∈row(Hs)

1√
2
(I + iXp)|0n⟩ (C.12)

=
1√
2m ∑

a∈{0,1}m

i|a| ⟨0n|XaTHs
|0n⟩ (C.13)

=
1√
2m ∑

a:aTHs=0

i|a| (C.14)

=
1√
2m ∑

a∈C⊥s

i|a| , (C.15)

where m is the number of rows in Hs. Since C⊥s is an even code, we can write,

⟨Zs⟩ =
1√
2m

 ∑
a∈C⊥s

|a|=0 mod 4

1− ∑
a∈C⊥s

|a|=2 mod 4

1

 . (C.16)

Let d = dim(Ds), r = dim(Cs) and g = r− d.
One can always find an invertible matrix Q, such that in HsQ, the first g columns are in

Cs\Ds, the g-th to the r-th columns form a basis of Ds and the remaining columns are all-zeros.
This transformation will not change the value of the correlation function according to Eq. (C.16),
because it preserves the code Cs and hence the dual code C⊥s . Under this transformation, the
stabilizer tableau related to HsQ is given by (G′, In, r′). Here, only the top-left g× g submatrix
of G′ can be nonzero, and all other entries are zero. According to Proposition 2.5, the rank of G
is also g, which means that the g× g submatrix is full rank.

As for the phase column r′, if the basis of Ds have weight 0 modulo 4, then only the first g
entries of r′ can be nonzero, and all other entries are zero, according to Theorem 3.1. In this case,
Ds is a doubly-even code. For this set of generators represented by the transformed tableau,
the number of non-Z generators is g, corresponding to the first g rows of (G′, In, r′). This is
the minimum number over all possible choices, since the top-left submatrix of G′ is already
full rank. Thus, the correlation function is nonzero and has a magnitude 2−g/2, according to
Proposition 2.1.

On the other hand, if in HsQ, some basis of Ds have weight 2 modulo 4, then the corre-
sponding entries in r′ are 1, which gives Z-products with minus sign in the stabilizer group
of |ψs⟩ := eiπHs/4 |0n⟩. This means that |ψs⟩ has zero overlap with |0n⟩ and hence the corre-
lation function is zero. In this case, it can be shown that Ds is an unbiased even code using
Lemma 2.4.

30

C.3 Stabilizer characterization applied to the Shepherd-Bremner construction

Here, we prove Corollary 3.3, which follows from Theorem 3.1 and the properties of QRC.

Proof. The rank of QRC is (q + 1)/2, which means that there are n = (q + 3)/2 columns in HQRC
s .

To prove this corollary, it suffices to prove the following,

|cj| = 3 (mod 4) cj · ck = 1 (mod 2) , (C.17)

according to Theorem 3.1.
First, the number of non-zero quadratic residues modulo q is (q− 1)/2. Since q + 1 is a

multiple of 8, we have |cj| = (q− 1)/2 = 3 (mod 4) for j ̸= 1. For j = 1, |c1| = q = 3 (mod 4).
As for the second formula, the cases (a) j = k, (b) j = 1 but k ̸= 1 and (c) j ̸= 1 but k = 1 follow

the proof of the first formula. So, we focus on proving it for j ̸= k ̸= 1. Define the extended QRC
by appending an extra parity bit to the codeword of QRC, which equals the Hamming weight
of the codeword modulo 2. From classical coding theory, the extended QRC is self-dual [29].
That is, every two codewords of the extended QRC is orthogonal to each other. For cj, the added
parity bit is 1, since these columns are odd-parity. Then, the fact that the extended codewords are
orthogonal to each other implies that cj · ck = 1 (mod 2). This proves the form of the stabilizer
tableau, which represents the generators {−Y1X2 · · ·Xn,−X1Y2 · · ·Xn, · · · ,−X1X2 · · ·Yn}.

Multiplying the first generator to the remaining n− 1 generators gives the same stabilizer
group with a different set of generators ⟨−Y1X2 · · ·Xn, Z1Z2, Z1Z3 · · · , Z1Zn⟩. In this representa-
tion, the Z-type stabilizer generators have a positive phase and the number of non-Z generator
is g = 1. According to Proposition 2.1, the correlation function has a magnitude 1/

√
2 (a.k.a.

0.854 probability bias) with respect to the secret, regardless of the size parameter q.

D Details in stabilizer construction

We first give the following parameter constraints of the stabilizer construction, which are
necessary conditions for instances from the familyHn,m,g.

Proposition D.1 (Parameter constraints). Given (H, s) ∈ Hn,m,g, let Ds = Cs
⋂ C⊥s , where Cs is the

code generated by Hs and C⊥s is the dual code. Let m1 be the number of rows in Hs and d = dim(Ds),
which means dim(Cs) = g + d. Then, we have

• g + d ≤ n;

• 0 < m1 ≤ m;

• n− g− d ≤ m−m1;

• g + 2d ≤ m1;

• m1 = g mod 2.

Proof. The first constraint is from rank(Hs) ≤ n. The second one is trivial. The third is due to
the fact that H is of full column rank, which means that the number of redundant rows should
be m−m1 ≥ n− rank(Hs) = n− g− d. The fourth is because dim(Cs) + dim(C⊥s) = m1 and
dim(Ds) ≤ dim(C⊥s). The fifth one is from Theorem D.3 proved later.

31

As stated in the main text, given the parameters m1, n, d and g, the stabilizer construction
is reduced to sampling a random Hs and s, so that Hs = (F, D, 0m1×(n−r)), and Hss = 1, where
r = d + g. Here, D ∈ F

m1×d
2 is a generator matrix of a random doubly-even code Ds = Cs

⋂ C⊥s ,
and F ∈ F

m1×g
2 span Cs/Ds satisfying DTF = 0 and rank(FTF) = g.

In more details, D and F shall satisfy the following conditions.

Proposition D.2 (Conditions of D and F). Given (H, s) ∈ Hn,m,g, let Hs be the rows of H that are
not orthogonal to s. Then, there exists an invertible Q, so that HsQ = (F, D, 0) and

• D consists of d = r− g independent vectors with weight 0 modulo 4, which are orthogonal to each
other, with r = rank(Hs).

• F consists of g independent columns from ker(DT) which lie outside the column space of D.

• FTF is a random full-rank g-by-g symmetric matrix.

• The all-ones vector 1 either explicitly appears as the first column of D or F, or it can be written as
the sum of the first two columns of F.

Proof. The matrix D is taken as the generator matrix of the dual intersection Ds, which is a
doubly-even code. The form of D follows from Proposition 2.4. The second condition is because
Ds ⊂ C⊥s , which implies DTF = 0. So, columns of F lie in ker(DT). The third condition is
because rank(FTF) = rank(QTHT

s HsQ) = rank(HT
s Hs) = g. As for the last condition, if 1 ∈ Cs,

one can always perform basis change so that 1 explicitly appears in the columns of Hs. More
specifically, if 1 ∈ Ds, the column operation Q can transform it as the first column of D. If not,
it can be made as the first column of F. The second part of this condition can be achieved by
adding the second column of F to the first.

Standard form. Although Ref. [39] gave the congruent standard form of any symmetric matrix
over F2, for our purpose of ensuring the all-ones vector being a codeword, we consider a slightly
different standard form. Such a standard form can be achieved by Hs = (F, D, 0) where F and D
satisfy the conditions in Proposition D.2. Then, the construction algorithm only needs to sample
Hs so that HT

s Hs is in the standard form. Note that Hs itself may not have a unique standard
form under row permutations and column operations.

Theorem D.3. Let (H, s) be a random instance from Hn,m,g and let Hs be the rows of H satisfying
Hs s = 1. Then, there exists an invertible matrix Q, so that HsQ is in the form of (F, D, 0) with D and F
satisfying the conditions in Proposition D.2 and

QTHT
s HsQ =

I

J
. . .

J
0(n−g)×(n−g)

 or

J

. . .
J

0(n−g)×(n−g)

 , (D.1)

where I is either 1 or I2 and J :=
(

0 1
1 0

)
. In addition, m1 = g mod 2, where m1 is the number of rows

in Hs.

32

Proof. First, according to Proposition D.2, HT
s Hs ∼c FTF⊕DTD⊕ 0. For the D matrix, we have

DTD = 0d×d, which already matches standard form, where d = rank(Hs)− g. So, we focus
on G′ := FTF. The matrix F satisfies DTF = 0 and rank(FTF) = g, where g is the number of
columns in F. We want to find an invertible matrix Q′, which leaves the D matrix unchanged
and only changes the F matrix, so that G′ is equal to the top-left g× g submatrix in the standard
form. We first discuss the congruent standard form of general full-rank symmetric matrix.

1. First, suppose that not all diagonal elements of G′ are zero. In this case, we can assume
G′11 = 1, because otherwise, we can always apply a permutation matrix to F, so that the
nonzero diagonal element of G′ is moved to the (1, 1)-location. Then, up to congruent
transformations,

G′ =
(

1 gT

g G1

)
. (D.2)

Let,

Q1 =

(
1 gT

0 I

)
. (D.3)

We have,

QT
1 G′Q1 =

(
1 0T

0 ggT + G1

)
. (D.4)

2. If G′jj = 0 for 1 ≤ j ≤ g, then without loss of generality, we can assume G′12 = 1; otherwise,
we can apply a permutation matrix to swap the the non-zero entry to the (1, 2) and (2, 1)
positions. In this case, up to congruent transformations,

G′ =
(

J G2
GT

2 G3

)
, (D.5)

where J =
(

0 1
1 0

)
. Let

Q1 =

(
I2 JG2
0 Ig−2

)
. (D.6)

Then,

QT
1 G′Q1 =

(
J 0T

0 GT
2 JG2 + G3

)
. (D.7)

Therefore, we have FTF ∼c (I⊕) J⊕ · · · ⊕ J.

• If m1 is odd, then 1 cannot be in Ds. In this case, 1 is the first column of F, according to
Proposition D.2. Then, G′11 = 1 and applying the transformation of Eq. (D.3) leads to
a matrix in the form of Eq. (D.4). This implies that all other columns in the new F are
orthogonal to 1 and hence have even parity. Therefore, we have G′jj = 0 for j > 1 and

G′ ∼c 1⊕
(

(g−1)/2⊕
i=1

J

)
.

33

• If m1 is even and 1 ̸∈ Ds, then 1 is also the first column of F, according to Proposition D.2.
Then, we can assume that G′12 = 1, as what we did in proving the general congruent
standard form. This implies that the second column of F must be odd-parity, and so
G′22 = 1. As as result, up to congruent transformations,

G′ =
(

J1 G2
GT

2 G3

)
, (D.8)

where J1 =

(
0 1
1 1

)
. Let

Q1 =

(
I2 J3G2
0 Ig−2

)
, (D.9)

where J3 =

(
1 1
1 0

)
. Then,

QT
1 G′Q1 =

(
J1 0T

0 GT
2 J3G2 + G3

)
. (D.10)

From the second row (column) of QT
1 G′Q1, one can see that only the second column of

the new F is odd-parity and all other columns are even parity, which means that the
diagonal elements of GT

2 J3G2 + G3 are zero. Then, Eq. (D.6) is repeatedly applied, so that
G′ = J1 ⊕ J⊕ · · · ⊕ J. Finally, let Q2 be an invertible matrix that adds the second column
to the first. We have QT

2 G′Q2 = I2 ⊕ J⊕ · · · ⊕ J.

• If m1 is even and 1 ∈ Ds, then m1 must be a multiple of 4 and 1 is the first column of D,
according to Proposition D.2. In this case, DTF = 0 implies that all columns of F will be
even-parity, which means that the diagonal elements of G′ will be zero. Moreover, the
diagonal elements will remain zero if the congruent transformation only acts nontrivially

on G′. Therefore, FTF ∼c

g/2⊕
i=1

J.

Above, the all-ones vector appears as the first column of D or F except for the third case,
where 1 = c1 + c2 can be obtained by adding up the first two columns of F. Finally, in all of the
above cases, m1 = g mod 2.

Next, we discuss the sampling of D and F.

Sampling D. Here, the goal is to sample a D = (c1, · · · , cd) with d ≤ m1/2, where m1 =
g mod 2. Columns in D are orthogonal to each other and have weight a multiple of 4, according
to Proposition D.2. The algorithm is shown in Algorithm 1, which works as follows. First, c1
can be a random vector with weight 0 modulo 4; D is initialized as D = (c1). Then, the second
column c2 is sampled with the constraint that c1 · c2 = 0 and |c2| = 0 mod 4; D is updated to be
D = (c1, c2). Next, the third column c3 is sampled so that it is orthogonal the first two columns
and |c3| = 0 mod 4. This process is iterated until all d columns are sampled, or until no vector
satisfying the condition can be sampled, in which case a matrix with d− 1 columns will be
returned.

34

Parameters: m1 and d
Require: d ≤ m1/2

1: c1 ← a random vector with weight 0 modulo 4
2: D← (c1)
3: for t = 1, · · · , d− 1 do
4: ct+1 ← a random vector from ker(DT)/⟨c1, · · · , ct⟩ with weight 0 modulo 4
5: if ct+1 does not exist then
6: break
7: end if
8: D← (D, ct+1)
9: end for

10: if 1 lies in the column space of D then
11: Apply column operations so that 1 is the first column of D
12: end if
13: return D

Algorithm 1: Algorithm to sample a D = (c1, c2, · · · , cd) so that ci · cj = 0 and |ci| = 0 mod 4.

In the t-th iteration, the vector ct is sampled from ker(DT)/⟨c1, · · · , ct−1⟩with D = (c1, · · · , ct−1).
That is, we want ct to be orthogonal to the first t− 1 columns and outside the linear subspace
that they span. This can be achieved as follows. We first solve for a basis of ker(DT), and then
the first t − 1 of the basis vectors are set as {c1, · · · , ct−1}, with the remaining basis vectors
changed accordingly. The vector ct is sampled to be the random linear combination of the
remaining basis vectors. In this way, the orthogonality and independence of ct with respect to
c1, · · · , ct−1 are guaranteed.

In addition, to ensure that |ct| = 0 mod 4, we can first sample an even-parity vector from
ker(DT)/⟨c1, · · · , ct−1⟩. It is well-known that for a linear subspace over F2, either all vectors are
even-parity or half the vectors are even-parity. Therefore, the sampling of even-parity vector
can be efficiently done and we denote resulted vector as a1. The weight of a1 will be either 0
or 2 modulo 4. If |a1| = 0 mod 4, then it is set to be ct. Otherwise, we sample a vector a2 from
ker(DT)/⟨c1, · · · , ct−1, a1⟩ that is orthogonal to a1; that is, a2 is a random vector from ker(DT)
that is orthogonal to and outside ⟨c1, · · · , ct−1, a1⟩. Then, if |a2| = 0 mod 4, it is set to be ct and if
not, it follows from Lemma B.2 that a1 + a2 must have a weight that is a multiple of 4, and thus
we assign it as ct. With this approach, a ct with weight a multiple of 4 can be guaranteed to be
sampled except for the final iteration of two extremal cases.

We now turn to discuss the cases d = m1/2 and d = (m1 − 1)/2, where in the last iteration,
the column cd may not exist. In such a case, only a matrix D with d − 1 columns will be
returned. However, we would like to emphasize that it is the g parameter that affects the value
of the correlation function. For the subspace Ds, we only require it to be doubly-even, and its
dimension does not matter. Therefore, we do not require the sampling algorithm succeed every
time when applied to these two extremal cases.

When d = m1/2 with m1 even, the resulting Ds forms a doubly-even self-dual code, which
implies g = 0. In this scenario, 1 is included in Ds because 1 will be orthogonal to all vectors
in Ds and itself. This implies that m1 must be a multiple of 4. An example of this case is the

35

Input: m1, g and D
Require: g ≤ m1 − 2d with d the number of columns in D; g = m1 mod 2

1: D ← column space of D
2: if m1 is odd then ▷ G′ = diag(1, J, · · · , J) and g is odd
3: c1 ← 1m1

4: F← (c1)
5: else if m1 is even and 1m1 ̸∈ D then ▷ G′ = diag(I2, J, · · · , J)
6: c2 ← a random odd-parity vector in ker(DT)/D
7: c1 ← 1m1 + c2
8: F← (c1, c2)
9: else ▷ G′ = diag(J, · · · , J)

10: c1 ← a random vector in ker(DT)/D
11: c2 ← a random vector in ker(DT)/D that satisfies c1 · c2 = 1
12: F← (c1, c2)
13: end if
14: while number of columns in F < g do
15: C ← D⊕ column space of F
16: a← a random vector in C⊥/D
17: b← a random vector in C⊥/D that satisfies a · b = 1
18: F← (F, a, b)
19: end while
20: return F

Algorithm 2: Algorithm to sample F = (c1, · · · , cg) so that DTF = 0 and rank(FTF) = g.

extended QRC [29]. On the other hand, when d = (m1 − 1)/2 with m1 odd, we have g = 1
along with Ds = C⊥s . In this situation, the F matrix must be 1. The QRC serves as an example of
this particular case.

The reason why the last iteration of Algorithm 1 may break on these two cases is as follows.
We only discuss d = m1/2, but the reasoning for d = (m1 − 1)/2 is similar. When t = d− 1,
D = (c1, · · · , cd−1). If 1 is not in ⟨c1, · · · , cd−1⟩, then the algorithm will assign it as cd, and
this iteration ends normally. However, if 1 ∈ ⟨c1, · · · , cd−1⟩, the dimension of ker(DT) is
m1− (d− 1) = m1/2+ 1. So, the subspace that a1 is sampled from has dimension m1/2+ 1− t =
2. If this subspace has a nonzero vector with weight 0 modulo 4, then this vector will be assigned
as cd and the iteration will also end normally. However, if all vectors in this subspace have
weight 2 modulo 4, except for the all-zeros vector, then cd could not be found. In this case, the
iteration breaks.

Sampling F. Next, we give the algorithm to sample F = (c1, · · · , cg) (Algorithm 2). The
algorithm takes m1, g and D as inputs, and outputs a matrix F so that FTF is a rank-g symmetric
matrix in the standard form as in Eq. (D.1), DTF = 0, and 1 lies in the span of columns in D and
F. This implies that all columns of F should be sampled from ker(DT)/Ds, with the additional
orthogonality constraints imposed by FTF.

There are three cases for FTF. First, if m1 is odd, then 1 cannot lie in Ds. According to

36

Proposition D.2 and Theorem D.3, 1 can be set as the first column of F and FTF = diag(1, J, · · · , J).
Second, if m1 is even but 1 is not in Ds, then FTF = diag(I2, J, · · · , J), according to Theorem D.3.
In this case, c1 and c2 are odd-parity vectors, and c1 + c2 = 1. Third, if m1 is even and 1 lies in
Ds, then FTF = diag(J, · · · , J). In this case, c1 is a random vector from ker(DT)/Ds and c2 is a
random vector from ker(DT)/Ds satisfying c2 · c1 = 1. Note that c1 and c2 are automatically
even-parity, since they are orthogonal to 1. Moreover, c2 must lie outside the space Ds ⊕ ⟨c1⟩,
due to the constraint c2 · c1 = 1.

After the initialization of c1 (and c2), the algorithm proceeds to sample other columns of F, if
g > 1 (or g > 2). We only illustrate the case when m1 is odd below, but the sampling process
for an even m1 follows a similar pattern. For m1 odd, FTF = diag(1, J, · · · , J). We first initialize
Cs ← Ds⊕ ⟨c1⟩, which is the subspace C in Algorithm 2. The block diagonal form of FTF implies
that c2 and c3 are vectors from ker(DT)/Ds that are orthogonal to c1 = 1, i.e., c2, c3 ∈ C⊥s /Ds.
For c2, it is sampled as a random vector from C⊥s /Ds, which is the vector a in Algorithm 2. For
c3, it is sampled as a random vector from C⊥s /Ds satisfying c2 · c3 = 1, which is the vector b in
Algorithm 2. This finishes the sampling of columns corresponding to the first J block. Then, the
subspace Cs is updated to include c2 and c3 into its basis, with its dimension increased by 2. This
process is repeated for other columns, until all g columns are sampled. Finally, F = (c1, · · · , cg)
and it can be verified that FTF is indeed equal to the standard form diag(1, J, · · · , J).

E Column redundancy

Essentially, adding column redundancy is to replace a full rank generator matrix of a code with
a “redundant” generator matrix. The procedure of adding column redundancy is as follows.

1. Given a full-rank Hs, (e.g., the last 4 columns in Eq. (2.4)) and the secret, we first append
all-zeros columns to Hs and extend s accordingly,

Hs ← (Hs, 0) s←
(

s
s′

)
. (E.1)

2. Apply random column operations Q to obtain Hs ← HsQ and s← Q−1s.

Here, in the first step s′ is an arbitrary vector whose length is the same as the number of all-
zeros columns appended to Hs. Since the correlation function only depends on the linear code
generated by Hs [24, 28] and adding column redundancy does not change the linear code, the
correlation function with respect to the new secret is unchanged after the above two steps.
We would like to remark that although there are 2n2 choices for s′ of length n2, once we fix a
choice, the only constraint to the redundant rows is to be orthogonal to the specific new secret
s. Moreover, since the final IQP matrix H is of full column rank, only the real secret s will
correspond to the code generated by Hs. In the case of QRC-based construction, if one chooses a
redundant generator matrix of QRC by adding column redundancy, then n can be any integer
larger than (q + 1)/2, the dimension of QRC.

F Classical sampling and equivalent secrets

Here, we show that if a classical prover finds a wrong secret s′, and generate classical samples
using the naive sampling algorithm, then the generated samples will have the wrong correlation

37

function on the real secret. We first prove the following proposition.

Proposition F.1. For a nonzero s ̸= 1, if we randomly sample a vector d of even parity, then

Pr
|d| even

(s · d = 1) = Pr
|d| even

(s · d = 0) =
1
2

. (F.1)

Proof. The set of even-parity vectors forms a linear subspace. It is well known that for a linear
subspace and a vector s, either half of vectors are orthogonal to s, or all vectors are orthogonal
to s. Since s ̸= 1, we have the former case.

Given H =

(
Hs
Rs

)
and s, we say another vector s′ is equivalent to s if Hs = Hs′; that is,

they have the same inner-product relations with rows in H. The following lemma shows that a
random row orthogonal to s′ will have probability 1/2 to have inner product 1 with s, even if
Hs = Hs′.

Lemma F.2. For s′ ̸= s, if we uniformly randomly sample a vector p orthogonal to s′, then

Pr
p·s′=0

(p · s = 1) =
1
2

. (F.2)

Proof. Without loss of generality, assume s′ has ones in the first k entries and zeros elsewhere. We

can split p =

(
p1
p2

)
and s =

(
s1
s2

)
, where p1 is a random even-parity string and p2 is uniformly

random over Fn−k
2 . Then, p · s = p1 · s1 + p2 · s2.

1. If s2 = 0 and s1 ̸= 1,

Pr
p·s′=0

(p · s = 1) = Pr
p1 even

(p1 · s1 = 1) =
1
2

, (F.3)

according to Proposition F.1.

2. If s2 ̸= 0 and s1 = 1,

Pr
p·s′=0

(p · s = 1) = Pr
p2
(p2 · s2 = 1) =

1
2

, (F.4)

because p2 is uniformly random.

3. If s2 ̸= 0 and s1 ̸= 1,

Pr
p·s′=0

(p · s = 1) = Pr
p1,p2

(p1 · s1 = 1, p2 · s2 = 0) + Pr
p1,p2

(p1 · s1 = 0, p2 · s2 = 1) (F.5)

=
1
2
· 1

2
+

1
2
· 1

2
=

1
2

, (F.6)

where we used the independence of p1 and p2.

Now, we are ready to prove Lemma 5.3.

38

Parameter: number of linear equations l
1: procedure EXTRACTSECRET(H)
2: Uniformly randomly pick d ∈ Fn

2 .
3: for j = 1, 2, · · · , l do ▷ construct the linear-system matrix M
4: Uniformly randomly pick ej ∈ Fn

2 .
5: mT

j ← ROWSUM(Hd,ej).
6: end for
7: M← (m1, · · · , ml)

T.
8: for each vector si ∈ ker(M) do
9: if si passes the QRC check then ▷ discussed in the main text

10: return si
11: end if
12: end for
13: end procedure

Meta-Algorithm 3: The EXTRACTSECRET(H) subroutine in Ref. [30]. Here, given H and two
vectors d and et, we define Hd,ej to be a submatrix from H by deleting rows orthogonal to either
d or ej.

Proof. With similar derivations to Lemma F.2, one can show that

Pr
p·s′=0

(p · s = 0) = Pr
p·s′=1

(p · s = 0) = Pr
p·s′=1

(p · s = 1) =
1
2

. (F.7)

That means, if one samples a random p to be orthogonal to s′ with probability β, and not
orthogonal to s′ with probability 1− β, then

Pr
p
(p · s = 0) = β Pr

p·s=0
(p · s = 0) + (1− β) Pr

p·s=1
(p · s = 0) =

1
2

. (F.8)

That is, p is uncorrelated with s and the correlation function is

E[(−1)p·s] = Pr
p
(p · s = 0)− Pr

p
(p · s = 1) = 0 . (F.9)

Therefore, if the secret extraction procedure returns a vector s′ ̸= s and the classical prover uses
the naive classical sampling algorithm to generate samples, then the samples will produce zero
correlation function on the real secret.

G More on Linearity Attack

G.1 Secret extraction in Kahanamoku-Meyer’s attack

Meta-Algorithm 3 presents the secret extraction procedure in Ref. [30]. The procedure will be
repeated if no vectors pass the QRC check. Here, we prove the following proposition.

Proposition G.1. The matrix M obtained from Meta-Algorithm 3 consists of rows from the row space of
Gd = HT

dHd.

39

From this proposition, it is clear that to minimize the size of ker(M), one can choose M = Gd.
In this way, the sampling of ej’s can be removed.

Proof. Recall that the j-th row of M is obtained in the following way. First, we eliminate rows in
H that are orthogonal to d, which gives Hd. Then, we eliminate rows in Hd that are orthogonal
to ej, which gives Hd,ej . Finally, we sum up the rows in Hd,ej , which gives mT

j . Equivalently, we
have

mT
j = (Hd e)THd = eTGd . (G.1)

To see this, first observe that Hd e has ones in the positions where the corresponding rows are
not orthogonal to ej. Then, (Hd e)THd selects and sums up the rows in Hd,ej .

According to Eq. (G.1), the rows of M are linear combinations of rows of Gd and thus are in
the row space of Gd.

For completeness, we also give the success probability that the real secret s lies in ker(M).

Proposition G.2 (Theorem 3.1 in Ref. [30] restated). Given (H, s) ∈ HQRC
n,m,q, randomly sample a

vector d ∈ {0, 1}n and let M be the binary matrix obtained from Meta-Algorithm 3. If Gsd = 0, then
we have Ms = 0, which happens with probability 1/2 over all choices of d.

Proof. First, note that for the i-th row of M,

mi · s = ∑
pT∈row(H)
p·d=p·ei=1

p · s = ∑
p∈row(H)

(p · s)(p · d)(p · ei) , (G.2)

since each term equals 1 if and only if it has inner product 1 with d, e and s simultaneously. The
above transformation is to take the conditions in the summation up to the summand, and we
can take the term p · s = 1 down to the summation. That is, we can write

mi · s = ∑
p∈row(Hs)

(p · d)(p · ei) , (G.3)

which can be seen to be a quantity only depending on Hs. Further observe that the above is the
inner product between Hsd and Hsei, i.e.,

mi · s = (Hsei) · (Hsd) = eT
i Gsd . (G.4)

Therefore, if Gsd = 0, then mi · s = 0 for every i, which means Ms = 0. That is, the verifier’s
secret lies in the kernel of M if d lies in the kernel of Gs. If Hs generates a QRC, then rank(Gs) = 1.
Then, the probability that d lies in the kernel of Gs is 2n−1/2n = 1/2.

G.2 Classical sampling

Here, we give two classical sampling algorithms that given an IQP circuit C and a candidate set
S = {s1, · · · , st} with t ≤ n as input, output samples that have the correct correlation function
on all candidate secrets in the set. We first consider a simple case here, where the Gram matrix
Gsi = HT

si
Hsi associated with each candidate secret si has the same rank. Then, if the samples are

from a quantum computer, the probability bias relative to every candidate secret should be the

40

Parameter: number of samples T.
1: procedure CLASSICALSAMPLING(S, β)
2: Solve Sy = 1 for a specific solution y′.
3: Find the basis {y1, · · · , yk} of ker(S) ▷ k is the dimension of ker(S).
4: for j = 1, 2, · · · , T do
5: Randomly sample (c1, · · · , ck) ∈ Fk.
6: With probability β, set xj ← ∑k

i=1 ciyi.
7: With probability 1− β, set xj ← y′ + ∑k

i=1 ciyi.
8: end for
9: return x1, · · · , xT

10: end procedure

Algorithm 3: The CLASSICALSAMPLING subroutine for the candidate set where all secrets are
associated with the same bias.

same, denoted as β. Given this candidate set, a classical prover can use Algorithm 3 to mimic
the quantum behavior. Here, the matrix S is defined to be a t× n matrix whose i-th row is sT

i .
The output bit strings will have probability β to be orthogonal to all vectors in the candidate set
S, and probability 1− β to have inner product 1 with them. Therefore, the generated samples
will have correct bias with every vector in the candidate set and hence the correct correlation
function. The condition for Algorithm 3 to work is that the all-ones vector 1 needs to be in the
column space of S. Otherwise, the specific solution y′ cannot be found. A sufficient condition is
that the candidate vectors are linearly independent. Then, the matrix S will have full row rank,
and the all-ones vector 1 will be in the column space of S.

Next, we do not require the associated biases β1, · · · , βt to be the same. We present a similar
sampling algorithm to Algorithm 3 to output samples that mimic what a quantum computer
will output. For the sake of illustration, we assume that the associated biases are all different,
denoted as {β1, β2, · · · , βt}, but the following discussion can be easily generalized to the case
where some βi’s are the same. As before, the attacker does not have extra information to judge
which one is the correct secret, even though the correct secret is in the candidate set. So he would
have to generate samples that have bias β1 with s1, β2 with s2, and so on. Below, the algorithm
for generating such samples is shown in Algorithm 4. Again, we transform the set S into a t× n
matrix S.

The correctness of the sampling algorithm can be easily seen via a sanity check. But one
problem is whether the linear system Sy = bj has solutions or not. If nonzero solutions can be
found for every linear systems, then bj’s are all in the column space of S, which implies that the
rank of S is t. Since there are t rows in S, a necessary and sufficient condition for the sampling
algorithm to work is that {s1, · · · , st} are linearly independent. This condition can be relaxed if
some of the β j’s are the same.

G.3 The probability of choosing a good d

Here, we prove Proposition 5.4.

Proof. First, Gsd = HT
s Hsd and Hsd is a vector, where the positions of ones gives the indices of

41

Input: a binary matrix S ∈ Ft×n; biases β1 > β2 > · · · > βt.
Parameter: number of samples T.
Output: x1, · · · , xT ∈ Fn.

1: Find the basis of ker(S), denoted as {y1, · · · , yk}.
2: for j = 1, 2, · · · , t do
3: Define bj to be a binary vector whose last j entries are all zero.
4: Solve a specific solution y′j for Sy = bj.
5: end for
6: for i = 1, 2, · · · , T do
7: Randomly sample (c1, · · · , ck) ∈ Fk.
8: With probability βt, set xi ← ∑k

i=1 ciyi.
9: With probability βt−1 − βt, set xi ← y′t + ∑k

i=1 ciyi.
10: With probability βt−2 − βt−1, set xi ← y′t−1 + ∑k

i=1 ciyi.

11:
...

12: With probability β1 − β2, set xi ← y′2 + ∑k
i=1 ciyi.

13: With probability 1− β1, set xi ← y′1 + ∑k
i=1 ciyi.

14: end for
15: return x1, · · · , xT

Algorithm 4: The CLASSICALSAMPLING subroutine for the candidate set where all vectors are
associated with different biases.

the rows in Hs that have inner product 1 with d. Therefore, the ones of Hsd correspond to the
rows in H that have inner product 1 with both s and d. Moreover, if the vector Hsd is multiplied
to HT

s on the right, then those rows are summed up, i.e.,

Gsd = HT
s Hsd = ∑

pT∈row(H)
p·d=p·s=1

p . (G.5)

Similarly, we have

Gds = HT
dHds = ∑

pT∈row(H)
p·d=p·s=1

p . (G.6)

Thus, Gsd = Gds. If we want s to lie in ker(Gd), then d needs to lie in ker(Gs), which happens
with probability

2n−g

2n = 2−g , (G.7)

for a random d.

G.4 Size of ker(Gd)

Here, we prove Theorem 5.5.

42

Proof. First, observe that the rows in Gd are formed by linear combination of rows in Hd, which
means the rows space of Gd is no larger than that of Hd, and rank(Gd) ≤ rank(Hd). So, the
dimension of ker(Gd) is

n− rank(Gd) ≥ n− rank(Hd) . (G.8)

In expectation, the number of rows r(Hd) in Hd is

Ed[r(Hd)] = Ed

 ∑
pT∈row(H)

p · d

 = ∑
pT∈row(H)

Ed [p · d] =
m
2

, (G.9)

since Ed [p · d] = 1/2 for every row pT. Since rank(Hd) ≤ r(Hd), we have dim(ker(Gd)) ≥
n−m/2 in expectation.

43

	Introduction
	IQP-based verification protocol
	Main results
	Related works

	Preliminaries
	Notations
	Stabilizer formalism
	Coding theory
	Shepherd-Bremner construction

	Stabilizer characterization of IQP circuits
	Stabilizer construction
	Classical attacks and security
	Linearity Attack
	Secret extraction
	Classical sampling

	Analysis
	A fix of the Shepherd-Bremner construction

	Discussion
	Derivation of the overlap of two stabilizer states
	Proofs for coding theory
	IQP circuits and stabilizer formalism
	IQP stabilizer tableau
	Correlation function
	Stabilizer characterization applied to the Shepherd-Bremner construction

	Details in stabilizer construction
	Column redundancy
	Classical sampling and equivalent secrets
	More on Linearity Attack
	Secret extraction in Kahanamoku-Meyer's attack
	Classical sampling
	The probability of choosing a good d
	Size of (Gd)

