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Abstract

Methods for Improved Analysis and Implementation of Algorithms for Local

Hamiltonians

by

Mauro E.S. Morales

Doctor of Philosophy

University of Technology Sydney

One of the main applications of quantum computers is expected to be computing

properties of physical systems. Of particular interest is that of computing ground states

and of performing evolution of a system with a given Hamiltonian. Related to these

problems are the questions of when can we expect a quantum advantage and how to best

implement a quantum algorithm when such advantage is expected. In this thesis we seek

to give partial answers to these questions for certain versions of the local Hamiltonian

problem and the Hamiltonian evolution problem.

In the first part of this thesis we study a parameterized version of the local Hamilto-

nian problem where the ground-state of interest can be expressed as a superposition of

computational basis states with a fixed Hamming weight. We find that this problem is

unlikely to be tractable for quantum computers and moreover find connections with a

quantum version of the exponential time hypothesis.

The second part of this thesis provides a quantum sampling scheme based on

Fermions which is inspired on the Boson Sampling scheme. The hardness guaran-

tees in our scheme are comparable to those of Random Circuit Sampling, moreover we

prove an anticoncentration property for this scheme in an improvement over what is

known for Boson Sampling.

In the final part we present results on product formulas for Hamiltonian simulation.

This work improves over previous methods to implement higher-order product formulae,
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by finding new product formulae which greatly reduce the error and thus require fewer

gate counts to implement. Moreover, we compare the performance of these product

formulae in practice and find that our product formulae could be a better choice for

quantum chemistry.
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Chapter 1

Introduction

Quantum computing has emerged as a groundbreaking field, driven by the anticipation

of quantum algorithms surpassing classical algorithms in computational power. This

motivation raises pivotal questions concerning the potential of quantum computers:

(i) What are the limitations on their computational capabilities? (ii) Under which

conditions can quantum algorithms exhibit superiority over classical counterparts? (iii)

How can we effectively implement quantum algorithms to leverage their advantages?

Extensive research has been dedicated to addressing these inquiries, particularly through

investigations of problems with connections to physics. In fact, the initial impetus

behind proposing quantum computing was rooted in the recognition of the classical

intractability to simulate and compute certain properties of quantum systems [Fey86].

Subsequent work established the concept of quantum computation, employing the

framework of a quantum Turing machine [Deu85], and fostering the development of

quantum complexity theory [BV97].

Within the realm of quantum algorithms, two prominent problems have dominated

the study of quantum physics: the local Hamiltonian problem and the Hamiltonian simu-

lation problem. The local Hamiltonian problem involves Hamiltonians with constituent

terms that interact solely over a constant number of qubits. Local Hamiltonians are

physically relevant as many physical systems in condensed matter physics or quantum
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chemistry include local interactions. When studying these physical systems one is often

interested in the groundstate and the corresponding energy of the system, as many other

properties depend on these. In its general form, this problem has been found to be

challenging for quantum computers [KSV02]. More precisely, the local Hamiltonian

problem has been shown to likely be intractable for polynomial-time quantum algo-

rithms. This has spurred a series of works studying variations of the local Hamiltonian

problem where the interactions are constrained or other parameters are included in

the description of the problem (see Section 2.3.2 for more detail). Understanding the

complexity of the local Hamiltonian problem is also useful for finding instances where a

quantum advantage with respect to classical algorithms might exist, providing a pathway

for understanding the utility of quantum computers for problems of physical relevance.

The Hamiltonian simulation problem revolves around the task of evolving a quantum

state for a specified duration under a given Hamiltonian. This is a natural task when

one is interested in simulating the behaviour of quantum systems in time starting from

some initial state. Notably, this problem is considered tractable for quantum computers

when dealing with local Hamiltonians. This problem was one of the first ones where

a quantum advantage could be expected as it is not believed that there are efficient

classical algorithms solving this problem [Fey82]. This problem could find many

applications such as in quantum chemistry or condensed matter systems where one

would be interested in studying the evolution of a system. Several methods to solve

this problem have been proposed, culminating in the development of methods which

are optimal with regard to the dependence on some of the parameters in this problem

(we briefly review some of these methods in Section 2.4). One of the first methods

proposed to solve this problem was that of product formulae [Llo96]. This simple

method decomposes the total evolution under a Hamiltonian into separate evolutions

of non-commuting parts. Although the complexity of this method is worse in terms of

the dependence on the error than more recent algorithms, the implementation is simple

enough that it is expected that product formulae will still be useful in early fault-tolerant

quantum computers.
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Given their potential applications and well-defined formulations, the local Hamilto-

nian and Hamiltonian simulation problems offer an intriguing context for addressing

questions (i), (ii) and (iii) at the beginning of the introduction. In the case of the local

Hamiltonian problem, we know that it is intractable for quantum computers when con-

sidering 2-local interactions. More precisely, it is complete for the class QMA which is

a quantum generalization of the complexity class NP. By considering more restricted

classes of Hamiltonians or by considering other ingredients in the instance, it is possible

for the problem to become BQP-complete. In fact some recent work shows that this is

the case [GL21]. On the other hand, improving on implementations for Hamiltonian

simulation algorithms will help in making problems where quantum computers may be

useful more readily available.

The work in this thesis is divided in three parts and has as overall theme a focus on

giving partial answers to questions (i), (ii) and (iii). Specifically, we will study the likely

intractability of a version of the local Hamiltonian where only the eigenstates that are

superpositions of fixed Hamming-weight computational basis states are considered. We

denote this version of the problem as the Weighted Local Hamiltonian problem. This

work is in line with previous research that seeks to determine what kind of ingredients

make the local Hamiltonian problem tractable or intractable (for some history on this,

see Section 2.3.2). Then the Fermion sampling scheme is introduced. it is shown that a

sampling scheme similar to Boson Sampling [AA11] where the inputs are given instead

by Fermionic states achieves similar hardness guarantees than Random Circuit Sampling

[AAB+19] or Boson Sampling. Finally, improved implementations of product formulae

are given with applications for Hamiltonian simulation and quantum chemistry.

The first part of this work is concerned with studying the complexity of the Local

Hamiltonian problem. This problem is central in the study of quantum complexity, as it

was the first example of a QMA-complete problem and also is physically motivated by

the usual problem in physics of finding the ground state energy of a physical system.

I present work done with my collaborators Michael Bremner, Zhengfeng Ji, Xingjian

Li, Ryan Mann, Luke Mathieson and Alexis Shaw which studies the complexity of
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the Local Hamiltonian problem under the parameterized complexity framework by

considering the number of excitations in the ground state as a parameter. In [BJM+22],

we introduce the main complexity classes in quantum parameterized complexity. This

work left several open questions, which include the complexity of the weighted Local

Hamiltonian problem and the existence of natural complete problems for the intractable

class QW[1]. Part of this work is presented in Chapter 3. In [BJL+22] we tried to

answer the two previous questions. We were able to prove the unlikely tractability of the

Local Hamiltonian problem by making connections to the Exponential Time Hypothesis

(ETH). Moreover, we prove that the parameterized Local Hamiltonian problem is in

QW[1]. The question of whether the parameterized Local Hamiltonian problem is

complete for QW[1] is still open. This last work is presented in Chapter 4.

In the second part, I present work done in collaboration with Michal Oszmaniec,

Ninnat Dangniam and Zoltan Zimboras. We introduce a new sampling problem with

quantum advantage based on Fermionic statistics [ODMZ22], this work is presented in

Chapter 5. Many quantum advantage proposals have been based on sampling schemes

where random quantum circuits generate output probabilities which are hard to sample

from when having only access to classical machines. One of the first sampling schemes

proposed was that of Aaronson and Arkhipov [AA11], this scheme known as Boson

sampling involves the use of random linear optics circuits whose output probabilities

are represented as permanents of submatrices of a unitary. The authors show that

it is unlikely for classical machines to sample from distributions close to the ones

generated by the scheme provided some conjectures are assumed. Recently, Google has

implemented a sampling scheme based on Random Circuit Sampling [AAB+19]. In our

work, we show that it is possible to implement a similar scheme based on Fermionic

statistics. We show that our scheme in fact combines advantages from both Boson

sampling and Random Circuit Sampling.

The third part of this thesis involves the improvement of product formulae for Hamil-

tonian simulation. This is work done with Pedro Costa, Daniel Burgarth, Yuval Sanders

and Dominic Berry. One of the main applications for quantum computers is expected
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to be that of simulating other physical systems. The Hamiltonian simulation problem

involves evolving for some time a given quantum state under a known Hamiltonian,

which seems like a natural setting where to expect a quantum advantage with respect

to classical computing. One of the first methods to implement such evolutions is that

of Lie-Trotter product formulae [Llo96]. In our work [MCB+22] we find new product

formulae based on techniques from [Yos90] which allow for more efficient implementa-

tions with a lower error. We make comparisons among state-of-art product formulae and

study which ones are better suited for quantum chemistry. We show that the new prod-

uct formulae we find can be more useful for quantum chemistry when compared with

previous ones, this is shown by extensive numerics comparing the performance of the

product formulae with randomly chosen Hamiltonians. Although there has been recent

work achieving optimal dependence on several parameters for algorithms solving the

Hamiltonian simulation problem [LC17a], product formulae have remained unexplored

and in fact numerics show that the errors achieved through this method are lower than

what theory suggests [CST+21].

1.1 Authorship

As stated previously, each part in this thesis includes work with several collaborators. At

the beginning of each chapter (except Chapter 2) I outline in what way I was involved in

each work. The work included in these chapters has been rewritten except when stated.

In the following paragraphs I summarize my work on each chapter.

This chapter and Chapter 2 were completely written by myself except when citing

certain definitions or results.

Chapter 3 is based on work in [BJM+22]. This was work done in collaboration

with Michael Bremner, Zhengfeng Ji, Ryan Mann, Luke Mathieson and Alexis Shaw.

My contribution in [BJM+22] was mainly that of helping in writing Section II and

Section III of that paper. I contributed on the discussions for the proper definitions of

the QW-hierarchy and in writing the proofs for some facts pertaining FPQT. In this
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chapter I have taken most definitions directly from that paper and have been included

for completeness. In Section 3.3.1 I include some non-published work regarding a

parameterized version of the subset problem for which I am the main contributor.

Chapter 4 is based on work in [BJL+22]. This is work done in collaboration with

Michael Bremner, Zhengfeng Ji, Xingjian Li and Luke Mathieson. My contribution in

this project consisted in contributing ideas, writing and in the formation of proofs. I

contributed to most of the writing which comprises Section 4.3.1, except Lemma 4.12.

I also contributed in the writing of the rest of sections of this chapter, where I didn’t

contribute, I have rewritten those parts or added some detail such as in Section 4.3.3

(on error reduction part) and some parts on the clock construction in Section 4.3.4.

Section 4.3.5 was originally written by my coauthors in the paper, I mainly participated

of the discussions for this section. I have included Section 4.3.5 in my thesis for

completeness. The figures included in this chapter are those of [BJL+22], the original

versions were designed by me (except Figs. 4.4 and 4.5) and were later implemented in

Tikz by my coauthors.

Chapter 5 is based on published work [ODMZ22] written in collaboration with

Michal Oszmaniec, Ninnat Dangniam and Zoltan Zimboras. We introduce a new

sampling scheme for quantum advantage based on Fermionic linear optics supplied with

magic states which allow to prove hardness guarantees comparable to other schemes. My

contribution to this work consisted in the contribution of ideas and writing several parts

in [ODMZ22]. In this chapter I have rewritten or expanded parts in [ODMZ22] which

have been included here, moreover, several parts where I did not contribute have not

been included but I cite the corresponding results when used. In the paper [ODMZ22],

I helped writing sections of Appendix E.3 which correspond to Appendix A.2 in this

thesis, I also was involved in proofs of earlier versions of this part, but the final version

includes many parts written by my coauthors and thus has been included as an appendix.

The part corresponding to Sections 5.6 and 5.7 was written by my coauthors with some

contributions by myself, but the version presented in this thesis is rewritten and expanded

by me, in fact I obtain different error bounds than in our paper as I have followed a
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different path in certain calculations. Although these error bounds are not improved,

these changes help making the calculations clearer. In the paper I contributed to an

earlier version of the proof of Theorem 5.9 and in this thesis I have detailed some of

the calculations that are present in the paper. The figures in Appendix A were done by

my coauthors but all the figures in this chapter (excluding the appendix) were done by

me. The theorem, lemma and corollary statements that appear in this thesis are directly

taken from [ODMZ22] unless otherwise specified, but as mentioned previously the

explanations and discussions have been expanded by myself when appropriate. Finally,

I contributed with some numerics which have not been included in this thesis but have

been presented in [ODMZ22].

Chapter 6 is based on work in [MCB+22]. This is work done in collaboration with

Pedro C.S. Costa, Daniel K. Burgarth, Yuval R. Sanders and Dominic W. Berry. In

this work I contributed to the idea, writing and numerics. All the theorems, lemmas

and corollaries included are stated as in [MCB+22] and also the figures. Not much is

changed from the original publication as much of the writing was done by myself with

corrections from my coauthors. Those parts written by coauthors have not been included

in this chapter.
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Chapter 2

Background

In this chapter I lay out background information relevant to the work presented in

later parts of this thesis. Section 2.1 gives a brief introduction to quantum mechanics,

Section 2.2 contains basic definitions used in theoretical computer science for classical

and quantum computation and Section 2.4 gives a small summary on key methods for

Hamiltonian simulation.

2.1 Quantum mechanics

The theory of quantum mechanics is one of the fundamental pillars of modern physics.

It describes physical phenomena at the atomic and subatomic scale by relying heavily

on the branch of mathematics known as linear algebra (we will assume knowledge of it

in the following presentation). In this section we give the basics of this theory which are

involved in the theory of quantum computing. In particular, we only work with finite-

dimensional systems. A more in-depth introduction can be found in [NC00] or [KSV02]

and a more mathematical introduction (albeit not focused on quantum computing) can

be found in [Hal13].

The specification of quantum mechanical systems involves four parts: the description

of the states of a system, the description of how a system evolves, how different systems



CHAPTER 2. BACKGROUND 9

are combined and finally the description of a measurement in a system. In the next

paragraphs we detail each of these parts. The state of a quantum system is described by

a unit-normed vector in a 𝑑-dimensional Hilbert space with underlying vector spaces

H = C𝑑 . Such vectors are termed qudits. The norm in H is defined as the Euclidean

norm. More precisely, given a vector |𝜓 ⟩ ∈ H which can be decomposed into an

orthonormal basis {|𝑖⟩}𝑑𝑖=1 with complex coefficients {𝛼𝑖}𝑖 as |𝜓 ⟩ =
∑𝑑
𝑖=1 𝛼𝑖 |𝑖⟩, then

∥ |𝜓 ⟩∥ =
√︃∑𝑑

𝑖=1 |𝛼𝑖 |2. In particular a qubit corresponds to a unit-normed vector |𝜓 ⟩ ∈ C2

and we fix the standard basis which we denote |0⟩ and |1⟩. We denote by ⟨𝜓 | the

Hermitian conjugate of |𝜓 ⟩ and by ⟨𝜓 |𝜓 ⟩ the inner product of the state with itself.

The norm of a vector |𝜓 ⟩ ∈ H is given by ∥ |𝜓 ⟩∥ =
√︁
⟨𝜓 |𝜓 ⟩. Moreover, we define

|𝜓 ⟩⟨𝜙 | = |𝜓 ⟩ ⊗ ⟨𝜙 | as the outer product of two vectors. Note that Π = |𝜓 ⟩⟨𝜓 | is a

projector onto the subspace spanned by |𝜓 ⟩.

The evolution is given by the action of a unitary operator 𝑈 acting on H . Since

we are dealing with finite-dimensional systems, any unitary 𝑈 can be written in terms

of a Hermitian operator (a Hamiltonian) 𝐻 such that 𝑈 = 𝑒−𝑖𝐻 . We denote 𝑈 † as the

Hermitian conjugate of𝑈 .

Suppose now we are given two quantum systems with Hilbert spaces H1,H2 in

states |𝜓1⟩ ∈ H1 and |𝜓2⟩ ∈ H2. To consider the state of the whole system combining

systems 1 and 2, then we need to only consider the tensor product space H1 ⊗ H2 with

state |𝜓1⟩ ⊗ |𝜓2⟩ which sometimes we only write as |𝜓1⟩ |𝜓2⟩ or |𝜓1𝜓2⟩.

Finally, if a system is in a state |𝜓 ⟩ =
∑𝑑
𝑖=1 𝛼𝑖 |𝑎𝑖⟩ where |𝑎𝑖⟩ is some orthogonal

basis of H and 𝛼𝑖 ∈ C, then when measuring the system in this basis we get result |𝑎𝑖⟩

with probability |𝛼𝑖 |2.

It is useful to define probabilistic mixtures of quantum states. To describe these states

we define the density operator or density matrix. If {𝑝 𝑗 }𝑘𝑗=1 is a probability distribution

over states {
��𝜓 𝑗 〉}𝑘𝑗=1 then the density operator is given by 𝜌 =

∑𝑘
𝑗=1 𝑝 𝑗

��𝜓 𝑗 〉〈𝜓 𝑗 ��. More

generally, a density operator 𝜌 is a linear operator over H satisfying the following

properties: (i) Tr{𝜌} = 1, (ii) 𝜌† = 𝜌, (iii) ⟨𝜓 |𝜌 |𝜓 ⟩ ≥ 0 for all states |𝜓 ⟩, i.e. 𝜌 is

positive semi-definite. We write this as 𝜌 ≥ 0. A unitary 𝑈 will act on 𝜌 as 𝑈𝜌𝑈 †, but
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we can define more general operations over density matrices. A quantum channel E

is an operator on density matrices (or linear operators over H more generally), which

fulfills the following properties: (i) linearity, i.e., E(𝛼𝜌1 + 𝛽𝜌2) = 𝛼E(𝜌1) + 𝛽E(𝜌2) for

all 𝛼, 𝛽 ∈ C and all density matrices 𝜌1 and 𝜌2. (ii) Complete positivity. E is completely

positive if I𝑅 ⊗ E is positive for any arbitrary system 𝑅, where I is the identity channel.

An operator E is positive if E(𝜌) is positive semi-definite for all 𝜌 positive semi-definite

operators. (iii) Trace preservation. Tr(𝜌) = Tr(E(𝜌)) for any linear operator 𝜌 .

Some norms we will be using for a linear operator 𝐴 acting on the Hilbert space H

are the spectral norm ∥𝐴∥ = sup|𝜓 ⟩≠0
∥𝐴|𝜓 ⟩∥
∥ |𝜓 ⟩∥ where the vector norm used is the Euclidean

norm and the max norm ∥𝐴∥max = max 𝑗,𝑘
��𝐴 𝑗𝑘 �� where 𝐴 𝑗𝑘 is the ( 𝑗, 𝑘) entry of 𝐴.

2.2 Theory of computation

The theory of computation concerns itself with defining what is computation itself

through rigorous means by defining a model of computation and studies which problems

can be solved in different computational models and the corresponding resource require-

ments. We consider an alphabet Σ, the elements of this alphabet are called symbols

and in this thesis we usually consider the binary alphabet {0, 1}. A string 𝑤 over the

alphabet Σ is a finite sequence of symbols from Σ. The number of symbols in𝑤 is called

the length of the string (or bitstring when considering the binary alphabet). The set of

strings of length 𝑛 is denoted Σ𝑛 and the set of all strings over Σ is denoted Σ∗ = ∪𝑖∈NΣ𝑖 .

A problem can be described in many different ways as presented in Section 2.3, the

most basic notion is given by a language 𝐿 ⊆ {0, 1}∗, where {0, 1}∗ is the set of all

binary strings. Roughly stated, we want to determine which strings belong to 𝐿 through

algorithmic means. One of the most known computational models used in classical

computing is that of a Turing machine which formalizes the notion of an algorithm. A

precise definition of the Turing machine can be found in [AB09]. The output of a Turing

machine 𝑀 on an input state 𝑥 is denoted as 𝑀 (𝑥).
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Another widely known computational model is that of Boolean circuits. In this

model, the input is processed by a sequence of logical gates which compute some

Boolean function. A Boolean circuit is defined as a directed acyclic graph where each

of the vertices are labeled as follows. Each vertex of in-degree 0 is labeled as an input

node. Every vertex with in-degree 1 is labeled as a negation vertex and every vertex of

in-degree ≥ 2 is labeled either as an AND vertex or an OR vertex, these vertices with

in-degree greater than 1 are also called gates. There is a unique vertex with out-degree 0

which is denoted as the output node. This graph represents a sequence of computations

through a logical circuit where the gates are given by the AND, OR and negation logical

operator. In the previous definition we have assumed a fixed gate set based on these

logical operators but it is equivalent in computational power to circuits based on a

different universal basis. We denote the in-degree of the logical gates as fan-in and

the out-degree as fan-out. In terms of computational power, the Turing machine and

the circuit model are equivalent as the can simulate each other with some polynomial

overhead. Sometimes it is useful to consider the notion of oracle machines, these are

Turing machines which can enter a special state which allows to decide in one step

whether some string that the Turing machine holds belongs to some fixed language 𝐿.

Such Turing machines 𝑀 with access to an oracle of the language 𝐿 are denoted as 𝑀𝐿.

Details on the definitions for these models can be found in [AB09], we will not go into

the detail of these since we will be mainly working with quantum circuits in this thesis.

Sometimes we require the use of quantum oracles and the definition of these will be

given when needed. When using circuits as a model for computation it is natural to

consider a uniformity condition which. We say a circuit family {𝐶𝑛}𝑛∈N is a uniform

family of circuits if there is a Turing machine 𝑀 running in polynomial time such that

for each 𝑛, 𝑀 (𝑥) outputs a descriptions of circuit𝐶𝑛, where the length of bitstring 𝑥 is 𝑛.
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2.2.1 The quantum circuit model

To represent computations done with quantum systems, we use the quantum circuit

model. A circuit (or more precisely, a family of circuits) represents a quantum algorithm.

A quantum computation is described over a certain number 𝑛 of qubits or qudits (a

register), the quantum circuit is given by a unitary 𝑈 acting over this register. The

register is initialized in the state |0𝑛⟩. It is common to give a decomposition of𝑈 into

one and two qubit gates. As in the classical case, it is natural to consider uniform

family of quantum circuits {𝑈𝑛}𝑛∈N which are generated as outputs of a classical Turing

machine running in polynomial time.

2.3 Complexity theory

The main goal in complexity theory is to classify the resources required when solving

problems through algorithmic means as defined by a computational model. We give a

very quick summary of some concepts in complexity theory which we use in this thesis,

for a deeper introduction to this topic a book such as [AB09, Gol08] is suggested. Most

commonly, the problems studied are so-called decision problems.

Definition 2.1 (Decision problem [Gol08]). Let 𝐿 ⊆ {0, 1}∗. The decision problem

of 𝐿 consists in given an input 𝑥 ∈ {0, 1}∗, output 1 or 0 deciding if 𝑥 ∈ 𝐿. The map

𝑓 : {0, 1}∗ → {0, 1} solves the decision problem of 𝐿 (or decides 𝐿) if for 𝑥 ∈ 𝐿,

𝑓 (𝑥) = 1 and for 𝑥 ∉ 𝐿, 𝑓 (𝑥) = 0.

Sometimes we are just interested in a computational problem that gives answers to

a well-defined subset of all possible inputs. This corresponds to the notion of promise

problems.

Definition 2.2 (Promise problem [Gol08]). Let 𝐴 ⊆ {0, 1}∗ such that 𝐴 = 𝐿𝑦𝑒𝑠 ∪ 𝐿𝑛𝑜
and 𝐿𝑦𝑒𝑠 ∩ 𝐿𝑛𝑜 = ∅. The promise problem of 𝐴 consists in given 𝑥 ∈ 𝐴, output 1 if

𝑥 ∈ 𝐿𝑦𝑒𝑠 and 0 if 𝑥 ∈ 𝐿𝑛𝑜 . There is no output required if 𝑥 ∉ 𝐴. We call 𝐴 the promise.
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On the other hand, one could consider computational problems of a different form.

Particularly relevant for this thesis are sampling problems.

Definition 2.3 (Sampling problem [Aar14]). Let D = {D𝑥 } be a family of probability

distributions with 𝑥 ∈ {0, 1}∗ and where D𝑥 is a probability distribution over bitstrings

𝑦 ∈ {0, 1}poly( |𝑥 |) for some polynomial. The sampling problem of D consists in given an

input 𝑥 ∈ {0, 1}∗, output 𝑦 ∈ {0, 1}poly( |𝑥 |) with probability D𝑥 (𝑦).

The resources considered in complexity theory are usually time and space (though

once could consider others such as amount of randomness, number of communication

interactions, etc...). We quickly review the main complexity classes that are relevant

for this thesis. The class P defined below captures the notion of tractable problems for

deterministic algorithms.

Definition 2.4 (Polynomial-Time decidable (P) [Gol08]). The class of decision prob-

lems solvable by a polynomial-time Turing Machine (TM). More precisely, there is a

Turing machine 𝑀 which on input 𝑥 ∈ {0, 1}𝑛 runs poly(n) steps and 𝑀 (𝑥) = 1 if and

only if 𝑥 ∈ 𝐿.

An alternative definition of P is given by those decision problems such that there is

a uniform family of circuits {𝐶𝑛}𝑛 such that 𝐶 |𝑥 | (𝑥) = 1 if an only if 𝑥 ∈ 𝐿, where |𝑥 | is

the number of bits in 𝑥 .

The class NP below captures the notion of problems that have efficient procedures

to check whether a purported solution is correct. Later we will define the notion of

complete problems, which correspond to those problems to which all problems in a class

can be reduced to. Problems that are complete for NP are considered intractable for

classical algorithms.

Definition 2.5 (Non-Deterministic Polynomial-Time decidable (NP) [Gol08]). The

class of decision problems solvable by a non-deterministc polynomial-time Turing

Machine (NTM). Equivalently, it is the class of problems for which instances that
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are accepted have proofs that can be verified in poly-time by a TM and non-accepted

instances don’t have such proofs.

Sometimes we will be interested in complexity classes defined in terms of oracles.

We denote as P𝐿 as the class of problems decidable by polynomial-time TM with oracle

access to 𝐿, also define NP𝐿 as the class of problem decidable by non-deterministic

polynomial-time TM with oracle access to 𝐿. An important notion in complexity theory

is that of a reduction which allows to relate the complexity of different computational

problems.

Definition 2.6 ([AB09]). A language 𝐿 ⊆ {0, 1}∗ is polynomial-time Karp reducible to

language 𝐿′ ⊆ {0, 1}∗ if there is a polynomial-time computable function 𝑓 : {0, 1}∗ →

{0, 1}∗ such that ∀𝑥 ∈ {0, 1}∗, 𝑥 ∈ 𝐿 ⇐⇒ 𝑓 (𝑥) ∈ 𝐿′.

For a complexity class 𝐶, we say that 𝐿′ is 𝐶-hard if ∀𝐿 ∈ 𝐶, 𝐿 reduces to 𝐿′. 𝐿′

is 𝐶-complete when 𝐿′ ∈ 𝐶 and 𝐿′ is 𝐶-hard. A well known problem in NP (in fact

NP-complete) is that of K-SAT. A Boolean formula 𝜙 over variables 𝑥1, · · · , 𝑥𝑛 consists

of a finite expression which includes logical operators acting over these variables (for

a rigorous definition see [AB09]). A formula 𝜙 is said to be satisfiable if there is an

assignment of the variables 𝑥1, · · · , 𝑥𝑛 ∈ {0, 1} such that 𝜙 (𝑥1, · · · , 𝑥𝑛) = 1, otherwise 𝜙

is said to be unsatisfiable. The formula 𝜙 is said to be in CNF form if it is written as an

AND of OR’s.

Definition 2.7 (K-SAT[AB09]).

Instance: A Boolean formula 𝜙 in CNF form such that each clause has at most 𝑘

variables.

Problem: Decide whether 𝜙 is satisfiable.

We point out two classes defined from NP class. One of them is defined in analogy

to NP focused on counting problems known as #P. The second is a generalization of

NP which is known as the polynomial hierarchy.



CHAPTER 2. BACKGROUND 15

Definition 2.8 (#P). The class of counting problems associated to counting the number

of accepting paths in a NTM.

Definition 2.9 (Polynomial Hierarchy (PH)). Consider

Δ0 = Σ0 = Π0 = P

Δ𝑖+1 = PΣ𝑖

Σ𝑖+1 = NPΣ𝑖

Π𝑖+1 = coNPΠ𝑖

The polynomial hierarchy is defined as

PH =
⋃
𝑘∈N

Δ𝑘 =
⋃
𝑘∈N

Σ𝑘 (2.1)

Theorem 2.10 (Toda’s Theorem [Tod91]). PH ⊆ P#P.

The P vs NP problem is the central problem of complexity theory. It is believed that

P ≠ NP and thus that NP-complete problems are intractable for deterministic classical

algorithms. Therefore, we would not expect polynomial-time algorithms for problems

like 3-SAT. Nonetheless, this leaves open the question about the complexity about the

best possible algorithm for 3-SAT. More formally, consider the following constants.

Definition 2.11. For any 𝑘 ≥ 3, define

𝑠𝑘 := inf
{
𝛿 : K-SAT has an O

(
2𝛿𝑁

)
-time algorithm

}
where 𝑁 is the number of variables in the K-SAT instance and with algorithm we refer

to classical deterministic algorithms.

Finding 𝑠3 would give us the best possible complexity for solving 3-SAT. If P =

NP or there is some subexponential algorithm with runtime for 3-SAT (for example

O
(
2
√
𝑁
)
), then clearly 𝑠3 = 0. Note that the 𝑠𝑖 form a monotone increasing sequence, i.e.,

𝑠𝑖 ≤ 𝑠𝑖+1 for 𝑖 ≥ 3. We define the exponential time hypothesis as follows.
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Conjecture 2.12 (Exponential Time Hypothesis [IP01]). With Definition 2.11, 𝑠3 > 0.

Equivalently, ∃ 𝛿 > 0 such that 3-SAT cannot be solved in time O
(
2𝛿𝑁

)
with classical

deterministic algorithms.

This conjecture is of course stronger than P ≠ NP. Although the conjecture makes

reference to the SAT problem, in fact it has consequences over many other problems. The

connection to other computational problems is made through the so called sparsification

lemma [IPZ01]. This allows one to show that several problems have no subexponential

algorithms if one believes Conjecture 2.12.

Lemma 2.13 (Sparsification Lemma [IPZ01]). Let 𝑘 ∈ N and 𝜖 > 0. There is a

constant 𝐶 = 𝐶 (𝑘, 𝜖) and an algorithm A such that

• Given a 𝑘 -SAT formula 𝜙 with 𝑁 variables, A(𝜙) outputs formulae 𝜙1, · · · , 𝜙𝑡 .

• 𝜙 is satisfiable ⇐⇒ ∃ 𝑖 ∈ {1, · · · , 𝑡} such that 𝜙𝑖 is satisfiable.

• We have 𝑡 ≤ 2𝜖𝑁 and A runs in time O
(
2𝜖𝑁poly(𝑁 )

)
.

• Each 𝜙𝑖 is a 𝑘 -SAT formula with 𝑁 variables and 𝑀𝑖 ≤ 𝐶𝑁 , where 𝑀𝑖 is the

number of clauses in 𝜙𝑖 .

Some authors define a slightly weaker version of Conjecture 2.12 which we state in

the following.

Conjecture 2.14 (Exponential time Hypothesis, slightly weaker version

(ETH)[DF13]). The problem 3-SAT cannot be solved in time 2𝑜 (𝑛) .

Clearly, if there is a 2𝑜 (𝑛) algorithm then 𝑠3 = 0, thus Conjecture 2.12 implies

Conjecture 2.14. This last version is also relevant in parameterized complexity (which

we introduce in Section 2.3.1) where it allows to prove the intractability of several

problems assuming ETH. In this thesis we will focus on generalizations of this last

definition for ETH.
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2.3.1 Parameterized complexity

Having presented the most studied complexity classes in Section 2.3 we now introduce

parameterized complexity theory, which allows for a classification of the hardness of

problems at a finer scale. As mentioned in the introduction, part of the work in this

thesis involved creating a framework for a quantum version of parameterized complexity

theory. Here we will present the basics of the classical theory.

First, let’s begin by defining the notion of a parameterization and of a parameterized

problem.

Definition 2.15 (Parameterization [DF13]). A parameterization of a finite alphabet Σ is

a mapping 𝜅 : Σ∗ → Z+ that is polynomial-time computable. The trivial parameterization

𝜅trivial is the parameterization with 𝜅trivial(𝑥) = 1 for all 𝑥 ∈ Σ∗.

Definition 2.16 (Parameterized problem [DF13]). A parameterized problem over

a finite alphabet Σ is a pair (𝐿, 𝜅) where 𝐿 ⊆ Σ∗ is a set of strings over Σ and 𝜅 is a

parameterization of Σ. We say that a parameterized problem (𝐿,𝜅) over the alphabet Σ

is trivial if either 𝐿 = ∅ or 𝐿 = Σ∗.

Let us consider a simple example to clarify the notion of a parameterized problem.

We define the parameterized satisfiability problem as follows.

Definition 2.17 (P-SAT [FG06]).

Instance: A Boolean formula 𝜙 over 𝑘 Boolean variables.

Parameter: A natural number 𝑘 denoting the number of variables.

Problem: Decide whether 𝜙 is satisfiable.

In this case, the parameterization 𝜅 from Definition 2.15 gives the number of Boolean

variables in the instance given by the Boolean formula𝜙 . We can consider other problems

like the vertex cover problem in a parameterized setting. A vertex cover for a graph
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𝐺 = (𝑉 , 𝐸) is a collection of vertices 𝑉 ′ ⊆ 𝑉 such that for all edges 𝑒 = (𝑣1, 𝑣2) ∈ 𝐸,

either 𝑣1 ∈ 𝑉 ′ or 𝑣2 ∈ 𝑉 ′.

Definition 2.18 (𝒌-VERTEX COVER [DF13]).

Instance: A graph 𝐺 = (𝑉 , 𝐸) and a natural number 𝑘 .

Parameter: A natural number 𝑘 .

Problem: Decide whether 𝐺 has a vertex cover of size ≤ 𝑘 .

In this case the parameterization simply gives the size of the vertex cover one seeks

in the problem description.

With these definitions in place, we define a tractable algorithm when parameters are

included in the problem description.

Definition 2.19 (Fixed-Parameter Tractable (FPT) [DF13]). A parameterized lan-

guage (𝐿,𝜅) is said to be fixed-parameter tractable (FPT) if and only if there is an

algorithm A, a constant 𝑐 and a computable function 𝑓 such that, algorithm A(𝑥) runs

in time at most 𝑓 (𝜅 (𝑥)) |𝑥 |𝑐 and 𝑥 ∈ 𝐿 ⇐⇒ A(𝑥) accepts.

We can think of the FPT class as a parameterized version of P. Although the runtime

is still inefficient when the parameter 𝑘 is not fixed, the combinatorial explosion has

been isolated in the 𝑓 (𝑘) factor. Trivially, the problem P-SAT is in FPT since we can

decide the problem for any formula 𝜙 with𝑚 clauses in time 𝑂 (2𝑘𝑚), where 𝑘 is the

number of variables. A more interesting example is given by 𝑘-VERTEX COVER. By

brute force, the runtime to solve this problem is𝑂 (𝑛𝑘) where 𝑛 is the number of vertices

in the graph and 𝑘 is the size of the vertex cover. This runtime is not enough to put

the problem in FPT as the dependence on the parameter is in the exponent. Several

techniques have been developed to obtain better runtimes in parameterized complexity

such as bounded search tree methods and kernelization (for more details on these

techniques see [DF13, FG06]). It was shown by Fellows and Langston [FL87] that the

Robertson-Seymour graph minor theorem can be used to solve the 𝑘 -VERTEX COVER
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in time 𝑂 (𝑓 (𝑘)𝑛3) which puts the problem in FPT. Note that 𝑘 -VERTEX COVER is an

NP-complete problem, yet it can be considered tractable in the parameterized setting.

The notion of a parameterized reduction will be important when considering in-

tractability. We give a definition of a fpt-reduction in what follows.

Definition 2.20 (Fixed-parameter tractable reduction [FG06]). Let (𝐿,𝜅) and (𝐿′, 𝜅′)

be parameterized problems over alphabets Σ and Σ′ respectively. An fpt-reduction from

(𝐿, 𝜅) to (𝐿′, 𝜅′) is a mapping 𝑅 : Σ∗ → (Σ′)∗ such that:

(1) For all 𝑥 ∈ Σ∗ we have 𝑥 ∈ 𝐿 ⇐⇒ 𝑅(𝑥) ∈ 𝐿′

(2) 𝑅 is computable by an fpt-algorithm with respect to 𝜅. That is, there is a

computable function 𝑓 and a polynomial 𝑝 such that 𝑅(𝑥) is computable in

𝑓 (𝜅 (𝑥))𝑝 ( |𝑥 |).

(3) There is a computable function 𝑔 : N→ N such that 𝜅′(𝑅(𝑥)) ≤ 𝑔(𝜅 (𝑥)) for all

𝑥 ∈ Σ∗.

The first two conditions are quite natural for an fpt-reduction. Condition (3) is

required to make FPT closed under fpt-reductions. For more detail on this, see Lemma

2.2 in [FG06].

There are several ways to consider intractable classes in the parameterized setting

and to generalize NP in parameterized complexity. One class which is considered

intractable is para-NP.

Definition 2.21 (para-NP [FG06]). A parameterized problem (𝐿, 𝜅) over the alphabet

Σ is in para-NP if there is a computable function 𝑓 : N → N, a polynomial 𝑝 and a

nondeterministic algorithm that, given 𝑥 ∈ Σ∗, decides if 𝑥 ∈ 𝐿 in at most 𝑓 (𝜅 (𝑥))𝑝 ( |𝑥 |)

steps.

While para-NP seems like a natural definition for a generalization of NP, it suffers

certain problems. The issue is that we want to capture intractability in the parameterized

setting, or more simply stated, we want to capture when is it possible to have runtimes
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of the form 𝑓 (𝑘) poly(𝑛) instead of 𝑛 𝑓 (𝑘) as in the 𝑘-VERTEX COVER problem. For

example, we will see below that problems like 𝑘-INDEPENDENT SET are unlikely to

have tractable runtimes, yet it is complete for a class which is inside para-NP. This

motivates the definition of further complexity classes. For details on this, see Section

2.2 in [FG06]. Another complexity class considered intractable is that of XP.

Definition 2.22 (XP [FG06]). Let (𝐿,𝜅) be a parameterized problem over the alphabet

Σ. Then (𝐿,𝜅) belongs to the class XP if there is a computable function 𝑓 : N→ N and

an algorithm that, given 𝑥 ∈ Σ∗, decides if 𝑥 ∈ 𝐿 in at most |𝑥 | 𝑓 (𝜅 (𝑥)) + 𝑓 (𝜅 (𝑥)).

In contrast to FPT, the dependence on the parameter appears in the exponent of

the size of the instance, which is considered intractable in parameterized complexity.

Clearly, FPT ⊆ XP. In this thesis we mostly focus in the so-called Weft-hierarchy

(W-hierarchy) due to its relevance to Chapter 4 and its connection to ETH. We begin by

defining W[P].

Definition 2.23 (W[P] [DF13]). A parameterized problem (𝐿, 𝜅) over the alphabet

Σ is in W[P] if there is a verification procedure {V𝑛,𝑘}𝑛,𝑘∈Z+ such that the following

conditions are satisfied.

(1) There is a computable function 𝑓 : Z+ → Z+ and a polynomial 𝑝 ∈ N[𝑋 ], such

that, for every 𝑥 ∈ Σ∗, V|𝑥 |,𝜅 (𝑥) on input 𝑥 runs in time at most 𝑓 (𝜅 (𝑥)) · 𝑝 ( |𝑥 |) on

a deterministic Turing machine.

(2) For every 𝑥 ∈ Σ∗,

• If 𝑥 ∈ 𝐿, then there exists a bit string 𝑦 comprising at most 𝑓 (𝜅 (𝑥)) · log |𝑥 |

bits, such that V|𝑥 |,𝜅 (𝑥) (𝑥,𝑦) accepts.

• If 𝑥 ∉ 𝐿, then for every bit string 𝑦 comprising at most 𝑓 (𝜅 (𝑥)) · log |𝑥 | bits,

V|𝑥 |,𝜅 (𝑥) (𝑥,𝑦) rejects.

It can be shown easily that FPT ⊆ W[P] and W[P] ⊆ XP [FG06]. Intuitively, the

class corresponds to problems decidable by algorithms running in 𝑓 (𝑘)𝑝 (𝑛) time and
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allowed to do 𝑂 (𝑓 (𝑘) log𝑛) nondeterministic choices. The number of nondeterministic

choices is limited in this way because we want to accept those problems that are only

inside XP. Said in another way, we can intuitively think of W[P] as the problems where

we want to find 𝑘 items fulfilling certain condition from a set of 𝑛 elements. We can

then encode this choice roughly with 𝑘 · log𝑛 bits which corresponds to the witness. An

example of a problem in W[P] is 𝑘 -VERTEX COVER, we can guess 𝑘 times an element

in the vertex cover which is encoded by log𝑛 bits and then check that these elements

indeed form a cover. It is believed that FPT ≠ W[P] since otherwise one could show

the existence of subexponential algorithms for circuit satisfiability. For details on this

see Chapter 3 of [FG06]. A complete problem for W[P] is given by the WEIGHT-𝑘

CIRCUIT SATISFIABILITY problem.

Definition 2.24 (WEIGHT-𝒌 CIRCUIT SATISFIABILITY).

Instance: A Boolean circuit C over 𝑛 input bits and a natural number 𝑘 .

Parameter: A natural number 𝑘 .

Problem: Decide whether there exists an 𝑛-bit Hamming weight-𝑘 string 𝑦, such that

C(𝑦) accepts.

The idea of parameterizing the Hamming-weight is that it intuitively captures the

idea of choosing 𝑘 elements out of a set of size 𝑛. The circuit checks whether this set

has some property. For example in the K-VERTEX COVER problem we want a set of

size 𝑘 which is a vertex cover.

An important notion in what follows is that of the circuit weft. Moreover, we give a

problem based on the circuit weft which defines the W-hierarchy.

Definition 2.25 (Circuit Weft). Let C be a Boolean circuit. The weft of C is the

maximum number of gates with fan-in ≥ 2 that act on any path from input to output

vertex when C is viewed as a directed acyclic graph.

Finally, the weft-hierarchy (W-hierarchy) is defined as follows.
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Definition 2.26 (WEIGHT-𝒌 WEFT-𝒕 DEPTH-𝒅 CIRCUIT SATISFIABILITY).

Instance: A weft-𝑡 depth-𝑑 Boolean circuit C on 𝑛 input bits.

Parameter: A natural number 𝑘 .

Problem: Decide whether there exists an 𝑛-bit Hamming weight-𝑘 string 𝑦, such that

C(𝑦) accepts.

Definition 2.27 (W[𝒕]). For 𝑡 ∈ N, the class W[𝑡] consists of all parameterized problems

that are FPT reducible to WEIGHT-𝑘 WEFT-𝑡 DEPTH-𝑑 CIRCUIT SATISFIABILITY for

some 𝑑 ≥ 𝑡 .

It can be shown that W[𝑡] ⊆ W[P] for every 𝑡 ≥ 1. It is an open problem whether the

𝑊 -hierarchy is strict, i.e., W[𝑡] is strictly contained in W[𝑡 + 1] for all 𝑡 . The strictness

would imply that FPT ≠ W[P]. In this thesis we mainly work with the quantum version

of W[1] which we define in Chapter 3. An example of a problem which is complete for

W[1] is that of 𝑘-INDEPENDENT SET. An independent set for a graph 𝐺 = (𝑉 , 𝐸) is

defined as a set of vertices 𝑉 ′ such that for any 𝑣1, 𝑣2 ∈ 𝑉 ′, 𝑒 = (𝑣1, 𝑣2) ∉ 𝐸.

Definition 2.28 (𝒌-INDEPENDENT SET).

Instance: A graph 𝐺 = (𝑉 , 𝐸) and a natural number 𝑘 .

Parameter: A natural number 𝑘 .

Problem: Decide whether 𝐺 has independent set of size 𝑘 .

A proof that this problem is W[1]-complete can be found in [FG06]. Note that

both 𝑘 -VERTEX COVER and 𝑘 -INTEPENDENT SET are NP-complete problems. In the

parameterized setting, we see a separation in the complexity of these two problems since

𝑘 -VERTEX COVER is in FPT and 𝑘 -INTEPENDENT SET is W[1]-complete. These kind

of separations make parameterized complexity an interesting setting in which one gets a

more fine-grained view of the complexity of problems.
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It has been shown that FPT = W[1] implies that the ETH is false [DF13], providing

a connection between non-parameterized and parameterized complexity. We will see

more details about this and analogous results in Chapter 4.

2.3.2 Quantum complexity Theory

In this subsection we define some of the quantum complexity classes used in this thesis.

A more in-depth analysis of this classes can be found in [KSV02] and a review of many

other classes is given in [Wat08]. Just as in the classical case, a quantum analogue of P

would include the problems that we can solve efficiently with quantum computers. This

class is known as BQP.

Definition 2.29 (Bounded Quantum Polynomial Time (BQP)). The promise problem

𝐿 = (𝐿𝑦𝑒𝑠, 𝐿𝑛𝑜) is in BQP if and only if there exist a uniform family of quantum circuits

{𝑄𝑛}𝑛∈N where each 𝑄𝑛 accepts 𝑛 input qubits and has one output qubit, such that

• if 𝑥 ∈ 𝐿𝑦𝑒𝑠 , Pr
(
𝑄 |𝑥 | (𝑥) accepts

)
≥ 2/3

• if 𝑥 ∈ 𝐿𝑛𝑜 , Pr
(
𝑄 |𝑥 | (𝑥) accepts

)
≤ 1/3

where |𝑥 | denotes the length of 𝑥 .

The most studied quantum version of NP is defined in terms of a verifier with access

to quantum polynomial-time computations and an all-powerful prover who must supply

a quantum state.

Definition 2.30 (Quantum Merlin-Arthur (QMA)). Let 𝐿 = (𝐿𝑦𝑒𝑠, 𝐿𝑛𝑜) be a promise

problem. We say 𝐿 ∈ QMA if and only if there exists a polynomial 𝑝 and a uniform

family of circuits {𝑄𝑛}𝑛∈N where each𝑄𝑛 takes 𝑛 + 𝑝 (𝑛) inputs and has one output qubit

such that

• If 𝑥 ∈ 𝐿𝑦𝑒𝑠 , ∃ |𝜓 ⟩ a 𝑝 (𝑛) qubit state, Pr(𝑄 (𝑥, |𝜓 ⟩) accepts) ≥ 2/3

• If 𝑥 ∈ 𝐿𝑛𝑜 , ∀ |𝜓 ⟩ a 𝑝 (𝑛) qubit state, Pr(𝑄 (𝑥, |𝜓 ⟩) accepts) ≤ 1/3

We call the first condition completeness and the second the soundness of the protocol.
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Many QMA-complete problems have been found and a high-level summary of these

is given in [Boo12]. One of the most important is the local Hamiltonian problem

[KSV02] which plays a role analogous to 𝑘 -SAT in quantum complexity theory.

Local Hamiltonian

The local Hamiltonian problem is usually considered a natural computational problem.

The conventional wisdom says that a common problem that physicists and chemists

encounter when studying quantum systems is that of computing the ground state energies

of a given Hamiltonian with locality properties.

Definition 2.31 (ℓ-LOCAL HAMILTONIAN).

Instance: An ℓ-local Hamiltonian 𝐻 B
∑
𝑖 𝐻𝑖 on 𝑛 qubits that comprises at most a

polynomial in 𝑛 many terms {𝐻𝑖}, which each act non-trivially on at most ℓ

qubits and have operator norm ∥𝐻𝑖 ∥ ≤ 1. Numbers 𝑎, 𝑏 such that 0 ≤ 𝑎 < 𝑏 and

𝑏 − 𝑎 ≥ 1/poly(n).

Yes: There exists an 𝑛-qubit quantum state |𝜓 ⟩, such that ⟨𝜓 |𝐻 |𝜓 ⟩ ≤ 𝑎.

No: For every 𝑛-qubit quantum state |𝜓 ⟩, ⟨𝜓 |𝐻 |𝜓 ⟩ ≥ 𝑏.

As mentioned the ℓ -LOCAL HAMILTONIAN problem is QMA-complete when ℓ

is sufficiently large, which was originally proven by Kitaev [KSV02]. The original

proof showed that the 5-LOCAL HAMILTONIAN problem is QMA-complete. This

result was later improved to showing that 3-LOCAL HAMILTONIAN is QMA-complete

[KR03] and further improved to showing 2-LOCAL HAMILTONIAN as QMA-complete

[KKR05]. This problem includes a wide variety of Hamiltonians encountered in physics,

nonetheless, many times the Hamiltonians of interest have further constraints. Some

of these constraints may include a particular interaction graph (for example a grid) or

interactions constrained to be of a certain form (for example as in the XY-model).
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In the case of 2D grid local Hamiltonian, it was shown in [OT08] that the prob-

lem remains QMA-complete. In a series of works [BL08, CM16, PM17] the QMA-

completeness of several variations of the local Hamiltonian based on physical models

was established. In [LCV07], Hamiltonians which are quartic polynomials in the cre-

ation and destruction operators of fermionic creation and destruction operators were

considered and proven to be QMA-complete. The case for bosons was shown QMA-

complete in [WMN10].

In the previous summary we can see that the tendency has been to modify the

Hamiltonian in order to get a sense of the hardness of problems that are actually

encountered in the physical sciences. Recent work has also focused on modifying

the problem itself by adding certain parameters or including additional promises. In

quantum chemistry one is interested in finding the groundstate energy of a Hamiltonian

whose description also includes the choice of a basis. In [OIWF22], the authors show

that when this basis is fixed, the electronic structure Hamiltonian is QMA-complete for

a fixed particle number. The authors leave open several questions, such as for example

the hardness of the problem when the basis is promised certain error or the hardness of

finding an appropriate basis.

Further work inspired in quantum chemistry is that of [GL21], where the authors

add to the local Hamiltonian problem the promise of having access to a quantum state

which is close to the groundstate in overlap. The authors prove that this problem is in

fact BQP-complete for 6-local Hamiltonians. This result was later improved to 2-local

Hamiltonians [GL21, CFW22].

In Chapter 4 we study a parameterized version of the local Hamiltonian where the

weight of the groundstate is considered as a parameter. We consider this as a continuation

of a line of work which seeks to study versions of the local Hamiltonian problem with

applications to concrete problems.
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2.4 Hamiltonian simulation

One of the first applications for quantum computers where an advantage might be ex-

pected is in the simulation of other quantum systems [Fey82, Fey86]. A basic problem

in simulating a quantum systems involves evolving a quantum state with a given Hamil-

tonian for some prescribed time. This problem is known as the Hamiltonian simulation

problem which we detail below.

Problem 1 (Hamiltonian Simulation). Given a Hamiltonian 𝐻 over 𝑛 qubits (a 2𝑛 × 2𝑛

Hermitian matrix), a time 𝑡 > 0 and an error parameter 𝜖 > 0, output a quantum circuit

𝑈 of poly(𝑛) size such that


𝑈 − 𝑒𝑖𝐻𝑡



 ≤ 𝜖.

Many different methods have been proposed to solve this problem. In this thesis

in Part III we will work with the product formula method but for completeness we

will give a summary of other methods in the literature. Although in terms of error

dependence product formulae are worse than more recent methods, an advantage is

that the implementation is easier for near-term devices. Moreover, some problems just

require a constant error, such as quantum chemistry where a chemical accuracy must

be reached. For this reasons, studying product formulae is still relevant for quantum

simulation. It is important to note that all these methods or algorithms assume some way

to access the given Hamiltonian as its size as a matrix is exponential in the number of

qubits. We will assume that the Hamiltonian 𝐻 from Problem 1 is 𝑑-sparse, meaning

that each column has no more than 𝑑 non zero entries. We define the following oracles

[CB12].

Definition 2.32 (Oracle access to entries of 𝑯 ). Given Hamiltonian 𝐻 over 𝑛 qubits,

with entries 𝐻 𝑗𝑘 for 𝑗, 𝑘 ∈ {1, 2, · · · , 𝑛}. Let the oracle𝑈𝐻 be defined as

𝑈𝐻 | 𝑗, 𝑘⟩ |𝑧⟩ = | 𝑗, 𝑘⟩
��𝑧 ⊕ 𝐻 𝑗𝑘

〉
, (2.2)

where ⊕ is the bitwise XOR operator.
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Definition 2.33 (Oracle access to non-zero entries of 𝑯 ). Let 𝐻 be a Hamiltonian over

𝑛 qubits. Let𝑈 𝑓 be an oracle such that

𝑈 𝑓 | 𝑗, 𝑘⟩ = | 𝑗, 𝑓 ( 𝑗, 𝑘)⟩ , (2.3)

for 𝑗 ∈ {1, · · · , 𝑛}, 𝑘 ∈ {1, · · · , 𝑑} and where 𝑓 ( 𝑗, 𝑘) gives the row index of the 𝑘th non

zero element in column 𝑗 of 𝐻 .

2.4.1 Product formulae

The Lie-Trotter product formula (PF) is commonly used in quantum algorithms for

Hamiltonian simulation, where one can approximate the Hamiltonian evolution of

𝐻 = 𝐴 + 𝐵 in terms of exponentials of 𝐴 and 𝐵 when these operators do not commute. It

is well known that

exp(−𝑖𝐻𝑡) = exp(−𝑖𝐴𝑡) exp(−𝑖𝐵𝑡) + O
(
𝑡2

)
. (2.4)

This particular product formula was applied in the context of quantum computing in

[Llo96]. More general PF can be constructed by including more exponentials and

parameters which give higher order errors. A summary of the methods to obtain higher-

order PF is given in Section 6.2.1 in part III of this thesis.

In [BACS07, CK11] an estimation of the number of calls to the oracle𝑈 𝑓 is given to

implement an order 𝑘 integrator. The number of such calls is given by

O
(
52𝑘𝑑2(𝑑 + log∗ 𝑛)∥𝐻 ∥𝑡 (∥𝐻 ∥𝑡)1/2𝑘

𝜖1/2𝑘

)
. (2.5)

This estimation is obtained assuming that higher-order integrators are obtained using the

Suzuki method which we introduce in the paragraph with Eq. (6.11) which explains the

appearence of the factor 52𝑘 . Alternative methods to obtain higher order integrators exist

such as Yoshida’s method [Yos90], we introduce and expand this method in Chapter 6.



CHAPTER 2. BACKGROUND 28

2.4.2 Taylor series

Since the evolution under a Hamiltonian 𝐻 is given by 𝑈 = 𝑒−𝑖𝐻𝑡 , we can consider the

truncated Taylor expansion of the exponential 𝑈 ≃ ∑𝐾
𝑗=0

(−𝑖𝐻𝑡) 𝑗
𝑗 ! [BCC+15]. This sum

can be implemented using the linear combination of unitaries (LCU) method. In terms

of oracle calls, the complexity is given by

O
(
𝑑2∥𝐻 ∥𝑡

log
(
𝑑2∥𝐻 ∥𝑡/𝜖

)
log log(𝑑2∥𝐻 ∥𝑡/𝜖)

)
. (2.6)

A 2-qubit gate count is also provided in [BCC+15]

O
(
𝑛𝑑2∥𝐻 ∥𝑡 log2(𝑑2∥𝐻 ∥𝑡/𝜖)

log log(𝑑2∥𝐻 ∥𝑡/𝜖)

)
. (2.7)

And the number of ancillae used as

O
(

log2(𝑑2∥𝐻 ∥𝑡/𝜖)
log log(𝑑2∥𝐻 ∥𝑡/𝜖)

)
. (2.8)

2.4.3 Quantum walks

Previous methods presented so far depended on decomposing the total evolution time

into short segments, this has the problem that the scaling on the sparsity is quadratic in

the Taylor series approach and cubic in the product formula approach. The methods

introduced here based on quantum walks allow for a linear scaling on the sparsity 𝑑 . We

refer to two methods based on quantum walks in this subsection.

Phase estimation on quantum walks. In [CB12] an algorithm based on oracles in

Definition 2.32 and Definition 2.33 is given which uses a discrete-time quantum walk to

simulate evolution. The query complexity of this algorithm is given by

O
(
∥𝐻 ∥𝑡
√
𝜖

+ 𝑑 ∥𝐻 ∥𝑚𝑎𝑥𝑡
)
. (2.9)

As mentioned earlier, the dependence on 𝑑 is linear. Moreover, this method achieves

linear dependence on the evolution time 𝑡 . This method has the problem that the

dependence on the error 𝜖 is much worse than, for example, the Taylor series method.
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On the other hand, the quantum walk achieves a linear dependence on the sparsity 𝑑,

which improves over other methods that only get quadratic dependence.

Linear combination of quantum walks. By implementing the quantum walk with

the LCU technique [BCK15], it is possible to improve on the previous methods. In

[BCK15] the authors give a method to achieve a good scaling in both sparsity and the

error 𝜖. The number of queries to oracles in Definition 2.32 and Definition 2.33 is given

by

O
(
𝑑 ∥𝐻 ∥𝑚𝑎𝑥𝑡

log(𝑑 ∥𝐻 ∥𝑚𝑎𝑥𝑡/𝜖)
log log(𝑑 ∥𝐻 ∥𝑚𝑎𝑥𝑡/𝜖)

)
, (2.10)

and the number of 2-qubit gates is

O
(
[𝑛 + log5/2(𝑑 ∥𝐻 ∥𝑚𝑎𝑥𝑡/𝜖)]𝑑 ∥𝐻 ∥𝑚𝑎𝑥𝑡

log(𝑑 ∥𝐻 ∥𝑚𝑎𝑥𝑡/𝜖)
log log(𝑑 ∥𝐻 ∥𝑚𝑎𝑥𝑡/𝜖)

)
. (2.11)

2.4.4 Quantum signal processing

The quantum signal processing technique [LC17a] achieves optimal dependence on the

parameters by using techniques from optimal quantum control. The query complexity is

given by

O
(
𝑑 ∥𝐻 ∥𝑚𝑎𝑥𝑡 +

log(1/𝜖)
log log(1/𝜖)

)
. (2.12)

The gate count is given by

O(𝑛 +𝑚polylog(𝑚)), (2.13)

where𝑚 is the number of bits used to specify matrix elements in the Hamiltonian.

Although quantum signal processing achieves optimal dependence on all parameters,

there is still much active research on improving the performance of Lie-Trotter product

formulae. The reason is that product formulae have lower requirements in terms of

gate implementation, in particular for certain Hamiltonians where locality is restricted

[CST+21]. Moreover, for some applications like quantum chemistry the error 𝜖 is

actually a constant (for example when considering some chemical error) and thus the

(1/𝜖)2𝑘 scaling of product formulae is not a problem when compared with better scalings

such as that in quantum signal processing. In Chapter 6 we will give a more detailed
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analysis for product formulae with random Hamiltonians which have similar form as

those that appear in chemistry.
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Part I

Parameterized Complexity and the

Weighted Local Hamiltonian
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Chapter 3

Quantum Parameterized Complexity

This chapter is based on work in [BJM+22]. This was work done in collaboration with

Michael Bremner, Zhengfeng Ji, Ryan Mann, Luke Mathieson and Alexis Shaw. We

introduce some of the main complexity classes in quantum parameterized complexity

and set the stage to study a parameterized version of the local Hamiltonian problem in

Chapter 4.

My contribution in [BJM+22] was mainly that of helping with writing Section II and

Section III in that work. I contributed in the discussions for the proper definitions of

the QW-hierarchy and in writing the proofs for some facts pertaining FPQT. In this

chapter I have taken most definitions directly from our work and have been included for

completeness in this thesis. In Section 3.3.1 I include some non-published work of my

own regarding a parameterized version of the subset problem.

3.1 Introduction

Parameterized complexity seeks to classify the complexity of computational problems

when the instance description includes parameters describing the instance itself. In

Section 2.3.1 we gave a summary of the relevant definitions in parameterized com-

plexity. In this chapter we give a quantum generalization of parameterized complexity,
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focused on generalizations for FPT, W[P] and the W-hierarchy. This quantum ver-

sion of parameterized complexity is motivated by the search for problems where there

might be quantum advantages. We are interested in understanding whether there are

tractable algorithms in the quantum parameterized setting that are not known either

in the classical case, nor under the usual definition of BQP. A second motivation to

develop a quantum parameterized complexity theory is that of having a fine-grained

understanding of problems that are known to be QMA-complete. As remarked at the

end of Section 2.3.1, problems that are NP-complete can have different complexity for

parameterized complexity classes. This fact motivates the study of a parameterized

version of the local Hamiltonian problem in Chapter 4.

In [ABNO22], the parameterized complexity of verifying QMA problems was stud-

ied. In particular, the parameter considered is the number of 𝑇 gates used in the

verification circuit for circuit satisfiability problems. The authors find lower bounds

on the 𝑇 -count for such problems assuming ETH. In our work, we have given gen-

eralizations of several classical parameterized complexity classes, we seek to give a

theory of parameterization in general and not just in verification. A summary of our

results, including computational problems in each of these classes is given in Fig. 3.1.

A summary of the classes studied in [BJM+22] is given in Fig. 3.1. In this chapter we

work mainly with the classes FPQT, W[P] and the QW-hierarchy. Although the defini-

tions for FPQT and W[P] are analogous to the classical case, we find that a quantum

versions of the W-hierarchy has some issues which also appear when trying to define

a probabilistic version. The main issue with the QW is that of success amplification;

recall that the W-hierarchy is defined in terms of constant depth circuits, this implies

that the success amplification would be required to be done in constant depth. We will

introduce a parameterized version of the subset problem from [BGKS16] where this

will appear as an issue.
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FPT

P

W[1]

W[2]

W[t]

W[P]

XP
Weight-k l-Local Hamiltonian
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BQP

Approximation of GapP Functions
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QW[t]

Weight-k Quantum Circuit Satisfiability

para-QMA

QMA

l-Local Hamiltonian

Figure 3.1: Complexity classes and problems discussed in our paper [BJM+22].

3.2 Tractability in quantum parameterized complexity

In parameterized complexity, a notion of tractability is given by the fixed-parameter

tractable class known as FPT [FG06]. A quantum version of this class is defined in

what follows.

Definition 3.1 (FPQT algorithm). Let (𝐿,𝜅) be a parameterized problem over the

alphabet Σ. An algorithm A is a FPQT algorithm for (𝐿, 𝜅) if the following conditions

are satisfied.

(1) There is a computable function 𝑓 : Z+ → Z+ and a polynomial 𝑝 ∈ N[𝑋 ], such

that, for every 𝑥 ∈ Σ∗, the size of an FPT-uniform quantum circuit that computes

A on input 𝑥 is at most 𝑓 (𝜅 (𝑥)) · 𝑝 ( |𝑥 |).

(2) For every 𝑥 ∈ Σ∗,

• If 𝑥 ∈ 𝐿, then Pr[A(𝑥) accepts] ≥ 2
3 .

• If 𝑥 ∉ 𝐿, then Pr[A(𝑥) accepts] ≤ 1
3 .

Definition 3.2 (FPQT). The class FPQT consists of all parameterized problems that

have an FPQT algorithm.

This definition for FPQT is simply a generalization of the definition given in

Definition 2.19 for FPT. As is natural for quantum algorithms, we consider quantum



CHAPTER 3. QUANTUM PARAMETERIZED COMPLEXITY 35

circuits with uniformity condition based on FPT rather than P. The error probability of

1/3 is completely arbitrary and can be replaced by any constant non-zero probability

less than 1/2.

In [BJM+22] we have proved some further facts about FPQT. As the main purpose

of this chapter is to introduced the basic quantum parameterized classes and present the

main issue with the definition in the QW-hierarchy, we will simply state these results

without proof (proofs can be found in [BJM+22]).

Proposition 3.3. FPT = FPQT if and only if P = BQP.

Proposition 3.4. FPTFPQT = FPQT.

Proposition 3.5. FPTBQP = FPTFPQT.

This last proposition offers an alternative characterization for FPQT since it implies

FPTBQP = FPQT. By considering a BQP-complete problem in the oracle we can

define FPQT-complete problems. Note as well that Proposition 3.3 indicates that there

are likely quantum advantages in the parameterized setting when compared to classical

algorithms.

The following proposition about FPQT will help us prove some later facts

Proposition 3.6. If FPQT ⊆ XP then P = BQP.

Proof. If FPQT ⊆ XP then any BQP-complete problem with trivial parameterization

is contained in XP. Implying that P = BQP. ■

It will also be important to define a notion of reduction in the quantum parameterized

setting.

Definition 3.7. Let (𝐿, 𝜅) and (𝐿′, 𝜅′) be parameterized problems over the alphabets Σ

and Σ′ respectively. A FPQT reduction from (𝐿, 𝜅) to (𝐿′, 𝜅′) is a mapping 𝑅 : Σ∗ →

(Σ′)∗ such that the following conditions are satisfied.

(1) For all 𝑥 ∈ Σ∗, 𝑥 ∈ 𝐿 ⇐⇒ 𝑅(𝑥) ∈ 𝐿′.
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(2) 𝑅 is computable by an FPQT algorithm with respect to the parameter 𝜅, (i.e. 𝑅(𝑥)

is computable using an FPT-uniform collection of circuits of size 𝑓 (𝜅 (𝑥) · 𝑝 ( |𝑥 |)

with high probability).

(3) There is a computable function 𝑔 : Z+ → Z+ such that 𝜅′(𝑅(𝑥)) ≤ 𝑔(𝜅 (𝑥)) for all

𝑥 ∈ Σ∗.

3.3 Intractability in quantum parameterized

complexity

The class NP can be generalized in several ways in the parameterized setting, the same

is true when we consider quantum parameterized complexity. In what follows we give

the definitions of some of these quantum generalizations which will be fundamental in

proving intractability for quantum parameterized algorithms, in Fig. 3.1 we show the

known containments for this classes (for more detail on their definition, see [BJM+22]).

In [BJM+22] we considered several classes such as para-QMA which is a generalization

of para-NP where the verifier is a quantum circuit of size at most 𝑓 (𝜅 (𝑥))𝑝 ( |𝑥 |) for

some computable function 𝑓 and polynomial 𝑝. We also consider para-QCMA where the

witness is classical. Moreover, we generalize W[P] and the W-hierarchy to its quantum

versions QW[P] and the QW-hierarchy together with QCW which assumes a classical

witness. In this chapter we only give the definitions for QW[P] and the QW-hierarchy

as these will be relevant for Chapter 4.

The main challenge in defining the quantum versions of these classes is that of

preserving the relations of tractability and intractability in the parameterized setting.

Note that in Definition 2.23 the class W[P] allows up to 𝑓 (𝑘) log𝑛 nondeterministic

choices for a parameter 𝑘 and instance size 𝑛. In the quantum case, this is generalized by

including as input in the verifier a quantum state over 𝑓 (𝑘) log𝑛 qubits. The quantum

generalization of the W-hierarchy is not as direct, the quantum generalization of weft

requires choosing a gate acting over many qubits carefully and there are also issues with
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success amplification due to the constraints on depth of the verifying circuit. Before

going into more detail about this, we give the definition for QW[P].

Definition 3.8 (QW[P]). A parameterized problem (𝐿,𝜅) over the alphabet Σ is in

QW[P] (𝑐, 𝑠) if there is a quantum verification procedure {V𝑛,𝑘}𝑛,𝑘∈Z+ such that the

following conditions are satisfied.

(1) There is a computable function 𝑓 : Z+ → Z+ and a polynomial 𝑝 ∈ N[𝑋 ], such

that, for every 𝑥 ∈ Σ∗, the size of an FPT-uniform quantum circuit that computes

V|𝑥 |,𝜅 (𝑥) on input 𝑥 is at most 𝑓 (𝜅 (𝑥)) · 𝑝 ( |𝑥 |).

(2) For every 𝑥 ∈ Σ∗,

• If 𝑥 ∈ 𝐿, then there exists a quantum state |𝜓 ⟩ comprising at most 𝑓 (𝜅 (𝑥)) ·

log |𝑥 | qubits, such that Pr[V|𝑥 |,𝜅 (𝑥) (𝑥, |𝜓 ⟩) accepts] ≥ 𝑐.

• If 𝑥 ∉ 𝐿, then for every quantum state |𝜓 ⟩ comprising at most 𝑓 (𝜅 (𝑥)) ·log |𝑥 |

qubits, Pr[V|𝑥 |,𝜅 (𝑥) (𝑥, |𝜓 ⟩) accepts] ≤ 𝑠.

The class QW[P] is defined to be QW[P] ( 23 ,
1
3 ).

A complete problem for this class is the weighted version of quantum circuit satisfia-

bility. Before introducing the problem, we define the notion of weight.

Definition 3.9 (Weight of a quantum state). A quantum state |𝜓 ⟩ = ∑
𝑥∈{0,1}𝑛 𝛼𝑥 |𝑥⟩ on

𝑛 qubits is said to have weight 𝑘 if 𝛼𝑥 = 0 for all 𝑥 not of Hamming weight 𝑘 .

With this definition of weight, we generalize the Hamming weight of a bitstring

which was used in the definition of a complete problem for W[𝑡] in Definition 2.24. We

give a natural quantum generalization of the weighted circuit satisfiability problem.

Definition 3.10 (WEIGHT-𝒌 QUANTUM CIRCUIT SATISFIABILITY).

Instance: A quantum circuit C on 𝑛 witness qubits and poly(𝑛) ancilla qubits. Two

positive numbers 𝑎, 𝑏 ∈ (0, 1), such that 𝑏 − 𝑎 > 1
poly(𝑛) .
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Parameter: A natural number 𝑘 .

Yes: There exists an 𝑛-qubit weight-𝑘 quantum state |𝜓 ⟩, such that

Pr[C(|𝜓 ⟩) accepts] ≥ 𝑏.

No: For every 𝑛-qubit weight-𝑘 quantum state |𝜓 ⟩, Pr[C(|𝜓 ⟩) accepts] ≤ 𝑎.

The weighted quantum circuit satisfiability is in fact QW[P]-complete.

Proposition 3.11. WEIGHT-𝑘 QUANTUM CIRCUIT SATISFIABILITY is QW[P]-

complete under FPQT reductions.

Proof. Firstly, we show that WEIGHT-𝑘 QUANTUM CIRCUIT SATISFIABILITY is in

QW[P]. Let C be a quantum circuit on 𝑛 qubits, 𝑘 a natural number, and 𝑓 : Z+ → Z+ a

computable function. Further let 𝑆𝑛,𝑘 denote the set of all 𝑛-bit strings with Hamming

weight 𝑘 and let 𝜀 be a binary enumeration of the elements of 𝑆𝑛,𝑘 . An 𝑛-qubit weight-

𝑘 quantum state |𝜓 ⟩ =
∑
𝑥∈𝑆𝑛,𝑘 𝛼𝑥 |𝑥⟩ can be described using 𝑓 (𝑘) · log(𝑛) qubits by

the quantum state |𝜓𝜀⟩ =
∑
𝑥∈𝑆𝑛,𝑘 𝛼𝑥 |𝜀 (𝑥)⟩. Let M𝑛,𝑘 be a verification procedure for

deciding whether the a weight of an 𝑛-qubit quantum state is 𝑘. The verification

procedure V𝑛,𝑘 constructs the state |𝜓 ⟩ from |𝜓𝜀⟩ and accepts if and only if C(M𝑛,𝑘 |𝜓 ⟩)

accepts. Applying the gap amplification scheme of Marriott and Watrous [MW05] to

this procedure completes the claim.

We now prove that WEIGHT-𝑘 QUANTUM CIRCUIT SATISFIABILITY is QW[P]-

hard. Let (𝐿, 𝜅) be a problem in QW[P] with verification procedure {V𝑛,𝑘}𝑛,𝑘∈Z+ .

Further let 𝑓 : Z+ → Z+ be a computable function and define 𝑘𝑥 B 𝜅 (𝑥). For input

𝑥 ∈ Σ∗, we shall construct a quantum circuit C𝑥 that is satisfiable by a weight-𝑘𝑥 quantum

state if and only if V|𝑥 |,𝜅 (𝑥) (𝑥) is satisfiable. The circuit C𝑥 takes as input 𝑛 qubits and

firstly decides whether the input state has weight 𝑘𝑥 using the verification procedure

M𝑛,𝑘𝑥 . Finally, the circuit inputs the quantum state into the verifier V|𝑥 |,𝜅 (𝑥) . Therefore,

C𝑥 is satisfiable by a weight-𝑘𝑥 quantum state if and only if V|𝑥 |,𝜅 (𝑥) (𝑥) is satisfiable.

This completes the proof. ■
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It is natural to ask whether the parameterized version of 𝑙 -LOCAL HAMILTONIAN

which we denote as the weighted local Hamiltonian problem is QW[P]-complete.

However, as we shall see this problem is in XP, and thus if it were QW[P]-complete

then FPQT ⊆ XP which would imply P = BQP. This makes unlikely that the weighted

local Hamiltonian is QW[P]-complete under FPQT reductions.

Definition 3.12 (WEIGHT-𝒌 ℓ-LOCAL HAMILTONIAN(𝒂, 𝒃)).

Instance: An ℓ-local Hamiltonian 𝐻 B
∑
𝑖 𝐻𝑖 on 𝑛 qubits that comprises at most a

polynomial in 𝑛 many terms {𝐻𝑖}, which each act non-trivially on at most ℓ qubits

and have operator norm ∥𝐻𝑖 ∥ ≤ 1.

Parameter: A natural number 𝑘 .

Yes: There exists an 𝑛-qubit weight-𝑘 quantum state |𝜓 ⟩, such that ⟨𝜓 |𝐻 |𝜓 ⟩ ≤ 𝑎.

No: For every 𝑛-qubit weight-𝑘 quantum state |𝜓 ⟩, ⟨𝜓 |𝐻 |𝜓 ⟩ ≥ 𝑏.

Proposition 3.13. WEIGHT-𝑘 𝑙 -LOCAL HAMILTONIAN is in XP.

Proof. Let 𝑆𝑛,𝑘 denote the set of all 𝑛-bit strings with Hamming weight 𝑘 and let

𝜀 be an enumeration of the elements of 𝑆𝑛,𝑘 . We define the matrix 𝐻𝜀 such that

⟨𝜀 (𝑥) |𝐻𝜀 |𝜀 (𝑦)⟩ B ⟨𝑥 |𝐻 |𝑦⟩ for all 𝑥,𝑦 ∈ 𝑆𝑛,𝑘 , and for an 𝑛-qubit weight-𝑘 quantum

state |𝜓 ⟩ B ∑
𝑥∈𝑆𝑛,𝑘 𝛼𝑥 |𝑥⟩, we define the quantum state |𝜓𝜀⟩ B

∑
𝑥∈𝑆𝑛,𝑘 𝛼𝑥 |𝜀 (𝑥)⟩. Then,

for any 𝑛-qubit weight-𝑘 quantum state |𝜓 ⟩, we have ⟨𝜓 |𝐻 |𝜓 ⟩ = ⟨𝜓𝜀 |𝐻𝜀 |𝜓𝜀⟩. Therefore,

it is sufficient to compute the smallest eigenvalue 𝜆min(𝐻𝜀) of 𝐻𝜀 . However, since the

dimension of 𝐻𝜀 is 𝑛𝑂 (𝑘) and each of its entries can be computed in time 𝑛𝑂 (1) , we can

compute 𝜆min(𝐻𝜀) in time 𝑛𝑂 (𝑘) . Hence, WEIGHT-𝑘 𝑙 -LOCAL HAMILTONIAN is in XP.

This completes the proof. ■

Inside QW[P] there lies a whole hierarchy of intractable classes known as the

QW-hierarchy. First, we define the weft of a circuit and then we define a corresponding

circuit satisfiability problem which we use to define each rung in the QW-hierarchy.
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Definition 3.14 (Quantum circuit weft). Given a quantum circuit C comprising gener-

alised Toffoli gates, one and two-qubit gates, and unbounded classical fan-out. The weft

of C is the maximum number of Toffoli gates that act on any path from input qubit to

output qubit.

We remark that the fanout gate allowed in a weft-1 quantum circuit is classical. In a

quantum circuit, a fanout gate is called classical if all of the target qubits are initialized

to the |0⟩ state and no other gates acted on them before the fanout gate. After the fanout

gate, a unitary gate can only act on the fanout qubits by using them as controls. The

equivalence between this definition of classical fanout gates and the standard definition

follows from the principle of delayed measurements. Because quantum fanout gates

are very powerful and can simulate big Toffoli and threshold gates [HS05], they should

be avoided when defining weft-𝑡 quantum circuits. In the classical case, there is no

restriction in the use of fanout, if we allowed the same with the quantum fanout gate then

we would increase the power of the constant depth quantum circuits without increasing

the weft.

To define the QW-hierarchy we proceed similarly as in [MW05] for the class QMA.

For functions 𝑐, 𝑠 : N→ [0, 1] we define the following problem.

Definition 3.15 (WEIGHT-𝒌 WEFT-𝒕 DEPTH-𝒅 QUANTUM CIRCUIT SATISFIABIL-

ITY (𝒄, 𝒔)).

Instance: A weft-𝑡 depth-𝑑 quantum circuit C on 𝑛 witness qubits and poly(𝑛) ancilla

qubits.

Parameter: A natural number 𝑘 .

Yes: There exists an 𝑛-qubit weight-𝑘 quantum state |𝜓 ⟩, such that

Pr[C(|𝜓 ⟩) accepts] ≥ 𝑐.

No: For every 𝑛-qubit weight-𝑘 quantum state |𝜓 ⟩, Pr[C(|𝜓 ⟩) accepts] ≤ 𝑠.
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Definition 3.16 (QW𝒄,𝒔[𝒕]). For 𝑡 ∈ N, the class QW𝑐,𝑠 [𝑡] consists of all parameterized

problems that are FPQT reducible to WEIGHT-𝑘 WEFT-𝑡 DEPTH-𝑑 QUANTUM CIRCUIT

SATISFIABILITY(𝑐, 𝑠) for some constant depth 𝑑 ≥ 𝑡 .

Due to the constant depth requirement of weft-𝑡 quantum circuits, it is not clear

if this class has the error reduction property. This was not an issue for QW[P], for

example when proving Proposition 3.11, since the circuits involved are of polynomial

size. Because of the constraint in the depth for QW circuits, we don’t have access to

techniques such as those in [MW05]. For this reason, the definition of QW𝑐,𝑠 [𝑡] includes

the completeness and soundness as part of its definition. These classes are most relevant

when 𝑐 and 𝑠 have a polynomial gap, i.e., 𝑐 − 𝑠 > 1/poly(𝑛). Based on this, we define

the QW-hierarchy as

Definition 3.17. Define QW[𝑡] as

QW[𝑡] :=
⋃
𝑐,𝑠

𝑐−𝑠>1/poly(𝑛)

QW𝑐,𝑠 [𝑡] .

The following containments are straightforward.

Proposition 3.18. For any 𝑡 ∈ N and any 𝑎, 𝑏 : N → [0, 1], W[𝑡] ⊆ QW𝑎,𝑏 [𝑡],

QW𝑎,𝑏 [𝑡] ⊆ QW𝑎,𝑏 [𝑡 + 1]

Proof. To prove the first part, note that W[𝑡] ⊆ QW0,1 [𝑡]. Moreover, note that if

∀𝑛 ∈ N, 𝑏 (𝑛) ≥ 𝑏′(𝑛) and 𝑎(𝑛) ≤ 𝑎′(𝑛) then QW𝑎,𝑏 [𝑡] ⊆ QW𝑎′,𝑏′ [𝑡]. We conclude that

W[𝑡] ⊆ QW0,1 [𝑡] ⊆ QW𝑎,𝑏 [𝑡]. The second part is trivial. ■

Proposition 3.19. For any 𝑡 ∈ N and 𝑎, 𝑏 : N → [0, 1] such that 𝑏 (𝑛) ≥ 1
2 +

1
poly(𝑛) ,

𝑎(𝑛) ≤ 1
2 −

1
poly(𝑛) we have that QW𝑎,𝑏 [𝑡] ⊆ QW[P].

The complexity classes QW𝑎,𝑏 [𝑡], for 𝑡 ≥ 1 and fixed 𝑎, 𝑏 : N→ [0, 1], define the

QW𝑎,𝑏 hierarchy, while note that FPQT ⊆ QW𝑎,𝑏 [0]. We prove the following.

Proposition 3.20. For any 𝑡 ∈ N and any 𝑎, 𝑏 : N → [0, 1], if W[𝑡] = QW𝑎,𝑏 [𝑡] then

P = BQP.
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Proof. If W[𝑡] = QW𝑎,𝑏 [𝑡] for some 𝑎, 𝑏 : N → [0, 1] then FPQT ⊆ QW𝑎,𝑏 [𝑡] =

𝑊 [𝑡] ⊆ XP, and so P = BQP by Proposition 3.6. ■

Proposition 3.21. For any 𝑡 ∈ N and any 𝑎, 𝑏 : N → [0, 1], if QW𝑎,𝑏 [𝑡] ⊆ XP then

P = BQP.

Proof. If QW𝑎,𝑏 [𝑡] ⊆ XP then FPQT ⊆ XP, and so P = BQP by Proposition 3.6. ■

While it was possible to find complete problems for QW[P], it is much harder to do

the same for QW[1] due to the fact that its definition includes constant-weft circuits. In

the next section we prove that the Subset state problem defined in [BGKS16] is QW[P]

complete, but the issue with success amplification (or equivalently, error reduction) in

QW[𝑡] doesn’t allow us to prove completeness for QW[1]. Note that if we tried to

apply some technique such as the Kitaev clock construction to prove that the WEIGHT-𝑘

ℓ -LOCAL HAMILTONIAN problem is QW[1]-hard, we would have the issue that the

history state does not have in general weight 𝑘 . This is because the constant depth circuit

we are reducing from does not preserve weight in general.

3.3.1 Subset state problem is QW[P]-complete

Here we use results from [BGKS16] to prove that the witness for the QW[P] class is

only required to be a uniform superposition of weight-𝑘 states. The proof follows the

idea of [BGKS16] by modifying the so called geometric Lemma used in that reference.

Definition 3.22. Let 𝑆 ⊆ [𝑑]. We denote |𝑆⟩ ∈ C𝑑 as the state

|𝑆⟩ = 1√︁
|𝑆 |

∑︁
𝑖∈𝑆

|𝑖⟩ (3.1)

When working with qubits, we can identify 𝑖 ∈ 𝑆 with its binary description. We say

that |𝑆⟩ is a subset state of weight 𝑘 when it can be written as a uniform superposition of

computational states of weight 𝑘 .
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Lemma 3.23 (geometric Lemma from Grilo et al. [BGKS16]). For a vector 𝑣 ∈ C𝑑 ,

there exists a subset 𝑆 ⊆ [𝑑] such that

1√︁
|𝑆 |

�����∑︁
𝑗∈𝑆

𝑣 𝑗

����� ≥ ∥𝑣 ∥
8
√︁
log2(𝑑) + 3

(3.2)

Lemma 3.24. For a vector 𝑣 ∈ C𝑑 with weight 𝑘 , there exists a subset 𝑆 ⊆ [𝑑] such that

|𝑆⟩ is weight-𝑘 and

1√︁
|𝑆 |

�����∑︁
𝑗∈𝑆

𝑣 𝑗

����� ≥ ∥𝑣 ∥
8
√︁
log2(𝑑) + 3

(3.3)

Proof. Consider the vector space S𝑘 ⊆ C𝑑 spanned by the computational basis states of

weight 𝑘 . Consider the isomorhism𝑇 : S𝑘 → C(
𝑑
𝑘) which maps the weight 𝑘 basis states

to the canonical orthonormal basis of C𝑘 . Then we apply Lemma 3.23, which gives a

subset of the weight-𝑘 states such that equation 3.2 is fullfilled. Using 𝑇 −1 we can map

back to S𝑘 ⊆ C𝑑 which gives the result. ■

Definition 3.25 (WEIGHT-𝒌 BASIS STATE CHECK (WEIGHT-𝒌 BSC(𝜶 ))).

Instance: A classical description 𝑥 of a unitary 𝑉𝑥 implemented by a quantum circuit

acting on 𝑚(𝑛) qubits and 𝑎(𝑛) ancilla qubits, where 𝑛 = |𝑥 | and 𝑚(𝑛), 𝑎(𝑛)

polynomials. A𝑚′(𝑛)-bitstring 𝑦 such that𝑚′(𝑛) ≤ 𝑚(𝑛) + 𝑎(𝑛).

Parameter: A natural number 𝑘 .

Yes: ∃𝑆 ⊆ [2𝑚(𝑛)] of weight-𝑘 ,



(⟨𝑦 | ⊗ 𝐼 )𝑉𝑥 |𝑆⟩ |0⟩⊗𝑎(𝑛)


2 ≥ 1 − 𝛼 .

No: ∀𝑆 ⊆ [2𝑚(𝑛)] of weight-𝑘 ,



(⟨𝑦 | ⊗ 𝐼 )𝑉𝑥 |𝑆⟩ |0⟩⊗𝑎(𝑛)


2 ≤ 𝛼 .

Proposition 3.26. WEIGHT-𝑘 BSC(𝛼 ) is QW[P]-complete for 𝛼 = 2−𝑟 (𝑛) where 𝑟 (𝑛)

is a polynomial.

Proof. The proof largely follows the one from [BGKS16]. First we prove that WEIGHT-

𝑘 BSC(𝛼 ) is in QW[P] by showing that it reduces to WEIGHT-𝑘 QUANTUM CIRCUIT
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SATISFIABILITY. Let |𝜓 ⟩ be a state with weight 𝑘 or less. When the verifier circuit

receives the witness, it applies 𝑉𝑥 and measures in the computational basis to check

whether the bitstring 𝑦 was obtained. Assume we are given a yes-instance, then there is

a weight-𝑘 state |𝑆⟩ such that the verifier circuit accepts with probability at least 1 − 𝛼 .

If we are given a no-instance, then for all 𝑆 ⊆ [2𝑚(𝑛)] of weight 𝑘 or less, then




(⟨𝑦 | ⊗ 𝐼 )𝑉𝑥 |𝑆⟩ |0⟩⊗𝑎(𝑛)


2 ≤ 𝛼
We now prove that the probability of acceptance is low for all |𝜓 ⟩ of weight 𝑘. By

virtue of Lemma 3.24, there is |𝑆⟩ of weight 𝑘 such that |⟨𝜓 |𝑆⟩| ≥ 1
8
√
𝑚(𝑛)+3

. Define

O B Tr𝐴
[(
𝐼 ⊗ |0⟩⟨0|⊗𝑎(𝑛)

)
𝑉 †
𝑥 ( |𝑦⟩⟨𝑦 | ⊗ 𝐼 )𝑉𝑥

(
𝐼 ⊗ |0⟩⟨0|⊗𝑎(𝑛)

)]
. (3.4)

We want to bound the expression ⟨𝜓 |O|𝜓 ⟩ which gives the probability of acceptance

for witness |𝜓 ⟩. Note that

⟨𝑆 |O|𝑆⟩ − ⟨𝜓 |O|𝜓 ⟩ ≤ max
0≤C≤𝐼

| ⟨𝑆 |C|𝑆⟩ − ⟨𝜓 |C|𝜓 ⟩| (3.5)

=
1
2
∥ |𝑆⟩⟨𝑆 | − |𝜓 ⟩⟨𝜓 | ∥𝑡𝑟 (3.6)

=
1
2
(2 − |⟨𝜓 |𝑆⟩|2) (3.7)

≤ 1 − 1
128(𝑚(𝑛) + 3) . (3.8)

Thus,

⟨𝜓 |O|𝜓 ⟩ = ⟨𝑆 |O|𝑆⟩ − ( ⟨𝑆 |O|𝑆⟩ − ⟨𝜓 |O|𝜓 ⟩) (3.9)

≤ 𝛼 +
(
1 − 1

128(𝑚(𝑛) + 3)

)
. (3.10)

Thus showing the gap is proportional to the inverse of a polynomial. To prove com-

pleteness we reduce from WEIGHT-𝑘 QUANTUM CIRCUIT SATISFIABILITY. Let C

be a quantum circuit and {𝐶, 𝐼 − 𝐶} the POVM such that either there is a weight-𝑘

witness state such that C accepts with probability at least ⟨𝜓 |𝐶 |𝜓 ⟩ ≥ 1 − 2−𝑟 (𝑛) with 𝑟
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a polynomial, or for all weight-𝑘 witness states the circuit accepts with probability at

most ⟨𝜓 |𝐶 |𝜓 ⟩ ≤ 2−𝑟 (𝑛) . This reduces to the WEIGHT-𝑘 BSC(𝛼 ) problem by choosing

𝑦 = 1 and𝑚′(𝑛) = 1.

More specifically, assume we are given a no instance of WEIGHT-𝑘 QUANTUM

CIRCUIT SATISFIABILITY, then clearly this corresponds to a no instance of WEIGHT-𝑘

BSC(𝛼 ). Now suppose we are given a yes instance and let |𝜓 ⟩ be the witness that

maximizes the acceptance probability of C. Then by Lemma 3.24, there is a weight-𝑘

subset state |𝑆⟩ such that

|⟨𝜓 |𝑆⟩| ≥ 1
8
√
𝑛 + 3

. (3.11)

Next, note that

⟨𝑆 |C|𝑆⟩ − ⟨𝜓 |C|𝜓 ⟩ ≤ max
0≤C≤𝐼

| ⟨𝑆 |C|𝑆⟩ − ⟨𝜓 |C|𝜓 ⟩| (3.12)

=
1
2
∥ |𝜓 ⟩⟨𝜓 | − |𝑆⟩⟨𝑆 | ∥ (3.13)

= 2
√︃
1 − |⟨𝜓 |𝑆⟩|2 (3.14)

≤ 2 − |⟨𝜓 |𝑆⟩|2, (3.15)

where following [BGKS16] we use the inequality
√
1 − 𝑥2 ≤ 1 − 𝑥2/2. Thus

⟨𝑆 |C|𝑆⟩ ≥ 1
128(𝑛 + 3) − 2−𝑟 (𝑛) . (3.16)

Using probability amplification we can prove the result. ■

Since we lack probability amplification for QW[1], we cannot prove an analogous

result for this class. Instead, by using the same structure of the previous proof we obtain

the following.

Definition 3.27 (WEIGHT-𝒌 WEFT-𝒕 DEPTH-𝒅 BASIS STATE CHECK (WEIGHT-𝒌

WEFT-𝒕 DEPTH-𝒅 BSC(𝜶 ))).

Instance: A classical description 𝑥 of a unitary 𝑉𝑥 implemented by a quantum circuit

of constant depth and weft 𝑡 acting on𝑚(𝑛) qubits and 𝑎(𝑛) ancilla qubits, where
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𝑛 = |𝑥 | and 𝑚(𝑛), 𝑎(𝑛) polynomials. A 𝑚′(𝑛)-bitstring 𝑦 such that 𝑚′(𝑛) ≤

𝑚(𝑛) + 𝑎(𝑛).

Parameter: A natural number 𝑘 .

Yes: ∃𝑆 ⊆ [2𝑚(𝑛)] of weight-𝑘 ,



(⟨𝑦 | ⊗ 𝐼 )𝑉𝑥 |𝑆⟩ |0⟩⊗𝑎(𝑛)


2 ≥ 1 − 𝛼 .

No: ∀𝑆 ⊆ [2𝑚(𝑛)] of weight-𝑘 ,



(⟨𝑦 | ⊗ 𝐼 )𝑉𝑥 |𝑆⟩ |0⟩⊗𝑎(𝑛)


2 ≤ 𝛼 .

We can directly apply the techniques in proof from Proposition 3.26 to prove some

results on the WEIGHT-𝑘 WEFT-𝑡 DEPTH-𝑑 BSC(𝛼 ) problem and the QW-hierarchy.

In particular the previous proof shows the following two propositions.

Proposition 3.28. WEIGHT-𝑘 WEFT-𝑡 DEPTH-𝑑 BSC(𝛼 ) is in QW𝛼,1−𝛼 [𝑡] for 𝛼 =

2−𝑟 (𝑛) with 𝑟 (𝑛) a polynomial.

Proposition 3.29. WEIGHT-𝑘 WEFT-𝑡 DEPTH-𝑑 QUANTUM CIRCUIT

SATISFIABILITY(𝛼, 1−𝛼) reduces to WEIGHT-𝑘 WEFT-𝑡 DEPTH-𝑑 BSC(𝛼 , 1
128(𝑛+3) −𝛼 )

for 𝛼 = 2−𝑟 (𝑛) with 𝑟 (𝑛) a polynomial.

We see from the previous proof and the propositions that the main obstacle for

proving completeness is the lack of an amplification procedure for the QW-hierarchy.

In particular, notice that the reduction in Proposition 3.29 includes specific parameters

for 𝛼 which doesn’t translate into a completeness for the whole class.

3.4 Summary

In this chapter we have given the definitions for some basic complexity class in quantum

parameterized complexity. While the definitions of FPQT and QW[P] were direct from

the classical case, we have seen that the QW-hierarchy has some issues regarding error

reduction which has implications in finding natural complete problems for QW[1]. One

of the motivations for the work presented in Chapter 4 is that of searching for such

QW[1]-complete problem.
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Chapter 4

Parameterized Complexity of the

Weighted Local Hamiltonian Problem

This chapter is based on work in [BJL+22]. This is work done in collaboration with

Michael Bremner, Zhengfeng Ji, Xingjian Li and Luke Mathieson. Our work has been

presented in The Theory of Quantum Computation, Communication and Cryptography

conference (TQC) 2023. We present a parameterized version of the local Hamiltonian

and connect the intractability of this problem to a quantum version of the exponential

time hypothesis, moreover we show that this problem is QW[1]-complete. The writing

in this chapter follows closely [BJL+22]. My contribution in this work consisted in

contributing ideas, writing and in the proof of key results. I contributed to most of the

writing which comprises Section 4.3.1, except Lemma 4.12. I also contributed in the

writing of the rest of sections of this chapter, where I didn’t contribute, I have rewritten

those parts or added some detail such as in Section 4.3.3 (error reduction section) and

some parts on the clock construction in Section 4.3.4. Section 4.3.5 was originally

written by my coauthors in the paper, I mainly participated of the discussions for this

section and contributed to the proof. I have included Section 4.3.5 in my thesis for

completeness. The figures included in this chapter are those of [BJL+22], the original
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versions were designed by me (except Figs. 4.4 and 4.5) and were later implemented in

Tikz by my coauthors.

4.1 Introduction

Having laid out some of the main classes in quantum parameterized complexity in

Chapter 3, we now focus on the complexity of a parameterized version of the Local

Hamiltonian problem. The Local Hamiltonian problem is of fundamental importance in

quantum complexity theory (see Section 2.3.2). In recent years, there has been some

work on modified versions of the Local Hamiltonian which attempt to bring closer

problems that quantum chemists or physicists have to tackle in their fields. In [OIWF22],

the authors establish the QMA-completeness of a variant of the local Hamiltonian

problem considering a fixed basis describing the orbitals of the electronic structure

problem, inspired by the problem posed in [WLAG13]. Another work in this direction

is that of [GL21], where the authors study the so called GUIDED LOCAL HAMILTO-

NIAN PROBLEM in which the instance description includes a local Hamiltonian 𝐻

and a state vector 𝑢 promised to be close to the ground state of 𝐻 . In this work it is

shown that when the Hamiltonian is 6-local then the decision problem is BQP-hard,

further work [GHLM22, CFW22] has shown that the problem remains BQP-hard when

considering 2-local Hamiltonians.

Central to our work is the weighted version of the local Hamiltonian problem which

we prove is in QW[1]. As is mentioned in Chapter 3, this problem is in XP, which is in

stark contrast to the WEIGHT-𝑘 QUANTUM CIRCUIT SATISFIABILITY problem which

is QW[P]-complete and hence cannot be in XP unless P = BQP. By proving that the

weighted local Hamiltonian problem is in QW[1] we demonstrate a likely separation

between this problem and other parameterized variants of QMA-complete problems

such as Quantum Circuit Satisfiability under FPQT reductions.

In our work we link the complexity of the WEIGHT-𝑘 ℓ -LOCAL HAMILTONIAN

problem to the classical ETH and quantum variants of it, QETH and QCETH. It is
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shown that if the WEIGHT-𝑘 ℓ -LOCAL HAMILTONIAN problem can be solved in FPT

or FPQT (the quantum generalization of FPT introduced in [BJM+22]) then versions of

these hypotheses will fail. The weight in this problem refers to the Hamming weight of

the states in the promise of the local Hamiltonian problem, either there is a weight-𝑘 state

with a small eigenvalue, or all weight-𝑘 states are above a certain energy. The restriction

of the weight on the states considered in the problem finds a physical interpretation

when considering the 1s in the computational basis as particle excitations and thus the

weight corresponds to fixing the particle number to 𝑘 .

By connecting the complexity of the WEIGHT-𝑘 ℓ -LOCAL HAMILTONIAN to QETH

and QCETH we are also giving evidence of the unlikely tractability of QW[1] and of

the whole QW-hierarchy. On the other hand, this provides a new way to disprove QETH

if the reader does not believe it to be true.

4.2 Preliminaries

In this section we present the computational problems that we will be dealing with in

this chapter and also define the QETH and QCETH.

We will reduce the WEIGHT-𝑘 ℓ -LOCAL HAMILTONIAN(𝑎, 𝑏) problem to WEIGHT-

𝑘 WEFT-𝑡 DEPTH-𝑑 QUANTUM CIRCUIT SATISFIABILITY (𝑐, 𝑠) and show inclusion in

QW[1]. For this purpose, we first reduce the WEIGHT-𝑘 ℓ -LOCAL HAMILTONIAN(𝑎, 𝑏)

problem to a weight-preserving version of the circuit satisfiability problem. We define

a weight-preserving quantum circuit as a quantum circuit that when given an input of

some weight 𝑘 , the output is also of weight-𝑘 .

Definition 4.1 (Weight-𝒌 Weight-Preserving Quantum Circuit Satisfiability(𝒄, 𝒔)).

Instance: A weight-preserving quantum circuit C on 𝑛 witness qubits, poly(𝑛) ancilla

qubits with circuit size poly(𝑛).

Parameter: A natural number 𝑘 .
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Yes: There exists an 𝑛-qubit weight-𝑘 quantum state |𝜓 ⟩, such that

Pr[C(|𝜓 ⟩) accepts] ≥ 𝑐.

No: For every 𝑛-qubit weight-𝑘 quantum state |𝜓 ⟩,

Pr[C(|𝜓 ⟩) accepts] ≤ 𝑠 .

To show the likely intractability of the local Hamiltonian problem, we introduce the

following quantum generalizations of ETH.

Definition 4.2 (Quantum Exponential Time Hypothesis). We define the QETH as

follows. For some 𝑐, 𝑠 with 𝑐 − 𝑠 > 1/poly(𝑛), there is no quantum algorithm running in

time 2𝑜 (𝑛) that decides for a weft-1 quantum circuit 𝑄 of total description size 𝑛 whether

(i) there is an input witness state |𝜓 ⟩ such that Pr (𝑄 ( |𝜓 ⟩) accepts) ≥ 𝑐 or (ii) for all

input witness states |𝜓 ⟩, Pr (𝑄 ( |𝜓 ⟩) accepts) ≤ 𝑠, given the promise that one of the two

holds.

Definition 4.3 (Quantum-Classical Exponential Time Hypothesis). We define the

QCETH as follows. There is no quantum algorithm running in time 2𝑜 (𝑛) that decides

for a weft-1 Boolean circuit𝐶 of total description size 𝑛, whether there is an input vector

𝑥 such that 𝐶 (𝑥) = 1.

We have defined QETH as a hypothesis about some pair 𝑐, 𝑠 with polynomial gap

rather than all such pairs 𝑐, 𝑠. The reason for this choice is that we want to show that if

certain problems are tractable given any inverse polynomial gap, then QETH is false.

This will be evident later in this chapter.

4.3 Weighted Local Hamiltonian is in QW[1]

In this section we prove that the weighted version of the Local Hamiltonian problem is

in the class QW[1]. We state this as a theorem.
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Theorem 4.4. Given 𝑎, 𝑏 such that 𝑏 − 𝑎 > 1/poly(𝑛), then WEIGHT-𝑘 ℓ -LOCAL

HAMILTONIAN(𝑎, 𝑏) is in QW𝑐,𝑠 [1] for some 𝑐, 𝑠 such that 𝑐 − 𝑠 > 1/poly(𝑛).

The proof of Theorem 4.4 consists of a series of reductions. In the first step, we

reduce the weighted local Hamiltonian problem to a weight-preserving quantum circuit

satisfiability problem defined below. This step is discussed in Section 4.3.2. In the

second step (Section 4.3.3), we prove that strong completeness and soundness error

reduction is also possible for the weight-preserving circuits using the quantum singular

value transformation. This step is necessary for the reductions in the later steps. In the

third step we reduce the weight-preserving quantum circuit satisfiability problem to

instances of the Local Hamiltonian problem that are almost spatially sparse. This notion

will be defined below in Section 4.3.4 of the proof of Theorem 4.4. Finally in the fourth

step (Section 4.3.5), we reduce the weighted almost spatially sparse Hamiltonian to an

instance of the weighted constant-depth, weft-1, quantum circuit satisfiability problem.

Before proceeding to the proof of these reductions, we prove some preliminary results

about weight-preserving quantum circuits which we will require later.

4.3.1 Universality of Weight-Preserving Circuits

In this section, we will show how the classic proof of quantum universality in [BBC+95]

can be adapted to show universality of weight-preserving circuits.

Definition 4.5. An operator 𝑂 acting on (C2)⊗𝑛 is weight-preserving if for any 𝑘 and

any computational basis state |𝑥⟩ of weight 𝑘, 𝑂 |𝑥⟩ is a vector in (C2)⊗𝑛 of weight

exactly 𝑘 .

Definition 4.6. A circuit 𝐶 is weight-preserving if its corresponding unitary operator is

weight-preserving.

We also define the weight-preserving version of one-qubit gates.
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Definition 4.7. For any single qubit gate𝑈 , define a two-qubit gate

𝑈 =

©­­­­«
1 0 0

0 𝑈 0

0 0 1

ª®®®®¬
.

It is easy to check that𝑈 is always a weight-preserving gate. Note that When𝑈 = 𝑋 ,

𝑈 is the SWAP gate, this fact will be used regularly below.

The Fredkin gate (control-SWAP gate) is another example of weight-preserving gate.

We will also need the following weight-preserving gate.

𝐸 =
©­«
1 0

0 𝑒𝑖𝛿

ª®¬ .
This phase gate is necessary for universality as otherwise we will not be able to create

relative phases between states such as |00⟩ and |11⟩.

Definition 4.8. A set of weight-preserving gates is weight-universal if they can (approx-

imately) generate all weight-preserving unitary transformations.

Lemma 4.9. If a set of single-qubit gates 𝑈1,𝑈2, . . . ,𝑈𝑠 and CNOTs form a standard

universal gate set, then 𝑈1,𝑈2, . . . ,𝑈𝑠 , Fredkin and 𝐸 gates form a weight-universal gate

set when allowed two extra ancilla qubits in the state |01⟩.

Proof. We follow the steps of [NC00, Chapt. 4]. In this proof the first step is to show

that two-level unitary gates are universal and can generate any 𝑑 × 𝑑 unitary from the

group 𝑈 (𝑑). Recall that two-level unitaries are gates which only act on the subspace

spanned by two computational basis state, for example for 𝑑 = 3 a two-level unitary

could be

©­­­­«
𝑎 0 𝑏

0 1 0

𝑐 0 𝑑

ª®®®®¬
.



CHAPTER 4. PARAMETERIZED COMPLEXITY OF THE WEIGHTED LOCAL
HAMILTONIAN PROBLEM 53

The authors prove that 𝑑 × 𝑑 unitaries can be obtained using 𝑑 (𝑑 − 1)/2 two level

unitaries. In our case we simply need to recognize that this proof will hold in any chosen

weight-𝑘 subspace. Hence we can always use the same inductive steps as those in [NC00,

Sec. 4.5.1] where non-trivial unitaries are limited to this subspace. This requires at most(𝑛
𝑘

) ( (𝑛
𝑘

)
− 1

)
/2.

Then, by following the proof in [NC00, Sec. 4.5.2] it can be shown that if we can

implement all𝑈 operators (where𝑈 is a single qubit gate), 𝐸, and Fredkin, then we can

implement any two-level unitary.

Recall that in [NC00, Sec. 4.5.2] the authors use the Gray code, which given two

bitstrings generates a sequence of strings that differ by a single bit. That is the hamming

weight changes by one in each step of the sequence. This sequence is used to generate a

circuit of multiply-controlled single-qubit gates to define an arbitrary two-level unitary.

In our case, we cannot use this construction as it is not weight-preserving. However,

note that we have the Fredkin gate in our gate set, which allows controlled swaps, and

also note that we are operating in a weight-preserving space. Hence, we only need a

sequence of operations that controllably swap qubits in this space and then will ultimately

perform 𝑈 gate. Suppose we want to implement a two level operator in the subspace

of |𝑠⟩ = |10001⟩ and |𝑡⟩ = |11000⟩. We can consider the following transformations

10001 → 10100 → 11000. Essentially, we want to place (𝑘 − 1) of the 1’s from |𝑠⟩ in

the same positions of (𝑘 − 1) 1’s in |𝑡⟩. The remaining non-swapped 1 of |𝑠⟩ is placed

in a position next to the remaining 1 in |𝑡⟩, for instance in the previous example we

performed the transformation 10001 → 10100 placing the last 1 in the third position,

next to the second position where the last 1 of |𝑡⟩ is located. This can be implemented in

the same way as in [NC00, Sec. 4.5.2] with the difference that now we apply controlled

SWAP operators controlled on the rest of the qubits, see Fig. 4.1. Finally the operator𝑈

acts on qubits 2 and 3 (corresponding to the second and third bits from left to right). This

operator is controlled on the rest of the qubits and finally we revert the SWAP operations.

For weight-𝑘 states we will require at most 2𝑘 SWAP gates plus the controlled𝑈 .
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𝑉

Figure 4.1: Circuit implementing a two-level unitary between states |𝑠⟩ = |10001⟩
and |𝑡⟩ = |11000⟩. The transformation represented by the controlled SWAP gates is
10001 → 10100. The controlled 𝑉 gate implements the two-level transformation in the
subspace spanned by |𝑠⟩ and |𝑡⟩. The black dots denote the control operations activated
if the qubit is in the state |1⟩ and white dots denote controls activated when the qubit is
in state |0⟩. The crosses indicate SWAP operations.

We now show that we can implement weight-1 two-qubit gates 𝑉 with multiple

controls using only weight-1 two-qubit gates, the Fredkin, and 𝐸 gates. We follow the

technique employed in [BBC+95] to prove this. First, by Lemma 5.1 of [BBC+95], it’s

known that a controlled version of 𝑊 ∈ SU(2) can be implemented by considering

𝐴, 𝐵,𝐶 ∈ SU(2) such that 𝐴𝐵𝐶 = 𝐼 and 𝐴𝑋𝐵𝑋𝐶 = 𝑊 . Directly employing the same

decomposition in the case where 𝑊̂ is a weight-1 two-qubit gate, by noting that 𝐴𝐵̂𝐶 = 𝐼

and 𝐴(SWAP)𝐵̂(SWAP)𝐶 = 𝑊̂ . Note that in our case the CNOT gates become Fredkin

gates. To implement a single control version of𝑊 ∈ U(2), a controlled phase gate is

included, in the weight-preserving case we use the gate 𝐸.

To construct a multiple controlled version of a unitary 𝑊̂ with𝑊 ∈ U(2), consider

the construction from Lemma 6.1 in [BBC+95]. We can create a weight-preserving

version of this construction as in Fig. 4.2, which includes two ancilla qubits set to |0⟩ |1⟩

and requires finding 𝑉 such that 𝑉 2 = 𝑊̂ . These qubits can be reused for each gate

we want to construct and thus only increases the weight of all the qubits in 1. The

intuition behind the circuit is that we use the |01⟩ ancilla to decide if we should apply the

controlled 𝑉 †, since in the original construction there are two CNOTs, we can replace

them with SWAPs and the ancilla system. When considering more control qubits, the

construction generalizes in the same way, by considering more Fredkin gates acting
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on ancillas instead of CNOTs. Note that if we want the controls to be activated by

|0⟩ instead of |1⟩, we can simply introduce SWAPs in the ancilla system. With these

considerations we can implement any two-level unitary constructed from circuits such

as the one in Fig. 4.1 using only weight-1 two qubit gates, the Fredkin gate, and 𝐸. If we

want to use the discrete set𝑈1, · · · ,𝑈𝑠 instead of all weight-1 preserving two qubit gates,

then the Solovay-Kitaev theorem applies in this case and thus proves the result. ■

Remark 4.10. The proof above shows that to implement a two-level unitary over

the weight-𝑘 subspace requires 𝑂 (2𝑛) gates from our weight-universal gate set. This

exponential comes mainly from the implementation we used for the controlled 𝑊̂ gate.

For our work in this chapter, this exponential dependence is sufficient. We remark that a

more efficient construction is possible, with caveat that it includes non-trivial operations

outside the weight-𝑘 subspace which might be of interest to some readers. In [BBC+95]

a more efficient construction is offered which scales like 𝑂 (𝑛2). We can adapt our proof

to improve the scaling in the same way provided that we don’t care how the two-level

unitary acts outside the weight-𝑘 subspace of dimension 2. This improvement is obtained

by noticing that circuits implementing two-level unitaries as in Fig. 4.1 only require 𝑘

controls since we need to check the position of the 1’s. This will imply that outside the

weight-𝑘 subspace the action of the unitary will be non-trivial, but if we only care about

this subspace, then the dependence will be on 𝑘 rather than 𝑛 for implementing them.

Even more improvements can be obtained using the techniques from Lemma 7.2 and

Lemma 7.3 in [BBC+95].

Remark 4.11. Note that when initializing the ancilla qubits of the weight-preserving

circuits we will construct in the reductions, we can set at most 𝑓 (𝑘) of them to |1⟩, where

𝑓 is some computable function. This guarantees our reduction still contained in FPQT.

The following lemmas will be necessary for our proof of Theorem 4.4.

Lemma 4.12. Let 𝑛 = 2𝑟 be an integer power of 2. The W state

|𝑊𝑛⟩ =
1
√
𝑛
( |10 · · · 0⟩ + |01 · · · 0⟩ + · · · + |00 · · · 1⟩)



CHAPTER 4. PARAMETERIZED COMPLEXITY OF THE WEIGHTED LOCAL
HAMILTONIAN PROBLEM 56

𝑊̂

−→

|1⟩

|0⟩

𝑉 †𝑉 𝑉

Figure 4.2: Circuit implementing a controlled version of 𝑊̂ with two controls. This
requires two ancillas initiated in the state |01⟩ and can be reused in the construction of
other gates. In this circuit 𝑉 2 = 𝑊̂ .

of 𝑛 qubits can be computed from
��0𝑛−11〉 by a weight-preserving quantum circuit

efficiently.

Proof. We prove by induction on 𝑟 that there is such circuits 𝐶𝑛 such that 𝐶𝑛 |0𝑛⟩ = |0𝑛⟩

and 𝐶𝑛
��0𝑛−11〉 = |𝑊𝑛⟩. First for 𝑟 = 1, the result follows by applying the gate

©­­­­­­­«

1 0 0 0

0 1√
2

1√
2

0

0 1√
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− 1√
2

0

0 0 0 1
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. (4.1)

Assume the claim is proved for 𝑛 = 2𝑟−1 and we shall show the same for 𝑛′ = 2𝑟 . Notice

that

|𝑊𝑛′⟩ =
1
√
2
(
|𝑊𝑛⟩ |0𝑛⟩ + |0𝑛⟩ |𝑊𝑛⟩

)
,

which can be prepared by first apply the gate in Eq. (4.1) to the 𝑛 + 1 and the last qubit

followed by two 𝐶𝑛−1 circuits acting on the first and second half of the qubits. ■

4.3.2 Weight-Preserving Quantum Circuit Satisfiability

In this section, we construct a weight-preserving verification circuit from the local

Hamiltonian problem. We emphasize that the Hamiltonian does not need to be weight-
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preserving and that the resulting circuit is not of constant depth yet. The following

lemma summarizes the main result of this section.

Lemma 4.13. Given a weight-𝑘 ℓ-local Hamiltonian problem 𝐻 =
∑𝑚
𝑗=1𝐻 𝑗 of𝑚 terms

on 𝑛 qubits and energy bounds 𝑎 and 𝑏 with gap 𝑏 − 𝑎 > 1/poly(𝑛). Suppose also that

𝐻 𝑗



 ≤ 1 for all 𝑗 = 1, 2, . . . ,𝑚. Then there is a weight-preserving circuit𝑊𝐻 of poly(𝑛)

size on 𝑛 +𝑀 + 𝑘 + 2 qubits that accepts with probability

1 − 𝑚 + ⟨𝜓 |𝐻 |𝜓 ⟩
2𝑀

where |𝜓 ⟩ is the input witness state and 𝑀 = 2⌈log2𝑚⌉ , the smallest integer power of 2

larger than𝑚.

Proof of Lemma 4.13. We use 𝑃 (𝑘)
𝑚 to denote the projector onto the subspace of weight-𝑘

basis states of length 𝑚. By convention, If 𝑘 > 𝑚 then 𝑃 (𝑘)
𝑚 is the zero operator. We

first show how we can implement a weight-preserving unitary circuit that accepts with

probability ⟨𝜓 | (𝐼 − 𝐻 𝑗 ) |𝜓 ⟩ /2. Assume for simplicity that the term 𝐻 𝑗 acts on the first ℓ

qubits and let 𝑂 = (𝐼 − 𝐻 𝑗 )/2 be a positive semi-definite operator. We are interested in

the quantity ⟨𝜓 |𝑂 |𝜓 ⟩ and we claim the following identity

⟨𝜓 |𝑂 ⊗ 𝐼𝑛−𝑙 |𝜓 ⟩ =
𝑙 ′∑︁
𝑤=0

⟨𝜓 |𝑂 (𝑤) ⊗ 𝑃 (𝑘−𝑤)
𝑛−𝑙 |𝜓 ⟩

for state |𝜓 ⟩ of weight 𝑘 where 𝑂 (𝑤) = 𝑃
(𝑤)
𝑙
𝑂𝑃

(𝑤)
𝑙
, 𝑙′ = min(𝑘, 𝑙). This follows by

computing the matrix entries of 𝑂 ⊗ 𝐼𝑛−𝑙 with indices 𝑖, 𝑖′ of weight 𝑘 . Alternatively, one

can see that

⟨𝜓 |𝑂 ⊗ 𝐼 |𝜓 ⟩ = ⟨𝜓 |
(
𝑙 ′∑︁
𝑤=0

𝑃
(𝑤)
𝑙

⊗ 𝑃 (𝑘−𝑤)
𝑛−𝑙

)
𝑂 ⊗ 𝐼

(
𝑙 ′∑︁

𝑤 ′=0
𝑃
(𝑤 ′)
𝑙

⊗ 𝑃 (𝑘−𝑤 ′)
𝑛−𝑙

)
|𝜓 ⟩

= ⟨𝜓 |
𝑙 ′∑︁
𝑤=0

𝑃
(𝑤)
𝑙
𝑂𝑃

(𝑤)
𝑙

⊗ 𝑃 (𝑘−𝑤)
𝑛−𝑙 |𝜓 ⟩

= ⟨𝜓 |
𝑙 ′∑︁
𝑤=0

𝑂 (𝑤) ⊗ 𝑃 (𝑘−𝑤)
𝑛−𝑙 |𝜓 ⟩
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Now we introduce in the circuit we are building two ancilla qubits starting in state

|01⟩. Then the following matrix

𝑈 (𝑤) =

©­­­­­­­«

𝐼 0 0 0

0
√
𝑂 (𝑤)

√
𝐼 −𝑂 (𝑤) 0

0
√
𝐼 −𝑂 (𝑤) −

√
𝑂 (𝑤) 0

0 0 0 𝐼

ª®®®®®®®¬
is unitary and weight-preserving. It is unitary as 𝑈 (𝑤) (𝑈 (𝑤) )† = 𝐼 follows by direct cal-

culations. The weight-preserving property follows from the weight-preserving property

of 𝑂 (𝑤) , and therefore also
√
𝑂 (𝑤) and

√
𝐼 −𝑂 (𝑤) . The ancilla qubits in the state |01⟩ are

chosen such that 𝑈 (𝑤) |𝜓 ⟩ |01⟩ =
√
𝑂 (𝑤) |𝜓 ⟩ |01⟩ +

√
𝐼 −𝑂 (𝑤) |𝜓 ⟩ |10⟩. We want to act

with𝑈 (𝑤) conditioned on the remaining 𝑛− 𝑙 qubits having weight 𝑘 −𝑤 . We can do this

by adding 𝑘 + 1 ancillas in the state |100 · · · 0⟩ and then act on this ancilla registers with

controlled gates that perform a cyclic shift of the registers controlled by the original 𝑛− 𝑙

qubits. We define 𝑆 as the circular shift operator that act as 𝑆 |𝑖1𝑖2 . . . 𝑖𝑛⟩ = |𝑖𝑛𝑖1 . . . 𝑖𝑛−1⟩.

Now, we define the circuit 𝑉weight which will keep track of the weight of the 𝑛 − 𝑙 qubits.

𝑉weight =

𝑙 ′∑︁
𝑖=0

𝑃
(𝑘−𝑖)
𝑛−𝑙 ⊗ 𝑆𝑖 .

We can easily construct the operator 𝑉weight by using controlled versions of the operator

𝑆 which are controlled by each of the 𝑛 − 𝑙 qubits. Concretely, we consider 𝐶 (𝑖)𝑆 where

𝑆 is controlled by qubit 𝑖. If the 𝑛 − 𝑙 qubits are numbered 1, · · · , 𝑛 − 𝑙 then just consider∏𝑛−𝑙
𝑖=1 𝐶

(𝑖)𝑆 . Once we have a register with the weight of the 𝑛 − 𝑙 qubits, we can act with

a controlled version of𝑈 (𝑤) on the remaining qubits depending on the weight registered.

The circuit is drawn in Fig. 4.3. If the remaining 𝑛 − 𝑙 have weight 𝑘 − 𝑖, then the 𝑘 + 1

ancillas gets rotated from
��10𝑘〉 to

��0𝑖10𝑘−𝑖〉. Let 𝑈 be the circuit with 𝑉weight and the

controlled versions𝑈 (𝑤) just described and consider the probability that we measure the

first group of ancillary qubit in basis |01⟩ after acting with𝑈


( |01⟩ ⟨01| ⊗ 𝐼 )𝑈 |01⟩ |𝜓 ⟩
���10𝑙 ′〉


2 = 




|01⟩ ⊗

(
𝑙 ′∑︁
𝑤=0

√︁
𝑂 (𝑤) ⊗ 𝑃 (𝑘−𝑤)

𝑛−𝑙 |𝜓 ⟩ ⊗
���0𝑤10𝑘−𝑤 〉)




2
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= ⟨𝜓 |
𝑙 ′∑︁
𝑤=0

𝑂 (𝑤) ⊗ 𝑃 (𝑘−𝑤)
𝑛−𝑙 |𝜓 ⟩

= ⟨𝜓 |𝑂 |𝜓 ⟩ .

𝑉weight

𝑈 (0) 𝑈 (1)

· · ·

· · ·

· · · 𝑈 (𝑘)

|10 · · · 0⟩

𝑛 − ℓ qubits

ℓ qubits

|0⟩
|1⟩

Figure 4.3: Circuit implementing the observable 𝑂 = (𝐼 −𝐻 𝑗 )/2 described in the text.
The unitary𝑉weight writes the weight of the 𝑛− 𝑙 qubits on the counting registry |10 · · · 0⟩.
The circuit acts on the ℓ qubits (and the pair of ancillas) depending on this weight.

We are now ready to construct the weight-preserving circuit for the local Hamiltonian

𝐻 . We consider two registers of qubits, the first one selects a term 𝐻𝑖 from the Hamilto-

nian. This register has 𝑀 = 2⌈log2𝑚⌉ qubits. The second register will contain 𝑛 qubits for

the witness state. The circuit is initiated by preparing the 𝑀-qubit state |𝑊 ⟩ in the first

register for term selection. For all 𝑗 = 1, 2, . . . ,𝑚 and conditioned on the 𝑗-th qubit in the

term selection register being in state |1⟩, we perform the network of SWAP gates that

moves the qubits that 𝐻 𝑗 acts on to the first ℓ qubits, apply the weight-preserving energy

measurement circuit for 𝑂 = (𝐼 − 𝐻 𝑗 )/2 as described above, note that the measurement

performed depends on the chosen 𝑗 as well. For all 𝑗 =𝑚 + 1, . . . , 𝑀 , the circuit accepts

immediately.

It is easy to check that all gates used in the circuit are weight-preserving and the

circuit accepts with probability

Pr(measuring 𝑗 ∈ {𝑚 + 1, · · · , 𝑀} in term register) + 1
𝑀

𝑚∑︁
𝑗=1

1 − ⟨𝜓 |𝐻 𝑗 |𝜓 ⟩
2

. (4.2)
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This probability is equal to

𝑀 −𝑚
𝑀

+
𝑚∑︁
𝑗=1

1 − ⟨𝜓 |𝐻 𝑗 |𝜓 ⟩
2𝑀

= 1 − 𝑚 + ⟨𝜓 |𝐻 |𝜓 ⟩
2𝑀

.

■

4.3.3 Weight-Preserving Marriott-Watrous Amplification

In this section, we prove that it is possible to amplify the completeness and soundness

gap for weight-preserving verification circuits with one copy of the witness state. This

amplification will be seen to be necessary in the reduction. In the complexity class

QMA, the verifier can always amplify the completeness-soundness gap as in the work

of Marriott and Watrous [MW05], this procedure requires storing a polynomial number

of measured bits. This last fact makes hard to implement the Marriott and Watrud

procedure with weight-preserving circuit which work with Hilbert spaces of size 𝑛𝑘 .

Since the procedure of Marriott and Watrous is not available and we can’t simply

repeat the circuit in parallel (repeating the circuit would increase the weight of the

input state polynomially), then we use the fast QMA reduction in [NWZ09, Gil19]. The

version of this amplification we use is based on the quantum singular value transform

(QSVT).

Theorem 4.14. Given a verifier circuit𝑉 for a language 𝐿 ∈ QMA with acceptance prob-

ability thresholds (𝑎, 𝑏), we can construct a new verifier circuit 𝑉 ′ with threshold 𝑎′ =

𝜖, 𝑏′ = 1 − 𝜖 with one extra ancillary qubit, and𝑚 = 𝑂

(
1

max [
√
𝑏−

√
𝑎,
√
1−𝑎−

√
1−𝑏]

log
( 1
𝜖

) )
calls to 𝑉 and 𝑉 † as in Fig. 4.4.

To show how to implement this completeness-soundness gap amplification, we give

a quick summary of the QSVT technique. Given a unitary𝑉 , define Φ = (𝜙1, · · · , 𝜙2𝑚) ∈

R2𝑚 and the following circuit𝑈Φ:

𝑈Φ =

𝑛∏
𝑗=1

(
𝑒𝑖𝜙2𝑗−1 (2Π−𝐼 )𝑉 †𝑒𝑖𝜙2𝑗 (2Π̃−𝐼 )𝑉

)
, (4.3)
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where Π and Π̃ are both orthogonal projectors. By choosing the angles Φ appropriately

one can implemement a a polynomial transformation on the singular values of 𝑉 , this is

shown in Theorem 2.3.7 of [Gil19]. The polynomial implemented is over the complex

field. If we wish to implement a polynomial 𝑃R ∈ R over the real field then by Corollary

2.3.8 of [Gil19] we can use instead the circuit

𝑃R(Π̃𝑉Π) = (⟨+| ⊗ Π̃) ( |0⟩ ⟨0| ⊗ 𝑈Φ + |1⟩ ⟨1| ⊗ 𝑈−Φ) ( |+⟩ ⊗ Π)

To implement the controlled𝑈Φ in the previous formula, we only need to implement the

gates
∑
𝑏 |𝑏⟩ ⟨𝑏 | ⊗ 𝑒𝑖 (−1)

𝑏𝜙 (2Π−𝐼 ) as in Fig. 4.4.

Π

𝑒−𝑖𝜙𝜎𝑧

Π· · · · · · · · ·

Figure 4.4: Implementing
∑
𝑏 |𝑏⟩ ⟨𝑏 | ⊗ 𝑒𝑖 (−1)

𝑏𝜙 (2Π−𝐼 ) .

The CΠNOT gate is defined as Π ⊗ 𝑋 + (𝐼 − Π) ⊗ 𝐼 . In our weight preserving

reduction, we replace the circuit 𝑉 with our weight preserving instance C, and encode

the ancillary qubit in the {|01⟩ , |10⟩} space as before, replacing all operations on the

ancilla with their weight preserving counterpart. Now we explicitly construct Eq. (4.3).

If we assume 𝑉 |𝜓 ⟩
��1𝑓 (𝑘)0𝑝〉 = 𝛼 |1⟩ |𝜑1⟩ + 𝛽 |0⟩ |𝜑0⟩, let Φ ∈ R2𝑚 for Eq. (4.3), with

Π = 𝐼 ⊗
��1𝑓 (𝑘)0𝑝〉〈1𝑓 (𝑘)0𝑝 �� is the projector that checks the ancillary qubits are correctly

initialized, and Π̃ = |1⟩⟨1| ⊗ 𝐼 is the accepting projector on the output qubit of 𝑉 .

It is shown in [Gil19] that there exists some Φ ∈ R2𝑚, where 𝑚 is set as in Theo-

rem 4.14, such that


(⟨+| ⊗ Π) ( |0⟩ ⟨0| ⊗ 𝑈Φ + |1⟩ ⟨1| ⊗ 𝑈−Φ)
(
|+⟩ ⊗ |𝜓 ⟩ ⊗

���1𝑓 (𝑘)0𝑝〉)


2 ≥ 1 − 𝜖,

if | |Π̃𝑉 |𝜓 ⟩ | |2 ≥ 𝑏;


(⟨+| ⊗ Π) ( |0⟩ ⟨0| ⊗ 𝑈Φ + |1⟩ ⟨1| ⊗ 𝑈−Φ)
(
|+⟩ ⊗ |𝜓 ⟩ ⊗

���1𝑓 (𝑘)0𝑝〉)


2 ≤ 𝜖,
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if | |Π̃𝑉 |𝜓 ⟩ | |2 ≤ 𝑎;

By careful examination of the new circuit constructed in [Gil19], we can show that the

circuit could be implemented in a weight preserving manner, giving us the following

corollary:

Corollary 4.15. Given an instance circuit C of weight-𝑘 weight preserving quantum

circuit with completeness and soundness 𝑐, 𝑠, (𝑐−𝑠 > 1/poly(𝑛)), we can construct a new

weight preserving circuit C′ with threshold 𝑐′ = 1−𝜖, 𝑠′ = 𝜖, by making poly(𝑛) log(1/𝜖)

calls to the circuit C.

4.3.4 Spatially Sparse Weighted Local Hamiltonian

In this section we will consider an 𝑛 qubit weight-preserving circuit𝑊 with 𝑅 gates with

a weight-𝑘 state and reduce it to an instance of the Local Hamiltonian problem with the

property of being almost spatially sparse, which we define as follows

Definition 4.16 (Spatially Sparse Local Hamiltonian). A local Hamiltonian problem

is spatially sparse if each qubit is only acted by 𝑂 (1) Hamiltonians.

Definition 4.17 (Almost Spatially Sparse Local Hamiltonian). A local Hamiltonian

problem is almost spatially sparse with respect to a register of qubits if the Hamiltonian

becomes spatially sparse if we remove all terms acting only on qubits in this register.

The spatially sparse local Hamiltonian is proven to be QMA complete in [OT08],

their key lemma is stated as follows:

Lemma 4.18. Given a verifier circuit 𝑉𝑥 for a language 𝐿 ∈ QMA, there exists a

spatially sparse local Hamiltonian 𝐻 =
∑
𝑖 𝐻𝑖 and 𝑇 = poly(𝑛) that satisfies the

following conditions:

• If 𝑉𝑥 accepts some state |𝜉⟩ with probability 1 − 𝜖, there exists state |𝜓 ⟩ that

⟨𝜓 |𝐻 |𝜓 ⟩ ≤ 𝜖
𝑇+1 .
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𝑅 = 1

𝑅 = 2

𝑅 = 3

𝑅 = 4

Figure 4.5: Reproduced Figure 1 of [OT08]. Each row of the qubits has the same
number as the starting circuit. The number of rows is one more than the number of gates
in the starting circuit. The 𝑅-th gate is performed on the 𝑅-th row and then all qubits are
swappwd with those in the (𝑅 + 1)-th row. This lazy simulation of the circuit will ensure
that each qubit is acted on by a gate at most three times.

• If 𝑉𝑥 accepts any state |𝜉⟩ with probability no larger than 𝜖, then all eigenvalues

of 𝐻 is larger than 𝑐 (1−
√
𝜖−𝜖)

𝑇 3 , where 𝑐 is some constant.

This last lemma shows that the spatially sparse local Hamiltonian is QMA-hard, it

can be easily seen that it is also in QMA. Our reduction from the weight preserving

circuit to an almost spatially sparse local Hamiltonian will follow closely the construction

in [OT08]. We give our reduction inspired in [OT08] in what follows. Consider the

circuit 𝑉𝑥 = 𝑈𝑅 · · ·𝑈2𝑈1 acting on 𝑛 qubits and𝑈𝑖 are local gates from a universal gate

set. We will map this circuit to a new circuit 𝑈sp where the qubits will be arranged in a

square grid and such that each qubit will be acted upon by a constant number of local

gates. The grid will simulate the evolution of a qubit as time passes. The 𝑖th qubit in

layer 𝑗 in the grid of 𝑈sp will simulate the state of the 𝑖th qubit in the 𝑗 th step of running

circuit 𝑉𝑥 . In Fig. 4.5 we illustrate the simulation of circuit 𝑉𝑥 with the grid. The first

row 𝑅 = 1 contains the initial qubits and the rectangle represents the two-qubit gate𝑈1.

After this, all the qubits in the first row are swapped with those in the second row where

the double arrows represent SWAP gates, after all the swaps, we act with gate 𝑈2 and

then repeat until the whole circuit has been simulated.

Next, we use Kitaev’s clock construction to turn the circuit just described on the grid

to a local Hamiltonian. We denote 𝑄in the set of qubits which correspond to the witness,

𝑄out the output qubit and 𝐶 = 𝐶1, · · · ,𝐶𝑇 the clock registers. Let 𝑈sp = 𝑊𝑇 . . .𝑊2𝑊1
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be the circuit acting over the grid qubits decomposed into local gates. The clock

register will have 𝑇 + 1 qubits and valid clock basis states have the form
��0𝑡−110𝑇−𝑡 〉

𝐶

for 𝑡 = 1, 2, . . . ,𝑇 , i.e., we consider an indicator clock. Analogous to Kitaev’s reduction,

a valid history state for the circuit𝑈sp is

|𝜙⟩ = 1
√
𝑇 + 1

𝑇∑︁
𝑡=0

��0𝑡−110𝑇−𝑡 〉
𝐶
⊗ |𝜉𝑡 ⟩ ,

where |𝜉𝑡 ⟩ =𝑊𝑡 |𝜉𝑡−1⟩ , |𝜉0⟩ = |𝜓 ⟩ ⊗
��1𝑓 (𝑘)0𝑚〉

. Note that each𝑊𝑡 is weight preserving

and the initial state |𝜉0⟩ for𝑈sp has weight 𝑘 + 𝑓 (𝑘) = 𝑘′.

First, define 𝑡𝑞 for the earliest time step when qubit 𝑞 is actually used in the circuit

𝑈sp and 𝑖𝑞 is the inverse value in which ancillary qubit 𝑞 should be initialized (so if

qubit 𝑞 should be initialized in state |0⟩, then 𝑖𝑞 = 1). Consider then, the following

Hamiltonian which sets the input state of the circuit.

𝐻 ′
in =

∑︁
𝑞∉𝑄in

��𝑖𝑞〉〈𝑖𝑞 ��𝑞 ⊗ |1⟩⟨1|𝐶𝑡𝑞−1 . (4.4)

Each term in this Hamiltonian increases the energy of those configurations where

the qubits in the grid that are not part of the input are different from the value they

should be initialized in. Note that the penalty is considered only when the clock qubit

corresponding to time 𝑡𝑞 − 1 is active. Next, we consider the Hamiltonian which

introduces an energy penalty when the circuit does not accept the input.

𝐻 ′
out = |0⟩⟨0|𝑄out

⊗ |1⟩⟨1|𝐶𝑇 . (4.5)

Now we present the Hamiltonian terms which check that the proper circuit gates are

applied on the input.

𝐻 ′
prop =

𝑇∑︁
𝑡=1

𝐻 ′
prop,𝑡 , (4.6)

where

𝐻 ′
prop,𝑡 = ( |10⟩⟨10| + |01⟩⟨01|)𝐶𝑡,𝑡+1 −𝑊𝑡 ⊗ |01⟩⟨10|𝐶𝑡,𝑡+1 −𝑊

†
𝑡 ⊗ |10⟩⟨01|𝐶𝑡,𝑡+1 .
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Each term 𝐻 ′
prop,𝑡 ensures that gate𝑊𝑡 is applied at time 𝑡 . Before presenting the Hamil-

tonian terms checking the clock, we add an additional ingredient to our construction.

Consider the following isometry U on the state registers of our Hamiltonian: for each

qubit 𝑞, we will duplicate it in the computational basis, i.e., U |0⟩𝑞 = |00⟩𝐼𝑞 ,U |1⟩𝑞 =

|11⟩𝐼𝑞 , where 𝐼𝑞 are two qubits indicating the original qubit 𝑞, and 𝐼𝑞 ∩ 𝐼𝑞′ = ∅ for 𝑞 ≠ 𝑞′.

We remark that this isometry is applied over the state register or in other words, the

qubits in the grid originally defined. The isometry does not affect the clock qubits.

Thus we obtain new Hamiltonian terms constructed by conjugating U over the previous

Hamiltonian terms; 𝐻in = U𝐻 ′
inU

†, 𝐻out = U𝐻 ′
outU† and 𝐻prop = U𝐻 ′

propU†. Due to

the isometry just described, the qubits in each 𝐼𝑞 need to be either in the state |00⟩ or

|11⟩ as they encode a single qubit. We need to include Hamiltonian terms that check

that these are the only possibe states.

𝐻state =
∑︁
𝑞

|01⟩ ⟨01|𝐼𝑞 + |10⟩ ⟨10|𝐼𝑞 . (4.7)

The Hamiltonian terms that check the correctness of the clock is given by

𝐻clock =
∑︁
𝑡<𝑡 ′

|11⟩ ⟨11|𝐶𝑡,𝑡 ′ . (4.8)

Our final local Hamiltonian will have the form 𝐻 = 𝐻in + 𝐻out + 𝐻prop + 𝐻clock + 𝐻state

where

𝐻in =
∑︁
𝑞∉𝑄in

��𝑖𝑞𝑖𝑞〉〈𝑖𝑞𝑖𝑞 ��𝐼𝑞 ⊗ |1⟩⟨1|𝐶𝑡𝑞−1 ,

𝐻out = |00⟩⟨00|𝐼𝑄out
⊗ |1⟩⟨1|𝐶𝑇 ,

𝐻clock =
∑︁
𝑡<𝑡 ′

|11⟩ ⟨11|𝐶𝑡,𝑡 ′

𝐻state =
∑︁
𝑞

|01⟩ ⟨01|𝐼𝑞 + |10⟩ ⟨10|𝐼𝑞 ,

𝐻prop =

𝑇∑︁
𝑡=1

𝐻prop,𝑡 ,

and

𝐻prop,𝑡 = ( |10⟩⟨10| + |01⟩⟨01|)𝐶𝑡,𝑡+1 −𝑊 ′
𝑡 ⊗ |01⟩⟨10|𝐶𝑡,𝑡+1 − (𝑊 ′

𝑡 )† ⊗ |10⟩⟨01|𝐶𝑡,𝑡+1 ,
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where𝑊 ′
𝑡 = U|𝑄𝑊𝑡

𝑊𝑡U|†
𝑄𝑊𝑡

⊗ 𝐼2𝑛−2|𝑄𝑊𝑡 |, 𝑄𝑊𝑡
for the qubits that𝑊𝑡 acts on. In our new

construction, our history state could be defined as |𝜙′⟩ = (𝐼 ⊗ U) |𝜙⟩. We can observe

that U doubles the weight on the state registers, the weight of our new witness state is

2𝑘′ + 1. The fact that the weight on the new Hamiltonian has odd weight is important, as

this makes the clock guarantee that it will have only a single qubit in state |1⟩. If we

didn’t have this requirement, then it would be possible for the clock to be in the state��0𝑇 〉
𝐶

which would not be penalized with our Hamiltonian.

The difference between our construction and Oliveira-Terhal [OT08] is in the clock

design and checking terms. We use the indicator clock and it is easy to see 𝐻clock and

𝐻state are 2-local Hamiltonians. 𝐻state guarantees the two mapped qubits in 𝐼𝑞 always

have the same value, thus all valid witnesses should have even weight on the state

registers. Since we require the weight of witness state to be odd, the clock registers must

have non-zero weight, and 𝐻clock guarantees the only valid clock states are the indicator

states
��0𝑡−110𝑇−𝑡 〉

𝐶
.

For the completeness part, observe that if original 𝑉 accepts |𝜓 ⟩ with probability

1 − 𝜖, the history state |𝜙′⟩ = (𝐼 ⊗ U) |𝜙⟩ would be projected to 0 for all Hamiltonian

terms but 𝐻out. Since 𝑈sp simulates 𝑉 faithfully, we obtain that ⟨𝜙′|𝐻out |𝜙′⟩ ≤ 𝜖
𝑇+1 .

To see this, assume that |𝜓 ⟩ is an input state to the weight preserving circuit 𝑉

such that ∥Π1𝑉 |𝜓 ⟩∥2 ≥ 1 − 𝜖, where Π1 is the projector acting on the output qubit

projecting onto the state |1⟩. Let 𝑈sp be the simulation of 𝑉 using the method of

[OT08] which we described above, since the simulation is faithful we have that


Π𝑄out
1 𝑈sp |𝜓 ⟩ ⊗

��1𝑓 (𝑘)0𝑚〉


2 ≥ 1 − 𝜖. Now, note that

⟨𝜙′|𝐻out |𝜙′⟩ = ⟨𝜙 | (𝐼 ⊗ U†) ( |00⟩⟨00|𝐼𝑄out
⊗ |1⟩⟨1|𝐶𝑇 ) (𝐼 ⊗ U) |𝜙⟩

= ⟨𝜙 | ( |0⟩⟨0|𝑄out
⊗ |1⟩⟨1|𝐶𝑇 )

1
√
𝑇 + 1

𝑇∑︁
𝑡=0

��0𝑡−110𝑇−𝑡 〉
𝐶
⊗𝑊𝑡 · · ·𝑊1

(
|𝜓 ⟩ ⊗

���1𝑓 (𝑘)0𝑚〉)
=

〈
𝜙
��0𝑄out1𝐶𝑇

〉 1
√
𝑇 + 1

(
|0 · · · 01⟩𝐶 ⟨0|𝑄out

𝑊𝑇 · · ·𝑊1

(
|𝜓 ⟩ ⊗

���1𝑓 (𝑘)0𝑚〉) )
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=




Π𝑄out
0 𝑈sp |𝜓 ⟩ ⊗

��1𝑓 (𝑘)0𝑚〉


2
𝑇 + 1

≤ 𝜖

𝑇 + 1
. (4.9)

For soundness, consider the vector space of legal history states S = {|𝜙⟩ : 𝐻clock |𝜙⟩ =

𝐻state |𝜙⟩ = 0}. Since 𝐻 preserves this space and the corresponding perpendicular space

S⊥, we can discuss both of this spaces separately. Any eigenvector in S⊥ has eigenvalue

at least 1 as it would violate the clock or the state constraint. The proof is similar to

the one in [OT08] which in turn follows from the proof of [KSV02]. For the soundness

in the subspace S, consider the Hamiltonian restricted to this subspace 𝐻 |S (in this

subspace, the clock and state constraint are satisfied). Define 𝐻 ′ = 𝐻 ′
in +𝐻

′
out +𝐻 ′

prop and

note that U𝐻 ′U† |S = 𝐻 |S since in the subspace S, the clock and the state Hamiltonian

are 0. In [OT08], they performed analysis of eigenvalue on 𝐻 ′|U†SU , which is isometric

to U𝐻 ′U† |S , thus we obtain the same eigenvalue lower bound 𝑐 (1−
√
𝜖−𝜖)

𝑇 3 . The resulting

Hamiltonian in our reduction is not spatially sparse as in [OT08] because the clock

checking Hamiltonian 𝑆clock is not sparse. Excluding the clock checking terms, however,

all other terms are spatially sparse. Therefore, this Hamiltonian is almost spatially sparse

with respect to the clock register. Note that if we use Lemma 4.9 and a finite gate set, the

types of resulting Hamiltonian terms will also be finite. We conclude with the following

corollary:

Corollary 4.19. Given a weight-𝑘 weight-preserving quantum circuit satisfiability in-

stance C with parameter (𝜖, 1 − 𝜖), we can construct a weight-2𝑘′ + 1 almost spatially

sparse local hamiltonian instance with energy thresholds 𝑎 = 𝜖
𝑇+1 , 𝑏 =

𝑐 (1−
√
𝜖−𝜖)

𝑇 3 . Fur-

thermore, if we assume C acts on 𝑛 qubits, we have 𝑇 ≤ 3𝑛( |C| + 1), the resulting

Hamiltonian would act on 2𝑛( |C| + 1) +𝑇 + 1 qubits, and 𝑘′ = 𝑓 (𝑘) for some computable

function 𝑓 .
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4.3.5 QW[1] Verification for Almost Spatially Sparse Hamiltonian

Problems

We are now ready to show that the almost spatially sparse Hamiltonian problem we

end up with in the last subsection is in QW[1]. To prove this, we design a constant

depth circuit which verifies the almost sparse local Hamiltonian problem. There are two

main techniques in the proof. The first technique will consist in taking advantage of the

sparseness of the Hamiltonian terms (which do not include the clock) by coloring them

such that no two terms acting on the same qubit are of the same color. This will allow

us to measure in parallel the energy of Hamiltonian terms of the same color and thus

perform this measurements in constant depth. Second, to check that the clock is in the

correct state, we use the fact that the clock has the indicator format (a single 1 in the

position corresponding to the time). We can measure the clock state an then perform a

computation in W[1] (a constant-depth circuit with classical fan-outs) to check the result.

Thanks to the simplification of the clock checking term using the weight constraint, it

suffices to check that there are no two 1’s in the measurement outcome of the clock

register. This can be done in W[1], and therefore simulated by a constant depth quantum

circuit with one big AND gate.

We need the following lemma to relate parallel measurements and Hamiltonian sum

later on.

Lemma 4.20. Let 𝑀1, 𝑀2, . . . , 𝑀𝑚 be 𝑚 commuting operators satisfying 0 ≤ 𝑀 𝑗 ≤ 𝐼 ,

then we have

𝐼 −
𝑚∑︁
𝑗=1

𝑀 𝑗 ≤
𝑚∏
𝑗=1

(𝐼 −𝑀 𝑗 ) ≤ 𝐼 − 1
𝑚

𝑚∑︁
𝑗=1

𝑀 𝑗 .

Proof. By the commutativity of the𝑚 operators and the spectral decomposition theorem,

this problem reduces to the scalar case. For real numbers 𝑥 𝑗 ∈ [0, 1] where 𝑗 =

1, 2, . . . ,𝑚,

1 −
𝑚∑︁
𝑗=1

𝑥 𝑗 ≤
𝑚∏
𝑗=1

(1 − 𝑥 𝑗 )
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follows from a simple induction on𝑚 and

1 − 1
𝑚

𝑚∑︁
𝑗=1

𝑥 𝑗 ≥
𝑚∏
𝑗=1

(1 − 𝑥 𝑗 )

follows from the geometric and arithmetic mean inequality∑
𝑗 (1 − 𝑥 𝑗 )
𝑚

≥
(∏

𝑗

(1 − 𝑥 𝑗 )
)1/𝑚

≥
∏
𝑗

(1 − 𝑥 𝑗 ).

■

This last Lemma will help us bounding the energies when measuring in parallel.

Now we show the following Lemma which shows that the almost spatially sparse local

Hamiltonian can be verified by QW[1] circuits, provided that the energy threshold fulfill

the constraint 𝑏/𝑛2 − 𝑎 ≥ 1/poly(𝑛). In the proof of the Lemma we will see why this

condition is necessary.

Lemma 4.21. Let 𝐻 =
∑
𝑗 𝐻 𝑗 be a local Hamiltonian problem that acts on 𝑛 qubits.

The energy thresholds 𝑎 and 𝑏 for the problem satisfies 𝑏/𝑛2 − 𝑎 ≥ 1/poly(𝑛). Suppose

that Hamiltonian 𝐻 is almost spatially sparse with respect to a clock register of 𝑛clock

qubits and that each term 𝐻 𝑗 in the Hamiltonian is a projector. That is, except clock

checking terms |11⟩ ⟨11|𝐶𝑡,𝑡 ′ acting on qubits 𝐶𝑡 and 𝐶𝑡 ′ in the clock register, all other

Hamiltonian terms in 𝐻 are spatially sparse. Then, there is a QW[1] verification circuit

𝑉 and 𝑐, 𝑠 ∈ R satisfying 𝑐 − 𝑠 ≥ 1/poly(𝑛) such that if the ground state energy of 𝐻 is

at most 𝑎, 𝑉 accepts with probability 𝑐 while if the ground state energy of 𝐻 is at least

𝑏, 𝑉 accepts with probability 𝑠. Furthermore, 𝑉 can be chosen so that the big gate is a

classical AND gate and it is the last gate in 𝑉 .

Proof. As the Hamiltonian is almost spatially sparse, it is possible to color the terms

using 𝑛color + 1 colors where 𝑛color is a constant. Note that this constant will depend on

the locality of the Hamiltonian. We use 𝐺 (ℎ) to denote the set of terms of color ℎ. For

the first 𝑛color sets 𝐺 (ℎ) where ℎ = 0, 1, . . . , 𝑛color − 1, the terms 𝐻 (ℎ)
𝑗

in the color group

𝐺 (ℎ) =
{
𝐻

(ℎ)
𝑗

| 𝑗 = 1, 2, . . . ,𝑚ℎ

}
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acts on different qubits for all 𝑗 . Here, 𝑚ℎ is the number of terms in group 𝐺 (ℎ) . For

the last group 𝐺 (𝑛color) , the terms are 𝐻 (𝑛color)
𝑗

= |11⟩ ⟨11|𝐶𝑡,𝑡 ′ acting on all pairs of qubits

𝐶𝑡 ,𝐶𝑡 ′ in the clock register, i.e., the last color is assigned to the terms of the clock

Hamiltonian. The number of terms in this group is𝑚𝑛color . Define

𝑚max = max {𝑚𝑖 | 𝑖 = 0, 1, . . . , 𝑛color}.

For each ℎ = 0, 1, . . . , 𝑛color − 1, the size𝑚ℎ is at most 𝑛 as the terms in 𝐺 (ℎ) all act on

different qubits. For ℎ = 𝑛color,𝑚ℎ is at most 𝑛2 as 𝑛clock ≤ 𝑛 and the terms run over a

pair of clock qubits. This implies that𝑚max ≤ 𝑛2.

We now present the QW[1] verification circuit 𝑉 as follows.

(1) First the circuit samples a random integer ℎ ∈ {0, 1, . . . , 𝑛color}.

(2) Conditioned on ℎ the circuit checks all the terms in the group 𝐺 (ℎ) . In particular,

a) If ℎ < 𝑛color, the circuit performs measurements

{𝑀 (ℎ)
𝑗,1 = 𝐼 − 𝐻 (ℎ)

𝑗
, 𝑀

(ℎ)
𝑗,0 = 𝐻

(ℎ)
𝑗

},

for all 𝑗 = 1, 2, . . . ,𝑚ℎ. The circuit outputs the AND of all measurement

outcomes.

b) If ℎ = 𝑛color, the circuit performs computational basis measurements on all

the clock qubits. The circuit outputs the AND of all pairwise NAND of the

measurement outcomes.

First, we note that the sampling of the integer ℎ can be done using a constant size

quantum circuit and computational basis measurement. We can fanout the measurement

outcomes to control the later parts in the circuit. Second, as the Hamiltonian terms in

each group 𝐺 (ℎ) act on different qubits for all ℎ = 0, 1, . . . , 𝑛color − 1, the measurements

{𝑀 𝑗,0, 𝑀 𝑗,1} can be implemented in parallel. These measurements output 𝑥ℎ, an𝑚ℎ-bit

vector of classical information. For ℎ = 𝑛color, the circuit first measures all the clock

qubits and computes the pairwise NAND of the outcome. We denote this vector of
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classical bits as 𝑥𝑛color , its length is𝑚𝑛color . So far, all gates involved are constant size

quantum circuits and the classical fanout gates. Finally, the output of the circuit 𝑉 is the

AND of 𝑥ℎ for the sampled integer ℎ. It is easy to reuse the AND gate in all 𝑛color + 1

cases as we can use fanout of input 1 to pad short 𝑥ℎ’s so that they all have length𝑚max.

Then we use controlled SWAP gates to move the bits in 𝑥ℎ to the same register that can

hold𝑚max qubits and output their AND.

Now we show that the soundness and completeness probabilities for the circuit are

related to the gap condition on the almost spatially sparse local Hamiltonian. First,

note that for the case ℎ = 𝑛color, the measurement associated to this choice of ℎ has the

probability of acceptance

⟨𝜓 |
( ∑︁
𝑥 :|𝑥 |≤1

|𝑥⟩ ⟨𝑥 |
)
|𝜓 ⟩ = ⟨𝜓 |

∏
𝑘,𝑙

(𝐼 − |11⟩ ⟨11|)𝑘,𝑙 |𝜓 ⟩ = ⟨𝜓 |
∏
𝑗

(
𝐼 − 𝐻 (𝑛color)

𝑗

)
|𝜓 ⟩ .

where |𝑥 | denotes the Hamming weight of bitstring 𝑥 . This is the probability of accep-

tance because each projector in the last equality checks whether there are no two 1’s in

the clock.

The acceptance probability of the circuit is then given by

Pr(𝑉 accepts) = 1
𝑛color + 1

𝑛color∑︁
ℎ=0

⟨𝜓 |
𝑚ℎ⊗
𝑗=1

(𝐼 − 𝐻 (ℎ)
𝑗

) |𝜓 ⟩ . (4.10)

Its important to remark here that each of this projectors can be implemented in constant

depth since each local Hamiltonian only involves a finite number of qubits. In the yes

case, the Hamiltonian has ground state energy at most 𝑎, which means that there is a

witness state |𝜓 ⟩

⟨𝜓 |𝐻 |𝜓 ⟩ = ⟨𝜓 |
𝑚∑︁
𝑗=1

𝐻 𝑗 |𝜓 ⟩ ≤ 𝑎.

Hence, continuing on Eq. (4.10), we have

Pr(𝑉 accepts) ≥ 1
𝑛color + 1

𝑛color∑︁
ℎ=0

⟨𝜓 |
(
𝐼 −

𝑚ℎ∑︁
𝑗=1

𝐻
(ℎ)
𝑗

)
|𝜓 ⟩

= 1 − ⟨𝜓 |𝐻 |𝜓 ⟩
𝑛color + 1

≥ 1 − 𝑎

𝑛color + 1
,
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where the inequality follows from Lemma 4.20.

In the no case, we have for all state |𝜓 ⟩ of certain weight

⟨𝜓 |𝐻 |𝜓 ⟩ = ⟨𝜓 |
𝑚∑︁
𝑗=1

𝐻 𝑗 |𝜓 ⟩ ≥ 𝑏.

From Eq. (4.10) we see that

Pr(𝑉 accepts) ≤ 1
𝑛color + 1

𝑛color∑︁
ℎ=0

⟨𝜓 |
(
𝐼 − 1

𝑚ℎ

𝑚ℎ∑︁
𝑗=1

𝐻
(ℎ)
𝑗

)
|𝜓 ⟩

≤ 1
𝑛color + 1

𝑛color∑︁
ℎ=0

⟨𝜓 |
(
𝐼 − 1

𝑚max

𝑚ℎ∑︁
𝑗=1

𝐻
(ℎ)
𝑗

)
|𝜓 ⟩

= 1 − ⟨𝜓 |𝐻 |𝜓 ⟩
𝑚max(𝑛color + 1) ≤ 1 − 𝑏

𝑛2(𝑛color + 1) ,

where the first inequality follows from Lemma 4.20. We have then completeness 𝑐 and

soundness 𝑠 defined as

𝑐 = 1 − 𝑎

𝑛color + 1
, 𝑠 = 1 − 𝑏

𝑛2(𝑛color + 1) .

𝑐 − 𝑠 = (𝑏/𝑛2 − 𝑎)/(𝑛color + 1) ≥ 1/poly(𝑛) follows from the strong gap condition on

𝑎, 𝑏 for the Hamiltonian problem. ■

From this proof we can also conclude that WEIGHT-𝑘 ℓ -LOCAL HAMILTONIAN

and WEIGHT-𝑘 WEIGHT-PRESERVING QUANTUM CIRCUIT SATISFIABILITY can be

reduced to each other.

Corollary 4.22. Given 𝑎, 𝑏 with 𝑏 − 𝑎 > 1/poly(𝑛),WEIGHT-𝑘 ℓ -LOCAL

HAMILTONIAN(𝑎, 𝑏) reduces to WEIGHT-𝑘 WEIGHT-PRESERVING QUANTUM CIR-

CUIT SATISFIABILITY(𝑐, 𝑠) under FPT reduction for some 𝑐, 𝑠 such that 𝑐 − 𝑠 >

1/poly(𝑛). The same is true when reducing WEIGHT-𝑘 WEIGHT-PRESERVING QUAN-

TUM CIRCUIT SATISFIABILITY(𝑐, 𝑠) to WEIGHT-𝑘 ℓ -LOCAL HAMILTONIAN(𝑎, 𝑏).

Proof. That WEIGHT-𝑘 ℓ -LOCAL HAMILTONIAN(𝑎, 𝑏) reduces to WEIGHT-𝑘 WEIGHT-

PRESERVING QUANTUM CIRCUIT SATISFIABILITY(𝑐, 𝑠) has been already shown. It

has been shown also that WEIGHT-𝑘 WEIGHT-PRESERVING QUANTUM CIRCUIT
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SATISFIABILITY(𝑐, 𝑠) reduces to almost spatially sparse weighted Local Hamiltonians.

■

Finally combining the above sections together, we could provide a proof for Theo-

rem 4.4.

Proof. By Lemma 4.13, given a WEIGHT-𝑘 LOCAL HAMILTONIAN (𝑎, 𝑏) instance

𝐻 =
∑𝑚
𝑗=1𝐻 𝑗 on 𝑛 qubits with 𝑏 − 𝑎 > 1/poly(𝑛), we can obtain a WEIGHT-𝑘

WEIGHT-PRESERVING QUANTUM CIRCUIT SATISFIABILITY instance 𝑊 with size

𝑂 (𝑘𝑚 poly(𝑛)) = 𝑂 (𝑘 poly(𝑛)), acting on𝑂 (𝑛 +𝑀 +𝑘) = poly(𝑛) +𝑘 qubits, complete-

ness 1 − 𝑚+𝑎
𝑀

and soundness 1 − 𝑚+𝑏
𝑀

.

Now we can apply Corollary 4.15 to amplify the gap to (2−𝑛, 1 − 2−𝑛), and the new

circuit has size |C| = 𝑂
(
𝑚
𝑏−𝑎 |𝑊 | log(2𝑛)

)
= 𝑂 (𝑘 poly(𝑛)) acting on 𝑛′ = poly(𝑛) + 𝑘

qubits. Using the parameters in Corollary 4.19, we can construct a weight-2𝑘′ + 1 almost

spatially sparse local Hamiltonian instance𝐻sp with following parameters: 𝑘′ = 𝑘 +𝑂 (1),

𝑇 ≤ 3𝑛′( |C| + 1) = 𝑂 (𝑘2 poly(𝑛)), 𝑎 = 1
(𝑇+1)2𝑛 , 𝑏 =

𝑐 (1−2−𝑛/2−2−𝑛)
𝑇 3 . The Hamiltonian 𝐻sp

acts on 𝑛 𝑓 = 𝑂 (𝑘2 poly(𝑛)) qubits.

Finally we apply Lemma 4.21 to obtain our final QW[1] circuit. We can check that

the energy thresholds 𝑎, 𝑏 we obtained in the step beyond satisfies 𝑏/𝑛2
𝑓
−𝑎 ≥ 1/poly(𝑛).

Thus our QW[1] circuit constructed in Lemma 4.21 has probability gap 𝑐−𝑠 ≥ 1/poly(𝑛)

since 𝑘 ≤ 𝑛. ■

4.4 QW-hierarchy and ETH

As mentioned in the introduction, one of the most important uses of parameterized

complexity theory is in the fine-grained complexity analysis. In particular, there are

important connections between W[1] and the exponential time hypothesis (ETH), some

of which are presented in the book Fundamentals of Parameterized Complexity by

Downey and Fellows (2013) [DF13]. We use the version of ETH that can be found in
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Section 29.4 of [DF13]. In what follows we say that a circuit𝐶 has total description size

𝐷 if the number of inputs and total number of gates are bounded by 𝐷 .

Definition 4.23 (Exponential Time Hypothesis (ETH)). We define the Exponential

Time Hypothesis as follows. There is no algorithm with running time 2𝑜 (𝑛) that decides

for a weft 1 Boolean circuit𝐶 of total description size 𝑛, whether there is an input vector

𝑥 such that 𝐶 (𝑥) = 1.

Note that this is a weaker definition than the typical one for ETH. The reason for the

slight weakening of the hypothesis is done in order to make connections between fine-

grained complexity and parameterized complexity (see Chapter 16, in [FG06]). In this

section we shall consider a quantum version of ETH together with a quantum-classical

version.

Definition 4.24 (Quantum Exponential Time Hypothesis (QETH)). We define the

QETH as follows. For some 𝑐, 𝑠 with 𝑐 − 𝑠 > 1/poly(𝑛), there is no quantum algorithm

running in time 2𝑜 (𝑛) that decides for a weft-1 quantum circuit 𝑄 of total description size

𝑛 whether (i) there is an input witness state |𝜓 ⟩ such that Pr (𝑄 ( |𝜓 ⟩) accepts) ≥ 𝑐 or (ii)

for all input witness states |𝜓 ⟩, Pr (𝑄 ( |𝜓 ⟩) accepts) ≤ 𝑠, given the promise that one of

the two holds.

Definition 4.25 (Quantum-Classical Exponential Time Hypothesis (QCETH)). We

define the QCETH as follows. There is no quantum algorithm running in time 2𝑜 (𝑛) that

decides for a weft-1 Boolean circuit 𝐶 of total description size 𝑛, whether there is an

input vector 𝑥 such that 𝐶 (𝑥) = 1.

We have defined QETH as a hypothesis about some pair 𝑐, 𝑠 with inverse polynomial

gap rather than all such pairs 𝑐, 𝑠. The reason for this choice is that we want to show

that if certain problems are tractable given any polynomial gap, then QETH is false.

This will be evident later in this section. Nonetheless, we remark that by changing the

definition of QETH, Proposition 4.26 would not be affected and Theorem 4.37 would
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require some minimal modification. A natural question is the relationship between these

two hypothesis just defined. We prove first QETH is a weaker statement than QCETH.

Proposition 4.26. QCETH implies QETH.

Proof. Assume that QETH is false, then there is a quantum algorithm A deciding the

problem in Definition 4.24. We shall construct a quantum circuit Q and show that the

satisfiability problem on C reduces to the satisfiability problem on Q. Let C be a weft-1

classical circuit of total description size 𝑛, we can assume that 𝐶 has 𝑛 gates of bounded

fan-in 𝑓 with gate basis {AND, OR, NOT}. First, we modify C into a reversible circuit

by adding an ancilla bit initialized at 0 for each AND and OR gate, including the weft-1

gates. Note that this increases the number of input bits by 𝑛 since there are at most 𝑛

gates. For the fan-out gates in the classical circuit, these can be replaced by reversible

CNOTs. Note that there are at most 𝑓 · 𝑛 possible inputs to the bounded fan-in gates,

which implies we require at most 𝑂 (𝑛) CNOT gates. After this procedure, we end up

with a reversible circuit which can be transformed easily into a quantum circuit Q with

𝑂 (𝑛) inputs and 𝑂 (𝑛) gates and generalized Toffoli for weft-1 gates. We also include

in Q a procedure to check that the ancilla qubits are all set to |0⟩, which requires 𝑂 (𝑛)

measurements and gates.

Now we show the decision problem in Definition 4.25 with circuit C reduces to

the promise problem with circuit 𝑄 in Definition 4.24 with completeness 𝑏 = 1 and

soundness 𝑎 = 0. If there is 𝑥 ∈ {0, 1}𝑛 such that C(𝑥) = 1, then consider the state

|𝑥0𝑐𝑛⟩ where 𝑐 > 0 and (𝑐 + 1)𝑛 is the number of inputs to Q. We have then Q |𝑥0𝑐𝑛⟩ =∑
𝑦∈{0,1} (𝑐+1)𝑛−1 𝛽𝑦 |1𝑦⟩, where 𝛽𝑦 ∈ C and

∑
𝑦

��𝛽𝑦 ��2 = 1. Letting Π(0)
1 = |1⟩⟨1| be the

projector onto the state |1⟩ for the first qubit, we have that

Pr (Q accepts |𝑥0𝑐𝑛⟩) =



Π(0)

1 Q |𝑥0𝑐𝑛⟩



2

=







 ∑︁
𝑦∈{0,1} (𝑐+1)𝑛−1

𝛽𝑦 |1𝑦⟩








2

= 1 (4.11)
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Suppose now that for all 𝑥 ∈ {0, 1}𝑛, C(𝑥) = 0. We have that Q |𝑥0𝑐𝑛⟩ =∑
𝑦∈{0,1} (𝑐+1)𝑛−1 𝛽𝑦,𝑥 |0𝑦⟩ and thus Π(0)

1 Q |𝑥0𝑐𝑛⟩ = 0. Any state passing the initial veri-

fication of the ancillae qubits has the form |𝜓 ⟩ = ∑
𝑥∈{0,1}𝑛 𝛾𝑥 |𝑥0𝑐𝑛⟩, with

∑
𝑥 |𝛾𝑥 |2 = 1.

Then we have that

Pr (Q accepts |𝜓 ⟩) =



Π(0)

1 Q |𝜓 ⟩



2

=






Π(0)
1

∑︁
𝑥,𝑦

𝛽𝑦,𝑥𝛾𝑥 |0𝑦⟩





2

= 0. (4.12)

This shows the reduction and thus algorithm A can solve in time 2𝑜 (𝑛) the decision

problem for circuit C and QCETH is false. ■

4.4.1 Miniaturized problems and ETH

In this subsection we shall introduce miniaturized problems which are a key ingredient

in connecting results from parameterized complexity and ETH. First, we define the

miniature version of the classical circuit satisfiability problem and then we will show

how it connects to ETH and QCETH.

Definition 4.27 (MINI-CIRCSAT𝒕 ).

Instance: Positive integers 𝑘 and 𝑛 in unary, and a weft 𝑡 Boolean circuit 𝐶 of total

description size at most 𝑘 log𝑛.

Parameter: 𝑘 in the problem instance.

Problem: Decide whether there is an input binary vector 𝑥 such that 𝐶 (𝑥) = 1.

For simplicity, we will refer to MINI-CIRCSAT1 as MINI-CIRCSAT. The following

theorem illustrates the connection between the tractability of miniature problems and

ETH.
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Theorem 4.28 (Theorem 29.4.1 in [DF13]). MINI-CIRCSAT is in FPT if and only if

ETH is false.

The MINI-CIRCSAT can be then reduced to WEIGHT-𝑘 INDEPENDENT SET which

implies the following theorem.

Theorem 4.29 (Section 29.4 of [DF13]). If W[1] = FPT then ETH is false.

Theorem 4.29 establishes a sufficient condition for ETH to be false. In classical

parameterized complexity the complexity class M[1] is defined as the closure under FPT

reductions of Mini-CircSAT, the claim that this class is tractable for FPT algorithms is

equivalent to ETH being false.

Definition 4.30. Define M[𝑡] as the set of problems FPT reducible to MINI-CIRCSAT𝑡

Theorem 4.31 (Restatement of Theorem 4.28). M[1] = FPT if and only if ETH is

false.

As an aside, it is straightforward to see that the weighted local Hamiltonian problem

is W[1]-hard, which makes unlikely any FPT algorithms for this problem as implied by

the above theorem. To prove this we can simply reduce the weighted independent set

problem to the weighted local Hamiltonian problem.

Proposition 4.32. The WEIGHT-𝑘 INDEPENDENT SET problem reduces to the WEIGHT-

𝑘 LOCAL HAMILTONIAN PROBLEM(𝑎, 𝑏) under FPT reductions, for any 𝑎, 𝑏 with

𝑏 > 𝑎 ≥ 0.

Proof. Let 𝐺 = (𝑉 , 𝐸) be a graph with vertex set 𝑉 = {1, 2, · · · , 𝑛}. For each 𝑖 ∈ 𝑉

define a binary variable 𝑥𝑖 and the formula 𝜑 (𝑥1, · · · , 𝑥𝑛) =
∧

(𝑖, 𝑗)∈𝐸 (¬𝑥𝑖 ∨ ¬𝑥 𝑗 ). 𝐺 has

an independent set of size 𝑘 if and only if 𝜑 is satisfiable by a bitstring 𝑥 = 𝑥1, · · · 𝑥𝑛 of

Hamming weight 𝑘. We can map 𝜑 to a Hamiltonian 𝐻 =
∑
𝑖 𝐻𝑖 acting over 𝑛 qubits,

for this, consider the one qubit projector over qubit 𝑖, Π(𝑖)
1 = |1⟩⟨1|. We map each term

(¬𝑥𝑖 ∨ ¬𝑥 𝑗 ) to 𝐻𝑖 = Π(𝑖)
1 Π( 𝑗)

1 . This Hamiltonian 𝐻 is an instance of the WEIGHT-𝑘
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LOCAL HAMILTONIAN and has a ground state of energy 0 with weight-𝑘 if and only

if graph 𝐺 has an independent set of size 𝑘. Note this reduction works as long as the

condition over the 𝑎, 𝑏 in the proposition is as given. ■

It’s known that WEIGHT-𝑘 INDEPENDENT SET is W[1]-complete [DF13], thus

this implies that the weighted local Hamiltonian problem is W[1]-hard. An immediate

consequence is that its unlikely that there are FPT algorithms for the weighted Local

Hamiltonian as this would imply that ETH is false by Theorem 4.29. As we show in

Theorem 4.40, if this problem can be solved by FPQT algorithms then this implies that

QCETH is false.

We can trivially generalize Theorem 4.28 to the quantum case, in particular we will

frame the results in terms of the weighted local Hamiltonian problem. We can give a

trivial generalization of Theorem 4.28 as follows

Theorem 4.33. M[1] ⊆ FPQT iff QCETH is false.

Proof. The proof follows from a direct generalization from the proof of Theorem 4.28

in [DF13]. If QCETH is false, then we can solve MINI-CIRCSAT with a quantum

algorithm in time 2𝑜 (𝑘 log𝑛) which is an FPT function, implying that M[1] ⊆ FPQT.

Let 𝐶 be a Boolean circuit of weft 1 and size 𝑁 and assume there is an FPQT

algorithm that solves MINI-CIRCSAT in time 𝑓 (𝑘)𝑛𝑐 where we assume 𝑓 to be a

growing function in 𝑘 . We now show that there is an algorithm deciding if𝐶 is satisfiable

in time 2𝑜 (𝑛) . Take 𝑘 = 𝑓 −1(𝑁 ) and 𝑛 = 2(𝑁 /𝑘) , thus, 𝑁 = 𝑘 log𝑛. In general, 𝑓 −1(𝑁 )

will be a growing function of 𝑁 and thus 𝑁 /𝑘 = 𝑜 (𝑁 ). We can now consider the circuit

𝐶 as an instance of MINI-CIRCSAT with 𝑘 and 𝑛 chosen as before, giving a runtime for

the algorithm of 𝑓 (𝑓 −1(𝑁 )) (2𝑁 /𝑘)𝑐 = 2
𝑐𝑁
𝑘
+log𝑁 = 2𝑜 (𝑁 ) , thus QCETH is false. ■

As shown in Proposition 4.32, the weighted independent set problem can be reduced

to the weighted local Hamiltonian problem. Moreover, as remarked before, MINI-

CIRCSAT reduces to the weighted independent set.

This shows the following
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Theorem 4.34. If WEIGHT-𝑘 ℓ -LOCAL HAMILTONIAN is in FPQT then QCETH is

false.

Proof. The WEIGHT-𝑘 INDEPENDENT SET reduces to the WEIGHT-𝑘 ℓ -LOCAL HAMIL-

TONIAN, by hypothesis we can solve instances of the Local Hamiltonian problem in

FPQT and thus WEIGHT-𝑘 INDEPENDENT SET as well. By Theorem 4.33 the result

follows. ■

4.4.2 Miniaturized problems and QETH

Now we turn to a result pertaining to QETH as defined in Definition 4.24. Let us begin

by defining a miniature version of the quantum circuit satisfiability problem.

We define the miniature version of the quantum circuit satisfiability

MINI-QCSAT𝑡 (𝑎, 𝑏) and the class QM[𝑡] as follows

Definition 4.35 (MINI-QCSAT𝒕 (𝒄, 𝒔)).

Instance: Integers 𝑘 and 𝑛 in unary, and weft-𝑡 quantum circuit C of description size

𝑘 log𝑛.

Parameter: A natural number 𝑘 .

Yes: There exists an input quantum state |𝜓 ⟩, such that Pr[C(|𝜓 ⟩) accepts] ≥ 𝑐.

No: For every input quantum state |𝜓 ⟩, Pr[C(|𝜓 ⟩) accepts] ≤ 𝑠.

Definition 4.36. Define QM𝑐,𝑠 [𝑡] as the set of problems FPQT-reducible to

MINI-QCSAT𝑡 (𝑐, 𝑠) and define QM[𝑡] as

QM[𝑡] :=
⋃
𝑐,𝑠

𝑐−𝑠>1/𝑝𝑜𝑙𝑦 (𝑛)

QM𝑐,𝑠 [𝑡] .

We denote as Mini-QCSAT(𝑐, 𝑠) the problem MINI-QCSAT1(𝑐, 𝑠). Just as in the

classical case, we give a theorem connecting the complexity of MINI-QCSAT and

QETH from Definition 4.24.
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Theorem 4.37. QM[1] ⊆ FPQT iff QETH is false.

Proof. The argument from Theorem 4.33 can be repeated. First assume QETH is false,

then for all 𝑐, 𝑠 with polynomial gap there is an algorithm that solves the quantum circuit

satisfiability problem with completeness 𝑐 and soundness 𝑠 with 𝑐 − 𝑠 > 1/poly(𝑛).

Then, given an instance 𝐶 of Mini-QCSAT(𝑐, 𝑠) we can use this algorithm to solve it in

time 2𝑜 (𝑘 log𝑛) which is an FPT function.

Now assume that for all 𝑐, 𝑠 with polynomial gap, Mini-QCSAT(𝑐, 𝑠) is solvable in

time 𝑓 (𝑘)𝑛𝑐0 time for some constant 𝑐0 > 0. Let 𝐶 be a weft-1 circuit of size 𝑁 . Set

𝑘 = 𝑓 −1(𝑁 ) and 𝑛 = 2(𝑁 /𝑘) , which implies 𝑁 = 𝑘 log𝑛. In general it will be true that

𝑁 /𝑘 = 𝑜 (𝑁 ). Using the FPQT algorithm on 𝐶, we have a running time 2𝑜 (𝑁 ) which

solves the decision problem with completeness 𝑐 and soundness 𝑠. Since this is true for

all 𝑐, 𝑠 such that 𝑐 − 𝑠 > 1/poly(𝑛) then QETH is false. ■

Now we show that the Mini-QCSAT reduces to the weight-preserving quantum

circuit satisfiability problem from Definition 4.1.

Lemma 4.38. WEIGHT-𝑘 WEIGHT-PRESERVING QUANTUM CIRCUIT

SATISFIABILITY(𝑐, 𝑠) is QM𝑐,𝑠 [1]-hard.

Proof. Let C describe a Mini-QCSAT(𝑐, 𝑠) circuit with at most 𝑘 log𝑛 inputs and 𝑘 log𝑛

gates. We can decompose these gates into one qubit gates and CNOTs, increasing the

number of gates to poly(𝑘 log𝑛). Note that a 𝑘 log𝑛 qubit state |𝜒⟩ can be mapped to

a weight-𝑘 𝑛-qubit state |𝜓 ⟩ by considering the natural encoding of an 𝑛 qubit state of

weight-𝑘 with 𝑘 log𝑛 qubits. If C has less than 𝑘 log𝑛 input qubits then we can always

add ancillas in the |0⟩ state, and measure at the end of the circuit to check that they are

all in the |0⟩ state, we can thus assume that C has 𝑘 log𝑛 input qubits.

We take the 𝑘 log𝑛 input qubits and divide them into 𝑘 groups of log𝑛 qubits and

consider the encoding of the log𝑛 qubit state into an 𝑛 qubit state of weight-1. For

bitstring 𝑥 ∈ {0, 1}log𝑛 we denote as 𝐸 (𝑥) the encoding into a bitstring of length 𝑛

and Hamming weight 1 which preserves lexicographic order. For example, if 𝑛 = 4
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we consider the encoding |𝐸 (00)⟩ = |0001⟩, |𝐸 (01)⟩ = |0010⟩, |𝐸 (10)⟩ = |0100⟩ and

|𝐸 (11)⟩ = |1000⟩. This mapping will result in a circuit with 𝑘𝑛 input qubits. We now

explain how to map the gates in circuit C to the encoded version C′ in such a way that

the weight is preserved in circuit C′. A one-qubit gate 𝑉 in C is mapped to 2log𝑛−1 𝑉

weight-preserving gates acting over two qubits as in Definition 4.7. The qubits over

which these gates act can be computed efficiently. Suppose gate 𝑉 acts over qubit

𝑖 ∈ {1, 2, . . . , log𝑛}, where the index 𝑖 runs over the qubits inside some group of log𝑛

qubits. Denote as 𝑉̃ the encoded version in the new circuit of gate 𝑉 . The action of 𝑉̃

over basis states is defined as follows. Let 𝑥 (1) ,𝑥 (2) ∈ {0, 1}log𝑛 be computational basis

states which differ only on the 𝑖th bit, for example, suppose 𝑥 (1) = 0 and 𝑥 (2)
𝑖

= 1. Let 𝑝

and 𝑞 be the qubit indices in the new circuit where 𝐸 (𝑥 (1)) and 𝐸 (𝑥 (2)) have a 1. Then,

𝑉̃ will act as gate 𝑉 on qubits 𝑝 and 𝑞. For each such pair 𝑥 (1) and 𝑥 (2) , 𝑉̃ acts on the

prescribed pair of qubits as 𝑉 . Thus, in total 𝑉̃ requires 2log𝑛−1 𝑉 gates. An example is

illustrated in Fig. 4.6 where 𝑛 = 8 and 𝑘 = 1, each group has 3 qubits and is encoded as

a group of 8 qubits.

𝑉

𝑉

𝑉

𝑉

𝑉

𝑉

𝑉

𝑉

𝑉 −→

Figure 4.6: Example of mapping a one-qubit gate to gates acting on 8 qubits for 𝑛 = 8
and 𝑘 = 1. The discontinued lines are qubits that are not acted upon by the gates.

It is simple to check that this new circuit preserves the amplitudes of the orig-

inal miniature circuit. Let 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑖, . . . , 𝑥log𝑛) ∈ {0, 1}log𝑛 and 𝑉 (𝑎) =∑1
𝑟,𝑠=0 𝑣𝑟,𝑠 |𝑟 ⟩⟨𝑠 | the single-qubit unitary acting on qubit 𝑖. Then, the action of 𝑉 (𝑖)
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over a computational basis state is

𝑉 (𝑖) ��𝑥1 · · · 𝑥𝑖 · · · 𝑥log𝑛〉 = 𝑣0,𝑥𝑖 ��𝑥1 · · · 0𝑖 · · · 𝑥log𝑛〉 + 𝑣1,𝑥𝑖 ��𝑥1 · · · 1𝑖 · · · 𝑥log𝑛〉 .
where 0𝑖 and 1𝑖 denote a 0 or a 1 at the 𝑖th position respectively. The encoded version of

𝑉 will act in a similar way by construction

𝑉̃ (𝑖) ��𝐸 (𝑥1 · · · 𝑥𝑖 · · · 𝑥log𝑛)〉 = 𝑣0,𝑥𝑖 ��𝐸 (𝑥1 · · · 0 · · · 𝑥log𝑛)〉 + 𝑣1,𝑥𝑖 ��𝐸 (𝑥1 · · · 1 · · · 𝑥log𝑛)〉 .
For CNOT gates we need to consider two different cases, (i) the CNOT is acting

between two qubits in the same group and (ii) the CNOT is acting between two qubits in

different groups.

For case (i), suppose CNOT acts on control qubit 𝑖 and target qubit 𝑗 where 𝑖 and 𝑗

are in the same group of log𝑛 qubits. Let 𝑥 (1), 𝑥 (2) ∈ {0, 1}log𝑛, if they differ in the 𝑗 th

qubit and the 𝑖th qubit is 1, then in the new circuit apply a SWAP between the qubits

where 𝐸 (𝑥1) and 𝐸 (𝑥2) have 1s. We add as many SWAPS as pairs 𝑥 (1), 𝑥 (2) fulfilling this

condition exist.

For case (ii), we consider control qubit 𝑖 and target qubit 𝑗 such that both qubits

belong to different groups. To implement this gate in the weight-preserving circuit we

will require two ancillae in the state |01⟩. For every 𝑥 ∈ {0, 1}log𝑛 such that qubit 𝑖 is

1, then we apply a Fredkin gate with control qubit given by the position of 1 in 𝐸 (𝑥)

and with the ancilla qubits as targets. Such an example is given in Fig. 4.7. Before the

SWAP network, the Fredkin gates are applied such that if any of the qubits are in state

|1⟩ then a SWAP network is applied. After this, the action of the Fredkin gates is undone.

The SWAP network consists of SWAP operators acting over qubits as determined by

the one-bit case mentioned earlier in our proof, these SWAP gates are controlled by the

ancilla qubit.

Note that in the original circuit C the output is given by a single qubit. In the new

weight-preserving circuit we can add two more extra ancillas in the state |01⟩ which we

assign as the output qubits. Then, after acting with the weight-preserving simulation of

C, we can act with several controlled SWAP operators with the output qubits as target
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and the control qubits corresponding to those that encode states of log𝑛 qubits with the

output set to 1.

With the mapping in place, we have constructed a weight-preserving circuit and the

last step is to implement measurements to check that each group of 𝑛 qubits has only one

qubit set to |1⟩. In what follows, let 𝑄𝑖 = {𝑞 (𝑖)1 , . . . , 𝑞
(𝑖)
𝑛 } be the set of qubits belonging to

the 𝑖th group of qubits, where 𝑖 = {1, . . . , 𝑘}. To check that each 𝑄𝑖 is a weight-1 state,

we can include 𝑘 (𝑛 + 1) ancillas, which we also group into 𝑘 sets of 𝑛 qubits and denote

as𝐴 𝑗 = {𝑎( 𝑗)1 , . . . , 𝑎
( 𝑗)
𝑛+1} the 𝑗 th group of 𝑛 qubits. First, initialize each𝐴 𝑗 in the weight-1

state |1000 · · · 0⟩. Next, we will use the qubits in 𝐴𝑖 to count the weight of the state in

the 𝑄𝑖 register. We construct the following weight-preserving circuit acting between

sets 𝐴𝑖 and 𝑄𝑖 for each 𝑖 ∈ {1, . . . , 𝑘}. Act with a controlled SWAP on qubits 𝑎(𝑖)1 , 𝑎
(𝑖)
2 as

targets and qubit 𝑞 (𝑖)1 as control which we define as CSWAP𝑞1,𝑎1,𝑎2 (for simplicity, we

surpress the index 𝑖 from now on). Then, act with the gate CSWAP𝑞2,𝑎1,𝑎2 ·CSWAP𝑞2,𝑎2,𝑎3 .

We act in the same way with succesive qubits in the set 𝑄𝑖 ; for each qubit 𝑞 𝑗 we act with

CSWAP𝑞𝑖 ,𝑎1,𝑎2 ·CSWAP𝑞𝑖 ,𝑎2,𝑎3 · · ·CSWAP𝑞 𝑗 ,𝑎 𝑗 ,𝑎 𝑗+1 . Once applied this circuit, we need to

only measure the qubit 𝑎2 which tells us whether the weight of the state in𝑄𝑖 is 1. Finally,

to measure whether all 𝑎(𝑖)2 are in the state 1, we add two ancillas in state |01⟩ and act with

CSWAP controlled by each 𝑎(𝑖)2 and target the two new ancillas, such that we get the state

|10⟩ if all 𝑎(𝑖)2 are in 1 are |01⟩ otherwise. This construction requires the ancilla states to

have in total weight-(𝑘 + 1) which together with the input state and two more ancillas

for the CNOT gates and other two for the output qubits gives a total of weight-2(𝑘 + 2)

with 𝑘𝑛 + 𝑘 (𝑛 + 1) + 6 qubits. We have then a new weight-preserving circuit C′ which is

satisfiable by a weight-2(𝑘 + 1) state if and only if the original circuit C is satisfiable.

Moreover, C′ simulates C faithfully (at each step the amplitudes are preserved). Let us

now show that the reduction works as intended. For completeness, since the simulation

is faithfull, then our new weight-preserving circuit preserves the completeness. For

soundness, suppose for all states |𝜓 ⟩ we have that Pr (C accepts |𝜓 ⟩) ≤ 𝑠. Let |𝜙⟩ be

a 𝑘𝑛 + 𝑘 (𝑛 + 1) + 4 qubit state, where the witness has been supplied by the prover and

the ancillas have been set as described above. Note that the only way for the prover
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to cheat is by breaking the encoding we have delineated above, thus we introduce the

decomposition |𝜙⟩ = 𝛼 |𝜉1⟩ +𝛽 |𝜉2⟩, where |𝜉1⟩ is a state respecting the encoding and |𝜉2⟩

is a state that doesn’t respect the encoding above. Thus, defining Π10 as the projector on

the output qubits onto the state |10⟩, we have that

Pr (C′ accepts |𝜙⟩) = ∥Π10C′ |𝜙⟩∥2

= |𝛼 |2∥Π10C′ |𝜉1⟩∥2 (4.13)

Since |𝛼 |2 < 1 when the prover is cheating, then the accepting probability only

diminishes when this is the case. Thus Pr (C′ accepts |𝜙⟩) ≤ 𝑠. This implies

the QM𝑐,𝑠 [1]-hardness of WEIGHT-𝑘 WEIGHT-PRESERVING QUANTUM CIRCUIT

SATISFIABILITY(𝑐, 𝑠) ■

SWAP
Network

|0⟩
|1⟩−→

Figure 4.7: Example of mapping a CNOT gate acting between two different groups
for 𝑛 = 8 and 𝑘 = 2. The Fredkin gates implement the control and the SWAP network
implements the bit flip part.

We have thus shown the following corollary.

Corollary 4.39. MINI-QCSAT(𝑐, 𝑠) is in FPQT if WEIGHT-𝑘 WEIGHT-PRESERVING

QUANTUM CIRCUIT SATISFIABILITY(𝑐, 𝑠) is in FPQT.
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Now we can use the reduction from the proof of Theorem 4.4 (Corollary 4.22) to

reduce the weigh-preserving circuit to an instance of the almost spatially sparse weight-𝑘

local Hamiltonian and thus also can be reduced to the weight-𝑘 ℓ-local Hamiltonian.

Theorem 4.40. If for all 𝑎, 𝑏 such that 𝑏 − 𝑎 > 1/poly(𝑛), WEIGHT-𝑘 ℓ -LOCAL

HAMILTONIAN(𝑎, 𝑏) is in FPQT then QETH is false.

4.5 Conclusion

Throughout this chapter we have shown that the tractability of the parameterized local

Hamiltonian problem is connected to the existence of quantum subexponential algo-

rithms for circuit satisfiability problems. The big open question is whether this class is

QW[1]-complete. Nonetheless, note that a reason to believe that QW[1] is an itnractable

class is precisely this connection to the QETH and QCETH. Another important open

question is related to success amplification in the class QW[1], the fact that we have not

found a method to perform this amplification in constant depth is an interesting problem

which could help proving intractability for other parameterized problems. Finally, it is

important to note that in another work [CCZZ21] a different version of what we call the

QCETH (the authors define it in their paper as QETH) has been given. The version in

[CCZZ21] considers the 3-SAT, which is also considered in the ETH. In the classical

case it is possible to prove the so-called Sparsification Lemma [IPZ01] which allows to

show results in fine-grained complexity when reducing from 3-SAT to other problems.

It would be interesting to prove a similar lemma in the quantum case (either Quantum

Circuit Satisfiability or for the Local Hamiltonian problem) as this would allow for

similar reductions in fine-grained complexity.
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Part II

Fermion Sampling
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Chapter 5

Fermion Sampling

This chapter is based on the published paper [ODMZ22] written in collaboration with

Michal Oszmaniec, Ninnat Dangniam and Zoltan Zimboras. We introduce a new

sampling scheme for quantum advantage based on Fermionic linear optics supplied with

magic states which allow to prove hardness guarantees comparable to other schemes.

My contribution to this work consisted of the contribution of ideas and writing

several parts in [ODMZ22]. In this chapter I have rewritten or expanded parts in

[ODMZ22] which have been included here, moreover, several parts where I did not

contribute have not been included but I cite the corresponding results when used. In the

paper, I helped writing sections of Appendix E.3 which correspond to Appendix A.2

in this thesis, I also was involved in proofs of earlier versions of this part, but the final

version includes many parts written by my coauthors and thus has been included as an

appendix. The part corresponding to Sections 5.6 and 5.7 was written by my coauthors

with some contributions by myself, but the version presented in this thesis is rewritten

and expanded by me, in fact I obtain different error bounds than in our paper as I have

followed a different path in certain calculations. Although these error bounds are not

improved, these changes help make the calculations clearer. In the paper I contributed to

an earlier version of the proof of Theorem 5.9 and in this thesis I have detailed some of

the calculations that are present in the paper. The figures in Appendix A were done by
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my coauthors but all the figures in this chapter (excluding the appendix) were done by

me. The theorem, lemma and corollary statements that appear in this thesis are directly

taken from [ODMZ22] unless otherwise specified, but as mentioned previously the

explanations and discussions have been expanded by myself when appropriate. Finally,

I contributed with some numerics which have not been included in this thesis but have

been presented in [ODMZ22].

5.1 Introduction

As discussed in the introductory chapter of this thesis, one line of research to obtain

quantum advantage over classical computers focuses on studying sampling problems.

The main idea is to generate a random quantum circuit and sample from it such that

the output probability distribution is hard to sample from for classical machines. Such

separation results are stated under certain assumptions, including the non-collapse of

the polynomial hierarchy. In this chapter we will show that such sampling schemes

can be implemented with Fermionic particles and either random number-preserving or

parity-preserving evolutions which we denote as Fermion Sampling.

In [AA11] Aaronson and Arkhipov introduce the so-called Boson sampling

problem which is based on linear optics circuits with non-adaptive measurements

and with 𝑛 photons in 𝑚 different optical modes. Other proposals based on sam-

pling include IQP sampling [BJS11, BMS16], Random Circuit Sampling (RCS)

[BIS+18, BFNV19, Mov19], quantum Fourier sampling [FU16] and many other schemes

[Mor17, BVHS+18, BFK18, PBG20, YJS19]. Inspired by these previous works, quan-

tum sampling schemes have been implemented experimentally. A version of RCS has

been demonstrated in a quantum processor of 53 superconducting qubits with circuits of

depth 20 [AAB+19]. The fact that these experiments can be implemented with near-term

devices is an attractive feature and motivates the search for rigorous guarantees of

hardness for classical computers.
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To give complexity-theoretic support to such guarantees, all sampling schemes

proceed in a similar way. Assuming the existence of an efficient classical algorithm 𝑆

sampling from a distribution which approximates the output probabilities of a random

quantum circuit in total variation distance, it is shown (based on certain assumptions

which we detail later) that the Polynomial Hierarchy collapses to the third level. To

prove this implication, it is shown using Stockmeyer’s algorithm [Sto85] that given

𝑆 , then it is possible to compute approximately the output probabilities of the random

quantum circuit 𝐶 for a large fraction of instances. This corresponds to an additive

approximation up to an exponential factor, which can be reduced to an approximation in

multiplicative error by showing the anticoncentration of the output probabilities. We

remark that it is enough to compute a single output probability from a random circuit

(for example the output probability 𝑝0(𝐶) of the output 0𝑛) due to a property called

the hiding property. The final step involves the conjecture that giving average-case

multiplicative approximations is #P-hard. More detail for this argument in the context

of our Fermionic sampling scheme is given in Section 5.5, but similar proofs are given

for other sampling schemes

Recent work [BFNV19, Mov19, BFLL22, KMM22] has focused on showing the

conjecture that average-case approximations to output probabilities of random circuits is

in fact #P-hard. The conjecture requires to show that 𝑝0(𝐶) is #P-hard to approximate

up to an additive error of 2−𝑛. In [BFNV19] it was shown that if computing the output

probability 𝑝0(𝐶) is #P-hard in the worst case then it is #P-hard to compute it on the

average-case up to additive error 2− poly(𝑛) . Proving this involved using polynomial

interpolation techniques which were then improved with the so-called Cayley path

[Mov19]. We will implement the Cayley path from [Mov19] for Fermion Sampling

and show similar hardness guarantees. In [BFLL22] hardness has been shown for

approximations up to 2−𝑂 (𝑚 log𝑚) , where𝑚 is the number of gates in the RCS circuit,

analogous results have been shown for Boson Sampling. Recently in [Kro22] it is

claimed that the error can be up to 2−𝑂 (𝑚) . Although we have not applied this result to

Fermion Sampling, we expect that similar results could be obtained.
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In our work [ODMZ22] we have proposed a sampling scheme based on Fermionic

linear optics (FLO), both in the passive (particle number conserving) and active (parity

number conserving or matchgates) case. Previous work [Iva17, HJKS20] has studied the

computational complexity of sampling from active FLO when supplied with additional

resources. Concretely, the authors show that when certain magic inputs are supplied,

then it becomes #P-hard to compute output probabilities. It remained open whether

Fermionic sampling schemes could achieve similar hardness guarantees as in Boson

sampling or RCS. In the case of RCS it has been shown the average-case hardness of

approximating output probabilities and also anticoncentration. Note that such proof

of anticoncentration is lacking in Boson sampling. In our work we find that Fermion

sampling combines the advantages of these two sampling schemes, we show average-

case hardness for approximating output probabilities, anticoncentration and moreover

propose some efficient certification protocols for the circuits. In the case of average-case

hardness, we show that this hardness is present up to errors of 2−Θ(𝑁 7) , where 𝑁 is

proportional to the number of Fermions. Although this is worse than RCS, we believe

that more recent techniques mentioned in the previous paragraph could give better

bounds.

We begin in Section 5.2 by giving some background on Fermions and also set the

notation for the rest of the chapter. In Section 5.3 we define the Fermion sampling

scheme. Then in Section 5.4 we show that the random circuits involved in this scheme

have the property of anticoncentration. We will apply this property in the proof for

hardness of classically sampling FLO circuits. Section 5.5 will show that an efficient

classical sampler for the random FLO circuit is unlikely to exist using the anticoncen-

tration property and assuming some plausible complexity-theoretical conjectures. In

Section 5.6 and Section 5.7 we focus in one of this conjecture, namely, that it is #P-hard

to approximate output probabilities in the average-case. Having shown this, in the

next two chapters we focus on giving support to the conjecture regarding average-case

hardness for computing output probabilities. Section 5.6 introduces the Cayley path
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method and gives some technical results which then are applied in Section 5.7 to show

the average-case hardness of approximations.

5.2 Some background and notation

Here we introduce some necessary background on Fermionic systems and some notation

which will be necessary for this chapter. In this chapter we will denote a Hilbert

space as H . To denote density matrices on this Hilbert space we denote them as

Ψ = |Ψ⟩⟨Ψ| ,Φ = |Φ⟩⟨Φ| etc. We also define D(H) as the set of all (possibly mixed)

quantum states on H . The group of unitary operators over the Hilbert space H is

denoted as U(H).

The single particle Hilbert space for a Fermion on 𝑑 modes is given by C𝑑 . To

represent quantum states with more than a single particle we will need the notion of

the wedge product ∧. Consider a basis {|𝑒𝑖⟩}𝑑𝑖=1 for the vector space C𝑑 , then define for

𝑖1, 𝑖2 ∈ {1, 2, · · · , 𝑑} ��𝑒𝑖1〉 ∧ ��𝑒𝑖2〉 = ��𝑒𝑖1〉 ⊗ ��𝑒𝑖2〉 − ��𝑒𝑖2〉 ⊗ ��𝑒𝑖1〉 , (5.1)

which is an antisymmetrized version of the tensor product. We define the vector space

C𝑑 ∧ C𝑑 = span{
��𝑒𝑖1〉 ∧ ��𝑒𝑖2〉} and more generally

∧𝑛 (C𝑑) = span{
��𝑒𝑖1〉 ∧ · · · ∧

��𝑒𝑖𝑛 〉}
where ��𝑒𝑖1〉 ∧ · · · ∧

��𝑒𝑖𝑛 〉 = 1
√
𝑛!

∑︁
𝜎 permutation

𝑠𝑔𝑛(𝜎)
��𝑒𝜎 (𝑖1)〉 ⊗ · · · ⊗

��𝑒𝜎 (𝑖𝑛)〉 (5.2)

with 𝑠𝑔𝑛(𝜎) the sign of permutation 𝜎 . From the single particle space we can define the

𝑑-mode Fock space

HFock(C𝑑) =
𝑑⊕
𝑛=0

𝑛∧
(C𝑑) , (5.3)

where
∧𝑛 (C𝑑), is the totally anti-symmetric subspace of (C𝑑)⊗𝑛 describing states con-

sisting of exactly 𝑛 fermions, and
∧0(C𝑑) = spanC( |0𝐹 ⟩), where |0𝐹 ⟩ is the Fock

vacuum.
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Over the Fock space HFock we define the creation and destruction operators 𝑓 †
𝑗

and 𝑓 𝑗 ,

respectively, where 𝑗 = 1, 2, . . . , 𝑑 . These operators are defined by the anti-commutation

relations {𝑓 𝑗 , 𝑓 †𝑘 } ≡ 𝑓 𝑗 𝑓
†
𝑘
+ 𝑓 †

𝑘
𝑓 𝑗 = 𝛿 𝑗,𝑘 and {𝑓 𝑗 , 𝑓𝑘} = {𝑓 †

𝑗
, 𝑓

†
𝑘
} = 0, with 𝛿 𝑗,𝑘 being the

Kronecker delta symbol.

A basis over HFock(C𝑑) is the Fock basis given by

|x⟩ := (𝑓 †1 )
𝑥1 (𝑓 †2 )

𝑥2 · · · (𝑓 †
𝑑
)𝑥𝑑 |0𝐹 ⟩ (5.4)

for any x ∈ {0, 1}𝑑 , and where (𝑓 †1 )0 = 1. We define also [𝑑] = {1, 2, 3, · · · , 𝑑}. Given a

subset X ⊂ [𝑑], we define the state |X⟩ as the Fock basis state |x⟩ such that 𝑥 𝑗 = 1 if

𝑗 ∈ X and 𝑥 𝑗 = 0 otherwise. Moreover define
(X
𝑘

)
to be the collection of subsets of finite

set X of size 𝑘 (we shall assume the convention
(X
𝑘

)
= ∅ if |X| < 𝑘 . For X = {𝑎1, . . . , 𝑎𝑛}

with 𝑎𝑖 < 𝑎 𝑗 if 𝑖 < 𝑗 , define the state

|X⟩ = |𝑎1⟩ ∧ |𝑎2⟩ ∧ . . . ∧ |𝑎𝑛⟩

=
1

√
𝑛!

𝑛∑︁
𝑖1,...𝑖𝑛=1

𝜖𝑖1,𝑖2,...,𝑖𝑛 |𝑎𝑖1⟩ ⊗ |𝑎𝑖2⟩ ⊗ · · · |𝑎𝑖𝑛⟩.
(5.5)

where 𝜖𝑘1,𝑘2,...,𝑘𝑛 is the Levi-Civita symbol. States such as |X⟩ are known as Slater

determinants. These are states of the form |Ψ⟩ = |𝜉1⟩ ∧ |𝜉2⟩ ∧ . . . ∧ |𝜉𝑛⟩, where

{|𝜉𝑖⟩}𝑛𝑖=1 ⊂ C𝑑 is a set of orthonormal vectors of the one-particle Hilbert space C𝑑 . The

overlap between any two Slater determinant states, |Ψ⟩ = |𝜉1⟩ ∧ |𝜉2⟩ ∧ . . . ∧ |𝜉𝑛⟩ and

|Φ⟩ = |𝜙1⟩ ∧ |𝜙2⟩ ∧ . . . ∧ |𝜙𝑛⟩, can be expressed by the simple determinant formula

⟨Ψ|Φ⟩ = det𝐶 , 𝐶𝑖, 𝑗 = ⟨𝜉𝑖 |𝜙 𝑗 ⟩. (5.6)

The way that we have defined |X⟩ shows that to each Fock basis state there is a set

X ⊆ [𝑑], in physics when we work with states of the form as in Eq. (5.5) it is sometimes

called "first quantization" whereas when we work with Fock states this is sometimes

called "second quantization". As an example, consider the Fock state |1100⟩ with 4

modes and 2 fermions in the first 2 modes. We have that |1100⟩ = 𝑓
†
1 𝑓

†
2 |0000⟩ in

second quantization and |1100⟩ = 1√
2
( |𝜙1⟩ |𝜙2⟩ − |𝜙2⟩ |𝜙1⟩) for a basis |𝜙𝑖⟩ of C4 in first

quantization.
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Our work will be concerned with passive and active FLO operations. Both of these

are known to be classically simulable when the input states are Gaussian [Val01, JM08,

TD02, DT05], we will explain what this means later.

5.2.1 Passive FLO

Passive FLO operations correspond to particle number preserving operations. These

correspond to unitary transformations of the form

𝑈 = 𝑒
𝑖
∑

𝑛,𝑚 𝐾 𝑗𝑘 𝑓
†
𝑗
𝑓
𝑘 (5.7)

with 𝐾𝑛𝑚 is a Hermitian matrix. The action of these unitaries over the creation and

destruction operators can be easily computed. This is given by

𝑈 𝑓𝑘𝑈
† =

∑︁
𝑗

𝑉𝑘 𝑗 𝑓 𝑗 (5.8)

where 𝑉 is a unitary given by 𝑒−𝑖𝐾 .

At a more abstract level, passive FLO are the irreducible representation of the group

U(𝑑) in the Hilbert space
∧𝑛 (C𝑑).

Πpas : U(𝑑) −→ U

(
𝑛∧
(C𝑑)

)
, (5.9)

𝑈 ↦−→ 𝑈 ⊗𝑛��∧𝑛 (C𝑑 ) . (5.10)

where𝑈 ⊗𝑛 is 𝑛 copies in a tensor product of the unitary over the single particle space.

5.2.2 Active FLO

Active FLO operations correspond to those that preserve the parity of states. We

introduce the so called Majorana operators

𝑚2 𝑗−1 = 𝑓 𝑗 + 𝑓 †𝑗 , 𝑚2 𝑗 = −𝑖 (𝑓 𝑗 − 𝑓 †𝑗 ), (5.11)

with anti-commutation relations {𝑚 𝑗 ,𝑚𝑘} = 21𝛿 𝑗,𝑘 . With this we can define the parity

operator 𝑄 = 𝑖𝑑
∏2𝑑
𝑖=1𝑚𝑖 in HFock(𝐶𝑑). We denote by H+

Fock(C
𝑑) the eigenvalue +1
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subspace of 𝑄 , which is the span of the Fock basis states |n⟩ having even number

of particles. The active FLO operations (or Gaussian operations) are those that are

generated by Hamiltonians quadratic on the Majorana operators, i.e.,𝑈 = e𝑖𝐻 , where

𝐻 =
𝑖

4

2𝑑∑︁
𝑗,𝑘=1

𝐴 𝑗,𝑘𝑚 𝑗𝑚𝑘 , (5.12)

and 𝐴 = −𝐴𝑇 ∈ R2𝑑×2𝑑 . While the passive FLO transformations form a representation of

the group U(𝑑), the active FLO form a representation of the group SO(2𝑑).

Πact : SO(2𝑑) −→ U(HFock(C𝑑)) (5.13)

𝑂 ↦−→ exp

(
1
4

2𝑑∑︁
𝑖, 𝑗=1

[log(𝑂)]𝑖 𝑗𝑚𝑖𝑚 𝑗

)
, (5.14)

A single Majorana operator evolves under an active FLO transformation as follows

𝑈 †𝑚 𝑗 𝑈 =

2𝑑∑︁
𝑘=1

𝑂 𝑗𝑘𝑚𝑘 , (5.15)

where𝑈 = 𝑒−𝑖𝐻𝑡 with 𝐻 = 𝑖
4
∑2𝑑
𝑗,𝑘=1𝐴 𝑗,𝑘𝑚 𝑗𝑚𝑘 and and 𝑂 = 𝑒−𝐴 ∈ SO(2𝑑). Gpas and Gact

will refer to the passive and active fermionic linear optical gates.

5.2.3 Some facts about U(𝑑) and SO(2𝑑)

For the proof of some of our results we will require some basic facts about U(𝑑) and

SO(2𝑑), in particular the decompositions shown here will be applied in Section 5.6.3.

It is a well-known fact from linear algebra that for skew-hermitian operators 𝐴 ∈ 𝔲(𝑑)

there is a unitary𝑈 ∈ U(𝑑) such that

𝑈𝐴𝑈 † =
𝑑∑︁
𝑗=1

𝜙 𝑗𝑋 𝑗 , (5.16)

where 𝑋 𝑗 = 𝑖 | 𝑗⟩⟨ 𝑗 |. Similarly, for any 𝐴 ∈ 𝔰𝔬(2𝑑) there exist 𝑂 ∈ SO(2𝑑) such that

𝑂𝐴𝑂𝑇 =

𝑑∑︁
𝑗=1

𝜙 𝑗𝑋̃ 𝑗 (5.17)
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where 𝑋̃ 𝑗 = |2 𝑗⟩⟨2 𝑗 − 1| − |2 𝑗 − 1⟩⟨2 𝑗 | is the generator for the 𝑗 th block. These statements

have analogues on the level of elements of the group. Every unitary𝑈 can be transformed

into a diagonal form

diag(𝑒𝑖𝜙1, 𝑒𝑖𝜙2, . . . , 𝑒𝑖𝜙𝑑 ) = exp

(
𝑑∑︁
𝑗=1

𝜙 𝑗𝑋 𝑗

)
. (5.18)

For elements SO(2𝑑), the block diagonalization amounts to the geometric fact that

any 2𝑑-dimensional rotation can be decomposed into 𝑑 independent planar rotations

of the form exp
(∑𝑑

𝑗=1 𝜙 𝑗𝑋̃ 𝑗

)
=

∑𝑑
𝑗=1 exp

(
𝜙 𝑗𝑋̃ 𝑗

)
as the exponential preserves the block

diagonal form. Note that 𝑋̃ 𝑗 = −𝑖𝑌𝑗 where 𝑌𝑗 is acting as the Pauli 𝑌 operator on the

relevant subspace span( |2 𝑗 − 1⟩ , |2 𝑗⟩). We have then that exp
(
𝜙 𝑗𝑋̃ 𝑗

)
= exp

(
−𝑖𝜙 𝑗𝑌𝑗

)
=

cos
(
𝜙 𝑗

)
1 − 𝑖 sin

(
𝜙 𝑗

)
𝑌𝑗 = cos

(
𝜙 𝑗

)
1 + sin

(
𝜙 𝑗

)
𝑋̃ 𝑗 .

5.2.4 Haar measure

By virtue of the compactness of the groups U(𝑑) and SO(2𝑑), we can define a unique

normalized integration measure invariant under any group translation denoted as the

Haar measure. We will denote this measure by 𝜇𝐺 where 𝐺 is one of the symmetry

groups above. Invariance of 𝜇𝐺 means that for any measurable subset 𝐴 ⊂ 𝐺 and any

ℎ ∈ 𝐺 , we have that

𝜇 (ℎ𝐴) = 𝜇 (𝐴ℎ) = 𝜇 (𝐴) . (5.19)

The above condition to the level of expectation values (averages) reads∫
𝐺

𝑑𝜇 (𝑔) 𝑓 (𝑔ℎ) =
∫
𝐺

𝑑𝜇 (𝑔) 𝑓 (ℎ𝑔) =
∫
𝐺

𝑑𝜇 (𝑔) 𝑓 (𝑔) . (5.20)

where 𝑓 is any integrable function on 𝐺 and ℎ ∈ 𝐺 . We will denote by 𝜈pas the

distribution of the unitaries 𝑉 = Πpas(𝑈 ), where U ∼ 𝜇U(𝑑) and by 𝜈act distribution of

the unitaries Πact(𝑂), where 𝑂 ∼ 𝜇SO(2𝑑) .
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H X
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Figure 5.1: The setup considered in our work. We run an FLO circuit 𝑈𝐹𝐿𝑂 (passive
or active) with input state |Ψin⟩ = |Ψ4⟩⊗𝑁 and sample bitstrings x with the probability
distribution 𝑝 (x) induced by the circuit. Using Jordan-Wigner transformation that
encodes fermions in qubits, the state |Ψ4⟩ can be easily prepared as shown in the inset to
the left. The decomposition of the circuits into elementary gate set can be realized by
the fermionic analogues of existing layouts for linear optical networks.

5.3 Fermion Sampling scheme

Having laid out the background and notation for this chapter, we proceed to define the

Fermion Sampling scheme in this section. Our sampling scheme is based on magic inputs

that will supply the necessary resources to make the system hard to simulate classically.

Consider 𝑑 = 4𝑁 fermionic modes, the input to the circuit is given by the tensor product

of 𝑁 states |Ψ4⟩ = 1√
2
( |0011⟩ + |1100⟩). The input is then given by |Ψin⟩ = |Ψ4⟩⊗𝑁 .

Similar states have been used in previous works [Bra06, Iva17, HJK+19]. After the

injection of the initial states, a random FLO (passive or active) circuit is applied. This

random circuit is generated by decomposing a general FLO operation into a triangular or

brickwork layout as is common for FLO (For details, check Appendix A of [ODMZ22]).

The choice of the FLO operation 𝑉 is done via the probability distributions 𝜈pas and 𝜈act

induced from the Haar measures on U(𝑑) and SO(2𝑑), respectively. After the circuit,

particle number measurements give the output of the circuit.
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The output probability of measuring |x⟩ for an input Ψin and circuit 𝑉 is given by

𝑝x(𝑉 ,Ψin) = |⟨x|𝑉 |Ψin⟩|2 , (5.21)

where the output bitstring satisfies |x| = 2𝑁 and |x|-even for passive FLO and active FLO

respectively. In the next sections we will be concerned on showing that the existence of

an efficient classical algorithm sampling from a distribution close to the one defined by

𝑝x(𝑉 ,Ψin) is unlikely.

5.4 Anticoncentration of FLO circuits

As discussed in the introduction, we want to show that classically sampling from distri-

butions close to those induced by the Fermion sampling scheme is unlikely based on

plausible conjectures. An important ingredient in showing this is proving anticoncen-

tration. Intuitively, we want the output probabilities of randomly chosen circuits to not

be too small on average. This property has been shown in IQP circuits [BMS16], RCS

[BFNV19] and has been conjectured for Boson sampling [AA11]. In this section we

show that random FLO circuits have this anticoncentration property. This will be used

in Section 5.5 to prove that approximate classical sampling of FLO circuits implies the

capacity to approximately compute output probabilities in Theorem 5.9.

Theorem 5.1 (Anticoncentration for fermionic linear optical circuits initialized in

product of magic states). Let Hpas =
∧2𝑁 (C4𝑁 ) and let Hact = H+

Fock(C
4𝑁 ) be Hilbert

spaces describing 2𝑁 Fermions in 4𝑁 modes and positive parity Fermions in 4𝑁 modes.

Let Gpas and Gact be respectively passive and active FLO transformations acting on the

respective Hilbert spaces and distributed according to the uniform measures 𝜈pas and

𝜈act (see Section 5.2). Let |Ψin⟩ be the initial state to which both families of circuits are

applied. Then, for every x of Hamming weight |x| = 2𝑁 we have

Pr
𝑉∼𝜈pas

(
𝑝x(𝑉 ,Ψin) >

𝛼

|Hpas |

)
>

(1 − 𝛼)2
𝐶pas

, (5.22)
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where 𝐶pas = 5.7 and |Hpas | =
(4𝑁
2𝑁

)
. Moreover, for every x with even Hamming weight

we have

Pr
𝑉∼𝜈act

(
𝑝x(𝑉 ,Ψin) >

𝛼

|Hact |

)
>

(1 − 𝛼)2
𝐶act

, (5.23)

where 𝐶act = 16.2 and |Hact | = 24𝑁 /2.

Proof. The starting point for proving anticoncentration in many of the sampling schemes

is the Paley-Zygmund inequality.

Theorem 5.2 (Paley-Zygmund Inequality). Given a nonnegative bounded random

variable 𝑋 , for 0 < 𝛼 < 1 we have

Pr
𝑋
(𝑋 > 𝛼E𝑋 ) ≥ (1 − 𝛼)2 (E𝑋 )

2

E𝑋 2 . (5.24)

By setting 𝑋 = 𝑝x(𝑉 ,Ψin) = | ⟨x|𝑉 |Ψin⟩ |2, with 𝑉 ∼ 𝜈pas or 𝑉 ∼ 𝜈pas we can obtain

expressions similar to Eq. (5.22) and Eq. (5.23), where now we need to compute the

moments of 𝑋 , i.e., we need to compute E
𝑉∼𝜈

[
𝑝x(𝑉 ,Ψin)𝑘

]
for 𝑘 = 1, 2. Any passive or

active linear circuit 𝑉 in Gpas and Gact represents group elements in U(𝑑) and SO(2𝑑)

and thus the Haar measure in this groups induces a uniform distribution over the

corresponding linear circuits. We then write

E
𝑉∼𝜈

[
𝑝x(𝑉 ,Ψin)𝑘

]
=

∫
𝐺

𝑑𝜇 (𝑔)
[
tr

(
|x⟩⟨x| Π(𝑔)ΨinΠ(𝑔)†

)]𝑘
, (5.25)

where 𝜇 is the Haar measure on a Lie group 𝐺 , and Π is a unitary representation of 𝐺 in

a suitable Hilbert space H . The case of passive FLO corresponds to 𝐺 = U(4𝑁 ) and

Π = Πpas while for active FLO we have 𝐺 = SO(8𝑁 ) and Π = Πact. In what follows we

compute the first and second moment to prove the anticoncentration inequality.

We start by computing the first moment. Both groups are irreducibly represented in

Hilbert spaces Hact and Hpas by virtue of Schur’s lemma and unitaries Π(𝑔) forming a

1-design. To make this statement precise, let us first define a 𝐺-linear map and use this

to state Schur’s lemma.

Definition 5.3 (𝑮-linear map [Ser12]). Let 𝐺 be a group and let 𝜌𝑉 and 𝜌𝑊 be irre-

ducible representations of 𝐺 on 𝑉 and𝑊 respectively. A 𝐺-linear map 𝑓 : 𝑉 →𝑊 is
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such that

∀𝑔 ∈ 𝐺, 𝜌𝑊 (𝑔) ◦ 𝑓 = 𝑓 ◦ 𝜌𝑉 (𝑔).

Lemma 5.4 (Schur’s Lemma [Ser12]). Let 𝑉 and𝑊 be vector spaces and let 𝜌𝑉 and

𝜌𝑊 be irreducible representations of a group 𝐺 on 𝑉 and𝑊 respectively. Then

(1) If 𝑉 and 𝑊 are not isomorphic, then there are no non-trivial 𝐺-linear maps

between them.

(2) If 𝑉 = 𝑊 finite dimensional over C and if 𝜌𝑉 = 𝜌𝑊 then the only nontrivial

𝐺-linear maps are the identity and scalar multiples of the identity.

Then we can show that∫
𝐺

𝑑𝜇 (𝑔)
[
Π(𝑔)ΨinΠ(𝑔)†

]
=

1
|H | (5.26)

To obtain this equality we start by identifying the map 𝑓 : H → H with ℎ0 =∫
𝐺
𝑑𝜇 (𝑔)

[
Π(𝑔)ΨinΠ(𝑔)†

]
and noting that this map is a 𝐺-linear map since given 𝑔 ∈ 𝐺 ,

we have that

Π(𝑔)ℎ0Π(𝑔)† =
∫
𝐺

𝑑𝜇 (𝑔)
[
Π(𝑔𝑔)ΨinΠ(𝑔𝑔)†

]
(5.27)

=

∫
𝐺

𝑑𝜇 (𝑔)
[
Π(𝑔)ΨinΠ(𝑔)†

]
(5.28)

= ℎ0. (5.29)

This implies by Schur’s lemma that ℎ0 = 𝜆1 for some 𝜆 ∈ C. Note that Tr{ℎ0} = 1 and

Tr{1} = |H | which implies 𝜆 = 1
|H | and the equality we wanted to prove. Consequently

E
𝑉∼𝜈

[𝑝x(𝑉 ,Ψin)]

=

∫
𝐺

𝑑𝜇 (𝑔)
[
tr

(
|x⟩⟨x| Π(𝑔)ΨinΠ(𝑔)†

)]
= tr

(
|x⟩⟨x|

∫
𝐺

𝑑𝜇 (𝑔)
[
Π(𝑔)ΨinΠ(𝑔)†

] )
=

1
|H | ,

(5.30)

where in the last equality we used the 1-design property and the fact that |x⟩ ∈ H is a

normalized vector.
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To complete the proof of anticoncentration we need to bound the second moments

of the output probabilities. In Proposition 5.5 we give a bound in terms of combinatorial

factors. The proof of this is given in Appendix E of [ODMZ22] which involves using

group theoretic techniques to rewrite the second moment.

Proposition 5.5 (Passive FLO second moment [ODMZ22]). The second moment of

the output probabilities E
𝑉∼𝜈

[
𝑝x(𝑉 ,Ψin)2

]
in the passive FLO is bounded by the following

expression.

E
𝑉∼𝜈

[𝑝x(𝑉 ,Ψin)2] ≤
(2𝑁 + 1)(4𝑁

2𝑁
)2(4𝑁 + 1)

[
2
𝑁−1∑︁
𝑘=0

1(2𝑁
𝑘

) ⌊𝑘/2⌋∑︁
𝑙=0

𝑁 !
𝑙 !(𝑘 − 2𝑙)!(𝑁 − 𝑘 + 𝑙)!

+ 1(2𝑁
𝑁

) ⌊𝑁 /2⌋∑︁
𝑙=0

𝑁 !
𝑙 !(𝑁 − 2𝑙)!𝑙 !

]
=

(2𝑁 + 1)(4𝑁
2𝑁

)2(4𝑁 + 1)
𝐾pas. (5.31)

Where recall that 4𝑁 is the number of modes in the sampling scheme.

Proposition 5.6 (Active FLO second moment [ODMZ22]). The second moment of the

output probabilities E
𝑉∼𝜈

[
𝑝x(𝑉 ,Ψin)2

]
in the active FLO case is bounded by the following

expression.

E
𝑉∼𝜈

[𝑝x(𝑉 ,Ψin)2] ≤
2(8𝑁

4𝑁
)
28𝑁

[
2
𝑁−1∑︁
𝑞

𝐶2𝑞

⌊ 𝑞2 ⌋∑︁
𝑙=0

𝑁 !
𝑙 !(𝑞 − 2𝑙)!(𝑁 − 𝑞 + 𝑙)!14

𝑞−2𝑙

+𝐶2𝑁

𝑁∑︁
𝑙=0

𝑁 !
(𝑙 !)2(4𝑁 − 2𝑙)!14

𝑁−2𝑙
]

=
2(8𝑁

4𝑁
)
28𝑁

𝐾act, (5.32)

where

𝐶2𝑞 =
(4𝑞)!(8𝑁 − 4𝑞)!

((4𝑁 )!)2

(
4𝑁
2𝑞

)
. (5.33)

Where recall that 4𝑁 is the number of modes in the sampling scheme.

From these bounds on the second moment and considering that
��Hpas

�� = (4𝑁
2𝑁

)
and

|Hact | = 24𝑁 /2, we obtain that
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E(𝑋 )2
E(𝑋 2) ≥ 1��Hpas

��2
(4𝑁
2𝑁

)2(4𝑁 + 1)
(2𝑁 + 1)

1
𝐾pas

≥ 1
𝑁

2𝑁 + 1
𝐾pas

, (5.34)

for the passive case and in the active case

E(𝑋 )2
E(𝑋 2) ≥ 1

|Hact |2

(8𝑁
4𝑁

)
28𝑁

2
1
𝐾act

=
4
28𝑁

(8𝑁
4𝑁

)
28𝑁

2
1
𝐾act

≥ 4
√
𝜋4𝑁

28𝑁

2
1
𝐾act

=
1

√
𝜋𝑁

28𝑁

𝐾act
. (5.35)

Where we used the fact that
(8𝑁
4𝑁

)
≥ 28𝑁 /

√
𝜋4𝑁 . We see then that in the passive case

if we prove that 𝐾pas
2𝑁+1 ≤ 𝐶pas

𝑁
and in the active case 𝐾act

28𝑁 ≤ 𝐶act√
𝜋𝑁

then the anticoncentration

result follows. This inequalities are proven in Appendix A.2, which completes the proof.

■

5.5 Hardness of sampling

In this section we show that the scheme described in Section 5.3 is hard to sample from

classically, provided that certain conjectures are true. To show this we will use the

anticoncentration property of FLO circuits shown in Section 5.4. We begin by defining

the computational task which the classical sample must solve in Definition 1. Then we

show that the existence of a classical sampler for Fermion Sampling implies the capacity

to approximately compute the output probabilities of the Fermion Sampling circuits in

Theorem 5.9. Finally, we show that this implies the collapse of the Polynomial Hierarchy

under some plausible assumptions in Theorem 5.10.
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Definition 1 (Fermion Sampling task from [ODMZ22]). Let Hpas =
∧2𝑁 (C4𝑁 ) and

let Hact = H+
Fock(C

4𝑁 ) be Hilbert spaces describing 2𝑁 Fermions in 4𝑁 modes and

positive parity Fermions in 4𝑁 modes. Let Gpas and Gact be passive and active FLO

transformation. Let 𝑉 be an FLO circuit on the Hilbert space Hpas or Hact and let

𝑝 (𝑉 ) denote probability distribution 𝑝x(𝑉 ,Ψin). Given a description of 𝑉 , sample from

a probability distribution 𝑞(𝑉 ) that is 𝜖-close to 𝑝 (𝑉 ,Ψin) in 𝑙1-norm (twice the total

variation distance)

∥𝑝 (𝑉 ) − 𝑞(𝑉 )∥1 =
∑︁
x

|𝑝x(𝑉 ) − 𝑞x(𝑉 ) | ≤ 𝜖, (5.36)

in time poly𝑁 .

It was realized in [AA11, BMS16] that, by virtue of Stockmeyer’s theorem, the

hardness of classically sampling from 𝑝x(𝑉 ,Ψ) up to an additive error is connected

to the hardness of computing 𝑝x(𝑉 ,Ψ) for most instances of x and 𝑈 . We now state

Stockmeyer’s theorem.

Theorem 5.7 (Stockmeyer’s Theorem [Sto85]). There exists a BPPNP machine which

given any Boolean function 𝑓 : {0, 1}𝑛 → {0, 1} and 𝑦 ∈ {0, 1}𝑛 can output a number 𝑝

such that

(1 − 𝜖)𝑝 ≤ 𝑝 ≤ (1 + 𝜖)𝑝 (5.37)

with 𝜖 = Ω(1/poly(𝑛)) and 𝑝 = Pr𝑥∼unif [𝑓 (𝑥) = 𝑦].

This theorem allows to approximate output probabilites of classical samplers with

a multiplicative error shown in Eq. (5.37). Note that this error can be also written

as |𝑝 − 𝑝 | ≤ 𝜖𝑝. In particular, this implies that the existence of a classical machine

that performs the sampling task implies average-case approximation in the polynomial

hierarchy which we show in Theorem 5.9. To prove this, we start by defining the notion

of approximation in the average-case.
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Definition 2. An algorithm O is said to give an (𝜂, 𝛿)-multiplicative approximation of

𝑞z on average over the probability distribution P of inputs z iff O outputs Oz such that

Pr
z∼P

[|Oz − 𝑞z | ≤ 𝜂𝑞z] ≥ 1 − 𝛿 (5.38)

We now prove the hiding property [AA11, BMS16, BFNV19], of FLO circuits. This

will would allow us to focus on hardness of particular outcome probability.

Lemma 5.8 (Hiding property for FLO). Consider a fixed state |x0⟩ ∈ Hpas (Hact resp.)

then for any 𝑉 passive FLO (active FLO resp.) and |x⟩ ∈ Hpas (Hact resp.) there is a

passive (active) FLO 𝑉x such that |⟨x|𝑉 |Ψin⟩|2 = |⟨x0 |𝑉x |Ψin⟩|2

Proof. It is enough to show that given x there is𝑉x passive (active) FLO s.t. 𝑉x |x0⟩ = |x⟩

up to a global phase. In the passive case this is achieved with gates implementing

fermionic swaps 𝑈 [𝑖, 𝑗] such that 𝑈 [𝑖, 𝑗] 𝑓 †
𝑖
𝑈 [𝑖, 𝑗]† = 𝑓

†
𝑗

and 𝑈 [𝑖, 𝑗] 𝑓 †
𝑗
𝑈 [𝑖, 𝑗]† = 𝑓

†
𝑖

, the order

in which they are applied is defined by |x⟩. The same can be accomplished in active FLO

case with operators −i𝑚2𝑖𝑚2𝑖+1 changing the number of fermions (but not parity) and

quasi-braiding operators 𝑈 (𝑝,𝑞) to exchange the majorana operators to the corresponding

places. The quasi-braidings act on majorana operators as 𝑈 (𝑝,𝑞)𝑚𝑝 (𝑈 (𝑝,𝑞))† = 𝑚𝑞,

𝑈 (𝑝,𝑞)𝑚𝑞 (𝑈 (𝑝,𝑞))† =𝑚𝑝 and𝑈 (𝑝,𝑞)𝑚𝑥 (𝑈 (𝑝,𝑞))† =𝑚𝑥 when 𝑥 ≠ 𝑝, 𝑞. ■

An additional ingredient used in the hardness guarantees for a quantum sampling

advantage is anti-concentration which states that most output probabilities of a random

circuit are sufficiently big so that the approximation error to computing the probabilities

is small relative to the probabilities being computed. Both average-case hardness and

anti-concentration provide robustness in terms of the error of approximation.

Theorem 5.9 (From approximate sampling to approximately computing probabili-

ties). Let Hpas =
∧2𝑁 (C4𝑁 ) and let Hact = H+

Fock(C
4𝑁 ) be Hilbert spaces describing

2𝑁 Fermions in 4𝑁 modes and positive parity Fermions in 4𝑁 modes. Consider in

parallel passive FLO circuits and active FLO circuits acting on the input state |Ψin⟩. If

there is a classical algorithm C that performs Fermion Sampling as described in Defini-

tion 1 with the 𝑙1-error 1/(64𝐶), where 𝐶 is the constant 𝐶pas = 5.7 (resp. 𝐶act = 16.2)
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appearing in the anticoncentration condition for passive FLO circuits (resp. active FLO

circuits) in Theorem 5.1.

Then there is an algorithm in BPPNP that approximates the probability 𝑝x0 (𝑉 ,Ψin)

for an arbitrary but fixed outcome x0 up to multiplicative error 1/4 + 𝑜 (1) on 1/(8𝐶)

fraction of FLO circuits drawn from the distribution 𝜈 = 𝜈pas for passive FLO circuits

(resp. 𝜈act for active FLO circuits.)

Proof. We will consider in parallel active and passive FLO circuits. For pasive FLO

we have H = Hpas and 𝜈 = 𝜈pas while for active FLO we have Hact and 𝜈 = 𝜈act. With

the fixed input |Ψin⟩ = |Ψ4⟩⊗𝑁 , we write 𝑝x(𝑉 ) = |⟨x|𝑉 |Ψin⟩|2 for the probability of

outcome x (we assume that |𝑥⟩ ∈ H ), and 𝑝 (𝑉 ) for the output probability distribution

of a circuit 𝑉 . Suppose that there exists a classical sampler C that performs Fermion

Sampling for a fixed but arbitrary FLO circuit 𝑉 , and denote by 𝑞(𝑉 ) the distribution

from which C samples.

Then for a given x, by Stockmeyer’s approximate counting algorithm [Sto85], a

BPPNP machine with an oracle access to C can produce a multiplicative estimates 𝑞x(𝑉 )

of 𝑞x(𝑉 ) such that

|𝑞x(𝑉 ) − 𝑞x(𝑉 ) | ≤
𝑞x

poly𝑁
(5.39)

for every x. We will show that 𝑞x(𝑉 ) is also close to 𝑝x(𝑉 ) for most x and 𝑉 that

anti-concentrate.

Judiciously applying the triangle inequality, we have that

|𝑝x(𝑉 ) − 𝑞x(𝑉 ) |

≤ |𝑝x(𝑉 ) − 𝑞x(𝑉 ) | + |𝑞x(𝑉 ) − 𝑞x(𝑉 ) |
(5.40)

≤ |𝑝x(𝑉 ) − 𝑞x(𝑉 ) | +
𝑞x(𝑉 )
poly𝑁

(5.41)

≤ |𝑝x(𝑉 ) − 𝑞x(𝑉 ) | +
|𝑝x(𝑉 ) − 𝑞x(𝑉 ) | + 𝑝x(𝑉 )

poly𝑁
(5.42)

=
𝑝x(𝑉 )
poly𝑁

+ |𝑝x(𝑉 ) − 𝑞x(𝑉 ) |
(
1 + 1

poly𝑁

)
(5.43)
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Given that the distributions 𝑝 (𝑉 ) and 𝑞(𝑉 ) are 𝜖-close in the 𝑙1 norm, particular proba-

bilities 𝑝x(𝑉 ) and 𝑞x(𝑉 ) must be exponentially close for most x. This statement is made

precise using Markov’s inequality: for a nonnegative random variable 𝑋 and 𝑎 > 0,

Pr(𝑋 ≥ 𝑎) ≤ E𝑋
𝑎
. (5.44)

Setting 𝑋 = |𝑝x(𝑉 ) − 𝑞x(𝑉 ) | and 𝑎 = 𝜖/(|H |𝛿),

Pr
x∼unif (H)

(
|𝑝x(𝑉 ) − 𝑞x(𝑉 ) | ≥

𝜖

|H |𝛿

)
≤
Ex∼unif (H) ( |𝑝x(𝑉 ) − 𝑞x(𝑉 ) |) |H |𝛿

𝜖
≤ 𝛿.

(5.45)

Combining the probability bound with the inequality (5.43), we have that with probabil-

ity at least 1 − 𝛿 over random x ∼ unif (H) we have

|𝑝x(𝑉 ) − 𝑞x(𝑉 ) | <
𝑝x(𝑉 )
poly𝑁

+ 𝜖

|H |𝛿

(
1 + 1

poly𝑁

)
. (5.46)

To turn the above additive upper bound to a multiplicative one, we use the anti-

concentration property (Theorem 5.1), which let us replace 1/|H | by an upper bound

𝑝x(𝑉 )/𝛼 with probability (1 − 𝛼)2/𝐶. In order to do so, we must consider the joint

probability of (𝑉 , x). Let 𝐴 be the event that 𝑝x(𝑉 ) and 𝑞x(𝑉 ) for a fixed 𝑉 are expo-

nential close due to Markov’s inequality, and 𝐵 be the event that the distribution 𝑝 (𝑉 )

anticoncentrates. The probability of both “good events" happening is lower bounded by

Pr(𝐴 ∩ 𝐵) ≥ max{0, Pr(𝐴) + Pr(𝐵) − 1}.

That is, if we denote by A(𝑉 , x) as the event that

|𝑝x(𝑉 ) − 𝑞x(𝑉 ) |

< 𝑝x(𝑉 )
[

1
poly𝑁

+ 𝜖

𝛼𝛿

(
1 + 1

poly𝑁

)]
,

(5.47)

we have that

Pr
𝑉∼𝜈,x∼unif (H)

[A(𝑉 , x)] > (1 − 𝛼)2
𝐶

− 𝛿, (5.48)

which can be simplified by using the hiding property described in Lemma 5.8. The

property implies that 𝑝𝑥 (𝑉 ) = 𝑝x0 (𝑉x) and 𝑞x(𝑉 ) = 𝑞x0 (𝑉x) so that

Pr
𝑉∼𝜈,x∼unif (H)

[A(𝑉 , x)] = E
x∼unif (H)

(
Pr
𝑉∼𝜈

[A(𝑉x, x0)]
)
. (5.49)



CHAPTER 5. FERMION SAMPLING 106

Moreover from the invariance of the Haar measure it follows that for every |x⟩ ∈ H , 𝑉x

is distributed in the same way as 𝑉 . Consequently,

E
x∼unif (H)

(
Pr
𝑉∼𝜈

[A(𝑉x, x0)]
)
= E
x∼unif (H)

(
Pr
𝑉∼𝜈

[A(𝑉 , x0)]
)

= Pr
𝑉∼𝜈

[A(𝑉 , x0)] .
(5.50)

We finally obtain that for every x0,

Pr
𝑉∼𝜈

{
|𝑝x𝑜 (𝑉 ) − 𝑞x𝑜 (𝑉 ) | < 𝑝x𝑜 (𝑉 )

[
1

poly𝑁
+ 𝜖

𝛼𝛿

(
1 + 1

poly𝑁

)]}
>

(1 − 𝛼)2
𝐶

− 𝛿.

(5.51)

Following [BJS11] and requiring a constant 𝜖 and relative error 𝜖/(𝛼𝛿) we may set,

for instance,

𝛼 =
1
2
, 𝛿 =

(1 − 𝛼)2
2𝐶

=
1
8𝐶
, 𝜖 =

𝛼𝛿

4
=

1
64𝐶

. (5.52)

Stockmeyer’s algorithm is able to output (1/4 + 𝑜 (1), 1/(8𝐶))-multiplicative approxi-

mates of the output probabilities for 1/(8𝐶) fraction of the (passive or active, with con-

stant 𝐶pas or 𝐶act respectively) FLO circuits 𝑉 if there is a classical machine that approx-

imately sample from 𝑝x(𝑉 ) for any FLO circuit 𝑉 within the 𝑙1 distance 1/(64𝐶). ■

Having proved Theorem 5.9 we go now to prove the hardness of sampling. We

require two more conjectures for this.

Conjecture 1 (Average-case of approximating probabilities on FLO circuits ini-

tialized in |𝚿in⟩ ). Computing a (1/4 + 𝑜 (1), 1/(8𝐶))-multiplicative approximate to

𝑝x0 (𝑉 ,Ψin) for 1/(8𝐶) fraction of 𝑉 sampled from the Haar distribution 𝜈 is #P-hard.

(𝐶 = 𝐶pas, 𝜈 = 𝜈pas for passive FLO circuits and 𝐶 = 𝐶act, 𝜈 = 𝜈act for active FLO

circuits)

Conjecture 2. The Polynomial Hierarchy does not collapse.

Theorem 5.10 (Hardness of sampling from FLO circuits initialized in |𝚿in⟩ ). If

Conjectures 1 and 2 are true, then there is no efficient classical algorithm that can
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approximately sample with 𝑙1-error 1/(64𝐶pas) (resp. 1/(64𝐶act)) from output probability

distributions induced by passive (resp. active) FLO circuits with the input given by

|Ψin⟩.

Proof. By Theorem 5.9, if there were an approximate sampler with respect to passive

(resp. active) FLO circuits with input |Ψin⟩, then there would exist a algorithm BPPNP

that (1/4 + 𝑜 (1), 1/(8𝐶))-multiplicative approximates 𝑝x0 (𝑉 ,Ψin) in for 1/(8𝐶) fraction

of passive (resp. active) FLO circuits. Where 𝐶 = 𝐶pas in the passive case and 𝐶 = 𝐶act

in the active. By Conjecture 1 this is a #P-hard problem. It is known [Lau83] that BPP is

inside the third level of the Polynomial Hierarchy, i.e., BPPNP ⊆ Σ3. By a well known

result of Toda [Tod91] PH ⊆ P#P and thus PH ⊆ Σ3. ■

This established the hardness of sampling which crucially depends on Conjecture 1

and Conjecture 2. In the next chapters we seek to prove a weaker version of Conjecture 1

to lend support to it.

5.6 Cayley path and average-case hardness

In Section 5.5 we have shown the unlikely existence of a classical sampler for the

Fermion Sampling scheme assuming certain plausible conjectures about average-case

hardness of approximating output probabilities (Conjecture 1) and the non-collapse

of the Polynomial Hierarchy (Conjecture 2). While Conjecture 2 is widely believed

in computer science, it could be argued that the evidence for Conjecture 1 is weaker.

To support this conjecture we follow [BFNV19, Mov19] in showing that it is #P-hard

to give approximations to output probabilities up to error 𝜖 = exp
(
−Θ(𝑁 7)

)
for a

significant fraction of random FLO circuits, where 𝑁 is the number of quadruples |Ψ4⟩

used in the scheme as defined in Section 5.3. We give a proof of this fact in Section 5.7

through a worst-to-average case reduction. This proof involves the use of the Cayley

path technique, a high-level view of how this technique is applied in the proof is given

at the beginning of Section 5.7.
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In this section we provide the basic definitions to implement the Cayley path tech-

nique on U(𝑑) and SO(2𝑑) which is used in the proof of the worst-to-average case

reduction. First, in Section 5.6.1 we define the Cayley path for the unitary and or-

thogonal groups. Then, in Section 5.6.2 we show that by sampling from points far

enough from an initial point of the Cayley path, the induced distribution is close to

Haar random. This fact will be used in Section 5.7 for the average-case reduction. In

Section 5.6.3 we show that the Cayley path allows us to define rational polynomials in

terms of a deformation parameter. Finally, in Section 5.6.4 we compute the degree of

this polynomials for passive FLO and active FLO. The degree of these polynomials has

en effect in the error bounds obtained for the hardness result.

5.6.1 The Cayley path

To prove the reduction to the average-case, we use the technique introduced in [Mov19]

which uses a rational interpolation of the output probabilities generated by a quantum

circuit. We generalize this technique to be applicable to our case, which requires a

rational interpolation between elements of the low-dimensional representations instead

of the circuits themselves. To be more precise, the Cayley path will be applied on the

groups U(𝑑) and SO(2𝑑) for which passive FLO and active FLO are representations

respectively. As mentioned in Section 5.2, we use 𝐺 to denote either the Lie groups

U(𝑑) or SO(𝑑). To perform the interpolation, we will define the Cayley map which maps

elements from the Lie algebra 𝔤 to the corresponding Lie group 𝐺 . The Lie algebras

𝔲(𝑑) and 𝔰𝔬(2𝑑) of U(𝑑) and SO(2𝑑) are defined to be

𝔲(𝑑) = {𝑋 ∈ C𝑑×𝑑 |𝑋 † = −𝑋 }, (5.53)

𝔰𝔬(2𝑑) = {𝑋 ∈ R2𝑑×2𝑑 |𝑋𝑇 = −𝑋 }, (5.54)

where 𝑋𝑇 denotes the transpose of the matrix 𝑋 .

Any element 𝑋 ∈ 𝔤 defines a group element exp(𝜃𝑋 ) for 𝜃 ∈ R. As remarked in

[BFNV19, Mov19], such an exponential map does not allow for polynomial interpolation
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techniques, in [BFNV19] the authors approximate the exponential map by using the

Taylor expansion and introducing a cutoff. In [Mov19], instead, the author uses the

Cayley transform to map from Hamiltonians to circuits. We adapt the Cayley transform

to apply it in our sampling scheme, we begin by introducing this mapping.

Definition 5.11. Let𝐺 be U(𝑑) or SO(2𝑑), and let 𝔤 denotes its Lie algebra. The Cayley

transform is a mapping 𝑓 : 𝔤 → 𝐺 defined via

𝑓 (𝑋 ) = (1 − 𝑋 ) (1 + 𝑋 )−1 . (5.55)

Note that the image 𝑓 (𝔤) corresponds to the set of group elements 𝐺̃ that don’t have

−1 as an eigenvalue. This can be seen from the definition of the Cayley map in [Mov19]

where 𝑓 (−∞) = −1 and the fact that any 𝑋 has finite eigenvalues. We can define the

inverse map on 𝐺̃ 𝑓 −1 : 𝐺̃ → 𝔤 as

𝑓 −1(𝑔) = (1 − 𝑔) (1 + 𝑔)−1 , (5.56)

where 𝑔 ∈ 𝐺̃ . That this is the inverse map can be verified from a simple calculation

𝑓 −1(𝑓 (𝑋 )) = 𝑓 −1((1 − 𝑋 ) (1 + 𝑋 )−1)

=
(
(1 − (1 − 𝑋 ) (1 + 𝑋 )−1)

) (
1 + (1 − 𝑋 ) (1 + 𝑋 )−1

)−1
=

(
[(1 + 𝑋 ) − (1 − 𝑋 )] (1 + 𝑋 )−1

) (
[(1 + 𝑋 ) + (1 − 𝑋 )] (1 + 𝑋 )−1

)−1
= 𝑋 . (5.57)

The Cayley map defines a continuous path between 𝑔0 ∈ 𝐺 and 𝑔0𝑓 (𝑋 ) as we explain in

the next paragraphs (see Fig. 5.2). To define a path on the group, define first the map

𝐹𝜃 : 𝐺̃ → 𝐺 , given by

𝐹𝜃 (𝑔) = 𝑓 (𝜃 𝑓 −1(𝑔)), 𝜃 ∈ [0, 1] . (5.58)

This map can be explicitly computed

𝐹𝜃 (𝑔) = 𝑓 (𝜃 𝑓 −1(𝑔))

= 𝑓 (𝜃 (1 − 𝑔) (1 + 𝑔)−1)
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Figure 5.2: Path deformation defined by the Cayley map in Eq. (5.55). A path is
induced between element 𝑔0 ∈ 𝐺 and 𝑔0𝑔 by taking 𝑋 = 𝑓 −1(𝑔) ∈ 𝔤 and considering the
perturbation 𝑔𝜃 = 𝑔0𝑓 (𝜃𝑋 ).

= (1 − 𝜃 (1 − 𝑔) (1 + 𝑔)−1) (1 + 𝜃 (1 − 𝑔) (1 + 𝑔))−1

= [(1 + 𝑔) − 𝜃 (1 − 𝑔)] (1 + 𝑔)−1
[
((1 + 𝑔) + 𝜃 (1 − 𝑔)) (1 + 𝑔)−1

]−1
= [(1 + 𝑔) − 𝜃 (1 − 𝑔)] [(1 + 𝑔) + 𝜃 (1 − 𝑔)]−1

= [(1 − 𝜃 )1 + (1 + 𝜃 )𝑔] [(1 + 𝜃 )1 + (1 − 𝜃 )𝑔]−1 . (5.59)

Note that the elements in the Lie groups considered are represented as normal matrices

and thus are diagonalizable, therefore functional calculus can be performed as if real

functions were under consideration. We can then write the map 𝐹𝜃 in the following form

𝐹𝜃 (𝑔) =
(1 − 𝜃 )1 + (1 + 𝜃 )𝑔
(1 + 𝜃 )1 + (1 − 𝜃 )𝑔 , 𝜃 ∈ [0, 1] . (5.60)

For both orthogonal and unitary operators we have ∥𝑔∥ = 1. Therefore for 𝜃 ∈ (0, 1] the

denominator of (5.60) does not vanish, while for any 𝑔 ∈ 𝐺 we get that lim𝜃→0 𝐹𝜃 (𝑔) = 1

which can be easily seen from the original definition of 𝐹𝜃 . This implies that for 𝜃 ∈ [0, 1]

the denominator of (5.60) does not vanish and we can use (5.60) to define 𝐹𝜃 to a be a
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function defined on whole𝐺 . With the definition of 𝐹𝜃 in place we can now define the

following path

𝑔𝜃 = 𝑔0𝐹𝜃 (𝑔), 𝜃 ∈ [0, 1] . (5.61)

Note that the function 𝐹𝜃 is a rational function of 𝑔, which will allow us to use the

interpolation techniques from [Mov19]. For the average-case hardness result, we pick

𝑔0 as a group element which corresponds to a worst-case #P-hard FLO circuit while 𝑔

will be a generic element of the group (i.e. Haar random).

5.6.2 Sampling from the path

In what follows we give a result which says that by sampling elements in the deformation

path which are close enough to the final point 𝑔0𝐹𝜃 (𝑔) then the induced distribution is

close to sampling from the Haar random distribution.

Lemma 5.12 (Total variation distance between the Haar measure in 𝑮 and its

𝜽 -deformation). Let 𝐺 be equal to U(𝑑) or 𝑆𝑂 (2𝑑). Let 𝑔0 ∈ 𝐺 be a fixed element in

𝐺 . Let 𝑔 ∼ 𝜇𝐺 an let 𝑔𝜃 = 𝑔0𝐹𝜃 (𝑔), for 𝜃 ∈ [0, 1] and 𝐹𝜃 : 𝐺 → 𝐺 defined in (5.60).

Let now 𝜇𝜃
𝐺

denotes the induced measure according to which 𝑔𝜃 is distributed. Assume

furthermore that 𝜃 ∈ [1 − Δ, 1], for Δ > 0. We then have


𝜇U(𝑑) − 𝜇𝜃U(𝑑)


TVD ≤ 𝑑2Δ/2,


𝜇SO(2𝑑) − 𝜇𝜃SO(2𝑑)





TVD

≤ 𝑑2Δ/2 ,
(5.62)

where ∥·∥TVD is the total variation distance for probability distributions.

The proof of this lemma is given in appendix C of [ODMZ22]. To prove it, the

total variation distance between the probability distributions is expressed in terms of the

distance of the angles defining the unitaries and orthogonal rotation in the passive and

active case. Using standard techniques from multivariable calculus the distance can be

bounded.
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5.6.3 Rational polynomials from Cayley path

In [Mov19], the degree of the interpolation is related to the robustness of the average-

case hardness. This will become explicit in Section 5.7. In this section we write explicitly

the rational functions which will give us the degree.

Given some element 𝑔 ∈ U(𝑑), as we mention in Section 5.2.3, we can always

diagonalize with some operator ℎ ∈ U(𝑑) such that ℎ𝑔ℎ−1 =
∑𝑑
𝑗=1 𝑒

𝑖𝜙 𝑗 | 𝑗⟩⟨ 𝑗 |. Then we

have that,

𝑔𝜃 = 𝑔0𝐹𝜃 (𝑔) (5.63)

= 𝑔0 [(1 − 𝜃 )1 + (1 + 𝜃 )𝑔] [(1 + 𝜃 )1 + (1 − 𝜃 )𝑔]−1 (5.64)

= 𝑔0

[
𝑑∑︁
𝑗=1

((1 − 𝜃 ) + (1 + 𝜃 )𝑒𝑖𝜙 𝑗 )ℎ−1 | 𝑗⟩⟨ 𝑗 | ℎ
] [

𝑑∑︁
𝑗=1

((1 + 𝜃 ) + (1 − 𝜃 )𝑒𝑖𝜙 𝑗 )ℎ−1 | 𝑗⟩⟨ 𝑗 | ℎ
]−1

(5.65)

=

𝑑∑︁
𝑗=1

(1 − 𝜃 ) + (1 + 𝜃 )𝑒𝑖𝜙 𝑗

(1 + 𝜃 ) + (1 − 𝜃 )𝑒𝑖𝜙 𝑗
𝑔0ℎ

−1 | 𝑗⟩⟨ 𝑗 | ℎ (5.66)

=

𝑑∑︁
𝑗=1

1 + 𝑖𝜃 tan
(
𝜙 𝑗/2

)
1 − 𝑖𝜃 tan

(
𝜙 𝑗/2

)𝑔0ℎ−1 | 𝑗⟩⟨ 𝑗 | ℎ (5.67)

=
1

Q𝑔 (𝜃 )

𝑑∑︁
𝑗=1

𝑃 𝑗 (𝜃 )𝑔0ℎ−1 | 𝑗⟩⟨ 𝑗 | ℎ C
P𝑔0,𝑔 (𝜃 )
Q𝑔 (𝜃 )

, (5.68)

where

Q𝑔 (𝜃 ) =
𝑑∏
𝑗=1

(1 − 𝑖𝜃 tan
(
𝜙 𝑗/2

)
), (5.69)

𝑃 𝑗 (𝜃 ) = (1 + 𝑖𝜃 tan
(
𝜙 𝑗/2

)
)

∏
1≤𝑘≤𝑑
𝑘≠ 𝑗

(1 − 𝑖𝜃 tan(𝜙𝑘/2)) (5.70)

are both polynomials of degree 𝑑 in 𝜃 , and P𝑔0,𝑔 (𝜃 ) is a formal polynomial that depends

on the matrices𝑔 and𝑔0. In the SO(2𝑑) case we use the fact that we can block diagonalize

a group element as discussed in Section 5.2.3. We define I 𝑗 = |2 𝑗 − 1⟩⟨2 𝑗 − 1| + |2 𝑗⟩⟨2 𝑗 |

and 𝑋̃ = |2 𝑗⟩⟨2 𝑗 − 1| − |2 𝑗 − 1⟩⟨2 𝑗 |. Again, let ℎ𝑔ℎ−1 =
∑𝑑
𝑗=1(cos𝜙 𝑗1 𝑗 + sin𝜙 𝑗𝑋̃ 𝑗 ), and

one has
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𝑔𝜃 = 𝑔0

𝑑∑︁
𝑗=1

[1 + cos𝜙 𝑗 + 𝜃 2(1 − cos𝜙 𝑗 )]−1

×
{[
1 + cos𝜙 𝑗 − 𝜃 2(1 − cos𝜙 𝑗 )

]
1 𝑗 + 2𝜃 sin𝜙 𝑗ℎ−1𝑋̃ 𝑗ℎ

} (5.71)

= 𝑔0

𝑑∑︁
𝑗=1

[1 − 𝜃 2 tan2(𝜙 𝑗/2)]1 𝑗 + 2𝜃 tan(𝜙/2)ℎ−1𝑋̃ 𝑗ℎ
1 + 𝜃 2 tan2(𝜙 𝑗/2)

(5.72)

=
1

Q𝑔 (𝜃 )

𝑑∑︁
𝑗=1

(
𝑃
diag
𝑗

(𝜃 )𝑔01 𝑗 + 𝑃off𝑗 (𝜃 )𝑔0ℎ−1𝑋̃ 𝑗ℎ
)

(5.73)

C
P𝑔0,𝑔 (𝜃 )
Q𝑔 (𝜃 )

, (5.74)

where in (5.72) we divided both the numerator and the denominator by 1 + cos𝜙 𝑗 and

Q𝑔 (𝜃 ) =
𝑑∏
𝑗=1

(1 + 𝜃 2 tan2(𝜙 𝑗/2)) , (5.75)

𝑃
diag
𝑗

(𝜃 ) = (1 + 𝜃 2 tan2(𝜙 𝑗/2))2)

×
∏

1≤𝑘≤𝑑
𝑘≠ 𝑗

(1 + 𝜃 2 tan2(𝜙 𝑗/2))2) , (5.76)

𝑃off𝑗 (𝜃 ) = 2𝜃 tan
(
𝜙 𝑗/2

) ∏
1≤𝑘≤𝑑
𝑘≠ 𝑗

(1 + 𝜃 2 tan2(𝜙 𝑗/2))2) (5.77)

are polynomials in 𝜃 of degree 2𝑑 , 2𝑑 , and 2𝑑 − 1 respectively, and P𝑔0,𝑔 (𝜃 ) is a formal

polynomial that depends on the matrices 𝑔 and 𝑔0.

Following previous work [BFNV19, Mov19], we give a lower bound for Q𝑔 (𝜃 ) to

assure that the rational function does not blow up, and an upper bound for generic 𝑔 ∈ 𝐺 ,

which will be crucial for a robust reduction in Section 5.7. Note that the coefficients of

the polynomial Q𝑔 (𝜃 ) depend only on generalized eigenvalues of 𝑔 (𝑒𝑖𝜙 𝑗 in the unitary

case and cos𝜙 𝑗 , sin𝜙 𝑗 in the orthogonal case) and hence 𝑄 (𝜃 ) can be pre-computed in

time polynomial in 𝑑 by diagonalizing 𝑔, computing each tan
(
𝜙 𝑗/2

)
which is just an

algebraic function of 𝑒𝑖𝜙 𝑗 , and computing the final result.
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Lemma 5.13. Let Q𝑔 (𝜃 ) be the polynomial in defined in (5.69) for 𝐺 = U(𝑑) and in

(5.75) for 𝐺 = SO(2𝑑). Let now Δ̃ > 0. Then we have the following inequalities

Pr
𝑔∼𝜇U(𝑑 )

©­«
��Q𝑔 (𝜃 )��2 ≤ [

1 +
(
𝜃𝜋

Δ̃

)2]𝑑 ª®¬ ≥ 1 − 𝑑 Δ̃
𝜋
, (5.78)

Pr
𝑔∼𝜇SO(2𝑑 )

©­«
��Q𝑔 (𝜃 )��2 ≤ [

1 +
(
𝜃𝜋

Δ̃

)2]2𝑑ª®¬ ≥ 1 − 𝑑 Δ̃
𝜋
. (5.79)

In addition, for all 𝑔, |Q𝑔 (𝜃 ) |2 ≥ 1 for both𝑈 (𝑑) and SO(2𝑑).

Proof. Since 𝑔 ∈ 𝐺 is Haar distributed, every generalised eigenphase 𝜙 𝑗 is distributed

uniformly on the interval [−𝜋, 𝜋] [AS17]. Therefore, for every 𝑗 we have

Pr
𝑔∼𝜇𝐺

(
𝜙 𝑗 ∈ [𝜋 − Δ̃, 𝜋] ∪ [−𝜋,−𝜋 + Δ̃]

)
=
2Δ̃
2𝜋

=
Δ̃

𝜋
. (5.80)

For 𝜙 𝑗 ∈ [−𝜋 + Δ̃, 𝜋 − Δ̃] we have
��tan(

𝜙 𝑗/2
) �� ≤ 𝜋/Δ̃. Call 𝐴 𝑗 the event that 𝜙 𝑗 ∈

[𝜋 − Δ̃, 𝜋] ∪ [−𝜋,−𝜋 + Δ̃]. Then

Pr
𝑔∼𝜇𝐺

(
𝑑⋃
𝑖=1

𝐴 𝑗

)
≤

𝑑∑︁
𝑖=1

Pr
𝑔∼𝜇𝐺

(𝐴 𝑗 ) (5.81)

= 𝑑
Δ̃

𝜋
. (5.82)

From this bound we obtain

Pr
𝑔∼𝜇𝐺

(
∀𝑗 ∈ [𝑑],

��tan(
𝜙 𝑗/2

) �� ≤ 𝜋/Δ̃
)
= 1 − Pr

𝑔∼𝜇𝐺

(
𝑑⋃
𝑖=1

𝐴 𝑗

)
(5.83)

≥ 1 − 𝑑 Δ̃
𝜋
. (5.84)

First, let us prove Eq. (5.78). We have that with probability ≥ 1 − 𝑑 Δ̃
𝜋��Q𝑔 (𝜃 )��2 = 𝑑∏

𝑗=1

��1 − 𝑖𝜃 tan(
𝜙 𝑗/2

) ��2 (5.85)

=

𝑑∏
𝑗=1

(1 − 𝑖𝜃 tan
(
𝜙 𝑗/2

)
) (1 + 𝑖𝜃 tan

(
𝜙 𝑗/2

)
) (5.86)
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=

𝑑∏
𝑗=1

(1 + 𝜃 2 tan2(𝜙 𝑗/2)) (5.87)

≤
𝑑∏
𝑗=1

(1 + (𝜃𝜋
Δ̃
)2) (5.88)

= (1 + (𝜃𝜋
Δ̃
)2)𝑑 (5.89)

where the probability is introduced when using Eq. (5.83). The SO(2𝑑) case follows but

the same reasoning but replacing 𝑑 with 2𝑑 . ■

5.6.4 Polynomials associated to probabilities in FLO circuits

Having obtained the rational polynomials from the Cayley path in Section 5.6.3, we

show the explicit rational polynomials of the output probabilities for FLO in our scheme.

In this section, we give the degrees of matrix polynomials associated to fermionic

representations of 𝐺 = U(𝑑) and 𝐺 = SO(2𝑑). These polynomials, when evaluated on

the Cayley path 𝑔𝜃 in the appropriate group (see Eq. (5.60)), give rise to polynomials and

rational functions 𝜃 for the outcome probabilities 𝑝x(Π(𝑔𝜃 ),Ψin) = | ⟨x| Π(𝑔) |Ψin⟩ |2 in

our quantum advantage schemes. The explicit form of these polynomials will be used in

Section 5.7 when discussing worst-to-average-case reductions.

We introduce some notation that will be helpful in what follows. Given a 𝑑×𝑑 matrix

𝑀 and two subsets of indices X,Y ⊂ [𝑑] with cardinality 𝑛, where X = {𝑎1, 𝑎2, . . . , 𝑎𝑛}

(𝑎𝑖 < 𝑎 𝑗 if 𝑖 < 𝑗) and Y = {𝑏1, 𝑏2, . . . , 𝑏𝑛} ( 𝑏𝑖 < 𝑏 𝑗 if 𝑖 < 𝑗), we define 𝑀X,Y as the 𝑛 ×𝑛

matrix with entries

(𝑀X,Y)𝑘,ℓ = 𝑀𝑎𝑘 ,𝑏ℓ , 𝑘, ℓ = 1, . . . , 𝑛. (5.90)

In other words, the sets X and Y correspond to indexes of a submatrix of 𝑀 . This will

be relevant to FLO as we will only care about submatrices of the unitaries where the

indexes are given by the input state. When working with passive FLO, it is well known

that when the input is a Fock state and the output is measured in the particle number

basis, then the output probabilities are described by determinants.
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Lemma 5.14. Given two Fock basis states |X⟩ , |Y⟩ ∈ ∧𝑛 (C𝑑) and a 𝑈 ∈ U(𝑑), the

amplitude between |X⟩ and Πpas(𝑈 ) |Y⟩ is provided by the expression

⟨X| Πpas(𝑈 ) |Y⟩ = det
(
𝑈X,Y

)
. (5.91)

Proof. Let X = {𝑎1, 𝑎2, . . . , 𝑎𝑛} (𝑎𝑖 < 𝑎 𝑗 if 𝑖 < 𝑗) and Y = {𝑏1, 𝑏2, . . . , 𝑏𝑛} (𝑏𝑖 < 𝑏 𝑗 if

𝑖 < 𝑗). By definition we have that

Πpas(𝑈 ) |Y⟩ = 𝑈 ⊗𝑛 |𝑏1⟩ ∧ |𝑏2⟩ ∧ · · · ∧ |𝑏𝑛⟩

= |𝜉1⟩ ∧ |𝜉2⟩ ∧ · · · ∧ |𝜉𝑛⟩
(5.92)

where

|𝜉ℓ⟩ = 𝑈 |𝑏ℓ⟩ =
𝑑∑︁
𝑗=1
𝑈 𝑗,𝑏ℓ | 𝑗⟩ , ℓ = 1, . . . , 𝑛. (5.93)

Using the last two equations and Eq. (5.6), we can deduce that

⟨X| Πpas(𝑈 ) |Y⟩ = det(𝐶) ,

𝐶𝑘,ℓ = ⟨𝑎𝑘 |𝜉ℓ⟩ = ⟨𝑎𝑘 |
𝑑∑︁
𝑗=1
𝑈 𝑗,𝑏ℓ | 𝑗⟩ = 𝑈𝑎𝑘 ,𝑏ℓ = (𝑈X,Y)𝑘,ℓ

(5.94)

which proves the statement. ■

This result implies that just using Fock states as inputs in our scheme is not enough

for obtaining output probabilities that are #P-hard. In the proof we have explicitly

used the "first quantization" picture, but alternatively we could have used the second

quantization. For completeness we sketch such procedure here.

Let |𝑥⟩ = 𝑓 †𝑎1 𝑓
†
𝑎2 · · · 𝑓

†
𝑎𝑛 |00 · · · 0⟩ and |y⟩ = 𝑓 †

𝑏1
𝑓
†
𝑏2
· · · 𝑓 †

𝑏𝑛
|00 · · · 0⟩, such that |𝑥⟩ = |X⟩

and |𝑦⟩ = |Y⟩ as defined above. Now, consider the action of𝑈 on |𝑦⟩

𝑈 |𝑦⟩ = 𝑈 𝑓 †
𝑏1
𝑓
†
𝑏2
· · · 𝑓 †

𝑏𝑛
|00 · · · 0⟩ (5.95)

= (𝑈 𝑓 †
𝑏1
𝑈 †) · · · (𝑈 𝑓 †

𝑏𝑛
𝑈 †) |00 · · · 0⟩ (5.96)

=

𝑑∑︁
𝑝1,··· ,𝑝𝑛=1

𝑉𝑏1𝑝1 · · ·𝑉𝑏𝑛𝑝𝑛 𝑓
†
𝑝1 · · · 𝑓

†
𝑝𝑛
|00 · · · 0⟩ (5.97)
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We then have that

⟨𝑥 |𝑈 |𝑦⟩ =
𝑑∑︁

𝑝1,··· ,𝑝𝑛=1
𝑉𝑏1𝑝1 · · ·𝑉𝑏𝑛𝑝𝑛 𝑓𝑎𝑛 · · · 𝑓𝑎1 𝑓

†
𝑝1 · · · 𝑓

†
𝑝𝑛
|0⟩ (5.98)

=
∑︁
𝜋

𝑠𝑔𝑛(𝜋)𝑉𝑏1𝜋 (𝑎1) · · ·𝑉𝑏𝑛𝜋 (𝑎𝑛) (5.99)

By considering 𝑉̃ as the submatrix of 𝑉 with the selected rows 𝑏1, · · · , 𝑏𝑛 and columns

𝑎1, · · · , 𝑎𝑛 we have ⟨𝑥 |𝑈 |𝑦⟩ = det
(
𝑉̃

)
. By a direct translation from first quantization to

second quantization we can see that both results are equivalent.

In the following result, we give the form of the polynomial for general inputs.

Proposition 5.15 (Degrees of polynomials describing probabilities associated to

passive FLO circuits.). Consider a state |Ψ⟩ ∈ ∧𝑛 (C𝑑). For an arbitrary𝑈 ∈ U(𝑑) the

outcome probability 𝑝x(Πpas(𝑈 ),Ψ) = | ⟨x| Πpas(𝑈 ) |Ψ⟩ |2 is a degree 2𝑛 homogeneous

polynomial in the entries of𝑈 and𝑈 †.

Proof. One can expand the vector |Ψ⟩ in terms of the Fock basis states belonging to∧𝑛 (C𝑑) as

|Ψ⟩ =
∑︁

Y⊂[𝑑]
|Y|=𝑛

𝑐Y |Y⟩ . (5.100)

Let X ⊂ [𝑑] denote the set of indices corresponding to x as an indicator function (i.e.,

|x⟩ = |X⟩). Using Lemma 5.14, we can write the relevant amplitude as

⟨x| Πpas(𝑈 ) |Ψ⟩ =
∑︁

Y⊂[𝑑]
|Y|=𝑛

𝑐Y ⟨X| Πpas(𝑈 ) |Y⟩

=
∑︁

Y⊂[𝑑]
|Y|=𝑛

𝑐Y det
(
𝑈X,Y

)
.

(5.101)

As each term in the sum is a determinant of a 𝑛 ×𝑛 submatrix of𝑈 , this expression gives

a homogeneous polynomial of the entries of 𝑈 of order 𝑛. This in turn directly implies

that 𝑝x(Πpas(𝑈 ),Ψ) = | ⟨x| Πpas(𝑈 ) |Ψ⟩ |2 is a degree 2𝑛 polynomial in the entries of 𝑈

and𝑈 †. ■
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Lemma 5.16 (Polynomial for output amplitude of passive FLO [Iva17]). Consider

the input state |Ψin⟩ = |Ψ4⟩⊗𝑁 ∈ ∧2𝑁 (C4𝑁 ). For an arbitrary 𝑈 ∈ U(4𝑁 ) the outcome

amplitude is given by

⟨x|Πpas(𝑈 ) |Ψ⟩ = 1
√
2𝑁

∑︁
(𝑦1,··· ,𝑦𝑁 )∈{0,1}𝑁

× det
(
𝑈𝑇{2𝑦1+1,2𝑦1+2,··· ,2𝑦𝑁 +4𝑁−3,2𝑦𝑁 +4𝑁−2},X

)
,

(5.102)

where𝑈𝑇{2𝑦1+1,2𝑦1+2,··· ,2𝑦𝑁 +4𝑁−3,2𝑦𝑁 +4𝑁−2},X indicates the transpose of𝑈 with the rows not

indexed by {2𝑦1 + 1, 2𝑦1 + 2, · · · , 2𝑦𝑁 + 4𝑁 − 3, 2𝑦𝑁 + 4𝑁 − 2} and columns not indexed

by X. Note that this is a degree 𝑁 polynomial in the entries of𝑈 .

Proof. To derive this polynomial, we introduce the convenient notation for |Ψin⟩:

|Ψin⟩ =
1

√
2𝑁

∑︁
X∈Cin

|Y⟩ , (5.103)

where Cin is a collection of subsets of [4𝑁 ] that appear in the decomposition of |Ψin⟩.

Note that from the definition of |Ψin⟩ it follows that subsets are labelled by bitstrings

x = (𝑦1, . . . , 𝑦𝑁 ), where 𝑦𝑖 ∈ {0, 1} labels which pair of the neighbouring physical modes

are occupied in a given quadropule of modes. For 𝑁 = 2 we have four possible subsets

belonging to Cin

Y00 = {1, 2, 5, 6} , Y01 = {1, 2, 7, 8} , Y10 = {3, 4, 5, 6}, Y11 = {3, 4, 7, 8} . (5.104)

For general 𝑁 the collection Cin consists of the following subsets labelled by bitstrings x

Yy = {1+2𝑦1, 2+2𝑦1, 5+2𝑦2, 6+2𝑦2, . . . , 4𝑖−3+2𝑦𝑖, 4𝑖−2+2𝑦𝑖, . . . , 4𝑁−3+2𝑦𝑁 , 4𝑁−2+2𝑦𝑁 } .

(5.105)

We then write,

|Ψin⟩ =
1

√
2𝑁

∑︁
Y∈Cin

|Y⟩ (5.106)

=
1

√
2𝑁

∑︁
y∈{0,1}𝑁

��Yy
〉
, (5.107)
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where Cin consists of subsets labelled by bitstrings. Using the expression for the output

amplitude in Proposition 5.15 we write

⟨x|Πpas(𝑈 ) |Ψ⟩ = 1
√
2𝑁

∑︁
y∈{0,1}𝑁

det
(
𝑈X,Yy

)
(5.108)

=
1

√
2𝑁

∑︁
(𝑦1,··· ,𝑦𝑁 )∈{0,1}𝑁

× det
(
𝑈𝑇{2𝑦1+1,2𝑦1+2,··· ,2𝑦𝑁 +4𝑁−3,2𝑦𝑁 +4𝑁−2},X

)
,

(5.109)

where in the last line we have replaced the definition of Y𝑦 and also used the fact that

the determinant is invariant under the transpose. ■

For further clarity, we sketch the same result in second quantization. The input of

the scheme is given by [Iva17]

|Ψin⟩ =
1

√
2𝑁

1∑︁
𝑖1,··· ,𝑖𝑘=0

𝑓
†
2𝑖1+1𝑓

†
2𝑖1+2𝑓

†
2𝑖2+5𝑓

†
2𝑖2+6 · · · 𝑓

†
2𝑖𝑁 +4𝑁−3𝑓

†
2𝑖𝑁 +4𝑁−2 |0 · · · 0⟩ . (5.110)

Then, we have

⟨0|𝑓𝑞2𝑁 · · · 𝑓𝑞1𝑈 |Ψin⟩ =
1

√
2𝑁

1∑︁
𝑖1,··· ,𝑖𝑁=0

∑︁
𝜋∈𝑆2𝑁

𝑠𝑔𝑛(𝜋)𝑉2𝑖1+1,𝜋 (𝑞1)𝑉2𝑖1+2,𝜋 (𝑞2) · · ·𝑉2𝑖𝑁 +4𝑁−2,𝜋 (𝑞2𝑁 )

(5.111)

=
1

√
2𝑁

1∑︁
𝑖1,··· ,𝑖𝑁=0

det
(
𝑉{2𝑖1+1,2𝑖1+2,··· ,2𝑖𝑁 +4𝑁−2},{𝑞1,··· ,𝑞2𝑁 }

)
(5.112)

where 𝑆2𝑁 is the set of permutations over 2𝑁 elements. The expression in Eq. (5.102)

can be rewritten as

𝐷2,2(𝑣1, . . . , 𝑣4𝑁 ) =
1

√
2𝑁

∑︁
𝑖𝑘=0,1,
𝑘=1,...,𝑁

det



𝑣2𝑖1+1

𝑣2𝑖1+2

𝑣2𝑖2+5

𝑣2𝑖2+6
...

𝑣2𝑖𝑁 +4𝑁−3

𝑣2𝑖𝑁 +4𝑁−2



, (5.113)
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here 𝑣𝑘 correspond to the rows of the matrix 𝑈𝑇 in Eq. (5.109) with the columns not

indexed by x removed. This polynomial over entries of matrices of size 2𝑁 × 𝑁 was

found to be #P-hard to compute in the general case [Iva17]. This was proven by reducing

the computation of the permanent of a weighted adjacency matrix to these polynomials

of a transformed adjacency matrix with polynomial overhead.

Remark 5.17. For the hardness of sampling what is actually required is the #P-hardness

of computing the square of the amplitude. In [Iva17] the permanents used only in-

volved positive numbers and thus there is no issue in establishing #P-hardness for the

probabilities.

Next we turn to studying the output probabilities after an active FLO evolution. It

will be useful to introduce the following notation: given a set of (majorana) indices

A = {𝑎1, 𝑎2, . . . 𝑎𝑘} ⊂ [2𝑑] (with 𝑎𝑖 < 𝑎 𝑗 if 𝑖 < 𝑗), we define

𝑚A =𝑚𝑎1𝑚𝑎2 · · ·𝑚𝑎𝑘 . (5.114)

These majorana monomials define an orthogonal (but not orthonormal) basis in the space

of operators with respect to the Hilbert-Schmidt scalar product

tr
(
𝑚A𝑚

†
B

)
= (−1) 𝑓 ( |B|) tr(𝑚A𝑚B) = 𝛿A,B

1
2𝑑
, (5.115)

where 𝑓 (𝑛) = 1 if (𝑛 mod 4) ∈ {2, 3} and 𝑓 (𝑛) = 0 otherwise.

Consider a subset A = 𝑎1, 𝑎2 . . . 𝑎𝑘 ⊂ [2𝑑] (with 𝑎𝑖 < 𝑎 𝑗 if 𝑖 < 𝑗), then from

Eq. (5.15) and the majorana anticommutation relations it follows for 𝑂 ∈ SO(2𝑑) that

Πact(𝑂)𝑚AΠact(𝑂)†

=

𝑑∑︁
𝑏1,...𝑏𝑘=1

𝜖𝑏1,𝑏2,...,𝑏𝑘𝑂𝑎1,𝑏1𝑂𝑎2,𝑏2 · · ·𝑂𝑎𝑘 ,𝑏𝑘𝑚{𝑏1,...𝑏𝑘 } .
(5.116)

Proposition 5.18 (Degrees of polynomials describing probabilities associated to

active FLO circuits.). Consider a state |Ψ⟩ ∈. For an arbitrary 𝑂 ∈ SO(2𝑑) the

outcome probability 𝑝x(Πact(𝑂),Ψ) = | ⟨x| Πact(𝑂) |Ψ⟩ |2 is a degree 𝑑 polynomial in

the entries of 𝑂 .
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Proof. Let us consider the expansion of |x⟩⟨x| and Ψ in terms of majorana monomials

|x⟩⟨x| =
∑︁

A⊂[𝑑]
(𝑎A𝑚A + 𝑏A 𝑄𝑚A) ,

Ψ =
∑︁
B⊂[𝑑]

(𝑐B𝑚B + 𝑑B 𝑄𝑚B).
(5.117)

Using this and Eqs. (5.115) and (5.116) can now write the outcome probability as

𝑝x(Πact(𝑂),Ψ) = tr
(
|x⟩⟨x| Πact(𝑂)ΨΠact(𝑂)†

)
=

∑︁
A,B⊂[𝑑]

𝑎A𝑐B tr
(
𝑚AΠact(𝑂)𝑚BΠact(𝑂)†

)
+ 𝑏A𝑑B tr

(
𝑄𝑚AΠact(𝑂)𝑄𝑚BΠact(𝑂)†

)
=

𝑑∑︁
𝑘=0

∑︁
A,B⊂[𝑑]
|A|=|B|=𝑘

𝑤A,B

𝑑∑︁
ℓ1,...ℓ𝑘=1

𝜖ℓ1,ℓ2,...,ℓ𝑘𝛿A,{ℓ1,...,ℓ𝑘 }𝑂𝑏1,ℓ1𝑂𝑏2,ℓ2 · · ·𝑂𝑏𝑘 ,ℓ𝑘 ,

(5.118)

where𝑤A,B =
(−1) 𝑓 ( |𝐴 | )

2𝑑 (𝑎A𝑐B + (−1)𝑘𝑏A𝑑B). Since each term in the sum is a degree

𝑑 or less polynomial in the entries of 𝑂 the theorem is proved. ■

Definition 5.19 (Degree of rational functions). Let 𝑃 (𝜃 ), 𝑄 (𝜃 ) be polynomials of

degree 𝑑1 and 𝑑2 respectively. Let 𝑅(𝜃 ) = 𝑃 (𝜃 )
𝑄 (𝜃 ) be the corresponding rational function.

Assume that that 𝑃 and 𝑄 do not have non-constant polynomial divisors. Then, we

define rational degree of 𝑅 as the pair deg(𝑅) = (𝑑1, 𝑑2)

The following results states that FLO circuit representations of elements of the

appropriate symmetry group 𝐺 , when evaluated on Cayley paths, give rise to outcome

probabilities that are rational functions of low degree (in number of modes 𝑑 and number

of particles 𝑛).

Lemma 5.20 (Degrees of rational functions describing probabilities associated to

interpolation of FLO circuits). Let 𝐺 be equal to U(𝑑) or SO(2𝑑). Let 𝑔0, 𝑔 ∈ 𝐺
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be a fixed elements of the group 𝐺 . Consider a rational path in the group defined by

interpolation via Cayley path

𝑔𝜃 = 𝑔0𝐹𝜃 (𝑔) , 𝜃 ∈ [0, 1] . (5.119)

Let now Π : 𝐺 → U(H) be the appropriate representation of 𝐺 describing appropriate

class of FLO circuits (𝐺 = U(𝑑), Π = Πpas, H =
∧𝑛 (C𝑑) for passive FLO and

𝐺 = SO(2𝑑), Π = Πact, H = H+
Fock(C

𝑑) for active FLO). Let us fix |Ψ⟩ ∈ H and a Fock

state |x⟩ ∈ H . Then the outcome probability

𝑅𝑔0,𝑔 (𝜃 ) = tr
(
|x⟩⟨x| Π(𝑔𝜃 )𝜌Π(𝑔𝜃 )†

)
(5.120)

viewed as a function of parameter 𝜃 is a rational function of degrees

Passive FLO: deg(𝑅𝑔0,𝑔) = (2𝑑𝑛, 2𝑑𝑛) ,

Active FLO: deg(𝑅𝑔0,𝑔) = (2𝑑2, 2𝑑2)
(5.121)

Moreover the denominator of the rational functions are given by

Passive FLO: 𝑄𝑔 (𝜃 ) =
𝑑∏
𝑗=1

(1 + 𝜃 2 tan2(𝜙 𝑗/2))𝑛 ,

Active FLO: 𝑄𝑔 (𝜃 ) =
𝑑∏
𝑗=1

(1 + 𝜃 2 tan2(𝜙 𝑗/2))𝑑 ,
(5.122)

where 𝜙 𝑗 , 𝑗 ∈ [𝑑] are phases of generalized eigenvalues of matrix 𝑔 belonging to the

suitable group 𝐺 and thus 𝑄𝑔 (𝜃 ) can be efficiently computed (see Section 5.6).

Proof. We begin by proving the passive FLO case. Recall from Eq. (5.68) that 𝑔𝜃

was expressed as a matrix with entries of degree (𝑑, 𝑑) on 𝜃 . By virtue of Proposition

5.15, we know that 𝑝x(Πpas(𝑔𝜃 ),Ψ) = 𝑅𝑔0,𝑔 (𝜃 ) is a polynomial of degree 2𝑛 on the

entries of 𝑔𝜃 which immediately implies the degree on 𝜃 is deg(𝑅𝑔0,𝑔) = (2𝑑𝑛, 2𝑑𝑛). The

denominator of the rational functions in 𝑔𝜃 is given by Eq. (5.69), from the expression

for the amplitude in Proposition 5.15, we know that the denominator in 𝑅𝑔0,𝑔 must be of

the form
��Q𝑔 (𝜃 )𝑛��2 which gives the result form

∏𝑑
𝑗=1(1 + 𝜃 2 tan2(𝜙 𝑗/2))𝑛 .
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For the active case, we obtain from Eq. (5.73) that 𝑔𝜃 is a matrix with entries that are

polynomials of degree (2𝑑, 2𝑑). Then by Proposition 5.18, 𝑝x(Πact(𝑔𝜃 ),Ψ) is of degree 𝑑

on the entries of 𝑔𝜃 implying deg(𝑅𝑔0,𝑔) = (2𝑑2, 2𝑑2). The denominator𝑄𝑔 (𝜃 ) is obtained

by noting that the expression in Eq. (5.75) for Q𝑔 (𝜃 ) appears as the denominator in each

entry of 𝑔𝜃 and by Proposition 5.18 the degree on this denominator is 𝑑, thus proving

the result. ■

5.7 Robust average-case hardness of output

probabilities

In this part we give strong evidence for the Conjecture 1 used to show classical hardness

of sampling from fermionic linear circuits initialized in |Ψin⟩ (cf. Theorem 5.10). There

we conjectured that it is #P-hard to approximate probabilities 𝑝x(𝑉 ,Ψin) = | ⟨x|𝑉 |Ψin⟩ |2

of generic FLO circuits initialized in |Ψin⟩ to relative error. To support the conjecture

we prove weaker theorems showing average-case #P hardness of exact computation

of 𝑝x(𝑉 ,Ψin) (Theorem 5.22) and extend it further to average-case #P-hardness of

approximating 𝑝 (x|𝑉 ,Ψin) up to error 𝜖 = exp
(
−Θ(𝑁 7)

)
(Theorem 5.27), where 𝑁 is

the number of states |Ψ4⟩ used.

We will use the interpolation technique by [Mov19] on the polynomials obtained

in Section 5.6 by using the Cayley transform. Since passive and active FLO circuits

form representations of U(𝑑) and SO(2𝑑) the Cayley mapping will apply to both cases

and we will obtain low-degree polynomials for the output probabilites. We will need

the following result that guarantees that it is possible to recover an unknown rational

function 𝐹 (𝜃 ) from a set of its values at different points, even if some of the evaluation

are erroneous.

We will consider an element 𝑔0 ∈ 𝐺 represented by a circuit 𝑉0 = Π(𝑔0), such that

the output probability 𝑝x0 (𝑉0,Ψin) is #P-hard to compute for x0 an specific output state

and input |Ψin⟩ = |Ψ4⟩⊗𝑁 , for |Ψ4⟩ = ( |0011⟩ + |1100⟩)/
√
2. We will use the Cayley path
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interpolation between such 𝑔0 and a generic element 𝑔.

𝑔𝜃 = 𝑔0𝐹𝜃 (𝑔) , 𝑔 ∼ 𝜇𝐺 . (5.123)

Let 𝜇𝜃
𝐺

be the distribution of 𝑔𝜃 obtained by picking 𝑔 ∼ 𝜇𝐺 and then generating 𝑔𝜃

as in Eq. (5.123). In Lemma 5.12 we proved bounds for the total variation distances

∥𝜇𝐺 − 𝜇𝜃
𝐺
∥TVD, according to this bounds we need to chosse 𝜃 close to 1 in order to obtain

a probability distribution close to Haar random. These bounds can be directly translated

to bounds between FLO circuits. Let𝑉𝜃 = Π(𝑔𝜃 ) and let 𝜈𝜃
𝐺

denote the distribution of the

corresponding quantum circuits obtained by appropriate representation Π of 𝐺 . Since

distribution of the Haar random FLO circuits 𝜈pas, 𝜈pas are obtained in exactly the same

way we get from the monotonicity of TV distance (cf. Section 5.2).


𝜈pas − 𝜈𝜃pas


TVD ≤ 8𝑁 2Δ ,


𝜈act − 𝜈𝜃act


TVD ≤ 8𝑁 2Δ ,
(5.124)

where 𝜃 ∈ [1 − Δ, 1]. From Lemma 5.20 we know that the output probabilities 𝑅(𝜃 ) =

tr
(
|x0⟩⟨x0 | Π(𝑔𝜃 )𝜌Π(𝑔𝜃 )†

)
can be written explicitly as rational functions of the parameter

𝜃 with degrees

Passive FLO: deg(𝑅) = (16𝑁 2, 16𝑁 2) ,

Active FLO: deg(𝑅) = (32𝑁 2, 32𝑁 2) .
(5.125)

Finally, the interpolation method we use for our rational functions is given in the next

theorem.

Theorem 5.21 (Berlekamp-Welch for rational functions [Mov19]). Let 𝑅(𝜃 ) be a

rational function of degree deg(𝑅) = (𝑑1, 𝑑2), where 𝑑1 is the degree of the numerator

and 𝑑2 the degree of the denominator. A set of points S = {(𝜃1, 𝑟1), (𝜃2, 𝑟2), . . . , (𝜃𝐿, 𝑟𝐿)}

specifies 𝑅(𝜃 ) uniquely provided 𝐿 > 𝑑1 + 𝑑2 + 2𝑡 , where

|{ 𝑖 ∈ [𝐿] | 𝑅(𝜃𝑖) ≠ 𝑟𝑖}| ≤ 𝑡 . (5.126)

Moreover, 𝑅(𝜃 ) can be recovered in polynomial time in 𝐿 and deg(𝑅), when S is given.
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With all this in place, we can now turn to show the average to worst-case reduction.

Theorem 5.22 (Average-case #P-hardness of computation of outcome probabil-

ities of FLO circuits). Let 𝑉0 be a FLO circuit such that computing 𝑝x0 (𝑉0,Ψin) =

|⟨x0 |𝑉0 |Ψin⟩|2 is #P-Hard, where 𝑉0 is element of either passive or active FLO circuits

and the output Fock state |x0⟩ belongs to the suitable Hilbert space Hpas =
∧2𝑁 (C4𝑁 )

for passive FLO and Hact = H+
Fock(C

4𝑁 ), respectively.

Then it is #P-Hard to compute 𝑝x0 (𝑉 ,Ψin) = |⟨x0 |𝑉 |Ψin⟩|2 with probability 𝛼 > 3
4+𝛿 ,

𝛿 = 1
poly𝑁 , over the the uniform distribution of circuits: 𝑉 ∼ 𝜈pas for passive FLO and

𝑉 ∼ 𝜈act for active FLO.

Remark 5.23. Due to hiding property (see Lemma 5.8 both active and passive FLO

gates can permute between possible output Fock states |x⟩ in Hpas =
∧2𝑁 (C4𝑁 ) and

Hact = H+
Fock(C

4𝑁 ), respectively. Therefore, using the invariance of the Haar measure

on𝐺 , we can transform x0 above into any other output x satisfying |x| = 2𝑁 (for passive

FLO) and |x| even (for active FLO).

Proof. Throughout this proof we will work with the fixed group 𝐺 which will either

stand for U(𝑑) or SO(2𝑑), the steps will be the same in both cases. Consider an oracle O

which, when given as input the description of a FLO circuit Π(𝑔) representing a group

element 𝑔 ∈ 𝐺 , computes exactly the quantity |⟨x0 | Π(𝑔) |Ψin⟩|2 with high probability

over the group elements 𝑔.

Pr
𝑔∼𝜇𝐺

[
O(Π(𝑔)) = |⟨x0 | Π(𝑔) |Ψin⟩|2

]
> 𝛼 . (5.127)

The uniform distribution of FLO circuits 𝜈𝐺 is obtained by setting 𝑉 = Π(𝑔), where

𝑔 ∼ 𝜇𝐺 (recall that 𝜈𝐺 = 𝜈pas for 𝐺 = U(4𝑁 ) and 𝜈𝐺 = 𝜈act for 𝐺 = SO(8𝑁 )). Therefore

Eq. (5.127) is equivalent to

Pr
𝑉∼𝜈𝐺

[
O(𝑉 ) = |⟨x0 |𝑉 |Ψin⟩|2

]
> 𝛼 . (5.128)

We will argue that oracle O is able to compute output probabilities even when they are

#P-hard, in polynomial time. We will follow the worst-to-average-case reduction from

[AA11] and modify it accordingly for the rational interpolation technique in [Mov19].
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For the rational interpolation, consider 𝑔𝜃 = 𝑔0𝐹𝜃 (𝑔) where 𝑔0 will be a group

element giving rise to a #P-hard worst-case circuit. That such circuits exist can be

seen from the fact that the input states |Ψin⟩ make the circuit universal, moreover, in

Appendix A.1 we argue that we only require shallow depth to implement these worst-

case circuits. We will call the oracle O on 𝐿 times, each time with different randomly

picked Π(𝑔𝜃1),Π(𝑔𝜃2), · · · ,Π(𝑔𝜃𝐿 ), where 𝜃𝑖 ∈ [1 − Δ, 1]. Then, we can interpolate

the polynomial using the Berlekamp-Welch algorithm for 𝑅(𝜃 ) = |⟨x0 | Π(𝑔𝜃 ) |Ψin⟩|2

(see Theorem 5.21). Once we have interpolated the polynomial we can then evaluate

𝑅(0) = |⟨x0 |𝑉0 |Ψin⟩|2, where 𝑉0 = Π(𝑔0).

Since we are sampling from 𝜈𝜃
𝐺

instead of the Haar random distribution 𝜈𝐺 , we need

to estimate the deviation from the ideal distribution. We have done this in the bounds

from Eq. (5.124) which gives

Pr
𝑉∼𝜈𝐺

[
O(𝑉 ) = |⟨x0 |𝑉 |Ψin⟩|2

]
− Pr
𝑉∼𝜈𝜃

𝐺

[
O(𝑉 ) = |⟨x0 |𝑉 |Ψin⟩|2

]
≤ 𝐶𝑁 2Δ . (5.129)

Where 𝐶 = 8. Combining the above with Eq. (5.128) we get

Pr
𝑉∼𝜈𝜃

𝐺

[
O(𝑉 ) = |⟨x0 |𝑉 |Ψin⟩|2

]
≥ 𝛼 −𝐶𝑁 2Δ . (5.130)

Or equivalently, by noting that 𝑉 = Π(𝑔𝜃 ) due to the definition of 𝜈𝜃
𝐺

,

Pr
𝑔∼𝜇𝐺

[
O(Π(𝑔𝜃 )) = |⟨x0 | Π(𝑔𝜃 ) |Ψin⟩|2

]
≥ 𝛼 −𝐶𝑁 2Δ . (5.131)

According to the Berlekamp-Welch algorithms we must evaluate the rational polynomial

𝑅(𝜃 ) in 𝐿 > 𝑑1 + 𝑑2 + 2𝑡 points. Where 𝑡 are points where the polynomial is evaluated

incorrectly. We have already computed the degrees of the numerator and denominator

for 𝑅(𝜃 ) in (5.125), which gives 𝑑1 + 𝑑2 = Θ(𝑁 2). We shall now estimate the number of

errors which would make the interpolation method fail. Define the set of 𝜃𝑖 that make

the oracle give a wrong answer for a given 𝑔 ∈ 𝐺 , the number of such 𝜃𝑖 is

𝑡 (𝑔) =
��{𝜃𝑖 | O(Π(𝑔𝜃𝑖 )) ≠ | ⟨x0 | Π(𝑔𝜃𝑖 ) |Ψin⟩ |2, 𝑖 ∈ [𝐿]

}�� . (5.132)
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From the definition of 𝑡 and the inequality (5.131) it follows that E𝑔∼𝜇𝐺 𝑡 (𝑔) ≤ [1 − 𝛼 +

𝐶𝑁 2Δ]𝐿, since 𝑡 (𝑔) follows the binomial distribution. Using this estimate in Markov

inequality (recall that by assumption 𝛼 > 3
4 + 𝛿 , for 𝛿 = 1

poly𝑁 ) we get

Pr
𝑔∼𝜇𝐺

[
𝑡 (𝑔) > 𝐿 − 𝑑1 − 𝑑2

2

]
≤ [1 − 𝛼 +𝐶𝑁 2Δ]𝐿

𝐿−𝑑1−𝑑2
2

≤
1
4 − 𝛿 +𝐶𝑁

2Δ

1
2 −

𝑑1+𝑑2
2𝐿

.

(5.133)

By choosing Δ and 𝐿 such that 𝐶𝑁 2Δ ≤ 𝛿
2 and 𝑑1+𝑑2

2𝐿 ≤ 𝛿
4 (this can be done with

Δ = 1
poly𝑁 and 𝐿 = poly𝑁 because 𝑑1 + 𝑑2 = Θ(𝑁 2)), we obtain

Pr
𝑔∼𝜇𝐺

[
𝑡 (𝑔) > 𝐿 − 𝑑1 − 𝑑2

2

]
≤

1
4 −

𝛿
2

1
2 −

𝛿
4
≤ 1

2
− 𝛿

4
. (5.134)

The leftmost part of the above inequality is the probability of failure of our protocol.

Therefore, since 𝛿 = 1
poly𝑁 , we can repeat the procedure polynomially many number of

times, for different choices of Π(𝑔), compute 𝑅Π(𝑔) (0) each time, and output the major-

ity vote. The probability of successfully computing the right result (i.e., |⟨x0 |𝑉0 |Ψin⟩|2)

can be made exponentially close to 1 in this way. ■

We have chonse the #P-hardness of computing exactly the output probability dis-

tributions over a fraction of the circuit instances. Now we move into showing that

this problem stays hard when approximating the output probabilities. To show this

robustness, we will some known results from the theory of polynomials.

Lemma 5.24 (Paturi lemma [Pat92]). Let 𝑃 (𝜃 ) be a polynomial of degree 𝑘 and

suppose that |𝑃 (𝜃 ) | ≤ 𝜖 for 𝜃 ∈ [1 − Δ, 1], Δ ∈ (0, 1]. Then

𝑃 (0) ≤ 𝜖 exp
(
4𝑘 (1 + Δ−1)

)
. (5.135)

Theorem 5.25 (Values of polynomials bounded at equally spaced points [CR92]).

Let 𝜃𝑖 , 𝑖 = 1, . . . , 𝐿 be a collection of 𝐿 equally spaced points in the interval [1 − Δ, 1],

Δ ∈ (0, 1). Let 𝑃 (𝜃 ) be a polynomial of degree 𝑘. Assume that for every 𝑖, |𝑃 (𝜃𝑖) | ≤ 𝜖.
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Then there exist absolute constants 𝑎, 𝑏 > 0 such that

max
𝜃∈[1−Δ,1]

|𝑃 (𝜃 ) | ≤ 𝜖 exp
(
𝑏
𝑘2

𝐿
+ 𝑎

)
. (5.136)

These theorems will be key in the proof of robustness, as they will allow to bound the

error at 𝜃 = 0. We recall here that the output probability 𝑅𝑔0,𝑔 (𝜃 ) = |⟨x0 | Π(𝑔𝜃 ) |Ψin⟩|2

for passive or active FLO is

𝑅𝑔0,𝑔 (𝜃 ) =
𝐷𝑔0,𝑔 (𝜃 )
𝑄𝑔 (𝜃 )

, (5.137)

where we have shown in Lemma 5.20 that the degrees of the numerator and denominator

are 𝐷𝑔0,𝑔 = 𝑑1 = Θ(𝑁 2), 𝑄𝑔 = 𝑑2 = Θ(𝑁 2), moreover it can be seen from the proof that

these are computable in polynomial time. Finally, we will need the following Corollary

Corollary 5.26. Let 𝑔 ∈ 𝐺 and let 𝑄𝑔 (𝜃 ) be the polynomial in defined in (5.122) for

𝐺 = U(𝑑) in 𝐺 = SO(2𝑑). Assume that 𝑛 = 2𝑁 , 𝑑 = 4𝑁 . Let now Δ̃ > 0. We then have

the following inequalities

Pr
𝑔∼𝜇U(𝑑 )

©­«𝑄𝑔 (𝜃 ) ≤
[
1 +

(
𝜃𝜋

Δ̃

)2]16𝑁 2 ª®¬ ≥ 1 − 4𝑁
Δ̃

𝜋
, (5.138)

Pr
𝑔∼𝜇SO(2𝑑 )

©­«𝑄𝑔 (𝜃 ) ≤
[
1 +

(
𝜃𝜋

Δ̃

)2]32𝑁 2ª®¬ ≥ 1 − 4𝑁
Δ̃

𝜋
. (5.139)

Proof. We will show the passive case as the active case is identical. In Lemma 5.20 we

show that 𝑄𝑔 (𝜃 ) =
��Q𝑔 (𝜃 )𝑛��2, since Q𝑔 (𝜃 ) appears as the denominator in the entries of

𝑔𝜃 . Then, by Lemma 5.13 the result follows. ■

We mow proceed to prove the main theorem regarding the robustness of our sampling

scheme.

Theorem 5.27 (Average-case #P-hardness of approximation outcome probabili-

ties of FLO circuits). Let 𝑉0 be a FLO circuit such that computing 𝑝x0 (𝑉0,Ψin) =

|⟨x0 |𝑉0 |Ψin⟩|2 is #P-Hard, where 𝑉0 is element of either passive or active FLO circuits

and the output Fock state |x0⟩ belongs to the suitable Hilbert space Hpas =
∧2𝑁 (C4𝑁 )

for passive FLO and Hact = H+
Fock(C

4𝑁 ), respectively.
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Let 𝜖 = exp
(
−Θ(𝑁 6)

)
. Then it is #P-Hard to compute 𝑝x0 (𝑉 ,Ψin) = |⟨x0 |𝑉 |Ψin⟩|2

to accuracy 𝜖 with probability 𝛼 > 1 − 𝛿 , 𝛿 = 𝑜 (𝑁 −2), over the the uniform distribution

of circuits: 𝑉 ∼ 𝜈pas for passive FLO and 𝑉 ∼ 𝜈act for active FLO.

Proof. Once again we use 𝐺 to denote either U(𝑑) or SO(2𝑑) with 𝑑 = 4𝑁 . As in Theo-

rem 5.22, we define assume there is an oracle O which when given a description of an

FLO circuit Π(𝑔), it approximates the ourput probability 𝑝x0 (𝑉 ,Ψin) = |⟨x0 | Π(𝑔) |Ψin⟩|2

with high probability, i.e.,

Pr
𝑔∼𝜇𝐺

[��O(Π(𝑔)) − | ⟨x0 | Π(𝑔) |Ψin⟩ |2
�� ≤ 𝜖] > 1 − 𝛿 . (5.140)

When translated to circuits, we have

Pr
𝑉∼𝜈𝐺

[��O(𝑉 ) − | ⟨x0 |𝑉 |Ψin⟩ |2
�� ≤ 𝜖] > 1 − 𝛿 . (5.141)

Once again we consider a deformation path where 𝑔𝜃 = 𝑔0𝐹𝜃 (𝑔) where 𝑔0 is a #P-hard

instance and 𝑔 ∈ 𝐺 is Haar random. We pick 𝜃𝑖 for 𝑖 = 1, · · · , 𝐿 equally distributed

points in [1 − Δ, 1]. As in Theorem 5.22, we obtain that ∀𝜃𝑖 ∈ [1 − Δ, 1]

Pr
𝑔∼𝜇𝐺

[��O(Π(𝑔𝜃𝑖 )) − | ⟨x0 | Π(𝑔𝜃𝑖 ) |Ψin⟩ |2
�� ≤ 𝜖] > 1 − 𝛿 − 8Δ𝑁 2 , (5.142)

In Eq. (5.137) we gave the expression for the rational polynomial 𝑅𝑔0,𝑔. The numer-

ator 𝐷𝑔0,𝑔 (𝜃 ) is of degree Θ(𝑁 2). As explained previously, the denominator 𝑄𝑔 (𝜃 ) is

efficiently computable, this allows to construct an oracle Õ from O which computes

approximations of the numerator 𝐷𝑔0,𝑔 (𝜃 ) with high probability.

Pr
𝑔∼𝜇𝐺

[
|Õ (Π(𝑔𝜃𝑖 )) − 𝐷𝑔0,𝑔 (𝜃𝑖) | ≤ 𝜖𝑄𝑔 (𝜃𝑖)

]
> 1 − 𝛿 − 8Δ𝑁 2 , (5.143)

Now we can apply the bound from Corollary 5.26

Pr
𝑔∼𝜇𝐺

𝑄𝑔 (𝜃 ) ≤
[
1 +

(
𝜃𝜋

Δ̃

)2]16𝑁 2 ≥ 1 − 4𝑁
Δ̃

𝜋
, (5.144)

and since 1 + 𝑥 ≤ 𝑒𝑥 and 𝜃 ≤ 1 we have that

Pr
𝑔∼𝜇𝐺

[
𝑄𝑔 (𝜃 ) ≤ exp

(
𝐴

Δ̃2
𝑁 2

)]
≥ 1 − 4𝑁

Δ̃

𝜋
, (5.145)
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where Δ̃ > 0 and 𝐴 is a numerical constant which depends on whether 𝐺 = U(4𝑁 ) or

𝐺 = SO(8𝑁 ). Now call A the event that |Õ (Π(𝑔𝜃𝑖 )) − 𝐷𝑔0,𝑔 (𝜃𝑖) | ≤ 𝜖𝑄𝑔 (𝜃𝑖) and B the

event that 𝑄𝑔 (𝜃 ) ≤ exp
(
𝐴

Δ̃2𝑁
2
)
, then Pr(A ∩ B) ≥ Pr(A) + Pr(B) − 1. Thus,

Pr
𝑔∼𝜇𝐺

[
|Õ (Π(𝑔𝜃𝑖 ))−𝐷𝑔0,𝑔 (𝜃𝑖) | ≤ 𝜖 exp

(
𝐴

Δ̃2
𝑁 2

)]
> 1 − 𝛿 − 8Δ𝑁 2 − 4𝑁

Δ̃

𝜋
, (5.146)

We finally use union bound lower to bound the probability that Õ is successful for all 𝐿

equally spaced 𝜃𝑖 in [1 − Δ, 1]:

Pr
𝑔∼𝜇𝐺

[
∀𝜃𝑖 |Õ (Π(𝑔𝜃𝑖 )) − 𝐷𝑔0,𝑔 (𝜃𝑖) | ≤ 𝜖 exp

(
𝐴

Δ̃2
𝑁 2

)]
> 1 − 𝐿(𝛿 + 8Δ𝑁 2 + 4𝑁

Δ̃

𝜋
),

(5.147)

As argued previously, we set 𝐿 = Θ(𝑁 2) for the interpolation of a poynomial 𝑃𝑔0,𝑔 passing

through points (𝜃𝑖, Õ(Π(𝑔𝜃𝑖 ))) and having identical degree to 𝐷𝑔0,𝑔. By Theorem 5.25,

if the event on the left side of Eq. (5.147) is obtained, then

max
𝜃∈[1−Δ,1]

��𝑃𝑔0,𝑔 (𝜃 ) − 𝐷𝑔0,𝑔 (𝜃 )��
≤ 𝜖 exp

(
𝐴

Δ̃2
𝑁 2

)
exp

(
Θ(𝑁 2)

)
= 𝜖 exp

(
Θ(𝑁 2)
Δ̃2

)
.

(5.148)

Where in using Theorem 5.25 we have set 𝑃𝑔0,𝑔 (𝜃 ) − 𝐷𝑔0,𝑔 (𝜃 ) as the polynomial, 𝑘 =

Θ(𝑁 2) and 𝐿 = Θ(𝑁 2). Finally, we apply Lemma 5.24 for the polynomial 𝐷̃𝑔0,𝑔 (𝜃 ) −

𝐷𝑔0,𝑔 (𝜃 ) we finally obtain���𝑃𝑔0,𝑔 (0) − 𝐷𝑔0,𝑔 (0)��� ≤ 𝜖 exp
(
Θ(𝑁 2)
Δ̃2

+ Θ(𝑁 2) (1 + Δ−1)
)

(5.149)

To sum up, the initially assumed oracle O allows us to construct an efficient algorithm

A that approximately computes #P-hard quantity 𝐷𝑔0,𝑔 (0) = 𝑄𝑔 (𝜃 ) |⟨x0 | Π(𝑔0) |Ψin⟩|2:

Pr
𝑔∼𝜇𝐺

[��A(Π(𝑔)) − 𝐷𝑔0,𝑔 (0) |
�� ≤ 𝜖]

> 1 − 𝐵𝑁 2
(
𝛿 + 8Δ𝑁 2 + 4𝑁

Δ̃

𝜋

)
,

(5.150)
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where 𝜖 = 𝜖 exp
(
Θ(𝑁 2)
Δ̃2 + Θ(𝑁 2) (1 + Δ−1)

)
, and 𝐵 > 0 is a numerical constant. Success

probability of the protocol exceeds 1
2 with the following scaling

Δ = Θ(𝑁 −4) , Δ̃ = Θ(𝑁 −3) . (5.151)

From the result of [DGGJ00] we have #P hardness guarantees up to constant multiplica-

tive error. Since for #P-hard quantity this such error implies additive error of magnitude

at most 2−Θ(𝑁 ) . Therefore by setting 𝜖 ≤ 2−Θ(𝑁 ) which, by the virtue of Eq.(5.151)

corresponds to a scaling of the original error 𝜖 = exp
(
−Θ(𝑁 7)

)
. ■

Since the publication of this work, the exponent in the error of RCS has been

improved [BFLL22, KMM22] with techniques that could apply. More recently, it has

been claimed [Kro22] that the error could scale as 2−𝑂 (𝑚) where 𝑚 is the number of

gates, whether this technique would apply for our scheme remains open.

5.8 Conclusion

In this work we have shown that FLO circuits when provided suitable inputs are able to

provide a sampling quantum advantage with similar hardness guarantees as in Random

Circuit Sampling and in Boson Sampling. In contrast to Boson Sampling, we are able

to show anticoncentration. Then, we show the likely classical intractability of our

Fermionic sampling task based on two plausible conjectures. We provide support for

one of these conjectures by proving a weaker result, namely, we show that computing

approximations of output probabilities is #P-hard up to 2−Θ(𝑁 ) additive error.

An interesting open question is if anticoncentration can be obtained in logarith-

mic depth with matchgate circuits. We have performed some initial numerical studies

[ODMZ22] which give evidence that logarithmic depth should be enough for anticon-

centration. Another important open question is whether the error can be improved to

show hardness, this is in fact one of the central questions in this area for all sampling

schemes.
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Part III

Improved Product Formulae
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Chapter 6

Improved Product Formulae for

Quantum Simulation

This chapter is based on work in [MCB+22]. This is work done in collaboration with

Pedro C.S. Costa, Daniel K. Burgarth, Yuval R. Sanders and Dominic W. Berry. We

improve over previous methods to implement product formulae of 8th and 10th order.

We compare numerically the performance of previous methods with ours and find that

8th order product formulae may be the best option in quantum chemistry.

In this work I contributed in the idea, writing and numerics. All the theorems,

lemmas and corollaries included are stated as in [MCB+22] and also the figures. Not

much is changed from the original publication as much of the writing was done by

myself with corrections from my coauthors. Those parts written by coauthors have not

been included in this chapter.

6.1 Introduction

Trotter formulae are expected to be relevant for both noisy intermediate-scale quantum

computation and fault-tolerant computation. It is then of great importance to seek

efficient implementations of product formulae (PF) as it can have a great impact on
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the efficiency of Hamiltonian simulation algorithms in practice. In Section 2.4.1 we

introduced the basic Lie-Trotter formula which was first applied for quantum simulation

in [Llo96]. Later work considered the broader class of sparse Hamiltonians [ATS03]

and further work has focused on improving this simulations in terms of queries to the

simulated Hamiltonian [BACS07, BC12, BCC+14, BCK15, Low19].

Recent results have shown that despite its simplicity, the Lie-Trotter product formula

can compete with other Hamiltonian simulation algorithms due to the low error that

it achieves in practice [CST+21]. Methods based on linear combinations of unitaries

[CW12, BCC+15] or quantum signal processing [LC17b] give complexity logarith-

mic in the inverse error, but the error is not required to be extremely small, meaning

those methods do not provide as large an advantage as might be expected. Product

formula error bounds can be further improved by considering particular physical systems

[BMW+15, CMN+18, SHC21] or leveraging randomization [Zha12, Cam19, COS19].

Trotter formulae are expected to be relevant for both noisy intermediate-scale quantum

computation and fault-tolerant computation, any improvements in their implementation

will have great impact on the efficiency of Hamiltonian simulation algorithms..

The error in the implementation of product formulae can be improved by using

higher-order product formulae, like those given by Suzuki’s method [Suz90, Suz91].

This method has the advantage that it can give arbitrary high-order scaling 𝑂 (𝑡𝑘). The

downside of the Suzuki method to generate higher-order formulae is that the number of

exponential operators to implement it grows very rapidly. Suzuki’s product formulae

are usually assumed in quantum computing, but they can be greatly improved upon. An

alternative method by Yoshida [Yos90] can be used to obtain product formulae with a

smaller number of exponentials. This method is based on an ansatz written as the product

of symmetric product formulae of 2nd order, then by imposing certain conditions on

this ansatz a set of polynomial equations is obtained in terms of some free parameters

that define the product formula. Solving these polynomial equations in terms of the

free parameters requires using numerical methods. Yoshida gives what appears to be

all 6th order solutions but only some 8th order integrators, and did not consider any
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orders beyond that. That work from 1990 was limited by computing power, because

it requires numerical solution of a system of nonlinear equations. More recent work

[KL97, SS05, BCM08, BCM06] has pushed the search to higher orders, new methods

such as post-processing have been devised which allow high-order product formulae

with fewer use of exponentials asymptotically.

The objective of this work is to perform a comparison of several high-order product

formulae which could be useful for Hamiltonian simulation applications and propose

new product formulae that improve over previous ones. We have also extended Yoshida’s

method to derive a set of polynomial equations that need to be satisfied for a 10th order

product formula. Our method for generating higher-order product formulae is based on

a Taylor expansion of the exponential operators in a PF and then describing it as a non-

commutative polynomial representing it with a tree data structure. Our method allows to

represent new product formulae as solutions of systems of polynomial equations with

multiple variables. Although the number of equations and variables grows quickly with

the order of the PF desired, the tree data structure allows us to solve this equations up to

10th order. We have solved this equations for 8th and 10th order, we have found over

800 examples in the case of 8th order and 600 examples in 10th order, we also manage

to recover results from previous literature. We have an example of an 8th order product

formula with greatly reduced error, more than 100 times better than any of Yoshida’s

8th order product formulae. This formula also provides greatly improved performance

beyond that for any of the product formulae found by Suzuki’s method when accounting

for the number of exponentials. As well as finding solutions with a minimal number

of exponentials, we have found solutions with extra exponentials at both 8th and 10th

order that provide a further order of magnitude reduction in the error (so a factor of 1000

improvement over Yoshida for 8th order). Our 8th order product formulae also turn out

to improve over other PF (at least in the context of quantum simulation) such as those

found in [KL97]. In the comparison we also include post-processing techniques from

[BCM06] and also higher-order product formulae from [SS05]. A detailed list of the

product formulae considered in this work can be found in Section 6.6.



CHAPTER 6. IMPROVED PRODUCT FORMULAE FOR QUANTUM
SIMULATION 136

When comparing product formulae of different orders, it is better to use higher-order

formulae for larger values of 𝑇 /𝜖, where 𝑇 is the total evolution time and 𝜖 is the

required precision. This is because at different order, the PF differ in the number of

exponentials and also the errors achieved. We compare these ratios of 𝑇 /𝜖 for unformly

random Hamiltonians and random Hamiltonians that have a similar form as those in

chemistry. We find that the threshold where our best 8th order formula outperforms

lower-order formulae is quite modest at about 1600, which is well below the typical

values for quantum chemistry applications. Moreover, even the best 6th order formula

has poor performance, so as 𝑇 /𝜖 is increased, one should go straight from 4th to 8th

order, and not use 6th order at all. The threshold of 𝑇 /𝜖 for using 10th order instead of

8th order is large, over 1011, which is beyond expected values for quantum computing.

As a result we expect that our 8th order product formula will be the best to use for

quantum algorithms for applications in quantum chemistry.

We begin with a background summary in Section 6.2.1. We review first the Lie-

Trotter product formulae and its higher-order versions. Then we present the Baker-

Campbell-Hausdorff formula and how it is applied in the Suzuki method to generate

higher-order product formulae and compare it with Yoshida’s method in terms of cost of

implementation. Moreover, we give a brief review of other recent methods to generate

higher-order formulae. In Section 6.3 we introduce a method for obtaining higher-

order product formulae based on a Taylor expansion of operators and studying these

decompositions as non-commutative polynomials. We will use these decompositions to

solve for new higher order formulae, this procedure is described at the end of that section.

Section 6.4 provides results based on our numerics for 8th order product formulae.

We give a list of the best solutions found by us and some metrics of comparison.

Section 6.5 gives analogous results for 10th order. In Section 6.6 we provide details on

the comparison between our best performing product formulae and previous ones in the

literature.



CHAPTER 6. IMPROVED PRODUCT FORMULAE FOR QUANTUM
SIMULATION 137

6.2 Background

In this section we give a summary of the background for our work. We begin by defining

product formulae and the Baker-Campbell-Hausdorff formula, then we introduce the

Suzuki method and Yoshida method to obtain higher-order formulae. We conclude the

section comparing the advantages of Yoshida’s method over Suzuki’s in terms of number

of exponentials require to implement it.

6.2.1 Product formulae

It is well known that, for any non-commuting operators 𝑋 and 𝑌 ,

exp((𝑋 + 𝑌 )𝑡) = exp(𝑋𝑡) exp(𝑌𝑡) + O
(
𝑡2

)
. (6.1)

where we have absorbed the −𝑖 factor used in quantum simulation into 𝑋 and 𝑌 . The

above equation demonstrates that the exponential of a sum of two operators is, to first

order, equal to the product of the exponential of those operators. The above equation is

often referred as a ‘first-order product formula’. Higher-order terms can be computed

via the Baker-Campbell-Haussdorff (BCH) formula.

Theorem 6.1 (Baker-Campbell-Haussdorff formula [BC04]). Let 𝑋 and 𝑌 be any

operators such that ∥𝑋 ∥ + ∥𝑌 ∥ < ln 2. We have exp(𝑋 ) exp(𝑌 ) = exp(𝑍 ), with

𝑍 =

∞∑︁
𝑛=1

(−1)𝑛−1
𝑛

∑︁
𝑟1+𝑠1>0
...

𝑟𝑛+𝑠𝑛>0

[𝑋 𝑟1, 𝑌 𝑠1, · · ·𝑋 𝑟𝑛 , 𝑌 𝑠𝑛 ](∑𝑛
𝑗=1 𝑟𝑖 + 𝑠𝑖

) ∏𝑛
𝑖=1 𝑟𝑖 !𝑠𝑖 !

, (6.2)

where

[𝑋 𝑟1, 𝑌 𝑠1, · · ·𝑋 𝑟𝑛 , 𝑌 𝑠𝑛 ] = [𝑋, [𝑋, · · · [𝑋︸         ︷︷         ︸
𝑟1

, [𝑌, [𝑌, · · · [𝑌︸        ︷︷        ︸
𝑠1

, · · · [𝑋, [𝑋, · · · [𝑋︸         ︷︷         ︸
𝑟𝑛

, [𝑌, [𝑌, · · ·𝑌︸       ︷︷       ︸
𝑠𝑛

]] · · · ]] .

The standard second-order symmetric product formula is as given in the definition

below.
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Definition 6.2 (Symmetric product formula of order two). Let 𝑋 and 𝑌 be non-

commuting operators and let 𝑡 be a real variable. Define

𝑆2(𝑡) := exp
(
1
2
𝑋𝑡

)
exp(𝑌𝑡) exp

(
1
2
𝑋𝑡

)
. (6.3)

The operators 𝑋 and 𝑌 used in the definition of 𝑆2 should always be clear from

context. More generally, when there is a sum of 𝑋 𝑗 , the product formula is

𝑆2(𝑡) :=
[
𝐽∏
𝑗=1

exp
(
1
2
𝑋 𝑗𝑡

)] [
1∏
𝑗=𝐽

exp
(
1
2
𝑋 𝑗𝑡

)]
. (6.4)

We take the canonical convention that products are ordered with the starting index on

the right and the final one on the left. When there are 𝐽 = 2 terms, the expression in the

definition is obtained. The corollary below describes the form of the error terms in the

symmetric product formula, and also implies that it is second order.

Corollary 6.3 (Symmetric BCH formula [Yos90]). Let 𝑋 and 𝑌 be any operators such

that ∥𝑋 ∥ + ∥𝑌 ∥ < ln 2 and let 𝑡 be a real variable. Define 𝑍 such that 𝑆2(𝑡) = exp(𝑍 ).

Then there is a sequence 𝛼ℓ consisting of linear combinations of ℓ-term commutators in

𝑋 and 𝑌 such that

𝑍 =

∞∑︁
ℓ=1

𝛼ℓ𝑡
ℓ . (6.5)

Moreover, 𝛼ℓ ≡ 0 whenever ℓ is even.

Reference [Yos90] also shows that even terms are zero for more general symmetric

product formulae. The first three non-zero 𝛼ℓ terms from above are

𝛼1 = 𝑋 + 𝑌, (6.6)

𝛼3 =
1
12

[𝑌, [𝑌,𝑋 ]] − 1
24

[𝑋, [𝑋,𝑌 ]], (6.7)

𝛼5 =
7

5760
[𝑋,𝑋,𝑋,𝑋,𝑌 ] − 1

720
[𝑌,𝑌,𝑌,𝑌 , 𝑋 ] + 1

360
[𝑋,𝑌,𝑌,𝑌 , 𝑋 ] + 1

360
[𝑌,𝑋,𝑋,𝑋,𝑌 ]

− 1
480

[𝑋,𝑋,𝑌,𝑌 , 𝑋 ] + 1
120

[𝑌,𝑌, 𝑋,𝑋,𝑌 ] . (6.8)

Here the square brackets are used to indicate multicommutator expressions similar to

the notation in Theorem 6.1, for example

[𝑌,𝑌, 𝑋,𝑋,𝑌 ] ≡ [𝑌, [𝑌, [𝑋, [𝑋,𝑌 ]]]] . (6.9)
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Expressions for each 𝛼ℓ , and hence the proof of the symmetric BCH formula, arise from

two applications of the usual BCH formula.

Definition 6.4 (Product formula). Let𝑋 and𝑌 be any non-commuting operators. Given

a natural number 𝑛, a product formula of order 𝑛 is a pair (®𝑐, ®𝑑) with ®𝑐, ®𝑑 ∈ Rℓ and ℓ a

natural number such that for all 𝑡 ∈ R

exp((𝑋 + 𝑌 )𝑡) =
ℓ∏
𝑗=1

exp
(
𝑐 𝑗𝑋𝑡

)
exp

(
𝑑 𝑗𝑌𝑡

)
+ O

(
𝑡𝑛+1

)
. (6.10)

We refer to the number of non-zero coefficients in
(
®𝑐, ®𝑑

)
as the length of the product

formula.

The ordinary BCH formula is a length-2 product formula of order 1. The symmetric

BCH formula is a length-3 product formula of order 2.

Problem 2 (Minimal-length product formulae). Given a natural number 𝑛, find a

natural number ℓ𝑛 such that there is an 𝑛𝑡ℎ-order product formula of length ℓ𝑛 but no

𝑛𝑡ℎ-order product formula of length ℓ𝑛 − 1.

It is easy to prove using Taylor expansions (for lower bounds) and the BCH formulae

(for equality) that ℓ1 = 2 and ℓ2 = 3. As we discuss below, Suzuki’s ‘fractal’ method

demonstrates that ℓ𝑛 = O(exp𝑛). But it may be possible to do better.

Suzuki method for generating higher-order product formulae. Here we describe

Suzuki’s fractal methods from [Suz90, Suz91] to obtain higher-order product formulae.

Starting from the symmetrised product formula in Eq. (6.3), the fractal method gener-

alises this expression to obtain product formulae at all even orders. Suzuki’s first fractal

method to generate a product formula of order 𝑘 = 2𝜅 is [Suz90]

𝑆2𝜅 (𝑡) = 𝑆2𝜅−2(𝑠𝜅𝑡)𝑆2𝜅−2((1 − 2𝑠𝜅)𝑡)𝑆2𝜅−2(𝑠𝜅𝑡), (6.11)

where 𝑠𝜅 = 1/(2 − 21/(2𝜅−1)). This method can be used to generate even orders starting

at 𝑆2. A drawback to this method is that both 𝑠𝑘 and 1 − 2𝑠𝜅 are greater than 1, so the

coefficients in the higher-order methods are large, causing greater error.
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Alternatively to Eq. (6.11), an order 2𝜅 product formula can be obtained via Suzuki’s

second fractal method [Suz91]

𝑆2𝜅 (𝑡) = 𝑆2𝜅−2(𝑢𝜅𝑡)2𝑆2𝜅−2((1 − 4𝑢𝜅)𝑡)𝑆2𝜅−2(𝑢𝜅𝑡)2, (6.12)

where 𝑢𝜅 = 1/(4 − 41/(2𝜅−1)). This method has the advantage that both 𝑢𝜅 and 1 − 4𝑢𝜅

are less than 1, so the coefficients of higher-order formulae are small resulting in small

error. The drawback is that far more exponentials are required. Each iteration uses 5

copies of the lower-order formula, whereas the previous one uses 3 copies. One can use

either of these iterative methods from any product formula of order 2𝜅 − 2 to obtain a

formula of order 2𝜅, rather than simply iterating from 𝑆2.

One of the virtues of the fractal method is that it allows one to generate arbitrarily

high-order product formulae easily, as there are formulae for the coefficients 𝑠𝜅 and 𝑢𝜅 .

A further advantage is that these methods work with arbitrary numbers of terms in the

sum 𝑋 𝑗 . The number of exponentials used in the product formula is a crucial measure

of its efficiency, and in quantum simulation it is proportional to the required number of

gates.

Exponential length scaling of the Suzuki method. We can easily compute the

number of exponentials that the Suzuki method gives assuming we start from 𝑆2 and

generate higher-order integrators. The total number of exponentials for a given order

2𝜅 = 4, 6, 8, ... in the product formula 𝑆2𝜅 is given by

2(𝐽 − 1)3𝜅−1 + 1, (6.13)

when considering exponentials of sums of 𝐽 terms, so for example 𝐽 = 2 for 𝑋 + 𝑌 and

𝜅 = 1 for second order gives 3. For the product formula 𝑆2𝜅 the number of exponentials

is

2(𝐽 − 1)5𝜅−1 + 1. (6.14)

The number of exponential operators in both cases of the Suzuki method grows very

rapidly. Thus one may be interested in alternative method to obtain product formulae

with a lower count, such as the method of Yoshida in the next section.
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6.2.2 Yoshida’s method for deriving 6th order product formulae

In this section we introduce Yoshida’s method [Yos90] which in contrast to Suzuki’s

method in the previous section, requires fewer exponentials in the implementation. As

we will see in this section, a downside is that Yoshida’s method can only generate new

product formulae by solving systems of polynomial equation which are not trivial to

solve as the order increases.

Approach. Rather than using Eqs. (6.11) and (6.12), Yoshida uses the general proce-

dure

𝑆 (𝑚) (𝑡) =
( 𝑚∏
𝑗=1

𝑆2(𝑤𝑚− 𝑗+1𝑡)
)
𝑆2(𝑤0𝑡)

( 𝑚∏
𝑗=1

𝑆2(𝑤 𝑗𝑡)
)
, (6.15)

where𝑤 𝑗 ∈ R for 𝑗 = 0, 1, · · · ,𝑚 are parameters to be determined. Note the number of

exponentials in this product is given by (4𝑚 + 2) (𝐽 − 1) + 1. Given this ansatz, the task

becomes to find𝑚 and𝑤𝑖 such that 𝑆 (𝑚) is an order 𝑘 product formula. We will illustrate

Yoshida’s method by deriving the result for 6th order.

Expand Yoshida product using Baker-Campbell-Haussdorf formula. The method

is to expand Eq. (6.15) using the BCH formula from Theorem 6.1 recursively as follows.

First, note that from Corollary 6.3, 𝑆2(𝑡) = 𝑒
𝑡
2𝑋𝑒𝑡𝑌𝑒

𝑡
2𝑋 = 𝑒𝑡𝛼1+𝑡

3𝛼3···. We are for the

moment considering sums of two terms𝑋+𝑌 . Define𝐶 = 𝑡𝑤1𝛼1+𝑡3𝑤3
1𝛼3+𝑡5𝑤5

1𝛼5+O
(
𝑡7

)
and 𝐷 = 𝑡𝑤0𝛼1 + 𝑡3𝑤3

0𝛼3 + 𝑡𝑤5
0𝛼5 + O

(
𝑡7

)
. Then,

𝑆2(𝑤1𝑡)𝑆2(𝑤0𝑡)𝑆2(𝑤1𝑡)

= 𝑒𝐶𝑒𝐷𝑒𝐶

= exp
{
𝑡𝑤1𝛼1 + 𝑡3𝑤3

1𝛼3 + 𝑡5𝑤5
1𝛼5 + O

(
𝑡7

)}
exp

{
𝑡𝑤0𝛼1 + 𝑡3𝑤3

0𝛼3 + 𝑡𝑤5
0𝛼5 + O

(
𝑡7

)}
× exp

{
𝑡𝑤1𝛼1 + 𝑡3𝑤3

1𝛼3 + 𝑡5𝑤5
1𝛼5 + O

(
𝑡7

)}
= exp

{
𝜏 (2𝑤1 +𝑤0)𝛼1 + 𝜏3(2𝑤3

1 +𝑤3
0)𝛼3 + 𝜏5(2𝑤5

1 +𝑤5
0)𝛼5 +

1
6
( [𝐷, 𝐷,𝐶] − [𝐶,𝐶, 𝐷]) + O

(
𝜏7

)}
.

(6.16)
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A simple computation shows

[𝐷,𝐷,𝐶] − [𝐶,𝐶, 𝐷] = 𝜏5(𝑤2
0𝑤

3
1 −𝑤2

1𝑤
3
0 +𝑤4

1𝑤0 −𝑤4
0𝑤1) [𝛼1, 𝛼1, 𝛼3] . (6.17)

Define 𝛽5 = [𝛼1, 𝛼1, 𝛼3] so

𝑆2(𝑤1𝑡)𝑆2(𝑤0𝜏)𝑆2(𝑤1𝑡) = exp
{
𝑡 (2𝑤1 +𝑤0)𝛼1 + 𝑡3(2𝑤3

1 +𝑤3
0)𝛼3 + 𝑡5(2𝑤5

1 +𝑤5
0)𝛼5

+ 𝑡5 1
6
(𝑤2

0𝑤
3
1 −𝑤2

1𝑤
3
0 +𝑤0𝑤

4
1 −𝑤4

0𝑤1)𝛽5 + O
(
𝑡7

)}
. (6.18)

By an induction argument Yoshida shows that

𝑆 (𝑚) (𝑡) = exp
{
𝑡𝐴1,𝑚𝛼1 + 𝑡3𝐴3,𝑚𝛼3 + 𝑡5(𝐴5,𝑚𝛼5 + 𝐵5,𝑚𝛽5) + O

(
𝑡7

)}
, (6.19)

where 𝐴 𝑗,𝑚 and 𝐵5,𝑚 are polynomials on the variables𝑤0, . . . ,𝑤𝑚.

The case 𝑚 = 0 is just the symmetric BCH formula, so it is clear that Eq. (6.19)

holds with

𝐴1,0 = 𝑤0,

𝐴3,0 = 𝑤
3
0,

𝐴5,0 = 𝑤
5
0,

𝐵5,0 = 0. (6.20)

To prove Eq. (6.19) for𝑚 > 0, one needs to show that the exponential is of the form

with operator 𝛼1 for first order in 𝑡 , operator 𝛼3 for third order in 𝑡 , and operators 𝛼5 and

𝛽5 for fifth order in 𝑡 . This result may be shown using

𝑆 (𝑚+1) (𝑡) = 𝑆2(𝑤𝑚+1𝑡)𝑆 (𝑚) (𝑡)𝑆2(𝑤𝑚+1𝑡)

= exp
{
𝑡𝑤𝑚+1𝛼1 + 𝑡3𝑤3

𝑚+1𝛼3 + 𝑡5𝑤5
𝑚+1𝛼5 + O

(
𝑡7

)}
× exp

{
𝑡𝐴1,𝑚𝛼1 + 𝑡3𝐴3,𝑚𝛼3 + 𝑡5(𝐴5,𝑚𝛼3 + 𝐵5,𝑚𝛽5) + O

(
𝑡7

)}
× exp

{
𝑡𝑤𝑚+1𝛼1 + 𝑡3𝑤3

𝑚+1𝛼3 + 𝑡5𝑤5
𝑚+1𝛼5 + O

(
𝑡7

)}
= exp

{
2𝑡𝑤𝑚+1𝛼1 + 𝑡𝐴1,𝑚𝛼1 + 2𝑡3𝑤3

𝑚+1𝛼3 + 𝑡3𝐴3,𝑚𝛼3 + 2𝑡5𝑤5
𝑚+1𝛼5 + 𝑡5𝐴5,𝑚𝛼5 + 𝑡5𝐵5,𝑚𝛽5
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+ 1
6
𝑡5(𝐴2

1,𝑚𝑤
3
𝑚+1 −𝐴1,𝑚𝐴3,𝑚𝑤𝑚+1 −𝑤2

𝑚+1𝐴3,𝑚 +𝑤4
𝑚+1𝐴1,𝑚)𝛽5 + O

(
𝑡7

)}
.

(6.21)

Hence, if the product formula can be expressed as in the form (6.19) for 𝑆 (𝑚) (𝑡), it can

again be expressed in this form for 𝑆 (𝑚+1) (𝑡), establishing it for all𝑚 ≥ 0 by induction.

This expression also shows that the scalar coefficients can be determined from the

formulae

𝐴1,𝑚+1 = 2𝑤𝑚+1 +𝐴1,𝑚,

𝐴3,𝑚+1 = 2𝑤3
𝑚+1 +𝐴3,𝑚,

𝐴5,𝑚+1 = 2𝑤5
𝑚+1 +𝐴5,𝑚,

𝐵5,𝑚+1 = 𝐵5,𝑚 + 1
6
(𝐴2

1,𝑚𝑤
3
𝑚+1 −𝐴1,𝑚𝐴3,𝑚𝑤𝑚+1 −𝑤2

𝑚+1𝐴3,𝑚 +𝑤4
𝑚+1𝐴1,𝑚) . (6.22)

Constraints to satisfy in order to derive 6th order formula. To derive a 6th order

formula, the lower-order terms in the exponential in Eq. (6.19) must be zero (see also

Eq. (5.16) of [Yos90]), which gives the four conditions

𝐴1,𝑚 = 1, 𝐴3,𝑚 = 0, 𝐴5,𝑚 = 0, 𝐵5,𝑚 = 0. (6.23)

For𝑚 = 3 there are four unknowns𝑤0 to𝑤3, and it can be expected there are solutions

because there are the same number of equations as unknowns. In practice 𝐴1,𝑚 = 1 is

satisfied by taking𝑤0 = 1−2∑
𝑗 𝑤 𝑗 , so there are then three equations for three unknowns

𝑤1,𝑤2,𝑤3. Whereas it is possible to solve the equations using the Newton-Raphson

method, the expression for the appropriate Jacobian matrix is complicated, so Yoshida

instead uses the Brent method. Yoshida produced three𝑚 = 3 solutions in this way, and

states “It seems that there is no other solution.” We have performed an extensive search

and also find no more solutions.

The product formulae obtained through the Yoshida method also work for expo-

nentials of sums of more operators. The 𝑆2 product formula can again be used as the
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building block for the product formula, and we can write

𝑆2(𝑡) = exp

( ∞∑︁
ℓ=0

𝛼ℓ𝑡
ℓ

)
, (6.24)

where 𝛼ℓ are now order-ℓ multicommutator expressions on the 𝐽 terms. The reasoning

for finding the product formula is entirely based on the construction with 𝛼ℓ , but without

taking advantage of its particular form, so exactly the same reasoning holds for 𝛼ℓ . This

immediately implies that the higher-order product formulae work in general. This is an

advantage of deriving product formulae as products of 𝑆2, because deriving coefficients

separately for exponentials of 𝑋 and 𝑌 would not generalise.

For 8th order the number of equations must be at least𝑚 = 7, this makes even harder

finding an optimal solution for the 8th order. Yoshida was able to find 5 solutions at this

order but as we will see, we can greatly improve over the solutions that Yoshida has

found.

6.2.3 Other high-order product formulae

We also include other product formulae found in the literature. Many results on product

formulae were motivated by the search of integrators for differential equations, in this

subsection we will point out to some of these results. In [BCM08] a summary of several

integrators found is given (see Table 4 in the reference). Results from order 4 to 10 are

reported in terms of the stages required to implement the product formulae, the number

of stages corresponds to the number of 𝑆2 product formulae required to implement the

integrator.

Some integrators reported which we include in our comparison of profuct formulae

for Hamiltonian simulations are of order 8 and 10 as we find that these are the most

useful when considering error and number of exponential required to implement them.

In [KL97] the authors provide 8th order product formulae of 15 and 17 stages, which

correspond in Yoshida’s ansatz to 𝑚 = 7 and 𝑚 = 8. These improve over previous

reported 8th order formulae and we confirm this in our numerics.
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Other product formulae based on the ansatz of Yoshida are also presented in [SS05].

For 8th order, the authors replicate the findings of [KL97] for product formulae with 15

and 17 stages. In addition, they provide solutions with 19 and 21 stages. For 10th order,

the authors provide solutions with 31 stages (corresponding to𝑚 = 15 in Yoshida’s case)

and 33 states (𝑚 = 16 for Yoshida’s).

Another technique to obtain higher-order product formulae is that of post-processing

[BCM06]. In this technique a product formula 𝑆𝜅 of order 𝜅 is generated by the compo-

sition of a so-called kernel Σ conjugated by a post-processor operator 𝑃 . More precisely,

𝑆𝑘 = 𝑃Σ𝑃
−1. (6.25)

The advantage of this method is that usually Σ uses less stages than other methods

and due to the construction we have that 𝑆𝑛
𝑘
= 𝑃Σ𝑛𝑃−1, so the cost of using the post-

processor is effectively constant when having to repeat the product formula many times,

as it usually is when the total time of evolution is partitioned into intervals.

6.3 Solution using Taylor expansion

In this section we begin the exposition of the method used to find our solutions. Our

solution method is based on computing the Taylor expansion of both the exact expo-

nential and its product formula approximation with given 𝑤 𝑗 . This Taylor expansion

is performed on both sides up to the desired order of approximation for the integrator.

By imposing equality on terms of the same order we obtain a series of equations for𝑤 𝑗

which can be solved. For higher orders, a large number of simultaneous equations are

obtained, so we need an automated way of generating them.

Definitions used to specify problem. To make precise the problem we are solving,

denote as T𝑘 [·] the map giving the Taylor expansion in 𝑡 around 0, truncated at order 𝑘 ,

so

T𝑘 [𝑒𝑡 (𝑋+𝑌 )] =
𝑘∑︁
𝑝=0

𝑡𝑝

𝑝!
(𝑋 + 𝑌 )𝑝
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=

𝑘∑︁
𝑝=0

𝑡𝑝

𝑝!

1∑︁
𝑟1,··· ,𝑟𝑝=0

𝑋 𝑟1𝑌 1−𝑟1 · · ·𝑋 𝑟𝑝𝑌 1−𝑟𝑝 . (6.26)

We consider a sum of two operators 𝑋 +𝑌 , but this approach for solving for𝑤 𝑗 will also

be sufficient to provide product formulae for sums of arbitrary numbers of terms. That

is because the solutions must also be solutions of the equations derived using Yoshida’s

method, and as explained above those equations will be the same when considering

sums of arbitrary numbers of terms. Now consider the ansatz operator of Yoshida from

Eq. (6.15)

𝑆 (𝑚) (𝑡,𝑤1, · · · ,𝑤𝑚) = 𝑒𝑡𝑤𝑚𝑋/2𝑒𝑡𝑤𝑚𝑌𝑒𝑡 (𝑤𝑚+𝑤𝑚−1)𝑋/2𝑒𝑡𝑤𝑚−1𝑌𝑒𝑡 (𝑤𝑚−1+𝑤𝑚−2)𝑋/2

· · · 𝑒𝑡𝑤0𝑌𝑒𝑡 (𝑤1+𝑤0)𝑋/2𝑒𝑡𝑤1𝑌 · · · 𝑒𝑡𝑤𝑚𝑋/2

= 𝑒𝑡𝑐1𝑋𝑒𝑡𝑐2𝑌 · · · 𝑒𝑡𝑐4𝑚+3𝑋 , (6.27)

where in the last line we have defined the constants 𝑐1 = 𝑤𝑚/2, 𝑐2 = 𝑤𝑚, 𝑐3 = (𝑤𝑚 +

𝑤𝑚−1)/2, · · · 𝑐4𝑚+3 = 𝑤𝑚/2. We Taylor expand this ansatz up order 𝑘, noting that the

total number of exponentials in Yoshida’s ansatz is 4𝑚 + 3

T𝑘 [𝑆 (𝑚) (𝑡,𝑤1, . . . ,𝑤𝑚)] =
𝑘∑︁

𝑟1,··· ,𝑟4𝑚+3=0
𝑟1+···+𝑟4𝑚+3≤𝑘

𝑡𝑟1+···+𝑟4𝑚+3

𝑟1! · · · 𝑟4𝑚+3!
𝑐
𝑟1
1 . . . 𝑐

𝑟4𝑚+3
4𝑚+3𝑋

𝑟1𝑌 𝑟2 . . . 𝑋 𝑟𝑘−1𝑌 𝑟4𝑚+3 .

(6.28)

Data structure for coefficients. We require that the product formula obtained from

our solution procedure be independent of the choice of 𝑋 and 𝑌 , so need to match the

coefficients for each sequence of products of𝑋 and 𝑌 . In order to do this in an automated

way we construct a data structure to store the coefficients.

Given operators of the form 𝑒𝑐𝑋 = 𝐼 +𝑐𝑋 + 𝑐2

2!𝑋
2+ 𝑐3

3!𝑋
3+· · · and 𝑒𝑑𝑌 = 𝐼 +𝑑𝑌 + 𝑑2

2!𝑌
2+

𝑑3

3!𝑌
3 + · · · with 𝑐, 𝑑 scalar coefficients and 𝑋,𝑌 general operators, we can describe this

Taylor expansion up to an order 𝑘 using an array encoding. First, we write monomials

composed of 𝑋 and 𝑌 operators in lexicographical order and note that these operators
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can be mapped to binary numbers:

𝐼 𝑋 𝑌 𝑋𝑋 𝑋𝑌 𝑌𝑋 𝑌𝑌 𝑋𝑋𝑋 𝑋𝑋𝑌 · · ·

1 10 11 100 101 110 111 1000 1001 · · ·

1 2 3 4 5 6 7 8 9 · · ·

(6.29)

To construct a bit string, we map each 𝑋 with 0 and each 𝑌 with 1, then place a 1 on the

left to flag the length of the string, as shown in the second line of Eq. (6.29). Then, to

obtain the operator products, simply remove the leading 1 and then map 0 to 𝑋 and 1

to 𝑌 . The empty string corresponds to the identity 𝐼 . Now, to store the coefficients in

a sum of products of 𝑋 and 𝑌 , convert each product to a binary integer as above, then

store the coefficient in the corresponding location in a vector.

By way of illustration, consider the polynomial 10𝐼+3𝑋+2𝑌+2𝑋 2+𝑌𝑋 . This operator

would be stored in an array as [10, 3, 2, 2, 0, 1, 0, · · · ]. In this way, any polynomial of 𝑋

and 𝑌 can be efficiently stored in a vector. We denote this vector storing the coefficients

of operators of order up to 𝑘 as vec𝑘 [𝑝 (𝑋,𝑌 )], where 𝑘 denotes that the vector will only

store the coefficients of the corresponding operators up to order 𝑘 (so a vector of length

2𝑘+1 − 1) and 𝑝 (𝑋,𝑌 ) is the polynomial in terms of 𝑋 and 𝑌 .

Tree product between coefficient arrays. We can define a product between these

arrays that corresponds to the (noncommutative) product of polynomials in 𝑋 and 𝑌 .

Let 𝑝 and 𝑞 be such polynomials, and define the tree product ∗ as vec𝑘 [𝑝 (𝑋,𝑌 )] ∗

vec𝑘 [𝑞(𝑋,𝑌 )] = vec𝑘 [𝑝 (𝑋,𝑌 ) · 𝑞(𝑋,𝑌 )], where “·” is the usual operator product.

In order to obtain the coefficients 𝑤 𝑗 , we encode T𝑘 [𝑒𝑡 (𝑋+𝑌 )] and

T𝑘 [𝑆 (𝑚) (𝑡,𝑤1, · · · ,𝑤𝑚)] from Eq. (6.26) and Eq. (6.28) using the encoding just

described, disregarding the time 𝑡 . Finally, the problem to be solved is as follows.

Problem 3 (Cost function error minimisation of product formula coefficients). Let

𝑋 and 𝑌 be arbitrary non-commuting operators and let 𝑘 be a natural number. Solve

argmin𝑤1,𝑤2,··· ,𝑤𝑚




vec𝑘 [
T𝑘 [𝑒𝑡 (𝑋+𝑌 )]

]
− vec𝑘

[
T𝑘 [𝑆 (𝑚) (𝑡,𝑤1, · · · ,𝑤𝑚)]

]


2. (6.30)
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To find a solution for a product formula of order 𝑘, the minimum should be zero,

and the result for𝑤1,𝑤2, · · · ,𝑤𝑚 will give the desired product formula. We choose to

use the Yoshida ansatz as it requires a lower number of parameters in comparison to the

most general ansatz of length𝑚, and also naturally generalises to sums of more terms.

Nevertheless, it is also possible to use our technique for more general non-symmetric

product formulae.

Solution strategy. We first need to choose𝑚 to be large enough such that the minimum

(not argmin) is equal to zero; i.e. it is possible to find an order 𝑘 product formula of

length𝑚. To choose a value of𝑚 that successfully yields an 8th order product formula,

we can follow Yoshida’s ansatz: we know𝑚 = 7 works. To choose an𝑚 that yields a

10th order product formula, we extend the work of Yoshida to determine that𝑚 = 15

works. See Appendix B.1 for details.

Having chosen an appropriate value of𝑚, we then can use a numerical nonlinear

function solver. We tried various approaches and found that Matlab’s fsolve was able

to succeed if used as follows. Choose a random starting vector ®𝑤 and evaluate fsolve

with the vector of errors. We find that generating the components of ®𝑤 according to the

standard normal distribution works. We found that the best solutions were those with

smaller values for the coefficients, so reduced the standard deviation for the initial ®𝑤

a little below 1. We tried standard deviations of 0.6 initially for 8th order, 0.9 for 10th

order, and later tried a standard deviation of 1 for 8th order.

Matlab reports that fsolve uses the Levenberg-Marquardt algorithm, which inter-

polates between the Gauss-Newton algorithm and gradient descent. It uses information

in the full vector of errors, so provides better performance than fminsearch with

the sum of squares of errors. In comparison, Yoshida used the Brent method to solve

the polynomial equations he derived [Yos90]. In more recent work, other authors have

also used this approach of minimising the errors [BCCM13, AHKK17]. Although the

coefficients obtained are not guaranteed to be formal solutions of the equations, the error

minimisation is performed to very high accuracy.
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That is, it is in principle possible that the numerical solution is giving a local

minimum, and there is no true solution close to that vector. (The true solution is never

given exactly because it would require an infinite number of digits.) In most cases the

sum of the squares of errors was on the order of 10−27, though some were larger, on the

order of 10−22. Solving further using extended precision (instead of double precision)

resulted in the sum of squared errors being reduced by many more orders of magnitude.

That is a strong indication that these are good approximations of true solutions, not local

minima. Even if they were not, the error is so small that the resulting product formulae

would give accurate approximations of exponentials useful for quantum simulation.

In real analysis, the Poincaré-Miranda theorem [Kul97] provides necessary and

sufficient conditions to check whether there is a root of a set of non-linear equations

in a hypercube. This theorem is a generalisation of the intermediate value theorem to

multiple functions and variables. Unfortunately, this theorem requires the evaluation of

the function at infinite points and does not provide a way to check that we have indeed

reached a root of the system of equations. Nonetheless, evaluating the polynomials

found through Yoshida’s method on the vertices of the hypercube near the solutions

found can help to discard those that are not near roots. We evaluated the polynomials

and check that the conditions of the Poincaré-Miranda theorem are fulfilled for this

vertices. We performed this evaluation on many of the solutions we found, and they

passed the test for points at a distance of 10−10 from our solutions.

6.4 Improved 8th order product formulae

In this section we present the result of our numerics for 8th order product formulae.

We have solved for product formulae both using our Taylor series procedure and the

polynomial equations of Yoshida, and found nearly 600 product formulae of 8th order.

In what follows we number our solutions according to the order in which we found

them. To clarify the terminology, there is a distinction between the “cost function error”

and the “product formula error”. The cost function error refers to the minimised error
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in Problem 3, on the other hand the product formula error refers to the error of the

product formula when compared to the total evolution, for example in Eq. (6.1) the

product formula error is given by the expression O
(
𝑡2

)
. Not only do we find many more

solutions than Yoshida reports, but we also find product formulae with reduced product

formula error. To show this we have compared the different product formula errors

attained by the integrators under a range of Hamiltonians chosen randomly. The detail

of how we compare product formulae is given in Section 6.6.

To be more precise, we have performed the search of product formulae by solving the

optimisation in Problem 3 with 𝑘 = 8 and𝑚 = 7. We have also numerically solved the

polynomial equations of Yoshida for the search. Whenever we found certain parameters

𝑤1, · · · ,𝑤7 giving a sum of squared errors below 10−20, we considered these parameters

as a potential product formula to be tested. The search now finds almost only repeated

solutions and very few new solutions. This indicates that we have found nearly all

solutions, but it is also possible that there are many more solutions with large values

of ®𝑤 . Indeed, the most recent new solutions we found have significantly larger values

of ®𝑤 . We find that large values of ®𝑤 correspond to worse product formulae with larger

error. Therefore, even if there are many more solutions with large ®𝑤 , they likely will not

give improved performance over those we have already found. Once we have obtained

the potential solutions, we generate random Hamiltonians and compute the product

formula errors as a function of time. We show these errors in Fig. 6.1 for an example

Hamiltonian of dimension 𝑑 = 4, and 5 examples of product formulae. For 8th order

product formulae we know that the product formula error is O
(
𝑡9

)
. We check the error

scaling by picking two times 𝑡1 and 𝑡2 and computing errors 𝛿1 and 𝛿2 at these times, then

we compute log(𝛿1/𝛿2)/log(𝑡1/𝑡2) and check that it is close to 9. As the error for our

product formulae is given by 𝛿 (𝑡) = 𝜒𝑡9 where 𝜒 is a constant factor, we can compute 𝜒

for each of them by considering 𝜒 = 𝛿/𝑡9. For each product formula, we compute an

average constant factor error; this average corresponds to the geometric mean of the

constant factors computed for each random Hamiltonian. This method of comparing

the performance of product formulae through the estimation of the constant factor in
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the error has been used before (see for example [BCCM13]) and is considered a good

approximation to the performance of the product formula in practice.

The two best performing 8th order product formulae as measured by the constant

factor 𝜒 obtained are shown in Table 6.1. These have average constant factors 𝜒 =

5.8×10−6 and 𝜒 = 9.4×10−6. They were the 42nd and 100th solutions found, respectively,

so were found relatively early out of the more than 600 solutions. These solutions are

reported in extended precision; by using extended precision arithmetic we reduced

the cost function error of solution 42 to 10−600. For comparison, the worst performing

product formula we found had a constant of 𝜒 = 2.7×105. We evaluated all the 8th order

solutions of Yoshida, and found Solution D was best, with a constant 𝜒 = 9.7 × 10−4.

Best 8th order with𝑚 = 7 Second-best 8th order with𝑚 = 7
𝑤1 0.315293092396766596632056663811 0.37122062648117505118097053722986
𝑤2 0.33462491824529818378495797988218 0.40544709650967949690890447887218
𝑤3 0.2990641813036559238444635406886 0.16633724441837318387261356221838
𝑤4 −0.57386247111608226665638772663554 −0.62219910114766848553693391042818
𝑤5 0.19075471029623837995387625645037 0.26406879487125261601060713402535
𝑤6 −0.40910082580003159399730009589356 −0.45453364433377659463237935329715
𝑤7 0.74167036435061295344822780178381 0.79748609972350707868528219873049

Table 6.1: Our two best-performing 8th order solutions with𝑚 = 7.

Best 8th order with𝑚 = 8
𝑤1 0.29137384767986663096528500968049
𝑤2 0.26020394234904150277316667709864
𝑤3 0.18669648149540687549831902999911
𝑤4 −0.40049110428180105319963667975074
𝑤5 0.15982762208609923217390166127256
𝑤6 −0.38400573301491401473462588779099
𝑤7 0.56148845266356446893590729572808
𝑤8 0.12783360986284110837857554950443

Table 6.2: Our best-performing 8th order solution when setting𝑚 = 8.

We have also conducted a search for 8th order solutions with𝑚 = 8. Using𝑚 = 8

results in an underdetermined system of equations with continuous sets of solutions, and
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Best 8th order with𝑚 = 10
𝑤1 0.5935806040085031
𝑤2 −0.4691601234700394
𝑤3 0.2743566425898439
𝑤4 0.1719387948465702
𝑤5 0.2343987448254160
𝑤6 −0.4861642448032533
𝑤7 0.4961736738811380
𝑤8 −0.3266021894843879
𝑤9 0.2327167934936900
𝑤10 0.09824955741471075

Table 6.3: Our best-performing 8th order solution when setting𝑚 = 10.

gives the flexibility to adjust the solution to reduce the error. The best solution found is

given in Table 6.2, with an average constant factor of 𝜒 = 5.7 × 10−7, which is an order

of magnitude improvement with only a slight increase in the number of exponentials.

Moreover, it is more than a factor of 1000 times better than the best solution of Yoshida.

After a literature search we find that the best solutions we have found for𝑚 = 7 and

𝑚 = 8 correspond to solutions in [KL97]. When extending our search to𝑚 = 10 we find

that the best solution is the one given in Table 6.3 with a constant of 𝜒 = 2.1 × 10−8.

In Section 6.6 we compare the solutions we have found and find that our solution with

𝑚 = 10 is the best performing one.

There is a second way to compare the product formulae. Note that ®𝑣 =

vec𝑘 [T𝑘 [𝑒𝑡 (𝐴+𝐵)] − T𝑘 [𝑆 (𝑚) (𝑡,𝑤1, · · · ,𝑤𝑚)]] will be a vector with entries very close

to zero for a product formula solution. We could also pick a larger 𝑘 than the solution

was derived for, for example 𝑘 = 9 for an 8th order solution (so the 𝑘 here is no longer

the order). Then we consider the entries of the vector ®𝑣 that includes the 9th order

operators. We have computed 9th, 10th, 11th and 12th order cost function errors. For

each order we take the absolute value of this errors and sum them. We find that the

lowest sum of absolute errors at each order is achieved by the best solution determined

by the previous method (solution 42), and in fact the lowest sum of errors is strongly

correlated with the average constant factor 𝜒 mentioned above.
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Figure 6.1: Error in product formula as determined by the spectral norm of the difference
of operators as a function of 𝑡 . We have shown our four best-performing product formulae
for 8th order; these correspond to solutions 42, 46, 70, 100. For comparison we also show
the best-performing solution of Yoshida, with errors an order of magnitude higher than
the solutions we have obtained.
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Figure 6.2: Plot of average constant factor in the error 𝜒𝑡9 for 100 random Hamiltonians
and the sum of absolute 9th order errors defined in the main text. Each of the points
represents one product formula obtained with our optimisation procedure.
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Figure 6.3: Error for two of our best solutions for an example Hamiltonian, compared
with the error bound computed using a method based on that in [CST+21].

In Fig. 6.2 we plot the constant factor in the error versus the sum of absolute errors

at 9th order. It can be seen that there is strong correlation, though the sum of absolute

errors overestimates the error by a factor of 100 to 1000. The correlation coefficient

between the sum of errors at order 9 and the constant factor is 0.977, at order 10 the

correlation coefficient is 0.973, at order 11 it is 0.948, and at 12 it is 0.938.

We also have computed a bound on the error for 8th order integrators based on the

work of [CST+21]. In Appendix M of that work, the authors derive a bound on the error

for the Suzuki product formula of 4th order. We have extended the bounds to 8th order

by generalisation their method to this case by implementing it in Mathematica. We have

computed this bound for two of our best 8th order product formulae with𝑚 = 7 and

show the results in Fig. 6.3. The bounds are very loose, being about a factor of 106 times

larger than the actual error, though they follow the same trend.

We also have computed a bound on the error for 8th order integrators based on the

work of [CST+21]. In Appendix M of that work, the authors derive a bound on the error

for the Suzuki product formula of 4th order. We have extended the bounds to 8th order
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Figure 6.4: Comparison of the total evolution time |𝑤0 | + 2
∑𝑚
𝑗=1

��𝑤 𝑗

�� and the constant
factor 𝜒 in the product formula error for the 8th order product formulae we have found
with𝑚 = 7. Each point corresponds to a different product formula for which the constant
error factor and total evolution time is computed.

by generalisation their method to this case by implementing it in Mathematica. We have

computed this bound for two of our best 8th order product formulae with𝑚 = 7 and

show the results in Fig. 6.3. The bounds are very loose, being about a factor of 106 times

larger than the actual error, though they follow the same trend.

It can be shown that the total evolution time for a particular product formula can

be used to bound the error in approximating the total evolution. For Yoshida’s ansatz

with parameters (𝑤0, · · · ,𝑤𝑚) and simulation evolution time 𝑡 , the total evolution time

is given by 𝑡
(
|𝑤0 | + 2

∑𝑚
𝑗=1

��𝑤 𝑗

��) . We give a derivation of the bound given by the total

evolution time in Appendix B.2. We also compare the estimated constant factor of the

product formula error with the expression |𝑤0 | +2
∑𝑚
𝑗=1

��𝑤 𝑗

�� for the best 8th order product

formulae we have found. We find a strong correlation between these two quantities,

characterised by a correlation coefficient of 0.78. A plot showing this correlation is

given in Fig. 6.4.



CHAPTER 6. IMPROVED PRODUCT FORMULAE FOR QUANTUM
SIMULATION 156

6.5 Finding 10th order product formulae

In this section we present the result of our numerics for 10th order product formulae..

We have generalised Yoshida’s method, and find 15 independent equations to be solved.

This gives the minimum𝑚 required to find new product formulae. This derivation is

quite lengthy, so is given in Appendix B.1. We performed searches for solutions both

with𝑚 = 15 (the minimal number) and𝑚 = 16. Again this gives the flexibility to adjust

the solution to reduce the error. We report the best 10th order product formulae for

𝑚 = 15 and 16 in Table 6.4 in extended precision.

As in Section 6.4, we compare the performance of product formulae of 10th order by

computing the constant factor 𝜒 in the error 𝜒𝑡11 for random Hamiltonians. For the best

solution with𝑚 = 16 we have a constant factor of 𝜒 = 1.9 × 10−8, and the best solution

with 𝑚 = 15 has 𝜒 = 9.4 × 10−7, which is about a factor of 50 times worse. The far

better constant factor for𝑚 = 16 is far more significant than the slightly larger number

of exponentials in the product formula. For this reason we consider cases with𝑚 = 16

in the remainder of this discussion.

We compare our best-performing 10th order product formula to our best 8th order

formula, and Yoshida’s best, in Fig. 6.5. We also compare in Fig. 6.6 the best product

formulae when the total Hamiltonian is given by a sum of ten terms. As explained in

Section 6.2.2, the product formulae are also valid for Hamiltonians that are sums of

arbitrary numbers of terms. This plot demonstrates that the correct scalings are still

obtained with larger numbers of terms.

As in the 8th order case, we compute the total evolution time and compare with the

constant factor error 𝜒 for a set of 10th product formulae found by the optimisation

procedure. The result is shown in Fig. 6.7. The correlation factor is smaller than in

the 8th order case, but still shows a relationship between these two quantities with a

correlation factor of 0.5.

In the search for 10th order product formulae, unlike in the case of 8th order, we find

that almost all new solutions found are different from those found before. That indicates
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Best 10th order sol. with𝑚 = 15 Best 10th order sol. with𝑚 = 16
𝑤1 0.14552859955499429739088135596618 −0.4945013179955571856347147977644
𝑤2 −0.48773512068133537309419933740564 0.2904317222970121479878414292093
𝑤3 0.12762011242429535909727342301656 0.34781541068705330937913890281003
𝑤4 0.70225450019485751220143080587959 −0.98828132118546184603769781410676
𝑤5 −0.62035679146761710925756521405042 0.98855187532756405235733957305613
𝑤6 0.39099152412786178133688869373114 −0.34622976933123177430694714630668
𝑤7 0.17860253604355465807791041367045 0.20218952619073117554714280367018
𝑤8 −0.80455783177921776295588528272593 0.13064273069786247787208895471461
𝑤9 0.053087216442758242118687385646283 −0.26441199183146805554735845490359
𝑤10 0.86836307910275556258687030904753 0.060999140559210408869096992291531
𝑤11 −0.85326297197907834671536254437991 −0.6855442489606141359108973267028
𝑤12 −0.11732457198874083224967699358383 −0.15843692473786584550599206557006
𝑤13 0.03827345494186056632406947772047 0.15414691779958299150286452215575
𝑤14 0.74843529029532498233997793305357 0.66715205827214320371061839297055
𝑤15 0.30208715621975773712410948025906 0.20411874474696598289603677693511
𝑤16 NA 0.081207318210272593225087711441684

Table 6.4: Our best performing solutions for 10th order with𝑚 = 15 and𝑚 = 16.

that there is an extremely large number of solutions, and we have only found a very

small proportion of them. Potentially there are solutions with even better performance

still to be found.

6.6 Comparison of product formulae

In this section we provide a comparison of the product formulae we have found and those

found previously in the literature. To compare the product formulae we’ve obtained,

we make the following considerations. A 𝑘 order integrator for time 𝑡 will have an

error 𝛿 = 𝜒𝑡𝑘+1 where 𝜒 is a real constant. Let 𝑇 be the total evolution time for an

integrator of order 𝑘, and 𝜀 be the maximum allowable error. Subdivide the evolution

time 𝑇 into 𝑟 subintervals, so 𝑡 = 𝑇 /𝑟 is the length of each time subinterval. We thus

have 𝜒 (𝑇 /𝑟 )𝑘+1 ≈ 𝜀/𝑟 , which gives

𝑟 ≈
(
𝜒𝑇

𝜖

)1/𝑘
𝑇 . (6.31)
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Figure 6.5: Error of the best 8th and 10th product formula obtained by our optimisation
procedure together with the best 8th order product formula from Yoshida. To compute
the error, two pairs of random Hamiltonians 𝐴 and 𝐵 were generated and the error was
evaluated comparing to the total evolution 𝑒−𝑖𝑡 (𝐴+𝐵) .

As explained above, the number of exponentials in the product is (4𝑚 + 2) (𝐽 − 1) + 1.

When applying products of these product formulae, two exponentials can be combined,

so the effective number for each is (4𝑚 + 2) (𝐽 − 1). As a result, the total number of

exponentials can be given as proportional to

(2𝑚 + 1)
(
𝜒𝑇

𝜖

)1/𝑘
𝑇 (6.32)

where we have ignored a common factor of 2(𝐽 − 1).

If we wish to compare product formulae of the same order, then we need only

compare the values of (2𝑚 + 1)𝜒1/𝑘 , and the one with the smaller value is the more

efficient product formula. This clearly demonstrates that our best product formula with

𝑚 = 16 is better than our best with𝑚 = 15. We also evaluated product formulae derived

using Suzuki’s fractal method via a number of approaches, such as constructing 10th

order from the best 8th order, or simply iterating the fractal method. Although some

of these gave better 𝜒 values, these were more than outweighed by the significantly
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Figure 6.6: Error in the case of the total Hamiltonian decomposed into 10 terms. We
compare the best 8th and 10th product formulae obtained by our optimisation procedure
together with the best 8th order product formula from Yoshida. We generate a random
tuple of Hamiltonian terms (𝐻1, · · · , 𝐻10) and compute the error comparing the product
formula with the total evolution 𝑒−𝑖𝑡

∑
𝑗 𝐻 𝑗 .

larger values of𝑚, meaning that they were not as efficient as our best product formulae

(both for 8th and 10th order). If we wish to compare product formulae of different order,

then we need to take account of the values of 𝑇 and 𝜀. Assume we have two integrators

of order 𝑘1 and 𝑘2, with corresponding constants 𝜒1, 𝜒2. Given 𝑇 and 𝜀, when the two

integrators use the same number of exponentials we have (2𝑚1 + 1)𝑟1 = (2𝑚2 + 1)𝑟2,

thus

(2𝑚1 + 1)
(
𝜒1𝑇

𝜀

)1/𝑘1
𝑇 = (2𝑚2 + 1)

(
𝜒2𝑇

𝜀

)1/𝑘2
𝑇 (6.33)

=⇒ 𝑇

𝜀
=

(
(2𝑚2 + 1)𝜒1/𝑘22

(2𝑚1 + 1)𝜒1/𝑘11

) 1
1
𝑘1

− 1
𝑘2
. (6.34)

For 𝑘2 > 𝑘1, this gives the threshold beyond which we should use the higher-order

product formula.
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Figure 6.7: Comparison of the total evolution time |𝑤0 | + 2
∑𝑚
𝑖=1 |𝑤𝑖 | and the constant

factor 𝜒 in the product formula error for the 10th order product formulae with𝑚 = 16
we have found. Each point corresponds to a different product formula for which the
constant error factor and total evolution time is computed.

As mentioned before, we report comparisons between several 8th and 10th order

product formulae as our numerics show that this will be most relevant in quantum

simulation. From the literature, we consider the following 6th order:

• Y6m3a: product formula with𝑚 = 3 (7 stages). Reported in Table 1 of [Yos90] as

Solution A.

• KL6s9a: product formula with 9 stages. Reported as s9odr6a in Appendix A of

[KL97].

• KL6s9b: product formula with 9 stages. Reported as s9odr6b in Appendix A of

[KL97].

• SS6s11: product formula with 11 stages. Reported in Section 4.2 of [SS05].

• SS6s13: product formula with 13 stages. Reported in Section 4.2 of [SS05].

We consider the following 8th order product formulae:

• KL8s15: product formula with 15 stages. Reported as s15odr8 in Appendix A of

[KL97]. Corresponds to best solution found in Table 6.1 with𝑚 = 7.
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• KL8s17: product formula with 17 stages. Reported as s17odr8 in Appendix A of

[KL97]. Corresponds to best solution found in Table 6.2 with𝑚 = 8.

• SS8s19: product formula with 19 stages. Reported in Section 4.3 of [SS05].

• SS8s21: product formula with 21 stages. Reported in Section 4.3 of [SS05].

• PP8s13: post processing product formulae with 13 stages without considering

processing. Reported as 𝑃138 in Table 6 of [BCM06].

• Y8m10: product formulae based on Yoshida’s method with𝑚 = 10. Table 6.3.

For 10th order product formulae, we consider the following:

• KL10s31a: product formulae with 31 stages. Reported as s31odr10a in Appendix

A of [KL97].

• KL10s31b: product formulae with 31 stages. Reported as s31odr10b in Appendix

A of [KL97].

• SS10s31: product formulae with 31 stages. Reported in Section 4.4 of [SS05].

• SS10s33: product formulae with 33 stages. Reported in Section 4.4 of [SS05].

• SS10s35: product formulae with 35 stages. Reported in Section 4.4 of [SS05].

• PP10s23: post processing product formulae with 23 stages without considering

processing. Reported as 𝑃2310 in Table 6 of [BCM06].

• Y10m15: 10th order product formula based on Yoshida’s method with𝑚 = 15.

Table 6.4.

• Y10m16: 10th order product formula based on Yoshida’s method with𝑚 = 16.

Table 6.4.

We provide the constant factors in the error 𝜒 for 6th order in Table 6.5, in Table 6.6 we

give the constant factors for the 8th order product formulae and we give the constant

factors for 10th order in Table 6.7.

To compare among product formulae of the same order, we use Eq. (6.34) and set

𝑘1 = 𝑘2. Then, we need to compute the ratio (2𝑚2+1)𝜒2
(2𝑚1+1)𝜒1 . Note that the𝑚𝑖 refer to the𝑚 in

Yoshida’s method but we can instead write the ratio in terms of number of 𝑆2 operators

as 𝑠2𝜒2
𝑠1𝜒1

where 𝑠𝑖 corresponds to the number of 𝑆2 in the product formula. By comparing

this ratio among the 6th order product formulae, we find that the best performing one is



CHAPTER 6. IMPROVED PRODUCT FORMULAE FOR QUANTUM
SIMULATION 162

𝜒

KL6s9a 6.8 × 10−4
KL6s9b 6.7 × 10−4
SS6s11 1.3 × 10−4
SS6s13 7 × 10−5
Y6m3a 1.6 × 10−3

Table 6.5: Constant factor in the error for 6th order product formulae.

𝜒

KL8s15 5.8 × 10−6
KL8s17 5.7 × 10−7
SS8s19 6.2 × 10−8
SS8s21 1.6 × 10−7
PP8s13 2.7
Y8m10 2.1 × 10−8

Table 6.6: Constant factor in the error for 8th order product formulae.

𝜒

KL10s31a 5.8 × 10−6
KL10s31b 4.7 × 10−5
SS10s31 4.3 × 10−7
SS10s33 8.7 × 10−9
SS10s35 6.3 × 10−9
PP10s23 0.23
Y10m15 9.4 × 10−7
Y10m16 1.9 × 10−8

Table 6.7: Constant factor in the error for 10th order product formulae.

SS6s13, which despite using more stages, the threshold is very small when comparing

with other 6th order formulae. In the 8th order case, the best performing product

formulae is Y8m10 (which we have reported in this paper) and in the 10th order case

SS10s31, SS10s33 and SS10s35 are the best performing depending on the threshold

which is rather low. For example the threshold between SS10s35 SS10s31 is around

60.4 which indicates that SS10s35 would be preferred for most practical applications of

quantum simulation.
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The threshold 𝑇 /𝜖 for 8th order to improve over 6th order is only about 0.08 when

comparing the best 6th and 8th order product formula. The value of 𝜒 for the 4th order

product formula (using Suzuki’s method with 5 copies of 𝑆2) is about 2.5 × 10−3. As a

result, the threshold for 6th order to improve over 4th order is about 9.4 × 103, which

is well above that for 8th order to beat 6th order. This means that, as 𝑇 /𝜖 is increased,

one should change over directly from 4th order to 8th order, and not use 6th order. The

threshold for using 8th order instead of 4th order is about 1.6 × 103.

To compare our best 8th order and 10th order product formulae, we took 𝑚1 =

8,𝑚2 = 16, 𝑘1 = 8, 𝑘2 = 10 in Eq. (6.34). When comparing SS8s19 and SS10s35, the

threshold for shifting to 8th to 10th order is 7 × 1013 which is very high for practical

applications.

This threshold calculation is for Hamiltonians that are sums of two terms, each

of which is normalised. In the case of quantum chemistry, the Hamiltonians have far

more structure in them. In particular, fermionic Hamiltonians encountered in quantum

chemistry often have the form
𝑑∑︁
𝑝,𝑞

𝜏𝑝𝑞𝑎
†
𝑝𝑎𝑞 +

𝑑∑︁
𝑝,𝑞

𝜈𝑝𝑞𝑎
†
𝑝𝑎𝑝𝑎

†
𝑞𝑎𝑞 (6.35)

where 𝑎†𝑝 and 𝑎𝑝 are the fermionic creation and destruction operators acting on orbital 𝑗

and there are a total of 𝑑 orbitals. Each entry 𝜏𝑝𝑞, 𝜈𝑝𝑞 is real and there is symmetry in

exchanging indices. We compute 𝜒 for our best 8th order, best 10th order and the best

8th order from Yoshida. The behaviour of 𝜒 as the size of system is changed can be

predicted based on the result in Theorem 4 of [LSTT22].

Theorem 6.5 (Theorem 4 in [LSTT22]). Let 𝐻 = 𝑇 + 𝑉 =
∑𝑑
𝑝,𝑞 𝜏𝑝𝑞𝑎

†
𝑝𝑎𝑞 +∑𝑑

𝑝,𝑞 𝜈𝑝𝑞𝑎
†
𝑝𝑎𝑝𝑎

†
𝑞𝑎𝑞 be an interacting-electronic Hamiltonian, 𝑆𝑘 (𝑡) be a 𝑘th order product

formula splitting the evolutions under 𝑇 and 𝑉 . Then

𝑆𝑘 (𝑡) − 𝑒−𝑖𝑡𝐻


𝑊𝜂

= O
(
(∥𝜏 ∥1 + ∥𝜈 ∥1,[𝜂])𝑘−1∥𝜏 ∥1∥𝜈 ∥1,[𝜂]𝜂𝑡𝑘+1

)
. (6.36)

where ∥·∥𝑊𝜂
corresponds to the operator norm on the operator acting in the 𝜂-electron

subspace, ∥𝜏 ∥1 = max𝑝
∑
𝑞

��𝜏𝑝𝑞 �� and ∥𝜈 ∥1,[𝜂] = max𝑝 max𝑞1<𝑞1<...<𝑞𝜂 (
��𝜈𝑝𝑞1 �� + · · · +

��𝜈𝑝𝑞𝜂 ��).
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With the errors computed numerically, we can divide 𝜒 by the expression on the

right of Eq. (6.36). In Table 6.8 we give the computed result for 𝑑 = 4, 6, 8 orbitals,

assuming half-filling of the orbitals. To compute 𝜒 , we generate 100 random instances of

Hamiltonians and then compute the geometric mean over the 𝜒 obtained. Our numerics

indicate that the error is roughly proportional to the bound in Eq. (6.36), independent

of the number of orbitals, though the constant factors are small. Moreover, out product

formulae still performs much better than Yoshida’s, with about a factor of 1000 less

error.

Num. orbitals 8th order (𝑚 = 8) 10th order (𝑚 = 16) Yoshida 8th order
4 5.9 × 10−10 2.7 × 10−12 7.1 × 10−7
6 5.8 × 10−10 2.8 × 10−12 6.4 × 10−7
8 5.4 × 10−10 2.6 × 10−12 5.4 × 10−7

Table 6.8: Comparison of constant factor 𝜒 for our best product formulae and the best
8th order product formula by Yoshida. We generate 100 random Hamiltonians as in
Eq. (6.35) and compute the average 𝜒 .

To estimate thresholds for quantum chemistry, we can define 𝜉 so that

𝜒 = 𝜉 (∥𝜏 ∥1 + ∥𝜈 ∥1,[𝜂])𝑘−1∥𝜏 ∥1∥𝜈 ∥1,[𝜂]𝜂. (6.37)

Then the formula for the threshold 𝑇 /𝜀 becomes

𝑇

𝜀
=

(
(2𝑚2 + 1) [𝜉2(∥𝜏 ∥1 + ∥𝜈 ∥1,[𝜂])𝑘2−1∥𝜏 ∥1∥𝜈 ∥1,[𝜂]𝜂]1/𝑘2

(2𝑚1 + 1) [𝜉1(∥𝜏 ∥1 + ∥𝜈 ∥1,[𝜂])𝑘1−1∥𝜏 ∥1∥𝜈 ∥1,[𝜂]𝜂]1/𝑘1

) 1
1
𝑘1

− 1
𝑘2

=

(
(2𝑚2 + 1) [𝜉2∥𝜏 ∥1∥𝜈 ∥1,[𝜂]𝜂/(∥𝜏 ∥1 + ∥𝜈 ∥1,[𝜂])]1/𝑘2

(2𝑚1 + 1) [𝜉1∥𝜏 ∥1∥𝜈 ∥1,[𝜂]𝜂/(∥𝜏 ∥1 + ∥𝜈 ∥1,[𝜂])]1/𝑘1

) 1
1
𝑘1

− 1
𝑘2

∥𝜏 ∥1∥𝜈 ∥1,[𝜂]𝜂
∥𝜏 ∥1 + ∥𝜈 ∥1,[𝜂]

𝑇

𝜀
=

(
(2𝑚2 + 1)𝜉1/𝑘22

(2𝑚1 + 1)𝜉1/𝑘11

) 1
1
𝑘1

− 1
𝑘2
. (6.38)

Thus we see that the ratio ∥𝜏 ∥1∥𝜈 ∥1,[𝜂]𝜂/(∥𝜏 ∥1 + ∥𝜈 ∥1,[𝜂]) governs the threshold where a

10th-order product formula will improve over an 8th-order product formula.

With the values of 𝜉1 and 𝜉2 above we have the right-hand-side of (6.38) approx-

imately equal to 3 × 1011. From Ref. [LSTT22] the norms can be expected to scale
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as

∥𝜈 ∥1,[𝜂] = O
(
𝜂2/3𝑁 1/3

Ω1/3

)
, ∥𝜏 ∥1 = O

(
𝑁 2/3

Ω2/3

)
, (6.39)

where 𝑁 is the number of orbitals and Ω is the volume (denoted 𝑛 and 𝜔 in [LSTT22]).

For some order of magnitude estimates, the chemical accuracy required for the phase

estimation is about 0.001 Hartree, which implies𝑇 of about 1000𝜋 , and 𝜀 can be taken to

be of order 1. With high estimates 𝜂 ≈ 100 and 𝑁 /Ω ≈ 109, the left-hand-side of (6.38)

would still only be on the order of 108, about three orders of magnitude less than the

threshold. Therefore the threshold to use 10th order instead of 8th order is well beyond

the expected values needed for simulations in quantum chemistry.

6.7 Conclusion

We have extended the method of Yoshida to construct product formulae of 10th order

with a minimum number of factors (for symmetric product formulae constructed from

𝑆2). We have also constructed 10th order product formulae with more factors that are

far more accurate. Yoshida only found five 8th order solutions, but we have found over

600 with a minimum number of factors. We have also found hundreds of examples with

more factors that are again far more accurate. Our best 8th order product formula is more

than a factor of 1000 times more accurate than the best product formula of Yoshida.

We have provided a method of fairly comparing product formulae with different

numbers of terms and different orders. This demonstrates that our best solutions for 8th

and 10th order also improve over those obtained using Suzuki’s fractal method with

lower error but many more terms. For comparing our best 10th order to our best 8th

order, simulations with 𝑇 /𝜖 ≳ 6 × 1011 would be required. This is larger than would be

expected for most applications, indicating that our best 8th order solution would be best

for most simulations.

The analysis of the threshold of 𝑇 /𝜀 depends on the form of the Hamiltonian. To

more specifically analyse the performance for Hamiltonians for quantum chemistry, we
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have considered fermionic Hamiltonians, together with the result for the error given

in [LSTT22]. The results are qualitatively similar to those obtained simply by using

random Hamiltonians. The threshold for there to be an improvement in performance by

using the 10th order product formula is still orders of magnitude larger than would be

expected for typical ranges of parameters.

In further work one could increase the number of factors in the product formulae

in order to further reduce the error. There were large reductions in the error just from

increasing𝑚 by 1 from its minimal value. There is also the possibility to extend the

solutions to even higher-order product formulae, though those would likely need much

higher numbers of terms, and so the threshold for them to provide an advantage would

be even higher.
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Chapter 7

Conclusion

In this thesis we have explored three topics whose unifying motivation is that of un-

derstanding tractability or intractability of physically relevant problems for quantum

computers. We began in Chapter 3 and Chapter 4 by studying the intractability of the

Weighted Local Hamiltonian Problem. This likely intractability is tied to the validity

of the quantum exponential time hypothesis (QETH). As remarked in Chapter 4 it

remains open whether this problem is complete for the class QW[1]. An important

future direction is that of determining if this problem is in fact complete and whether

there are other important problems which are complete for this class. Moreover it would

be interesting to develop a quantum version of the Sparsification Lemma as stated in

Lemma 2.13.

Chapter 5 introduced a sampling scheme based on fermionic particles. We have

shown that such scheme has comparable hardness guarantees as Boson Sampling and

Random Circuit Sampling. Possible future work includes reducing the depth at which

anticoncentration holds for random free Fermionic circuits. Some numerical work in the

original paper [ODMZ22] shows that these circuits could anticoncentrate at logarithmic

depth. This has already been shown for Random Circuit Sampling in [DHJBa22], the

techniques used to prove this could be adapted for free Fermionic circuits and prove a

similar result.
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Finally, in Chapter 6 we give new 8th and 10th order product formulae. We show

that these improve over previous formulae in the literature by numerically testing their

performance. The numerical recipe we have established could be extended to the

randomized Trotter version [Cam19] or to multiproduct formulae [ZRB23].

As discussed in Chapter 1, there were three motivating questions for the work pre-

sented in this thesis. The first question, regarding the limitations of quantum computers

and their computational capabilities, has been studied in the setting of parameterized

complexity theory has been studied in Chapter 3 and Chapter 4. We hope this work to

be the first steps in fully developing a quantum parameterized complexity theory. The

second question, on the conditions in which quantum algorithms can exhibit superiority

over classical counterparts, has been studied in Chapter 5. We found that Fermionic Lin-

ear Optics provide a setting in which a robust quantum advantage can be found. Whether

this advantage can be transferred to other problems such as in quantum chemistry is

an intriguing possibility. Finally, we have studied better implementation of product

formulae for quantum simulation. We expect these to be useful in quantum chemistry

and also inspire more work in improving the product formulae technique.
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Appendix A

Some proofs of results for Part II

These proofs have been included in this appendix so the main text is easier to follow.

A.1 #P-Hardness of probabilities in shallow depth

active FLO circuits

We argued in section 5.5 that amplitudes of active FLO circuits are #P-hard to compute.

Here we show that similarly strong simulation (i.e., computing output probabilities)

of constant-depth active FLO circuits is hard. It has been proven in previous work

[BJS11] that under certain conditions, non-universal circuit families of shallow depth

are hard to simulate under plausible conjectures which in addition implies that the output

probabilities are #P-hard. In concrete, it is required that the postselected version of the

circuit family is universal for quantum computation. This method is not robust as it only

shows that exactly computing the output probabilities are hard, nonetheless it may be of

interest that such hardness results can be obtained for constant-depth active FLO circuits.

The required theorem is as follows

Theorem A.1. Let F be a restricted family of quantum circuits. If circuits from F with

the added power of postselection can simulate the output probability distributions of
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universal quantum circuits with postselection (i.e., F is universal with postselection)

then computing the output probabilities (strong simulation) of circuits in F is #P-hard.

Proof. Similar results have been proven in [AA11, BJS11] and later in other works

related to active FLO [HJKS20]. Let 𝐶 be some circuit with gates from a universal

gate set and let 𝑃𝐶 (y) be the output probability of result y. By hypothesis, with the

power of postselection we can use a circuit 𝐹 from F to simulate 𝐶 and thus 𝑃𝐶 (y) =

𝑃𝐹 (y∗ |00 · · · 0) = 𝑃𝐹 (y∗00···0)
𝑃𝐹 (00···0) , where y∗ is potentially a bitstring encoding y (which will be

our case below). This directly implies that if we could compute the output probabilities

of 𝐹 then this would allow for computing the output probabilities of 𝐶. Since universal

circuits are known to include #P-hard instances, the result follows. ■

In what follows, we will always assume that the active FLO circuits are supplied with

auxiliary states |Ψ4⟩. Throughout this section we will consider the encoding |0𝐿⟩ = |00⟩

and |1𝐿⟩ = |11⟩. To prove that computing the probabilities of shallow depth active FLO

circuits is #P-hard, we prove now Lemma A.2.

Lemma A.2. Constant-depth active FLO circuits supplied with auxiliary states |Ψ4⟩

with the added power of postselection are universal.

To prove this, we follow Ref. [Bro15], which showed similar results in the context

of Boson Sampling. The starting point is the brickwork graph state which allows

for universal computation on the measurement based quantum computation (MBQC)

scheme. We can write the preparation of the brickwork graph state plus measurements

on the state as a single circuit with adaptive measurements. If we are given the power

to postselect measurements, then the preparation of the graph state requires a constant

depth circuit with single qubit gates and CZ gates. If we can simulate these gates with

constant-depth active FLO circuits and postselection, then this would imply Lemma

A.2. Using the encoding defined above, we show Theorem A.3 which directly implies

Lemma A.2.
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Theorem A.3. Active FLO acting on an initial state consisting of tensor products of

|Ψ4⟩ with the added power of postselection can simulate single qubit gates and CZ with

constant-depth circuits. These simulations are at the logical level using the encoding

above.

Proof. As explained before, the circuit induced by the brickwork state with post selection

is universal and of constant depth, consisting of single qubit gates and CZ gates. Using

the encoding above we can simulate single qubit gates and CZ gates in constant depth,

then we can simulate the whole universal constant-depth circuit with a circuit from C𝑎𝑐𝑡
and postselection.

That single qubit gates at the logical level can be implemented with this encoding

is already known [BK02]. Implementing CZ at the logical level will require the use

of post selection and the auxiliary states |Ψ4⟩. First, we note that the state |Ψ4⟩ can be

transformed into the state |𝑎8⟩ = 1√
2
( |0000⟩ + |1111⟩) using only active FLO operations.

Second, in Lemma 1 of [Bra06] it is shown that using a single copy of |𝑎8⟩ and particle

number measurements it is possible to implement a CZ at the logical level using the

same encoding we use here. This two facts together imply that CZ can be implemented

with active FLO circuits supplied by |Ψ4⟩ states and postselection. The auxiliary states

can be swapped to the desired position when implementing a gate without incurring on

extra negative signs with our encoding since the auxiliary states used are fermionic as

for example argued in [HJK+19].

A.2 Bounding 𝐾pas and 𝐾act

In this section we prove that in the passive case 𝐾pas
2𝑁+1 ≤ 𝐶pas

𝑁
and in the active case

𝐾act
28𝑁 ≤ 𝐶act√

𝜋𝑁
, which is required for the proof of anticoncentration. To prove this, we will

use a known bound for the binomial coefficients.



APPENDIX A. SOME PROOFS OF RESULTS FOR PART II 172

Lemma A.4 (Bounds for binomial and trinomial coefficients). Let 𝑛, 𝑘 be a natural

numbers such that 𝑘 ∈ {1, . . . , 𝑛 − 1}. Let 𝑥 = 𝑘
𝑛

. Then we have

𝑐 ·
√︂

𝑛

𝑘 (𝑛 − 𝑘) exp (𝑛 ℎ(𝑥)) ≤
(
𝑛

𝑘

)
≤ 𝐶 ·

√︂
𝑛

𝑘 (𝑛 − 𝑘) exp (𝑛 ℎ(𝑥)) , (A.1)

where 𝑐 = 1
2
√
2
,𝐶 = 1√

2𝜋
, and ℎ(𝑥) = −𝑥 log(𝑥) − (1−𝑥) log(1 − 𝑥) is the binary entropy.

Moreover, let 𝑘, 𝑙,𝑚 be nonzero natural numbers such that 𝑘 + 𝑙 + 𝑚 = 𝑛. Let

𝑥 = 𝑘
𝑛
, 𝑦 = 𝑙

𝑛
, 𝑧 = 𝑚

𝑛
. Then we have

𝑎

√︂
𝑛

𝑘 · 𝑙 ·𝑚 exp (𝑛 ℎ(𝑥,𝑦, 𝑧)) ≤
(
𝑛

𝑘, 𝑙,𝑚

)
≤ 𝐴

√︂
𝑛

𝑘 · 𝑙 ·𝑚 exp (𝑛 ℎ(𝑥,𝑦, 𝑧)) , (A.2)

where 𝑎 = 1
8 , 𝐴 = 1

2𝜋 and ℎ(𝑥,𝑦, 𝑧) = −𝑥 log(𝑥) − 𝑦 log(𝑦) − 𝑧 log(𝑧) is the entropy of

three-outcome probability distribution.

The inequality (A.1) can be found in Lemma 7 in Chapter 10 of [MS83] while (A.2)

follows from it due to identity
( 𝑛
𝑘,𝑙,𝑚

)
=

(𝑛
𝑘

) (𝑙+𝑚
𝑚

)
.

Lemma A.5. With the notation from Proposition 5.5, we have that 𝐾pas
2𝑁+1 ≤ 𝐶pas

𝑁
. Where

𝐶pas = 5.7.

Proof. We have that

𝐾pas

2𝑁 + 1
=

1
2𝑁 + 1

[
2
𝑁−1∑︁
𝑘=0

1(2𝑁
𝑘

) ⌊𝑘/2⌋∑︁
𝑙=0

𝑁 !
𝑙 !(𝑘 − 2𝑙)!(𝑁 − 𝑘 + 𝑙)! +

1(2𝑁
𝑁

) ⌊𝑁 /2⌋∑︁
𝑙=0

𝑁 !
𝑙 !(𝑁 − 2𝑙)!𝑙 !

]
=

2
2𝑁 + 1

𝑁∑︁
𝑘=0

⌊𝑘/2⌋∑︁
𝑙=0

( 𝑁
𝑙,𝑘−2𝑙,𝑁−𝑘+𝑙

)(2𝑁
𝑘

) . (A.3)

Let us denote

𝑓𝑁 (𝑘, 𝑙) B
( 𝑁
𝑙,𝑘−2𝑙,𝑁−𝑘+𝑙

)(2𝑁
𝑘

) . (A.4)

Then we have

𝐾pas

2𝑁 + 1
=

2
2𝑁 + 1

𝑁∑︁
𝑘=0

⌊𝑘/2⌋∑︁
𝑙=0

𝑓𝑁 (𝑘, 𝑙) (A.5)

=
1
𝑁

(
A𝑘=0 + A𝑙=0 + A𝑘=2𝑙 + A𝑔𝑒𝑛

)
(A.6)
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where

A𝑘=0 = 𝑓𝑁 (0, 0) = 1 , (A.7)

A𝑙=0 =

𝑁∑︁
𝑘=1

(𝑁
𝑘

)(2𝑁
𝑘

) , (A.8)

A𝑘=2𝑙 =

𝑁∑︁
𝑘>1
𝑘 even

( 𝑁
𝑘/2

)(2𝑁
𝑘

) , (A.9)

A𝑔𝑒𝑛 =

𝑁∑︁
𝑘=1

𝑙<𝑘/2∑︁
𝑙=1

𝑓𝑁 (𝑘, 𝑙) . (A.10)

We upper bound each term above separately (except for the trivial case of A𝑘=0). The

following analytical proof for the bound requires 𝑁 ≥ 130. In particular, the bound for

A𝑙=0 is valid for 𝑁 ≥ 40, and the bound for A𝑔𝑒𝑛 is valid for 𝑁 ≥ 130. At the end of the

proof, we show in Fig. A.2 that the bound also holds for all smaller values of 𝑁 .

Upper bound on A𝑙=0. In this case, we derive a bound valid for 𝑁 > 40. The

bounds from Lemma A.4 gives

A𝑙=0 ≤
1(2𝑁
𝑁

) + 𝐶
𝑐

𝑁−1∑︁
𝑘=1

√︄
2𝑁 − 𝑘
2(𝑁 − 𝑘) exp [𝑁 {ℎ(𝑘/𝑁 ) − 2ℎ(𝑘/2𝑁 )}] . (A.11)

We use now the inequality ℎ(𝑥) − 2ℎ(𝑥/2) ≤ −2
3𝑥 , valid for 𝑥 ∈ [0, 1] to obtain

A𝑙=0 ≤
1(2𝑁
𝑁

) + 𝐶
𝑐

𝑁−1∑︁
𝑘=1

√︄
2𝑁 − 𝑘
2(𝑁 − 𝑘) exp

(
−2𝑘
3

)
. (A.12)

We then apply the bound
(2𝑁
𝑁

)
≥ 𝑐22𝑁

√︁
2/𝑁 and divide the sum over 𝑘 into two parts

A𝑙=0 ≤
√
𝑁

√
2𝑐
2−2𝑁 +𝐶

𝑐

©­«
𝑘≤1/2𝑁∑︁
𝑘=1

√︄
2𝑁 − 𝑘
2(𝑁 − 𝑘) exp

(
−2𝑘
3

)
+

𝑁−1∑︁
𝑘>1/2𝑁

√︄
2𝑁 − 𝑘
2(𝑁 − 𝑘) exp

(
−2𝑘
3

)ª®¬
(A.13)

For 𝑘 ≤ 𝑁 /2 we have
√︃

2𝑁−𝑘
2(𝑁−𝑘) ≤

√︁
3/2 and therefore

A𝑙=0 ≤
√
𝑁

√
2𝑐
2−2𝑁 + 𝐶

𝑐

(√︂
3
2

1
𝑒2/3 − 1

+ 𝑁
3/2

2
exp

(
−𝑁
3

))
, (A.14)
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where we have utilized the expression for the sum of geometric progression and the

upper bound
√︃

2𝑁−𝑘
2(𝑁−𝑘) ≤

√
𝑁 , valid for 𝑘 ≤ 𝑁 − 1 . Using expression (A.14) it is easy to

verify that for 𝑁 > 40 we have

A𝑙=0 ≤
3
2
. (A.15)

Upper bound on A𝑘=2𝑙 . Estimates for binomials from Lemma A.4 yield

A𝑘=2𝑙 ≤
𝐶
√
2

𝑐

𝑁∑︁
𝑘>1
𝑘 even

exp [−𝑁ℎ(𝑘/2𝑁 )] . (A.16)

Concavity of binary entropy ℎ(·) implies that for 𝑥 ∈ [0, 1] we have log(2)
2 𝑥 ≤ ℎ(𝑥/2)

and consequently

A𝑘=2𝑙 ≤
𝐶
√
2

𝑐

𝑁∑︁
𝑘>1
𝑘 even

exp
(
−𝑘 log(2)

2

)
=
𝐶
√
2

𝑐

⌊𝑁 /2⌋∑︁
𝑝=1

2−𝑝 . (A.17)

The sum of the geometric series in the above expression is upper bounded by 1 and

therefore

A𝑘=2𝑙 ≤
𝐶
√
2

𝑐
≤ 8

5
. (A.18)

Upper bound on A𝑔𝑒𝑛. In the following proof, we require that 𝑁 ≥ 130. For the

generic points in the sum of Eq. (A.5) inequalities from Lemma A.4 give

A𝑔𝑒𝑛 ≤ 𝐴
√
2𝑐

𝑁∑︁
𝑘=1

𝑙<𝑘/2∑︁
𝑙=1

√︄
𝑘 (2𝑁 − 𝑘)

𝑙 (𝑘 − 2𝑙) (𝑁 − 𝑘 + 𝑙) exp (𝑁 {ℎ [𝑥𝑙 , 𝑦𝑘 − 2𝑥𝑙 , 1 − 𝑦𝑘 + 𝑥𝑙 ] − 2ℎ [𝑦𝑘/2]}) ,

(A.19)

where 𝑥𝑙 = 𝑙/𝑁 , 𝑦𝑘 = 𝑘/𝑁 . Note that 𝑘 = 1 and 𝑘 = 2 are implicitly excluded from the

above sum because of the constraints on 𝑙 and hence

A𝑔𝑒𝑛 ≤ 𝐴
√
2𝑐

𝑁∑︁
𝑘=3

𝑙<𝑘/2∑︁
𝑙=1

√︄
𝑘 (2𝑁 − 𝑘)

𝑙 (𝑘 − 2𝑙) (𝑁 − 𝑘 + 𝑙) exp (𝑁 {ℎ [𝑥𝑙 , 𝑦𝑘 − 2𝑥𝑙 , 1 − 𝑦𝑘 + 𝑥𝑙 ] − 2ℎ [𝑦𝑘/2]}) .

(A.20)

In order to upper bound the expression we maximize the function

𝐹 (𝑥,𝑦) = ℎ (𝑥,𝑦 − 2𝑥, 1 − 𝑦 + 𝑥) − 2ℎ (𝑦/2) (A.21)
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Figure A.1: Function 𝐹𝑜𝑝𝑡 (𝑦) B 𝐹 (𝑥𝑜𝑝𝑡 (𝑦), 𝑦) where 𝐹 is defined in Eq. (A.21) and
𝑥𝑜𝑝𝑡 (𝑦) is given in Eq. (A.22). The function is bounded by −𝑦/3 in the interval [0, 1/3]
and by −𝑦/4 in the interval [1/3, 1]. The inset plot shows that the inequality is also valid
near 𝑦 = 1/3. Figure from [ODMZ22].

over 𝑥 ∈ [0, 𝑦/2], for fixed value of 𝑦 ∈ [0, 1]. Looking for critical points reduces the

problem to solving quadratic equation which gives a unique solution in the interval

[0, 𝑦/2]:

𝑥𝑜𝑝𝑡 (𝑦) =
1
6

(
1 + 3𝑦 −

√︁
1 + 6𝑦 − 3𝑦2

)
. (A.22)

Crucially, the function 𝐹𝑜𝑝𝑡 (𝑦) B 𝐹 (𝑥𝑜𝑝𝑡 (𝑦), 𝑦) is a continuous function of parameter

𝑦, which is also analytic in the interior the interval (0, 1). Moreover, 𝐹𝑜𝑝𝑡 (𝑦) satisfies

(see Fig. A.1):

𝐹𝑜𝑝𝑡 (𝑦) ≤ −1
2
𝑦 for 𝑦 ∈ [0, 1/3] , 𝐹𝑜𝑝𝑡 (𝑦) ≤ −1

4
𝑦 for 𝑦 ∈ [0, 1] . (A.23)

It follows that

𝑁 (ℎ [𝑥𝑙 , 𝑦𝑘 − 2𝑥𝑙 , 1 − 𝑦𝑘 + 𝑥𝑙 ] − 2ℎ [𝑦𝑘/2]) ≤ −1
2
𝑘 for 1 ≤ 𝑘 ≤ 𝑁 /3 , (A.24)

𝑁 (ℎ [𝑥𝑙 , 𝑦𝑘 − 2𝑥𝑙 , 1 − 𝑦𝑘 + 𝑥𝑙 ] − 2ℎ [𝑦𝑘/2]) ≤ −1
4
𝑘 for 1 ≤ 𝑘 ≤ 𝑁 . (A.25)

Moreover, for integer 𝑙 satisfying 1 ≤ 𝑙 < 𝑘/2 we have 𝑙 (𝑘 − 2𝑙) ≥ (𝑘 − 2)/2 and

consequently for 𝑘 ≥ 3 we have 𝑘
𝑙 (𝑘−2𝑙) ≤

2𝑘
𝑘−2 ≤ 6. As a result we have

𝑙<𝑘/2∑︁
𝑙=1

√︄
𝑘 (2𝑁 − 𝑘)

𝑙 (𝑘 − 2𝑙) (𝑁 − 𝑘 + 𝑙) ≤
√
6𝑘
2

√︂
2𝑁 − 𝑘
𝑁 − 𝑘 + 1

. (A.26)
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Inserting Eq. (A.24) and Eq. (A.26) into Eq. (A.20) gives

A𝑔𝑒𝑛 ≤
√
3𝐴
2𝑐

©­«
𝑘≤𝑁 /3∑︁
𝑘=3

√︂
2𝑁 − 𝑘
𝑁 − 𝑘 + 1

𝑘 exp
(
−𝑘
2

)
+

𝑁∑︁
𝑘>𝑁 /3

√︂
2𝑁 − 𝑘
𝑁 − 𝑘 + 1

𝑘 exp
(
−𝑘
4

)ª®¬
(A.27)

Observing that for 𝑘 ≤ 𝑁 /3 we have
√︃

2𝑁−𝑘
𝑁−𝑘+1 ≤

√︃
5
2 , while and for general 𝑘 ≤ 𝑁√︃

2𝑁−𝑘
𝑁−𝑘+1 ≤

√
𝑁 , we obtain

A𝑔𝑒𝑛 ≤
√
3𝐴
2𝑐

(√︂
5
2

𝑘≤𝑁 /3∑︁
𝑘=3

𝑘 exp
(
−𝑘
2

)
+ 2𝑁

3
2

3
exp

(
−𝑁
12

))
. (A.28)

We bound the first summand as follows

𝑘≤𝑁 /3∑︁
𝑘=3

𝑘 exp
(
−𝑘
2

)
≤

∞∑︁
𝑘=3

𝑘 exp
(
−𝑘
2

)
=

3
√
𝑒 − 2

(
√
𝑒 − 1)2𝑒

. (A.29)

This finally gives us

A𝑔𝑒𝑛 ≤
√
15𝐴

2
√
2𝑐

3
√
𝑒 − 2

(
√
𝑒 − 1)2𝑒

+ 𝐴
√
3𝑐
𝑁

3
2 exp

(
−𝑁
12

)
. (A.30)

Using the above expression we get that for 𝑁 ≥ 130 we have

A𝑔𝑒𝑛 ≤ 8
5
. (A.31)

Finally, combining bounds (A.15), (A.18) and (A.31) together with A𝑘=0 = 1 we see

that for 𝑁 ≥ 130,

A𝑘=0 + A𝑙=0 + A𝑘=2𝑙 + A𝑔𝑒𝑛 ≤ 5.7 . (A.32)

Inserting this into Eq. (A.5) proves the lemma for 𝑁 ≥ 130. For 𝑁 ≤ 130, the validity of

the bound can be verified numerically as shown in Fig. A.2, which completes the proof.

■

We prove the analogous result for active FLO. The proof follows a similar structure

to the passive case.

Lemma A.6. With the notation from Proposition 5.5, we have that 𝐾act
28𝑁 ≤ 𝐶act√

𝜋𝑁
. Where

𝐶act = 16.2.
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Figure A.2: Plots of the logarithm of the expression (A.5) (blue) and log
(
𝐶pas/𝑁

)
=

log(5.7/𝑁 ) (orange), which constitutes a valid upper bound for all 𝑁 ≤ 1000. Figure
from [ODMZ22].

Proof. Analogously for the active FLO case, we have that

𝐾act

28𝑁
=

1
28𝑁

[
2
𝑁−1∑︁
𝑞

𝐶2𝑞

⌊ 𝑞2 ⌋∑︁
𝑙=0

𝑁 !
𝑙 !(𝑞 − 2𝑙)!(𝑁 − 𝑞 + 𝑙)!14

𝑞−2𝑙 +𝐶2𝑁

𝑁∑︁
𝑙=0

𝑁 !
(𝑙 !)2(4𝑁 − 2𝑙)!14

𝑁−2𝑙
]

(A.33)

=

(8𝑁
4𝑁

)
28𝑁−1

𝑁∑︁
𝑞=0

⌊ 𝑞2 ⌋∑︁
𝑙=0

(4𝑁
2𝑞

) ( 𝑁
𝑙,𝑞−2𝑙,𝑁−𝑞+𝑙

)(8𝑁
4𝑞

) 14𝑞−2𝑙 , (A.34)

where

𝐶2𝑞 =
(4𝑞)!(8𝑁 − 4𝑞)!

((4𝑁 )!)2

(
4𝑁
2𝑞

)
. (A.35)

Let us denote

𝑔𝑁 (𝑞, 𝑙) B
(4𝑁
2𝑞

) ( 𝑁
𝑙,𝑞−2𝑙,𝑁−𝑞+𝑙

)(8𝑁
4𝑞

) 14𝑞−2𝑙 . (A.36)

It follows from (A.33) and the entropic bound for binomial coefficients in Lemma A.4,(8𝑁
4𝑁

)
28𝑁−1 ≤ 1

√
𝜋𝑁

, (A.37)

that

𝐾act

28𝑁
=

1
√
𝜋𝑁

𝑁∑︁
𝑞=0

⌊ 𝑞2 ⌋∑︁
𝑙=0

𝑔𝑁 (𝑞, 𝑙) ≤
1

√
𝜋𝑁

(B𝑞=0 + B𝑙=0 + B𝑞=2𝑙 + B𝑔𝑒𝑛) , (A.38)
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where

B𝑞=0 = 𝑔𝑁 (0, 0) = 1, (A.39)

B𝑙=0 =
𝑁∑︁
𝑞=1

(4𝑁
2𝑞

) (𝑁
𝑞

)(8𝑁
4𝑞

) 14𝑞, (A.40)

B𝑞=2𝑙 =
𝑁∑︁
𝑞>1
𝑞 even

(4𝑁
2𝑞

) ( 𝑁
𝑞/2

)(8𝑁
4𝑞

) , (A.41)

B𝑔𝑒𝑛 =
𝑁∑︁
𝑞=1

𝑙<𝑞/2∑︁
𝑙=1

𝑔𝑁 (𝑞, 𝑙) . (A.42)

We upper bound each term above separately (except for the trivial case of B𝑞=0). The

following analytical proof for the bound requires 𝑁 ≥ 7000. In particular, the bound for

(A.15) B𝑙=0 is valid for 𝑁 ≥ 1000, and the bound (A.31) for B𝑔𝑒𝑛 is valid for 𝑁 ≥ 7000.

At the end of the proof, we show in Fig. A.4 that the bound also holds for all smaller

values of 𝑁 ≤ 8000 by numerically evaluating right-hand side of (A.33).

Upper bound on B𝑙=0. For this term, we require that 𝑁 ≥ 1000. The entropic

bound in Lemma A.4 implies that

B𝑙=0 ≤
(4𝑁
2𝑁

)(8𝑁
4𝑁

) 14𝑁 + 𝐶
2√2
𝑐

𝑁−1∑︁
𝑞=1

√︄
𝑁

𝑞(𝑁 − 𝑞) exp[𝑁 {ℎ(𝑞/𝑁 ) − 4ℎ(𝑞/2𝑁 ) + log(14)𝑞/𝑁 }] .

(A.43)

To upper bound the sum, we split the sum into two sums: one from 𝑞 = 1 to 𝑞 ≤ 𝑁 /5

and another from 𝑞 > 𝑁 /5 to 𝑞 = 𝑁 − 1, and upper bound the function

𝐻 (𝑥) B ℎ(𝑥) − 4ℎ(𝑥/2) + 𝑥 log(14), (A.44)

𝑥 ∈ [0, 1] in the intervals [0, 1/5] and (1/5, 1] separately. In particular, we have that

(See also Fig. A.3)

𝐻 (𝑥) ≤ −4
3
𝑥 for 𝑥 ∈ [0, 2/5], 𝐻 (𝑥) ≤ − 1

18
𝑥 for 𝑥 ∈ [0, 1] (A.45)
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Figure A.3: Function 𝐻 (𝑥) defined in (A.45). The function is bounded above by −4𝑥/3
in the interval [0, 1/5] and by −𝑥/18 in the interval [0, 1]. The inset plot shows the
validity of the upper bound in each interval. Figure from [ODMZ22].

Together with the bound
(4𝑁
2𝑁

)
/
(8𝑁
4𝑁

)
≤ 𝐶

√
2

𝑐
2−4𝑁 and

√︁
𝑁 /(𝑞(𝑁 − 𝑞)) ≤

√
2 valid for

𝑁 ≥ 2 ( this is because
√︃

𝑁
𝑞(𝑁−𝑞) is convex for 𝑞 ∈ [1, 𝑁 − 1] and thus the expression

takes the maximum values at the end points), we obtain

B𝑙=0 ≤
𝐶
√
2

𝑐

(
14
16

)𝑁
+ 2𝐶2

𝑐

©­«
𝑞≤𝑁 /5∑︁
𝑞=1

exp(−4𝑞/3) +
𝑁−1∑︁
𝑞>𝑁 /5

exp(−𝑞/18)ª®¬ (A.46)

≤ 𝐶
√
2

𝑐

(
14
16

)𝑁
+ 2𝐶2

𝑐

(
1

𝑒4/3 − 1
+ 4𝑁

5
exp

[
− 𝑁

18 · 5

] )
, (A.47)

where we have used the sum of the geometric series to arrive at the final expression.

Using the expression (A.47), it can be verified that

B𝑙=0 ≤
1
3

(A.48)

holds for 𝑁 ≥ 1000.

Upper bound on B𝑞=2𝑙 . From Lemma A.4 we see that

B𝑞=2𝑙 ≤
𝐶2√2
𝑐

𝑁∑︁
𝑞>1
𝑞 even

√︄
𝑁

𝑞

2 (𝑁 − 𝑞

2 )
exp[−3𝑁ℎ(𝑞/2𝑁 )] (A.49)

Now by concavity of ℎ(𝑥) for 𝑥 ∈ [0, 12 ] we have log(2)𝑥/2 ≤ ℎ(𝑥/2) for 𝑥 ∈ [0, 1].

Then



APPENDIX A. SOME PROOFS OF RESULTS FOR PART II 180

Figure A.4: Plots of the logarithm of the the expression (A.33) (blue) and
log

(
𝐶act/

√
𝑁

)
= log

(
16.2/

√
𝜋𝑁

)
(orange), which is a valid upper bound for all

𝑁 ≤ 8000. Figure from [ODMZ22].

B𝑞=2𝑙 ≤
𝐶2√2
𝑐

𝑁∑︁
𝑞>1
𝑞 even

√︄
𝑁

𝑞

2 (𝑁 − 𝑞

2 )
exp[−3𝑞 log(2)/2] (A.50)

=
𝐶2√2
𝑐

⌊𝑁 /2⌋∑︁
𝑝=1

√︄
𝑁

𝑝 (𝑁 − 𝑝) 2
−3𝑝 (A.51)

We can bound
√︃

𝑁
𝑝 (𝑁−𝑝) ≤

√
2 the same way as in the passive case. Then we obtain

B𝑞=2𝑙 ≤
2𝐶2

7𝑐
≤ 0.13 (A.52)

where we used that the geometric sum of 2−3𝑝 is bounded by 1/7.

■

Upper bound on B𝑔𝑒𝑛. Following bounds form Lemma A.4 and defining 𝑥𝑙 = 𝑙
𝑁

and 𝑦𝑞 =
𝑞

𝑁
we obtain

B𝑔𝑒𝑛 ≤
√
2𝐶𝐴
𝑐

𝑁∑︁
𝑞=1

𝑙<𝑞/2∑︁
𝑙=1

√︄
𝑁

𝑙 (𝑞 − 2𝑙) (𝑁 − 𝑞 + 𝑙) exp
[
𝑁𝐺 (𝑥𝑙 , 𝑦𝑞)

]
, (A.53)

where, following the analogous construction in Lemma A.5, we introduced

𝐺 (𝑥,𝑦) B −4ℎ(𝑦/2) + ℎ(𝑥,𝑦 − 2𝑥, 1 − 𝑦 + 𝑥) + (𝑦 − 2𝑥) log(14) . (A.54)

2000 4000 6000 8000
N

-4
-3
-2
-1
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Figure A.5: Function 𝐺𝑜𝑝𝑡 (𝑦) = 𝐺 (𝑥𝑜𝑝𝑡 (𝑦), 𝑦) where 𝐺 is defined in Eq. (A.54) and
𝑥𝑜𝑝𝑡 (𝑦) is defined in Eq. (A.55). The function is presented alongside simple analitical
lower bounds are valid in specific intervals formulated in Eq. (A.56).

As in the case of passive FLO, our strategy is to upper bound 𝐺 (𝑥,𝑦) by a function

that allows for analytical treatment. To this end, we first optimize 𝐺 (𝑥,𝑦) over 𝑥 ∈

[0, 𝑦/2] for fixed 𝑦 ∈ [0, 1]. Solving for the critical points gives the following optimal

solution 𝑥𝑜𝑝𝑡 ∈ [0, 𝑦/2] (at the extremal points of this interval function 𝐺 (𝑥,𝑦), treated

as a function of 𝑥 for fixed 𝑦, takes smaller values)

𝑥𝑜𝑝𝑡 (𝑦) =
1
96

(
−49 + 48𝑦 + 7

√︁
40 − 96𝑦 + 48𝑦2

)
. (A.55)

The maximum of𝐺 (𝑥,𝑦) over 𝑥 ∈ [0, 𝑦/2],𝐺𝑜𝑝𝑡 (𝑦) B 𝐺 (𝑥𝑜𝑝𝑡 (𝑦), 𝑦) is a continuous

function of 𝑦 ∈ [0, 1] and also analytic for 𝑦 ∈ (0, 1). We can bound 𝐺𝑜𝑝𝑡 (𝑦) in the

following way (see Fig. A.5)

𝐺𝑜𝑝𝑡 (𝑦) ≤ −𝑦/3 for 𝑦 ∈ [0, 1/2] , (A.56)

𝐺𝑜𝑝𝑡 (𝑦) ≤ −𝑦/100 for 𝑦 ∈ [1/5, 0.925] , (A.57)

𝐺𝑜𝑝𝑡 (𝑦) ≤ −(1 − 𝑦)2 for 𝑦 ∈ [0.925, 1] . (A.58)

We shall need much more refined information about𝐺 (𝑥,𝑦) than in the case of analogous

considerations for passive FLO. Namely, we will need to control how fast𝐺 (𝑥,𝑦) decays

as a function of 𝑥 − 𝑥𝑜𝑝𝑡 (𝑦), for fixed 𝑦. To this end we compute for 𝑥 ∈ (0, 𝑦/2),

𝑦 ∈ (0, 1)

𝜕2𝑥𝐺 (𝑥,𝑦) = −
(
1
𝑥
+ 1
1 − 𝑦 + 𝑥 + 4

𝑦 − 2𝑥

)
. (A.59)
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From the above expression we get1

𝜕2𝑥𝐺 (𝑥,𝑦) ≤ −16 for 𝑥 ∈ (0, 𝑦/2) and 𝜕2𝑥𝐺 (𝑥,𝑦) ≤ − 2
3𝑥𝑜𝑝𝑡 (𝑦)

for 𝑥 ∈
[
𝑥𝑜𝑝𝑡 (𝑦)

2
,
3𝑥𝑜𝑝𝑡 (𝑦)

2

]
.

(A.60)

Using the analyticity of 𝐺 (𝑥,𝑦) as a function of 𝑥 inside the interval (0, 𝑦/2), we can

Taylor expand it around 𝑥𝑜𝑝𝑡 (𝑦) (for fixed value of 𝑦):

𝐺 (𝑥,𝑦) = 𝐺𝑜𝑝𝑡 (𝑦) + (𝜕𝑥𝐺 (𝑥𝑜𝑝𝑡 (𝑦), 𝑦)) (𝑥 − 𝑥𝑜𝑝𝑡 (𝑦)) +
∫ 𝑥

𝑥𝑜𝑝𝑡 (𝑦)
𝑑𝜏𝜕𝜏𝐺 (𝜏,𝑦) . (A.61)

Using the fact that 𝑥𝑜𝑝𝑡 (𝑦) is a critical point and bounds, identity

𝜕𝜏𝐺 (𝜏,𝑦) =
∫ 𝜏

𝑥𝑜𝑝𝑡 (𝑦)
𝑑𝑥𝜕2𝑥𝐺 (𝑥,𝑦) (A.62)

and bounds from Eq. (A.60) we get finally get

𝐺 (𝑥,𝑦) ≤ 𝐺𝑜𝑝𝑡 (𝑦) − 8(𝑥 − 𝑥𝑜𝑝𝑡 (𝑦))2 for 𝑥 ∈ [0, 𝑦/2] , 𝑦 ∈ [0, 1] , (A.63)

𝐺 (𝑥,𝑦) ≤ 𝐺𝑜𝑝𝑡 (𝑦) −
1

3𝑥𝑜𝑝𝑡 (𝑦)
(𝑥 − 𝑥𝑜𝑝𝑡 (𝑦))2 for 𝑥 ∈

[
𝑥𝑜𝑝𝑡 (𝑦)

2
,
3𝑥𝑜𝑝𝑡 (𝑦)

2

]
, 𝑦 ∈ [0, 1] .

(A.64)

Coming back to the bound on B𝑔𝑒𝑛 from (A.53), similarly to the case of passive

FLO, due to constrains on 𝑙 , the sum appearing in (A.53) effectively starts from 𝑞 = 3.

Moreover, we also note that 𝑙 (𝑞 − 2𝑙) ≥ (𝑞 − 2)/2 and therefore√︄
𝑁

𝑙 (𝑞 − 2𝑙) (𝑁 − 𝑞 + 𝑙) ≤
√︄

2𝑁
(𝑞 − 2) (𝑁 − 𝑞 + 𝑙) ≤

√︂
2𝑁
𝑁 − 2

, (A.65)

where in the second inequality we used the fact that 𝑞 ∈ [3, 𝑁 ] and 𝑙 ≥ 1. Using the

above and expanding the expression in (A.53) in the different intervals defined in (A.56)

we obtain

B𝑔𝑒𝑛 ≤ 2𝐶𝐴
𝑐

√︂
𝑁

𝑁 − 2
©­«
𝑞≤𝑁 /2∑︁
𝑞=3

𝑙<𝑞/2∑︁
𝑙=1

exp[−𝑞/2] +
𝑞<0.925𝑁∑︁
𝑞>𝑁 /2

𝑙<𝑞/2∑︁
𝑙=1

exp[−𝑞/100]ª®¬ (A.66)

+
√
2𝐶𝐴
𝑐

𝑁∑︁
𝑞>0.925𝑁

𝑙<𝑞/2∑︁
𝑙=1

√︄
𝑁

𝑙 (𝑞 − 2𝑙) (𝑁 − 𝑞 + 𝑙) exp
[
𝑁𝐺 (𝑥𝑙 , 𝑦𝑞)

]
. (A.67)

1It is easy to check that 3/2𝑥𝑜𝑝𝑡 (𝑦) ≤ 𝑦/2.
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Two sums from Eq. (A.66) can be handled analogously as in the case of passive FLO:

2𝐶𝐴
𝑐

√︂
𝑁

𝑁 − 2
©­«
𝑞≤𝑁 /5∑︁
𝑞=3

𝑙<𝑞/2∑︁
𝑙=1

exp[−𝑞/3] +
𝑞<0.925𝑁∑︁
𝑞>𝑁 /2

𝑙<𝑞/2∑︁
𝑙=1

exp[−𝑞/100]ª®¬ (A.68)

≤ 2𝐶𝐴
𝑐

√︂
𝑁

𝑁 − 2

( ∞∑︁
𝑞=3

(𝑞/2) exp(−𝑞/3) + +(𝑁 3/2/2) exp
[
− 𝑁

200

])
. (A.69)

=
2𝐶𝐴
𝑐

√︂
𝑁

𝑁 − 2

(
3𝑒1/3 − 2

2𝑒2/3(𝑒1/3 − 1)
+ (𝑁 3/2/4) exp

[
− 𝑁

200

] )
≤ 2 , (A.70)

where the last inequality is valid for 𝑁 ≥ 1800. The sum in (A.67) will be analyzed

using inequalities (A.63) and (A.64). For fixed 𝑦𝑞 (Which corresponds to 𝑞 = 𝑦𝑞𝑁 ) we

set 𝑙𝑜𝑝𝑡 (𝑦𝑞) = 𝑥𝑜𝑝𝑡 (𝑦𝑞)𝑁 and divide the range of summation over 𝑙 in (A.67) into two

parts that corresponds to intervals in bounds (A.63) and (A.64) respectively :

Lmax
𝑞 =

{
𝑙

���� 12𝑙𝑜𝑝𝑡 (𝑦𝑞) ≤ 𝑙 ≤ 3
2
𝑙𝑜𝑝𝑡 (𝑦𝑞)

}
, (A.71)

Lgen
𝑞 =

{
𝑙

���� 1 ≤ 𝑙 < 1
2
𝑙𝑜𝑝𝑡 (𝑦𝑞) or

3
2
𝑙𝑜𝑝𝑡 (𝑦𝑞) < 𝑙 < 𝑞/2

}
. (A.72)

(A.73)

It is now straightforward to verify that:√︄
𝑁

𝑙 (𝑞 − 2𝑙) (𝑁 − 𝑞 + 𝑙) ≤
√︄

4𝑁
𝑙𝑜𝑝𝑡 (𝑞 − 3𝑙𝑜𝑝𝑡 )𝑙𝑜𝑝

for 𝑙 ∈ Lmax
𝑞 , (A.74)

It is now straightforward to verify that:√︄
𝑁

𝑙 (𝑞 − 2𝑙) (𝑁 − 𝑞 + 𝑙) ≤
√︄

4𝑁
𝑙𝑜𝑝𝑡 (𝑞 − 3𝑙𝑜𝑝𝑡 )𝑙𝑜𝑝

for 𝑙 ∈ Lmax
𝑞 , (A.75)

Finally, we arrive at the following bound

√
2𝐶𝐴
𝑐

𝑁∑︁
𝑞>0.925𝑁

𝑙<𝑞/2∑︁
𝑙=1

√︄
𝑁

𝑙 (𝑞 − 2𝑙) (𝑁 − 𝑞 + 𝑙) exp
[
𝑁𝐺 (𝑥𝑙 , 𝑦𝑞)

]
(A.76)

≤
√
2𝐶𝐴
𝑐

𝑁∑︁
𝑞>0.925𝑁

exp
[
𝑁𝐺𝑜𝑝𝑡 (𝑦𝑞)

]√︄ 4𝑁
𝑙𝑜𝑝𝑡 (𝑞 − 3𝑙𝑜𝑝𝑡 )𝑙𝑜𝑝𝑡

∑︁
𝑙∈Lmax

𝑞

exp
(
−
(𝑙 − 𝑙𝑜𝑝𝑡 )2

3𝑙𝑜𝑝𝑡

)
(A.77)



APPENDIX A. SOME PROOFS OF RESULTS FOR PART II 184

+
√︂

𝑁

𝑁 − 2
𝐶𝐴

𝑐

𝑁∑︁
𝑞>0.925𝑁

𝑞 exp
[
𝑁𝐺𝑜𝑝𝑡 (𝑦𝑞)

]
exp

(
−2𝑥2𝑜𝑝𝑡𝑁

)
, (A.78)

where we used (A.65) to get (A.78). We first analyze the second sum. We using (A.56)

we obtain
𝑁∑︁

𝑞>0.925𝑁
𝑞 exp

[
𝑁𝐺𝑜𝑝𝑡 (𝑦𝑞)

]
≤ 𝑁

𝑁∑︁
𝑞>0.925𝑁

exp
[
(𝑁 − 𝑞)2

𝑁

]
≤ 𝑁 (1 +

√
𝜋𝑁

2
) ≤ 𝑁

3
2 .

(A.79)

where
∞∑︁
𝑥=0

exp
(
−𝑥

2

𝑎

)
≤ 1 +

∫ ∞

0
𝑑𝑥 exp

(
−𝑥

2

𝑎

)
= 1 +

√
𝜋𝑎

2
, (A.80)

valid for all 𝑎 > 0, and 𝑁 ≥ 100. Importantly, for 𝑞 > 0.925𝑁 (which corresponds to

𝑦 ≥ 0.925), we have 𝑥𝑜𝑝𝑡 ≥ 0.03. Using this and assuming 𝑁 ≥ 7000, we finally obtain√︂
𝑁

𝑁 − 2
𝐶𝐴

𝑐

𝑁∑︁
𝑞>0.925𝑁

𝑞 exp
[
𝑁𝐺𝑜𝑝𝑡 (𝑦𝑞)

]
exp

(
−2𝑥2𝑜𝑝𝑡𝑁

)
≤

√︂
𝑁

𝑁 − 2
𝐶𝐴

𝑐
𝑁

3
2 exp

(
− 9
5000

𝑁

)
≤ 1 .

(A.81)

We use similar methods to bound (A.77). First, we upper bound the exponential sum∑︁
𝑙∈Lmax

𝑞

exp
(
−
(𝑙 − 𝑙𝑜𝑝𝑡 )2

3𝑙𝑜𝑝𝑡

)
≤ 1 +

√︃
𝜋3𝑙𝑜𝑝𝑡 ≤

10
3

√︃
𝑙𝑜𝑝𝑡 , (A.82)

which allows estimate√︄
4𝑁

𝑙𝑜𝑝𝑡 (𝑞 − 3𝑙𝑜𝑝𝑡 )𝑙𝑜𝑝𝑡

∑︁
𝑙∈Lmax

𝑞

exp
(
−
(𝑙 − 𝑙𝑜𝑝𝑡 )2

3𝑙𝑜𝑝𝑡

)
≤ 10

3

√︄
4𝑁

𝑙𝑜𝑝𝑡 (𝑞 − 3𝑙𝑜𝑝𝑡 )
≤ 10

3

√︂
4

(0.03) (0.7𝑁 ) =
20
3

√︂
1000
21𝑁

,

(A.83)

where in the second inequality we used that for 𝑞 ≥ 0.925𝑁 we have 𝑙𝑜𝑝𝑡 (𝑦𝑞) ≥ 0.03𝑁

and 𝑞 − 3𝑙𝑜𝑝𝑡 (𝑦𝑞) ≥ 0.7𝑁 . Inserting thin inequality to (A.77) and again using (A.79)

gives that for 𝑁 ≥ 7000
√
2𝐶𝐴
𝑐

𝑁∑︁
𝑞>0.925𝑁

𝑙<𝑞/2∑︁
𝑙=1

√︄
𝑁

𝑙 (𝑞 − 2𝑙) (𝑁 − 𝑞 + 𝑙) exp
[
𝑁𝐺 (𝑥𝑙 , 𝑦𝑞)

]
≤ 1+

√
2𝐶𝐴
𝑐

√︂
1000
21

≤ 12.7 .

(A.84)

Combining this estimate with the bound (A.70) and using (A.66), we finally obtain that

for 𝑁 ≥ 7000

B𝑔𝑒𝑛 ≤ 14.7 . (A.85)



APPENDIX A. SOME PROOFS OF RESULTS FOR PART II 185

Finally, combining bounds (A.48), (A.52) and (A.85) together with B𝑘=0 = 1 in inequal-

ity (A.38) we see that for 𝑁 ≥ 7000,

𝐾act

28𝑁
≤ 1

√
𝜋𝑁

(B𝑞=0 + B𝑙=0 + B𝑞=2𝑙 + B𝑔𝑒𝑛) ≤
16.2
√
𝜋𝑁

. (A.86)

For 𝑁 ≤ 7000, the validity of the bound can be verified numerically as shown in

Fig. A.4, which completes the proof.

■
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Appendix B

Some proof of results for Part III

These proofs have been included in this appendix so the main text is easier to follow.

B.1 Extending Yoshida’s method to 10th order

Here we explain how to extend the method of Yoshida to obtain the equations for a 10th

order integrator. We find that the number of equations required is at least 15, we use this

fact in our optimization procedure to find new product formulae. We will follow the

notation from Corollary 6.3, noting that

𝑆2(𝑡) = 𝑒𝑡𝛼1+𝑡
3𝛼3+𝑡5𝛼5+𝑡7𝛼7+𝑡9𝛼9+O(𝑡11) (B.1)

where the 𝛼 𝑗 are defined as commutators of operators. It will be useful to define the

following commutators

𝛽9 = [𝛼1, 𝛼1, 𝛼7], (B.2)

𝛾
(1)
9 = [𝛼1, 𝛼3, 𝛼5], (B.3)

𝛾
(2)
9 = [𝛼3, 𝛼1, 𝛼5], (B.4)

𝛾
(3)
9 = [𝛼5, 𝛼1, 𝛼3], (B.5)

𝛿
(1)
9 = [𝛼41, 𝛼5], (B.6)

𝛿
(2)
9 = [𝛼3, 𝛼31, 𝛼3], (B.7)
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𝛿
(3)
9 = [𝛼1, 𝛼3, 𝛼21, 𝛼3], (B.8)

𝜖9 = [𝛼61, 𝛼3] . (B.9)

Yoshida also defined the commutators

𝛽5 = [𝛼1, 𝛼1, 𝛼3], (B.10)

𝛽7 = [𝛼1, 𝛼1, 𝛼5], (B.11)

𝛾7 = [𝛼3, 𝛼3, 𝛼1], (B.12)

𝛿7 = [𝛼1, 𝛼1, 𝛼1, 𝛼1, 𝛼3] . (B.13)

To find the equations we need to solve to find 10th order product formulae, we are

also required to apply the symmetric BCH formula from Corollary 6.3 up to commutators

with 7 operators. The reason we do not consider an expansion up to 9 operator commu-

tators is that the only commutator contributing terms of 9th order and with 9 operators

in the commutator is of the form [𝛼1, 𝛼1, · · · , 𝛼1] (considering commutators with other

𝛼𝑖 will only contribute higher orders than 9). To obtain the coefficients multiplying the

commutators with 7 operators in the symmetric BCH expansion, we use the algorithm

defined in Section V of Ref. [VV16]. Note that the algorithm in that work generates the

scalar coefficients multiplying products of operators rather than their commutators. We

need to express the symmetric BCH expansion in the so called Ph. Hall basis, which is a

basis for writing Lie monomials consisting of commutators of the generators of the Lie

algebra (for a list of operators in this basis, see Table 1 in [DKD20]); we obtain the co-

efficients for the Ph. Hall basis by solving the corresponding linear problem of changing

from one basis to another. As an example, consider the term with 3 operators in the sym-

metric BCH expansion from Corollary 6.3, given as 𝛼3 = 1
12 [𝑌, [𝑌,𝑋 ]] −

1
24 [𝑋, [𝑋,𝑌 ]].

We can also express the commutators as products by expanding out the commutators,

which gives 𝛼3 = 1
24

{
2𝑌 2𝑋 − 4𝑌𝑋𝑌 − 2𝑋𝑌 2 − 𝑋 2𝑌 + 2𝑋𝑌𝑋 + 𝑌𝑋 2}. The algorithm

in [VV16] outputs expressions with the commutators expanded out as in 𝛼3. In order

to obtain the original expression 𝛼3, we write 𝛼3 = 𝑎[𝑌, [𝑌,𝑋 ]] + 𝑏 [𝑋, [𝑋,𝑌 ]] with

𝑎, 𝑏 ∈ R and expand the commutators [𝑌, [𝑌,𝑋 ]] and [𝑋, [𝑋,𝑌 ]]. This gives several
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linear equations that can be written in terms of a matrix. By inverting this matrix, we

obtain the coefficients 𝑎 and 𝑏.

Thus, by using 𝐶 and 𝐷 as generic variables for operators we have

𝑒𝐶𝑒𝐷𝑒𝐶 = 𝑒𝑍 , (B.14)

where

𝑍 = 2𝐶 + 𝐷 + 1
6
( [𝐷,𝐷,𝐶] − [𝐶,𝐶, 𝐷])

+ 7
360

[𝐶,𝐶,𝐶,𝐶, 𝐷] − 1
360

[𝐷, 𝐷, 𝐷, 𝐷,𝐶]

+ 1
90

[𝐶, 𝐷, 𝐷, 𝐷,𝐶] + 1
45

[𝐷,𝐶,𝐶,𝐶, 𝐷]

− 1
60

[𝐶,𝐶, 𝐷, 𝐷,𝐶] + 1
30

[𝐷, 𝐷,𝐶,𝐶, 𝐷]

− 31
15120

[𝐶,𝐶,𝐶,𝐶,𝐶,𝐶, 𝐷] − 31
5040

[𝐷,𝐶,𝐶,𝐶,𝐶,𝐶, 𝐷]

− 13
1890

[𝐷,𝐷,𝐶,𝐶,𝐶,𝐶, 𝐷] − 53
15120

[𝐷,𝐷, 𝐷,𝐶,𝐶,𝐶, 𝐷]

− 1
1260

[𝐷,𝐷, 𝐷, 𝐷,𝐶,𝐶, 𝐷] − 1
15120

[𝐷, 𝐷, 𝐷, 𝐷, 𝐷,𝐶, 𝐷] + R(9≤) . (B.15)

Where R(9≤) is an infinite sum with commutators of an odd number of operators (equal

to or higher than 9). Now we prove the following Lemma which will allow us to derive

the equations for 10th order product formulae.

Lemma B.1. Following the notation of the procedure given by Yoshida in Eq. (6.15), we

have that for all𝑚 ∈ N

𝑆 (𝑚) (𝜏) = exp
{
𝜏𝐴1,𝑚𝛼1 + 𝜏3𝐴3,𝑚𝛼3 + 𝜏5(𝐴5,𝑚𝛼5 + 𝐵5,𝑚𝛽5)

+ 𝜏7(𝐴7,𝑚𝛼7 + 𝐵7,𝑚𝛽7 +𝐶7,𝑚𝛾7 + 𝐷7,𝑚𝛿7)

+ 𝜏9(𝐴9,𝑚𝛼9 + 𝐵9,𝑚𝛽9 +𝐶 (1)
9,𝑚𝛾

(1)
9 +𝐶 (2)

9,𝑚𝛾
(2)
9 +𝐶 (3)

9,𝑚𝛾
(3)
9

+ 𝐷 (1)
9,𝑚𝛿

(1)
9 + 𝐷 (2)

9,𝑚𝛿
(2)
9 + 𝐷 (3)

9,𝑚𝛿
(3)
9 + 𝐸9,𝑚𝜖9) + O

(
𝜏11

)}
, (B.16)

where the variables in upper case denote polynomials in the variables (𝑤1, · · · ,𝑤𝑚).
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Proof. We proceed by induction. First, note that the statement is true for the case𝑚 = 0,

𝑆 (𝑚=0) (𝜏) = 𝑆2(𝑤0𝜏), (B.17)

= exp
{
𝑡𝑤0𝛼1 + 𝑡3𝑤3

0𝛼3 + 𝑡5𝑤5
0𝛼5 + 𝑡7𝑤7

0𝛼7 + 𝑡9𝑤9
0𝛼9 + O(𝑡11)

}
. (B.18)

This clearly has the form of Eq. (B.16) by taking 𝐴 𝑗,𝑚=0 = 𝑤
𝑗

0 and all other scalar

variables as 0.

Assume now that Eq. (B.16) is correct, we want to derive an expression for 𝑆 (𝑚+1) .

We then have 𝑆 (𝑚+1) (𝜏) = 𝑆2(𝑤𝑚+1𝜏)𝑆 (𝑚) (𝜏)𝑆2(𝑤𝑚+1𝜏) and thus

𝑆2(𝑤𝑚+1𝜏)𝑆 (𝑚) (𝜏)𝑆2(𝑤𝑚+1𝜏) = exp
{
𝜏𝑤𝑚+1𝛼1 + 𝜏3𝑤3

𝑚+1𝛼3 + 𝜏5𝑤5
𝑚+1𝛼5 + 𝜏7𝑤7

𝑚+1𝛼7 + 𝜏9𝑤9
𝑚+1𝛼9 + O(𝜏11)

}
× exp

{
𝜏𝐴1,𝑚𝛼1 + 𝜏3𝐴3,𝑚𝛼3 + 𝜏5(𝐴5,𝑚𝛼5 + 𝐵5,𝑚𝛽5)

+ 𝜏7(𝐴7,𝑚𝛼7 + 𝐵7,𝑚𝛽7 +𝐶7,𝑚𝛾7 + 𝐷7,𝑚𝛿7)

+ 𝜏9(𝐴9,𝑚𝛼9 + 𝐵9,𝑚𝛽9 +𝐶 (1)
9,𝑚𝛾

(1)
9 +𝐶 (2)

9,𝑚𝛾
(2)
9 +𝐶 (3)

9,𝑚𝛾
(3)
9

+ 𝐷 (1)
9,𝑚𝛿

(1)
9 + 𝐷 (2)

9,𝑚𝛿
(2)
9 + 𝐷 (3)

9,𝑚𝛿
(3)
9 + 𝐸9,𝑚𝜖9) + O

(
𝜏11

)}
× exp

{
𝜏𝑤𝑚+1𝛼1 + 𝜏3𝑤3

𝑚+1𝛼3 + 𝜏5𝑤5
𝑚+1𝛼5 + 𝜏7𝑤7

𝑚+1𝛼7 + 𝜏9𝑤9
𝑚+1𝛼9 + O

(
𝜏11

)}
.

(B.19)

We compute the right-hand-side (RHS) of Eq. (B.19) applying the symmetric BCH

formula from Corollary 6.3. Writing the RHS as 𝑒𝐶𝑒𝐷𝑒𝐶 , we have that

𝐶 = 𝜏𝑤𝑚+1𝛼1 + 𝜏3𝑤3
𝑚+1𝛼3 + 𝜏5𝑤5

𝑚+1𝛼5 + 𝜏7𝑤7
𝑚+1𝛼7 + 𝜏9𝑤9

𝑚+1𝛼9 + O(𝜏11) (B.20)

𝐷 = 𝜏𝐴1,𝑚𝛼1 + 𝜏3𝐴3,𝑚𝛼3 + 𝜏5(𝐴5,𝑚𝛼5 + 𝐵5,𝑚𝛽5) + 𝜏7(𝐴7,𝑚𝛼7 + 𝐵7,𝑚𝛽7 +𝐶7,𝑚𝛾7 + 𝐷7,𝑚𝛿7)

+ 𝜏9(𝐴9,𝑚𝛼9 + 𝐵9,𝑚𝛽9 +𝐶 (1)
9,𝑚𝛾

(1)
9 +𝐶 (2)

9,𝑚𝛾
(2)
9 +𝐶 (3)

9,𝑚𝛾
(3)
9 + 𝐷 (1)

9,𝑚𝛿
(1)
9 + 𝐷 (2)

9,𝑚𝛿
(2)
9 + 𝐷 (3)

9,𝑚𝛿
(3)
9 + 𝐸9,𝑚𝜖9)

+ O
(
𝜏11

)
. (B.21)

We then compute the commutators of 𝐶 and 𝐷 that appear in the symmetric BCH

formula, here we give the resulting 9th order operators after applying the commutators.

When we write [𝐶, 𝐷, · · · ,𝐶]9, the subscript indicates that we are only keeping the 9th
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order terms when expanding the commutator. We will explain in detail how to compute

the commutator C = [𝐷, 𝐷,𝐶]9, the other commutators are computed in a similar way.

Since we only need to consider terms of 9th order when computing C, each term will

have contributions from each operator inside C (in this case two operators 𝐷 and one

𝐶) which is comprised of odd numbers that sum up to 9 such that the commutator is

non-zero. We then have that

[𝐷, 𝐷,𝐶]9 = 𝜏9(𝐴2
1,𝑚𝑤

7
𝑚+1 −𝐴1,𝑚𝐴7,𝑚𝑤𝑚+1) [𝛼1, 𝛼1, 𝛼7]

+ 𝜏9𝐴1,𝑚𝐵7,𝑚𝑤𝑚+1 [𝛼1, 𝛽7, 𝛼1]

+ 𝜏9𝐴1,𝑚𝐶7,𝑚𝑤𝑚+1 [𝛼1, 𝛾7, 𝛼1]

+ 𝜏9𝐴1,𝑚𝐷7,𝑚𝑤𝑚+1 [𝛼1, 𝛿7, 𝛼1]

+ 𝜏9(𝐴1,𝑚𝐴3,𝑚𝑤𝑚+1 −𝐴1,𝑚𝐴5,𝑚𝑤
3
𝑚+1) [𝛼1, 𝛼3, 𝛼5]

+ 𝜏9𝐴1,𝑚𝐵5,𝑚𝑤
3
𝑚+1 [𝛼1, 𝛽5, 𝛼3]

+ 𝜏9(𝐴3,𝑚𝐴1,𝑚𝑤
5
𝑚+1 −𝐴3,𝑚𝐴5,𝑚𝑤𝑚+1) [𝛼3, 𝛼1, 𝛼5]

+ 𝜏9𝐴1,𝑚𝐵5,𝑚𝑤𝑚+1 [𝛼3, 𝛽5, 𝛼1]

+ 𝜏9(𝐴5,𝑚𝐴1,𝑚𝑤
3
𝑚+1 −𝐴5,𝑚𝐴3,𝑚𝑤𝑚+1) [𝛼5, 𝛼1, 𝛼3]

+ 𝜏9𝐵5,𝑚𝐴3,𝑚𝑤𝑚+1 [𝛽5, 𝛼3, 𝛼1] . (B.22)

Given how we have defined the commutator, we have then

[𝐷,𝐷,𝐶]9 = 𝜏9(𝐴2
1,𝑚𝑤

7
𝑚+1 −𝐴1,𝑚𝐴7,𝑚𝑤𝑚+1)𝛽9 − 𝜏9𝐴1,𝑚𝐵7,𝑚𝑤𝑚+1𝛿

(1)
9

+ 𝜏9𝐴1,𝑚𝐶7,𝑚𝑤𝑚+1𝛿
(3)
9 − 𝜏9𝐴1,𝑚𝐷7,𝑚𝑤𝑚+1𝜖9

+ 𝜏9(𝐴1,𝑚𝐴3,𝑚𝑤
5
𝑚+1 −𝐴1,𝑚𝐴5,𝑚𝑤

3
1)𝛾

(1)
9 − 𝜏9𝐴1,𝑚𝐵5,𝑚𝑤

3
𝑚+1𝛿

(3)
9

+ 𝜏9(𝐴3,𝑚𝐴1,𝑚𝑤
5
𝑚+1 −𝐴3,𝑚𝐴5,𝑚𝑤𝑚+1)𝛾 (2)9 − 𝜏9𝐴3,𝑚𝐵5,𝑚𝑤𝑚+1𝛿

(2)
9

+ 𝜏9(𝐴5,𝑚𝐴1,𝑚𝑤
3
𝑚+1 −𝐴5,𝑚𝐴3,𝑚𝑤

2
𝑚+1)𝛾

(3)
9

+ 𝜏9(𝐵5,𝑚𝐴1,𝑚𝑤
3
𝑚+1 − 𝐵5,𝑚𝐴3,𝑚𝑤𝑚+1) (𝛿 (2)9 − 𝛿 (3)9 ) (B.23)

[𝐶,𝐶, 𝐷]9 = 𝜏9(𝑤2
𝑚+1𝐴7,𝑚 −𝑤8

𝑚+1𝐴1,𝑚)𝛽9 + 𝜏9𝑤2
𝑚+1𝐵7,𝑚𝛿

(1)
9

− 𝜏9𝑤2
𝑚+1𝐶7,𝑚𝛿

(3)
9 + 𝜏9𝑤2

𝑚+1𝐷7,𝑚𝜖9
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+ 𝜏9(𝑤4
𝑚+1𝐴5,𝑚 −𝑤6

𝑚+1𝐴3,𝑚)𝛾 (1)9 + 𝜏9𝑤4
𝑚+1𝐵5,𝑚𝛿

(3)
9

+ 𝜏9(𝑤4
𝑚+1𝐴5,𝑚 −𝑤8

𝑚+1𝐴1,𝑚)𝛾 (2)9 + 𝜏9𝑤4
𝑚+1𝐵5,𝑚𝛿

(2)
9

+ 𝜏9(𝑤6
𝑚+1𝐴3,𝑚 −𝑤8

𝑚+1𝐴1,𝑚)𝛾 (3)9 (B.24)

[𝐶,𝐶,𝐶,𝐶, 𝐷]9 = 𝜏9(𝑤4
𝑚+1𝐴5,𝑚 −𝑤8

𝑚+1𝐴1,𝑚)𝛿 (1)9 + 𝜏9𝐴3
1,𝑚𝐵5,𝑚𝑤𝑚+1𝜖9

+ 𝜏9(𝑤6
𝑚+1𝐴3,𝑚 −𝑤8

𝑚+1𝐴1,𝑚)𝛿 (2)9

+ 𝜏92(𝑤6
𝑚+1𝐴3,𝑚 −𝑤8

𝑚+1𝐴1,𝑚)𝛿 (3)9 (B.25)

[𝐷, 𝐷, 𝐷, 𝐷,𝐶]9 = 𝜏9(𝐴4
1,𝑚𝑤

5
𝑚+1 −𝐴3

1,𝑚𝐴5,𝑚𝑤𝑚+1)𝛿 (1)9 − 𝜏9𝐴3
1,𝑚𝐵5,𝑚𝑤𝑚+1𝜖9

+ 𝜏9(𝐴3,𝑚𝐴
3
1,𝑚𝑤

3
𝑚+1 −𝐴2

3,𝑚𝐴
2
1,𝑚𝑤𝑚+1)𝛿 (2)9

+ 𝜏92(𝐴3
1,𝑚𝐴3,𝑚𝑤

3
𝑚+1 −𝐴2

1,𝑚𝐴
2
3,𝑚𝑤𝑚+1)𝛿 (3)9 (B.26)

[𝐶, 𝐷, 𝐷, 𝐷,𝐶]9 = 𝜏9(𝑤6
𝑚+1𝐴

3
1,𝑚 −𝑤2

𝑚+1𝐴
2
1,𝑚𝐴5,𝑚)𝛿 (1)9 − 𝜏9𝐴2

1,𝑚𝐵5,𝑚𝑤
2
𝑚+1𝜖9

+ 𝜏9(𝑤6
𝑚+1𝐴

3
1,𝑚 −𝑤4

𝑚+1𝐴
2
1,𝑚𝐴3,𝑚)𝛿 (2)9

+ 𝜏92(𝑤4
𝑚+1𝐴3,𝑚𝐴

2
1,𝑚 −𝑤2

𝑚+1𝐴
2
3,𝑚𝐴1,𝑚)𝛿 (3)9 (B.27)

[𝐷,𝐶,𝐶,𝐶, 𝐷]9 = 𝜏9(𝐴1,𝑚𝐴5,𝑚𝑤
3
𝑚+1 −𝐴2

1,𝑚𝑤
7
𝑚+1)𝛿

(1)
9 + 𝜏9𝑤3

𝑚+1𝐴1,𝑚𝐵5,𝑚𝜖9

+ 𝜏9(𝐴2
3,𝑚𝑤

3
𝑚+1 −𝐴1,𝑚𝐴3,𝑚𝑤

5
𝑚+1)𝛿 (2)

+ 𝜏92(𝐴1,𝑚𝐴3,𝑚𝑤
5
𝑚+1 −𝐴2

1,𝑚𝑤
7
𝑚+1)𝛿

(3)
9 (B.28)

[𝐶,𝐶, 𝐷, 𝐷,𝐶]9 = 𝜏9(𝑤7
𝑚+1𝐴

2
1,𝑚 −𝑤3

𝑚+1𝐴1,𝑚𝐴5,𝑚)𝛿 (1)9 −𝑤3
𝑚+1𝐴1,𝑚𝐵5,𝑚𝜖9

+ 𝜏9(𝑤7
𝑚+1𝐴

2
1,𝑚 −𝑤5

𝑚+1𝐴1,𝑚𝐴3,𝑚)𝛿 (2)9

+ 𝜏9(𝑤5
𝑚+1𝐴1,𝑚𝐴3,𝑚 −𝑤3

𝑚+1𝐴
2
3,𝑚)𝛿

(3)
9 (B.29)

[𝐷,𝐷,𝐶,𝐶, 𝐷]9 = 𝜏9(𝐴2
1,𝑚𝐴5,𝑚𝑤

2
𝑚+1 −𝐴3

1,𝑚𝑤
6
𝑚+1)𝛿

(1)
9 +𝐴2

1,𝑚𝐵5,𝑚𝑤
2
𝑚+1𝜖9

+ (𝐴2
3,𝑚𝐴1,𝑚𝑤

2
𝑚+1 −𝐴3,𝑚𝐴

2
1,𝑚𝑤

4
𝑚+1)𝛿

(2)
9

+ 𝜏9(𝐴2
3,𝑚𝐴1,𝑚𝑤

2
𝑚+1 −𝐴3,𝑚𝐴

2
1,𝑚𝑤

4
𝑚+1)𝛿

(3)
9 + 𝜏9(𝐴2

1,𝑚𝐴3,𝑚𝑤
4
𝑚+1 −𝐴3

1,𝑚𝑤
6
𝑚+1)𝛿

(3)
9

(B.30)

[𝐶,𝐶,𝐶,𝐶,𝐶,𝐶, 𝐷]9 = 𝜏9(𝑤6
𝑚+1𝐴3,𝑚 −𝑤8

𝑚+1𝐴1,𝑚)𝜖9

[𝐷,𝐶,𝐶,𝐶,𝐶,𝐶, 𝐷]9 = 𝜏9(𝑤5
𝑚+1𝐴1,𝑚𝐴3,𝑚 −𝑤7

𝑚+1𝐴
2
1,𝑚)𝜖9 (B.31)

[𝐷,𝐷,𝐶,𝐶,𝐶,𝐶, 𝐷]9 = 𝜏9(𝐴2
1,𝑚𝐴3,𝑚𝑤

4
𝑚+1 −𝐴3

1,𝑚𝑤
6
𝑚+1)𝜖9 (B.32)
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[𝐷, 𝐷, 𝐷,𝐶,𝐶,𝐶, 𝐷]9 = 𝜏9(𝐴3
1,𝑚𝐴3,𝑚𝑤

3
𝑚+1 −𝐴4

1,𝑚𝑤
5
𝑚+1)𝜖9 (B.33)

[𝐷, 𝐷, 𝐷, 𝐷,𝐶,𝐶, 𝐷]9 = 𝜏9(𝐴4
1,𝑚𝐴3,𝑚𝑤

2
𝑚+1 −𝐴5

1,𝑚𝑤
4
𝑚+1)𝜖9 (B.34)

[𝐷,𝐷, 𝐷, 𝐷, 𝐷,𝐶, 𝐷]9 = 𝜏9(𝐴5
1,𝑚𝐴3,𝑚𝑤𝑚+1 −𝐴6

1,𝑚𝑤
3
𝑚+1)𝜖9 (B.35)

Note that all the terms previously computed have terms that can be written as in

Eq. (B.16), thus proving that 𝑆 (𝑚+1) can also be written in this way. ■

Having proved Lemma B.1, we can now compute the polynomials in Eq. (B.16). The

polynomials are obtained from the recursion in Eq. (B.19), the left hand side corresponds

to 𝑆 (𝑚+1) and can can be written as a single exponential, the same is true of the right side

which is written as a single exponential. We have then the following polynomials:

𝐴9,𝑚+1 = 𝐴9,𝑚 + 2𝑤9
𝑚+1 (B.36)

𝐵9,𝑚+1 = 𝐵9,𝑚 + 1
6
(𝐴2

1,𝑚𝑤
7
𝑚+1 −𝐴1,𝑚𝐴7,𝑚𝑤𝑚+1)

− 1
6
(𝐴7,𝑚𝑤

2
𝑚+1 −𝐴1,𝑚𝑤

8
𝑚+1) (B.37)

𝐶
(1)
9,𝑚+1 = 𝐶

(1)
9,𝑚 + 1

6
(𝐴2

3,𝑚𝐴1,𝑚𝑤
5
𝑚+1 −𝐴1,𝑚𝐴5,𝑚𝑤

3
𝑚+1)

− 1
6
(𝐴5,𝑚𝑤

4
𝑚+1 −𝐴3,𝑚𝑤

6
𝑚+1) (B.38)

𝐶
(2)
9,𝑚+1 = 𝐶

(2)
9,𝑚 + 1

6
(𝐴2

3,𝑚𝐴1,𝑚𝑤
5
𝑚+1 −𝐴3,𝑚𝐴5,𝑚𝑤𝑚+1)

− 1
6
(𝐴5,𝑚𝑤

4
𝑚+1 −𝐴1,𝑚𝑤

8
𝑚+1) (B.39)

𝐶
(3)
9,𝑚+1 = 𝐶

(3)
9,𝑚 + 1

6
(𝐴5,𝑚𝐴1,𝑚𝑤

3
𝑚+1 −𝐴3,𝑚𝐴5,𝑚𝑤𝑚+1)

− 1
6
(𝐴3,𝑚𝑤

6
𝑚+1 −𝐴1,𝑚𝑤

8
𝑚+1) (B.40)

𝐷
(1)
9,𝑚+1 = 𝐷

(1)
9,𝑚 − 1

6
(𝐴1,𝑚𝐵7,𝑚𝑤𝑚+1 +𝑤2

𝑚+1𝐵7,𝑚)

+ 7
360

(𝐴5,𝑚𝑤
4
𝑚+1 −𝑤8

𝑚+1𝐴1,𝑚)

− 1
360

(𝐴4
1,𝑚𝑤

5
𝑚+1 −𝐴3

1,𝑚𝐴5,𝑚𝑤𝑚+1)

+ 1
90

(𝐴3
1,𝑚𝑤

6
𝑚+1 −𝐴2

1,𝑚𝐴5,𝑚𝑤
2
𝑚+1)

+ 1
45

(𝐴1,𝑚𝐴5,𝑚𝑤
3
𝑚+1 −𝐴2

1,𝑚𝑤
7
𝑚+1)
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− 1
60

(𝐴2
1,𝑚𝑤

7
𝑚+1 −𝐴1,𝑚𝐴5,𝑚𝑤

3
𝑚+1)

+ 1
30

(𝐴2
1,𝑚𝐴5,𝑚𝑤

2
𝑚+1 −𝐴3

1,𝑚𝑤
6
𝑚+1) (B.41)

𝐷
(2)
9,𝑚+1 = 𝐷

(2)
9,𝑚 − 1

6
(𝐴3,𝑚𝐵5,𝑚𝑤𝑚+1 +𝑤4

𝑚+1𝐵5,𝑚)

+ 7
360

(𝐴3,𝑚𝑤
6
𝑚+1 −𝑤8

𝑚+1𝐴1,𝑚)

− 1
360

(𝐴3
1,𝑚𝐴3,𝑚𝑤

3
𝑚+1 −𝐴2

1,𝑚𝐴
2
3,𝑚𝑤𝑚+1)

+ 1
90

(𝐴3
1,𝑚𝑤

6
𝑚+1 −𝐴2

1,𝑚𝐴3,𝑚𝑤
4
𝑚+1)

+ 1
45

(𝐴2
3,𝑚𝑤

3
𝑚+1 −𝐴1,𝑚𝐴3,𝑚𝑤

5
𝑚+1)

− 1
60

(𝐴2
1,𝑚𝑤

7
𝑚+1 −𝐴1,𝑚𝐴3,𝑚𝑤

5
𝑚+1)

+ 1
30

(𝐴2
3,𝑚𝐴1,𝑚𝑤

2
𝑚+1 −𝐴2

1,𝑚𝐴3,𝑚𝑤
4
𝑚+1) (B.42)

𝐷
(3)
9,𝑚+1 = 𝐷

(3)
9,𝑚 − 1

6
(𝐴1,𝑚𝐵5,𝑚𝑤

3
𝑚+1 +𝑤4

𝑚+1𝐵5,𝑚)

+ 14
360

(𝐴3,𝑚𝑤
6
𝑚+1 −𝑤8

𝑚+1𝐴1,𝑚)

− 2
360

(𝐴3
1,𝑚𝐴3,𝑚𝑤

3
𝑚+1 −𝐴2

1,𝑚𝐴
2
3,𝑚𝑤𝑚+1)

+ 2
90

(𝐴2
1,𝑚𝐴3,𝑚𝑤

4
𝑚+1 −𝐴1,𝑚𝐴

2
3,𝑚𝑤

2
𝑚+1)

+ 2
45

(𝐴3,𝑚𝐴1,𝑚𝑤
5
𝑚+1 −𝐴2

1,𝑚𝑤
7
𝑚+1)

− 1
60

(𝐴2
1,𝑚𝑤

7
𝑚+1 −𝐴1,𝑚𝐴3,𝑚𝑤

5
𝑚+1)

+ 1
30

(𝐴2
3,𝑚𝐴1,𝑚𝑤

2
𝑚+1 −𝐴2

1,𝑚𝐴3,𝑚𝑤
4
𝑚+1)

+ 1
6
(𝐴1,𝑚𝐶7,𝑚𝑤𝑚+1 +𝑤2

𝑚+1𝑐7,𝑚)

− 1
60

(𝑤5
𝑚+1𝐴1,𝑚𝐴3,𝑚 −𝑤3

𝑚+1𝐴
2
3,𝑚)

+ 1
30

(𝐴2
1,𝑚𝐴3,𝑚𝑤

4
𝑚+1 −𝐴3

1,𝑚𝑤
6
𝑚+1)

− 1
6
(𝐵5,𝑚𝐴1,𝑚𝑤

3
𝑚+1 − 𝐵5,𝑚𝐴3,𝑚𝑤𝑚+1) (B.43)

𝐸9,𝑚+1 = 𝐸9,𝑚 − 1
6
(𝐴1,𝑚𝐷7,𝑚 −𝑤2

𝑚+1𝐷7,𝑚)

+ 7
360

𝑤4
𝑚+1𝐵5,𝑚
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+ 1
360

𝐴3
1,𝑚𝐵5,𝑚𝑤𝑚+1

− 1
90
𝐴2
1,𝑚𝐵5,𝑚𝑤

2
𝑚+1

+ 1
45
𝐴1,𝑚𝐵5,𝑚𝑤

3
𝑚+1

+ 1
60
𝐴1,𝑚𝐵5,𝑚𝑤

3
𝑚+1

+ 1
30
𝐴2
1,𝑚𝐵5,𝑚𝑤

2
𝑚+1

− 31
15120

(𝑤6
𝑚+1𝐴3,𝑚 −𝑤8

𝑚+1𝐴1,𝑚)

− 31
5040

(𝑤5
𝑚+1𝐴1,𝑚𝐴3,𝑚 −𝑤7

𝑚+1𝐴
2
1,𝑚)

− 13
1890

(𝐴2
1,𝑚𝐴3,𝑚𝑤

4
𝑚+1 −𝐴3

1,𝑚𝑤
6
𝑚+1)

− 53
15120

(𝐴3
1,𝑚𝐴3,𝑚𝑤

3
𝑚+1 −𝐴4

1,𝑚𝑤
5
𝑚+1)

− 1
1260

(𝐴4
1,𝑚𝐴3,𝑚𝑤

2
𝑚+1 −𝐴5

1,𝑚𝑤
4
𝑚+1)

− 1
15120

(𝐴5
1,𝑚𝐴3,𝑚𝑤𝑚+1 −𝐴6

1,𝑚𝑤
3
𝑚+1). (B.44)

Then we obtain the polynomial equations for the tenth order product formula by imposing

that 𝐴1,𝑚 = 1 and all other terms are equal to zero. It can be seen that 𝐶2
9,𝑚 = 𝐶1

9,𝑚 +𝐶3
9,𝑚,

eliminating one equation and providing a set of 15 equations to solve.

B.2 Bounding error by total time evolution

In this section we show how the total evolution time appears in the error bound of a

product formula. For an operator𝑊 = 𝑋 +𝑌 , with 𝑋 and 𝑌 non-commuting, we want to

bound the expression


𝑆 (𝑚) (𝑡) − 𝑒𝑡𝑊



. We assume 𝑆 (𝑚) (𝑡) is a 𝑘th order product formula

following Yoshida’s ansatz.

We shall consider the Taylor expansion of both 𝑆 (𝑚) (𝑡) and 𝑒𝑡𝑊

𝑆 (𝑚) (𝑡) = T𝑘 [𝑆 (𝑚)] + T𝑘< [𝑆 (𝑚)] (B.45)

𝑒𝑡𝑊 = T𝑘 [𝑒𝑡𝑊 ] + T𝑘< [𝑒𝑡𝑊 ], (B.46)
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where T𝑘 is defined as the Taylor expansion up to order 𝑘 and T𝑘< has the terms of the

Taylor expansion from order 𝑘 + 1 to infinity. Note that since 𝑆 (𝑚) is a 𝑘th order product

formula then T𝑘 [𝑆 (𝑚)] = T𝑘 [𝑒𝑡𝑊 ] and thus


𝑆 (𝑚) (𝑡) − 𝑒𝑡𝑊



 = 


T𝑘< [𝑆 (𝑚)] − T𝑘< [𝑒𝑡𝑊 ]




 (B.47)

≤



T𝑘< [𝑆 (𝑚)]




 + 

T𝑘< [𝑒𝑡𝑊 ]


. (B.48)

Now, it can be seen that the following bounds apply


T𝑘< [𝑆 (𝑚)]



 ≤

∞∑︁
𝑟=2𝑘+1

(𝜁𝑡Λ)𝑟
𝑟 !

(B.49)

≤ (𝜁𝑡Λ)2𝑘+1
(2𝑘 + 1)!

∞∑︁
𝑟=0

(𝜁𝑡Λ)𝑟
𝑟 !

(B.50)

=
(𝜁𝑡Λ)2𝑘+1
(2𝑘 + 1)! exp (𝜁𝑡Λ) , (B.51)

where Λ = ∥𝑋 ∥ + ∥𝑌 ∥ and 𝜁 = |𝑤0 | + 2
∑𝑚
𝑖=1 |𝑤𝑖 | corresponds to the total evolution

time. The first inequality comes from expanding out T𝑘< [𝑆 (𝑚)] and applying the triangle

inequality to each term of the expansion, so that each operator𝑋 or𝑌 in the sum becomes

a scalar ∥𝑋 ∥ or ∥𝑌 ∥ respectively. Similarly, we have

T𝑘< [𝑒𝑡𝑊 ]


 = ∞∑︁

𝑟=2𝑘+1

(𝑡 ∥𝑊 ∥)𝑟
𝑟 !

(B.52)

≤ (𝑡 ∥𝑊 ∥)2𝑘+1
(2𝑘 + 1)!

∞∑︁
𝑟=0

(𝑡 ∥𝑊 ∥)𝑟
𝑟 !

(B.53)

=
(𝑡 ∥𝑊 ∥)2𝑘+1
(2𝑘 + 1)! exp{𝑡 ∥𝑊 ∥}. (B.54)

Therefore the total error for the product formula may be bounded as


𝑆 (𝑚) (𝑡) − 𝑒𝑡𝑊



 ≤ (𝜁𝑡Λ)2𝑘+1

(2𝑘 + 1)! exp (𝜉𝑡Λ) +
(𝑡 ∥𝑊 ∥)2𝑘+1
(2𝑘 + 1)! exp (𝑡 ∥𝑊 ∥) . (B.55)

It can be seen from this expression that the total evolution time 𝜁 appears in this bound

and in the simulations of Section 6.4 the other quantities in the bound such as the norm

of the operators are constant, then we can expect 𝜉 to be correlated with the constant

factor in the error.
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