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Abstract

The past few years have borne witness to a marked surge in the adoption of

machine learning (ML) techniques across a broad spectrum of fields, such as image

analysis, text categorization, predictive credit scoring, and recommendation systems,

among others. These techniques have made significant strides in various sectors,

yet there is a growing concern among researchers about the “black-box” nature

intrinsic to these methods. As a consequence, the need for interpreting machine

learning models has taken center stage in scholarly debates. However, conventional

approaches to machine learning interpretability have primarily focused on associative

relationships rather than causal ones.

This study seeks to bridge the existing gap in the causal interpretation of ma-

chine learning models by developing and enhancing both causal inference and coun-

terfactual methodologies. Initially, it offers a comprehensive review of the causal

analysis techniques utilized in machine learning models. Following this, the re-

search proposes an innovative approach to causal inference, one that is anchored

in the concept of dynamic propensity scores. In the context of counterfactual ex-

planation, the study brings forward two strategies: one that prioritizes causality to

safeguard the causal bonds within counterfactual instances, and another that uti-

lizes a framework based on normalizing flows, designed to yield scalable and robust

counterfactual samples. Concerning counterfactual fairness, the study aspires to for-

mulate a min-max strategy designed to achieve counterfactual fairness even within

an imperfect structural causal model. Collectively, this research is committed to

enhancing the interpretability of machine learning models through the provision of

causal explanations and counterfactual analyses.
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Chapter 1

Introduction

In recent years, machine learning has ushered in substantial changes across a myriad

of sectors, such as healthcare, finance, and transportation. Nevertheless, the perva-

sive use of these sophisticated machine learning models prompts crucial questions

about their transparency and interpretability. When these models become convo-

luted and challenging to comprehend, it hampers our ability to trust their outcomes

and make informed decisions based on them.

Causality, or the study of cause and effect relationships between events, presents

an appealing solution to this predicament. Incorporating causal knowledge into

machine learning models may open up avenues to simultaneously achieving high

precision and interpretability, while also dodging common obstacles such as decep-

tive correlations or confounding factors.

This thesis aims to delve into the intersectionality of causal inference and machine

learning. Specifically, we want to explore how the concept of causality can improve

the understanding and transparency of machine learning systems. Our focus will

be on several essential questions, like how counterfactual analysis can help clarify

machine learning models and how structural causal models can enhance the fairness

of these models. To reach this objective, we will first conduct a thorough review of

the prevalent literature on causality and machine learning, and then deploy a variety

of methods and techniques—normalizing flows, structural causal models, stochastic

propensity score, etc.—to investigate the power of causality for interpretability in

machine learning.

The outcomes of this thesis could potentially guide the design of reliable and

trustworthy machine learning systems, fostering novel applications in domains such

as explainable AI, decision support, and policy-making. Through the lens of causal-
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ity, we could develop machine learning models that are not just accurate and efficient

but are also transparent and comprehendible to human users.

1.1 Introduction

Machine learning has undoubtedly been a force of transformation across an array

of sectors, including healthcare, finance, and transportation. However, as the uti-

lization of these advanced models intensifies, their transparency and interpretability

are increasingly under scrutiny. The complex architecture of these models can bring

about significant challenges in fully trusting their results and effectively using them

for informed decision-making. This issue’s criticality has catalyzed the search for

viable solutions, making the interpretability of machine learning indispensable in

rendering these models more comprehensible to humans.

However, conventional machine learning methods usually center more on identi-

fying patterns or associations, rather than unearthing causal relationships. Causal-

ity, the study of cause-effect connections, provides an appealing resolution to this

issue. By integrating causal understanding into machine learning models, we could

potentially strike a balance between high accuracy and easy interpretability. This

approach also helps us avoid common issues such as misleading correlations or vari-

ables that can confound the analysis.

Our research strives to unearth how the concept of causality can bolster the

clarity and transparency of machine learning systems. Our inquiry will concentrate

on vital topics, such as the value of counterfactual analysis in explaining and inter-

preting machine learning models and how structural causal models can facilitate the

fairness of these models. As a first step, we will conduct a thorough review of the

existing works on causality and machine learning to establish a solid understanding

of the field. Following this, we will employ various methods and techniques that

include normalizing flows, structural causal models, and the concept of stochastic

propensity scores. This approach will enable us to explore the potential and effec-

tiveness of causality in enhancing the interpretability of machine learning.

The results of our study could guide the development of future machine learning
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systems, helping make them more reliable and trustworthy. In addition, our findings

could stimulate advances in various areas such as explainable artificial intelligence,

decision support, and policy-making. By leveraging the power of causality, we aim

to build machine learning models that strike a good balance between accuracy,

efficiency, transparency, and ease of use. In the bigger picture, this research is set to

substantially contribute to the advancement of machine learning, helping it better

address the ongoing issues of transparency and interpretability.

1.2 Research Objectives

To achieve the overarching aims of this research, it is necessary to address the

following major objectives in detail:

• Conducting a comprehensive survey for interpretable machine learn-

ing under causal perspective: Recognizing and evaluating existing meth-

ods is a crucial step towards developing novel solutions. Therefore, this ob-

jective entails conducting an exhaustive assessment of existing learning algo-

rithms and categorizing them in a meaningful manner. This will involve a

thorough review of the literature, including recent advances in the field of in-

terpretable machine learning under a causal perspective. The review will be

conducted with a focus on identifying the strengths and weaknesses of exist-

ing methods, and evaluating their applicability to various real-world scenarios.

This comprehensive survey will not only establish a solid foundation for the de-

velopment of our proposed algorithms in this thesis, but also provide valuable

insights for other objectives.

• Development of stochastic propensity score for estimating average

treatment effect: Building upon the insights gained from the comprehen-

sive survey, this objective focuses on the construction of a stochastic propensity

score for causal inference. The proposed approach aims to deal with stochastic

propensity score instead of static ones, and then develop the policy optimiza-

tion algorithms based on reinforcement learning.
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• Development of counterfactual explanation algorithms using multi-

objective optimization and structural causal model: This objective pro-

poses an improved version of counterfactual explanation algorithms, which will

enhance the quality of counterfactual samples. This will be achieved through

the use of multi-objective optimization and a structural causal model, which

will provide a more accurate representation of the underlying causal mecha-

nisms. The multi-objective optimization will ensure that the counterfactual

explanations are both accurate and interpretable, while the structural causal

model will provide a more accurate representation of the causal relationships

between variables. The completed algorithm will be evaluated against exist-

ing counterfactual explanation methods to assess its performance in generating

high-quality explanations.

• Investigation of counterfactual explanation using normalizing flows:

This objective aims to further enhance the robustness and stability of counter-

factual samples. By incorporating invertible neural networks with a Gaussian

Mixture Model, the objective leverages the promising technique of normaliz-

ing flows. This approach directly applies recent advancements in generative

modeling to the development of counterfactual explanations. Building on the

methodology of previous objectives, this investigation represents a logical pro-

gression in refining the quality of counterfactual explanations.

• Investigation of counterfactual fairness with imperfect structural

causal model: This final objective addresses an important consideration

in real-world applications. It seeks to achieve counterfactual fairness even

when the structural causal model is imperfect or incomplete. Building on the

insights gained from the previous objectives, this objective involves the de-

velopment of a deep learning model capable of handling situations where the

structural causal model is not fully understood. By doing so, it directly applies

the knowledge and methodology developed in earlier objectives to address an

essential aspect of fairness in machine learning models.
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A summary of research motivation, research objectives, and our contributions is

presented in Figure 1.1.

Figure 1.1 : A summary of motivation, objectives, and contributions in this thesis.

1.3 Thesis Organization

The organization of this thesis is presented in Figure 1.2. In this introductory

chapter, I have discussed the motivation, objectives, and contributions of my Ph.D.

project, which aims to provide a comprehensive understanding of interpretable ma-

chine learning from a causality perspective.

Chapter 2 : This chapter presents a detailed review of the advancements made

in the field of interpretable machine learning, with a special emphasis on causality.

Various methods such as causal inference, counterfactual explanation, counterfactual

fairness, and structural causal models are discussed extensively. The chapter also

emphasizes the importance of infusing causality into machine learning models to

significantly enhance their interpretability and improve the decision-making process.

Chapter 3 : This chapter delves into the field of causal inference, providing funda-

mental knowledge about potential outcome frameworks. We illuminate the concepts

of causality, counterfactuals, and identification in the context of Structural Causal

Models (SCMs). Moreover, we put forward a new approach for estimating Average
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Treatment Effects (ATEs) by using stochastic propensity scores. This method is

proposed to overcome the limitations of existing methods used for estimating ATEs.

Chapter 4 : This chapter extends the approach from Chapter 3, utilizing rein-

forcement learning and stochastic propensity scores for policy optimization.

Chapter 5 : This chapter introduces a causality-focused strategy for generat-

ing counterfactual explanations by employing multi-objective optimization. The

proposed method aims to produce counterfactual samples that not only fulfill the

expected outcomes but also retain diverse and causal features. The effectiveness

of this method is assessed on multiple real-world datasets, and its performance is

compared with existing methods.

Chapter 6 : This chapter delves into the use of normalizing flows for counter-

factual explanations. Normalizing flows, a kind of model adept at understanding

the hidden distributions in a dataset, have great potential. We propose an approach

that brings together normalizing flows and counterfactual explanation. This method

stands out for its ability to generate robust samples effectively.

Chapter 7 : This chapter introduces the concept of counterfactual fairness using

an imperfect structural causal model. We discuss the challenges of achieving fairness

in machine learning models and propose a method with an imperfect structural

causal models (SCMs).

Chapter 8 : This chapter concludes the thesis by discussing the key findings and

potential research directions for further study.

By following this organized structure, this thesis aims to provide a comprehensive

understanding of interpretable machine learning from a causality perspective, as well

as introduce novel approaches for causal effect estimations, generating counterfactual

explanations and achieving counterfactual fairness.
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Figure 1.2 : Thesis structure



9

Chapter 2

Literature Review

This chapter presents a comprehensive overview of causal analysis, beginning with

fundamental background information and crucial concepts. It then proceeds to

summarize the most recent causal approaches employed in interpretable machine

learning. The chapter also discusses various evaluation techniques used for assessing

the quality of these methods and highlights open issues in causal interpretability.

The content of this chapter is adapted from the following paper:

• Xu, G., Duong, T. D., Li, Q.(2021). Causality Learning: A New Perspective

for Interpretable Machine Learning. IEEE Intelligent Informatics.

2.1 Introduction

In the past decades, machine learning has achieved the impressive performance in

diverse tasks, and is increasingly applied in science, society and business. However,

most of state-of-the-art models remained incomprehensible for both researchers,

users and engineers, causing difficulties when deploying in real world. Specifically,

there are several high-stake decision-making domains such as self-driving cars, crime

prediction or personalized medicine in which the lack of transparency in machine

learning prevents themselves from being adopted. Take for instance, in the health-

care sector where each decision can affect the people’s survival, physicians are fre-

quently concerned about the safety and trust of any deployed models. They do not

likely trust the model’s prediction if they can not understand the rationales behind

it. Consequently, interpretability in machine learning plays a significantly important

role in generating trust-worthy models. This furthermore allows researchers, data

scientists and engineers to ensure the models following the human understanding,

ethnic codes, fairness and security. We as human have an insatiable curious nature;
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thus, our goal is not only to understand models’ mechanism but also to generate

and extract new knowledge of the world.

In view of the time of explainable AI shown in Figure 2.1, interpretable ma-

chine learning can be divided into two branches: ad-hoc and post-hoc methods.

The evolutionary history of noticeable traditional interpretable machine learning

techniques is briefly described in the Figure 2.1. The ad-hoc type focuses on build-

ing the model architecture, algorithms or mechanisms that are self-explainable and

transparent. Intrinsically interpretable models are the central research in the early

years of artificial intelligence with the dominance of symbolism methods, followed

by more advanced approaches such as decision sets (Lakkaraju et al. 2016), general-

ized linear regression, generalized additive model (Zhang et al. 2019a; Caruana et al.

2015; Zhang et al. 2019b), Bayesian probabilistic model (Darwen 2019; Letham et al.

2015b), rule-based model (Wang 2017; Letham et al. 2015a), attention mechanism

(Arik and Pfister 2021), fuzzy inference systems (Jang and Sun 1993; Guillaume

2001; Wang and Lee 2002), TabNet (Arik and Pfister 2021), etc. With the rapid

growth of deep learning in recent decades, machine learning model is gradually

evolved into complicated and incomprehensible forms, which leads to the increasing

attention on post-hoc interpretations. Several prominent approaches in this category

include Local surrogate models (LIME (Ribeiro et al. 2016), SHAP (Lundberg and

Lee 2017), LORE (Guidotti et al. 2018), etc), influence functions (Koh and Liang

2017) and feature importance estimation (Schwab et al. 2019; Schwab and Karlen

2019a) have been introduced.

However, traditional interpretable machine learning focuses on the association

instead of the causality. With the emergence of causal inference, an increasing

number of causality-oriented methods have been proposed in interpretable machine

learning. In comparison with traditional methods, causal approaches can be utilized

to identify causes and effects of models architecture or conduct the reasoning over

its decisions and behaviors. This article examines the overview of interpretable

machine learning, presents the causal analysis in machine learning interpretability

and finally discusses the future research directions. More specifically, we first present
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the background of causal analysis with key concepts, models and evaluation metrics.

We then provide an overview of state-of-the-art works on causal interpretability.

We also illustrate the potential evaluation metrics used in interpretable machine

learning.

2.2 Causality Analysis

Causality analysis can exploit the causality mechanisms underlying the data-

generating process, which is more advanced than the predictive or descriptive ca-

pability in machine learning techniques. Causal inference and causal discovery are

two main research topics for causality analysis. The goal of causal inference is to

estimate the causal effect of treatment (i.e., a decision made or action taken) on the

outcome (i.e., the result of treatment). Causal discovery examines whether a set of

causal relationships exists among the variables. This paper would primarily focus

on causal inference, which is more correlated to machine learning interpretability.

2.2.1 Causal Inference

Causal inference has been widely applied in econometric, social science and

medicine fields for evaluating the policy’s effect or the drugs’ side effect. Effect

estimation is tied to the outcome caused by the treatment applied to an instance.

An instance is the atomic research object, which can be a physical object or an

individual person. Treatment and outcome are terms that denote a decision made

or action taken and its result, respectively. We first introduce the essential concepts

for learning treatment effect followed by the causal models.

• Covariates X encompass the background variables or features of the instance

and are integral to the understanding of treatment effects and outcomes.

• Treatment T refers to the action (manipulation or intervention) that applies

to a instance.

• Outcome Y is the result of the treatment applied on a instance.

• Confounder Z is a variable which causally affects both treatment and outcome.
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To better understand causal inference, we give the following example combined

with the notations defined above. To prove the efficiency of the medication on the

disease, the scientist needs to assess its positive effect into the patients’ recovery

rate. Figure 2.2 depicts the corresponding causal relationships among the essential

variables. The treatment T is whether the drugs are applied or not, and the observed

features X are the patients’ condition such as the level of insulin and cholesterol,

heart rate, etc. Outcome Y is the recovery rate and age is the confounder Z. This is

simply because age firstly determined the need of applying medication into patients,

since the young people may not necessarily take the medicine. Age also affects to

the recovery rate: the youth has a higher probability to recover than the elderly.

Recovery
rate

Medication

Age

Level of
cholesterol

Level of
insulinHeart rate

Treatment T

Covariate X

Confounder Z

Outcome Y

Figure 2.2 : The causal graph for recovery rate problem

2.2.2 Causal Models

We now introduce the two most important formal frameworks used for causal

inference, namely the structural causal models and the potential outcome framework.
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Structural causal model (Pearl 2009a) consists of two main components: the

causal graph and structural equations. Causal graph is the probabilistic graphical

model which is used to represent the assumption about prior knowledge and data

generating process. A causal graph is defined as G = ⟨V , E⟩ where V is the set of

nodes and E is the set of edges. Structural equation is a set of equations Eq. (2.1)

which are used to represent the causal effect illustrated by the edge in the causal

graph.

X = fX(EX),

T = fT (X,ET ).

Y = fY (X,D,EY )

(2.1)

where EX , ET , EY are exogenous variables, which are independent from other mod-

els’ variable, and are determined outside the model.

Structural equation is defined as an order triple ⟨U ,V , E⟩ where:

• U : is a set of exogenous variables which are independent from other models’

variable, and is determined outside the model. Take for instance, the degree

of temperature and moisture is exogenous to the causal model including the

crop yield and farming.

• V : is a set of endogenous variables which can be changed and determined

by other variables within the model. A good case in point is the price in the

supply and demand model, since this feature is dependent on both the supplier

and consumer demand.

• F : is a set of structural equations such that

vi = fi(PA(vi), ui) (2.2)

with vi ∈ V , ui ∈ U and PA(vi) illustrating the set of endogenous parent of vi

Potential outcome framework is proposed by Neyman and Rubin (Rubin

1974). Considering binary treatments for a set of units, there are two possible out-

comes for each unit. The unit will be assigned to the control treatment if T = 0, or
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to the treated treatment if T = 1. As a result, we denote two potential outcomes Y0

and Y1 as the results caused by T = 0 and T = 1, respectively. Importantly, only one

potential outcome is observed corresponds to the assigned treatment T , and we call

this as the observed (factual) outcome Y . The unobserved potential outcome refers

to the counterfactual outcome. Given the treatment Ti, the relationship between

the observed outcome Y and two potential outcomes are

Yi = TiY1 + (1− Ti)Y0 (2.3)

2.2.3 Treatment Effect Metric

With the key concepts and causal models, the treatment effect can be measured

at the population, treated group, subgroup, and individual level. For simplicity,

we discuss the treatment effect under the binary treatment, and it can be easily

extended to multiple treatments by considering multiple potential outcomes.

The individual treatment effect (ITE) is defined as the change of Y0 and Y1,

while keeping the covariates X unchanged (i.e., condition on those covariates). For

an instance i with covariates Xi, its corresponding ITE is

ITE(X i) = E[Y1|Xi]− E[Y0|Xi] (2.4)

As only one potential outcome is observed, it is nearly impossible to estimate the

effect at the individual level. A more feasible way is to measure treatment effect at

the average level.

The average treatment effect (ATE) measures the treatment effect at the whole

population level as

ATE = E[Y1 − Y0] (2.5)

The average treatment effect (ATT) is for the group of instances with the treat-

ment equal to 1, i.e., the treated group.

ATT = E[Y1 − Y0|T = 1] (2.6)
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Conditional average treatment effect (CATE) known as heterogeneous treatment

effect is defined on the subgroup with the particular covariate X = x.

CATE = E[Y1 − Y0|X = x] (2.7)

2.2.4 Tools for Causal Analysis

Several libraries or tools are available for causal inference. Examples includ-

ing Double Machine Learning (Chernozhukov et al. 2016), Meta-learners (Künzel

et al.), Orthogonal Learning (Oprescu et al. 2018; Foster and Syrgkanis 2019) have

been supported by EconML, CausalML, DoWhy and CausalNex, whereas causal

discovery methods including graph inference and pairwise inference are provided

in Causal Discovery Toolbox. Meanwhile, TIGRAMITE is a novel framework for

causal discovery in time series.

2.3 Interpretable machine learning with causality

Pearl (Pearl and Mackenzie 2018) argues that causal reasoning is indispensable

for machine learning to reach the human-level artificial intelligence, since it is the ba-

sic mechanism of human to be aware of the world. As a result, causal methodology is

gradually becoming a vitally important component in explainable and interpretable

machine learning. However, most of current interpretability techniques pay attention

to solving the correlation statistic rather than the causation. Therefore, the causal

approaches should be emphasized to achieve a higher degree of interpretability.

2.3.1 Model-Agnostic Causality for Deep Neural Neworks

The traditional way to analyze Deep Neural Network is to build several models

with different architectures and make a comparison between their performances.

The problem is that re-training DNNs is computationally expensive, and infeasible

when it comes to the complicated architecture. Inspired by causal model, several

methods have been proposed to interpret neural network model.

Chattopadhyay et al. (Chattopadhyay et al. 2019) define ACEy
do(xi=α)

as the

causal attribution of neuron xi to the output neuron yi, and E[y|do(xi = α)] as
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the interventional expectation Eq. (2.8). The polynomial function is selected to

estimate this value.

E[y|do(xi = α)] =

∫
yp(y|do(xi = α))dy (2.8)

Narendra et al. (Narendra et al. 2018) propose to construct a modified structural

causal model as an abstraction of a DNN to make an reasoning over its elements.

Thereafter, they rank each component based on their contribution to the final pre-

diction for evaluation.

Based on TCAV (Kim et al. 2017) which generates a high-level concept-based

explanation such as gender, race, background, others, the study in (Goyal et al.

2020) evaluates the causal concept effect on a neural network prediction. They

overcome the problem of do-operator by using Variational AutoEncoder (VAE).

Regarding Generative Adversarial Networks (GANs) interpretability, Bau et

al. (Bau et al. 2018) proposes an approach for visualization and understanding at

unit-, object-, and scene- level by estimating the causal effect of the models’ inter-

pretable components. There are two main steps in their approach: dissection and

intervention. In the dissection step, the classes with the explicit representation are

firstly identified. Thereafter, they make an intervention by forcing the units to be

appeared and disappeared, and calculate its causal effect. Meanwhile, the authors

(Besserve et al. 2020) propose a causal framework to explore the intervention ef-

fect for proving that the components in images generated by GAN can be modified

independently.

In terms of reinforcement learning, action influence model (Madumal et al. 2019)

is introduced for explaining the behavior of RL agents. They construct a modified

structural causal model, learn the causal equation as the regression model during

training the agent, and finally generate the contrastive explanation to answer the

counterfactual question ”Why does the agent choose action A instead of action B?”.



18

2.3.2 Post-hoc Interpretability

Model-Agnostic explanations are particular challenging when the models’ pa-

rameters have more complex relationships. To further aid the intepretability, the

practitioners propose a variety of post-hoc interpretability methods to exploit what

a trained model has learned, without changing the underlying model. Most widely

useful post-hoc interpretation methods fall into two main categories: causal feature

learning and counterfactual explanations, respectively.

Casual Feature Learning

Recent work on feature learning derives the subset of features that have causal

contributions to the models’ prediction. Early causal feature learning is to find the

Markov Blanket (MB) containing a set of features which makes the target (T) inde-

pendent from other features given MB(T). In the study (Cawley 2008), the authors

firstly use the HITON algorithm (Aliferis et al. 2003) to derive the Markov Blan-

ket, and thereafter deploy Max-Min Hill-Climbing (MMHC) algorithm to identify

the causes and effects of the target variable. Given the number of transfer learn-

ing tasks D, Peters et al. (Peters et al. 2015) assume that there exists a subset of

features XS∗ such that the conditional distribution Yk|XS∗ is the same for different

tasks k, and other settings Eq. (2.9). They propose an algorithm called subset

search which samples the subset features, and then adopt the Levene test to assess

the assumption.

Yk|Xk
S∗ ≈ Y ′k|Xk′

S∗ ∀k, k′ ∈ 1, ..., D (2.9)

CXPlain (Schwab and Karlen 2019a) is the causal framework that can explain

more complex machine learning models by estimating the feature importance. Granger-

causal objective is introduced to quantify how much the exclusion of a single feature

reduces model performance. Particularly, CXPlain trains a separate explanation

model to any predictor f by optimizing a Granger-causal objective. CXPlain can

also estimate the uncertainty of features importance by calculating confidence in-

terval (CI).
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Counterfactual Explanation

Counterfactual explanation is the example-based model-agnostic method which

generates new instances that would change the models’ prediction. The prominent

example (Grath et al. 2018) in this research is that one person x with the annual

income a and the current balance b has been rejected a loan by the financial insti-

tution, so how she/he can change her/his income and balance to a′ and b′ in order

to receive the loan. Given the set of points P , in order to generate the set of coun-

terfactual samples F , the objective function of counterfactual explanation (Wachter

et al. 2018) is to optimize the following function:

arg min
x

max
λ

(λ · (f̂(x′)− y′)2 + d(x, x′))

d(xi, x
′) =

∑
k∈F

| xk − x′k |
MADk

MADk = median
(j∈P)

(|Xj,k −median
(l∈P)

(Xl,k)|)

(2.10)

where x is an original instance, x′ is the counterfactual instance which close to x,

y′ is the target class label for x′, λ is the regularized parameter, d(x, x′) denotes

the distance between the original instance and the counterfactual samples, MADk

is the median absolute deviation for feature k.

Grath et al. (Grath et al. 2018) extend d(x, x′) in Eq. (2.10) by adding a weight

vector Θ. The vector Θ is used to evaluate models’ feature importance, and can

be obtained by many algorithms such as K-Nearest Neighbors or global feature

evaluation. Dhurandhar et al. (Dhurandhar et al. 2018) combine the loss func-

tion generated from Convolutional AutoEncoder, while Arnaud (Van Looveren and

Klaise 2020) uses the prototypes function to ensure that the generated perturba-

tion falls into the same distribution with the original data as well as increasing the

computational speed without tuning too many parameters. Additionally, the coun-

terfactual samples should be as diverse as possible; the study (Mothilal et al. 2020a)

proposes to use determinant of kernel matrix to illustrate this property.

To empower the capability of counterfactual explanations, constraints are con-

sidered in optimization problem of counterfactual explanation. Take for example, a
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person cannot decrease his age, or change his race and skin color. Recent work (Us-

tun et al. 2019; Russell 2019a) adopt Mixed Integer Programming (MIP) formula-

tion to deal with categorical, numeric and mixed data type. Meanwhile, Artelt et

al. (Artelt and Hammer 2020) propose convex density constraints to generate coun-

terfactual located in a region of the data space. Specifically, the density constraint

p̂y ≥ δ denoted by a kernel density estimator or a Gaussian mixture model is added

into the distance function d(x, x′).

CERTIFAI (Sharma et al. 2019) proposed by Sharma et al. as a novel and flexible

approach which can be used in any type of data. CERTIFAI uses the customized

genetic algorithm to choose individuals that have the best fitness scores defined as

follows.

fitness =
1

d(x, x′)

d(x, x′) =


nx′on
n
l1(x,x

′) + ncat
n
simp(x,x′) tabular data

1
SSIM(x,x′)

image data

(2.11)

For tabular data, CERTIFAI chooses l1 norm for continuous features and a simple

matching distance for categorical features (simp). For image data, Structural Sim-

ilarity Index Measure (SSIM) (Zhou Wang et al. 2004) measures the similarity of

what humans consider. ncon and ncat are the number of continuous features and

categorical features, respectively.

Instead of identifying the minimum changes leading to the desired outcome,

a new line of counterfactual explanations provides feasible paths to transform a

selected instance into one that meets a certain goal. FACE (Poyiadzi et al. 2020)

proposed by Poyiadzi et al. constructs a graph over the data points with the weights

illustrating the feasible degree to transit between two vertices. FACE thereafter can

be solved by the Disjstra algorithm to find the shortest path from the original

instance to the counterfactual one.
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2.3.3 Visualization of Causal Effect

Visualization-based method is another commonplace approach for quick under-

standing what the models have learned. Partial dependence plot (PDP) (Goldstein

et al. 2015) depicts the marginal effect of features into the predicted outcomes. The

partial dependence function is defined as:

f̂xS(xS) = ExC

[
f̂(xS, xC)

]
=

∫
f̂(xS, xC)p(xC)dxC (2.12)

Zhao et al.(Zhao and Hastie 2019) use Partial dependence plot (PDP) an its

extension called Individual Conditional Expectation (ICE) to extract the causal in-

formation from machine learning model. These visualization tools allow to measure

the predictions’ change after making an intervention, which can help to discover the

features’ causal relationship.

2.4 Evaluation

Evaluation in causal interpretability is an extremely difficult task, at least in the

current stage, since there are nearly no grouthtruth data to evaluate the methods’

performance. Evaluation for traditional interpretable machine learning evaluation

can be classified into three categories (Doshi-Velez and Kim 2017): application-

based, human-based and function-based. We apply the same category and focus on

evaluations that can be used in causal interpretability.

2.4.1 Application-based

In real-world scenario where the machine learning model is deployed to assist

experts, application-based evaluation illustrates how well the models provide expla-

nations to human experts for improving their performance in specific tasks. Take

for example, a randomized experiment (Williams et al. 2016) is conducted among a

group of learner to solve the problems. They then rate the explanation generated

by the machine learning models. With the assistance of models, the performance of

people in different tasks is proved to be improved.
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2.4.2 Human-based

Human-based evaluation methods refer to evaluate the performance of inter-

pretable models with the assistance of human. Madumal et al. (Madumal et al.

2019) generate explanation for the reinforcement learning. They implement an RL

agent, and conduct an experiment running on StarCraft II, a strategic game, with

120 participants. Explanation Satisfactory Scale (Hoffman et al. 2018) is defined

as the degree of human understanding of the AI system to measure the quality of

generated explanations.

2.4.3 Function-based

Functional-based evaluation methods can be carried out without the assistance

of human to evaluate the performance of the explanation model. There are some

evaluation procedures for different techniques in Section IV:

Causal Interpretability for DNN

The lack of ground truth for feature effect makes it challenging to evaluate the

performance of causal effect estimation. Chattopadhyay et al. (Chattopadhyay

et al. 2019) compare the salient map (Kadir and Brady 2001) generated by causal

attribution method with Integrated Gradient (Sundararajan et al. 2017). Harradon

etc al. (Harradon et al. 2018) identify the components having the significant causal

effects into the individual prediction. Specifically, they conduct the experiments in

three different architectures VGG 19 in Birds200, VGG 16 and 6-layer cov network

applied in Inria dataset. Thereafter, they make a query for individual input, and

then visualize top k variables according to their causal effect.

Counterfactual Explanations

A previous research (Mothilal et al. 2020a) suggests that there are three main

metrics to evaluate the counterfactual explanation: proximity, diversity and sparsity.

The proximity is to reflect the similarity between the CF examples and the original

one which was calculated as the mean proximity all over the examples. Meanwhile,
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the diversity measures the mean of the distances between the pairs of samples,

ensuring that the generated instances should be as diverse as possible. Finally, the

sparsity is the average number of changes converting CF examples to the original

one.

proximity =
−1

k

k∑
i=1

dist(xcfi , x)

diversity =
1

Ck
2

k−1∑
i=1

k∑
j=i+1

dist(xcfi , xcfj)

sparsity = 1− 1

k · d
k∑
i=1

d∑
l=1

1[xlcfi ̸≡ xli]

(2.13)

with xcf and x are the counterfactual samples and original instance, respectively,

dist(xcfi , xcfj) illustrates the distance between two generated counterfactual in-

stances, d is the number of input features, k is the number of counterfactual samples

to be generated.

2.5 Open questions and discussions

The need of explaining and interpreting models becomes highly critical along

with the growing popularity of deep learning and automated machine learning. Al-

though, there are currently several studies in this field, several open problems still

remain unresolved.

1) Counterfactual explanation in classification tasks. There are a plethora of con-

straints, especially features’ causal relationship, should be taken into consideration

when adopting counterfactual explanation. Take for example, the counterfactual

explanation cannot recommend the users to change sensitive and discriminative fea-

tures such as race and gender in order to be accepted by the system. Therefore, its

reasonability and feasibility should be discovered and investigated more strictly.

2) Counterfactual explanation in recommendation system and time series data.

Although recommendation system gains the immense popularity these days, there

are not many studies working on counterfactual explanation for such system. How

we can make an intervention into human actions to enable the system to change
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their recommended items still remains an open question. Meanwhile, regarding

time series data, it is also interesting to discover that what the model would change

its prediction if we change something in the past.

3) Causal reasoning in knowledge graph. Knowledge graph is recently utilized

as an effective tool in several tasks such as recommendation system, knowledge ex-

traction, classification, etc. Instead of embedding the knowledge graph as the latent

features, Xian et al. (Xian et al. 2019) state that the true intelligent recommenda-

tion systems have to own the ability to recommend their items based on their causal

reasoning.

4) Explanation understandable by non-experts. A number of recent methods

frequently provide the explanations to experts and researchers rather than the end-

users. Therefore, another challenge is to generate explanation under the form such

as rules, natural language, images, etc which can allow nonprofessional people to

catch up with machine learning model behaviors.

2.6 Conclusion

Interpretable machine learning is expected to become a mainstream topic in

the foreseeable future. This paper provides the desiderata and brief overview of

causal inference, followed by the causality based interpretable machine learning. We

present two main causal approaches for interpretable machine learning including fea-

ture importance estimation, causal effects of model components, and counterfactual

explanation. Finally, we has discussed several potentially unresolved problems in

this field which open opportunities for researchers to work in.

In machine learning, the more data the better. However, in causal inference,

the more data alone is not yet enough. Having more data only helps to get more

precise estimates, but it cannot make sure these estimates are correct and unbiased.

Machine learning methods enhance the development of causal inference, meanwhile,

causal inference also helps machine learning methods. The simple pursuit of predic-

tive accuracy is insufficient for modern machine learning research, and correctness

and interpretability are also the targets of machine learning methods. Causal infer-
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ence is starting to help to improve machine learning, such as recommender systems

or reinforcement learning.
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Part II

Causal inference
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Part II investigates the realm of causal inference in machine learning. Chap-

ter 3 starts by digging deep into causal inference, explaining the basic ideas of

potential outcome frameworks. This chapter discovers the concepts of causality,

counterfactuals, and identification within the domain of Structural Causal Models

(SCMs). Additionally, we introduce a groundbreaking approach for estimating Av-

erage Treatment Effects (ATEs) by harnessing the power of stochastic propensity

scores. This method stands poised to address the limitations observed in existing

techniques applied to estimate ATEs. On the other hand, Chapter 4 builds upon

the solid foundation laid in Chapter 3, extending the methodology to encompass

reinforcement learning alongside stochastic propensity scores for policy optimiza-

tion. This extension marks a significant stride towards a deeper understanding and

application of causal inference principles in the field of machine learning.
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Chapter 3

Stochastic Intervention for Causal Effect

Estimation

Causal inference methods are widely applied in various decision-making domains

such as precision medicine, optimal policy and economics. Central to these applica-

tions is the treatment effect estimation of intervention strategies. Current estimation

methods are mostly restricted to the deterministic treatment, which however, is un-

able to address the stochastic space treatment policies. Moreover, previous methods

can only make binary yes-or-no decisions based on the treatment effect, lacking the

capability of providing fine-grained effect estimation degree to explain the process of

decision making. In this chapter, we therefore advance the causal inference research

to estimate stochastic intervention effect by devising a new stochastic propensity

score and stochastic intervention effect estimator (SIE). Meanwhile, we design a

customized genetic algorithm specific to stochastic intervention effect (Ge-SIO) with

the aim of providing causal evidence for decision making. We provide the theoreti-

cal analysis and conduct an empirical study to justify that our proposed measures

and algorithms can achieve a significant performance lift in comparison with state-

of-the-art baselines. The majority of the content in this chapter is based on the

following paper:

• Duong, T. D., Li, Q., & Xu, G. (2021, July). Stochastic intervention for

causal effect estimation. In 2021 International Joint Conference on Neural

Networks IJCNN (pp. 1-8). IEEE (IJCNN 2021, CORE A).

3.1 Introduction

Causal inference increasingly plays a vitally important role in a wide range of

fields including online marketing, precision medicine, political science, etc. For ex-
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ample, a typical concern in precision medicine is whether an alternative medication

treatment for a certain illness will lead to a better outcome ∗. Treatment effect esti-

mation can answer this question by comparing outcomes under different treatments.

Estimating treatment effect is challenging, because only the factual outcome for

a specific treatment assignment (say, treatment A) is observable, while the counter-

factual outcome corresponding to alternative treatment B is usually unknown. Aim-

ing at deriving the absent counterfactual outcomes, existing causal inference from

observations methods can be categorized into these main branches: re-weighting

methods (Gruber and Van der Laan 2011; Austin and Stuart 2015), tree-based

methods (Chipman et al. 2007; Hill 2011; Wager and Athey 2018), matching meth-

ods (Rosenbaum and Rubin 1983; Dehejia and Wahba 2002; Stuart et al. 2011) and

doubly robust learners (Research 2019; Dud́ık et al. 2011). In general, the match-

ing approaches focus on finding comparable pairs based on distance metrics such as

propensity score or Euclidean distance, while re-weighting methods assign each unit

in the population a weight to equate groups based on the covariates. Meanwhile,

tree-based machine learning models including decision tree or random forest are

utilized in the tree-based approach to derive the counterfactual outcomes. Doubly

Robust Learner is another recently developed approach that combines the propen-

sity score weighting with the regression outcome to produce an unbiased and robust

estimator.

Existing treatment effect estimation from observational data faces two major

challenges. First, most of previous studies focus on the deterministic intervention

which sets each individual a fixed treatment value, incapable of dealing with dy-

namic and stochastic intervention (Dud́ık et al. 2014; Pearl et al. 2000; Tian 2008).

They can not address the question like “how the health status changes (the desired

outcome) for the patient if the doctor adopts 50% dose reduction in the patient”,

which might be of practical interest in real world. Second, existing methods fail in

exploiting the relationships between the desired response and the intervention on

∗Treatment and outcome are terms in the theory of causal inference, which for example denote

a promotion strategy taken and its resulting profit, respectively
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the treatment, resulting in black-box effect estimation.

To address these issues, we propose a novel influence function based model to pro-

vide sufficient causal evidence to answer decision-making questions about stochastic

interventions. Particularly, our model consists of three novel components: stochas-

tic propensity score, stochastic intervention effect estimator (SIE) and customized

genetic algorithm for stochastic intervention optimization (Ge-SIO). The main con-

tributions of our model are summarized below:

• We propose a new stochastic propensity score learning the treatment effect

trajectory, which tackles the limitation of existing approaches only dealing

with deterministic intervention effects.

• Based on the general efficiency theory, we provide theoretical proof that SIE

can achieve fast parametric convergence rates when the potential outcome

model can not be perfectly estimated.

• Ge-SIO is proposed to find the optimal intervention leading to the desired

response, which can be widely applicable in domain-specific decision-making.

3.2 Related Works

Conventionally, causal inference can be trickled by either the randomized ex-

periment (also known as A/B testing in online settings) or observational data. In

randomized experiment, units are randomly assigned to a treatment and their re-

sponses are recorded. One treatment is selected as the best among the alternatives

by comparing the predefined statistical criteria. While randomized experiments have

been popular in traditional causal inference, it is prohibitively expensive (Chan et al.

2010; Kohavi and Longbotham 2011) and infeasible (Bottou et al. 2013) in some real-

world settings (Li et al. 2017; Wang et al. 2019; Xu et al. 2020). As an alternative

method, observational study is becoming increasingly critical and available in many

domains such as medicine, public policy and advertising. However, observational

study needs to deal with data absence problem, which differs fundamentally from

supervised learning (). This is simply because only the factual outcome (symptom)
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for a specific treatment assignment (say, treatment A) is observable, while the coun-

terfactual outcome corresponding to alternative treatment B in the same situation

is always unknown.

3.2.1 Treatment Effect Estimation

The simplest way to estimate treatment effect in observational data is the match-

ing method that finds the comparable units in the treated and controlled groups. The

prominent matching methods include Propensity Score Matching (PSM) (Rosen-

baum and Rubin 1983; Dehejia and Wahba 2002) and Nearest Neightbor Matching

(NNM) (Stuart et al. 2011). Particularly, for each treated individual, PSM and NNM

select the nearest units in the controlled group based on some distance functions,

and then calculate the difference between two paired outcomes. Another popular

approach is reweighting method that involves in building a classifier model to es-

timate the probability of a treatment assigned to a particular unit, and uses the

predicted score as the weight for each unit in dataset. TMLE (Gruber and Van der

Laan 2011) and IPSW (Austin and Stuart 2015) fall into this category. Ordinary

Linear Regression (OLS) (Goldberger et al. 1964) is another commonplace method

that fits two linear regression models for the treated and controlled group, with

each treatment as the input features, and the outcome as the output. The predicted

counterfactual outcomes thereafter are used to calculate the treatment effect. Mean-

while, decision tree is a popular non-parametric machine learning model, attempting

to build the decision rules for the regression and classification tasks. Bayesian Ad-

ditive Regression Trees (BART) (Chipman et al. 2007; Hill 2011) and Causal Forest

(Wager and Athey 2018) are the prominent tree-based method in causal inference.

While BART (Chipman et al. 2007; Hill 2011) builds the decision tree for the treated

and controlled units, Causal Forest (Wager and Athey 2018) constructs the Ran-

dom Forest model to derive the counterfactual outcomes, and then calculates the

difference between the paired potential outcomes to obtain the average treatment

effect. They are proven to obtain the more accurate treatment effect than matching

methods and reweighting methods in the non-linear outcome setting.

Doubly Robust Learner (Research 2019; Dud́ık et al. 2011) is the recently pro-
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posed approach that constructs a regression estimator predicting the outcome based

on the covariates and treatment, and builds a classifier model to fit the treatment.

DRL finally combines the both predicted propensity score and predicted outcome

to estimate treatment effect.

3.2.2 Stochastic Intervention Optimization

Our work connects to the uplift modelling which optimizes the treatment ef-

fect by uplifting the expected response under the treatment policy (Zaniewicz and

Jaroszewicz 2013; Alemi et al. 2009; Hansotia and Rukstales 2002; Manahan 2005).

Uplift modelling measures the effectiveness of a treatment and then predicts the

corresponding expected response. The most popular and widely-used approach is

Separate Model Approach (SMA) (Zaniewicz and Jaroszewicz 2013; Alemi et al.

2009) which builds two different regression models. The first one uses treated unit

data, whilst another works the controlled unit data. Several state-of-the-art machine

learning models such as Random Forest, Gradient Boosting Regression or Adaboost

can be used to construct the predictive model (Liaw et al. 2002; Solomatine and

Shrestha 2004; Friedman 2001). The predicted responses are then calculated, and

the optimal treatments are selected as the result. SMA has been widely applied

in marketing (Hansotia and Rukstales 2002) and customer segmentation (Mana-

han 2005). However, when dealing with the data containing a great deal of noisy

and missing information, the model outcomes are prone to be incorrect and biased,

which leads to the poor performance. Other commonplace methods include Class

Transformation Model (Jaskowski and Jaroszewicz 2012) and Uplift Random Forest

(Guelman and Guelman 2014) that build the classification model for each outcome

in the dataset. These techniques therefore can only handle the categorical outcomes,

instead the continuous ones.
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3.3 Preliminaries and Problem Definition

3.3.1 Notation

In this study, we consider the observational dataset Z = {xi, yi, ti}ni=1 with n

units, where x ∈ Rn×d is the d-dimensional covariate, y and t ∈ {0, 1} are the

outcome and the treatment for the unit, respectively. The treatment variable is

binary in many cases, thus the unit will be assigned to the control treatment if

t = 0, or the treated treatment if t = 1. Accordingly, y0(x) and y1(x) are profit

accrued from customer i corresponding to either the controlled or treated group. The

central goal of causal inference is to compare the potential outcomes of the same

units under two or more treatment conditions, which is implemented by computing

the average treatment effect (ATE), i.e.,

τATE = E[y0(x)− y1(x)] (3.1)

3.3.2 Propensity Score

Rosenbaum and Rubin

In practice, one widely-adopted parametric model for propensity score pt(x) is

the logistic regression

p̂t(x) =
1

1 + exp (w⊤x + ω0)
(3.2)

where w and ω0 are estimated by minimizing the negative log-likelihood

3.3.3 Assumption

Following the general practice in causal inference literature, the following two

assumptions should be taken into consideration to ensure the identifiability of the

treatment effect, i.e. Positivity and Ignorability.

Assumption 3.1 (Positivity). . Each unit has a positive probability to be assigned

by a treatment, i.e.,

pt(x) > 0, ∀x and t (3.3)
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Assumption 3.2 (Ignorability). The assignment to the treatment t is independent

of the outcomes y given covariates x

y1, y0t|x (3.4)

3.4 Stochastic Intervention Effect

The stochastic intervention effect can be expressed by the difference between the

observed outcome and the counterfactual outcome under the stochastic intervention.

Because the observed outcome is fixed, stochastic intervention effect estimation is

transformed as the problem of estimating the counterfactual outcome.

3.4.1 Stochastic Counterfactual Outcome

To estimate the counterfactual outcome, we first propose a flexible and task-

specific stochastic propensity score to characterize the stochastic intervention.

Definition 3.1 (Stochastic Propensity Score). The stochastic propensity score with

respect to stochastic degree δ is

qt(x, δ) =
δ · p̂t(x)

δ · p̂t(x) + 1− p̂t(x)
(3.5)

where p̂t(x) is denoted by

p̂t(x) =
exp

(∑s
j=1 βjgj (x)

)
1 + exp

(∑s
j=1 βjgj (x)

) (3.6)

where {g1, · · · , gs} are nonlinear basis functions.

The proposed stochastic propensity score in Definition 4.1 has two promising

properties compared with (4.3). On the one hand, propensity score (4.3) fails to

quantify the causal effect under stochastic intervention. So we introduce δ in (4.6)

to represent the stochastic intervention indicating the extent to which the propen-

sity scores are fluctuated from their actual observational values. For instance, the

stochastic intervention that the doctor adopts 50% dose increase in the patient can

be expressed by δ = 1.5.
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On the other hand, the linear term w⊤x + ω0 in Eq. (4.3) may lead to misspec-

ification

On the basis of the stochastic propensity score, we propose an influence function

specific to estimate counterfactual outcome under stochastic intervention. Mean-

while, we also analyze the asymptotic behavior of the counterfactual outcome with

theoretical guarantees. We prove that our influence function can achieve double

robustness and fast parametric convergence rates.

Theorem 3.1. With the stochastic intervention of degree δ on observed data z =

(x, y, t), we have

φ(z, δ) = qt(x, δ) ·m1(x, y) + (1− qt(x, δ)) ·m0(x, y) (3.7)

being the efficient influence function for the resulting counterfactual outcome ψ̂, i.e.,

ψ̂ = Pn [φ(z, δ)] (3.8)

where m1(x, y) or m0(x, y) is given by

mt(x, y) =
It · (y − µ̂(x, t))

t · p̂t(x) + (1− t)(1− p̂t(x))
+ µ̂(x, t) (3.9)

and It is an indicator function, p̂t is the estimated propensity score in Eq. (4.7) and

µ̂ is potential outcomes model that can be fitted by machine learning methods.

Proof. Throughout we assume the observed data quantity ψ can be estimated under

the positivity assumption from Section 4.3.3. For the unknown ground-truth ψ(δ),

we will prove φ is the influence function of ψ(δ) in Eq. (4.9) by checking∫
ψ̂(y, x, t,P)dP =

∫
(φ(y, x, t, δ)− ψ) dP = 0 (3.10)

Eq. (4.11) indicates that the uncentered influence function φ is unbiased for ψ. Given

qt(x, δ) as the stochastic propensity score in Eq. (4.6), we check the property (4.11)
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by ∫
(φ(y, x, t, δ)− ψ) dP

=

∫
{qt ·m1(x, y) + (1− qt)m0(x, y)− ψ(δ)} dP(y, x, t, δ)

=

∫
{qt

It=1 · (y − µ̂(x, 1))
p̂t

+ (1− qt)
It=0 · (y − µ̂(x, 0))

1− p̂t
+ qtµ̂(x, 1) + (1− qt)µ̂(x, 0)− ψ(δ)}dP(y, x, t, δ)

=

∫
{qt

It=1 · (y − µ̂(x, 1))
p̂t

+ (1− qt)
It=0 · (y − µ̂(x, 0))

1− p̂t
+ qtµ̂(x, 1) + (1− qt)µ̂(x, 0)− E[qtµ̂(x, 1)

+ (1− qt)µ̂(x, 0)]}dP(y, x, t, δ)
(1)
=

∫ {
qt

It=1 · (y − µ̂(x, 1))
p̂t

}
dP(y, x, t, δ)

+

∫ {
(1− qt)

It=0 · (y − µ̂(x, 0))
1− p̂t

}
dP(y, x, t, δ)

=

∫ {
qt

It=1 · y
p̂t

+ (1− qt)
It=0 · y
1− p̂t

}
dP(y, x, t, δ)

−
∫ {

qt
It=1 · µ̂(x, 1)

p̂t
− (1− qt)

It=0 · ˆ̂µ(x, 0)
1− p̂t

}
dP(x, t, δ)

(2)
= 0

The second equation (1) follows from the iterated expectation, and the second equa-

tion (2) follows from the definition of µ̂(x, t) and the usual properties of conditional

distribution dP(x, y, δ) = dP(y|x, δ)dP(x, δ). So far we have proved that φ is the

influence function of average treatment effect ψ(δ). We have proved that the uncen-

tered efficient influence function can be used to construct unbiased semiparametric

estimator for ψ(δ), i.e., that
∫
φP = ψ.

3.5 Stochastic Intervention Optimization

Estimating the stochastic intervention effect is not enough, we are more inter-

ested in “what is the optimal level/degree of treatment for a patient to achieve

the most expected outcome?”. In this section, we apply influence-based estima-

tor to search for the optimal intervention that achieves the optimal expected re-

sponse over the whole population. We model the stochastic intervention using the
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Algorithm 3.1: SIE: Stochastic Intervention Effect

Input: Observed units {zi : (xi, ti, yi)}ni=1

1: Initialize a stochastic degree δ.

2: Randomly split Z into k disjoint groups

3: while each group do

4: Fit the propensity score p̂t(xi) by Eq. (4.7)

5: Fit the potential outcome model µ̂(xi, ti)

6: Compute τi = p̂t(xi)µ̂(xi, 1) + (1− p̂t(xi)) µ̂(xi, 0)
7: Calculate qt(xi; δ) by Eq. (4.6)

8: Calculate m1(xi) and m0(xi) by Eq. (4.10)

9: Calculate the influence function φ(zi, δ) by Eq. (4.9).

10: end while

11: Compute τ̂ATE = 1
n

∑n
i=1 τi

12: Compute τ̂SIE = 1
n

∑n
i=1(φ(zi, δ)− yi)

Output: stochastic intervention effect τSIE, ATE τATE

stochastic propensity score q̂t(x, δ), and look for a set of stochastic interventions

∆ = {δ∗1, · · · , δ∗n} where the i-th intervention δ∗i ∈ ∆ maximizes the expected re-

sponse specific to i-th unit zi = (xi, yi, ti), denoted by φ(zi, δi):

δ∗i = arg max
δi

φ(zi, δi) (3.11)

Note that the optimization problem in Eq. (4.18) is non-differentiable. To avoid

using further assumptions for solving it, we formulate a customised genetic algorithm

For stochastic intervention optimization, each candidate solution is described

by the n-dimensional intervention ∆ (the “genes”) and the objective values of the

candidates are evaluated by Eq (4.18). Usually, a random population of solutions

is initialized, which undergoes through the process of evolution to obtain the better

fitness function until the stopping condition is reached. Specifically, Ge-SIO first se-

lects m solutions as the population of parents based on their fitness values. Among
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the selected parent solutions, m solutions are chosen pairwise with the uniform dis-

tribution to produce children, which is called crossover process. The n-dimensional

∆ are recombined by the simulated binary crossover recombinator. Crossover takes

m selected parents and combines them, for the sake of diversity to the solutions.

The children, which constitute solutions, are modified by the mutation operator.

Mutation has a small chance to change ∆, which may create more fitter solutions.

Thus, the Ge-SIO first generates children by crossover and modifies them by muta-

tion thereafter. After the process of evolution is done, the fittest ∆ is returned as

the optimal solution to the desired expected response ψ̂. We run it with the number

of generations to repeat the above process so as to find the optimal solution. The

full stochastic intervention optimization algorithm is shown in Algorithm 4.2.
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Algorithm 3.2: Ge-SIO: Stochastic Intervention Optimization

Input: Observed units {zi : (xi, ti, yi)}ni=1

1: Initialize a batch of population Γ = {∆1, · · · ,∆m} with ∆i ∼ N (µ,ν)

2: for G generation do

3: for k = 1, · · · ,m do

4: for i = 1, · · · , n do

5: Compute qt(x, δi) by Eq. (4.6)

6: Calculate m1(xi) and m0(xi) by Eq. (4.10)

7: Calculate φ(zi, δ) by Eq. (4.8).

8: end for

9: Compute k-th fitness Φ(∆k) =
∑n

i=1 φ(zi, δ)

10: end for

11: Select ∆1, · · · ,∆m ∈ Γ based on its fitness function

12: Randomly pair ⌈m/2⌉ {∆1,∆2} ∈ Γ

13: for each pair {∆1,∆2} do
14: Perform uniform crossover(∆1,∆2)→ ∆′1,∆

′
2

15: Perform uniform mutation ∆′1 → ∆̃1,∆
′
2 → ∆̃2

16: Update Γ by replacing {∆1,∆2} with {∆̃1, ∆̃2}
17: end for

18: end for

19: Choose ∆∗ = argmax∆∈Γ Φ(∆)

Output: ∆∗

3.6 Experiments and Results

In this section, we conduct intensive experiments and compare our methods

with state-of-the-art methods on two tasks: average treatment effect estimation and

stochastic intervention effect optimization. Recall that the influence-based estimator

φ depends on the nuisance function of propensity score pt and outcome µ. We first

perform average treatment effect estimation to confirm that p̂t and µ̂ are unbiased

and robust estimators. Moreover, the stochastic intervention optimization task is



40

carried out to demonstrate the effectiveness of our Ge-SIO, as well as investigate

the impact of stochastic parameter δ on the expected response.

3.6.1 Baselines

We briefly describe the comparison methods which are used in two tasks of

treatment effect estimation and stochastic intervention optimization.

Treatment effect estimation

We can not able to directly evaluate SIE on the estimation of stochastic in-

tervention effect, because no dataset with ground-truth stochastic counterfactual

outcome is available. On the contrary, the benchmark datasets having two potential

outcomes are available for ATE estimation. Therefore, we perform ATE estimation

to evaluate the robustness of p̂t and µ̂ thus to indirectly evaluate the performance

of SIE. We use Gradient Boosting Regression with 100 regressors for the potential

outcome models µ̂. We compare our proposed estimator (SIE) with the following

baselines including Doubly Robust Leaner

Stochastic Intervention Optimization

We compare our proposed method (Ge-SIO) with Separate Model Approach

(SMA) with different settings. SMA (Zaniewicz and Jaroszewicz 2013; Alemi et al.

2009) aims to build two separate regression models for the outcome prediction in

the treated and controlled group, respectively. Under the setting of SMA, we apply

four well-known models for predicting outcome including Random Forest (SMA-RF)

(So ltys et al. 2015; Grimmer et al. 2017), Gradient Boosting Regressor (SMA-GBR)

(Friedman 2001), Support Vector Regressor (SMA-SVR) (Zaniewicz and Jaroszewicz

2013), and AdaBoost (SMA-AB) (Solomatine and Shrestha 2004). We also compare

the performance of these models with the random policy to justify that optimization

algorithms can help to target the potential customers to generate greater revenue.

For the settings of SMA, we use Gradient Boosting Regressor with 1000 regressors,

AdaBoost Regression with 50 regressors, and Random Forest Tree Regressor with

100 trees.
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3.6.2 Datasets

IHDP (Hill 2011) is a standard semi-synthetic dataset used in the Infant Health

and Development Program, which is a popularly used semi-synthetic benchmark con-

taining both the factual and counterfactual outcomes. We conduct the experiment

on 100 simulations of IHDP dataset, in which each dataset is divided into training

and testing set. The training dataset is highly imbalanced with 139 treated and 608

controlled units out of total 747 units, respectively, whilst the testing dataset has

75 units. Each unit has 25 covariates representing the individuals’ characteristics.

The outcomes are their IQ scores at age 3 (Dorie 2016).

Online promotion dataset (OP Dataset) provided by EconML project (Research

2019) is chosen to evalute stochastic intervention optimization †. This dataset con-

sists of 10k records in online marketing scenario with the treatment of discount

price and the outcome of revenue, each represents a customer with 11 covariates.

We split the data into two part: 80% for training and 20% for testing set. We run

100 repeated experiments with different random states to ensure the model outcome

reliability. With this dataset, we aim to investigate how different price policies ap-

plied to different customers will result in the best generated revenue. We directly

model the revenue as the expected response for the uplift modelling algorithm.

3.6.3 Evaluation Metrics

In this section, we briefly describe the two evaluation metrics used for treatment

effect estimation and optimization. Based on Eq. (4.1), we define the metric for

evaluating the task of treatment effect estimation as the mean absolute error between

the estimated and true ATE:

ϵATE = |τ̂ATE − τATE| (3.12)

Moreover, the main performance metric in the task is the expected value of the

response under the proposed treatment, followed by the uplifting models study

†https://msalicedatapublic.blob.core.windows.net/datasets/Pricing/pricing_

sample.csv

https://msalicedatapublic.blob.core.windows.net/datasets/Pricing/pricing_sample.csv
https://msalicedatapublic.blob.core.windows.net/datasets/Pricing/pricing_sample.csv
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3.6.4 Results and Discussions

In this section, we aim to report the experimental results of 1) how our proposed

estimator (SIE) can accurately estimate the average treatment effect; 2) how our

optimization algorithm (Ge-SIO) can be used for finding optimal stochastic inter-

vention in online promotion application; and 3) how the impacts of data size and

stochastic degree are.

Treatment Effect Estimation

The results of ϵATE derived from IHDP dataset with 100 simulations and OP

dataset with 100 repeated experiments are presented in the Table 4.1 and Table 3.2,

respectively. As seen clearly, amongst all approaches, our proposed method SIE

achieves the best performance of the estimated ATE, while the Doubly Robust

Learner performs next satisfactorily. Particularly, on IHDP, SIE outperforms all

other methods in both training and testing set. In order to investigate the impact

of data size chosen on estimation, we also run experiments and plot the perfor-

mance of models in different data sizes in Figure ??. Notably, SIE consistently

produces the more accurate average treatment effect than others as the data size

increases. Causal Forest and Doubly Robust Learner also produce the very com-

petitive results, whereas the lowest performance belongs to IPWE. Turning to the

experimental results on online promotion dataset in Table 3.2, SIE also has an out-

standing performance consistently. Additionally, Doubly Robust Learner methods

are ranked second, while the competitive results are recorded with BART. It is also

worthy to note that although TMLE performs well in training set, its performance

likely degrades when dealing with out-of-sample data in testing set. Overall, these

results validate that our proposed SIE estimator proves to be effective and has an

outstanding performance in the small and highly imbalanced dataset (IHDP) as well

as in real-world application dataset (OP).

Stochastic Intervention Optimization

For the online promotion scenario, we model the revenue in dataset as the ex-

pected response of each customer under proposed treatment. Figure 4.2 presents
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Table 3.1 : ϵATE on 100 simulations of IHDP for training and testing (lower is better).

Method
IHDP Dataset (ϵATE ± std)

Train Test

OLS 0.746 ± 0.140 1.264 ± 0.250

BART 1.087 ± 0.120 2.808 ± 0.100

Causal Forest 0.360 ± 0.050 0.883 ± 0.614

TMLE 0.326 ± 0.060 0.831 ± 1.750

ForestDRLearner 1.044 ± 0.040 1.224 ± 0.080

LinearDRLearner 0.691 ± 0.080 0.797 ± 0.170

IPWE 1.701 ± 0.140 5.897 ± 0.300

SIE 0.284 ± 0.050 0.424 ± 0.090

Figure 3.1 : ϵATE on IHDP under different datasize

the revenue of uplifting modeling methods with different data sizes including 1000,

5000 and 10000 records. We set 100 generations for our Ge-SIO. Apparently, Ge-

SIO generally produces the greatest revenue in all three datasizes, while SMA-ABR

achieves the second-best performance with a very competitive result. Moreover,

there is no significant difference in the performance of SMA with different settings.

In contrast, the lowest revenue is generated by the random stochastic intervention
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Table 3.2 : ϵATE on OP dataset in 100 repeated experiments (lower is better).

Method
OP Dataset (ϵATE ± std)

Train Test

OLS 5.906 ± 0.004 5.907 ± 0.000

BART 0.504 ± 0.042 0.505 ± 0.043

Causal Forest 3.520 ± 0.034 3.520 ± 0.034

TMLE 0.660 ± 0.000 3.273 ± 0.000

ForestDRLearner 0.240 ± 0.014 0.241 ± 0.013

LinearDRLearner 0.139 ± 0.009 0.139 ± 0.008

IPWE 5.908 ± 0.004 5.908 ± 0.015

SIE 0.137 ± 0.000 0.119 ± 0.000

that fails to choose the target customers to provide the promotion. The possible

reason behind our proposed method’s outstanding performance is that instead of

getting the uplift signal like SMA, we directly intervene into the propensity score

to produce the best stochastic intervention. From the business view, this empha-

sizes the crucial importance of the stochastic intervention optimization in online

marketing campaign.

On the other hand, Figure 6.3 provides the information on the expected response

with the various stochastic degree δ in OP and IHDP dataset with 90% confidence

interval. More specifically, when increasing degree δ from 0 to 5, the expected

revenue also increases accordingly. The revenue thereafter reaches the highest point

and remains nearly stable when δ is greater than 5. Similarly, the expected IQ score

per children in the IHDP dataset also witnesses the same trend: the IQ score climbs

gradually as stochastic degree δ rises. The plot of the relationship between the

expected response and stochastic degree δ provides valuable insights into the degree

of intervention we should make to achieve the optimal stochastic intervention, which

can greatly facilitate the decision-making process.
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Figure 3.2 : Expected revenue per customer from OP dataset by different models

Figure 3.3 : (a) Expected revenue per customer from OP dataset with uniform 90%

confidence. (b) Expected IQ score per children from IHDP dataset with uniform 90%

confidence

3.7 Conclusion

Causal inference increasingly gains the attention from both academia and indus-

try as a powerful tool to deal with the scenario where people are not only interested

to know the treatment effect but also the optimal intervention for the expected re-

sponses (Wang et al. 2020; Yin et al. 2021). To extend causal inference to addressing

stochastic interventions, this paper focuses on the dynamic intervention that is not

discussed much in the recent study. In general, the contribution of this study is

twofold. Based on stochastic propensity score, we propose a novel stochastic in-

tervention effect estimator along with a customised genetic algorithm for stochastic

intervention optimization. Our method can learn the trajectory of the stochastic

intervention effect, providing causal insights for decision-making applications. The-

oretical and numerical results justify that our methods outperform state-of-the-art

baselines in both treatment effect estimation and stochastic intervention optimiza-

tion.
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Chapter 4

Stochastic Intervention for Causal Inference via

Reinforcement Learning

This chapter builds upon the insights gathered in Chapter 3, demonstrating how the

combination of stochastic propensity scores and reinforcement learning can effec-

tively optimize policy decisions. We construct a customised reinforcement learning

algorithm based on the random search solver which can effectively find the optimal

policy to produce the greatest expected outcomes for the decision-making process.

Finally, we conduct extensive empirical experiments to validate that our framework

can achieve superior performance in comparison with state-of-the-art baselines. The

content of the chapter is mainly from the paper:

• Duong, T. D., Li, Q., & Xu, G. (2022). Stochastic intervention for causal

inference via reinforcement learning. Neurocomputing, 482, 40-49 (Q1 Scor-

pus).

4.1 Introduction

Causal inference aims at estimating the causal effects of an intervention or treat-

ment on an outcome, which increasingly plays a vitally important role in scientific

investigations and real-world applications (Li et al. 2021a; Xu et al. 2020; Li et al.

2021b). A widely used example of the causal effect for binary treatment is that

the expectation of the outcome in a hypothetical world in which everybody receives

treatment is compared with their counterparts in a world where nobody does∗. Other

examples include “What is the effect of sleep deprivation on health outcomes?” and

∗Treatment and outcome are terms in the theory of causal inference, which for example denote

a promotion strategy taken and its resulting profit, respectively
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“How would family socio-economic status affect career prospects?”. Therefore, it is

of great interest to develop models that can correctly predict the optimal treatment

based on given subject characteristics. Treatment effect estimation can address this

by comparing outcomes under different treatments.

Estimating treatment effect is challenging, because only the factual outcome for a

specific treatment assignment (say, treatment A) is observable, while the counterfac-

tual outcome corresponding to alternative treatment B is usually unknown. Aiming

at deriving the absent counterfactual outcomes, existing causal inference from obser-

vations methods can be categorized into these main branches: re-weighting methods

(Gruber and van der Laan 2012; Austin and Stuart 2015), tree-based methods (Chip-

man et al. 2007; Hill 2011; Wager and Athey 2018), matching methods (Rosenbaum

and Rubin 1983; Dehejia and Wahba 2002; Stuart et al. 2011; Li et al. 2021d) and

doubly robust learners (Research 2019; Dud́ık et al. 2011). In general, re-weighting

methods assign each unit in the population a weight to balance groups based on the

covariates, while tree-based models employ decision tree or random forest to estimate

the counterfactual outcomes. Meanwhile, the matching approaches focus on find-

ing the comparable pairs based on distance metrics such as propensity score (Rubin

1974), Euclidean distance (Yao et al. 2018) or Hilbert norm (Li et al. 2021c). Doubly

Robust Learner is another recently developed approach that combines propensity

score weighting with the regression outcome to produce an unbiased and robust

estimator.

However, recent studies in treatment effect estimation mainly focus on the deter-

ministic intervention which sets each individual a deterministic treatment, incapable

of dealing with dynamic and stochastic intervention (Dud́ık et al. 2014; Pearl et al.

2000; Tian 2008). i.e., the treatment is deterministic. In many real-world appli-

cations, however, the effect of a stochastic intervention might be of interest. For

example, rather than “if we do not use the medicine treatment A for all units, what

is resulting in health status (the desired outcome)?”, the medical researcher is more

eager to know “how all units’ health status change if we adopt 50% dose reduction

in medicine treatment A”. In this case, the treatment variable is no longer determin-
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istic but a stochastic value, and traditional causal inference methods fail to capture

the stochastic intervention on the treatment variable.

To address these issues, we propose a novel influence function based model to pro-

vide sufficient causal evidence to answer decision-making questions about stochastic

interventions. Stochastic intervention estimation in our method can provide a fine-

grained treatment effect estimation to gradually quantify the effect of the stochastic

intervention on the outcomes. In addition, we exploit stochastic intervention op-

timization to customize stochastic intervention assignment, i.e., what is the best

degree of intervention on the treatment to achieve the desired outcome. The main

contributions of our work are summarized below:

• We propose a causal inference framework to learn the treatment effect under

the stochastic intervention, which tackles the limitation of existing approaches

only dealing with deterministic intervention effects. Particularly, our frame-

work introduces the concept of stochastic propensity score, and develops a

semi-parametric influence function to learn stochastic intervention effect.

• Based on the general efficiency theory, we theoretically analyze the asymp-

totic behavior of our semi-parametric influence function. We prove that our

influence function can achieve double robustness and fast parametric conver-

gence rates. We also empirically demonstrate the effectiveness of the proposed

influence function.

• Based on the stochastic treatment effect estimation, our framework is ca-

pable of customizing the stochastic intervention, with the goal of uplifting

desired outcomes on downstream decision-making applications. We formu-

late the stochastic intervention optimization as a derivative-free optimization

problem and design a random search solver to efficiently achieve the optimal

expected outcome.
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4.2 Related works

Conventionally, causal inference can be conducted by either the randomized ex-

periment (also known as A/B testing in online settings) or observational data (Duong

et al. 2021b,a). In randomized experiment, units are randomly assigned to a treat-

ment and their outcomes are recorded. One treatment is selected as the best among

the alternatives by comparing the predefined statistical criteria. While randomized

experiments have been popular in traditional causal inference, it is prohibitively

expensive (Chan et al. 2010; Kohavi and Longbotham 2011; Xu et al. 2020) and

infeasible (Bottou et al. 2013; Li et al. 2021b) in some real-world settings. As an al-

ternative method, observational study is becoming increasingly critical and available

in many domains such as medicine, public policy and advertising. However, obser-

vational study needs to deal with data absence problem, which differs fundamentally

from supervised learning. This is simply because only the factual outcome (symp-

tom) for a specific treatment assignment (say, treatment A) is observable, while the

counterfactual outcome corresponding to alternative treatment B in the same situ-

ation is always unknown. In the context of binary treatment, the individuals given

the treatment are the treated group, whereas other individuals in the population

are the control group.

4.2.1 Treatment Effect Estimation

The simplest way to estimate treatment effect in observational data is the match-

ing method that finds the comparable units in the treated and controlled groups. The

prominent matching methods include Propensity Score Matching (PSM) (Rosen-

baum and Rubin 1983; Dehejia and Wahba 2002) and Nearest Neightbor Matching

(NNM) (Stuart et al. 2011). Particularly, for each treated individual, PSM and NNM

select the nearest units in the controlled group based on some distance functions,

and then calculate the difference between two paired outcomes. Another popular

approach is reweighting method that involves building a classifier model to estimate

the probability of a treatment assigned to a particular unit, and uses the predicted

score as the weight for each unit in dataset. TMLE (Gruber and van der Laan 2012)
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and IPSW (Austin and Stuart 2015) fall into this category. Ordinary Linear Regres-

sion (OLS) (Goldberger et al. 1964) is another commonplace method that fits two

linear regression models for the treated and controlled group, with each treatment

as the input features and the outcome as the output. The predicted counterfactual

outcomes thereafter are used to calculate the treatment effect. Meanwhile, deci-

sion tree is a popular non-parametric machine learning model, attempting to build

the decision rules for the regression and classification tasks. Bayesian Additive Re-

gression Trees (BART) (Chipman et al. 2007; Hill 2011) and Causal Forest (Wager

and Athey 2018) are the prominent tree-based method in causal inference. While

BART (Chipman et al. 2007; Hill 2011) builds the decision tree for the treated and

controlled units, Causal Forest (Wager and Athey 2018) constructs the Random

Forest model to derive the counterfactual outcomes, and then calculates the differ-

ence between the paired potential outcomes to obtain the average treatment effect.

They are proven to obtain the more accurate treatment effect than matching meth-

ods and reweighting methods in the non-linear outcome setting. Doubly Robust

Learner (Research 2019; Dud́ık et al. 2011) is the recently proposed approach that

constructs a regression estimator predicting the outcome based on the covariates

and treatment, and builds a classifier model to fit the treatment. DRL finally com-

bines both predicted propensity score and predicted outcome to estimate treatment

effect.

4.2.2 Stochastic Intervention Optimization

Our work focuses on estimating the intervention effect and thus finding the op-

timal intervention to maximize the expected outcomes in the population. This is

closely related to the uplift modelling studies, with the goal of uplifting (or maximiz-

ing) the outcome with the treatment as compared to the outcome without the treat-

ment(Zaniewicz and Jaroszewicz 2013; Alemi et al. 2009; Hansotia and Rukstales

2002; Manahan 2005). Among the uplifting models, the most popular and widely-

used approach is Separate Model Approach (SMA) (Zaniewicz and Jaroszewicz 2013;

Alemi et al. 2009). SMA is applicable to binary treatment and builds two regression

models under each treatment, respectively. The treatment with the best predictive
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outcome is chosen and defined as the optimal one. The advantage of SMA lies in its

easy implementation since SMA does not require a specific machine learning algo-

rithm. Several state-of-the-art machine learning algorithms such as Random Forest,

Gradient Boosting (Natekin and Knoll 2013) or Adaboost can be applied to these

two regression models (Liaw et al. 2002; Solomatine and Shrestha 2004; Friedman

2001). SMA has been widely applied in marketing (Hansotia and Rukstales 2002)

and customer segmentation (Manahan 2005). However, when dealing with the data

containing a great deal of noisy and missing information, the model outcomes are

prone to be incorrect and biased, which leads to poor performance. Other common-

place methods for uplift modelling include Class Transformation Model (Jaskowski

and Jaroszewicz 2012) and Uplift Random Forest (Guelman and Guelman 2014);

these techniques however only deal with the binary outcome, so we do not discuss

them here.

4.3 Preliminaries and Problem Definition

4.3.1 Notation

In this study, we consider the observational dataset Z = {xi, yi, ti}ni=1 with n

units, where x ∈ Rn×d is the d-dimensional covariate, y and t ∈ {0, 1} are the

outcome and the treatment for the unit, respectively. The treatment variable is

binary in many cases, thus the unit will be assigned to the control treatment if

t = 0, or the treated treatment if t = 1. As a result, y0 and y1 are the potential

outcomes corresponding to the control and treated units. According to the Rubin-

Neyman causal model (Imbens and Rubin 2015), two potential outcomes y0(x) and

y1(x) exist for x with the treatment t = 0 and t = 1, respectively. It is noted that

either y0 or y1 can be observed for each subject in the population.

After introducing the observational data and the key terminologies, the central

goal of causal inference, i.e., treatment effect estimation, can be quantitatively def-

initions using the above definitions. To make the definition clear, here we define

the treatment effect under binary treatment. At the population level, the treatment
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effect is named as the Average Treatment Effect (ATE), which is defined as

τATE = E[y0(x)− y1(x)] (4.1)

For causal inference, our objective is to estimate the treatment effects from the

observational data. Based on the estimated ATE, different treatment conditions

can be selected and applied to users to achieve preferred outcome.

To further illustrate the treatment effect estimation, we take an online marketing

scenario for example. We denote each customer as a high-dimensional vector of

features x. The customer indexed by i receives a promotion treatment ti ∈ {0, 1}.
Accordingly, y0(xi) and y1(xi) are profit accrued from customer i corresponding

to either control treatment or treated treatment. The effectiveness of a promotion

campaign can be evaluated by computing average treatment effect of the promotion

treatment on the customers.

4.3.2 Propensity Score

Rosenbaum and Rubin (Rosenbaum and Rubin 1983) first proposed propensity

score technique to deal with the high-dimensional covariates. The propensity score

is widely used in causal inference methods to estimate treatment effects from ob-

servational data (Hirano et al. 2003; Pirracchio et al. 2016; Luo et al. 2010; Abdia

et al. 2017). This is largely because propensity score can help eliminating the great

portion of bias, leading to a more balanced dataset and thus allowing a simple

and direct comparison between the treated and untreated individuals. Particularly,

propensity score can summarise the mechanism of treatment assignment and thus

squeezes covariate space into one dimension to avoid the possible data sparseness

issue (Bang and Robins 2005; Dehejia and Wahba 2002; Austin and Stuart 2015;

Hirano et al. 2003). The propensity score is defined as the probability that a unit

is assigned to a particular treatment t = 1 given the covariate x, i.e.,

pt(x) = P(t = 1|x) (4.2)

In practice, one widely-adopted parametric model for estimating propensity score
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pt(x) is the logistic regression

p̂t(x) =
1

1 + exp (w⊤x + ω0)
(4.3)

where w and ω0 are parameters estimated by minimizing the negative log-likelihood (Martens

et al. 2008).

4.3.3 Assumption

Following the general practice in causal inference literature (Pearl 2010, 2003;

Scheines 1997), we consider the following two assumptions to ensure the identifia-

bility of the treatment effect, i.e. Positivity and Ignorability.

Assumption 4.1 (Positivity). Each unit has a positive probability to be assigned

by a treatment, i.e.,

pt(x) > 0, ∀x and t (4.4)

Assumption 4.2 (Ignorability). The assignment to the treatment t is independent

of the outcomes y given covariates x

y1, y0t|x (4.5)

4.4 Stochastic Intervention Effect

Recall the goal of causal inference is to compute the treatment effect estimation

that can be evaluated by the metric in Eq. (4.1). Namely, treatment effect esti-

mation can be expressed by the difference between the observed outcome and the

counterfactual outcome under a intervention on the treatment. Apparently, the ob-

served outcome in the dataset is generated by the observed treatment (e.g., t = 1).

By contrast, the counterfactual outcome is generated by intervening the treatment,

e.g., shifting treatment from observed t = 1 to counterfactual t = 0, which is how-

ever unobserved in practice. Thus, intervention effect estimation is turned into a

problem of predicting the counterfactual outcome generated by an intervention on

the treatment.
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4.4.1 Stochastic Counterfactual Outcome

Before predicting the counterfactual outcome, we first propose stochastic propen-

sity score to characterize the stochastic intervention.

Definition 4.1 (Stochastic Propensity Score). The stochastic propensity score with

respect to stochastic degree δ is

qt(x, δ) =
δ · p̂t(x)

δ · p̂t(x) + 1− p̂t(x)
(4.6)

and p̂t(x) is denoted by

p̂t(x) =
exp

(∑s
j=1 βjgj (x)

)
1 + exp

(∑s
j=1 βjgj (x)

) (4.7)

where {g1, · · · , gs} are nonlinear basis functions.

The proposed stochastic propensity score in Definition 4.1 has promising proper-

ties compared with classical propensity score in Eq. (4.3). Particularly, traditional

propensity score focuses on setting the treatment as fixed values rather than stochas-

tic intervention, which is not desirable to quantify the causal effect of stochastic

intervention on treatment. So we introduce δ in Eq. (4.6) to represent the stochas-

tic intervention indicating the extent to which the propensity scores have fluctuated

from their actual observational values. For instance, the stochastic intervention that

the doctor adopts 50% dose increase in the patient can be expressed by δ = 1.5. On

the other hand, if there are higher-order terms or non-linear trends among covariates

x, classical propensity score using w⊤x + ω0 in Eq. (4.3) may lead to misspecifica-

tion (Dalessandro et al. 2012). So we propose to use a sum of nonlinear function∑s
j=1 βjgj in Eq. (4.7) that captures the non-linearity involving covariates to create

an unbiased estimator of treatment effect.

On the basis of the stochastic propensity score, we propose an influence function

specific to estimate counterfactual outcome under stochastic intervention. Mean-

while, we also analyze the asymptotic behavior of the counterfactual outcome with

theoretical guarantees. Theorem 4.1 shows that our influence function can construct

an unbiased semiparametric estimator for the counterfactual outcome. In addition,
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Theorem 4.2 guarantees that our influence function can achieve double robustness

and fast parametric convergence rates. With such an unbiased and efficient coun-

terfactual outcome estimator, we can achieve more accurate stochastic treatment

effects.

Theorem 4.1. With the stochastic intervention of degree δ on observed data z =

(x, y, t), we have

φ(z, δ) = qt(x, δ) ·m1(x, y) + (1− qt(x, δ)) ·m0(x, y) (4.8)

being the efficient influence function for the resulting counterfactual outcome ψ̂, i.e.,

ψ̂ = Pn [φ(z, δ)] (4.9)

where m1(x, y) or m1(x, y) is given by

mt(x, y) =
It · (y − µ̂(x, t))

t · p̂t(x) + (1− t)(1− p̂t(x))
+ µ̂(x, t) (4.10)

and It is an indicator function, p̂t is the estimated propensity score in Eq. (4.7) and

µ̂ is potential outcomes model that can be fitted by machine learning methods.

Proof. Throughout we assume the observed data quantity ψ can be estimated under

the positivity assumption from Section 4.3.3. For the unknown ground-truth ψ(δ),

we will prove φ is the influence function of ψ(δ) in Eq. (4.9) by checking∫
ψ̂(y, x, t,P)dP =

∫
(φ(y, x, t, δ)− ψ) dP = 0 (4.11)

Eq. (4.11) indicates that the uncentered influence function φ is unbiased for ψ. Given

qt(x, δ) as the stochastic propensity score in Eq. (4.6), we check the property (4.11)
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by ∫
(φ(y, x, t, δ)− ψ) dP

=

∫
{qt ·m1(x, y) + (1− qt)m0(x, y)− ψ(δ)} dP(y, x, t, δ)

=

∫
{qt

It=1 · (y − µ̂(x, 1))
p̂t

+ (1− qt)
It=0 · (y − µ̂(x, 0))

1− p̂t
+ qtµ̂(x, 1) + (1− qt)µ̂(x, 0)− ψ(δ)}dP(y, x, t, δ)

=

∫
{qt

It=1 · (y − µ̂(x, 1))
p̂t

+ (1− qt)
It=0 · (y − µ̂(x, 0))

1− p̂t
+ qtµ̂(x, 1) + (1− qt)µ̂(x, 0)− E[qtµ̂(x, 1)

+ (1− qt)µ̂(x, 0)]}dP(y, x, t, δ)
(1)
=

∫ {
qt

It=1 · (y − µ̂(x, 1))
p̂t

}
dP(y, x, t, δ)

+

∫ {
(1− qt)

It=0 · (y − µ̂(x, 0))
1− p̂t

}
dP(y, x, t, δ)

=

∫ {
qt

It=1 · y
p̂t

+ (1− qt)
It=0 · y
1− p̂t

}
dP(y, x, t, δ)

−
∫ {

qt
It=1 · µ̂(x, 1)

p̂t
− (1− qt)

It=0 · ˆ̂µ(x, 0)
1− p̂t

}
dP(x, t, δ)

(2)
= 0

The second equation (1) follows from the iterated expectation, and the second equa-

tion (2) follows from the definition of µ̂(x, t) and the usual properties of conditional

distribution dP(x, y, δ) = dP(y|x, δ)dP(x, δ). So far we have proved that φ is the

influence function of average treatment effect ψ(δ). We have proved that the uncen-

tered efficient influence function can be used to construct unbiased semiparametric

estimator for ψ(δ), i.e., that
∫
φP = ψ.

4.4.2 Asymptotic Behavior Analysis

Theorem 4.1 ensures that the counterfactual outcome ψ̂ can be estimated by its

influence function φ that depends on the nuisance function (µ̂(·), p̂t(·)). We further

analyze the asymptotic behavior of the influnence function-based estimator ψ̂ to

prove that ψ̂ attains robustness even if µ̂ is mis-specified. With this theorem, we can

claim that our semiparametric estimator is robust to the estimation of (µ̂(·), p̂t(·)).
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Algorithm 4.1: SIE: Stochastic Intervention Effect

Input: Observed units {zi : (xi, ti, yi)}ni=1

1: Initialize a stochastic degree δ.

2: Randomly split Z into k disjoint groups {Z1, · · · , Zk}
3: while each group Zk do

4: Fit the potential outcome model µ̂(x, t)

5: Fit the propensity score p̂t(x) by Eq. (4.7)

6: Calculate qt(x; δ) by Eq. (4.6)

7: Calculate m1(x) and m0(x) by Eq. (4.10)

8: Calculate φ(Zk, δ) by Eq. (4.8)

9: end while

10: Calculate the counterfactual outcome ψ̂(x, t, δ) by Eq. (4.9)

11: Compute τ̂ATE = 1
n

∑n
i=1(ψ̂(xi, ti, δ)− yi)

Output: stochastic intervention effect τ̂ATE

This is crucial for incorporating machine learning into our stochastic causal inference

framework.

Theorem 4.2. The stochastic outcome estimator ψ̂ in Eq. (4.9) is asymptotically

linear with influence function ψ, i.e.,

ψ̂ − ψ = Pn{φ(z); η}+ op(1/
√
n) (4.12)

Proof. For notation simplicity, we use z = (y, x, t, δ) and η = (µ(·), pt(·)) for the

true estimators in the proof. Suppose the estimator η̂ = (µ̂, p̂t) converges to some

η = (µ, pt) in the sense that ∥η̂ − η∥ = op(1), where either pt = pt or µ = µ

correspond to the true nuisance function. Therefor, we conclude that at least one

nuisance estimator needs to converge to the correct function, but the other one can

be misspecified. We denote the mispecified functions µ̃ and p̃t in the neighborhood

of µ and pt, respectively. From the fact that P {φ (z; pt, µ̃)} = P {φ (z; p̃t, µ)}, we

have P{φ)(z; η} = P{φ)(z; η} = ψ for any pt and µ. We can write

ψ̂ − ψ = (Pn − P)φ(z; η̂) + P{φ(z; η̂)− φ(z; η̄)} (4.13)



58

If µ̂ and p̂t are usual parametric functions in Donsker classes (Dudley 2010), then

φ(z; η̂) is enabled with Donsker property, i.e.,

(Pn − P)φ(z; η̂) = (Pn − P)φ (z; η) + op(1/
√
n) (4.14)

Substitute Eq. (4.14) to Eq. (4.13), we have

ψ̂ − ψ = (Pn − P)φ(z; η) + P{φ(z; η̂)− φ(z; η̄)}+ op(1/
√
n) (4.15)

The iterated expectation of term P{φ(z; η̂)− φ(z; η̄)} in Eq. (4.15) equals∑
t∈{0,1}

P

[
pt(x)− p̂t(x)

t · p̂t(x) + (1− t){1− p̂t(x)}
{µ(x, t)− µ̂(x, t)}

]
(4.16)

According to the fact that 0 < p̂t < 1 and the Cauchy-Schwarz inequality P(f · g) ≤
∥f∥∥g∥, then P{φ(z; η̂)− φ(z; η̄)} ≤∑

t∈{0,1}

∥pt(x)− p̂t(x)∥ ∥µ(x, t)− µ̂(x, t)∥ (4.17)

Therefore, if p̂t a correct parametric model for propensity score, so that ∥p̂t− pt∥ =

op(
1√
n
), then we only need µ̂ to be consistent, ∥µ̂− µ∥ = op(1) to allow P{φ(z; η̂)−

φ(z; η̄)} = op(
1√
n
) asymptotically negligible. Then our influence-based estimator

satisfied ψ̂ − ψ = (Pn − P)φ (z; η) + op(
1√
n
).

According to Theorem (4.2), if the propensity score model in Eq. (4.7) is un-

biased, the potential outcome model can be estimated by ψ̂ in a flexible manner.

Because the influence function we defined contains all information about an estima-

tor’s asymptotic behavior (up to op(1/
√
n) error).

4.5 Stochastic Intervention Optimization

Estimating the stochastic intervention effect is not enough; we are more inter-

ested in “what is the optimal level/degree of treatment for a patient to achieve the

most expected outcome?”. A direct way to find the optimal treatment is through re-

inforcement learning (Li et al. 2021e; Fang et al. 2019), which focuses on finding pol-

icy/intervention for controlling dynamical systems with the goal of maximizing the
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desired outcome on downstream decision-making tasks. This is done by the agent

repeatedly observing its state, taking action (according to a policy/intervention),

and receiving a reward. Over time the agent modifies its policy to maximize its

long-term desired outcome. In this paper, we focus particularly on model-free rein-

forcement learning algorithms, which have become popular in offering off-the-shelf

solutions without requiring models of the system dynamics (Feinberg et al. 2018,?).

However, the intervention is stochastic rather than deterministic, which tends to

result in large training variances in action space. Handling large variance is a signif-

icant challenge in model-free reinforcement learning (RL) (Cheng et al. 2019), which

would result in the degenerate performance in the intervention optimization.

To alleviate the aforementioned issue, we consider the basic random search

method, which explores in the parameter space rather than the action space and

thus achieves the optimal expected outcome in a more efficient manner. We model

the stochastic intervention using the stochastic propensity score q̂t(x, δ), and look

for the optimal stochastic interventions parameter ∆∗ ∈ Rnx1 such that:

∆∗ = arg max
∆

n∑
i=1

φ(zi,∆) (4.18)

Note that the optimization problem in Eq. (4.18) is non-differentiable. To avoid

using further assumptions for solving it, we formulate a customised reinforcement

learning algorithm (Mania et al. 2018) (RS-SIO) to exploit the search space. The

main advantage of RS-SIO is model-agnostic which can handle with any black-box

functions and flexibly deal with any data type including continuous and categor-

ical features. Therefore, with modifications specific to the intervention effect es-

timation, RS-SIO solves Eq. (4.5) through the discovery process of trial-and-error

search (Qiang and Zhongli 2011; Whitehead and Ballard 1991; Barto and Sutton

1995) which gradually updates the stochastic parameters in every step based on

the rewards. Particularly, the algorithm firstly initializes the stochastic interven-

tion parameter ∆0 = 0 ∈ Rnx1 and samples a set of δ having the same size as

∆0. Thereafter, for each δ, we compute the rewards when the search process moves
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toward to the positive (Φ(δk,+)) and negative direction (Φ(δk,−)), and then se-

lect the number of b largest awards for these directions as max{Φ(δk,+),Φ(δk,−)}.
In order to update the stochastic parameters ∆, we exploit the update directions

1
b

∑b
k=1[Φ(δk,+) − Φ(δk,−)]δk. The full stochastic intervention optimization algo-

rithm is shown in Algorithm 4.2.
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Algorithm 4.2: Random Search based Reinforcement Learning for SIO (RS-SIO)

Input: Observed units {zi : (xi, ti, yi)}ni=1, step-size α, standard deviation of the explo-

ration noise , number of steps l, number of top-performing directions b.

1: Initialize the stochastic intervention parameter ∆0 = 0 ∈ Rnx1

2: Sample δ1, δ2,.., δm of the same size as ∆0.

3: for j = 1, · · · , l do
4: if ending conditions are satisfied then

5: Break

6: end if

7: for k = 1, · · · ,m do

8: for i = 1, · · · , n do

9: Compute qt(xi, δk) by Eq. (4.6)

10: Compute m1(xi) and m0(xi) by Eq. (4.10)

11: Compute φ(zi,∆j + δk) and φ(zi,∆j − δk) by Eq. (4.8).

12: end for

13: end for

14: for k = 1, · · · ,m do

15: Compute the reward

Φ(δk,+) =
n∑
i=1

φ(zi,∆j + δk), Φ(δk,−) =
n∑
i=1

φ(zi,∆j − δk) (4.19)

16: end for

17: Sort δk by max{Φ(δk,+),Φ(δk,−)} and select b top-performing directions.

18: Update

∆j+1 = ∆j +
α

b

b∑
k=1

[Φ(δk,+)− Φ(δk,−)]δk (4.20)

19: end for

Output: ∆j

4.6 Experiments and Results

In this section, we conduct intensive experiments and compare our framework

with state-of-the-art methods on two tasks: treatment effect estimation and stochas-
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tic intervention effect optimization. Recall that the influence-based estimator φ

depends on the nuisance function of propensity score pt and outcome µ. We first

perform average treatment effect estimation to confirm that p̂t and µ̂ are unbiased

and robust estimators. Moreover, the stochastic intervention optimization task is

carried out to demonstrate the effectiveness of our RS-SIO.

4.6.1 Baselines

We briefly describe the comparison methods which are used in two tasks of

treatment effect estimation and stochastic intervention optimization.

Evaluating the performance of SIE is not an easy task, because the ground-truth

counterfactual outcome is unobserved in practice. On the contrary, the benchmark

datasets having two potential outcomes are available for ATE estimation. Therefore,

we perform ATE estimation to evaluate the robustness of p̂t and µ̂ thus to indirectly

evaluate the performance of SIE. We use Gradient Boosting algorithm (Natekin and

Knoll 2013) with 100 regressors for the potential outcome models µ̂. We compare

our proposed estimator (SIE) with the following baselines including Doubly Robust

Leaner (Dud́ık et al. 2011) (LinearDRLearner and ForestDRLearner), IPWE (Austin

and Stuart 2015), BART (Hill 2011), Causal Forest (Wager and Athey 2018; Athey

et al. 2019), TMLE (Gruber and van der Laan 2012) and OLS (Goldberger et al.

1964). Regarding implementation and parameters setup, we adopt Causal For-

est (Wager and Athey 2018; Athey et al. 2019) with 100 trees, BART (Hill 2011)

with 50 trees and TMLE (Gruber and van der Laan 2012) from the libraries of cfor-

est, pybart and zepid in Python. For Doubly Robust Learner (DR) (Dud́ık et al.

2011), we use the two implementations, i.e. LinearDRL and ForestDRL from the

package EconML (Research 2019) with Gradient Boosting for regression task with

100 regressors as the outcome model, and Gradient Boosting for classification task

with 200 classifiers as the treatment model. Ultimately, we use package DoWhy

(Sharma and Kiciman 2020) for IPWE (Austin and Stuart 2015) and OLS.

For stochastic intervention optimization, we compare our proposed method (RS-

SIO) with Separate Model Approach (SMA) with different settings. SMA is a uplift
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modeling method that estimates the user-level incremental effect of a treatment

using machine learning models. SMA (Zaniewicz and Jaroszewicz 2013; Alemi et al.

2009) aims to build two separate regression models for the outcome prediction in the

treated and controlled group, respectively. Under the setting of SMA, we apply four

well-known models for predicting outcome including Ridge (SMA-Ridge) (Hoerl and

Kennard 1970), Gradient Boosting (SMA-GBR) (Friedman 2001), Support Vector

Regression (SMA-SVR) (Zaniewicz and Jaroszewicz 2013), and AdaBoost (SMA-

AB) (Solomatine and Shrestha 2004). We also compare the performance of these

models with the random policy to justify that optimization algorithms can help to

target the potential customers to generate greater revenue. For the settings of SMA,

we use Support Vector Regression, Gradient Boosting, Ada Boosting Regression and

Ridge Regression.

Hyperparameters tuning. For the treatment effect estimation task, we use

gird search (Liashchynskyi and Liashchynskyi 2019) for hyperparameters tuning with

the optimal values presented in Table 4.2. For the policy optimization task, detailed

settings for SMA approaches are shown in Table 4.3, while hyperparameters of our

proposed method (RS-SIO) are selected by searching in value ranges presented in

Table 4.4.

4.6.2 Datasets

IHDP (Hill 2011) is a standard semi-synthetic dataset used in the Infant Health

and Development Program, which is a popularly used semi-synthetic benchmark con-

taining both the factual and counterfactual outcomes. We conduct the experiments

on 100 simulations of IHDP dataset, and divide the dataset into training and testing

set†. The training dataset is highly imbalanced with 139 treated and 608 controlled

units out of 747 units, respectively, whilst the testing dataset has 75 units. Each

unit has 25 covariates representing the individuals’ characteristics. The outcomes

are their IQ scores at age three (Dorie 2016).

†http://www.fredjo.com/files/ihdp_npci_1-100.train.npz and http://www.fredjo.

com/files/ihdp_npci_1-100.test.npz

http://www.fredjo.com/files/ihdp_npci_1-100.train.npz
http://www.fredjo.com/files/ihdp_npci_1-100.test.npz
http://www.fredjo.com/files/ihdp_npci_1-100.test.npz
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Online promotion dataset (OP Dataset) provided by EconML project (Research

2019) is chosen to evaluate stochastic intervention optimization‡. This dataset con-

sists of 10k records in online marketing scenario with the treatment of discount

price and the outcome of revenue, each represents a customer with 11 covariates.

We split the data into two parts: 80% for training and 20% for testing set. We run

100 repeated experiments with different random states to ensure the model outcome

reliability. We aim to investigate how to maximize the revenue by applying different

price policies to different customers.

Lalonde § (Dehejia and Wahba 1999, 2002) is the real-world dataset about the

men in the National Supported Work Demonstration who were or were not provided

the on-job training for more than nine months. Each unit has six features, including

age, education, black (1 if black, 0 otherwise), Hispanic (1 if Hispanic, 0 otherwise),

married and degree. The outcomes are their earnings in 1975 and 1978 with 297

treated and 425 control observations. The main goal of this dataset is to determine

the monetary benefits of the job training on the people. For this dataset, we conduct

experiments to find the optimal policy such that their earnings in 1975 and 1978

are maximized. We also repeat experiments 100 times with different random states

to ensure model stability.

4.6.3 Evaluation Metrics

In this section, we briefly describe the two evaluation metrics used for stochastic

intervention effect estimation and stochastic intervention optimization, respectively.

• Stochastic Intervention Effect Estimation. Based on average treatment

effect (ATE) in Eq. (4.1), we evaluate the performance of treatment effect

estimation by the mean absolute error between the estimated and true ATE:

ϵATE = |τ̂ATE − τATE| (4.21)

‡https://msalicedatapublic.blob.core.windows.net/datasets/Pricing/pricing_

sample.csv

§https://users.nber.org/~rdehejia/data/.nswdata2.html

https://msalicedatapublic.blob.core.windows.net/datasets/Pricing/pricing_sample.csv
https://msalicedatapublic.blob.core.windows.net/datasets/Pricing/pricing_sample.csv
https://users.nber.org/~rdehejia/data/.nswdata2.html
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• Stochastic Intervention Optimization. Followed by the uplifting model

studies (Zhao et al. 2017; Hitsch and Misra 2018), we use the expected value

of the outcome under the policy proposed by the models as the main metric,

which can be measured as:

ŷ = E[y|t = π(x)]

=
1

n

n∑
i=0

1∑
a=0

1

pi
yiI{ti = π(xi)}I{ti = a}

(4.22)

where pi is the propensity score of individual i, I{.} is the indicator function

with 1 for true condition and 0 otherwise and π(x) is the proposed policy. Our

method uses π(x) = ∆(x) with ∆ is the stochastic intervention parameter.

Particularly, the expected outcome is computed as if the predicted treatment

matches the current treatment, the expected outcome is scaled by the inverse

of propensity score yi/pi, otherwise, equals zero.

4.6.4 Results and Discussions

In this section, we aim to report the experimental results of 1) how our proposed

estimator (SIE) can accurately estimate the average treatment effect; 2) how our

optimization algorithm (RS-SIO) can be used for finding optimal stochastic inter-

vention in real-world datasets.

Treatment Effect Estimation

The results of ϵATE derived from IHDP dataset with 100 simulations and OP

dataset with 100 repeated experiments are presented in the Table 4.1. As seen

clearly, amongst all approaches, our proposed estimator SIE achieves the best per-

formance under ϵATE in both two datasets, followed by TMLE for IHDP dataset,

and LinearDRL and ForestDRL for OP dataset. Particularly, on IHDP, SIE outper-

forms all other methods in both training and testing sets. In order to investigate

the impact of data size chosen on estimation, we also run experiments and plot the

performance of models in different data sizes in Figure ??. Notably, SIE consistently

produces the more accurate average treatment effect than others as the data size in-

creases, while TMLE is ranked second in this dataset. LinearDRL and Causal Forest



66

also produce very competitive results, whereas IPWE performs the worst. For the

experimental results on the online promotion dataset, SIE consistently achieves the

outstanding performance under ϵATE, followed by the performance of LinearDRL

and ForestDRL, while the competitive results are also recorded with BART. It is

also worthy to note that although TMLE performs well in the training set, its per-

formance likely degrades when dealing with out-of-sample data in the testing set.

Regarding the computational time, IPWE and BART are the best-performing and

worst-performing, respectively. Our proposed method is ranked third among the

baselines for both two datasets, which is acceptable in consideration of our superior

performances on treatment effect estimation compared to IPWE and BART.

Method

IHDP Dataset OP Dataset

Train Test Time (ms) Train Test Time (s)

OLS 0.746 ± 0.140 1.264 ± 0.250 242.498 ± 0.000 5.906 ± 0.004 5.906 ± 0.004 8.891 ± 0.000

BART 1.087 ± 0.120 2.808 ± 0.100 2353.843 ± 0.000 0.504 ± 0.042 0.505 ± 0.043 14.180 ± 0.000

Causal Forest 0.360 ± 0.050 0.883 ± 0.614 180.100 ± 0.000 3.520 ± 0.034 3.520 ± 0.034 5.907 ± 0.000

TMLE 0.326 ± 0.060 0.831 ± 0.175 584.659 ± 0.000 0.660 ± 0.000 3.273 ± 0.000 9.723 ± 0.000

ForestDRLearner 1.044 ± 0.040 1.224 ± 0.080 241.148 ± 0.000 0.240 ± 0.014 0.241 ± 0.013 7.807 ± 0.000

LinearDRLearner 0.691 ± 0.080 0.797 ± 0.170 269.193 ± 0.000 0.139 ± 0.009 0.139 ± 0.008 7.107 ± 0.000

IPWE 1.701 ± 0.140 5.897 ± 0.300 84.531 ± 0.000 5.908 ± 0.000 5.908 ± 0.015 2.1725 ± 0.000

SIE 0.284 ± 0.050 0.424 ± 0.090 200.135 ± 0.000 0.137 ± 0.000 0.119 ± 0.000 7.002 ± 0.000

Table 4.1 : ϵATE and running time of baselines on IHDP(lower is better).

Figure 4.1 : ϵATE of baselines on IHDP dataset with different samples.
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Algorithm Parameter name Value Package / Language

OLS Outcome model Linear regression

BART Number of trees 50 bartpy¶

Causal Forest

Number of trees 100

cfforest ‖Split ratio 0.7

Min leaf 5

Max depth 25

TMLE

Number of estimators 200

TMLE∗∗Treatment model Logistic Regression

Outcome model Gradient Boosting

ForestDRLearner

Treatment model Gradient Boosting

dowhy††

Outcome model Gradient Boosting

n estimators for treatment model 200

n estimators for outcome model 100

LinearDRLearner

Treatment model Gradient Boosting

dowhy‡‡
Outcome model Gradient Boosting

n estimators for treatment model 200

n estimators for outcome model 100

IPWE Treatment model Logistic Regression dowhy

SIE

Treatment model Gradient Boosting

Outcome model Gradient Boosting

n estimators for treatment model 250

n estimators for outcome model 150

Table 4.2 : Hyperparameters for treatment effect estimation in IHDP dataset. We

denote n estimators for number of predictive models using in Boosting algorithms.

Stochastic Intervention Optimization

For the online promotion dataset, we model the revenue as the expected outcome

of each customer under the policy/intervention. Figure 4.2 presents the revenue

of uplifting modeling methods with different data sizes including 1000, 5000 and

10000 records. We set step l = 100 for our proposed method (RS-SIO). RS-SIO

compares favorably to recent uplift modeling techniques that optimize the policy

(or intervention) on treatment to maximize the expected outcome. Apparently, RS-



68

Method Predictive model Hyperparameter
Selected values

Package

Revenue OP Earning 1975 Earning 1978

SMA-SVR Support Vector Regression kernel linear poly poly

scikit-learn
SMA-GBR Gradient Boosting n estimator 50 100 150

SMA-ABR Ada Boosting Regression n estimator 50 100 150

SMA-Ridge Ridge Regression solver auto auto auto

Table 4.3 : Hyperparameters for policy optimization methods. We denote

n estimators for number of predictive models using in Boosting algorithms

Parameters Search space
Selected values

Revenue Earning 1975 Earning 1978

step size (α) [0.01, 0.02, 0.04, 0.06, 0.08, 0.1] 0.08 0.06 0.08

exploration noise () [0.01, 0.02, 0.04, 0.06, 0.08, 0.1] 0.02 0.04 0.04

top-performing direction (b) [10, 20, 25, 35, 40, 45, 50, 55] 35 55 50

Table 4.4 : Value ranges of hyperparameters used during hyperarameter tuning of

our proposed method (RS-SIO). Revenue is for Lalonde dataset, and earning 1975

and 1978 are for Lalonde dataset.

SIO generally produces the highest revenue in datasets with different samples, while

SMA-ABR achieves the second-best performance with a very competitive result.

Moreover, we find that no significant difference in the performance of SMA with

different settings. In contrast, random stochastic intervention produces the lowest

revenue, which fails to target the customers for the promotion. On the other hand,

Figure 4.3 illustrates the predicted earnings in 1975 and 1978 by different methods.

As can be seen, the maximum earning is produced by our proposed method, while

random policy/intervention produces the lowest earnings in 1975 and 1978. SMA-

Ridge and SMA-GBR achieve competitive performance in this dataset. The possible

reason behind our outstanding performance is that instead of focusing on predicting

the outcomes like SMA, we directly intervene into the propensity score to produce

the best stochastic intervention. Apart from that, we also exploit the sensitivity of

parameters (i.e., exploration noise, number of steps and number of top-performing

directions) of our policy optimization approach (RS-SIO) in Lalonde dataset in

two years 1975 and 1978. Figure 4.4 illustrates the curves of performance (i.e.,

the revenue outcome) produced by varying one parameter (i.e., defined in x-axis)
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and fixing the other two parameters. This figure indicates that in most cases our

performance is stable under the permutations of every individual parameter.

Figure 4.2 : Intervention optimization on OP dataset by different baselines.

Figure 4.3 : Intervention optimization on Lalonde dataset by different baselines.

4.7 Conclusion

We have developed a causal inference framework that admits the stochastic in-

tervention in treatment effect estimation and designs an effective causal solution for

the intervention effect optimization. In general, the contribution of this study is

twofold. Firstly, we propose a novel treatment effect estimator based on stochas-

tic propensity score so as to learn the dynamic stochastic intervention effect in a
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Figure 4.4 : Hyperparameter sensitivity.

flexible manner. Secondly, we design a reinforcement learning algorithm to find the

optimal intervention for maximizing the expected outcome, thus providing causal

insights for an effective decision-making process. We provide theoretical guarantees

for the stochastic intervention effect estimator to achieve double robustness and fast

parametric convergence rates. Extensive numerical results justify that our frame-

work outperforms state-of-the-art baselines in both treatment effect estimation and

stochastic intervention optimization.

One limitation of our causal framework is that the stochastic intervention is

set to static data, i.e., the observational data are time-independent. In many real-

world applications, however, events change over time, e.g., each unit may receive

a stochastic intervention multiple times, and the timing of these interventions may

differ across units (Kennedy et al. 2017; Hill 2011; Galagate 2016). Of practical in-

terest is to perform a more detailed empirical study on the time-dependent stochastic

intervention.
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Part III

Counterfactual explanation
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Part III provides an in-depth exploration of advanced methodologies in counter-

factual explanations. Each chapter provides insights and proposed approaches to

address complex challenges in the field. In Chapter 5, a causality-focused method

is introduced for generating counterfactual explanations through the utilization of

multi-objective optimization. This method aims to produce counterfactual samples

that not only fulfill the expected outcomes but also retain causal relationship in

counterfactual samples. The effectiveness of this approach is rigorously assessed on

multiple real-world datasets, with comprehensive comparisons made against existing

methods. Regarding Chapter 6, we explore the the combination of normalizing flows

and counterfactual explanation. This methodology capitalizes on the strengths of

normalizing flows in understanding hidden data distributions, leading to the gen-

eration of robust samples. This innovative approach holds significant promise for

advancing the field of counterfactual explanation.
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Chapter 5

Causality-based counterfactual explanation for

classification models

Counterfactual explanation is one branch of interpretable machine learning that

produces a perturbation sample to change the model’s original decision. The gen-

erated samples can act as a recommendation for end-users to achieve their de-

sired outputs. Most of the current counterfactual explanation approaches are the

gradient-based method, which can only optimize the differentiable loss functions

with continuous variables. Accordingly, the gradient-free methods are proposed

to handle the categorical variables, which however have several major limitations:

1) causal relationships among features are typically ignored when generating the

counterfactuals, possibly resulting in impractical guidelines for decision-makers; 2)

the counterfactual explanation algorithm requires a great deal of effort into pa-

rameter tuning for dertermining the optimal weight for each loss functions which

must be conducted repeatedly for different datasets and settings. In this work,

to address the above limitations, we propose a prototype-based counterfactual ex-

planation framework (ProCE). ProCE is capable of preserving the causal rela-

tionship underlying the features of the counterfactual data. In addition, we de-

sign a novel gradient-free optimization based on the multi-objective genetic algo-

rithm that generates the counterfactual explanations for the mixed-type of con-

tinuous and categorical features. Numerical experiments demonstrate that our

method compares favorably with state-of-the-art methods and therefore is appli-

cable to existing prediction models. All the source codes and data are available

at https://github.com/tridungduong16/multiobj-scm-cf. The majority of the

content in this chapter is derived from the following paper:

• Duong, T. D., Li, Q., & Xu, G. (2022) Causality-based counterfactual ex-

https://github.com/tridungduong16/multiobj-scm-cf
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planation for classification models (Under review for Expert System with Ap-

plication)

5.1 Introduction

Machine learning (ML) is increasingly recognized as an effective approach for

large-scale automated decisions in several domains. However, when an ML model

is deployed in critical decision-making scenarios such as criminal justice (Završnik

2021; Kaur et al. 2020) or credit assessment (Galindo and Tamayo 2000), many

people are skeptical about its accountability and reliability. Hence, interpretablity

is vital to make machine learning models transparent and understandable by hu-

mans. Recent years witness an increasing number of studies that have explored

ML mechanisms under the causal perspective (Schwab and Karlen 2019b; Williams

et al. 2016; Zhao and Hastie 2021). Among these studies, counterfactual explanation

(CE) is the prominent example-based method that focuses on generating counter-

factual samples for interpreting model decisions. For example, consider a customer

A whose loan application has been rejected by the ML model of a bank. Counterfac-

tual explanations can generate a “what-if” scenario of this person, e.g., “your loan

would have been approved if your income was $51,000 more”. Namely, the goal of

counterfactual explanation is to generate perturbations of an input that leads to a

different outcome from the ML model. By allowing users to explore such “what-if”

scenarios, counterfactual examples are interpretable and are easily understandable

by humans.

Despite recent interests in counterfactual explanations, existing methods suffer

three limitations. First, the counterfactual methods neglect the causal relationship

among features, leading to the infeasible counterfactual samples for decision makers

(Ustun et al. 2019; Poyiadzi et al. 2020). In fact, a counterfactual sample is consid-

ered as feasible if the changes satisfy conditions restricted by the causal relations.

For example, since education causes the choice of the occupation, changing the occu-

pation without changing the education is infeasible for the loan applicant in the real

world. Namely, the generated counterfactuals need to preserve the causal relations

between features in order to be realistic and actionable. Second, on the algorithm
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level, most counterfactual methods use the gradient-free optimization algorithm to

deal with various data and model types (Sharma et al. 2020; Poyiadzi et al. 2020;

Dhurandhar et al. 2019; Grath et al. 2018; Lash et al. 2017). These gradient-free

optimizations rely on the heuristic search, which however suffers from inefficiency

due to the large heuristic search space. In addition, optimizing the trade-off among

different loss terms in the objective function is difficult, which often leads to sub-

optimal counterfactual samples (Mahajan et al. 2019; Mothilal et al. 2020b; Grath

et al. 2018).

To address the above limitations, we propose a prototype-based counterfactual

explanation framework (ProCE) in this paper. ProCE is a model-agnostic method

and is capable of explaining the classification in the mixed feature space. It should

be emphasized that the proposed method focuses on maintaining the causal rela-

tionships among the features in dataset instead of the causal relationship between

features and target variable (Fernández-Loŕıa et al. 2020). Overall, our contributions

are summarized as follows:

• By integrate causal discovery framework and causal loss function, our pro-

posed method can produce the counterfactual samples that satisfy the causal

constraints among features.

• We utilize the auto-encoder model and class prototype to guide the search

progress and speed up the searching speed of counterfactual samples.

• We design a novel multi-objective optimization that can find the optimal trade-

off between the objectives while maintaining diversity in counterfactual expla-

nations’ feature space.

5.2 Background

5.2.1 Preliminary

Throughout the paper, lower-cased letters x and x denote the deterministic

scalars and vectors, respectively. We consider a dataset D = {xi, ci}ni=1 consisting
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of n instances, where xi ∈ X is a sample, ci ∈ C = {0, 1} is the class of individuals

xi, and xji is the j-th feature of xi. Also, we consider a classifierH : X → Y that has

the input of feature space X and the output as Y = {0, 1}. We denote Qϕ(.) as an

encoder model parameterized by ϕ. Finally, proto∗(x) and K(x) are the prototype

and the set of K-nearest instances of an instance x, respectively.

Definition 5.1 (Counterfactual Explanation). With the original sample xorg ∈ X ,
and original prediction yorg ∈ Y, the counterfactual explanation aims to find the

nearest counterfactual sample xcf such that the outcome of classifier for xcf changes

to desired output class ycf. In general, the counterfactual explanation xcf for the

individual xorg is the solution of the following optimization problem:

x∗cf = argmin
xcf∈X

f(xcf) subject to H(x∗cf) = ycf (5.1)

where f(xcf) is the function measuring the distance between xorg and xcf. Eq (6.1)

demonstrates the optimization objective that minimizes the similarity of the coun-

terfactual and original samples, as well as ensures the classifier to change its deci-

sion output. For such explanations to be plausible, they should only suggest small

changes in a few features.

To make it clear, we consider a simple scenario that a person with a set of fea-

tures {income: $50k, CreditScore: “good”, education: “bachelor” , age: 52} applies

for a loan in a financial organization and receives the reject decision from a pre-

dictive model. In this case, the company can utilize the counterfactual explanation

(CF) as an advisor that provides constructive advice for this customer. To allow

this customer successfully get the loan, CF can give an advice that how to change

the customer’s profile such as increasing his/her income to $51k, or enhancing the

education degree to “Master”. This toy example illustrates that CF is capable of

providing interpretable advice that how to makes the least changes for the sample

to achieve the desired outcome.
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5.2.2 Related Work

Recently, there has been an increasing number of studies in this field. The

existing counterfactual explanation methods can be categorized into gradient-based

methods(Moore et al. 2019; Wachter et al. 2017; Mothilal et al. 2020b), auto-encoder

model (Dhurandhar et al. 2018; Mahajan et al. 2019), heuristic search based methods

(Poyiadzi et al. 2020; Sharma et al. 2020) and integer linear optimization (Cui et al.

2015; Kanamori et al. 2020).

Gradient-based methods: Counterfactual explanation is first proposed by

the study (Wachter et al. 2017) as the example-based method to interpret machine

learning models’ decision. In this study, the authors construct the cross-entropy

loss between the desired class and counterfactual samples’ prediction with the pur-

pose of changing the model output. Thereafter, some gradient-descent optimization

algorithms would be used to minimize the constructed loss. This approach draws

much attention with a plethora of studies (Grath et al. 2018; Dhurandhar et al.

2018; Mothilal et al. 2020b,b) that aim to customize the loss function to enhance

the properties of counterfactual generation. For example, the study (Grath et al.

2018) extends the distance functions in Eq (6.1) by using a weight vector (Θ) to

emphasize the importance of each feature. Some algorithms such as k-nearest neigh-

bors or global feature evaluation can be deployed to find this vector (Θ). Another

framework called DiCE (Mothilal et al. 2020b) proposes using the diversity score to

produce the number of generated samples that allows users to have more options.

They thereafter use the weighted sum to combine different loss functions together

and also adopt the gradient-descent algorithm to approximately find the optimal

solution. The research (Van Looveren and Klaise 2019) utilizes the class prototype

to guide the search progress to fall into the distribution of the expected class. This

method however does not consider the causal relationship among features. The dif-

ferentiable methods are the prominent approach in counterfactual explanation that

allows to optimize easily and control the loss functions, but are only restricted to

the differentiable models, and finds it hard to deal with the non-continuous values

in tabular data.
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Auto-encoder model: Other recent studies based on the variational auto-

encoder (VAE) model utilizes the properties of generative models to generate new

counterfactual samples. In the study (Pawelczyk et al. 2020), the authors first

construct an encoder-decoder architecture. Thereafter, they generate the latent

representation from the encoder, and make some perturbation into the latent repre-

sentation, and go through the decoder until the prediction models achieve the desired

class. Meanwhile, another line of recent work (Mahajan et al. 2019) proposes the

conditional auto-encoder model by combining different loss functions including pre-

diction loss and proximity loss. They thereafter generate multiple counterfactual

samples for all input data points by conditioning on the target class. These stud-

ies heavily rely on gradient-descent optimization which can face difficulties when

handling categorical features. In addition, VAE models that maximize the lower

bound of the log-likelihood rather than measuring the exact log-likelihood can give

unstable and inconsistent results.

Heuristic search methods: There is an increasing number of counterfac-

tual explanation methods for non-differentiable models, which makes the previous

gradient-based approach not applicable. They utilizes heuristic search for the opti-

mization problem such as Nelder-Mead (Grath et al. 2018), growing spheres (Laugel

et al. 2018), FISTA (Dhurandhar et al. 2019; Van Looveren and Klaise 2019), or

genetic algorithms (Dandl et al. 2020; Lash et al. 2017; Sharma et al. 2020). The

main idea of these approaches adopts evolutionary algorithms to effectively finds the

optimal counterfactual samples based on the defined cost functions. For example,

CERTIFAI (Sharma et al. 2020) customizes the genetic algorithm for the counter-

factuals search progress. CERTIFAI adopts the indicator functions (1 for different

values, else 0) and mean squared error for categorical and continuous features, re-

spectively. Apart from that, the study (Poyiadzi et al. 2020) introduces a method

called FACE that adopts Dijsstra’s algorithm to generate counterfactual samples by

finding the shortest path of the original input and the existing data points. The

main advantage of FACE is that the produced path from Dijsstra’s algorithm pro-

vides an insight into the step-by-step and feasible actions that users can take to
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achieve their goals. The generated samples of this method are limited to the input

space without generating new data.

Integer linear optimization The studies (Ustun et al. 2019; Cui et al. 2015)

propose to adopt integer linear optimization (ILO) solver for linear models utilizing

linear costs to generate the actionable changes. Specifically, they formulate the

problem of finding counterfactual samples according to the cost function as a mixed-

integer linear optimization problem and then utilize some existing solvers (Bliek1ú

et al. 2014) to obtain the optimal solution. To speed up the counterfactual samples

search process, the study (Artelt and Hammer 2020) introduces convex constraints

to bound the solutions in a region of data space locally. Although these approaches

seem promising when dealing with non-continuous features and non-differentiable

functions, they can be applied to linear models only.

Our method extends the line of studies (Van Looveren and Klaise 2019; Mahajan

et al. 2019) by integrating both structural causal model and class prototype. We

also formulate the problem as the multi-objective optimization problem and propose

an algorithm to find the counterfactual samples effectively.

5.3 Methodology

In this section, we firstly present different objective functions corresponding to

different properties of counterfactual samples. The structural causal model and

causal distance are also investigated to exploit the underlying causal relationship

among features. Then, we formulate the counterfactual sample generation as a

multi-objective optimization problem and propose an algorithm based on the non-

dominated sorting genetic algorithm (NSGA-II) to obtain the optimal solutions.

Figure 5.1 generally describes the overall architecture of our proposed framework

containing four main different loss functions: 1) prediction loss that ensures the valid

counterfactual samples, 2) proximity loss encourages that only small changes would

be performed in the counterfactual samples from the original one, 3) prototype-

based loss that guides the search progress, and finally 4) causality-preserving loss

that maintains the causal relationships. Moreover, there are three models in the
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framework: provided prediction model (h), auto-encoder model (Qφ), and structural

causal model (M).

41 50 0 1 .. 1 1 0 0

56 70 0 1 ... 1 0 1 0

38 51 1 1 ... 1 0 1 0

.. ... ... ... ... ... ... ... ...

43 56 0 0 .. 1 0 0 0

67 45 0 0 .. 1 0 0 0

42 54 1 1 .. 1 0 1 0

Figure 5.1 : The overall framework for the proposed ProCE. The counterfactual

samples are first initialized randomly.

5.3.1 Prototype-based Causal Model

Counterfactuals provide these explanations in the form of “how to assign these

features with different values, your credit application would have been accepted”.

This indicates that counterfactual samples should be constrained under several par-

ticular conditions. We first provide definitions of each constraint condition and fur-

ther tie them together as a multi-objective optimization problem to find an optimal

counterfactual explanation. For clarity, we first introduce each constrain condition

as loss function as follows.

Prediction Loss

We firstly consider the prediction loss which is the prominent loss function for

counterfactual explanation. In order to achieve the desired outcome, prediction

loss aims to calculate the distance between the counterfactual and expected/desired
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predictions. This loss function encourages the predictive models to change their

predictions of counterfactual samples towards the desired outcomes. Particularly,

for the classification scenario, we use the cross-entropy loss to minimize the coun-

terfactual and expected outcome. The prediction loss is defined as follows:

fpred(xcf) = −ycf log(H(xcf))− (1− ycf) log(1−H(xcf)) (5.2)

Cross-entropy loss (Russell 2019b) normally measures the performance of a classifi-

cation model whose output is a probability value between 0 and 1. Cross-entropy loss

is considered in this case to increases as the predicted probability of counterfactual

samples H(xcf) diverges from desired outcome ycf.

Prototype-based Loss

In practice, the search space of counterfactuals might be incredibly large which

thus results in slow optimization. Inspired by the work (Van Looveren and Klaise

2019), we utilize the class prototype to guide the search progress with the aim of

improving the efficiency of finding the counterfactual solutions. Class prototype is

first defined as the mean encoding of the instances belonging to the same class (Snell

et al. 2017). Therefore, in our work, we construct an auto-encoder model to obtain

the latent space which allows us to learn a better representation of these instances.

We resort to an encoder function denoted by Qϕ : X → RE which projects the

input feature X to the E-dimensional latent space. We denote K(xorg) = {xk, ck}Kk=1

as a set of K-nearest instances of xorg by estimating the latent distance ||Qϕ(xk)−
Qϕ(xorg)||22. Moreover, the classes of these K instances, i.e., {ck}Kk=1, are different

from the original prediction yorg meaning that ck ̸= yorg. Formally, K(xorg) is defined

as:

K(xorg) = {xk, ck}Kk=1 ⊂ D (5.3)

such thatck ̸= yorg

||Qϕ(xr)−Qϕ(xorg)||22 ≥ ||Qϕ(xj)−Qϕ(xorg)||22 ∀xr ∈ {D\K(xorg)}
(5.4)
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Therefore, a prototype of an original instance xorg is computed by the mean of

its nearest neighbors in the latent space:

proto∗(xorg) =
1

K

∑
xk∈K(xorg)

Qϕ(xk) (5.5)

The definition of proto∗ in Eq. 5.5 indicates that the prototype is in fact the

representatives of the samples belonging to counterfactual class. We thus define

the prototype loss function as L2-norm distance between the representation of the

counterfactual samples xcf in the latent space and the obtained prototypes:

fproto(xcf) = ∥Qϕ(xcf)− proto∗∥22 (5.6)

Features cost

One of the main obstacles of generating counterfactual samples is to compute the

feature cost which captures the effort required for changing from original instance

xorg to counterfactual ones xcf. From the fundamental principles of counterfactual

explanation, the generated samples should be as close as to the original one. The

smallest changes mean that the least efforts are made for decision-makers to take to

achieve their desired goals. However, even experts would find it hard to put the pre-

cise cost to demonstrate how unactionable the feature is. Moreover, when it comes

to the mixed-type tabular data that contains both the categorical and continuous

features, it is challenging to define the distance loss function (Jia et al. 2015; Kauf-

man and Rousseeuw 2009; van de Velden et al. 2019; Foss et al. 2019). The previous

studies (Sharma et al. 2020; Mothilal et al. 2020b; Dandl et al. 2020) normally apply

the indicator function that returns 1 when two categorical values match and returns

0 otherwise, and adopts L2-norm distance for comparing continuous features. How-

ever, the indicator function which only returns 0 and 1 fails to measure the degree of

similarity of two categories. In this study, we use the encoder model Qϕ to map the

categorical features into the latent space before estimating their distance. The main

advantage of this approach is that the encoder model has the capability to capture

the underlying relationship and pattern between each categorical value. This means

that manual feature engineering such as assigning weight for each category is not
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necessary, thus saving a great deal of time and effort. Thus, we come up with the

distance between two samples is defined as below:

fdist(xcf,xorg) =

∥x
j
cf − xjorg∥

2

2
, if xj is j-th continuous feature

∥Qϕ(xjcf)−Qϕ(xjorg)∥
2

2
, if xj is j-th categorical feature

(5.7)

Causality-preserving Loss

Although the distance function in Eq. (6.4) demonstrates the similarity of two

samples, it fails to capture the causal relationship between each feature. To deal

with this problem, we integrate the structural causal model, and thus construct the

causal loss function to ensure the features’ causal relationships in generated samples.

We provide some fundamental definitions about causality and thereafter define the

corresponding causal loss. In general, a structural causal model M = {U,V,F}
(Pearl 2009a) consists of three main components defined as below:

• U is the set of exogenous nodes which has no parents in the causal graph.

• V is the set of random variables which are endogenous nodes whose causal

mechanisms we are modeling. These variables have parents in the causal graph.

• F is the set of structural causal functions describing the causal relationships

among the unobserved and observed variables. Specifically, for each node

X ∈ V , a function fX ∈ F such that X = fX(Pa(X),UX) where Pa(X) is

the parent nodes of X.

A causal graph indicates a probabilistic graphical model that represents the

assumptions about data-generating mechanism. A causal graph consists of a set

of nodes and edges where each node represents a random variable, and each edge

illustrates the causal relationship. The causal effect in causal model is facilitated

by do-operator or intervention (Pearl et al. 2000) that assigns value x to a random

variable X denoted by do(x). The symbol do(x) is a model manipulation on a causal

graphM, which is defined as substitution of causal equation X = fX(Pa(X)G,UX)

with X = x.
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For each endogenous node v ∈ V , and its parent nodes (vp1 , vp2 , . . . , vpk), we

estimate each node v as v = g(vp1 , vp2 , . . . , vpk) to represent their causal relationship

with g(∗) is the structural causal equation constructed by linear regression model.

Since having the full causal graph is often impractical in real-world setting, it is

quite challenging to estimate structural causal equation g(∗). In this work, we utilize

LiNGAM (Shimizu 2014) which is a novel estimation technique based on the non-

Gaussianity of the data to determine the function g(∗). During the counterfactuals

generation progress, we firstly produce the predicted value of endogenous node xv

based on their parents before estimating the distance, which is measured as:

fcausal(x
v
cf,x

v
org) = ∥xvcf − xvorg∥22

= ∥g(x
vp1
cf ,x

vp2
cf , . . . ,x

vpk
cf )− xvorg∥

2

2

(5.8)

With a set of observed variables containing the endogenous and exogenous ones

X = {U,V}, we can re-write the general distance between the original and coun-

terfactual sample is the sum of distance of normal distance and causal distance. For

the exogenous nodes U (nodes without any parents in the causal network), we still

utilize the Eq. (5.7) which computingthe distance between two instances, while the

causal distance in Eq. (5.8) is employed for exogenous variables V (the remaining

features).

ffinal dist(xcf) =
U∑
u

fdist(x
u
cf,x

u
org) +

V∑
v

fcausal(x
v
cf,x

v
org) (5.9)

5.3.2 Multi-objective Optimization

In this section, we aim to describe the proposed algorithm which is used for opti-

mization process. With the loss functions presented in Sections 5.3.1 including fpred,

fproto, ffinal dist, we come up with the general objective functions Eq (5.10). These loss

functions illustrates different properties that counterfactual samples should adhere

to. The general loss functions containing three different losses is:

L(xcf) = {fpred(xcf), fproto(xcf), ffinal dist(xcf)} (5.10)

Therefore, the optimal solutions can be re-written as follows:
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x∗cf = argmin
xcf∈X

L(xcf) (5.11)

In order to obtain the optimal solutions, the majority of existing studies (Maha-

jan et al. 2019; Mothilal et al. 2020b; Grath et al. 2018) uses the trade-off parameter

sum assigning each loss function a weight, and combines them together. This ap-

proach seems to be reasonable; however, it is very challenging to balance the weights

for each loss, resulting in a great deal of efforts and time into hyperparameter tun-

ing. To address this issue, we propose to formulate the counterfactual explanation

search as the multi-objective problem (MOP). In this study, we modify the elitist

non-dominated sorting genetic algorithm (NSGA-II) (Deb et al. 2002a) to deal with

this optimization problem. Its main superiority is to optimize each loss function

simultaneously as well as provide the solutions presenting the trade-offs among ob-

jective functions. To make it clear, we first present some related definitions. Given

a set of n candidate solutions P = {xi}ni=1, we have the following ones:

Definition 5.2 (Dominance in the objective space). In the multi-objective optimiza-

tion problem, the goodness of a solution is evaluated by the dominance(Deb et al.

2002b). Given two solutions x and x̂ along with a number of p objective functions

fi, we have:

1. x weakly dominates x̂ (x ⪰ x̂) iff fi(x) ≥ fi(x̂) ∀i ∈ {1, . . . , p}.

2. x dominates x̂ (x ≻ x̂) iff x ⪰ x̂ and x ̸= x̂.

Definition 5.3 (Pareto front). Pareto front is a set of m solutions denoted by

F∗ = {xj}mj=1 ⊂ P such that xj dominates all remaining solutions xr ∈ {P\F∗}
with all objective functions. It means that fi(xj) ≥ fi(xr) ∀i ∈ {1, . . . , p}. The

main goal of non-dominated solutions is to provide a reasonable compromise between

all the objective functions that enhance one function’s performance but not degrade

others.

Definition 5.4 (Non-dominated sorting procedure). Non-dominated sorting step is

mainly used to sort the solutions in population according to the Pareto dominance

principle, which plays a central role in the selection procedure. In fact, the set of
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candidate solutions P can be divided into a set of H disjoint Pareto front as F =

{F1, F2, . . . , FH} where H is the maximum number of fronts. Non-dominated sorting

is a procedure for finding them. Particularly, in the non-dominated sorting step, all

the non-dominated solutions from Definition 5.3 are selected from the population and

are constructed as the Pareto front F1. After that, the non-dominated solutions are

chosen from the remaining population. The process is repeated until all the solutions

are assigned to a front FH .

Definition 5.5 (Crowding distance). One of the vital characteristics of a population

solution is diversity. In order to encourage the diversity of candidate solutions, the

simplest approach is to choose the individuals having a low density. Particularly,

to measure this characteristic, the crowding distance (Fortin and Parizeau 2013)

is used to rank each candidate solution. Specficially, the crowding distance of an

instance x is calculated as follows:

d(x) =

√√√√ p∑
i=1

(
fi(xa)− fi(xb)
fmin
i − fmax

i

)2

(5.12)

where p is the number of objective functions, xa and xb are two nearest instances

of x by calculating the Euclidean distance, fi is the i-th objective function, fmin
i and

fmax
i are its minimum or maximum value, respectively. The fundamental concept

behind crowding distance is to compute the Euclidean distance between each candi-

date solution {xj}mj=1 in a front F∗by using p objective functions corresponding to

p-dimensional hyper space.

The optimization process for objective function (7.7) is given by Algorithm 6.1.

The main idea behinds our approach is that for each generation, the algorithm

chooses the Pareto Front for each objective function and evolves to the better ones.

We firstly find the nearest class prototype of the original sample xorg, which is used to

measure the prototype loss function later. For the optimal counterfactual x∗cf finding

progress, each candidate solution is represented by the D-dimensional feature as the

genes. A random candidate population is initialized with the Gaussian distribution.

Thereafter, the objective functions including fpred, fproto, ffinal dist are calculated for
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each candidate. Non-dominated sorting procedure illustrated in Definition 5.4 is

then performed to obtain a set of Pareto fronts F = {Fi}Hh=1.

The crowding distance function illustrated in Definition 5.5 and Eq. (5.12) then

is adopted as the score to assign to each individual in the current population. The

algorithm only keeps the candidate solutions having the greatest ranking score,

which illustrates that these solutions have low density. The cross-over and mutation

procedures (Whitley 1994) are finally performed to generate the next population.

Particularly, the cross-over of two parents generates the new candidate solutions by

randomly swapping parts of genes. Meanwhile, the mutation procedure randomly

alters some genes in the candidate solutions to encourage diversity and avoid local

minimums. We repeat this process through many generations to find the optimal

counterfactual solution.
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Algorithm 5.1: Multi-objective Optimization for Prototype-based Counterfactual

Explanation (ProCE)

Input: An original sample xorg with its prediction yorg, desired class ycf, a provided

machine learning classifier H and encoder model Qϕ.

1: Compute prototype proto∗ by Eq. (5.5).

2: Initialize a batch of initial population with n candidate solutions P = {∆i}ni=1 with

∆i ∼ N (µ,ν).

3: Q = ∅
4: for g = 1 to G generation do

5: P = P ∪Q
6: for each candidate solution ∆i in P do

7: Compute fpred(∆i) based on Eq. (5.2).

8: Use proto∗ to compute fproto(∆i) based on Eq. (5.6).

9: Compute ffinal dist(∆i) based on Eq. (5.9).

10: end for

11: Obtain F = {Fh}Hh=1 by using non-dominated sorting procedure in Definition 5.4.

12: P = ∅
13: h = 0

14: while |P|+ |Fh| < n do

15: P = P ∪ Fh
16: h = h+ 1

17: end while

18: Compute the crowding distance as the ranking score for each solution in P based

on Eq. (5.12).

19: Keep n individuals in P based on ranking score.

20: Randomly pair ⌈n/2⌉ {∆1,∆2} ∈ P
21: for each pair {∆1,∆2} do
22: Perform crossover(∆1,∆2)→∆′1,∆

′
2

23: Perform mutation ∆′1 → ∆̃1,∆
′
2 → ∆̃2

24: Q = Q∪ {∆̃1, ∆̃2}
25: end for

26: end for

27: ∆∗ ← P[0]
Output: xcf = ∆∗
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5.4 Experiments

We conduct experiments on four datasets to demonstrate the superior perfor-

mance of our method when compared with state-of-the-art methods. All implemen-

tations are conducted in Python 3.7.7 with 64-bit Red Hat, Intel(R) Xeon(R) Gold

6150 CPU @ 2.70GHz. For our method, we construct the multi-objective optimiza-

tion algorithm with the support of library Pymoo∗ (Blank and Deb 2020). More

details of implementation settings can be found in our code repository.

5.4.1 Datasets

This section provides information about the datasets, on which we perform the

comparison experiments. Our method is capable of generating counterfactual sam-

ples while maintaining the causal relationship. To validate this claim, we con-

sider some feature conditions that restrict the generated counterfactual samples for

each dataset. For simplicity, we denote a ∝ b for the condition that (a increase

⇒ b increase) AND (a decrease ⇒ b decrease). We use four datasets including

Simple-BN, Sangiovese, Adult and Law.

Simple-BN (Mahajan et al. 2019) is a synthetic dataset containing 10,000 records

with three features (a1,a2,a3) and a binary output (y). The data is generated based

on the followed causal mechanism:

a1 ∼ N (µ1, σ1)

a2 ∼ N (µ2, σ2)

a3|a1, a2 ∼ N (k3 ∗ (a1 + a2)
2 + b3, σ3)

y|a1, a2, a3 ∼ Ber(σ(ky ∗ (a1 ∗ a2) + by − a3))

(5.13)

As illustrated by structural causal equations in Eq (5.13), two random variables a1

and a2 follow the corresponding normal distribution N (µ1, σ1) and N (µ2, σ2), while

a3 follows the normal distribution with mean value determined by the function of

a1 and a2. Additionally, target variable y follows the Bernoulli distribution with the

∗https://pymoo.org/algorithms/nsga2.html

https://pymoo.org/algorithms/nsga2.html
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function of a1, a2 and a3. Based on these generating mechanism, we consider the

following causal relationship between a1, a2 and a3:

(a1, a2) ∝ a3 (5.14)

The condition in Eq (5.13) means that a3 monotonically increase and decrease

by a function of two random variables a1 and a2.

Sangiovese†(Magrini et al. 2017) dataset evaluates the impact of several agro-

nomic settings on the quality of the Tuscan grapes. This dataset provides infor-

mation about 14 continuous features along with the binary output. We consider

the task of determining whether the grapes’ quality is good or not. Based on the

conditional linear Bayesian network provided with the dataset, we consider a causal

relationship between two features including mean number of sprouts (SproutN) and

mean number of bunches (BunchN) that is:

BunchN ∝ SproutN (5.15)

Adult‡(Dua and Graff 2017) is the real-world dataset providing information of

loan applicants in the financial organization. It is a mixed-type dataset that con-

sists of instances having both continuous features and categorical features. For this

dataset, we consider the task of determining whether the annual income of a person

exceeds $50k dollars. Similar to the study (Mahajan et al. 2019), with xage
∗ and

xeducation
∗ referring to the feature age and education of an individual, we consider

two conditions as below:

xage
cf ≥ xage

org (5.16)

xeducation
cf ∝ xage

org (5.17)

Regarding the first condition (xage
cf ≥ xage

org), counterfactual algorithms should

not suggest decreasing individuals’ ages since it violates the natural constraint that

†https://www.bnlearn.com/bnrepository/clgaussian-small.html

‡https://archive.ics.uci.edu/ml/datasets/adult

https://www.bnlearn.com/bnrepository/clgaussian-small.html
https://archive.ics.uci.edu/ml/datasets/adult
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human age increases over time. Meanwhile, the second condition (xeducation
cf ∝ xage

org)

demonstrates the education-age causal relationship that obtaining a higher degree of

education such as from “Bachelor” to “PhD” requires years to complete, thus causing

age to increase. As a result, any counterfactual sample increasing education-level

without increasing age is infeasible.

Law§(Wightman 1998) dataset provides information of students with their fea-

tures: sex, race and their entrance exam scores (LSAT), grade-point average (GPA)

and first year average grade (FYA). The main task is to determine which applicants

will be accepted to the law program. We consider a causal relationship:

(LSAT,GPA) ∝ FYA (5.18)

In order to evaluate the models’ effectiveness, we randomly split each dataset

into 80% training and 20% test set. We conduct 100 repeated experiments, then

evaluate performance on the test set and finally report the average statistics.

5.4.2 Evaluation Metrics

In this section, we briefly describe six quantitative metrics that are used to evalu-

ate the performance of our proposed method and baselines. We sample a number of

n factual samples and generate the counterfactual samples for them. Meanwhile ncat

and ncon are the corresponding number of categorical and continuous features. 1(.)

is the indicator function that returns 1 when the conditions are satisfied, otherwise

returns 0.

Target-class validity (%Tcv) (Mahajan et al. 2019; Poyiadzi et al. 2020) eval-

uates how well the algorithm can produce valid samples. Particularly, %Tcv is

calculated as the ratio of the number of samples belonging to the desired class and

the number of factual samples. Higher target-class validity is favorable, demon-

strating that the algorithm can generate greater numbers of counterfactual samples

towards the desirable target variable.

§http://www.seaphe.org/databases.php

http://www.seaphe.org/databases.php
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%Tcv =
n∑
i=0

1(h(xcf) = ycf)

n
(5.19)

Causal-constraint validity (%Ccv) measures the percentage of counterfac-

tual samples satisfying the pre-defined causal conditions. With this metric, the

main aim is to evaluate how well our algorithm can generate feasible counterfactual

samples that do not violate the causal relationship among features (Mahajan et al.

2019). With the causal conditions defined in the Section 5.4.1, using ns as the num-

ber samples satisfying causal conditions, the causal-constraint validity is defined in

Eq (5.20). Higher causal-constraint validity is preferable, illustrating the greater

number of satisfied counterfactual samples.

%Ccv =
ns
n

(5.20)

Categorical proximity measures the proximity for categorical features repre-

senting the total number of matches on the values of each category between xcf

and xorg. Higher categorical proximity is better, implying that the counterfactual

sample preserves the minimal changes from the original (Mothilal et al. 2020b).

Cat proximity = 1−
n∑
i=0

ncat∑
j=0

1(xjcf ̸= xjorg) (5.21)

Continuous proximity illustrates the proximity of the continuous features,

which is calculated as the negative of L2-norm distance between the continuous

features in xcf and xorg. Higher continuous proximity is preferable, implying that

the distance between the continuous features of xorg and xcf should be as small as

possible (Mothilal et al. 2020b).

Con proximity = −
n∑
i=0

ncon∑
j=0

∥xjcf − xj0∥
2

2
(5.22)

IM1 and IM2 are two interpretability metrics (IM) proposed in (Van Loov-

eren and Klaise 2019). Let Qorg
ϕ , Qcf

ϕ and Qfull
ϕ be the auto-encoder models trained

specifically on samples of class yorg, samples of class ycf and the full dataset, re-

spectively, we first provide the general idea behind these two metrics. On the one
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hand, IM1 measures the ratio of reconstruction errors of counterfactual sample xcf

using Qcf
ϕ and Qorg

ϕ . A smaller value for IM1 indicates that xcf can be reconstructed

more accurately by the autoencoder trained only on instances of the counterfactual

class ycf than by the autoencoder trained on the original class yorg. This therefore

demonstrate that the counterfactual sample xcf lies closer to the data manifold of

counterfactual class ycf, which is considered to be more interpretable. On the other

hand, IM2 evaluates the similarity of counterfactual sample xcf produced by Qcf
ϕ

and Qϕ. A low value of IM2 means that the reconstructed instances of xcf are very

similar when using either Qcf
ϕ or Qfull

ϕ . Therefore, the data distribution of the coun-

terfactual class ycf describes xcf as close as the distribution of all classes. Particularly,

IM1 and IM2 are defined as follows:

IM1(Qcf
ϕ , Q

org
ϕ ,xcf) =

n∑
i=0

∥xcf −Qcf
ϕ (xcf)∥22

∥xcf −Qorg
ϕ (xcf)∥22 + ϵ

(5.23)

IM2(Qcf
ϕ , Q

full
ϕ ,xcf) =

n∑
i=0

∥Qcf
ϕ (xcf)−Qfull

ϕ (xcf)∥r2
∥xcf∥22 + ϵ

(5.24)

5.4.3 Baseline Methods

We compare our proposed method (ProCE) with several baselines including

Wachter (AR), Growing Sphere (GS), CERTIFAI, CCHVAE and FACE. All of

them are the recent approaches in the counterfactual explanation with available

source codes and framework. The brief description of these baselines are illustrated

as follows:

1. Wachter (Wach) (Wachter et al. 2017) which is a fundamental approach

that generates counterfactual explanations by minimizing L1-norm by using

gradient descent to find counterfactuals xcf as close as to original instance xorg.

2. Growing Sphere (GS) (Laugel et al. 2017) is a random search algorithm,

which generates samples around the factual input point until a point with

a corresponding counterfactual class label was found. Growing hyperspheres

are utilized to create the random samples around the original instance. This
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approach deals with immutable features by excluding them from the search

procedure.

3. CERTIFAI (Sharma et al. 2019) CERTIFAI is an approach that utilizes

genetic algorithm to finds the counterfactual samples more effectively. The

source code for this method is not avaibale; therefore, we implement the CER-

TIFAI with the support from Python library PyGAD¶.

4. DiCE (Mothilal et al. 2020b). DiCE is one of the most prominent counterfac-

tual explanation framework. This construct the weighted sum of different loss

functions including proximity, diversity and sparsity together, and optimize

the combined loss via the gradient-descent algorithm. For implementation, we

utilize the source code‖ with default settings.

5. FACE (Poyiadzi et al. 2020) produces a feasible and actionable set of counter-

factual actions based on the shortest path lengths as determined by density-

weighted metrics. The generated counterfactuals by this method that are

plausible and coherent with the underlying data distribution.

For all the experiments, we build two predictions model namely 1st classifier

and 2nd classifier. The first classifier is a neural network with three hidden layers,

while the second one has five hidden layers with the following architecture:

1st classifier

• hidden Layer 1(Number of features, 64), batch normalization layer, dropout(0.1),

activation function ReLU

• hidden Layer 2(64, 32), batch normalization layer, Dropout(0.1), activation

function ReLU

• hidden Layer 3(32, 16), batch normalization layer, Dropout(0.1), activation

function ReLU

¶https://github.com/ahmedfgad/GeneticAlgorithmPython

‖https://github.com/divyat09/cf-feasibility

https://github.com/ahmedfgad/GeneticAlgorithmPython
https://github.com/divyat09/cf-feasibility
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• last Layer (16, Data size), activation function sigmoid

2nd classifier

• hidden layer 1(Number of features, 256), batch normalization layer, Dropout(0.1),

activation function ReLU

• hidden layer 2(Number of features, 128), batch normalization layer, Dropout(0.1),

activation function ReLU

• hidden layer 3(Number of features, 64), batch normalization layer, Dropout(0.1),

activation function ReLU

• hidden layer 4(64, 32), batch normalization layer, Dropout(0.1), activation

function ReLU

• hidden layer 5(32, 16), batch normalization layer, Dropout(0.1), activation

function ReLU

• last hidden layer (16, Data size), activation function sigmoid

The continuous features in datasets are in different value ranges; therefore, fol-

lowing the common practice in feature engineering (Zheng and Casari 2018; ?; ?), we

normalize the continuous feature to range (0,1). Moreover, regarding the categorical

features, we transform them into numeric forms by using a label encoder.

5.4.4 Results and Discussions

The performance of different metrics on 1st and 2nd classifier are illustrated in

Table 5.1 and 5.2, respectively. Regarding to the 1st classifier from Table 5.1,

all three methods achieve the competitive target-class validity, except the Watch

performance in all datasets with around 90% of samples belonging to the target

class. Regarding the percentage of samples satisfying the causal constraints, by far

the greatest performance is achieved by ProCE with 85.91%, 91.84%, 95.64% and

90.43% for Simple-BN, Sangiovese, Adult and Law datasets, respectively. FACE
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also produces a competitive performance across four datasets in terms of this met-

ric, standing at 81.49%, 88.65%, 92.49% and 86.71% while the majority of gen-

erated samples from Watch violate the causal constraints (63.61%, 58.1%, 70.40%

and 76.71%). The performance of %Ccv cannot be achieved to 100% for all the

methods which demonstrates that it is quite challenging to maintain the causal

constraints in counterfactual samples. Moreover, these results indicate that by in-

tegrating the structural causal model, our proposed method can effectively produce

the counterfactual samples preserving the features’ causal relationships. Regarding

interpretability scores, our proposed method achieved the best IM1 and IM2 on

four datasets. DiCE is ranked second recorded with competitive result in Adult

dataset (0.0809 for IM1 and 0.2679 for IM2) and Law dataset (0.0423 for IM1 and

0.0427 for IM2). The performance of all metrics on the 2nd classifier in Table 5.2

also demonstrates the competitive performance of our proposed method across all

metrics. We also notice that although the 2nd has a more complicated architecture

than the 1st classifier, there is a small variation on the performance of counterfactual

explanation algorithm. Finally, as expected, by using prototype as a guideline of

the counterfactual search process, ProCE produces more interpretable counterfac-

tual instances recorded with good performance in IM1 and IM2. By contrast, it is

challenging for other approaches to reconstruct the counterfactual samples, leading

to high interpretability scores (IM1 and IM2).

On the other hand, to better comprehend the effectiveness of our proposed

method in producing counterfactual samples compared with other approaches, we

also perform a statistical significance test (paired t-test) between our approach

(ProCE) and other methods on each dataset and each metric with the obtained

results on 100 randomly repeated experiments and report the result of p-value in

Table 5.1 and 5.2. We find that our model is statistically significant with p < 0.05,

thus demonstrating the effectiveness of ProCE in counterfactual samples generation

task.

Figure 6.2 provides information about the categorical proximity in the Adult

dataset and continuous proximity in four datasets. For the categorical proximity
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on both 1st and 2nd classifier, ProCE consistently achieves an average of 5 out of

the total 6 categories in the dataset meaning that the counterfactual sample gen-

erated from ProCE preserves an average of 5 categorical features from the origi-

nal instances. CERTIFAI and FACE also yield competitive results for categorical

proximity, whereas the lowest result is recorded in the GS algorithm (1.7 to 3.5

categories). These results illustrate that the gradient-free based approach including

ProCE, CERTIFAI and FACE can achieve better performance in handling the non-

continuous features in tabular data. When it comes to the continuous proximity,

ProCE produces the counterfactual sample with the greatest similarity around over

-0.02, -0.078, -0.1875 and -0.17 corresponding to Simple-BN, Sangiovese, Adult

and Law dataset. Our proposed method produces the least fluctuation in contin-

uous proximity for Sangiovese, Simple-BN, Adult, while the biggest variation is

witnessed in Law.

We also report the running time of different methods in Table 6.2. Overall,

the shortest time is recorded with Watch method on Simple-BN, Sangiovese, and

Law datasets. The possible reason is that Watch is the naive approach which op-

timizes the basic proximity loss functions using gradient descent. This therefore

allows producing the counterfactual sample in a prominent time but demonstrates

a poor performance in several metrics. Our approach (ProCE) also demonstrates

competitive time performance on these three datasets. Regarding Adult dataset

which contains both categorical and continuous features, our approach performs

counterfactual sample generation in the outstanding time and also surpasses other

non-gradient descent methods such as FACE, CERTIFAI and GS.

Figure 5.3a and 5.3b show the variation of our method’s performance with the

different numbers of K-nearest neighbors for class prototype and E-dimensional em-

bedding sizes of the auto-encoder model, respectively. It is clear from Figure 5.3a

that the performance of continuous proximity for Simple-BN, Sangiovese and Adult

datasets is nearly stable with different embedding sizes, while Law witnesses a quite

significant variation, increasing from around -0.336 to -0.224 corresponding to em-

bedding sizes of 32 to 256, followed by a slight decrease to -0.33 (embedding size
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Figure 5.2 : Baseline results in terms of Continuous proximity and Categorical

proximity. Higher continuous and categorical proximity are better.

512). A similar pattern also is recorded for the remaining metrics including categori-

cal proximity, IM1, and IM2 with the good and stable performance at an embedding

size of 256. The slight small fluctuations possibly illustrate that the impact of em-

bedding size on the model performance is not very significant. Moreover, 256 is the

preferable embedding size, while the sizes of 32 and 512 seem to be relatively small

and large to sufficiently capture latent information for embedding vectors. Regard-

ing categorical proximity, the performance declines slightly by 0.1 from 32 to 64, and

thereafter varies slightly around 4.0 - 4.09 with embedding sizes of 128, 256, and

512. On the other hand, as can be seen from Figure 5.3b, IM1 and IM2 demonstrate

a similar pattern illustrated by the worst performance when the number of instances

of 15, followed by a stagnant performance from 25 to 45 instances. It is believed

that the similar trend occurring in IM1 and IM2 is reasonable due to their similar

properties illustrated in Section 5.4.2. Meanwhile, there is no significant variation in

the performance of continuous and categorical proximity across four datasets. These

results suggest that the performance of our proposed method witnesses a small vari-

ation in all evaluation metrics regarding two hyperparameters (embedding sizes and

numbers of nearest neighbors), implying our model’s stability and robustness.
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(a) Our performance under different sizes of E-dimensional embedding for encoder function

Qϕ.

(b) Our performance under different numbers of K-nearest neighbors for class prototype

Figure 5.3 : Sensitivity of hyperparameters.

5.5 Conclusion

This paper introduces a novel counterfactual explanation algorithm by integrat-

ing the structural causal model and the class prototype. We also proposed formu-

lating the counterfactual generation as a multi-objective problem and construct an

optimization algorithm to find the optimal counterfactual explanation in an effective

manner. Our experiments validate that our method outperforms the state-of-the-

art methods on many evaluation metrics. For future work, we plan to extend our

framework to the imperfect structural causal model that is very commonplace in real-

world scenarios. Meanwhile, other multi-objective optimization algorithms such as

reinforcement learning and multi-task learning are also worthy of investigation.

32 64 128 256 512
Embedding size

−0.448

−0.336

−0.224

−0.112

0.000

Continuous proximity

Simple BN

Sangionese

Adult

Law

32 64 128 256 512
Embedding size

3.72

3.84

3.96

4.08

4.20

Categorical proximity

Adult

32 64 128 256 512
Embedding size

0.0416

0.0832

0.1248

0.1664

0.2080

IM1

Simple BN

Sangionese

Adult

Law

32 64 128 256 512
Embedding size

0.00000

0.00272

0.00544

0.00816

0.01088

IM2

Simple BN

Sangionese

Adult

Law

5 10 15 20 25 30 35 40 45
Number of instances

0.00

0.12

0.24

0.36

0.48

0.60 Continuous proximity

Simple BN

Sangionese

Adult

Law

5 10 15 20 25 30 35 40 45
Number of instances

3.0

3.6

4.2

4.8

5.4

6.0 Categorical proximity

Adult

5 10 15 20 25 30 35 40 45
Number of instances

0.0000

0.1202

0.2404

0.3606

0.4808

IM1

Simple BN

Sangionese

Adult

Law

5 10 15 20 25 30 35 40 45
Number of instances

0.0000

0.0218

0.0436

0.0654

0.0872

IM2

Simple BN

Sangionese

Adult

Law



100

Method Dataset
Performance p-value

%Tcv %Ccv IM1 IM2 (x10) %Tcv %Ccv IM1 IM2

Wach Simple-BN 91.00 63.61 0.0379 ± 0.0741 0.0769 ± 0.1385 0.0129 0.0289 0.0393 0.0446

GS Simple-BN 100.00 79.72 0.0453 ± 0.0835 0.0792 ± 0.0202 0.0340 0.0480 0.0223 0.0483

CERTIFAI Simple-BN 100.00 77.44 0.0489 ± 0.1353 0.0271 ± 0.0711 0.0098 0.0226 0.0365 0.0218

DiCE Simple-BN 100.00 73.61 0.0376 ± 0.1345 0.0815 ± 0.1762 0.0227 0.031 0.0135 0.0427

FACE Simple-BN 100.00 81.49 0.0365 ± 0.0583 0.0429 ± 0.1614 0.0256 0.0197 0.0444 0.0468

ProCE Simple-BN 100.00 85.91 0.0322 ± 0.1014 0.0211 ± 0.0845 - - - -

Wach Sangiovese 92.03 58.10 0.2513 ± 0.1452 0.0533 ± 0.0132 0.0260 0.0365 0.0447 0.0358

GS Sangiovese 100.00 89.60 0.2295 ± 0.0584 0.0425 ± 0.1502 0.0131 0.0469 0.014 0.0162

CERTIFAI Sangiovese 100.00 74.29 0.2915 ± 0.1920 0.0721 ± 0.1366 0.0410 0.0389 0.0215 0.0212

DiCE Sangiovese 100.00 78.10 0.2447 ± 0.0759 0.0374 ± 0.1657 0.0297 0.0306 0.0388 0.0102

FACE Sangiovese 100.00 88.65 0.2424 ± 0.0962 0.0873 ± 0.0495 0.0471 0.0148 0.0140 0.0119

ProCE Sangiovese 100.00 91.84 0.2152 ± 0.1686 0.0370 ± 0.0574 - - - -

Wach Adult 93.95 70.40 0.0709 ± 0.1582 0.3063 ± 0.1382 0.048 0.0285 0.0242 0.0407

GS Adult 100.00 70.13 0.2241 ± 0.0396 0.3343 ± 0.0564 0.0144 0.0274 0.0114 0.0468

CERTIFAI Adult 100.00 91.99 0.0939 ± 0.0834 0.3735 ± 0.1150 0.0320 0.0348 0.0310 0.0222

DiCE Adult 100.00 80.40 0.0809 ± 0.1538 0.2679 ± 0.1661 0.0318 0.0169 0.0275 0.0415

FACE Adult 100.00 92.49 0.1283 ± 0.0336 0.3245 ± 0.1881 0.0215 0.0346 0.019 0.0242

ProCE Adult 100.00 95.64 0.0675 ± 0.1908 0.2171 ± 0.0546 - - - -

Wach Law 92.45 76.71 0.0536 ± 0.1312 0.0470 ± 0.0800 0.0159 0.026 0.0115 0.0378

GS Law 100.00 86.23 0.0484 ± 0.1173 0.0487 ± 0.0858 0.0481 0.0392 0.0314 0.0315

CERTIFAI Law 100.00 82.72 0.0567 ± 0.1427 0.0461 ± 0.1797 0.0102 0.0425 0.0191 0.0340

DiCE Law 100.00 85.75 0.0423 ± 0.1902 0.0427 ± 0.0801 0.0138 0.0206 0.0122 0.0487

FACE Law 100.00 86.71 0.0418 ± 0.0125 0.0435 ± 0.1160 0.0125 0.0315 0.0333 0.0450

ProCE Law 100.00 90.43 0.0410 ± 0.1268 0.0421 ± 0.1907 - - - -

Table 5.1 : Performance of all methods on 1st classifier.We compute p-value by

conducting a paired t-test between our approach (ProCE) and baselines with 100

repeated experiments for each metric.
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Method Dataset
Performance p-value

%Tcv %Ccv IM1 IM2 (x10) %Tcv %Ccv IM1 IM2

Wach Simple-BN 93.33 70.96 0.0512 ± 0.0466 0.0262 ± 0.0507 0.0320 0.0096 0.0372 0.0487

GS Simple-BN 100.00 79.46 0.0401 ± 0.1888 0.0354 ± 0.0352 0.0242 0.038 0.0274 0.0308

CERTIFAI Simple-BN 100.00 83.68 0.0465 ± 0.0389 0.0824 ± 0.1345 0.0378 0.0138 0.031 0.0255

DiCE Simple-BN 100.00 82.93 0.0342 ± 0.0790 0.0448 ± 0.0260 0.0376 0.0324 0.0497 0.0277

FACE Simple-BN 100.00 82.03 0.0458 ± 0.1209 0.0435 ± 0.0123 0.0215 0.0086 0.0275 0.0437

ProCE Simple-BN 100.00 89.09 0.0318 ± 0.0104 0.0202 ± 0.0167 - - - -

Wach Sangiovese 93.92 74.49 0.2731 ± 0.1090 0.0445 ± 0.0919 0.0255 0.0291 0.0474 0.0363

GS Sangiovese 100.00 71.44 0.2654 ± 0.0394 0.0407 ± 0.0770 0.0319 0.0378 0.0294 0.0447

CERTIFAI Sangiovese 100.00 80.95 0.2583 ± 0.1369 0.0798 ± 0.1898 0.0281 0.0304 0.0389 0.0297

DiCE Sangiovese 100.00 92.25 0.2603 ± 0.1383 0.0880 ± 0.1144 0.0436 0.0323 0.0478 0.0381

FACE Sangiovese 100.00 77.95 0.2302 ± 0.0029 0.0522 ± 0.0169 0.0464 0.0152 0.0351 0.0184

ProCE Sangiovese 100.00 86.25 0.2127 ± 0.0973 0.0360 ± 0.0388 - - - -

Wach Adult 91.45 75.23 0.1731 ± 0.1270 0.3520 ± 0.1592 0.0127 0.0454 0.0407 0.0378

GS Adult 100.00 75.82 0.1719 ± 0.1673 0.1565 ± 0.1634 0.0308 0.0099 0.0224 0.0447

CERTIFAI Adult 100.00 80.56 0.1512 ± 0.0920 0.2326 ± 0.0686 0.0265 0.0351 0.0309 0.0341

DiCE Adult 100.00 76.43 0.2371 ± 0.1801 0.3823 ± 0.0016 0.0154 0.0396 0.0427 0.0343

FACE Adult 100.00 76.02 0.1649 ± 0.1448 0.3393 ± 0.0083 0.0254 0.0144 0.0105 0.0285

ProCE Adult 100.00 92.85 0.1467 ± 0.1096 0.1324 ± 0.1027 - - - -

Wach Law 90.55 73.36 0.0437 ± 0.0913 0.0594 ± 0.1896 0.0375 0.0474 0.0462 0.0349

GS Law 100.00 84.09 0.0532 ± 0.0988 0.0643 ± 0.0244 0.0269 0.0267 0.0402 0.0334

CERTIFAI Law 100.00 80.88 0.0382 ± 0.0915 0.0592 ± 0.0566 0.0495 0.0172 0.0428 0.0286

DiCE Law 100.00 87.54 0.0382 ± 0.0530 0.0461 ± 0.1928 0.0421 0.0489 0.0342 0.0373

FACE Law 100.00 75.51 0.0422 ± 0.1875 0.0383 ± 0.0029 0.0476 0.0374 0.015 0.0304

ProCE Law 100.00 79.48 0.0317 ± 0.1073 0.0313 ± 0.1648 - - - -

Table 5.2 : Performance of all methods on 2nd classifier. We compute p-value by

conducting a paired t-test between our approach (ProCE) and baselines with 100

repeated experiments for each metric.
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Method Dataset
Running time (s)

1st classifier 2nd classifier

Wach Simple-BN 3.030 ± 0.105 5.111 ± 0.135

GS Simple-BN 7.126 ± 0.153 6.541 ± 0.053

CERTIFAI Simple-BN 6.213 ± 0.007 6.237 ± 0.088

DiCE Simple-BN 6.522 ± 0.088 6.455 ± 0.016

FACE Simple-BN 8.022 ± 0.014 6.599 ± 0.173

ProCE Simple-BN 4.085 ± 0.055 6.017 ± 0.160

Wach Sangiovese 5.125 ± 0.097 5.768 ± 0.113

GS Sangiovese 8.048 ± 0.176 12.549 ± 0.086

CERTIFAI Sangiovese 7.688 ± 0.131 8.906 ± 0.105

DiCE Sangiovese 13.426 ± 0.158 11.775 ± 0.086

FACE Sangiovese 7.810 ± 0.076 11.348 ± 0.200

ProCE Sangiovese 6.809 ± 0.162 7.304 ± 0.101

Wach Adult 7.046 ± 0.151 7.260 ± 0.058

GS Adult 6.472 ± 0.021 6.464 ± 0.145

CERTIFAI Adult 13.851 ± 0.001 9.457 ± 0.120

DiCE Adult 7.943 ± 0.046 10.326 ± 0.016

FACE Adult 10.821 ± 0.162 9.140 ± 0.149

ProCE Adult 4.837 ± 0.026 5.733 ± 0.019

Wach Law 4.821 ± 0.068 4.957 ± 0.131

GS Law 12.126 ± 0.093 13.480 ± 0.152

CERTIFAI Law 5.516 ± 0.009 6.337 ± 0.027

DiCE Law 6.150 ± 0.038 8.103 ± 0.0410

FACE Law 5.450 ± 0.184 6.661 ± 0.025

ProCE Law 4.830 ± 0.130 5.001 ± 0.152

Table 5.3 : We report running time of different methods on four datasets.
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Chapter 6

CeFlow: A Robust and Efficient Counterfactual

Explanation Framework with Normalizing Flows.

In this chapter, we shift our focus towards two additional aspects of the counterfac-

tual explanations which have already discussed in Chapter 5: robustness and effi-

ciency. Although state-of-the-art counterfactual explanation methods are proposed

to use variational autoencoder (VAE) to achieve promising improvements, they suffer

from two major limitations: 1) the counterfactuals generation is prohibitively slow,

which prevents algorithms from being deployed in interactive environments; 2) the

counterfactual explanation algorithms produce unstable results due to the random-

ness in the sampling procedure of variational autoencoder. In this work, to address

the above limitations, we design a robust and efficient counterfactual explanation

framework, namely CeFlow, which utilizes normalizing flows for the mixed-type of

continuous and categorical features. Numerical experiments demonstrate that our

technique compares favorably to state-of-the-art methods. We release our source

code∗ for reproducing the results. The content of this chapter is from:

1. Duong, T. D., Li, Q., & Xu, G. (2023) CeFlow: A robust and efficient

counterfactual explanation framework with normalizing flows. Advances in

Knowledge Discovery and Data Mining (PAKDD 2023, CORE A).

6.1 Introduction

Machine learning (ML) has resulted in advancements in a variety of scientific and

technical fields, including computer vision, natural language processing, and conver-

sational assistants. Interpretable machine learning is a machine learning sub-field

∗https://github.com/tridungduong16/fairCE.git

https://github.com/tridungduong16/fairCE.git
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that aims to provide a collection of tools, methodologies, and algorithms capable

of producing high-quality explanations for machine learning model judgments. A

great deal of methods in interpretable ML methods has been proposed in recent

years. Among these approaches, counterfactual explanation (CE) is the prominent

example-based method involved in how to alter features to change the model pre-

dictions and thus generates counterfactual samples for explaining and interpreting

models (Mahajan et al. 2019; Artelt and Hammer 2020; Grath et al. 2018; Wachter

et al. 2017; Xu et al. 2020). An example is that for a customer A rejected by a loan

application, counterfactual explanation algorithms aim to generate counterfactual

samples such as “your loan would have been approved if your income was $51,000

more” which can act as a recommendation for a person to achieve the desired out-

come. Providing counterfactual samples for black-box models has the capability to

facilitate human-machine interaction, thus promoting the application of ML models

in several fields.

The recent studies in counterfactual explanation utilize variational autoencoder

(VAE) as a generative model to generate counterfactual sample (Pawelczyk et al.

2020; Mahajan et al. 2019). Specifically, the authors first build an encoder and de-

coder model from the training data. Thereafter, the original input would go through

the encoder model to obtain the latent representation. They make the perturbation

into this representation and pass the perturbed vector to the encoder until getting

the desired output. However, these approaches present some limitations. First, the

latent representation which is sampled from the encoder model would be changed

corresponding to different sampling times, leading to unstable counterfactual sam-

ples. Thus, the counterfactual explanation algorithm is not robust when deployed

in real applications. Second, the process of making perturbation into latent rep-

resentation is so prohibitively slow (Mahajan et al. 2019) since they need to add

random vectors to the latent vector repeatedly; accordingly, the running time of al-

gorithms grows significantly. Finally, the generated counterfactual samples are not

closely connected to the density region, making generated explanations infeasible and

non-actionable. To address all of these limitations, we propose a Flow-based coun-
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terfactual explanation framework (CeFlow) that integrates normalizing flow which

is an invertible neural network as the generative model to generate counterfactual

samples. Our contributions can be summarized as follows:

• We introduce CeFlow, an efficient and robust counterfactual explanation frame-

work that leverages the power of normalizing flows in modeling data distri-

butions to generate counterfactual samples. The usage of flow-based models

enables to produce more robust counterfactual samples and reduce the algo-

rithm running time.

• We construct a conditional normalizing flow model that can deal with tabular

data consisting of continuous and categorical features by utilizing variational

dequantization and Gaussian mixture models.

• The generated samples from CeFlow are close to and related to high-density

regions of other data points with the desired class. This makes counterfactual

samples likely reachable and therefore naturally follow the distribution of the

dataset.

6.2 Related works

An increasing number of methods have been proposed for the counterfactual

explanation. The existing methods can be categorized into gradient-based meth-

ods (Wachter et al. 2017; Mothilal et al. 2020b), auto-encoder model (Mahajan

et al. 2019), heuristic search methods (Poyiadzi et al. 2020; Sharma et al. 2020)

and integer linear optimization (Kanamori et al. 2020). Regarding gradient-based

methods, The authors in the study construct the cross-entropy loss between the

desired class and counterfactual samples’ prediction with the purpose of changing

the model output. The created loss would then be minimized using gradient-descent

optimization methods. In terms of auto-encoder model, generative models such as

variational auto-encoder (VAE) is used to generate new samples in another line of

research. The authors (Pawelczyk et al. 2020) first construct an encoder-decoder

architecture. They then utilize the encoder to generate the latent representation,
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make some changes to it, and run it through the decoder until the prediction models

achieve the goal class. However, VAE models which maximize the lower bound of

the log-likelihood instead of measuring exact log-likelihood can produce unstable

and unreliable results. On the other hand, there is an increasing number of coun-

terfactual explanation methods based on heuristic search to select the best counter-

factual samples such as Nelder-Mead (Grath et al. 2018), growing spheres (Laugel

et al. 2018), FISTA (Dhurandhar et al. 2019; Van Looveren and Klaise 2019), or

genetic algorithms (Dandl et al. 2020; Lash et al. 2017). Finally, the studies (Ustun

et al. 2019) propose to formulate the problem of finding counterfactual samples as a

mixed-integer linear optimization problem and utilize some existing solvers (Bliek1ú

et al. 2014; Artelt and Hammer 2020) to obtain the optimal solution.

6.3 Preliminaries

Throughout the paper, lower-cased letters x and x denote the deterministic

scalars and vectors, respectively. We consider a classifier H : X → Y that has the

input of feature space X and the output as Y = {1...C} with C classes. Meanwhile,

we denote a dataset D = {xn, yn}Nn=1 consisting of N instances where xn ∈ X is

a sample, yn ∈ Y is the predicted label of individuals xn from the classifier H.

Moreover, fθ is denoted for a normalizing flow model parameterized by θ. Finally,

we split the feature space into two disjoint feature subspaces of categorical features

and continuous features represented by X cat and X con respectively such that X =

Xcat×Xcon and x = (xcat,xcon), and xcatj and xconj is the corresponding j-th feature

of xcat and xcon.

6.3.1 Counterfactual Explanation

With the original sample xorg ∈ X and its predicted output yorg ∈ Y , the

counterfactual explanation aims to find the nearest counterfactual sample xcf such

that the outcome of classifier for xcf is changed to desired output class ycf. We aim

to identify the perturbation δ such that counterfactual instance xcf = xorg + δ is

the solution of the following optimization problem:
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xcf = argmin
xcf∈X

d(xcf,xorg) subject to H(xcf) = ycf (6.1)

where d(xcf,xorg) is the function measuring the distance between xorg and xcf.

Eq (6.1) demonstrates the optimization objective that minimizes the similarity of

the counterfactual and original samples, as well as ensures to change the classifier

to the desirable outputs. To make the counterfactual explanations plausible, they

should only suggest minimal changes in features of the original sample. (Mothilal

et al. 2020b).

6.3.2 Normalizing Flow

Normalizing flows (NF) (Dinh et al. 2014) is the active research direction in

generative models that aims at modeling the probability distribution of a given

dataset. The study (Dinh et al. 2016) first proposes a normalizing flow, which

is an unsupervised density estimation model described as an invertible mapping

fθ : X → Z from the data space X to the latent space Z. Function fθ can be

designed as a neural network parametrized by θ with architecture that has to ensure

invertibility and efficient computation of log-determinants. The data distribution is

modeled as a transformation f−1θ : Z → X applied to a random variable from the

latent distribution z ∼ pZ , for which Gaussian distribution is chosen. The change

of variables formula gives the density of the converted random variable x = f−1θ (z)

as follows:

pX (x) = pZ(fθ(x)) ·
∣∣∣∣det(∂fθ∂x

)∣∣∣∣
∝ log (pZ(fθ(x))) + log

(∣∣∣∣det(∂fθ∂x

)∣∣∣∣) (6.2)

With N training data points D = {xn}Nn=1, the model with respects to parameters

θ can be trained by maximizing the likelihood in Equation (6.3):

θ =θ

(
N∏
n=1

(
log(pZ(fθ(xn))) + log

(∣∣∣∣det(∂fθ(xn)∂xn

)∣∣∣∣))
)

(6.3)

6.4 Methodology

In this section, we illustrate our approach (CeFlow) which leverages the power of

normalizing flow in generating counterfactuals. First, we define the general architec-

ture of our framework in section 6.4.1. Thereafter, section 6.4.2 and 6.4.3 illustrate
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how to train and build the architecture of the invertible function f for tabular data,

while section 6.4.4 describes how to produce the counterfactual samples by adding

the perturbed vector into the latent representation.

6.4.1 General architecture of CeFlow

Figure 6.1 : Counterfactual explanation with normalizing flows (CeFlow).

Figure 6.1 generally illustrates our framework. Let xorg be an original instance,

and fθ denote a pre-trained, invertible and differentiable normalizing flow model

on the training data. In general, we first construct an invertible and differentiable

function fθ that converts the original instance xorg to the latent representation

zorg = f(xorg). After that, we would find the scaled vector δz as the perturbation

and add to the latent representation zorg to get the perturbed representation zcf

which goes through the inverse function f−1
θ to produce the counterfactual instance

xcf. With the counterfactual instance xcf = f−1
θ (zorg + δz), we can re-write the

objective function Eq. (6.1) into the following form:



δz = argminδz∈Z d(xorg, δz)

H(xcf) = ycf

(6.4)

One of the biggest problems of deploying normalizing flow is how to handle

mixed-type data which contains both continuous and categorical features. Categor-

ical features are in discrete forms, which is challenging to model by the continuous

distribution only (Ho et al. 2019). Another challenge is to construct the objective
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function to learn the conditional distribution on the predicted labels (Winkler et al.

2019; Izmailov et al. 2020). In the next section, we will discuss how to construct the

conditional normalizing flow fθ for tabular data.

6.4.2 Normalizing flows for categorical features

This section would discuss how to handle the categorical features. Let {zcatm}Mm=1

be the continuous representation of M categorical features {xcatm}Mm=1 for each

xcatm ∈ {0, 1, ..., K − 1} with K > 1. Follow by several studies in the literature

(Ho et al. 2019; Hoogeboom et al. 2020), we utilize variational dequantization to

model the categorical features. The key idea of variational dequantization is to add

noise u to the discrete values xcat to convert the discrete distribution pX cat into

a continuous distribution pϕcat . With zcat = xcat + uk, ϕcat and θcat be models’

parameters, we have following objective functions:

log pX cat(xcat) ≥
∫
u
log

pϕcat(z
cat)

qθcat(u|xcat)
du

≈ 1

K

K∑
k=1

log
M∏
m=1

pϕcat(x
catm + uk)

qθcat(uk|xcat)

(6.5)

Followed the study (Hoogeboom et al. 2020), we choose Gaussian dequantiza-

tion which is more powerful than the uniform dequantization as qθcat(uk|xcat) =

sig
(
N
(
µθcat ,Σθcat

))
with mean µθcat , covariance Σθcat and sigmoid function sig(·).

6.4.3 Conditional Flow Gaussian Mixture Model for tabular data

The categorical features xcat going through the variational dequantization would

convert into continuous representation zcat. We then perform merge operation

on continuous representation zcat and continuous feature xcon to obtain values

(zcat,xcon) 7→ xfull. Thereafter, we apply flow Gaussian mixture model (Izmailov

et al. 2020) which is a probabilistic generative model for training the invertible func-

tion fθ. For each predicted class label y ∈ {1...C}, the latent space distribution pZ

conditioned on a label k is the Gaussian distribution N
(
zfull | µk,Σk

)
with mean

µk and covariance Σk:

pZ(z
full | y = k) = N

(
zfull | µk,Σk

)
(6.6)
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As a result, we can have the marginal distribution of zfull:

pZ(z
full) =

1

C
C∑
k=1

N
(
zfull | µk,Σk

)
(6.7)

The density of the transformed random variable xfull = f−1θ (zfull) is given by:

pX (x
full) = log

(
pZ(fθ(x

full))
)
+ log

(∣∣∣∣det( ∂fθ
∂xfull

)∣∣∣∣) (6.8)

Eq. (6.7) and Eq. (6.8) together lead to the likelihood for data as follows:

pX (x
full | y = k) = log

(
N
(
fθ(x

full) | µk,Σk

))
+ log

(∣∣∣∣det( ∂fθ
∂xfull

)∣∣∣∣) (6.9)

We can train the model by maximizing the joint likelihood of the categorical and

continuous features on N training data points D = {(xcon
n ,xcat

n )}Nn=1 by combining

Eq. (6.5) and Eq. (6.9):

θ∗, ϕ∗cat, θ
∗
cat =θ,ϕcat,θcat

N∏
n=1

 ∏
xcon
n ∈X con

pX (xcon
n )

∏
xcat
n ∈X cat

pX
(
xcat
n

)
=θ,ϕcat,θcat

N∏
n=1

(
log
(
N
(
fθ(x

full
n ) | µk,Σk

))
+ log

(∣∣∣∣det( ∂fθ
∂xfull

n

)∣∣∣∣))
(6.10)

6.4.4 Counterfactual generation step

In order to find counterfactual samples, the recent approaches (Mothilal et al.

2020b; Wachter et al. 2017) normally define the loss function and deploy some op-

timization algorithm such as gradient descent or heuristic search to find the per-

turbation. These approaches however demonstrates the prohibitively slow running

time, which prevents from deploying in interactive environment(Höltgen et al. 2021).

Therefore, inspired by the study (Hvilshøj et al. 2021), we add the scaled vector as

the perturbation from the original instance xorg to counterfactual one xcf. By Bayes’

rule, we notice that under a uniform prior distribution over labels p(y = k) = 1
C for

C classes, the log posterior probability becomes:

log pX (y = k|x) = log
pX (x|y = k)∑C
k=1 pX (x|y = k)

∝ ||fθ(x)− µk||2 (6.11)

We observed from Eq. (6.11) that latent vector z = fθ(x) will be predicted from

the class y with the closest model mean µk. For each predicted class k ∈ {1...C},
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we denote Gk = {xm, ym}Mm=1 as a set of M instances with the same predicted class

as ym = k. We define the mean latent vector µk corresponding to each class k such

that:

µk =
1

M

∑
xm∈Gk

fθ(xm) (6.12)

Therefore, the scaled vector that moves the latent vector zorg to the decision bound-

ary from the original class yorg to counterfactual class ycf is defined as:

∆yorg→ycf =
∣∣∣µyorg − µycf

∣∣∣ (6.13)

The scaled vector ∆yorg→ycf is added to the original latent representation zcf =

fθ(xorg) to obtained the perturbed vector. The perturbed vector then goes through

inverted function f−1θ to re-produce the counterfactual sample:

xcf = f−1θ (fθ(xorg) + α∆yorg→ycf) (6.14)

We note that the hyperparameter α needs to be optimized by searching in a

range of values. The full algorithm is illustrated in Algorithm 6.1.

Algorithm 6.1: Counterfactual explanation flow (CeFlow)

Input: An original sample xorg with its prediction yorg, desired class ycf, a provided

machine learning classifier H and encoder model Qϕ.

1: Train the invertible function fθ by maximizing the log-likelihood:

θ∗, ϕ∗cat, θ
∗
cat =θ,ϕcat,θcat

N∏
n=1

 ∏
xcon
n ∈X con

pX (xcon
n )

∏
xcat
n ∈X cat

pX
(
xcat
n

)
=θ,ϕcat,θcat

N∏
n=1

(
log
(
N
(
fθ(x

full
n ) | µk,Σk

))
+ log

(∣∣∣∣det( ∂fθ
∂xfull

n

)∣∣∣∣))

2: Compute mean latent vector µk for each class k by µk =
1
M

∑
xm∈Gk f(xm).

3: Compute the scaled vector ∆yorg→ycf =
∣∣∣µyorg − µycf

∣∣∣.
4: Find the optimal hyperparameter α by searching a range of values.

5: Compute xcf = f−1θ (fθ(xorg) + α∆yorg→ycf).

Output: xcf.
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6.5 Experiments

We run experiments on three datasets to show that our method outperforms

state-of-the-art approaches. The specification of hardware for the experiment is

Python 3.8.5 with 64-bit Red Hat, Intel(R) Xeon(R) Gold 6238R CPU @ 2.20GHz.

We implement our algorithm by using Pytorch library and adopt the RealNVP archi-

tecture (Dinh et al. 2016). During training progress, Gaussian mixture parameters

are fixed: the means are initialized randomly from the standard normal distribution

and the covariances are set to I. More details of implementation settings can be

found in our code repository†.

We evaluate our approach via three datasets: Law (Wightman 1998), Compas

(Larson et al. 2016) and Adult (Dua and Graff 2017). Law‡(Wightman 1998)

dataset provides information of students with their features: their entrance exam

scores (LSAT), grade-point average (GPA) and first-year average grade (FYA).

Compas§(Larson et al. 2016) dataset contains information about 6,167 prisoners who

have features including gender, race and other attributes related to prior conviction

and age. Adult¶(Dua and Graff 2017) dataset is a real-world dataset consisting of

both continuous and categorical features of a group of consumers who apply for a

loan at a financial institution.

We compare our proposed method (CeFlow) with several state-to-the-art meth-

ods including Actionable Recourse (AR) (Ustun et al. 2019), Growing Sphere (GS)

(Laugel et al. 2017), FACE (Poyiadzi et al. 2020), CERTIFAI (Sharma et al. 2020),

DiCE (Mothilal et al. 2020b) and C-CHVAE (Pawelczyk et al. 2020). Particularly,

we implement the CERTIFAI with library PyGAD‖ and utilize the available source

code∗∗ for implementation of DiCE, while other approaches are implemented with

†https://anonymous.4open.science/r/fairCE-538B

‡http://www.seaphe.org/databases.php

§https://www.propublica.org

¶https://archive.ics.uci.edu/ml/datasets/adult

‖https://github.com/ahmedfgad/GeneticAlgorithmPython

∗∗https://github.com/divyat09/cf-feasibility

https://anonymous.4open.science/r/fairCE-538B
http://www.seaphe.org/databases.php
https://www.propublica.org
https://archive.ics.uci.edu/ml/datasets/adult
https://github.com/ahmedfgad/GeneticAlgorithmPython
https://github.com/divyat09/cf-feasibility
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Carla library (Pawelczyk et al. 2021). Finally, we report the results of our pro-

posed model on a variety of metrics including success rate (success), l1-norm (l1),

categorical proximity (Mothilal et al. 2020b), continuous proximity (Mothilal et al.

2020b) and mean log-density (Artelt and Hammer 2020). Note that for l1-norm,

we report mean and variance of l1-norm corresponding to l1-mean and l1-variance.

Lower l1-variance aims to illustrate the algorithm’s robustness.

Table 6.1 : Performance of all methods on the classifier. We compute p-value by

conducting a paired t-test between our approach (CeFlow) and baselines with 100

repeated experiments for each metric.

Dataset Method
Performance p-value

success l1-mean l1-var log-density success l1 log-density

Law

AR 98.00 3.518 2.0e-03 -0.730 0.041 0.020 0.022

GS 100.00 3.600 2.6e-03 -0.716 0.025 0.048 0.016

FACE 100.00 3.435 2.0e-03 -0.701 0.029 0.010 0.017

CERTIFAI 100.00 3.541 2.0e-03 -0.689 0.029 0.017 0.036

DiCE 94.00 3.111 2.0e-03 -0.721 0.018 0.035 0.048

C-CHVAE 100.00 3.461 1.0e-03 -0.730 0.040 0.037 0.016

CeFlow 100.00 3.228 1.0e-05 -0.679 - - -

Compas

AR 97.50 1.799 2.4e-03 -14.92 0.038 0.034 0.046

GS 100.00 1.914 3.2e-03 -14.87 0.019 0.043 0.040

FACE 98.50 1.800 4.8e-03 -15.59 0.036 0.024 0.035

CERTIFAI 100.00 1.811 2.4e-03 -15.65 0.040 0.048 0.038

DiCE 95.50 1.853 2.9e-03 -14.68 0.030 0.029 0.018

C-CHVAE 100.00 1.878 1.1e-03 -13.97 0.026 0.015 0.027

CeFlow 100.00 1.787 1.8e-05 -13.62 - - -

Adult

AR 100.00 3.101 7.8e-03 -25.68 0.044 0.037 0.018

GS 100.00 3.021 2.4e-03 -26.55 0.026 0.049 0.028

FACE 100.00 2.991 6.6e-03 -23.57 0.027 0.015 0.028

CERTIFAI 93.00 3.001 4.1e-03 -25.55 0.028 0.022 0.016

DiCE 96.00 2.999 9.1e-03 -24.33 0.046 0.045 0.045

C-CHVAE 100.00 3.001 8.7e-03 -24.45 0.026 0.043 0.019

CeFlow 100.00 2.964 1.5e-05 -23.46 - - -

Table 6.2 : We report running time of different methods on three datasets.

Dataset AR GS FACE CERTIFAI DiCE C-CHVAE CeFlow

Law 3.030 ± 0.105 7.126 ± 0.153 6.213 ± 0.007 6.522 ± 0.088 8.022 ± 0.014 9.022 ± 0.066 0.850 ± 0.055

Compas 5.125 ± 0.097 8.048 ± 0.176 7.688 ± 0.131 13.426 ± 0.158 7.810 ± 0.076 6.879 ± 0.044 0.809 ± 0.162

Adult 7.046 ± 0.151 6.472 ± 0.021 13.851 ± 0.001 7.943 ± 0.046 11.821 ± 0.162 12.132 ± 0.024 0.837 ± 0.026

The performance of different approaches regarding three metrics: l1, success met-

rics and log-density are illustrated in Table 6.1. Regarding success rate, all three
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methods achieve competitive results, except the AR, DiCE and CERTIFAI perfor-

mance in all datasets with around 90% of samples belonging to the target class.

These results indicate that by integrating normalizing flows into counterfactuals

generation, our proposed method can achieve the target of counterfactual explana-

tion task for changing the models’ decision. Apart from that, for l1-mean, CeFlow

is ranked second with 3.228 for Law, and is ranked first for Compas and Adult (1.787

and 2.964). Moreover, our proposed method generally achieves the best performance

regarding l1-variance on three datasets. CeFlow also demonstrates the lowest log-

density metric in comparison with other approaches achieving at -0.679, -13.62 and

-23.46 corresponding to Law, Compas and Adult dataset. This illustrates that the

generated samples are more closely followed the distribution of data than other

approaches. We furthermore perform a statistical significance test to gain more

insights into the effectiveness of our proposed method in producing counterfactual

samples compared with other approaches. Particularly, we conduct the paired t-test

between our approach (CeFlow) and other methods on each dataset and each met-

ric with the obtained results on 100 randomly repeated experiments and report the

result of p-value in Table 6.1. We discover that our model is statistically significant

with p < 0.05, proving CeFlow’s effectiveness in counterfactual samples generation

tasks. Meanwhile, Table 6.2 shows the running time of different approaches. Our

approach achieves outstanding performance with the running time demonstrating

around 90% reduction compared with other approaches. Finally, as expected, by

using normalizing flows, CeFlow produces more robust counterfactual samples with

the lowest l1-variance and demonstrates an effective running time in comparison

with other approaches.

Figure 6.2 illustrates the categorical and continuous proximity. In terms of cat-

egorical proximity, our approach achieves the second-best performance with lowest

variation in comparison with other approaches. The heuristic search based algorithm

such as FACE and GS demonstrate the best performance in terms of this metric.

Meanwhile, DiCE produces the best performance for continuous proximity, whereas

CeFlow is ranked second. In general, our approach (CeFlow) achieves competitive
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performance in terms of proximity metric and demonstrates the least variation in

comparison with others. On the other hand, Figure 6.3 shows the variation of our

method’s performance with the different values of α. We observed that the op-

timal values are achieved at 0.8, 0.9 and 0.3 for Law, Compas and Adult dataset,

respectively.

Figure 6.3 : Our performance under different values of hyperparameter α. Note that

there are no categorical features in Law dataset.

6.6 Conclusion

In this paper, we introduced a robust and efficient counterfactual explanation

framework called CeFlow that utilizes the capacity of normalizing flows in generating

counterfactual samples. We observed that our approach produces more stable coun-

terfactual samples and reduces counterfactual generation time significantly. The

better performance witnessed is likely because that normalizing flows can get the

exact representation of the input instance and also produce the counterfactual sam-

ples by using the inverse function. Numerous extensions to the current work can be

investigated upon successful expansion of normalizing flow models in interpretable

machine learning in general and counterfactual explanation in specific. One poten-

tial direction is to design a normalizing flow architecture to achieve counterfactual

fairness in machine learning models.
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Part IV

Counterfactual fairness



118

Part IV embarks on a comprehensive exploration of the pivotal concept of coun-

terfactual fairness for algorithmic decision-making. Chapter 7 introduces and thor-

oughly examine the concept of counterfactual fairness, and proposed an approach to

achieve counterfactual fairness with imperfect structural causal model. This chap-

ter not only identifies these challenges but also proposes a novel and innovative

methodology that strategically harnesses the untapped potential of imperfect struc-

tural causal models (SCMs). This pioneering approach signifies a significant leap

forward in our collective endeavor to achieve fairness in machine learning, offering

a promising pathway for future exploration and widespread implementation.
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Chapter 7

Achieving Counterfactual Fairness with Imperfect

Structural Causal Model

Counterfactual fairness alleviates the discrimination between the model prediction

toward an individual in the actual world (observational data) and that in counter-

factual world (i.e., what if the individual belongs to other sensitive groups). The

existing studies need to pre-define the structural causal model that captures the

correlations among variables for counterfactual inference; however, the underlying

causal model is usually unknown and difficult to be validated in real-world scenar-

ios. Moreover, the misspecification of the causal model potentially leads to poor

performance in model prediction and thus makes unfair decisions. In this chapter,

we propose a novel minimax game-theoretic model for counterfactual fairness that

can produce accurate results meanwhile achieve a counterfactually fair decision with

the relaxation of strong assumptions of structural causal models. In addition, we

also theoretically prove the error bound of the proposed minimax model. Empiri-

cal experiments on multiple real-world datasets illustrate our superior performance

in both accuracy and fairness. Source code is available at https://github.com/

tridungduong16/counterfactual_fairness_game_theoretic. The main mate-

rial of this chapter is derived from the following reference:

1. Duong, T. D., Li, Q., & Xu, G. (2022) Achieving Counterfactual Fairness

with Imperfect Structural Causal Model (Under review for Knowledge-based

System).

7.1 Introduction

As machine learning (ML) is increasingly leveraged in high-stake domains such as

criminal justice (Berk et al. 2021) or credit assessment (Zhang and Zhou 2019), the

https://github.com/tridungduong16/counterfactual_fairness_game_theoretic
https://github.com/tridungduong16/counterfactual_fairness_game_theoretic
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concerns regarding ethical issues in designing ML algorithms have arisen recently.

Fairness is one of the most important concerns to avoid discrimination in the model

prediction towards an individual or a population. Recent years witness an increas-

ing number of studies that have explored fairness-aware machine learning under the

causal perspective (Nabi and Shpitser 2018; Kusner et al. 2017; Zhang and Barein-

boim 2018; Chiappa 2019). Causal models specifically (Pearl et al. 2009) provide an

intuitive and powerful way of reasoning the causal effect of sensitive attribution on

the final decision. Among these studies in this line of work, counterfactual fairness

is a causal and individual-level fairness notion first proposed by (Kusner et al. 2017),

which considers a model counterfactually fair if its predictions are identical in both

a) the original world and b) the counterfactual world where an individual belongs

to another demographic group.

As the first practice of counterfactual fairness, (Kusner et al. 2017) first con-

structs a structural causal model using prior domain knowledge. Unobserved vari-

ables are then inferred which are independent of and have no causal relationship

to the sensitive attributes. The inferred latent variables are thereafter used as the

input for the predictive models. The main limitation of the study is that the strong

assumption of the causal model is required which is however hard to achieve in a

real-world setting, especially when it comes to a large-scale dataset with a great

number of features (VanderWeele 2009; Peters et al. 2016). Additionally, even if

prior knowledge of causal structure is available, counterfactual fairness algorithms

involves computing counterfactuals in the true underlying structural causal model

(SCM) (Pearl 2009b), and thus relies on strong impractical assumptions. Specif-

ically, the algorithm requires complete knowledge of the true structural equations

(Fong 2013; Bollen and Pearl 2013; Pearl 2012). Another obstacle is that the tab-

ular data contains both continuous and categorical data, making them difficult to

be represented by the probabilistic equations. Moreover, when removing all other

features and only using non-descendants of sensitive ones, there are possibly insuf-

ficient features used for model training which can degrade the model capability and

significantly deteriorate the accuracy performance.
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To tackle the above limitations, we propose a novel counterfactual fairness ap-

proach with the knowledge about structural causal models is limited. In particular,

we aim to minimize the sensitive information impact on model decisions, while

maintaining satisfactory model accuracy. To achieve the optimal solutions that

maximize the fairness-accuracy trade-offs, we propose a minimax game-theoretic

approach that consists of three main components. As shown in Figure 7.1, the

invariant-encoder model pθ learns the invariant representation that is unchangeable

from sensitive attributes. After that, the fair-learning predictive model utilizes the

invariant representation as the input with the purpose of not only guaranteeing the

main learning tasks but also assuring the fairness aspect, while sensitive-awareness

model used both the invariant representation and sensitive information that can

produce the good learning performance. For theoretical proof, we provide a the-

oretical analysis for the generalization bound of the minimax objective functions.

To illustrate the effectiveness of our proposed method, we compare our method

with state-of-the-art methods on three benchmark datasets including Law, Compas

and Adult datasets. The experimental results indicate that our proposed method

can achieve outstanding fairness performance in comparison with other baselines.

Specifically, our contributions can be summarized as follows:

• We introduce a minimax game-theoretic approach to obtain the invariant-

encoder model and fair-learning predictive model that can jointly produce the

counterfactually fair prediction and obtain the competitive performance on

both classification and regression tasks.

• We prove the theoretical generalization bounds for the adversarial algorithm

of the proposed minimax model.

• We perform the extensive experiments on three datasets and demonstrate the

effectiveness of the proposed method to achieve satisfactory fairness and ac-

curacy.
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7.2 Preliminaries

In this section, we provide notations and problem statements and then review

individual and counterfactual fairness notions.

Throughout the paper, upper-cased letters X and X represent the random

scalars and vectors respectively, while lower-cased letters x and x denote the deter-

ministic scalars and vectors, respectively. We consider a dataset D = {xi, si, yi}ni=1

consisting of n instances, where xi ∈ X is the normal features (e.g. age, work-

ing hours,..), si ∈ S is the sensitive feature (e.g. race and gender), and yi ∈ Y

is the target variable regarding individuals i. Sensitive features specify an individ-

ual’s belongings to socially salient groups (e.g. women and Asian). H(.) and I(.) are

the corresponding Shannon entropy and mutual information (Cover et al. 1991), and

L(.) is the loss function (e.g. cross-entropy for classification tasks, mean square error

for regression tasks). Finally, fθ represents a neural network model parameterized

by θ.

Figure 7.1 generally illustrates our proposed approach that consists of an invariant-

encoder model (qθ) generating the invariant features, a fair-learning predictor (fϕ1)

trained by invariant features and a sensitive-aware predictor (fϕ2) trained on invari-

ant and sensitive representation.

Definition 7.1 (Counterfactual fairness (Kusner et al. 2017)). A classifier is con-

sidered as counterfactual fair given the sensitive attribute S = s if:

P (ŶS←s = y|X = x, S = s) = P (ŶS←ŝ = y|X = x, S = ŝ) (7.1)

where Ŷ denotes the model prediction depends on X and S, while model prediction

for intervention S ← ŝ is denoted as ŶS←s. Meanwhile, P (ŶS←ŝ = y|X = x, S = ŝ)

is the counterfactual prediction where we change the value S = s to S = ŝ.

The Eq. (7.1) ensures that the distribution over possible predictions is the same

in both the actual world and a counterfactual world where the sensitive attribute(s)

were modified while all other conditions remain unchanged.
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7.3 Related work

This section focuses on the research related to our work and then highlights the

main limitation of these studies.

Individual fairness. Since counterfactual fairness analyses fairness at the in-

dividual level, our work is closely related to individual fairness works. (Dwork et al.

2012) first captures the main idea of individual fairness that two individuals having

the same particular task should be treated similarly. This principle draws much at-

tention with a plethora of studies (Miconi 2017; Biega et al. 2018; Mukherjee et al.

2020; Sharifi-Malvajerdi et al. 2019). However, this concept is hard to apply in

practice due to the barrier of defining the similarity regarding the individual tasks.

This leads to the shift from achieving fairness decisions to defining similar tasks.

Another recent study (Speicher et al. 2018) provides a unified approach to evaluate

the performance of individual fairness algorithms by using a generalized entropy

index that has been previously used widely in economics as a measure of income

inequality in the population. Our work utilizes the generalized entropy index as the

primary metric for evaluation purposes.

Counterfactual fairness. In order to achieve fairness in the model decision,

the traditional approach is the unawareness model (Grgic-Hlaca et al. 2016) that

only uses the non-sensitive attributes as the input for predictive models. This ap-

proach seems to be reasonable but neglects the biased effect of sensitive attributes

on normal features. Thus, the study (Kusner et al. 2017) first proposed the ap-

proach of counterfactual fairness by only using the non-descendants of the sensitive

attribute for prediction tasks. They first assume the causal graph structure with

the latent variables independent from the sensitive attributes. The study there-

after fits the data into the causal model and produces the posterior distribution

for unobserved variables. The inferred variables are finally utilized as inputs for

the predictive model. Apart from that, multi-world counterfactual fairness (Russell

et al. 2017) introduces another alternative method to deal with the uncertainty of

the ground-truth causal model. They first have an assumption that there are several
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possible causal diagrams that represent different counterfactual worlds. Thereafter,

the authors build a neural network and then use the gradient descent algorithm to

minimize the difference in the predictions between the different worlds. Although

this approach seems to be promising, it also needs a list of causal models to be taken

into consideration. To sum up, all of the above methods require strong assumptions

about causal graphs to infer the latent variables. Moreover, sensitive attributes such

as race, gender, and nationality are personally intrinsic attributes and immensely

influential that normally have a causal relationship to other features.

7.4 Methodology

This section illustrates our proposed method, which can achieve counterfactual

fairness without the assumption of structural causal models. In summary, our pro-

posed method aims to learn a representation along with a predictive model which

together can make a counterfactual fair prediction and maintain the prediction ac-

curacy. In summary, our proposed approach contains three main components: 1)

invariant-encoder model learning the invariant representation that is unchangeable

from sensitive attributes; 2) fair-learning predictive model which not only guarantees

the main learning tasks but also assures the fairness aspect; 3) sensitive-awareness

model that contains the sensitive information which can produce the good learning

performance. Each component would be discussed in detail in Section 7.4.2.

7.4.1 Motivation

We first consider an example of probabilistic graphical model in Figure 7.2,

we have two sensitive features: S1 and S2, non-sensitive features X1, X2, and

X3, and the target variable Y . We want to find a latent representation Z that is

independent of the sensitive attributes. Producing the latent representation that is

invariant across different sensitive attributes is a challenging task. However, we can

handle this challenge if we have information about sensitive attributes. We make an

assumption that the probability p(Y |Z) remains the same across different sensitive

attributes S1 and S2 because Z has the direct causal relationship to target variable

Y and also does not rely on S1 and S2. Meanwhile, other remaining features X1,
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Figure 7.2 : A structural causal model illustrates the causal relationships between

different features. S1 and S2 are sensitive features (e.g., gender or race), X1, X2

and X3 are the non-sensitive features (e.g., education or working hours), Z is a

latent representation that is independent of sensitive attributes and Y is the target

variable. The large white arrows from S1 and S2 represent that S1 and S2 have the

causal effects to every variables (X1, X2, X3) and target variable (Y ) contained in

the box.

X2 and X3 are causally influenced by S1 and S2; thus, the probability of p(Y |X1),

p(Y |X2) and p(Y |X3) will change if we change the value of S1 and S2.

In general, our main purpose is to find a representation (Z) that is invariant

across different sensitive attributes. We want to design an invariant-encoder model

pθ : X → Z that learns the representation (Z) from the input (X). An ideal

invariant representation should satisfy the following conditions.

Y ⊥ do(S)|Z ⇐⇒ H(Y |Z, do(S)) = H(Y |Z) (7.2)

where ⊥ denotes probabilistic independence. Y is independent of do(S) only

when conditioned on latent representation Z and we call this variance property.

Moreover, the Eq. (7.2) means that the representation (Z) is unchangeable, and

sensitive attributes (S) do not provide extra information to predict target variables
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(Y ). This means that making an intervention on sensitive attribute (S) does not

lead to changes in the model prediction (Y ).

7.4.2 Three-player model for invariant fairness

Our proposed framework is illustrated in Figure 7.1 which describes the training

and backpropagation process as well as inputs and different components. In general,

the proposed framework has three main trainable models including an invariant-

encoder model (qθ) that generates the invariant features, a fair-learning predictor

(fϕ1) that predicts outcomes based on invariant features and a sensitive-aware pre-

dictor (fϕ2) that predicts outcomes based on both invariant and sensitive represen-

tation. The framework also includes a pre-trained auto-encoder model (qψ) that

produces latent representation from sensitive features. For clarity, we will briefly

describe the auto-encoder model and then present the two predictors followed by

the invariant-encoder model.

Auto-encoder model. Sensitive attributes (S) are in the categorical form

and discrete values, which is hard to utilize in neural networks. Therefore, we

construct the auto-encoder model (qψ) with the purpose of 1) converting discrete

values to continuous form which is more suitable to the complicated models, 2)

capturing the intrinsic relationship between categorical groups, and flexibly control

the dimensional number of embedding vector. The auto-encoder model (qψ)(Ng

et al. 2011) is trained beforehand by using all of the features as the input. The

encoder-decoder architecture with an embedding layer is used that aims to project

sensitive attributes S onto an e-dimensional latent space Re (qψ : S → Se). The

latent representation of sensitive attributes (Se) would be thereafter utilized to be

injected into the sensitive-aware predictor later.

Two predictors. The fair-learning predictor fϕ1 : Z → Y that predicts target

variable (Y ) from the latent representation (Z). Meanwhile, the sensitive-aware pre-

dictive model fϕ2 : (Z,Se)→ Y makes a prediction (Y ) from latent representation

(Z) and sensitive attributes information (Se). The only difference between them is

that the sensitive-aware predictor can access to sensitive information, while the fair-
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learning one only uses the invariant representation. The loss functions for the fair-

learning and sensitive-aware predictive model are L(Y, fϕ1(Z)) and L(Y, fϕ2(Z,S
e)),

respectively. Thus, the optimal solutions for both of them can be definedas follows:

ϕ∗i = argmin
ϕ1

E[L(Y, fϕ1(Z))] (7.3)

ϕ∗2 = argmin
ϕ2

E[L(Y, fϕ2(Z,Se))] (7.4)

Invariant-encoder model. The invariant-encoder model qθ : X → Z learns

the representation (Z) from the input (X). The aims of the invariant-encoder model

are first to optimize the fair-learning predictive model, and then to minimize the

gap between the predictions of two predictive models. This allows to ensure the

model accuracy in the prediction task and excludes sensitive information in model

decisions. Therefore, the learning objective for the invariant-encoder model is:

θ∗ = argmin
θ
L(Y, fϕ∗1(Z)) + λh(fϕ∗1(Z)− fϕ∗2(Z,S

e)) (7.5)

where h(t) is a strictly monotonic function that increases when t > 0, and decreases

when t < 0.

Objective function and training. By combining learning objectives from

Eq. (7.3), (7.4) and (7.5), we can produce the final objective function in the minimax

form Eq. (7.6) with the latent representation Z = qθ(X). Overall, the loss function

represents the minimax game where the invariant-encoder model plays cooperative

games with the fair-learning predictor and adversarial games with the sensitive-

aware predictor. The objective functions first aims to minimize the prediction of

function fϕ1 and make the gap between fϕ2 and fϕ1 as small as possible.

argmin
θ,ϕ1

ϕ2L(Y, fϕ1(Z)) + λh(fϕ1(Z)− fϕ2(Z,Se)) (7.6)

Regarding the training process for three models, the loss functions corresponding

to each model are first calculated. We thereafter update each model by descending

stochastic gradients regarding invariant-encoder model, fair-learning predictor and

ascending stochastic gradient of sensitive-aware predictor. We perform updating

procedure with a number of steps, and only one model is updated for each step. In
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our experiments, we used Adam optimization algorithm (Kingma and Ba 2014) to

optimize (7.6).

7.5 Theoretical analysis for Three-player model

This section provides the generalization bound for our proposed method un-

der the minimax setting. Remember we consider the local minimax empirical risk

minimization problem

min
θ,ϕ1

max
ϕ2

E[L (Y, fϕ1(Z))] (7.7)

By applying a duality argument, we reformulate the dual problem via the probabil-

ity of sensitive attributes. Let P ∗ be the ideal fair sample distribution corresponding

to P/Q0, according to the underlying exposure mechanism Q0 and data distribution

P . We choose the Wasserstein distance to investigate how to transport from the

observed data distribution to an ideal data distribution that is independent of the

sensitive attributes. The reason is that unlike the Kullback-Leibler divergence, the

Wasserstein metric is a true probability metric and considers both the probability

of and the distance between various outcome events. Wasserstein distance provides

a meaningful and smooth representation of the distance between distributions.The

Wasserstein Distance is furthermore to measure distances between probability dis-

tributions on a given metric space. The use of the Wasserstein distance is motivated

because this distance is defined and computable even between distributions with

disjoint supports.

Definition 7.2 (Wasserstein Distance). The Wasserstein distance for our problem

is defined as:

Wc

(
P̂ , P ∗

)
= inf

γ∈Π(P̂ ,P ∗)
E((x,z,y),(x′,z′,y′))∼γ

[
c
(
(x, z, y),

(
x′, z′, y′

))]
(7.8)

where c : X ×X → [0,+∞) is the convex, lower semicontinuous transport cost func-

tion with c(t, t) = 0, and Π
(
P̂ , P ∗

)
is the set of all distributions whose marginals

are given by P̂ and P ∗.

The Wasserstein distance intuitively refers to the minimum cost associated with

transporting mass between probability measures. Suppose that the transportation
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cost c in (7.8) is continuous and the probability of fair representation is bounded

away from zero, i.e., fϕ1(Z), then the minimax objective (7.7) has a desirable for-

mulation as

min
fθ∈F

sup
q̂

EP

[
δ (Y, fϕ1(Z))

q̂(Z|X)

]
− λWc (q̂(Z |X), q∗) (7.9)

To make sense of (7.9), we see that while q̂(Z |X) is acting adversarially against

fϕ1 as the inverse weights in the first term, it cannot arbitrarily increase the objective

function, since the second terms act as a regularizer that keeps q̂(Z |X) close to the

fair representation Z. The objective loss in (7.9) can be converted to a two-model

adversarial game:

min
fϕ1∈F

sup
fϕ2∈G

EP

[L (Y, fϕ1(Z))

G (fϕ1(Z))

]
− λWc

(
G (fϕ1(Z)) , G

(
f∗ϕ1
))

(7.10)

Theorem 7.1 (McDiarmid Inequality). (McDiarmid et al. 1989) Let Ω1, . . . ,Ωm

be probability spaces. Let Ω =
∏m

k=1 Ωk and let X be a random variable on Ω which

is uniformly difference-bounded by λ
m
· Let µ = E(X). Then, for any τ > 0

P (X − µ ≥ τ) ≤ exp

(
−2τ 2m

λ2

)
(7.11)

Suppose that the transportation cost c is continuous and the probability of fair

representation is bounded away from zero, i.e., q̂(Z | X), then the minimax objective

has a desirable formulation as

min
fϕ1∈F

sup
q̂

EP

[
δ (Y, fϕ1(Z))

q̂(Z | X)

]
− λWc (q̂(Z | X), q∗) (7.12)

The following theorem discusses the theoretical guarantees for the generalization

error of Eq. (7.10).

Theorem 7.2. Suppose the mapping G from fϕ1 to q̂(Z | X) is one-to-one and

surjective with gψ ∈ G. Let G̃(ρ) = {gψ ∈ G | Wc (G (gψ) , G (g∗)) ≤ ρ} . Then under

the conditions specified in Proposition 7.5. for all γ ≥ 0 and ρ > 0, the following

inequality holds with probability at least 1− ϵ:

sup
gψ∈G̃(ρ)

EP

[L (Y, fϕ1(Z))

G (fϕ1(Z))

]
≤ c1γρ+ EPn [∆γ (fϕ1 ; (Z, Y ))] +

24J (F̃) + c2

(
M,
√

log 2
ϵ , γ
)

√
n

(7.13)
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where EPn [∆γ (fϕ1 ; (Z, Y ))] is a cost-regulated loss given in Proof part below, c1 is

a positive constants and c2 is a simple linear function with positive weights.

The above theorem states our main theoretical result on the worst-case general-

ization bound under the minimax setting.

Proof. We introduce a cost-regulated loss which is defined as

∆γ (fϕ1 ; (z, y)) = sup
(z′,y′)∈X

{
δ (y′, fϕ1(Z

′))

q (o = 1 | z′) − γc ((z, y), (z′, y′))} (7.14)

Based on definition of ∆γ, we have

sup
fϕ1∈G̃(ρ)

EP

[
δ (Y, fϕ1(Z))

G (fϕ1(X,Z))

]
≤ inf

γ≥0

{
γρ+

∫
sup
h∈X

(
δfϕ1 (h)

q̂(h)
− γc (h,h′)

)
dP (h)

}
= inf

γ≥0
{γρ+ EP [∆γ (fϕ1 ;H)]} ( by the definition of ∆γ)

≤ inf
γ≥0

{
γρ+ EPn [∆γ (fϕ1 ;H)] + sup

fϕ1∈F
(EP [∆γ (fϕ1 ;H)]− EPn [∆γ (fϕ1 ;H)])

}
(7.15)

Let Wγ = supfϕ1∈F
(EP [∆γ (fϕ1 ;H)]− EPn [∆γ (fϕ1 ;H)]), then we have

Wγ =
1

n
sup
fϕ1∈F

[
N∑
i=1

EP [∆γ (fϕ1 ;H)]−∆γ (fϕ1 ;Hi)

]
γ ≥ 0 (7.16)

According to Theorem 7.1 and the fact that
∣∣∣δfϕ1 (h)

∣∣∣ ≤ µM holds uniformly, we

have

p

(
Wγ − EWγ ≥ µM

√
log 1/ϵ

2N

)
≤ ϵ (7.17)

where ϵ1, . . . , ϵN is denoted as the i.i.d Rademacher random variables independent

of H, and H′i is the i.i.d copy of Hi for i = 1, . . . , N .

Considering Eq. (7.16), we use the symmetrization argument to reformulate EWγ

in Eq. (7.17) as
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EWγ = E

[
sup
fϕ1∈F

∣∣∣∣∣
N∑
i=1

∆γ (fϕ1 ;H
′
i)−

N∑
i=1

∆γ (fϕ1 ;Hi)

∣∣∣∣∣
]

= E

[
sup
fϕ1∈F

∣∣∣∣∣ 1

N

N∑
i=1

ϵi∆γ (fϕ1 ;H
′
i)−

1

N

N∑
i=1

∆γ (fϕ1 ;Hi)

∣∣∣∣∣
]

≤ 2E

[
sup
fϕ1∈F

∣∣∣∣∣ 1

N

N∑
i=1

ϵi∆γ (fϕ1 ;Hi)

∣∣∣∣∣
] (7.18)

Apparently, each ϵi∆γ (fϕ1 ;Hi) is zero-mean, and now we show that it is sub-

Gaussian as well. The bounded difference between two fϕ1 , f
′
ϕ1

is

E

[
exp

(
λ

(
1√
N
ϵi∆γ (fϕ1 ;Hi)−

1√
N
ϵi∆γ

(
f ′ϕ1 ;Hi

)))]
=

(
E

[
exp

(
λ√
N
ϵ1
(
∆γ (fϕ1 ;H1)−∆γ

(
f ′ϕ1 ;H1

)))])N
=

(
E

[
exp

(
λ√
N
ϵ1

(
sup
h′

inf
h′′

{
δfϕ1 (h′)

q (h′)
− γc (H1,h

′)−
δf ′ϕ1

(h′′)

q (h′′)

}
+ γc (H1,h

′′)

))])N

≤
(

E

[
exp

(
λ√
N
ϵ1

(
sup
h′

{
δfϕ1 (h′)

q (h′)
−
δf ′ϕ1

(h′)

q (h′)

}))])N

≤ exp

λ2 ∥∥∥∥∥δfϕ1q − δf ′ϕ1
q

∥∥∥∥∥
2

∞

/2

 (by Hoeffding’s inequality)

(7.19)

Hence we see that 1√
N
ϵi∆γ (fϕ1 ;Hi) is sub-Gaussian with respect to

∥∥∥∥ δfϕ1q − δf ′
ϕ1

q

∥∥∥∥2
∞
.

Therefore, EWγ can be bounded— by using the standard technique for Rademacher

complexity and Dudley’s entropy integral

EWγ ≤
24

N
J (F̃) (7.20)

Based on all above bounds in (7.15), (7.17) and (7.20) we obtain the desired

result.

7.6 Experiments

Compared to other fairness criteria, evaluating the performance of counterfactual

fairness is frustratingly difficult due to the absence of ground truth samples. In fact,
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from the observational data, we are unable to observe the characteristic of individ-

uals in the counterfactual world where we make an intervention into their sensitive

attributes. In fact, we cannot simply change the values of sensitive attributes since

the intervention on the sensitive features can lead to changes in some non-sensitive

features due to the causal effects. For example, we have an observational individual

x, but do not have its counterfactual version x̂; therefore, it is not feasible to eval-

uate the performance of predictive model f(.) by measuring the similarity of f(x)

and f(x̂). In the previous studies (Kusner et al. 2017; Russell et al. 2017; Wu et al.

2019), they generate both the original samples and counterfactual samples from the

structural causal model. However, it is hard to verify the trustworthiness of the

samples due to the unidentifiability of the causal model. In this research, by getting

a pair of similar individuals sharing the same properties, we thus can approximately

evaluate the model performance. This means that instead of evaluating in the coun-

terfactual space, we can approximately evaluate the performance of counterfactual

fairness via the individual fairness criteria. We conducted extensive experiments on

three real-world datasets with different evaluation metrics for two tasks including

regression and classification tasks.

7.6.1 Datasets

We evaluate our approach via regression datasets including LSAC (Wightman

1998) and classification datasets including Compas (Larson et al. 2016) and Adult.

• LSAC∗ (Wightman 1998). LSAC dataset provides information about law stu-

dents including their gender, race, entrance exam scores (LSAT), grade-point

average (GPA) and first-year average grade (FYA). The main task is to deter-

mine which applicants would have a high possibility to obtain high FYA. The

school also ensures that model decisions are not biased by sensitive attribtues

including race and gender. We pay attention to predict the FYA of a student.

• Compas† (Larson et al. 2016). Compas dataset has been released by ProPub-

∗Download at: http://www.seaphe.org/databases.php

†Download at: https://www.propublica.org

http://www.seaphe.org/databases.php
https://www.propublica.org
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lica about prisoners in Florida (US) and also has been previously explored for

fairness studies in criminal justice (Berk et al. 2021). The dataset contains

information about 6,167 prisoners, and each individual has two sensitive at-

tributes including gender, race and other attributes related to prior conviction

and age. The main task is to predict whether or not a prisoner will re-offend

within two years after being released from prison.

• Adult‡(Dua and Graff 2017). Adult dataset is the real-world dataset providing

information about loan applicants in the financial organization. The dataset

consists of both continuous features and categorical features. The main task is

to determine whether a person has an annual income exceeding $50k dollars.

The sensitive attributes are gender and race.

To evaluate the generalization capability of models, we randomly split each

dataset into 80% training and 20% test set. We conduct 100 repeated experiments,

then evaluate performance on the test set and finally report the average statistics.

Law dataset

Compas dataset Adult dataset

Figure 7.3 : Causal diagrams for Law, Compas and Adult dataset. {ε1 · · · ε12} are

the unobserved variables. The large white arrows represent that each variable has

a causal effect on every variables contained in the box.

‡Download at: https://archive.ics.uci.edu/ml/datasets/adult

https://archive.ics.uci.edu/ml/datasets/adult
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7.6.2 Baselines

We make a comparison with several state-to-the-art methods as below.

• Full features (Full) (Kusner et al. 2017) is the standard technique that uses

all the features including both the sensitive and non-sensitive ones.

• Unaware features (Unaware) (Chen et al. 2019) does not consider sensitive

features such as race or gender in the input and only utilizes non-sensitive

features.

• Counterfactual fairness model (CF) (Kusner et al. 2017) uses the causal

graph and infers the latent variables which are not the child nodes of the

sensitive features. Since there is no ground truth causal model, we consider

two causal diagrams illustrated in Figure 7.3 for each dataset as CF1 and CF2.

CF1 and CF2 correspond to two different structural causal models

• Multi-world models (Multi-wolrd) (Russell et al. 2017) minimizes the

model predictions when considering different structural causal models. Specif-

ically, with two causal diagrams in Figure 7.3 for each dataset, we build a

neural network and use the gradient descent algorithm to minimize the model

output from two causal models.

• Auto-encoder model (AE) (Ng et al. 2011) uses the encoder-decoder archi-

tecture to learn the latent representation. This model utilizes all the features

including the sensitive and non-sensitive ones as the input.

Note that Full, Unaware, CF1, CF2 and Autoencoder are the representation

methods that only produce features, so we use these features as an input and con-

struct predictive models including Linear Regression (LR) and Gradient Boost-

ing Regression (GBboostR) for regression task, and Logistic Regression (Log)

and Gradient Boosting Classifier (GBboostC) for the classification task. As our

method aims to output a fair and informative representation, we use two models:

Invariant-encoder model and Fair-learning predictive model. In order to gain more
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Method
Regression metric Fairness metric

RMSE MAE R2score Wasserstein Gaussian

Full-LR 0.870 ± 3.2e-03 0.705 ± 7.4e-03 0.120 ± 5.0e-03 0.522 ± 2.2e-03 0.719 ± 3.2e-03

Full-GBoostR 0.935 ± 2.8e-03 0.751 ± 3.2e-03 -0.014 ± 4.9e-03 0.010 ± 6.5e-03 0.037 ± 5.5e-03

Unaware-LR 0.889 ± 7.5e-03 0.718 ± 3.2e-03 0.083 ± 2.4e-03 0.097 ± 4.5e-03 0.194 ± 2.1e-03

Unaware-GBoostR 1.034 ± 7.8e-03 0.829 ± 5.1e-03 -0.242 ± 3.2e-03 0.009 ± 4.8e-03 0.030 ± 5.1e-03

CF1-LR 0.906 ± 4.1e-03 0.730 ± 5.1e-03 0.048 ± 4.8e-03 0.019 ± 3.1e-03 0.045 ± 3.0e-03

CF1-GBoostR 0.909 ± 2.1e-03 0.732 ± 4.6e-03 0.0410 ± 5.1e-03 0.013 ± 7.6e-03 0.037 ± 4.3e-03

CF2-LR 0.914 ± 7.3e-03 0.736 ± 5.1e-03 0.030 ± 6.4e-03 0.070 ± 7.5e-03 0.030 ± 8.1e-03

CF2-GBoostR 0.913 ± 4.9e-03 0.734 ± 3.6e-03 0.034 ± 7.5e-03 0.070 ± 7.3e-03 0.032 ± 8.5e-03

Multi-world 0.917 ± 3.9e-03 0.736 ± 7.1e-03 0.025 ± 7.1e-03 0.030 ± 5.8e-03 0.036 ± 4.7e-03

AE-LR 0.870 ± 7.1e-03 0.705 ± 4.1e-03 0.121 ± 6.0e-03 0.532 ± 2.1e-03 0.705 ± 8.1e-03

AE-GBoostR 0.889 ± 3.6e-03 0.715 ± 8.1e-03 0.221 ± 5.1e-03 0.425 ± 8.1e-03 0.815 ± 4.8e-03

InvEnc-LR 0.905 ± 3.4e-03 0.727 ± 7.1e-03 0.040 ± 2.1e-03 0.131 ± 8.1e-03 0.160 ± 5.4e-03

InvEnc-GBoostR 0.904 ± 7.1e-03 0.773 ± 3.1e-03 0.131 ± 3.2e-03 0.183 ± 1.9e-03 0.179 ± 7.1e-03

InvFair (Ours) 0.900 ± 2.2e-03 0.739 ± 2.5e-03 0.087 ± 4.1e-03 0.009 ± 8.6e-03 0.029 ± 2.1e-03

Table 7.1 : Performance comparisons on Law dataset. The mean and variance for

each method are obtained via 100 repeated runs. For R2score, results in bold font

show the corresponding models are unreliable. For the remaining metrics, the

best results are bold. For each method, we use (baseline)-LR/GBoostR to show the

baseline combined with Logistic regression or Gradient boosting.

insights into model behaviors, we first utilize Invariant-encoder model (InvEnc) to

generate the latent representation, and also combine with LR, GBboostR, and GB-

boostC. Finally, we adopt the fair-learning predictive model and invariant-encoder

together, referred as InvFair.

7.6.3 Evaluation metrics

Our method aims to learn the fair and informative representation that can be

used for downstream classification or regression. We use two metrics for prediction

and fairness performance, and consider both regression and classification tasks.

For the prediction performance, we use root mean squared error (RMSE) and

mean absolute error (MAE) for the regression task. For the classification task, we
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Method
Regression metric Fairness metric

RMSE MAE R2score Wasserstein Gaussian

Full-LR 0.0356 0.0178 0.0227 0.0388 0.019

Full-GBoostR 0.0262 0.0475 0.031 0.0433 0.034

Unaware-LR 0.0106 0.0085 0.0234 0.0161 0.0432

Unaware-GBoostR 0.0371 0.0324 0.0322 0.028 0.0392

CF1-LR 0.0416 0.0302 0.0251 0.0262 0.0495

CF1-GBoostR 0.0115 0.0214 0.0089 0.0161 0.0215

CF2-LR 0.0449 0.0325 0.041 0.0253 0.0376

CF2-GBoostR 0.0444 0.0308 0.0314 0.0464 0.0479

Multi-world 0.0253 0.0377 0.0440 0.0402 0.0136

AE-LR 0.0426 0.0124 0.0254 0.0229 0.0284

AE-GBoostR 0.0438 0.0238 0.0264 0.0251 0.0289

InvEnc-LR 0.0162 0.0321 0.0215 0.0154 0.0278

InvEnc-GBoostR 0.0285 0.0474 0.0259 0.0489 0.0349

Table 7.2 : We compute p-value by conducting a paired t-test between our approach

and baselines with 100 repeated experiments for each metric on Law dataset.

use Precision, Recall, F1 score, and Balanced Accuracy (Brodersen et al. 2010) for

evaluation purpose. We emphasize that since the Adult and Compas datasets are

highly imbalanced, we use the Balanced Accuracy instead of the traditional accuracy,

which is defined as Balanced Acc = TPR+TNR
2

where TPR and TNR are true positive

rate, and true negative rate, respectively.

For the fairness performance, we use Wasserstein distance (Wasserstein) (Rüschendorf

1985) and maximum mean discrepancy (MMD) with Gaussian kernel (Gretton et al.

2012; Oh et al. 2019) (Gaussian) in the regression task. On the other hand, we uti-

lize generalized entropy index (Speicher et al. 2018) to evaluate the performance

in the classification task. Generalized entropy index that has been previously used

widely in economics is explored by (Speicher et al. 2018) as the unified approach to

evaluate the performance of individual fairness algorithms defined as follows:
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E(α) =


1

nα(α−1)
∑n

i=1

[(
bi
µ

)α
− 1
]
, α ̸= 0, 1,

1
n

∑n
i=1

bi
µ ln bi

µ , α = 1,

− 1
n

∑n
i=1 ln

bi
µ , α = 0.

(7.21)

where bi = ŷi − yi + 1, µ = 1
n

∑n
i bi. In this study, we use E(1) and E(2) which

are called Theil index (TI) and coefficient of variation (CV), respectively. For all

metrics except Precision, Recall, F1 score, and Balanced Accuracy, lower values are

better.

Method
Classification metric Fairness metric

Balanced Acc F1 Precision Recall CV TI

Full-Log 0.660 ± 5.3e-03 0.664 ± 7.5e-03 0.672 ± 3.1e-03 0.670 ± 3.0e-03 0.891 ± 4.5e-03 0.285 ± 2.8e-03

Full-GBoostC 0.665 ± 1.8e-03 0.670 ± 7.5e-03 0.675 ± 7.8e-03 0.674 ± 7.6e-03 0.872 ± 6.5e-03 0.271 ± 8.2e-03

Unaware-Log 0.662 ± 4.5e-03 0.666 ± 7.9e-03 0.674 ± 7.9e-03 0.672 ± 6.0e-03 0.887 ± 1.8e-03 0.282 ± 4.6e-03

Unaware-GBoostC 0.662 ± 7.9e-03 0.666 ± 7.7e-03 0.672 ± 4.2e-03 0.672 ± 4.9e-03 0.880 ± 3.1e-03 0.276 ± 5.0e-03

CF1-Log 0.500 ± 8.0e-03 0.381 ± 2.3e-03 0.522 ± 5.8e-03 0.540 ± 4.6e-03 1.306 ± 6.5e-03 0.615 ± 1.4e-03

CF1-GBoost 0.534 ± 3.7e-03 0.517 ± 2.7e-03 0.551 ± 5.4e-03 0.556 ± 1.4e-03 1.159 ± 3.2e-03 0.463 ± 6.0e-03

CF2-Log 0.623 ± 2.5e-03 0.627 ± 5.7e-03 0.628 ± 7.5e-03 0.629 ± 7.2e-03 0.904 ± 3.7e-03 0.286 ± 6.8e-03

CF2-GBoost 0.573 ± 8.5e-03 0.572 ± 5.6e-03 0.576 ± 5.5e-03 0.571 ± 3.4e-03 0.871 ± 4.7e-03 0.262 ± 6.9e-03

Multi-world 0.500 ± 7.5e-03 0.381 ± 8.6e-03 0.522 ± 2.1e-03 0.540 ± 8.5e-03 1.306 ± 4.5e-03 0.615 ± 3.6e-03

AE-Log 0.659 ± 6.2e-03 0.663 ± 4.8e-03 0.667 ± 4.3e-03 0.667 ± 5.4e-03 0.876 ± 6.9e-03 0.272 ± 4.0e-03

AE-GBoostC 0.666 ± 5.3e-03 0.670 ± 6.4e-03 0.676 ± 6.8e-03 0.675 ± 8.6e-03 0.874 ± 5.8e-03 0.273 ± 1.6e-03

InvEnc-Log 0.670 ± 1.5e-03 0.675 ± 2.9e-03 0.681 ± 6.8e-03 0.680 ± 8.5e-03 0.869 ± 4.1e-03 0.270 ± 1.6e-03

InvEnc-GBoostC 0.666 ± 5.8e-03 0.670 ± 1.4e-03 0.676 ± 8.7e-03 0.675 ± 5.7e-03 0.874 ± 6.3e-03 0.273 ± 2.1e-03

InvFair (Ours) 0.668 ± 2.7e-03 0.672 ± 2.5e-03 0.672 ± 2.6e-03 0.673 ± 5.9e-03 0.836 ± 5.1e-03 0.211 ± 2.2e-03

Table 7.3 : Performance comparison on Compas dataset. The mean and variance for

each method are obtained via 100 repeated experiments. The best results are bold.

For each method, we name (*)-Log/GBoostC with (*) representing the baseline

method.

7.6.4 Implementation details

All implementations are conducted in Python 3.7.7 with 64-bit Red Hat, Intel(R)

Xeon(R) Gold 6150 CPU @ 2.70GHz. The models for all datasets were trained

with the following settings: 200 epochs, batch size of 64, Adam optimizer with the

learning rate of 10−3, smooth loss function (Girshick 2015) for Law dataset and cross-

entropy loss function for Adult and Compas dataset. We used LeakyReLu (Maas
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Method
Classification metric Fairness metric

Balanced Acc F1 Precision Recall CV TI

Full-Log 0.0419 0.0498 0.040 0.0489 0.0214 0.031

Full-GBoostC 0.0112 0.0482 0.0101 0.0261 0.014 0.027

Unaware-Log 0.0106 0.0450 0.0458 0.0342 0.047 0.0184

Unaware-GBoostC 0.0476 0.0164 0.0347 0.0364 0.0391 0.0159

CF1-Log 0.0364 0.0367 0.0323 0.017 0.0305 0.0173

CF1-GBoost 0.0386 0.0302 0.0331 0.0144 0.0105 0.049

CF2-Log 0.0343 0.0475 0.0459 0.0122 0.0384 0.0148

CF2-GBoost 0.0184 0.0259 0.0104 0.0173 0.0475 0.0302

Multi-world 0.0258 0.0129 0.0473 0.0186 0.0316 0.0344

AE-Log 0.0164 0.0363 0.0166 0.0468 0.0454 0.0151

AE-GBoostC 0.0401 0.0387 0.0183 0.0207 0.0335 0.0171

InvEnc-Log 0.0208 0.036 0.0272 0.0147 0.0481 0.0398

InvEnc-GBoostC 0.0377 0.0364 0.0157 0.030 0.0117 0.0333

Table 7.4 : We compute p-value by conducting a paired t-test between our approach

and baselines with 100 repeated experiments for each metric on Compas dataset.

et al. 2013) as the h(.) function. We implemented the baseline methods by using

Pyro library (Bingham et al. 2019), while our method was implemented by Pytorch.

As regards the evaluation metric, we utilized the available functions from library

AI360 (Bellamy et al. 2018) and GeomLoss (Feydy et al. 2019). More details of

implementation settings can be found in the provided source code.

7.6.5 Comparison results

In this section, we report the empirical performance of different methods across

three datasets on both the regression and classification tasks. In general, we aim

to investigate the following research questions 1) how our approach achieves better

fairness and accuracy tradeoff compared to other baselines; 2) how the model per-

formance fluctuates with different hyperparameter λ (the values of λ for competitive

and stable performance).

Regression task. Table 7.1 indicates the performance comparison for Law

dataset. In particular, Full-LR and AE-LR models result in the best accuracy
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Method
Classification metric Fairness metric

Balanced Acc F1 Precision Recall CV TI

Full-Log 0.606 ± 7.6e-03 0.741 ± 6.4e-03 0.743 ± 6.5e-03 0.771 ± 3.4e-03 0.745 ± 8.7e-03 0.215 ± 7.7e-03

Full-GBoostC 0.730 ± 6.5e-03 0.820 ± 1.8e-03 0.818 ± 6.2e-03 0.827 ± 3.8e-03 0.616 ± 3.4e-03 0.142 ± 3.4e-03

Unaware-Log 0.551 ± 1.9e-03 0.700 ± 7.8e-03 0.697 ± 7.2e-03 0.747 ± 2.5e-03 0.801 ± 8.3e-03 0.249 ± 8.6e-03

Unaware-GBoostC 0.725 ± 7.8e-03 0.816 ± 8.4e-03 0.815 ± 7.8e-03 0.824 ± 7.2e-03 0.622 ± 3.7e-03 0.145 ± 6.7e-03

CF1-Log 0.515 ± 8.6e-03 0.670 ± 5.8e-03 0.675 ± 2.3e-03 0.749 ± 8.2e-03 0.814 ± 3.2e-03 0.272 ± 8.4e-03

CF1-GBR 0.513 ± 2.1e-03 0.666 ± 3.3e-03 0.712 ± 6.8e-03 0.757 ± 2.4e-03 0.801 ± 7.0e-03 0.273 ± 6.0e-03

CF2-Log 0.515 ± 4.1e-03 0.669 ± 1.3e-03 0.671 ± 7.7e-03 0.747 ± 6.4e-03 0.817 ± 8.0e-03 0.272 ± 3.7e-03

CF2-GBoostC 0.520 ± 5.2e-03 0.674 ± 1.9e-03 0.700 ± 5.5e-03 0.756 ± 8.1e-03 0.802 ± 6.4e-03 0.269 ± 3.6e-03

Multi-world 0.510 ± 3.9e-03 0.664 ± 5.1e-03 0.664 ± 7.0e-03 0.747 ± 2.5e-03 0.819 ± 3.6e-03 0.275 ± 7.8e-03

AE-Log 0.730 ± 2.1e-03 0.817 ± 6.0e-03 0.815 ± 4.2e-03 0.823 ± 8.2e-03 0.819 ± 8.2e-03 0.242 ± 2.3e-03

AE-GBoostC 0.724 ± 5.5e-03 0.815 ± 1.9e-03 0.814 ± 7.6e-03 0.823 ± 2.7e-03 0.823 ± 3.3e-03 0.245 ± 5.4e-03

InvEnc-Log 0.723 ± 7.9e-03 0.812 ± 6.9e-03 0.810 ± 4.9e-03 0.819 ± 6.2e-03 0.627 ± 8.1e-03 0.146 ± 2.8e-03

InvEnc-GBoostC 0.724 ± 3.6e-03 0.815 ± 2.3e-03 0.814 ± 8.2e-03 0.823 ± 1.4e-03 0.623 ± 2.6e-03 0.145 ± 7.4e-03

InvFair (Ours) 0.778 ± 8.6e-03 0.728 ± 5.4e-03 0.835 ± 3.5e-03 0.707 ± 7.2e-03 0.556 ± 4.7e-03 0.090 ± 7.4e-03

Table 7.5 : Performance comparison on Adult dataset. The mean and variance

for each method are obtained via 100 repeated experiments. The best results are

bold. For each method, we name (*)-Log/GBoostC with (*) representing features

generated by baseline method.

outcome with the lowest RMSE and MAE; however, this model fails to produce the

fair prediction demonstrated by the highest fairness metrics. The possible reason is

that both Full-LR and AE-LR use all features including the sensitive features, which

is beneficial for the accuracy aspect but contains bias. The counterfactual fairness

(CF1- and CF2-) and Multi-world methods in contrast witness a good performance

when they come to fairness with a significantly low Wasserstein and Gaussian dis-

tance, but have quite high regression metrics. Meanwhile, our proposed method

(InvFair) consistently produces the lowest results in Wasserstein and Gaussian dis-

tance and achieves quite competitive results in RMSE and MAE. We also observe

that Linear Regression (-LR) performs better than Gradient Boosting Regression (-

GBoostR). Finally, we notice that although the outstanding results are also recorded

with Unaware-GBoostR in fairness aspects (0.009 for Wasserstein and 0.03 for Gaus-

sian), its R2score is a negative number which implies the poor performance in the

regression task.
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Method
Classification metric Fairness metric

Balanced Acc F1 Precision Recall CV TI

Full-Log 0.0288 0.0341 0.0443 0.0145 0.014 0.0257

Full-GBoostC 0.0275 0.0149 0.0458 0.0193 0.0111 0.0091

Unaware-Log 0.0122 0.0173 0.0151 0.0398 0.038 0.0478

Unaware-GBoostC 0.0369 0.0476 0.0431 0.0385 0.0177 0.0352

CF1-Log 0.0473 0.0366 0.0144 0.0222 0.0446 0.0337

CF1-GBoost 0.0473 0.0338 0.0193 0.0492 0.0109 0.0298

CF2-Log 0.0405 0.0269 0.0393 0.0441 0.0254 0.0203

CF2-GBoost 0.0361 0.0348 0.021 0.0151 0.0107 0.0233

Multi-world 0.0378 0.0264 0.011 0.0137 0.0326 0.0242

AE-Log 0.0369 0.0307 0.0325 0.0092 0.0143 0.013

AE-GBoostC 0.0285 0.0294 0.0155 0.0409 0.0175 0.025

InvEnc-Log 0.0372 0.0321 0.048 0.0258 0.0311 0.0164

InvEnc-GBoostC 0.0239 0.0466 0.0218 0.0456 0.0218 0.0253

Table 7.6 : We compute p-value by conducting a paired t-test between our approach

and baselines with 100 repeated experiments for each metric on Adult dataset.

Classification task. We analyze the task of classification on Compas and Adult

datasets on Table 7.3 and Table 7.5, respectively. It is illustrated from Table 7.3

that the poor performance is recorded with counterfactual fairness (CF1- and CF2-)

and Multi-world approach with low results for classification metrics. In contrast, the

latent representation produced from InvEnc combined with Logistic Regression and

GBooost achieves the greatest results in terms of the classification metric includ-

ing Balanced Accuracy, Precision, Recall and f-measure. Meanwhile, our proposed

method surpasses all of the other methods regarding fairness metrics (CV and TI).

It is moreover ranked second regarding Balanced Accuracy and F1 score and ranked

third regarding Precision and Recall. On the other hand, Table 7.5 shows the results

of different methods in Adult dataset. This dataset is highly imbalanced with the

ratio of positive and negative classes being 70% and 30%. Our proposed approach

produces the best Balanced Accuracy and Precision, while Full-GBoostC has the

greatest F1 and Recall score. Regarding fairness metrics, our method consistently

surpasses all of the remaining methods. Moreover, gradient boosting classification

(-GBoostC) performs better Logistic Regression model (-Log). As seen from the
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Figure 7.4 : We report the performance of our approach with different hyperparam-

eter λ on Law, Compas and Adult datasets. For each λ, we repeat the experiment

100 times to get the mean and variance.

classification task, counterfactual fairness (CF1- and CF2-) and Multi-world model

perform poorly in the classification task, possibly due to the misspecification of

structural causal models. The invariant-encoder model (InvEnc) that minimizes the

prediction of sensitive-awareness and fair-learning models allows the latent repre-

sentation to achieve favorable outcomes in terms of accuracy aspects. Furthermore,

when combined with the fair-learning models in our final approach (InvFair), it

produces competitive results in both the prediction and fairness performance.

Statistical significance. To better comprehend the effectiveness of our pro-

posed method in producing counterfactual samples compared with other approaches,

we also perform a statistical significance test (paired t-test) between our approach

and other methods on each dataset and each metric with the obtained results on

100 randomly repeated experiments and report the result of p-value in Table 7.2,
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Table 7.4 and Table 7.6. We find that our model is statistically significant with

p < 0.05, thus demonstrating the effectiveness of our proposed method in achieving

counterfactual fairness.

Sensitivity of hyperparameter. Figure 7.4 shows the variation of our pro-

posed method performance with different settings of hyperparameter λ. For Law

dataset, Gaussian distance fluctuates slightly from 0.01 to 0.02, while RMSE, MAE

and Wasserstein are recorded at steady results. In terms of our proposed method

performance on Compas and Adult datasets. In general, Precision and Recall share

the same patterns, while CV and TI demonstrate similar trends. For Compas dataset,

the performance of Precision and Recall have slight fluctuations of 0.66 and 0.68,

while CV and TI vary marginally around 0.8-0.85 and 0.2-0.25, respectively. For

Adult dataset, the performance witnesses a quite big variation before λ reaches 100,

and thereafter achieves the outstanding and stable performance when λ is greater

than 100.

7.7 Conclusion

This paper proposes a minimax game-theoretic approach that can maintain com-

petitive performance in predictive tasks and make counterfactually fair decisions

at the individual level. We believe that training minimax objective functions for

invariant-encoder model and fair-learning predictive model allow us to exclude the

sensitive information in models’ decisions, and also maintain high accuracy perfor-

mance. Empirical results on three real-world datasets demonstrated that our pro-

posed approach (InvFair) performs best regarding fairness metrics and also achieves

a favorable fairness-accuracy tradeoff. Most importantly, our approach does not

require prior knowledge about the structural causal model, making it attractive in

real-world applications. In future work, we plan to investigate how to estimate fair

causal effects.
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Part V

Conclusions
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Chapter 8

Conclusion and Future Work

8.1 Thesis Summary

Machine learning has made impressive strides in recent years, with algorithms

delivering human-level performance across a broad range of tasks. However, one

significant challenge with machine learning is the lack of interpretability, which

hampers our understanding of the underlying factors driving algorithmic decisions.

In response to this challenge, this thesis introduces several strategies for inter-

pretable machine learning, incorporating insights from the field of causal inference.

Specifically, we present the stochastic propensity score approach for estimating av-

erage treatment effects and for policy optimization. Regarding counterfactual expla-

nations, we suggest two frameworks, ProCE and CE-Flows. These methods help in

establishing causal relationships in counterfactual samples, generating robust sam-

ples, and enhancing the efficiency of sample generation. Lastly, we turn our attention

to counterfactual fairness, proposing a min-max game theoretic approach capable of

achieving this property, even with imperfect structural causal models.

Overall, this thesis contributes to the growing field of interpretable machine

learning by integrating principles from causal inference. It offers a promising path

for the development of more transparent and trustworthy machine learning systems.

8.2 Key Findings and Conclusions

The objectives of this study have been proficiently accomplished through the

following endeavors:

In Chapter 2, we conducted a comprehensive survey on interpretable machine

learning and its relation to causality. This chapter provides a comprehensive overview
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of various facets of interpretable machine learning and its associations with causality.

While our survey offers a broad understanding of interpretable machine learning, it’s

important to acknowledge that the field is in a state of constant evolution, which

may lead to the emergence of new algorithms after our study.

Secondly, in Chapters 3 and 4, we delve into the exploration of a stochastic

propensity score for estimating average treatment effects. This methodology aids in

the process of determining treatment effects in observational studies and streamlines

policy optimization. However, one of limitations of our causal framework is that it

cannot deal with time-independent stochastic interventions.

Subsequently, in Chapters 5 and 6, we introduced algorithms for counterfactual

explanation, specifically designed to establish causal relationships in counterfactual

samples. Additionally, we proposed another algorithm to generate robust samples

efficiently. Although our proposed approach achieves robustness and causal rela-

tionships, an important aspect we have yet to consider is fairness properties, which

hold significant role in counterfactual explanations.

Finally, in Chapter 7, we introduced a model for counterfactual fairness founded

on an imperfect structural causal model. This model presents a solution to address

the vital ethical concern of fairness in machine learning models, thereby augmenting

their acceptance and trustworthiness. Our work lays the groundwork for exploring

counterfactual fairness with the relaxation of assumptions of SCMs.

In conclusion, this study has successfully attained its objectives and has made a

substantial contribution to the swiftly evolving field of interpretable machine learn-

ing and causality.

8.3 Future Work

Causality is an essential aspect of understanding the relationship between vari-

ables and their impact on outcomes in many fields, including medicine, economics,

and social sciences. Interpretable machine learning (IML) models aim to provide

transparency and explainability to the decision-making process of black-box models.

However, without considering the causal structure of the data, IML models may suf-
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fer from spurious correlations and misleading explanations. Therefore, incorporating

causal reasoning into IML models can enhance their interpretability, reliability, and

decision-making accuracy.

Here are some potential research directions for causal IML:

• Developing causal inference methods for IML: Current causal infer-

ence methods, such as structural equation modeling and counterfactual anal-

ysis, focus on the analysis of small-scale data and do not scale well for high-

dimensional, complex datasets. Therefore, there is a need for developing scal-

able and efficient causal inference methods that can be integrated with IML

models.

• Combining causal modeling and IML: Causal modeling can provide a

framework for designing and evaluating IML models by incorporating prior

knowledge about the causal relationships between variables. By combining

causal modeling and IML, we can develop more robust and accurate models

that can explain the underlying mechanisms of the data.

• Evaluating the causal impact of IML models: IML models may have

unintended consequences or generate unfair outcomes due to the causal struc-

ture of the data. Therefore, it is essential to evaluate the causal impact of

IML models and ensure that they do not violate ethical and legal principles.

• Applying causal IML to real-world applications: The integration of

causal reasoning into IML models has the potential to improve decision-making

in many domains, such as healthcare, finance, and social policy. Therefore,

future studies should focus on developing and evaluating causal IML models

in real-world applications and assessing their effectiveness and practicality.

In summary, causal reasoning is an important aspect of interpretability in ma-

chine learning, and integrating causal inference methods into IML models can en-

hance their interpretability and decision-making accuracy.
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Završnik, A., 2021, ‘Algorithmic justice: Algorithms and big data in criminal justice

settings’, European Journal of criminology, vol. 18, no. 5, pp. 623–642.

Zhang, J. & Bareinboim, E., 2018, ‘Fairness in decision-making—the causal expla-

nation formula’, Proceedings of the AAAI Conference on Artificial Intelligence, ,

vol. 32.

Zhang, X., Tan, S., Koch, P., Lou, Y., Chajewska, U. & Caruana, R., 2019a, ‘Ax-

iomatic interpretability for multiclass additive models’, Proceedings of the 25th

ACM SIGKDD International Conference on Knowledge Discovery & Data Min-

ing, pp. 226–234.

Zhang, X., Tan, S., Koch, P., Lou, Y., Chajewska, U. & Caruana, R., 2019b, ‘Ax-

iomatic Interpretability for Multiclass Additive Models’, Proceedings of the 25th



169

ACM SIGKDD International Conference on Knowledge Discovery & Data Mining

- KDD ’19, ACM Press, Anchorage, AK, USA, pp. 226–234, viewed 11th March

2020.

Zhang, Y. & Zhou, L., 2019, ‘Fairness assessment for artificial intelligence in financial

industry’, arXiv preprint arXiv:1912.07211.

Zhao, Q. & Hastie, T., 2019, ‘Causal interpretations of black-box models’, Journal

of Business & Economic Statistics, vol. 0, no. 0, pp. 1–10.

Zhao, Q. & Hastie, T., 2021, ‘Causal interpretations of black-box models’, Journal

of Business & Economic Statistics, vol. 39, no. 1, pp. 272–281.

Zhao, Y., Fang, X. & Simchi-Levi, D., 2017, ‘Uplift modeling with multiple treat-

ments and general response types’, Proceedings of the 2017 SIAM International

Conference on Data Mining, SIAM, pp. 588–596.

Zheng, A. & Casari, A., 2018, Feature engineering for machine learning: principles

and techniques for data scientists, ” O’Reilly Media, Inc.”.

Zhou Wang, Bovik, A. C., Sheikh, H. R. & Simoncelli, E. P., 2004, ‘Image quality

assessment: from error visibility to structural similarity’, IEEE Transactions on

Image Processing, vol. 13, no. 4, pp. 600–612.


	Certificate
	Abstract
	Dedication
	Acknowledgments
	List of Publications
	List of Figures
	List of Tables
	List of Abbreviations
	List of Notations
	I Introduction
	Introduction
	Introduction
	Research Objectives
	Thesis Organization

	Literature Review
	Introduction
	Causality Analysis
	Causal Inference
	Causal Models
	Treatment Effect Metric
	Tools for Causal Analysis

	Interpretable machine learning with causality
	Model-Agnostic Causality for Deep Neural Neworks
	Post-hoc Interpretability
	Visualization of Causal Effect

	Evaluation
	Application-based
	Human-based
	Function-based

	Open questions and discussions
	Conclusion


	II Causal inference
	Stochastic Intervention for Causal Effect Estimation
	Introduction
	Related Works
	Treatment Effect Estimation
	Stochastic Intervention Optimization

	Preliminaries and Problem Definition
	Notation
	Propensity Score
	Assumption

	Stochastic Intervention Effect
	Stochastic Counterfactual Outcome

	Stochastic Intervention Optimization
	Experiments and Results
	Baselines
	Datasets
	Evaluation Metrics
	Results and Discussions

	Conclusion

	Stochastic Intervention for Causal Inference via Reinforcement Learning
	Introduction
	Related works
	Treatment Effect Estimation
	Stochastic Intervention Optimization

	Preliminaries and Problem Definition
	Notation
	Propensity Score
	Assumption

	Stochastic Intervention Effect
	Stochastic Counterfactual Outcome
	Asymptotic Behavior Analysis

	Stochastic Intervention Optimization
	Experiments and Results
	Baselines
	Datasets
	Evaluation Metrics
	Results and Discussions

	Conclusion


	III Counterfactual explanation
	Causality-based counterfactual explanation for classification models
	Introduction
	Background
	Preliminary
	Related Work

	Methodology
	Prototype-based Causal Model
	Multi-objective Optimization

	Experiments
	Datasets
	Evaluation Metrics
	Baseline Methods
	Results and Discussions

	Conclusion

	CeFlow: A Robust and Efficient Counterfactual Explanation Framework with Normalizing Flows. 
	Introduction
	Related works
	Preliminaries
	Counterfactual Explanation
	Normalizing Flow

	Methodology
	General architecture of CeFlow
	Normalizing flows for categorical features
	Conditional Flow Gaussian Mixture Model for tabular data
	Counterfactual generation step

	Experiments
	Conclusion


	IV Counterfactual fairness
	Achieving Counterfactual Fairness with Imperfect Structural Causal Model 
	Introduction
	Preliminaries
	Related work
	Methodology
	Motivation
	Three-player model for invariant fairness

	Theoretical analysis for Three-player model
	Experiments
	Datasets
	Baselines
	Evaluation metrics
	Implementation details
	Comparison results

	Conclusion


	V Conclusions
	Conclusion and Future Work
	Thesis Summary
	Key Findings and Conclusions
	Future Work


	Bibliography



