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Abstract—This article presents a new graph-learning
technique to accurately infer the graph structure of COVID-
19 data, helping to reveal the correlation of pandemic
dynamics among different countries and identify influen-
tial countries for pandemic response analysis. The new
technique estimates the graph Laplacian of the COVID-19
data by first deriving analytically its precise eigenvectors,
also known as graph Fourier transform (GFT) basis. Given
the eigenvectors, the eigenvalues of the graph Laplacian
are readily estimated using convex optimization. With the
graph Laplacian, we analyze the confirmed cases of differ-
ent COVID-19 variants among European countries based on
centrality measures and identify a different set of the most
influential and representative countries from the current
techniques. The accuracy of the new method is validated by
repurposing part of COVID-19 data to be the test data and
gauging the capability of the method to recover missing
test data, showing 33.3% better in root mean squared error
(RMSE) and 11.11% better in correlation of determination
than existing techniques. The set of identified influential
countries by the method is anticipated to be meaningful and
contribute to the study of COVID-19 spread.

Index Terms—Graph learning, graph Laplacian, COVID-
19.

I. INTRODUCTION

G LOBAL health, economic, and social challenges are esca-
lating due to the Coronavirus disease 2019 (COVID-19)

pandemic. As of April 2022, Europe had 192.09 million con-
firmed cases and over two million deaths.1 The SARS-CoV-2
virus has undergone numerous genetic changes since its dis-
covery [1]. While some of these changes do not affect the
virus’s behavior, others may affect how easily it is transmitted.
Changes beneficial to the virus tend to spread more quickly,
which means that variants harboring them gradually replace
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other circulating variants [2]. In November 2020, SARS-CoV-2
Alpha was first detected in the United Kingdom, which was
estimated to be 50% more transmissible than the original strain.
From July 2021 to October 2021, SARS-CoV-2 Delta prevailed
in Europe. The SARS-CoV-2 Omicron variant took over from the
SARS-CoV-2 Delta variant in Europe in November 2021. Earlier
studies demonstrated that Omicron can, to a degree, evade
the protective effects of antibodies induced by vaccinations or
natural infections. Large portions of the European population are
susceptible to infection, leading to sharp increases in COVID-19
cases and unprecedented community spread.

Comprehending the spatio-temporal characteristics of the
virus spread is the key to controlling the spread of the pan-
demic. Studies show that the global spread of the COVID-19
pandemic did not process uniformly [3], [4]. An outbreak’s
size and condition are influenced by the characteristics of virus
spread [5]. Unfortunately, it is difficult to implement evidence-
based policies for COVID-19 due to a lack of adequate evi-
dence in policy-making and research [6]. While it is possible
to estimate the growth rates of confirmed cases and deaths [7],
the relationships between pairs of countries are still unknown
as far as the COVID-19 development is concerned. Datasets
about ongoing situations in different countries are likely to
show spatial-temporal patterns since virus spread tends to follow
geographic trends. A spatial-temporal analysis of confirmed
COVID-19 cases may also shed light on its evolution. The
record of pandemic evolution in Europe is known to be complex,
variable, and non-linear. Consequently, it is essential to uncover
hidden information about SARS-CoV-2 as new virus variants
emerge.

One way to understand the spreading dynamic of the pan-
demic is to generate and analyze COVID-19 pandemic diffusion
graph topologies with the graph-theoretic metrics [8], [9], [10],
[11]. In addition to illustrating spatial and temporal connections
between places, spatio-temporal maps can potentially indicate
changes in pandemic risks [12].

Existing studies have examined the spread of epidemics as a
complex system by assessing the degree of correlation or syn-
chronization between time-series data. A deeper understanding
of the transmission dynamics of the new variants of SARS-
CoV-2 requires new methods beyond assessing correlation or
synchronization. There is a need to explore the underlying
local structures in the data and reveal the relationships between
different countries to understand the spatio-temporal spread of
the virus.
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This paper aims to uncover the hidden knowledge that un-
derpins the evolution of the pandemic, examine the underlying
relationship among countries, and understand the spreading
pattern of SARS-CoV-2 variants, e.g., by taking Europe as an
example. A new effective graph learning algorithm is proposed
to estimate the graph Laplacian of the COVID-19 data, where we
first obtain the closed-form expression for the eigenvectors of the
graph Laplacian, also known as graph Fourier transform (GFT)
basis. Given the eigenvectors, we transform the estimation of
the graph Laplacian to a readily solvable, convex problem of
estimating its eigenvalues. With the graph Laplacian estimated,
we perform an in-depth spatio-temporal analysis of COVID-19
data and shed insights into the COVID-19 spread in Europe.

The main contributions of this paper are listed below.
1) We establish the closed-form expression for the eigen-

vectors of the graph Laplacian by revealing the intrinsic
dependence between the frequency-domain representa-
tion of the data and the eigenvectors (that transform the
original graph data to the frequency domain).

2) With the closed-form eigenvectors, we estimate the eigen-
values of the graph Laplacian efficiently using convex
optimization techniques and then recover the graph Lapla-
cian underlying the COVID-19 data.

3) We analyze the COVID-19 spread based on the inferred
graph during different periods at a network level and
at a node level. The most influential or representative
European countries in COVID-19 spread are identified
in different periods.

By applying the new algorithm, we analyze the evolving num-
ber of confirmed COVID-19 cases, reveal the spatio-temporal
patterns of different SARS-CoV-2 variants among the European
countries in different spread periods, and identify a different
set of the most influential European countries from the existing
techniques. These influential countries deserve attention and can
potentially provide insights to help policymakers inform reliable
strategies to manage the virus spread.

Extensive numerical tests are carried out to assess the graph
learning accuracy of the new algorithm. Compared with the
latest techniques, the new algorithm has the minimum root mean
squared estimation error (RMSE) and the maximum correla-
tion of determination (R2) with at least 33.3% and 11.11%
improvements, respectively, thereby corroborating the results
of our COVID-19 analysis.

Following is an overview of the remainder of this paper.
Section II summarizes the existing techniques. Section III
presents the materials, system model and problem statement,
respectively. In Section IV, the new closed-form expression is
analytically established for the GFT basis, and accordingly, the
new algorithm is developed to learn the graph Laplacian. In
Section V, the proposed algorithm is experimentally validated in
terms of accuracy and performed to analyze European COVID-
19 data, with conclusions provided in Section VI.

Symbols and Notations: Matrices and vectors are represented
by boldface uppercase and lowercase letters, respectively. (·)T
denotes transpose. ‖ · ‖F denotes the Frobenius norm. eigen[·]
yields the eigenvectors. Used notations are collated in Table I.

TABLE I
NOTATION AND DEFINITION

II. RELATED WORK

Since the pandemic outbreak, researchers from various fields
have extensively investigated the spread of the disease. The
complex network theory based on a pair-wise configuration
has been widely used to model the topological relationship of
the COVID-19 data from a global perspective [4], [13], [14].
Azad et al. [13] conducted a social network analysis to trace the
COVID-19 spread in India based on the travel history of infected
patients and revealed that international travel played a key role
in the pandemic outbreak in a country. Jo et al. [14] developed
an infected network using the contact tracing information of
confirmed cases, and found that governmental measures had
a strong impact on the COVID-19 spread network in Seoul.
Through modeling tourism mobility as a complex network,
Tsiotas et al. [4] created a multidimensional framework to un-
derstand the COVID-19 spread across countries. Chu et al. [15]
constructed an air travel network structure to visualize the con-
nectedness and evolution of the pandemic. Travel subnetworks
were formed by aggregating airport data at the national level
and adding it to a matrix capturing the flight recurrences between
countries. Using a similar conceptualization, they also developed
a pandemic space approach [16] that uses the historical correla-
tion of confirmed cases to locate the connections between differ-
ent countries. By integrating Bayesian parameter inference with
a Watts-Strogatz small-world network epidemiological model,
Syga et al. [17] inferred a time-varying COVID-19 transmission
network in Germany. It was shown that government interven-
tions reduced random contacts and transmission probabilities.

A number of approaches have been developed to infer the
pandemic’s time-dependent transmission network, compared
to previous works on network-based models. For instance,
the correlation coefficients were exploited to capture the lin-
ear/nonlinear and symmetric pairwise matrix between different
regions [11], [12], [18], [19]. So et al. [11] constructed dynamic
pandemic networks over time for 164 countries to predict and
assess the pandemic risk using network statistics. The connec-
tions in the networks were established based on the correlation
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of changes in the number of confirmed cases between the two
countries. Pan et al. [12] used the Pearson correlation coefficient,
time-lagged cross-correlation, and dynamic time wrapping to
examine interactions in the evolution of pandemics across the
different states of the US. McMahon et al. [18] examined the
spatial correlations of new active cases across different states
in the US and assessed their magnitude over time. Their results
showed stronger correlations between urban areas compared to
rural areas, revealing that the pandemic spread was largely driven
by travel between cities. Using spatio-temporal correlation, Aral
et al. [19] identified distinct spatial clusters and spatial associ-
ations among COVID-19 cases in Turkey, revealing that spatial
analysis helped explain the spread of the disease.

Alguliyev et al. [20] created a conceptual graph model by
taking into account various epidemiological traits of COVID-19,
such as social distance, the period of contact with an infected
individual, and demographic characteristics based on location,
thereby enabling a visual representation of virus propagation.
This helps determine undetected cases of infection. Ieracitano et
al. [21] adopted a deep learning technique based on fuzzy logic to
create a classification system for the early detection of COVID-
19 cases using portable chest X-ray (CXR) images. Absar et
al. [22] developed a computer-assisted system for the automatic
classification of COVID-19 CXR images using Support Vector
Machine (SVM) to enable fast diagnosis of COVID-19.

Pearson correlation directly captures the pairwise relation-
ship between two regions and inherently generates a transport
network with a non-random topology, but ignores the causal
relationship implied by underlying network structures [23].
Graph learning techniques have been adopted to effectively
infer graphs from observed data [24], [25], [26], [27]. Dong
et al. [24] explored the graph Laplacian using a-priori structural
information to minimize variations of smooth signals. Kalofolias
et al. [25] utilized primal-dual optimization to construct graph
inference as learning the weighted adjacency matrix. Saboksayr
et al. [26] further generalized the method of [25] to support more
general multi-class smooth data observation. The graph Lapla-
cian was learned using block-coordinate descent (BCD) in [27].
This algorithm decomposed the original Laplacian estimation
problem into subproblems and then solved them alternately at
each iteration.

In [28], Sardellitti et al. uncovered a block sparse repre-
sentation of signals without assuming any diffusion process
over the graph. They associated a graph with band-limited data
observations and used alternative optimization (AO) to learn an
orthonormal sparsifying transform. With obtained transform, the
problem of graph estimation was converted into a convex one,
and the graph Laplacian was recovered using convex optimiza-
tion methods. Humbert et al. [29] considered band-limited graph
data with properties of smoothness, as well as global sparse
frequency representation. Like [28], AO, barrier methods, and
manifold optimization were iterated to learn graph Laplacian
approximately in [29].

III. MATERIALS AND SYSTEM MODEL

The analysis is based on the open-access dataset of the daily
counts of confirmed COVID-19 cases reported officially by

Fig. 1. Weekly confirmed COVID-19 cases per million people.

different countries, territories, and regions, and published by the
WHO.2 The daily data on the COVID-19 pandemic for European
countries are updated every day. We collect the data from January
2020 to April 2022, and divide this period into four based on the
statistics from the WHO, as shown in Fig. 1. The first period is the
early stage of the pandemic outbreak, between March 2020 and
October 2020, when the original strain of the virus dominated the
spread. The second period is from November 2020 to May 2021,
when the Alpha variant was dominant. The third stage is from
June 2021 to October 2021, when the Delta variant broke out.
The fourth stage is from November 2021 to April 2022, when
the Omicron variant rapidly replaced the Delta and became the
dominating variant in most European countries.

For each period, we analyze the SARS-CoV-2 time series
data of the 44 European countries published by the WHO, by
extracting a graph with 44 nodes from the data. The graph is
denoted by G = (V, E ,W), where V = 1, 2, . . . , N is the set of
N vertices, with N = 44 being the number of countries. The set
of edges, denoted by E , is a subset of V × V . The weighted
adjacency matrix of the graph G, denoted by W ∈ R

N×N ,
indicates the extent to which two countries are correlated with
respect to COVID-19 spread. Wij = Wji �= 0 for ∀(i, j) ∈ E .
Each vertex in the graph is associated with a European country
and corresponds to the time series recording daily confirmed
cases per million people in the country.

For each of the periods, we use xp ∈ R
N×1, ∀p ∈ {1, . . . , P}

to denote the COVID-19 records of the N countries on the
p-th day of the period, where P is the number of days in
the period. The COVID-19 data of the European countries
during the period are arranged in an N × P matrix, denoted
by X = [x1, . . . ,xP ] ∈ R

N×P . Here, X is band-limited and its
frequency-domain representation has finite bandwidth; in other
words, the virus spreads across countries, rather than breaks out
simultaneously in all countries.

To derive information about the underlying topology of G,
we need to estimate the graph Laplacian L. According to the
definition in [27], graph Laplacian is a positive semi-definite
matrix with positive diagonal elements and non-positive off-
diagonal elements, which can be rewritten as:

L = UΛUT = Udiag(λ)UT . (1)

Here, λ = diag(λ1, . . . , λN ) is a diagonal matrix consisting
of the non-negative eigenvalues of the Laplacian, and U =

2[Online]. Available: https://covid19.who.int/WHO-COVID-19-global-
data.csv

https://covid19.who.int/WHO-COVID-19-global-data.csv
https://covid19.who.int/WHO-COVID-19-global-data.csv
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[u1, . . . ,uN ] is an orthonormal matrix comprising the corre-
sponding eigenvectors. According to [30], the GFT is the pro-
jection ofX onU, i.e., the subspace spanned by the eigenvectors
of L. The GFT of the COVID-19 data xp, ∀p ∈ {1, . . . , P} on
p-th day, denoted by sp, is given by

sp = UTxp. (2)

Let S = [s1, . . . , sp] ∈ R
N×P . Then,

X = US. (3)

With the sparsity of sp, ∀p, we define S as a K-block sparse
matrix with rows consisting of multiple all-zero vectors. Here,
K indicates the frequency-domain bandwidth of the COVID-19
data X. K is obtained empirically in prior or enumerated to find
its proper value [31]. The set BK contains all K-block sparse
matrices, defined as BK � {S ∈ R

N×P ,S(i, :) = 0, ∀i /∈ K ⊆
V, K = |K|}. Here, S(i, :) denotes the i-th row of S, and the set
K ⊆ V collates the indexes to the K most significant frequency
components of the X.

IV. PROPOSED GRAPH INFERENCE FOR COVID-19
SPREAD ANALYSIS

COVID-19 data analysis plays an important role in identifying
the most influential countries or regions in the spread of the
virus and understanding how the virus spreads among countries.
In this section, we propose a new graph learning technique,
which accurately and efficiently extracts the underlying graph
topological information of the COVID-19 data, reveals the fine-
grained similarity (or correlation) between different countries in
the virus spread process, and helps identify the most influential
countries that present strong representativeness. More specifi-
cally, the technique extracts the graph Laplacian matrix L of the
COVID-19 data in each period by first deriving the eigenvectors
U of the matrix and then solving the eigenvalues Λ efficiently
using convex optimization techniques. By applying the graph
extracted and centrality measures, we identify the influential
countries that can play a key role in the study of the COVID-19
spread.

A. Graph Topology Extraction

First, we estimate the graph Laplacian L and hence, the graph
topology G substantiating the COVID-19 data X. By taking into
account the band-limitedness of X, we formulate the problem
as

min
L,U∈RN×N ,S∈RN×P

‖X−US‖2F + f(L,X) (4a)

s.t. UTU = IN , (4b)

S ∈ BK , (4c)

L = UΛUT , L ∈ L, tr(L) = N, (4d)

u1 =
1√
N

1. (4e)

The objective (4a) is composed of two terms. The first ac-
counts for data fidelity through a quadratic loss penalizing any

discrepancy between US and X. The second term provides a
regularization function. According to [24] and [28], we set

f(L,X) = tr(XTLX) + α ‖vec(L)‖1 .
Constraint (4b) guarantees that the matrixU is unitary, satisfying
the decomposition in (1); constraint (4c) enforces that the GFT
coefficient matrix S is K-block sparse; constraint (4d) ensures
that L complies with the requirement of a legitimate graph
Laplacian, and L contains all legitimate candidates for L[27]:

L = {L � 0|L1 = 0, Lij = Lji ≤ 0, ∀i �= j}. (5)

According to L1 = 0 in (5), we conclude that 0 is an eigenvalue
ofL and corresponds to the eigenvectoru1 = 1√

N
1, i.e., the first

column of U; see (4e).
Remark 1: To address the non-convexity of (4) caused by the

non-convex orthonormality constraint in (4b) and the sparsity
constraint in (4c), we decouple and solve (4) in two phases. Given
the COVID-19 data X, we first estimate the GFT basis U by
minimizing ‖X−US‖2F subject to UTU = IN , S ∈ BK and
u1 = 1√

N
1. In the second step, we estimate the eigenvalues Λ

by minimizing the regularizer tr(XTLX) + α‖vec(L)‖1 with
the obtained U.

1) Extraction of Eigenvectors: Starting with the GFT basis,
U, provides a way to identify the intrinsic structure in the
COVID-19 data that are related to the underlying pandemic net-
work, even without the a-priori information of graph Laplacian
L. To estimate U from X complies with the definition of the
GFT, i.e., X = US.

By utilizing the orthonormality property of U in (4b), we
have ‖X−US‖2F = ‖UTX− S‖2F . We start with the first part
of problem (4), as given by [28, eq. 8]

min
U∈RN×N ,S∈RN×P

∥∥UTX− S
∥∥2
F
, s.t. (4b), (4c), (4e). (6)

Despite the convex objective function, problem (6) is non-
convex due to the orthonormality in (4b) and the sparsity in
(4c). Since both U and S are unknown, we reorganize (6) as

min
U∈RN×N ,

min
S∈BK

N∑
i=1

∥∥uT
i X− S(i, :)

∥∥2
2
, s.t. (4b), (4e), (7)

which can be rewritten as

min
U∈RN×N

(
min
S∈BK

∑
i∈K

∥∥uT
i X− S(i, :)

∥∥2
2
+
∑
i/∈K

∥∥uT
i X
∥∥2
2

)

s.t. (4b), (4e). (8)

By closely analyzing the objective function of (8), it can be
noticed that the optimalK comprises the indices of theK largest
entries of {‖uT

i X‖}Ni , and satisfies

S(i, :) =

{
uT
i X, if i ∈ K;

0, otherwise.
(9)

Therefore, the objective of (8) is reduced to only include the
(N −K) smallest entries of {||uT

i X||}Ni , after optimizing S to
suppress

∑
i∈K ‖uT

i X− S(i, :)‖22 using (9). To minimize this
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objective with respect to S, we aim to seek the optimal U,
represented as U∗, in (6).

Substitute (9) into the objective of (8). Then, problem (6) can
be written as

U∗ = arg
U

min
∑
i/∈K

∥∥uT
i X
∥∥2
2
= arg

U
min

∥∥UT
KcX

∥∥2
F

= arg
U

max
∥∥UT

KX
∥∥2
F
, (10)

whereKc denotes the complementary set ofK, i.e.,Kc = V \ K;
and the matrices UK and UKc collate the column-vectors of U
with indexes collected in K and Kc, respectively.

Despite the non-convexity of (10), the goal of (10) is to
identify the K-dimensional subspace in which the COVID-19
data X has the largest orthogonal projection; i.e.,

argmax
U

∥∥UT
KX
∥∥2
F
= argmax

U
tr
(
PUKXXT

)
, (11)

where PUK = UKUT
K is the orthogonal projector onto the sub-

space spanned by UK.
Using (11), we reformulate the problem (6) as

U∗ = argmax
U

tr
(
PUKXXT

)
, s.t. (4e). (12)

Theorem 1: By examining the two cases of u1 /∈ UK and
u1 ∈ UK, the optimal solution to problem (6), denoted byU∗ =
[U∗

K,U
∗
Kc ], can be obtained as

U∗ = eigen
[(
I− u1u

T
1

)
XXT

(
I− u1u

T
1

)T ]
. (13)

Proof: Please refer to Appendix A.
2) Extraction of Eigenvalues: Given the K-band-limited

COVID-19 data with the optimalU∗ gained from (13), the graph
Laplacian L is written as

L = [UK,UKc ]

[
ΛK

ΛKc

]
[UK,UKc ]T . (14)

where Λ =

[
ΛK

ΛKc

]
. By plugging (14), tr(XTLX) is

written as

tr(XTLX) = tr(XT (UKΛKUT
K)X+XT (UKcΛKcUT

Kc)X)

= tr(ST
KΛKSK). (15)

Problem (4) becomes

min
ΛK,ΛKc ,L

tr(ST
KΛKSK) + α ‖vec(L)‖1

s.t. L = [UK,UKc ]

[
ΛK

ΛKc

]
[UK,UKc ]T ,

ΛK � 0,ΛKc � 0,

L1 = 0,

tr(L) = N,

Lij = Lji ≤ 0, ∀i �= j. (16)

Since its objective and constraints are convex or affine, problem
(16) is convex and can be solved by CVX toolboxes. WithU and
Λ obtained, we can obtain the graph Laplacian L underlying the
European COVID-19 data using (1).

B. Influential Country Identification

Next, given the graph topology L underlying the COVID-19
data and indicating the propagation of the virus, we proceed to
estimate the spread pattern of the four variants among the Euro-
pean countries. As shown in Table II, three node-level metrics,
including degree centrality [32], closeness centrality [33], and
betweenness centrality [34], are used to measure the influence
of individual countries in the COVID-19 spread, where dij
represents the shortest distance between nodes i and j in the
extracted graph,σij is the total number of shortest paths between
nodes i and j, and σij(v) denotes the number of these paths
through node v.

� Degree centrality measures the number of connections a
node has, helping identify the most connected nodes to the
rest of the pandemic networks [32].

� Closeness centrality measures the inverse of the sum of
the distances between a node and all other nodes in the
network, which helps to identify nodes that are central
and easily reachable within the network [33].

� Betweenness centrality measures the importance of a node
in maintaining the shortest paths between other nodes in
the network, helping to identify nodes that play a critical
role in connecting different parts of the network [34].

The higher centrality a country has, the more influential it is
and the more attention it deserves. In other words, the countries
ranked high in terms of the centrality measures are likely to
present the important COVID-19 spread patterns.

Many other existing methods, such as node embeddings [35],
DeepWalk [36], spectral clustering [37], and influence max-
imization [38], aimed to efficiently find influential nodes in
large-scale graphs, e.g., social networks with thousands or even
millions of nodes, often still based on the above classical central-
ity measures. Nevertheless, the graph considered consists of only
N = 44 vertices (for 44 European countries). Computational
complexity is less of a concern.

We also take two network-level metrics in Table II, i.e.,
average path length [39] and global efficiency [40], to explore
the spread of the pandemic.

� Average path length measures the average number of hops
required to get from one node to another node in the
network [39]. A short average path length indicates a
highly connected network, contributing to the fast spread
of the pandemic [41].

� Global efficiency measures the average inverse shortest
path length between all pairs of nodes, indicating how
quickly the virus can spread [40]. A high global efficiency
indicates a dense and well-connected network with fast
virus propagation, while a low global efficiency indicates
a fragmented and poorly connected network deterring the
virus propagation.

V. METHOD ASSESSMENT AND RESULTS

In this section, we first experimentally validate the superior-
ity of the proposed technique to existing approaches in graph
learning accuracy of the COVID-19 data. Then, we use the
technique to conduct an in-depth analysis of COVID-19 data,
and shed different insights into pandemic spread from existing
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TABLE II
TOPOLOGICAL CHARACTERISTICS OF THE LEARNED COMPLEX NETWORKS

techniques. The analysis is based on the open-access WHO
dataset of the daily counts of confirmed COVID-19 cases in
the 44 European countries.

Apart from the proposed algorithm, we evaluate the state-of-
the-art solutions: Saboksayr’s algorithm [26], Sardellitti’s Total
Variation (TV) algorithm [28], Sardellitti’s Estimated-Signal-
Aid (ESA) algorithm [28], and Humbert’s algorithm [29].

� Saboksyr’ algorithm [25]: This is a scalable and time-
efficient primal-dual algorithm that learns the topological
structures of time series represented by the weighted ad-
jacency matrices of graphs. However, this method has no
explicit generative model for the observations. In other
words, the model’s accuracy may not be adequate for nu-
merous real-world datasets that exhibit localized behaviors
or exhibit piecewise smoothness.

� Sardellitti’s TV graph learning algorithm [28]: The ap-
proach involves a two-step scheme: (a) learning the or-
thonormal sparsifying transform from data using AO,
and (b) recovering the Laplacian from the sparsifying
transform using convex optimization. The algorithm is
reasonably computationally efficient by exploiting convex
optimization techniques. However, the effectiveness of
the overall process is compromised due to the AO-based
approximation in the first step, which penalizes the fidelity
of the orthogonal sparsifying transform.

� Sardellitti’s ESA graph learning algorithm [28]: Different
from Sardellitti’s TV graph learning algorithm, this algo-
rithm exploits the knowledge of the GFT coefficient matrix
of the first step in the second step, where the Laplacian
matrix is recovered from the sparsifying transform and
the GFT coefficients using convex optimization.

� Humbert’s algorithm [29]: This is another AO-based al-
gorithm with alternating procedures relying on standard
minimization methods, i.e., manifold gradient descent and
linear programming. However, only suboptimal solutions
can be obtained using the AO method. The computational
complexity of the method is also high.

In addition to the above state-of-the-art graph learning tech-
niques, we also compare our proposed algorithm with the state-
of-the-art graph neural network (GNN) [42] when assessing the
accuracy of the algorithm. The GNN consists of multiple hidden
layers with 50 hidden units per layer. In the training stage, the
input to the GNN includes the training data and the weighted

correlation matrix of the training set. By contrast, the input of
the graph learning algorithms is the training set.

A. Graph Learning-Based Analysis of COVID-19 Data

Fig. 2 provides the pandemic spread networks of 44 Eu-
ropean countries over the four different periods obtained by
the proposed algorithm, where the parameters of the algorithm
are K = 26 and α = 1 decided in the way delineated at the
beginning of Section V-B. The thickness of an edge measures
the similarity of the COVID-19 spread between two coun-
tries. The virus spreads in the two countries are more likely
to be related if the edge is thicker. The density of the edges
indicates the extent to which the COVID-19 spread among
countries. It is observed in Fig. 2 that the virus spreads are
increasingly related among the European countries from Period
1 to Period 4. Not only did the spreads increase between the
countries, but the virus spread increasingly widely across more
countries.

To better illustrate the correlation of the COVID-19 spread
between the European countries, Fig. 3 plots the weighted
adjacency matrices of the graphs extracted from the COVID-19
data by the proposed algorithm. In the figure, the 44 European
countries are sorted alphabetically from Albania to Ukraine
along the x- and y-axes. The intensity of the color at each pixel
stands for the extent of the correlation between the two countries
associated with the pixel. For example, the pixel correspond-
ing to Greece and Norway is lighter than others in Fig. 3(a),
indicating that Greece and Norway are highly correlated in
Period 1. Likewise, Russia and Belarus are highly correlated in
Period 2 in Fig. 3(b). Nevertheless, the number of light-colored
pixels increases overall in both Periods 3 and 4 in Figs. 3(c)
and 3(d), indicating that the Delta and Omicron variants have
higher and stronger propagation characteristics in Europe, which
is consistent with the finding made in Fig. 2.

Figs. 4–7 visualize the top 5 countries that are identified to
have been the most influential in the process of the COVID-19
virus spread in Europe, using the proposed approach based on the
aforementioned three node-level metrics, i.e., degree centrality,
closeness centrality, and betweenness centrality. A darker color
indicates a country identified by more centrality measures to
be among the top 5 most influential countries. For example,
Czechia was influential during Period 1 in the sense of all
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Fig. 2. The learned graph of the COVID-19 spread in the 44 European countries during different periods.

Fig. 3. The weighted matrix of the learned graph of the spread of COVID-19 in 44 European countries during different periods.
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Fig. 4. Influential countries identified during Period 1.

Fig. 5. Influential countries identified during Period 2.

Fig. 6. Influential countries identified during Period 3.

Fig. 7. Influential countries identified during Period 4.

three centrality measures. This makes sense since the different
centrality measures are closely related in nature [12].

It is obvious in Figs. 4–7 that the proposed algorithm identifies
a different set of the most influential European countries in
the COVID-19 spread, compared to the state-of-the-art graph
learning methods. Particularly, the proposed algorithm helps
identify a small and concentrated set of influential countries
in every period of COVID-19 spread; i.e., a country is more
likely to be associated with multiple centrality measures. In other

words, the influence of a country is more likely to be manifested
through multiple measures. Here, the parameters of each method
are separately tested and optimized, according to their individual
settings.

Fig. 8 quantitatively evaluates how different the top 5 most
influential countries are identified by the different algorithms.
Specifically, we vectorize the 15 most important countries iden-
tified using each of the considered algorithms based on the
three centrality measures. The similarity between the 15-element
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Fig. 8. The correlation of different algorithms.

Fig. 9. Average path length and global efficiency corresponding to
different periods of COVID-19.

vectors produced by any two of the considered graph learning

algorithms, measured by the cosine distance VT
1 V2

|V1|·|V2| , quantifies
the similarity between the algorithms, where V1 and V2 are the
two 15-element column vectors, and | · | stands for the norm.

As shown in Fig. 8, the proposed algorithm yields the highest
similarity to Humbert’s [29] in terms of their identified important
countries (under three centrality measures), followed by Sar-
ESA [28], Sar-TV [28], and Saboksayr’s [26]. The similarities of
the proposed algorithm to the existing algorithms are consistent
with the graph learning (and reconstruction) accuracy of the
algorithms, as will be shown in Fig. 12. Note that the ground
truth regarding the most important countries is unavailable in
practice. Given the best graph learning accuracy of the proposed
algorithm and the consistent rankings between the accuracies
and the similarities of the existing algorithms, it is reasonable to
conclude that the countries identified by the proposed algorithm
are more accurate and can contribute to more effective study and
response to the pandemic.

Fig. 9 plots the average path length and global efficiency of
the graph recovered by the proposed graph learning algorithm
in the four periods of the COVID-19 pandemic. It is observed
that the average path length decreases and the global efficiency

increases in the four periods. The Omicron variant (i.e., Period 4)
corresponds to the smallest average path length and the largest
global efficiency, indicating that the Omicron variant has a
higher level of global reachability and infectivity. In contrast, the
original strains in the early stage of the pandemic, i.e., Period 1,
have higher average path lengths and smaller global efficiencies.
This is consistent with the finding in Figs. 2 and 3. The reason
can be that during Period 1, the countries responded to the
outbreak with stay-at-home or workplace closure, effectively
slowing down the increase in confirmed cases.

B. Accuracy Validation of Proposed Graph Learning

Without the ground truth of the graphs underlying the COVID-
19 data, we resort to assessing the learning accuracy of the
proposed algorithm by obfuscating part of the data and assessing
the reconstruction accuracy of this part of data based on the
learned graphs and the rest of the data.

Suppose that the number of observable countries is K (K ≤
N ), i.e., the signal bandwidth. Based on the inferred graphs, e.g.,
those in Fig. 3, and the observed COVID-19 data ofK randomly
selected European countries, we reconstruct the number of con-
firmed cases per million population in the remaining (N −K)
countries. The recovered graph signals, denoted by x̂p, can be
obtained as [43]

x̂P = UKUT
KΨ

TΨD2ΨTyP , (17)

whereyp ∈ R
K is sampledK × 1-dimensional COVID-19 data

on the p-th day, which is chosen from xp randomly and inde-
pendently [43]. Ψ ∈ R

K×N stands for a sampling operator.
Ψij = 1 if j = Ki; and 0, otherwise. Here,Ki is the i-th element
ofK, indicating the i-th of theK = |K|European countries with
COVID-19 data available. D ∈ R

N×N is a diagonal rescaling
matrix with Dii = 1/

√
Kπi and πi being the probability of

choosing the i-thK ×N -dimensional sample of theK countries
on the p-th day of the considered period. Since a uniform
sampling process is considered, the sampling score for each node
is πi = 1/N .

The RMSE and theR2 are adopted to quantify the accuracy of
the recovered data with respect to the ground-truth COVID-19
data, as given by

RMSE =

√∑N

i=1
(x̂pi − xpi)2/N ; (18)

R2 = 1− ‖x̂p − xp‖22
‖x̂p − x̄p‖22

. (19)

Here, x̂p and x̄p are the reconstructed signals and the average
of the ground-truths of xp.

Fig. 10 plots the correlations of determination, i.e., R2, of
the proposed algorithm with different regularizer α and data
bandwidth K under the pandemic network during Period 1. We
see that R2 reaches its peak at α = 1 and K = 26; indicating
that the optimal regularizer is α = 1 for a data bandwidth
of K = 26. We can similarly determine the optimal values
of α for Periods 2 to 4. Fig. 11 shows the R2 of the con-
sidered graph learning algorithms in four different periods,
where K = 26. The proposed algorithm obtains the largest
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Fig. 10. The accuracy vs. bandwidth K and α in Period 1.

Fig. 11. Efficiency of reconstruction of different methods upon four
periods when K = 26.

R2. For example, the improvements of the algorithm are about
29.36%, 27.71%, 12.46%, and 11.11%, compared to Sabok-
sayr’s [26], Sar-TV [28], Sar-ESA [28], and Humbert’s [29],
respectively. To ensure a fair comparison, the parameters are
individually tested and optimized for each benchmark in these
figures.

Fig. 12(a) shows the RMSE of the considered algorithms with
the increase in the signal bandwidth K. We see that under all
the considered algorithms, the RMSEs decrease quickly with
the growth of K and then converge to constant values. Our
proposed algorithm has the smallest RMSE under all values
of K. It has the minimum RMSE around 0.23 at K = 26
and achieves performance improvements by about 60.87%,
43.48%, 34.78%, and 33.33%, compared to Saboksayr’s [26],
Sar-TV [28], Sar-ESA [28], and Humbert’s [29], respectively.
Fig. 12(b) plots the cumulative distribution function (CDF) of the
errors undergone by the considered algorithms. As shown, the
proposed algorithm has much lower estimation errors than the
rest of the algorithms. In particular, over 80% of the estimation
errors are smaller than 0.2 case per million population under
our algorithm. By contrast, 38.3%, 48.4%, 59.5%, and 64.6%
of the estimation errors are smaller than 0.2 case per million
population under Saboksayr’s [26], Sar-TV [28], Sar-ESA [28],
and Humbert’s [29], respectively.

Fig. 12. (a) The RMSE vs. the bandwidth K. (b) The CDFs of estima-
tion error under different graph learning methods.

Next, we proceed to assess the accuracy (R2) of the considered
graph learning algorithms when predicting future missing data
based on the graph topologies extracted in the past. In addition
to the graph learning techniques, we also consider the state-
of-the-art GNN [42]. The COVID-19 dataset of each period is
divided into a training set (e.g., the first 80% of the dataset) and
a test set (e.g., the remaining 20% of the dataset). In the training
phase, the graph learning algorithms extract the graph topology
of the training set. In the test phase, the test data of Ukraine
is assumed to be missing and is predicted based on the graph
topologies extracted from the training set and the available test
data of the other countries. By adjusting the ratio between the
training and test sets, we show the robustness of the algorithms
to the small training set.

As shown in Fig. 13(a)–(d), the graph learning methods,
including our proposed algorithm, outperform the GNN under
different ratios between the training and test sets. When the
training set is set to 80% and the testing set is 20%, our algorithm
achieves the highest R2 values with the improvements of about
70.49%, 75.85%, 70.99%, and 68.11% in the four periods,
compared to the GNN. Notice that the R2 value of the GNN can
yield negative values, especially when the training set is small.
This is the case when even the mean of the data can provide a
better fit to the data than the fitted function, e.g., the GNN, when
the training set is small, i.e., 20%.
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Fig. 13. Efficiency of reconstruction of different methods of different
periods.

On the other hand, the proposed graph learning algorithm can
enhance the state-of-the-art GNN by providing more accurate
graph topologies, compared to a direct calculation of adjacency
matrices (as done in the GNN [42]). By inputting the weighted
adjacency matrices of the graphs learned by the algorithm,the
GNN can be enhanced and consistently outperform the original
GNN in the experiments. Nevertheless, the enhanced GNN is
still not as good as the state-of-the-art graph learning techniques,
primarily due to the relatively small size of the training set, i.e.,
the COVID-19 data set.

VI. CONCLUSION

In this article, we proposed a new graph-learning technique to
analyze the evolution of the COVID-19 pandemic and reveal the
underlying relationship and spreading pattern among different
countries. The new technique estimates the graph Laplacian of
the COVID-19 data by first deriving the closed-form expression
for its eigenvectors and then estimating its eigenvalues with con-
vex optimization. Based on the COVID-19 data, the accuracy of
the estimated graph Laplacian was shown to outperform the ex-
isting approaches by 33.3% in RMSE and 11.11% in correlation
of determination. The new technique helped identify a different
set of the most influential and representative European countries,
compared to the existing techniques. Given the superior accuracy
of the technique, the set of identified influential countries is
expected to be sensible and deserves dedicated research efforts
to help understand the COVID-19 spread.

APPENDIX

PROOF OF THEOREM 1

Proof: The solution for (12) is derived in two cases:
1) In the Case of u1 /∈ UK: Let PUK\{1} refer to the or-

thogonal projection of the subspace consisting of the column

vectors of UK, except for the first column, i.e., PUK\{1} =

PUK(I− u1u
T
1 )(I− u1u

T
1 )

T . Then, the objective function of
(12) is converted as

max
U,K

tr
(
PUK

(
I− u1u

T
1

)
XXT

(
I− u1u

T
1

)T)
. (20)

Problem (20) can be transformed into a problem defined on
a Grassmann manifold, making it an unconstrained optimiza-
tion problem. Since the Grassmann manifold is a closed set,
the maximum or minimum of a continuous function defined
on this set, such as the optimal solution to (20), exists [44].
Having established the existence of the optimal solution, we
can prove that the K-dimensional subspace of UK is composed
of eigenvectors that correspond to the K largest eigenvalues of
(I− u1u

T
1 )XXT (I− u1u

T
1 )

T .
Suppose thatσ1 ≥ σ2 ≥ · · · ≥ σN are the eigenvalues of (I−

u1u
T
1 )XXT (I− u1u

T
1 )

T , corresponding to the eigenvectors
{v1,v2, . . . ,vN}. LetS1 = span{v1,v2, . . . ,vK} correspond
to the K largest eigenvalues σ1, σ2, . . . , σK . Let S2 (S2 �= S1)
be another K-dimensional subspace, and E0 = S1 ∩ S2. Sup-
pose that S1 = E0 ⊕ E1 and S2 = E0 ⊕ E2, where E1 is the
subset of S1 and E2 is the subset of S⊥

1 ; i.e., E1 ⊂
span{v1, . . .,vK} and E2 ⊂ span{vK+1, . . .,vN}, and
S⊥
1 is the orthogonal complement space of S1. Let dim(E1) =

dim(E2) = t. According to the Minimax theorem [45], we
have tr(PE1

(I−u1u
T
1 )XXT (I− u1u

T
1 )

T )≥ tσK and tr(PE2

(I− u1u
T
1 )XXT (I− u1u

T
1 )

T ) ≤ tσK+1. As a result,
tr(PS1

(I− u1u
T
1 )XXT (I− u1u

T
1 )

T ) ≥ tr (PS2
(I− u1u

T
1 )

XXT (I− u1u
T
1 )

T ) based on σK ≥ σK+1, S1 = E0 ⊕ E1

and S2 = E0 ⊕ E2. Here, PS1
is the projection of the

subspace S1 spanned by the K largest eigenvalues of
(I− u1u

T
1 )XXT (I− u1u

T
1 )

T . In other words, the projection
of (I− u1u

T
1 )XXT (I− u1u

T
1 )

T is the largest on the span of
the eigenvectors corresponding to the K largest eigenvalues.
Thus, the solution to (20) is given by

U∗
K = span {v1, . . . ,vK} , (21)

which corresponds to the K largest eigenvalues of (I−
u1u

T
1 )XXT (I− u1u

T
1 )

T . Accordingly, U∗
Kc consists of the

rest of the eigenvectors, leading to (13).
2) In the Case of u1 ∈ UK: By writing UK = [u1,UK\{1}],

the objective of (12) turns to argmax
U,K

tr(PUK(I− u1u
T
1 )XXT

(I− u1u
T
1 )

T ), which is identical to (20). Thus, the solution,
U∗

K, comprises u1 and the eigenvectors associated with the
(K − 1) largest eigenvalues of (I− u1u

T
1 )XXT (I− u1u

T
1 )

T ,
as can be proved in the same way as done above. Accordingly,
U∗

Kc consists of the rest of the eigenvectors, leading to (13).
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