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ABSTRACT

People often find it frustrating to perform high-demand tasks for prolonged periods
of time. However, it is not always possible to avoid these types of tasks in certain
workplaces, making it essential to design a work environment that effectively

interacts with the capabilities of the human worker.
One of the key factors that impact the efficiency of human operators in complex,

interactive work environments is the level of mental workload. When an operator is
overwhelmed with mental demands, it can negatively impact their performance and
lead to mistakes, which can harm the system’s efficiency and safety. To ensure optimal
performance, it is important to find a balance and avoid both overload and underload
conditions, as the operator’s performance can suffer in both situations.

This work explored the feasibility of employing electroencephalogram (EEG) data
in measuring the workload of human operators in safety-critical work environments.
Two safety-critical environments were considered: a stationary Air Traffic Control (ATC)
and a more dynamic physical Human Robot Collaboration (pHRC) environment with
uncontrolled, real-world physical interactions with an abrasive blasting robot. Further,
we explored the error awareness of operators engaged in a physical interaction with the
robot in under varying workload conditions.

We successfully uncovered EEG spectral power, eye, and heart rate variability corre-
lates of mental workload variations for simple tasks of air traffic controllers, providing a
comprehensive understanding of the workload demands in ATC tasks. Our preliminary
findings in the ATC experiment pave the way to develop intelligent closed-loop mental
workload-aware systems for ATC.

The systematic investigation into the impact of workload variations on operator’s
performance in a pHRC setting revealed that both task and physical performance
degraded with increasing workload. Our study successfully isolated and retrieved the
biomarkers of workload variations in a pHRC despite strenuous physical activity. Error
awareness was found to deteriorate with increasing workload, exposing the significance of
measuring and maintaining the human user’s workload at an optimal level to ensure the
safe and reliable use of BCI technology for intuitive physical human-robot collaboration.

Therefore, this research posits that the mental workload of a human operator can be
predicted in real-time from physiological signals, and the estimated workload information
can be used to provide safety alerts, enhancing the safety measures in place in many
work environments. By utilizing newly discovered biomarkers, a tool can be developed to
detect workload variations and estimate error processing capacity, facilitating a mental
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workload-related safety alert system for real-world applications. Thus, this research aims
to demonstrate the potential of creating an intelligent system that can detect mental
workload in order to improve safety and efficiency in complex work environments.
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INTRODUCTION

1.1 Background

Individuals often shy away from tasks that push their abilities to the brink as they

find it frustrating and stressful [3]. However, not all work environments afford

this luxury, highlighting the importance of fostering good interaction between the

human operator’s abilities and the work environment [359]. Though human operators

have the capacity to adapt to various work environments, perform multiple tasks, and

utilize different equipment simultaneously, poorly designed work environments can lead

to an overload of sensory information and an increase in workload.

Mental workload is a crucial factor that impacts the efficiency of human operators in

complex interactive work environments. In recent years, the role of human operators

has shifted to a supervisory level [299], requiring them to integrate multiple streams of

information which leads to an increase in cognitive resources [269] and subsequently

in mental workload for operators [196, 248]. Wickens and Tsang [355] define mental

workload as the dynamic relationship between the cognitive resources required by a

task and the operator’s ability to provide those resources. Human operators have limited

information processing abilities as their resources have a finite capacity [169, 192].

The theory of limited cognitive resources posits that exposure to demanding task

conditions can impair performance by depleting resources [261] or limiting access to

them [43]. High levels of mental workload can lead to human errors [294], compromising

system efficiency and safety [368]. To maintain optimal performance, the mental work-
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load should be kept at a balanced level, avoiding both underload and overload [41, 137],

as performance can suffer in both of these scenarios [48, 138, 341, 371]. The dynamic

adaptive theory suggests that the brain seeks a balance of resources and cognitive com-

fort, and extremely high or low task demands can hinder adaptability and performance

[139]. By predicting mental workload and adjusting task allocation, it is possible to

avoid a loss of situational awareness and maintain high performance. Accurate and

reliable measurement of mental workload is crucial, especially in safety-critical work

environments, in order to improve work environments and human-machine interactions

[12, 46, 309].

Researchers have employed various strategies, including self-assessment, perfor-

mance measures, and physiological metrics, to evaluate mental workload; however, each

of these methods has its own set of advantages, and disadvantages [254]. The results

from these different mental workload measurement methods are often dissociated [370]

as the sensitivity of these measures depends heavily on the operator’s workload [82].

A number of subjective measures, such as the Instantaneous Self-Assessment (ISA)

questionnaire [44, 167, 180], NASA Task Load Index [142], and the Subject Workload

Assessment Technique [296], are used to assess the operator’s workload.

Mental workload is a complex concept that reflects the available cognitive resources

and cannot be accurately assessed by using subjective measurements alone [83]. Ad-

ditionally, the mental workload assessment method should not interfere with the task

at hand or influence the mental state of the operator, which may be the case with sub-

jective assessment strategies using questionnaires. Another commonly used workload

assessment method is performance-based workload measurement, which, like the sub-

jective assessment method, provides a retrospective workload assessment. However,

performance-based measures can only provide a partial understanding as operators can

achieve the same performance while experiencing a higher workload [16].

Over the years, physiological metrics have been used to evaluate workload [54, 57,

221] as it provides high sensitivity, diagnostic capability and is mostly non-intrusive

[266, 380], giving a precise and real-time assessment of the operator’s workload. The

use of physiological data such as neurophysiological signals can assess mental workload

in real-time without influencing the task as there is no explicit output [125, 263, 264].

Neurophysiological measures can also assess changes in the mental state that are not

just evident in overt task performance [38, 264, 355? ].

Neurophysiological measures such as the electroencephalogram (EEG) signal have

been extensively used to estimate mental workload as the effects of task demand are
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clearly visible in EEG rhythm variations [41, 45, 89, 125, 204, 221, 288, 290]. Researchers

have also used EEG to reliably predict performance degradation from workload variations

[127, 219] and noted that it is correlated with an increase in frontal theta power and

a change in parietal alpha power, which relates to cognitive and memory performance

[119, 124, 126, 274, 330]. Many EEG-based workload indices, such as the ratio of frontal

theta to parietal alpha power [118, 154], the ratio of beta to theta and alpha [116],

theta-beta ratio [235] reliably reflect workload.

However, EEG features of mental workload are found to be task-dependent; therefore,

adding other modalities like eye activity data and heart rate data can lead to better

results [173, 277]. Pupil size and blink rate have recently been recognized as reliable

indicators of workload [216]. Heart rate variability (HRV) is yet another highly sensitive

physiological index to mental workload variations [149, 171, 239, 241, 245]. The root

mean square of successive differences (RMSSD) is considered the most robust time-

domain HRV measure of workload [226].

Assessing an operator’s mental workload can be used to create an adaptive system

[279, 316] that adjusts its behavior based on the operator’s current level of mental work-

load [168, 310]. This type of system should be able to respond to changes in the operator’s

workload without having to explicitly request assistance. When human operators work

alongside automation, the operator expects the automation to act like a human coworker

[12]. For this reason, adaptive automation should be responsive, stepping in at the right

time, and should be able to understand and respond to the operator’s needs, taking on

tasks that may be overwhelming the operator. In this study, we aim to identify multi-

ple physiological indicators of mental workload in order to create a real-time mental

workload detection and alert system.

1.2 Research Aim and Research Objectives

This research thesis aims to discover advanced knowledge of mental workload and

develop models and algorithms that enable intuitive mental workload adaptive systems.

The first component of this project involves the identification of the neurophysiological

behavior traits associated with mental workload variations. This component requires

designing real-world tasks that induce controlled levels of mental workload. Workload

metrics will be explored in two real-world scenarios: Air Traffic Control and physical

Human Robot Collaboration (pHRC).

In this research, we focus on the role of Air Traffic Controllers (ATCs) in maintaining
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safe and efficient air traffic flow. ATCs operate in a complex environment and are respon-

sible for organizing the movement of aircraft to ensure they reach their destinations in an

organized and timely manner. With the increase in air traffic, understanding the mental

factors that contribute to ATC efficiency is becoming more crucial. We examined the

mental workload features in the stationary air traffic control environment and used the

experience to identify the biomarkers of mental workload in a more complex, dynamic,

and physically active physical human robot collaboration. We considered the influence

of workload variations, which were manipulated using an arithmetic task in a physical

robot collaboration, which is a complex unstructured environment. EEG and physical

performance of the participants in these tasks was also evaluated. The physiological

effects of workload were systematically investigated in different settings of ATC and

pHRC.

Along with the ATC environment, pHRC environment was considered for this project

as there is still a major technical challenge to fill this gap in migrating from an interface

with a computer (in BCI) to an interface with a robot (in BRI) when the robot is physically

moving in unstructured, complex and dynamic environments. It is difficult to record

EEG signals in these environments due to movement-induced artifacts when the user

moves with the robot. The continuous and indeterminate movement of a robot in BRI

also introduces uncertainty in timely detecting and precisely correlating the user’s state

while the robot is in motion, making it difficult for the robot to learn to calibrate itself to

mitigate the user’s cognitive workload in real time.

The second component systematically investigated the effects of workload variations

on cognitive conflict induced by unexpected robot behavior in different settings of physi-

cal human-robot collaboration (pHRC). This component includes having the collaborative

robot behave unexpectedly under various workload conditions, which would elicit cog-

nitive conflict of differing intensity in the human operators. Effective communication

between a user and a robot is crucial for improving the performance of physical human-

robot collaboration (pHRC) in complex and unstructured environments. The ability to

quickly and clearly convey a user’s intentions to the robot can enhance efficiency and

compliance in tasks involving both human and robot movement. In pHRC, the robot

should be able to follow the intended motion of the human as they move together.

In physical human-robot collaboration (pHRC), cognitive conflict can enhance the

intuitive interaction between humans and robots. This type of conflict arises when the

actions of the robot deviate from the user’s intended actions. By processing these conflicts,

the brain can learn to adapt to automation control and improve the dynamics of human-
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robot interaction [201, 306]. However, to the best of our knowledge, no research has been

conducted to control the continuous movement of a robot in pHRC based on cognitive

conflict. This is due to the difficulty in identifying discrete events from a continuous

movement that leads to a brain response that can be used for closed-loop control of

the system. As cognitive conflict responses in the human operators can be exploited to

correct the robot behavior in the environment, the workload experienced by the operators

needs to be maintained at optimal levels. To the best of our knowledge, no studies have

explored how workload variations impact cognitive conflict. The physiological responses

accompanying workload variations and conflict can be used to improve the collaboration

between humans and robots. This brings us to the third and final component of this

thesis.

The third component is to develop a safety alert tool based on real-time mental

workload assessment. Once the first component was complete, the results of the com-

ponent were used to explore different strategies to adapt the task conditions to the

measured workload of an operator. The data collected as part of the first component can

be used to develop a new deep neural network to extract a mental workload biomarker

recorded in real-time pHRC by addressing factors within and between user variations,

and spatio-temporal nonstationary and nonlinear brain dynamics.

The developed machine learning algorithms can be integrated into a brain robot

interface, which can detect the user’s workload or error processing capacity in real-

time and calibrate the system/robot to meet the user’s workload and/or intentions by

optimizing the user’s workload. Moreover, as a future work, an advanced reinforcement

learning algorithm can be developed to predict the occurrence of a conflict and tune the

control parameters of the robot in pHRC by treating cognitive conflict as an external

reward signal.

This component of the research aims to develop new techniques for measuring

and understanding changes in workload during physical human-robot collaboration

(pHRC) tasks. By identifying cognitive workload and conflict, it aims to create models

and algorithms that can adapt to human-robot interfaces and improve collaboration in

complex, unstructured environments. Advanced machine learning and deep learning

algorithms for classification are used to create prediction models for workload and conflict.

The resulting models and algorithms will be integrated into a brain-robot interface for

testing in real-world industrial tasks. The component will also be evaluated through

online simulations to test the performance of the safety alert tool

In summary, the aim of this research project are as follows:
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RA1: Identify the biomarkers of mental workload variations in a simple ATC task and a

pHRC task with strenuous physical activity.

RA2: Discover how the workload variations impact cognitive conflict during a pHRC

task

RA3: Design and evaluate the performance of a real-time workload assessment tool for

safety in pHRC environments.

RO1: Design tasks that can induce workload in a controlled manner and
develop an experiment that captures the physiological changes during the
workload variations in ATC and pHRC tasks (RA1)

To accurately measure and induce workload, a controlled task that mimics real-world

scenarios is necessary. For this purpose, the basic tasks of Air Traffic Controllers (ATC)

were chosen. ATC operators are responsible for anticipating and preventing conflicts

between aircraft by ensuring they adhere to International Civil Aviation mandated

separation standards and managing the complexity that arises [300].

Although various factors such as environmental, display, traffic, and organizational

factors can affect the complexity of ATC tasks [77, 234], the main functions of ATC oper-

ators are tracking and collision prediction. Therefore, tracking and collision prediction

tasks were designed to investigate the physiological effects of workload variations in

these basic ATC tasks. The experiment was designed as a classical cognitive paradigm

with manipulation of workload levels (low, medium, high) and repeated stimuli, and

physiological data such as EEG, eye activity and HRV were used to assess the mental

workload of the operator while performing these basic tasks.

Another task design that was explored will be the pHRC scenario. This task will be

in the form of interactive ’Clock Game’. This task emulates the operation of an abrasive

blasting robot and builds a repetitive pHRC task. The participant will be asked to move

the robot from the starting point to the target that needs to be blasted. The robot will be

programmed to behave in an unexpected manner, which will provoke cognitive conflict in

the user. Workload variations in the task were manipulated by varying the difficulty in

identifying the target in each trial.

This objective will include the preparation for the experiment and the collection

of data using the experiment. The preparation steps were designing an experimental

protocol, seeking ethics approval, synchronizing all data measuring devices, recruiting

participants, and conducting the data collection.

RO2 - Analyse and extract the data from RO1 to identify the biomarkers of
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workload variations in ATC and pHRC tasks (RA1)
Once the data had been successfully collected, it was analyzed. As the task design

successfully induced workload, prominent workload features were observable. The brain

dynamics, eye activity, and HRV features associated with the workload variations in

the ATC can be extracted. For pHRC task, which is a more realistic work environment,

involving physical interactions with the robot, more strict data preprocessing strategies

were employed to extract the biomarkers of workload variations.

RO3 - Analyse and extract the data from RO1 to discover how workload
influences cognitive conflict responses in pHRC task (RA2)

As the design of the pHRC task was successful in inducing cognitive conflict conditions

under different workload conditions, the influence of workload variations on the cognitive

conflict response was easily retrieved. The impact of workload variations on cognitive

conflict was also examined.

RO4 - Create a model for mental workload assessment (RA3)
Workload features were extracted from the experiment data to train a deep-learning

model. This model was used to predict the workload experienced by an operator perform-

ing the tasks. These predictions were able to assess the workload for the pHRC tasks. A

workload detection tool was designed based on the findings of this objective. The safety

alert tools aim to be a deployable real-time system.

RO5 - Develop a mental workload-based safety alert tool (RA3)
The mental workload-based safety alert tool for ATC will involve intelligent mental

workload assessment strategies to mitigate workload effects. The human user will

be wearing an EEG device while moving the robot arm for ANBOT. This experiment

also incorporates the previous work of RO4 and the designed safety-alert tool, where

it evaluated the performance and effectiveness of the safety-alert tool in accurately

detecting non-optimal workload conditions. The mental workload-based safety alert tool

for pHRC will involve the blasting robot stopping its movement in the environment at

safety breaches introduced by a non-optimal workload of the collaborating operator. The

performance of this safety-alert tool will also be assessed to study its effectiveness.

1.3 Chapter Organization

The organization of this thesis is illustrated in Figure 1.1 and provides an overview of

the key points and findings. It is divided into eight chapters that include an introduction,

methodology, results, and potential future research applications.
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1. Chapter 1, entitled Introduction, provides an overview of the focus on the mental

workload of operators in safety-critical work environments and sets the context for

the research goal of detecting mental workload variations in real time.

2. Chapter 2, entitled Literature Review, offers an overview of existing research on

mental workload, detection algorithms, cognitive conflict, and the specific research

in the field of air traffic control and physical human-robot collaboration.

3. Chapter 3, entitled Methodology, provides an outline of the research design and

execution of the experiments in ATC and pHRC, including the background of similar

studies, the experimental approach, and the methods used for data analysis.

4. Chapter 4, entitled Biomarkers of Mental Workload Variations in Basic Air Traffic

Control Tasks, delves deeper into the research and presents the EEG, eye activity,

and HRV biomarkers of workload variations in tracking and collision prediction

tasks within ATC. The results of this chapter give an understanding of how effective

the experimental design was in inducing variations in workload.

5. Chapter 5, entitled Neural Correlates of Workload in Physical Human Robot

Collaboration, presents the findings of our pHRC experiments, including behavioral,

performance, and EEG results.

6. Chapter 6, entitled Effects of Mental Workload Variations on Cognitive Conflict

during Unexpected Robot Behavior in a Physical Human-Robot Collaboration

describes and presents our results that demonstrate how workload variations influ-

ence cognitive conflict during a pHRC experiment. In this section, we present the

results of the event-related potential (ERP) analysis and explore the implications

of these findings for brain-computer interface (BCI) applications in real-world

scenarios.

7. Chapter 7, entitled Intelligent Online Workload Assessment and Safety Alert Tool

in Physical Human Robot Collaboration, outlines the exploratory prototype of our

safety tool for pHRC that considers workload and error awareness of the operator

to provide proper safety alerts.

8. Chapter 8, entitled Conclusion and Future work, brings together the key findings

of the thesis, evaluates whether the research questions have been answered, and

suggests potential areas for future research based on the results.
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Figure 1.1: Thesis Organization.
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2
LITERATURE REVIEW

2.1 Mental Workload

People find "doing too many things at once" as frustrating and stressful, and

they tend to avoid such tasks that push their capabilities beyond their limits

[3]. However, all work environments do not offer that leisure. It is vital to have

good interaction between work environments and human capabilities[355]. Even though,

humans easily adapt to a variety of work environments, and perform a variety of tasks

simultaneously, using different equipment, the greater the number of tasks and devices

to use, the greater the workload on them. Moreover, digitization, advances in information

technology and communications, and interactive work environments require human

operators to integrate multiple streams of information in the complex world [269]. This

causes an overload of sensory information, resulting in a higher cognitive load [196, 248].

The ability to gauge an individual’s cognitive load is of great importance, especially

in industries where safety is paramount and human performance can be variable. As the

brain’s demands increase, it can become more difficult for a person to execute their tasks

with precision, resulting in a higher rate of errors. Thus, having dependable methods for

assessing cognitive activity and related states, such as mental exertion and situational

awareness, is crucial to preserving performance within acceptable standards.

Studies in cognitive psychology have revealed that mental workload has an inverse

U-shape correlation with performance. In other words, some amount of mental strain can
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aid in achieving a high-performance level, as it keeps the individual alert and focused

[49]. On the other hand, a lack of mental stimulation can cause a dull and unengaging

state, leading to a decrease in attention and cognitive resources. Furthermore, taking

on too many tasks simultaneously can lead to an overload condition, resulting in an

increased chance of mistakes [179].

Mental workload is a crucial aspect to take into account when dealing with complex

team dynamics, technology and cognitive complexity, and multitasking. It is a transac-

tional concept that describes the interaction between an individual’s capabilities and the

demands of the task. In simpler terms, mental workload is the amount of an individual’s

information processing capacity that is needed to meet system demands and represents

the proportion of an individual’s overall mental capacity used at a given time [10, 342].

Cognitive load, also known as mental workload, is the amount of effort placed on

the working memory. It is defined as the cognitive demands of a task in relation to an

individual’s actual cognitive capacity [96, 169, 254, 355, 368]. There are three types of

cognitive load [331]:

1. Intrinsic load - intrinsic load is related to the complexity of the task and its

association with the operator.

2. Extraneous load - extraneous load is induced by how the task is presented.

3. Germane load - germane load is related to an individual’s ability to absorb infor-

mation.

As the cognitive load increases, it negatively impacts human trust perception [63],

which is particularly vital for human robot interactions. Additionally, mental workload

has a strong correlation with variations in individual performance, influencing the

likelihood of human errors, the safety of the system, productivity, and the satisfaction of

the operator [368]. Moreover, performing multiple tasks interferes with the attention of

the human operator [231], which results in performance deterioration [247, 249, 333].

Accurate performance prediction is very important for human operators in the context of

safety-critical behavior.

Mental workload is a complex and multi-faceted concept. As shown in Table 2.1, dif-

ferent models, such as the multiple resource model, attempt to explain mental workload

as a cognitive process within a resource framework [354, 356, 357, 360]. According to

the dynamic adaptive theory, the brain strives for equilibrium and cognitive ease. As a

result, very low and very high task demands can harm adaptability and subsequently,

performance [137].
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Table 2.1: Mental Workload Models

Model Reasoning References
Multiple Resource Model Mental workload is a cognitive process

within a resource framework
[354, 356, 357,
360]

Dynamic Adaptive Theory Brain strives for equilibrium and cogni-
tive ease, which negatively affects the
adaptability and performance

[137]

Limited Cognitive Re-
sources

Exposure to challenging and prolonged
task demands negatively impacts per-
formance

[43, 261]

Malleable Resources Theory Attention drifts during non-challenging
tasks

[373].

According to the theory of limited cognitive resources, if an individual is exposed to

challenging and prolonged task demands, it can negatively impact their performance.

This can be due to the following:

• due to resource depletion according to local-sleep theory [261] or

• compromised access to resources [43].

However, it does not explain why even non-demanding tasks such as passive mon-

itoring can lead to moments of mind wandering where attention shifts from the task

to unrelated thoughts [92, 220, 222, 322, 323]. The malleable resources theory tries to

explain this drift in attention during non-challenging tasks, but it is highly theoretical

and hard to put into practice [373].

As the mental workload increases, it leads to a decline in situational awareness

which results in poor performance and errors [99, 100, 208, 224, 242, 294]. To maintain

attention, it is essential to maintain a high level of situational awareness. Situational

awareness is the ability to perceive elements in the environment, understand their

significance, and anticipate their future status [99]. There are three levels of situational

awareness:

• Level 1 - level 1 of situational awareness deals with the ability to perceive elements

in the environment,

• Level 2 - level 2 of situational awareness deals with the ability to understand the

current situation and
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• Level 3 - level 3 of situational awareness deals with the ability to predict future

status.

Situational awareness can be evaluated post-experiment using questionnaires such

as SAGAT (Situation Awareness Global Assessment Technique) and SART (Situation

Awareness Rating Technique) [101]. Another way to measure situational awareness is

by using the SPAM (Situation Present Assessment Method) methodology [74]. However,

these methods can only be used to measure situational awareness after the fact and not

in real-time.

In recent times, the role of human operators has evolved from a traditional role

to a supervisory role using various interconnected tools [299]. This change in the role

requires operators to create and maintain a precise situational awareness model from a

large amount of information. Additionally, mental workload and situational awareness

are closely linked, with one influencing the other. Both mental workload and situational

awareness are influenced by similar human factors such as limited working memory,

individual variations, and system elements like the difficulty level of the task. In order

to prevent a loss of situational awareness, it is crucial to anticipate mental workload

and adjust system behavior by adjusting task allocation to maintain high operator

performance.

Mental workload plays a crucial role in an operator’s performance as it is closely

tied to the limitations of the human information processing system [138, 221, 341]. The

human brain’s ability to process information is finite and has a limited capacity [192],

leading to information overload and less efficient performance [10, 357].

Performance is the ability to successfully complete a task [334]. Research has shown

that performance decreases at both low and high levels of workload [48, 138, 341, 371].

High task loads can cause performance degradation due to high mental workload and

inadequate attention management [236]. Performance reduction in non-optimal workload

situations is often preceded by negative neurocognitive states, such as mind-wandering,

disengaging effort, repetition, and failure to pay attention.

Mental workload is a complex concept that is influenced by the user, task, and envi-

ronment [138, 221, 342, 372]. It is crucial to reliably measure instantaneous workload

over time, which can facilitate the creation of better work environments and better

human-machine interactions [12, 46, 309]. Having a reliable estimate of mental work-

load is important to maintain workload within the permissible level, avoiding both

underload and overload conditions [42, 137].

The mental workload can be measured by:
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• Self-assessment,

• Performance or

• using the neurophysiology or psychophysiology.

Each method has advantages and disadvantages [254, 362], as shown in Table 2.2.

The sensitivity of each of these methods varies based on the operator’s workload [82],

and these measurement methods are often dissociated [370].

Subjective measures of workload are generally questionnaires, and the assessment

cannot be continuous or real-time. An instantaneous self-assessment (ISA) questionnaire

can be used to determine subjective ratings of workload. This questionnaire was devel-

oped to assess the mental workload of air traffic controllers, and they can select whether

they feel they were under-utilized, relaxed, comfortable, high, or excessive [167, 180].

The subjective workload can also be measured using the NASA Task Load Index [142].

Another subjective workload assessment method is the Subject Workload Assessment

Technique [296]. Another self-reports is the Instantaneous Self-Assessment (ISA) tech-

nique [181]. All of these measures interrupt the current task and may be affected by the

researcher’s implicit objectives, and post-justification [34]. For example, they require the

operator to focus on filling out the questionnaire regularly, which is invasive and not

suitable for real-time evaluation. Furthermore, these measures have a subjective nature

and are dependent on the operator which can lead to bias.

Mental workload reflects the cognitive resources that are available, including atten-

tional resources and working memory capacity during the task. This cannot be captured

using simple subjective measurement strategies alone [83]. Additionally, the method used

to measure mental workload should not interfere with the task or change the operator’s

mental state. Subjective assessments using questionnaires may be problematic in this

regard. Performance-based measures that evaluate primary and secondary performance

can be used to assess workload [334], but they can only be used to measure workload

retrospectively after an error has occurred. Furthermore, performance measures only

provide part of the picture, as an operator can achieve the same performance while

experiencing different levels of workload [16].

The mental workload can be evaluated using physiological measurements as well an

increase in mental demands leads to increased physical response [152]. The physiological

measure is found to be effective in measuring physiological signals [54, 57, 221], and

brain, cardiac activity, respiratory activity, and eye activity are some of the physiological

measurements of workload [82]. Mental workload measurement using physiological
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Table 2.2: Mental Workload Assessment Methods

Assessment
Methods

Advantages Disadvantages

Self-assessment
[142, 167, 180,
181, 296]

Ease of Use

• Not continuous or
real-time,

• Interrupt the task,

• Maybe influenced by
researcher’s implicit
objectives [34]

• Could be biased

Performance
[334]

Easy to implement

• Only retrospective
measure,

• Provides only part of
the picture [16].

Physiological
Measures [54,
57, 82, 152, 221]

• Improved Sensitivity
and Diagnostic Ability
[13, 38],

• Non-intrusive
[266, 380]

• No impact on the task

• can be measured on-
line [124, 263]
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signals is better than performance or subjective measurement because of the improved

sensitivity, diagnostic ability, and non-intrusive characteristics [266, 380].

Also, researchers have found that neurophysiological measures give a better measure

of the mental state than performance-based measures [13, 38]. Furthermore, neuro-

physiological measures have no impact on the task performed by the user as there is no

explicit input. It can also be measured online while the task is being performed [124, 263].

Neural measures reflect the decline in performance, which is a transition from a normal

operational state to an impaired one, caused by the deactivation of the prefrontal cortex.

The prefrontal cortex is a source of limited resources in the brain [233, 278, 292]. It is

responsible for controlling function during routine cognitive operations such as decision-

making and retrieving information from working memory [291, 298]. The prefrontal

cortex becomes active during high levels of cognitive demand [21, 103, 122, 145, 286],

and this dysfunction degrades performance [90, 307].

Recently, there has been an increased focus in neuroscience on understanding the

mental states of users in operational settings through the use of neurophysiological

signals. This research employs a variety of neuroimaging technologies and neurophysio-

logical measures, including functional Magnetic Resonance Imaging (fMRI) and Elec-

troencephalography (EEG), as well as other types of physiological signals such as heart

rate, eye movement, etc [41, 291, 367]. Techniques like fMRI are particularly useful

in examining how the brain adapts and responds to repeated exposure and practice of

specific tasks.

However, the high costs, space requirements, and invasiveness of these methods

make them less suitable for real-world working environments where a more practical

and less invasive approach would be preferred. Techniques like fMRI require expensive

equipment and high maintenance costs, in addition to their large size, which makes

them difficult to use in real-world settings [47].

On the other hand, measurements of eye activity, heart rate, and skin response have

been found to be correlated with certain mental states such as stress, mental fatigue,

and drowsiness, but their effectiveness has been shown to be limited when used alone.

They are more effective when used in combination with other neuroimaging techniques

that directly measure activity in the brain [39, 41, 304]. Furthermore, research has

shown that EEG recordings provide the most informative data for evaluating mental

states compared to other peripheral physiological signals [152]. In light of these findings,

EEG and fNIRs are considered to be the most viable and straightforward options for

investigating brain activity in operational environments.
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EEG and fNIRS are popular neuroimaging techniques used in evaluating mental

states in operational environments. However, they have distinct physical characteristics,

such as interface, size, weight, and power consumption, which can impact their suitability

for use in real-world operational environments. Additionally, the presence of hair can

negatively impact the accuracy of fNIRs on hairy brain regions [240]. EEG, on the other

hand, is less affected by hair and has a higher temporal resolution, making it a more

suitable option for use in operational environments."

There is a growing interest in academia and the applied sector in developing neural

measures to index workload levels, as neural measures are well-suited to infer cognitive

states and for driving brain-computer interfaces. Furthermore, neural measures can

reveal changes in cognitive states that aren’t obvious in task performance, and they can

gather data in real-time without disrupting the operational environment [264, 355].

The mental effort required for a task is determined by a combination of factors,

including both a person’s inherent characteristics, like their skill level and intelligence,

and their current state, such as their emotions, motivation, and fatigue level, as well as

the demands of the task itself. Therefore, workload responses to the same task can vary

among individuals [150]. Ultimately, everyone responds to workload differently, so we do

not analyze workload itself, but we measure the effort put into the task or the subjective

reaction to workload condition.

2.2 Mental Workload Classification

Researchers have explored developing mental workload classifiers from physiological

data [23, 66, 221, 363, 380]. Artificial neural networks (ANNs) are very popular classi-

fication algorithms used for classifying EEG data. ANNs trained on within-difficulty

manipulation types provide 85.8% classification accuracy [364]. ANNs have shown they

can classify an operator’s workload on multi-task combination using heart rate, respira-

tion, eye movement, and EEG data with 98.5% average accuracy [365].

Artificial neural networks are most suitable if multiple physiological signals are used

in the workload classification [335, 365]. Jimenez-Molina and colleagues [165] combined

multiple physiological signals (electrodermal activity, EEG, and photoplethysmography

(PPG)) in artificial neural networks and reported 93.7% accuracy in predicting workload.

Wilson and Russell, [364] employed artificial neural network and stepwise linear dis-

criminant analysis to monitor the mental state of air traffic controllers performing ATC

tasks using EEG, heart rate, blink rate, and respiratory rate.
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Classifiers based on the hierarchical Bayes model that handles multiple subjects have

comparable classification accuracy as the subject-specific ANNs [349]. Support vector

machine techniques have also been employed to classify the workload of a large number

of aircraft pilots using the model that was trained on the change in theta and alpha

frequency ratios w.r.t baseline condition. The predictions of the classifier were found to

correlate with the pilots’ report on the difficulty of the task [42].

Both Random Forest and k-Nearest Neighbor classifiers have been found to be

effective and efficient options for classifying mental workload, both in offline and online

settings [202]. A study also reported that a support vector machine was effective in

identifying different levels of workload and did not require additional training for new

subjects or tasks [287, 289]. Additionally, the research utilized personalized head maps

that incorporated both spectral features and their spatial locations.

A method called Stepwise Linear Discriminant Analysis (SWLDA) was created that

combines the use of forward and backward stepwise analyses. It uses least-squares

regression to assign weight to each input feature in order to predict the target class

labels [8, 73]. An advanced version of this method, named Automatic Stop Stepwise

Linear Discriminant Analysis (assSWLDA), was developed to identify the most important

features for different levels of mental workload. The classifier then assigns weights and

biases to each feature and the algorithm automatically stops when the ideal number

of features have been selected based on the p-value of the model [11, 13]. Studies have

shown that this method can effectively classify mental states in drivers and pilots with a

high accuracy rate of up to 90% using EEG, EOG, and heart rate data [35, 78].

However, classifiers are specific to each individual and session, meaning that they

need to be trained for each person and session separately. It is unlikely that a workload

detector with fixed parameters that can be applied to everyone will be developed in

the near future [185]. The performance of a classifier is typically measured by its

classification accuracy, precision, and recall [110]. Abbass and colleagues [1] stated,

based on their work on mental workload classification of air traffic controllers, that it

was better to focus on accurately distinguishing two levels of mental workload: low and

high.

Moreover, researchers have reported that EEG-based workload estimation is not

always very reliable [11]. Penaranda and Baldwin [272] report that the time interval

between training and the classifier’s test is one important determining factor of classifi-

cation accuracy. Christensen and Estepp [65] reported that the classification accuracy

decreases over days, probably because of overfitting and the high specificity of training
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data. They proposed that a classifier that utilizes only a few spectral properties would

likely be more selective in its classification.

Supervised machine learning models need labeled datasets of EEG and eye-tracking

data for different workload conditions. Features such as alpha power, theta power, pupil

diameter, heart rate, and the workload class label can be used to classify the low, medium,

and high workload levels [23, 173, 185, 272, 365].

Moreover, selecting appropriate features for classifier training is very important,

and it is crucial to limit the number of features to avoid overfitting and improve the

stability of the classifier [11]. Further, the cognitive strategies used for performing the

task can influence the classification results, intra- and inter-individually [223, 282]. A

possible strategy to work around this problem is to cluster the subjects based on their

performance or age, or even their experience.

Researchers have been utilizing various techniques to study EEG data. These include

analyzing the data in terms of the time it was recorded, the frequency of the signal, and

a combination of both time and frequency [162]. One example of this is looking at the

amplitude and timing of event-related potentials in the time domain; however, this is

not an effective method when the recording does not have a synchronized stimulus [37].

Other methods, like the Largest Lyapunov Exponent [102], and Hjorth parameters [149],

allow researchers to investigate the statistical properties of the EEG signal. Additionally,

Autoregressive coefficients [9] are also utilized, but interpreting the results in terms of

the individual’s physiology can be difficult because the results tend to vary from person

to person.

Analyzing EEG data in the frequency domain is a common technique, as oscillations

play a key role in the synchronization of neural activity in the brain [162]. Researchers

often use techniques such as band power analysis, which involves using fast Fourier

transforms and short-time Fourier transforms, to study these oscillations. Another well-

established method is the spectral power density, which is calculated using Welch’s

method. This method provides insight into how the power of the signal is distributed

across different frequency bands [24, 162]. Gasser and colleagues [121] suggest applying

logarithmic transformations to spectral power to improve classification accuracies. Time-

frequency methods, such as Hilbert-Huang Spectrum and Discrete Wavelet Transform,

are suitable for analyzing short-duration data [68].

Accurate detection of an operator’s workload level can drive the implementation of an

adaptive automation system. This system adjusts its behavior according to the operator’s

physical and cognitive state. Some potential applications include:
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1. Simplifying the interface to reduce visual distractions

2. Changing the interaction modalities to enable hands-free operation or to decrease

the reliance on visual input

3. Modifying the data processing logic or decision-making process, such as using a less

conservative detection logic to reduce the number of irrelevant alerts displayed.

Adaptive automation systems have the capability to take over control of the system

in critical scenarios such as an operator’s incapacitation and bring the system to a

stable state. The idea of adaptive automation has been around for some time, but past

attempts mainly focused on linking the information and functions provided on a human-

machine interface to the situation’s characteristics. With the recent advancements in

neurophysiology, the systems that adapt based on the operator’s cognitive state have

become a significant area of research. In recent years, various BCI systems have been

studied that use neurophysiological measures to trigger automation changes and have

been analyzed for their impact on operator performance [81]. Studies have revealed that

people not only view these systems as helpful assistants but even expect them to behave

like humans.

While adaptive automation can offer many advantages, it also poses some challenges.

The dynamic changes in the system’s behavior can make it more complicated and harder

to anticipate for the user. Therefore, it is important to try to reduce instances where the

user is perplexed or caught off guard by the system’s actions. The concept of adaptive

automation may require adjustments to increase acceptance among users. An alternative

solution, such as adaptable automation, where the user can decide when to enable

advanced automation, could be considered. This would give users a sense of control,

prevent confusion and allow them to regain control if the automation is unable to handle

the situation.

Different strategies have been proposed for triggering automation [311]. Generally,

the literature describes three main approaches:

• Critical-event strategy, it assumes that human workload may increase during

critical events, and it triggers the automation accordingly [147];

• Performance-measurement strategy is used to gauge how well an operator is

performing during a task. This helps to determine their current and predicted

state and to see if they are feeling overwhelmed;
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• Neurophysiological measurement strategy is employed to record the operator’s

physiological signals in order to understand their mental workload [13, 309].

In this field of study, using neural measures can help to address two crucial concerns

as detailed in [12]:

1. The use of neural measures can help establish specific boundaries for when au-

tomation levels should shift, either up or down. These boundaries can be either

clear-cut or more fine-tuned over a longer period, to avoid frequent adjustments

and consider the cumulative effects. For instance, a moderate to high workload that

continues for several minutes could have the same impact as a very high workload

peak. Additionally, after a prolonged period of working with high automation, it

might be beneficial to keep the same level of automation for a while, even if the

workload is low, in order to aid in recovery.

2. Using neurometrics as a tool can offer scientific proof of the advantages of adaptive

automation, for instance by presenting evidence of a decline in workload after the

introduction of adaptive automation.

A Brain-Computer Interface (BCI) is a system that captures brain activity and

converts it into a form that enhances the natural functioning of the brain. This improves

the interaction between the brain and its external or internal environment [366]. A

passive BCI, in particular, recognizes the mental state of the user and utilizes it to adapt

the interaction between the operator and the system. They are well suited for adaptive

automation [265, 375], but there have been only a few studies that have explored the

use of passive BCI for triggering adaptive automation solutions, all of which have been

conducted in a laboratory setting.

EEG is particularly beneficial in creating passive brain-computer interfaces [13].

Scientists have developed a closed-loop system that uses the operator’s own EEG signals

to decrease their workload [279, 316]. Comstock and Arnegard [71] were one of the

first to create an EEG-based adaptive automation system, which alternates between

automatic and manual modes for tracking tasks in a Multiple-attribute Task Battery.

Prinzel and colleagues [279] show a significant decrease in mental workload after

activating automation, which was confirmed by EEG and subjective ratings. Berka

and colleagues [32] used the Ageies simulator, a military simulation environment, to

demonstrate the usefulness of EEG-based workload indexes in reallocating tasks and

system aids in real time. Abbass and colleagues [1] used the controller‚Äôs working

22



2.3. COGNITIVE CONFLICT AND PREDICTION ERROR NEGATIVITY

position adaptive to the EEG signals and task complexity. It was observed that operators

achieved better performance with adaptive automation, which used the theta-to-beta

ratio over the entire scalp as the feature. However, the study only had four subjects,

which is not statistically significant. Arico and colleagues [13] used a passive brain-

computer interface system integrated with an ATM simulator that triggers adaptive

automation in real time based on workload, avoiding both underload and overload.

Mental workload adaptive systems have challenges that limit their successful imple-

mentation [173]. It could be because individual differences in cognitive abilities affect

performance [93, 94, 130, 224]. Mental workload estimated, especially from EEG, is

task-specific and the classifier trained on a task, may fail for a similar task [173, 277].

2.3 Cognitive Conflict and Prediction Error
Negativity

Cognition is the process of acquiring information through senses, experience, and thought

processes. It involves several cognitive functions, such as learning, thinking, memorizing,

and reasoning [284]. Researchers have extensively explored most of the components of

these intellectual functions, including the ability to predict a future state on the basis of

experiences in the past.

Human beings continuously predict future outcomes and consequences while perform-

ing any task [303] based on an internal cognitive model. This internal cognitive model

works by forming a simulation of the response to a task that will predict its outcome

[115]. Whenever a mismatch occurs between reality and this internal cognitive model,

which is inevitable, a phenomenon called cognitive conflict happens [140].

Cognitive conflict occurs from the mismatch between reality and the internal cogni-

tive model or perception. These internal models are continuously used by the human

neuromotor control system to estimate the outcomes or actions; this phenomenon of

cognitive conflicts occurs when the expectation is unmet or when these internal models

are found to be wrong. Therefore, cognitive conflict response can be an indirect way to

measure the intuitiveness of any system.

Cognitive conflict is a very fundamental cognitive response in real-world interactions.

Detecting and measuring this phenomenon can improve the interactions human beings

have in any work environment, especially in an environment that involves interactions

and collaborations with robots. This cognitive conflict phenomenon can be exploited to

guide a robot in a task environment.
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EEG, or electroencephalogram, is a method of measuring the electrical activity of the

brain through sensors placed on the scalp of the user. It is considered more advantageous

than other neurophysiological measurement techniques as it is relatively inexpensive,

offers high temporal resolution, is completely non-invasive, and can be used in real-world

settings where the user has freedom of movement. As a result, EEG measurements have

been widely utilized by researchers in cognitive neuroscience [117] and particularly in

creating brain-robot interface systems [214].

The idea behind Error-related potential (ErrP) first came to light in the 1990s during

a study where individuals were observed making errors in a task that required quick

decision-making [106, 123, 252]. Essentially, ErrP is a way to compare the brain’s

electrical activity during correct actions and errors, it’s essentially the contrast between

an error-related negativity (ERN) signal and a correct-related negativity (CRN) signal

[107]. The ERN is a form of brain activity that can be recorded through EEG and

it is activated when a person makes or detects a mistake while participating in an

experimental task [107].

When an error is made, the brain’s electrical activity in the frontocentral area, known

as the ERN signal, dips negatively at around 50-200 milliseconds after the error occurs.

This is followed by a positive shift in the central area of the brain at around 200-500

milliseconds later [107, 136, 343, 348]. On the other hand, when a correct response is

made, a similar waveform to the ERN is observed, it’s called the correct-related negativity

(CRN), but it is of a lower magnitude [136, 348].

Studies on the Error-related Potentials (ErrP) indicate that this signal is only ac-

tivated in certain task scenarios and the different types of error-related potential are

shown in Table 2.3. For instance, a Response ErrP is likely to happen when the person

is asked to respond as fast as possible [257, 343, 348]. A Feedback ErrP happens when

a person becomes aware of an error upon receiving feedback on a task [205, 369]. An

Interaction ErrP occurs when a person is interacting with a machine and the machine

misunderstands an instruction [36, 112]. An Observation ErrP happens when a per-

son notices an error made by a machine or external system [301, 306]. Recently, three

new types of errors: Target, Outcome, and Execution ErrPs have been reported in the

literature [230, 327].

Over the years, researchers have identified the negative response in ERP in different

task settings, and it has been referred to different terminologies depending on the task

conditions. For instance, Stagg and colleagues [328] identified the cognitive conflict

experienced during a visual effect monitoring task and termed it as visual mismatch
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Table 2.3: Types of Error Related Potential

Types Reference
Response ErrP Happens when the person is asked to

respond as fast as possible [257, 343,
348]

Feedback ErrP Happens when a person becomes aware
of an error upon receiving feedback on
a task [205, 369]

Interaction ErrP Happens when a person is interacting
with a machine and the machine mis-
understands an instruction [36, 112]

Observation ErrP Happens when a person notices an er-
ror made by a machine or external sys-
tem [301, 306]

Target ErrPs [230, 327]
Outcome ErrPs [230, 327]
Execution ErrPs [230, 327]

negativity (vMMN). Kopp and colleagues [188] found another feature of ERP called the

N2 or N200, which is elicited by visual stimuli. In an experiment on price and reward

prediction, feedback-related negativity was observed.

Recently, in an experiment that involved active motor movement, Singh and col-

leagues [320] observed prediction error negativity (PEN). The Prediction Error Negativ-

ity is caused by an error in the task being performed, it is different from Event-related

Negativity as it occurs during the task rather than after it has been completed or while

it is being observed. Prediction error negativity is the negative deflection in the brain

wave between 100-300ms that is associated with a mismatch between a predicted and

an actual system state. Additionally, EEG measurements can be used to detect the pre-

diction error negativity, which is similar to cognitive conflict, by measuring event-related

potentials [207, 252].

Identifying and understanding cognitive conflict can lead to better interactions in

various settings, such as when a robot works alongside a human to complete a task. In

such an environment, cognitive conflict will be invoked whenever the robot functions

unexpectedly. The cognitive conflict during human robot interactions has been explored

by researchers. In a study, the human operators were required to observe the behavior

and actions of the robots and judge them as correct or wrong [159]. They observed

negativity in the ERP around 400 ms after the robot performed a wrong activity. They
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used this data to minimize cognitive conflict by training the robot based on reinforcement

learning.

A BCI is a method of communication between a person and a device by interpreting

the user’s intention through the brain signals recorded by EEG [199, 206]. When the

system misinterprets the user’s intent it leads to an error, which triggers an Error-related

potential (ErrP) [170, 378]. This ErrP signal can be combined with the standard BCI

system to create a hybrid BCI system that initiates steps to correct the error, and avoid

it from occurring again, hence enhancing the overall effectiveness of the BCI system

[62, 75, 275].

Using ErrP as a feedback mechanism in an adaptive BCI can help the system to

improve by learning from its mistakes, which will decrease the chances of interpreting

the user’s intent incorrectly [17, 61, 97, 158]. Studies have shown that ErrP signals are

an innate human feedback mechanism that can be generated in the brain without any

additional training after an error is made [177]. The non-invasive nature of ErrP makes

it easy to combine with other brain-computer interfaces (BCIs) where users intentionally

control their brain activity to control the system dynamics [376]. Studies have shown

that ErrP signals can be accurately captured, making it feasible for use in real-time BCI

systems [62, 111, 267, 315].

Penaloza and colleagues [271] exploited the error-related negativity information from

the human operator who was observing the robot navigating in the task environment

to activate the safety measures in the robot. Ehrlich and Cheng, [97] observed ErrP

(Error-related potentials) in the event-related potential of the human users who observed

robots operate in the task environment while randomly performing some erroneous

actions. Salazar-Gomez and colleagues [306] used the ErrP resulting as a repose to

the robot’s erroneous actions to correct the robot’s activity in the task environment.

Even cognitive conflict phenomenon has been explored in human robot interactions

to control and correct the robot behavior, no researchers have explored this cognitive

conflict behavior in real-world settings but only with human operators observing the

robot activity passively.

The cognitive conflict phenomenon of real-world physical interactions with robots has

not been explored because of the noise and artifacts in EEG from physical movement

and other confounding factors [281]. Singh and colleagues [320] studied the cognitive

conflict phenomenon in a task involving active motor movement. The study identified a

unique indicator of cognitive conflict, labeled PEN, in the ERP data by creating a task in

which participants utilized hand movements to select 3D objects within a virtual reality
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setting.

Our lab has conducted some preliminary studies in physical human-robot collabora-

tion (pHRC), a collaboration involving human operators and semi-autonomous robots

that are actively physically guided by the human operator [5]. This study found evidence

of cognitive conflict in physical human robot interactions.

Cognitive conflicts are accompanied by a physiological response and activate different

brain regions in humans. Many studies have noted a significant amount of activity in

the dorsal anterior cingulate and prefrontal areas, which are responsible for monitoring

and resolving conflicts respectively, as reported in [109]. Physiological measurements

such as electroencephalography (EEG) reflect certain cognitive conflict states and can be

used for BCI in controlled environments [97].

Traditional BCI approaches to robot control, such as P300 potentials [253], steady

state visually evoked potential [201], motor imagery [164] and need constant human

attention in operation and usually require training for users to learn to modulate

thoughts appropriately. In contrast, the neural features accompanying cognitive conflict

are generated automatically and do not require prior training. Thus, brain dynamics

associated with conflict processing can foster an intuitive interaction between humans

and robots in pHRC [201, 306].

However, there is still a major technical challenge to fill this gap in migrating from

an interface with a computer (in BCI) to an interface with a robot (in BRI) when the

robot is physically moving in unstructured, complex and dynamic environments. It is

difficult to record EEG signals in these environments due to movement-induced artifacts

when the user moves with the robot. The continuous and indeterminate movement of a

robot in BRI also introduces uncertainty in timely detecting and precisely correlating

the user’s state while the robot is in motion, making it difficult for the robot to learn to

calibrate itself to mitigate the user’s cognitive conflict in real-time.

2.4 Air Traffic Controllers

Making sure that air travel is as safe as possible is a top priority in the industry. This

goal can be achieved not only through updating and improving technical systems but

also by studying the human factors that play a role in any incident where safety is

compromised. A comprehensive understanding of all the factors involved is necessary to

maintain the highest level of safety.

Human factors, which refer to the various characteristics and abilities of people,
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can greatly impact performance, efficiency, and reliability. These factors, which are

determined by psychological and physiological conditions, are believed to play a role in

as many as 80% of aviation accidents [256, 318]. This is not just limited to pilots, but

also air traffic controllers, who may be affected by a number of factors that can impact

their focus, performance, and the potential for errors that can lead to safety hazards [56].

Air traffic control is a service that ensures the safety and efficiency of aircraft by

preventing conflicts between them and managing traffic flow through the organization

and provision of information and support to pilots. Air traffic controllers are responsible

for one particular sector, where they accept aircraft, give instructions and clearances, and

hand over the aircraft to the next sector or the tower sector. They regularly handle a large

number of aircraft coming from different directions, heading to different destinations,

and at various speeds and altitudes [131]. The primary goal of air traffic controllers is to

regulate air traffic and provide information and support to pilots from control towers, to

maintain a safe and orderly flow of air traffic, and avoid conflicts among aircraft [203].

The main objective of the air traffic control system is to guarantee the safety and

smooth operation of air traffic. To accomplish this, international civil aviation orga-

nizations establish standards for separation between aircraft that must be followed.

The air traffic controllers are in charge of making sure that aircraft comply with these

standards, including maintaining a vertical distance of at least 1000 feet and a horizontal

distance of 5 nautical miles from other aircraft. They also need to keep an eye on air

traffic and detect any possible conflicts between aircraft, take action to resolve them, and

minimize any disruption to the flow of air traffic, in order to allow aircraft to reach their

destinations in an orderly and timely manner.

Air traffic control is a complex task that can be affected by a variety of factors,

including environmental, organizational, traffic, and display factors [77, 234], stress,

fatigue, and overall health and mental condition [283]. To address these challenges,

researchers have conducted studies to understand human behavior and responses to

stress and to develop strategies to eliminate potential safety risks [50].

As the number of airplanes in the sky continues to rise, air traffic control is facing

more pressure. According to the European Agency for Safety and Health at Work, heavy

workloads and fatigue are major factors in transportation accidents [72]. Air traffic

controllers have three main responsibilities: keeping track of all the planes in the air,

predicting and preventing problems, and resolving conflicts [203, 336]. These duties can

be demanding, especially during times of high traffic or when dealing with flights that

need special attention [148].
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Air traffic controllers are constantly facing high pressure, even during routine opera-

tions. Their job of managing aircraft, such as keeping them separated, coordinating their

movements, and resolving conflicts, requires a lot of mental focus and attention. They

play a crucial role in dealing with the complexity of the air traffic system, as their main

goal is to anticipate and handle any unexpected situations that may arise. The air traffic

control system is not only complex in its environment but also in its communication

systems such as radio, phone, radar displays, and computers. All these factors combined,

make the controller’s job even more challenging.

Air traffic control work often involves performing a variety of tasks in addition to

routine operations, such as communicating with aircraft upon arrival and passing them

off to other control sectors. These tasks may be familiar, but their order and timing can

be unpredictable due to factors like weather, traffic demand, and operational conditions.

This unpredictability, in addition to the high level of responsibility and complexity of

their job, makes it necessary to systematically evaluate workload levels to ensure safety.

To get an accurate understanding of the workload involved in air traffic control, it’s

important to individually examine each of the subtasks that controllers perform.

The measurement of workload in air traffic controllers has gained significant at-

tention in the air traffic management field due to its importance in human resource

planning, operational efficiency, and, most importantly, the safety of the air traffic system.

Recently, traditional air traffic management has faced several challenging issues, such

as a substantial increase in the number of flights, more complex airspace, sensitivity to

weather changes, and the interaction of these factors.

EEG-based studies have been conducted to assess mental workload in ATC work

environments and the research is summarized in Table 2.4. Research has shown that it

is possible to understand the level of mental effort being exerted by air traffic controllers

(ATCOs) by analyzing their brain activity using electroencephalography (EEG) signals.

In recent years, EEG has been recognized as the most accurate neurophysiological

method for measuring mental workload. For example, Brookings et al. [45] conducted a

study that looked at the changes in mental workload among eight military ATCOs as

the difficulty level of Terminal Radar Approach Control (TRACON) tasks in a simulated

air traffic management system varied. The research conducted a thorough evaluation

of controller workload by utilizing multiple metrics, including performance, subjective,

and physiological measurements. The study revealed that the level of difficulty had

a significant impact on the theta band power in certain regions of the brain, as the

power increased with the increase in task difficulty. It also found that the alpha band
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Table 2.4: EEG-based Mental Workload Assessment in ATC

Research Team Contribution
Brookings et al. [45] Increased task difficulty resulted in in-

creased theta power and decreased al-
pha activity.

Shou et al. [319] Frontal theta EEG was identified as
accurate indicator of workload

Arico and colleagues [13, 14] Developed a brain Workload Index to
effectively distinguish different levels
of difficulty in ATC tasks.

Arico and colleagues - pas-
sive BCI in ATC [14]

Revealed a strong correlation between
the EEG-based mental workload index
and the subjective mental demands, as
measured by ISA.

Arico and colleagues - adap-
tive automation in ATC [13]

EEG-based Adaptive Automation in an
ATM research simulator, which effec-
tively turns on the adaptive automa-
tion during high-demand conditions, ul-
timately reducing the mental workload
for the ATCOs.

activity decreased as a result of the interplay between the level of difficulty and traffic

manipulation. These conclusions align with those of other studies that have employed

similar techniques to gauge ATCO mental workload.

A team of researchers led by Shou et al. [319] assess the level of mental fatigue and

workload during an air traffic control task. The study found that measuring the activity

of the frontal theta EEG was an accurate and dependable way to evaluate workload and

the effect of time spent on the task, on a minute-by-minute basis. Furthermore, the study

also pointed out that this method is particularly useful in identifying neural activity

from ongoing EEG recordings in real-world tasks.

Recently, researchers have found that by using machine learning techniques and

analyzing brain activity data from EEG, they can calculate a brain Workload Index

[13, 14]. This index has been proven to effectively distinguish different levels of difficulty

in air traffic management tasks. Furthermore, this technique has also been utilized to

assess the effect of different avionic systems on the cognitive load of helicopter pilots [40].

Not only that but it has also been shown to be a reliable measure of mental workload

in real-world scenarios where the task at hand is constantly changing [15, 87]. One

example of this is a study where professional air traffic control operators were tasked
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with performing a realistic air traffic management task.

A similar research project enlisted the participation of 12 professional air traffic

controllers. These individuals were presented with a variety of simulated ATM scenarios

that ranged in difficulty level [14]. The scenarios were designed to mimic real-life

situations and featured a dynamic level of difficulty, starting off easy and gradually

increasing before returning to an easier level. The results of the study revealed a strong

correlation between the mental workload index, as measured by EEG, and the mental

demands experienced by the operators throughout the task, as measured by ISA.

Recently, a team of scientists has created an EEG-based system that turns on Adap-

tive Automation in an ATM research simulator, using the actual mental workload of

the operator as a reference. The system was put to the test by 12 Air Traffic Control

Officers as they performed high-realistic ATM scenarios of varying difficulty levels. The

study found that the proposed system was effective in activating AA during high-demand

conditions, ultimately reducing the mental workload for the ATCOs. Furthermore, the

system was designed to not activate AA when the workload level was below a certain

threshold, thus preventing the operator from experiencing low-demand conditions that

could be dangerous [13]. The brain features related to mental workload, identified in this

and previous studies, was found within the frontal theta, parietal alpha, and occipital

theta rhythms [14, 15, 87, 88].

2.5 Physical Human Robot Collaboration

The integration of robots into our daily lives is becoming increasingly prevalent as

automation gains momentum. The utilization of robotics goes beyond just industrial

settings and is now making its way into human-centric environments. For robots to

truly become a seamless part of our lives, safety, and dependability must be given

priority. Personal robots have the potential to be just as common in households as

personal computers are today, but as of now, robots are still perceived as unwieldy and

unsafe machines. One of the major hindrances to widespread acceptance is the lack

of well-defined safety standards in the scientific community for physical human-robot

collaboration.

Ensuring safety for both humans and robots is a crucial aspect when it comes to

the coexistence of both in the same physical space, where they share workspace and

cooperate physically. Industrial robots are typically equipped with safety measures

such as safety guards or locked doors to keep the workspace of the robot separate from
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humans [329]. In case these safety measures are tampered with, the robot is shut down

immediately to prevent any harm.

As more and more people are looking to use service robots in their homes and

workplaces, it’s becoming increasingly important to make sure that these robots are safe

to interact with humans. This is especially true when physical contact between humans

and robots is not only desired but sometimes necessary. To ensure the safety of human

users, it’s crucial to objectively measure the potential for injury that these robots may

cause, and make sure that the robot’s actions will not exceed a safe limit if physical

contact occurs. This includes both regular operation and in case of any faults that may

occur.

As technology advances, more and more systems are being developed to share the

same physical space with humans, such as self-driving cars and collaborative robots.

The most important aspect of these systems is ensuring that they are safe for people to

interact with. This has been a key concern for quite some time, as seen in science fiction

literature, where the principle that robots should not cause harm or allow harm to occur

to humans through inaction has been emphasized [18]. To ensure safety when interacting

with robots, it’s important to make sure that the worst-case scenario would only result in

mild injuries. Safety in physical human-robot collaboration has been widely studied, and

the results of these studies have been summarized in various research papers.

In recent years, there has been an increasing number of scenarios where autonomous

systems share the same physical space as humans, such as collaborative robots and

self-driving cars. The most crucial element in these systems is making sure they are safe

to interact with people. This has been a significant concern for quite some time, as seen in

science fiction literature where it is stated that robots should not cause injury to humans

or through inaction allow humans to come to harm [18] long before the development of

robot actuators [237]. A way to ensure safety when interacting with robots is to make

sure that in worst-case scenarios, only mild injuries may occur [135]. The topic of safety

in human-robot collaboration has been widely studied, and the results of these studies

have been summarized in various research papers [69, 133, 273, 302].

Physical Human-Robot Collaboration (pHRC) is the teaming up of humans and robots

with the aim of accomplishing a task. While human operators are highly skilled and

possess an intuitive ability to discern elements in the work environment, robots lack

this intuitive and empathetic quality. Robots have greater mechanical strength and are

completely by mathematical models, and when robots participate in a collaborative task,

they are also called cobots [70]. When these humans and robots team up to accomplish a
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task, this collaboration should benefit from the strength of both human operators and

robots. However, the lack of intuitive communication between the human operator and

the robot poses many safety challenges and complexities.

When humans and robots collaborate in a manner that includes physical contact,

such an interaction is called physical Human Robot Collaboration (pHRC). The scope of

this collaboration can be defined by the collaborative task on which the human operator

and robot are working and also by the nature of this collaboration.

In physical Human Robot Collaboration, the human operator and robot are in physical

contact with one another either directly or through a rigid body in order to accomplish

the task at hand. This might even be an exchange of forces between the human operator

and robot, where the operator might be completely or at least partly controlling the

robot’s activities. This control of robot activities can be done using continuous force

exchange, objects that can be manipulated, and haptic devices. Such physical human

robot collaboration has been explored with industrial robots for material handling [120],

lifting and holding tasks [4], and homokinetic joint assembly [64].

This physical human robot collaboration has also benefited rehabilitation robotics.

Researchers have devised hand rehabilitation robots [218], an exoskeleton for shoulder

and elbow rehabilitation [53], and a lower-limb exoskeleton [374].

Generally, human operators control robots in these collaborations by exchanging

forces with robots which can be transformed into robot motions. Therefore, these con-

trollers are usually force-based, and they can be either impedance-based control or

admittance-based control, or a variant of these [297]. Impedance and admittance pro-

vide information on how force can be rendered to velocity in a physical human robot

collaboration.

Mostly, the robot motion is also governed by many other components like assistive

strategies, singularity, and collision avoidance [53, 80, 86, 243, 255]. As assistive strate-

gies and singularity and collision avoidance components play a crucial role in robotic

motion, these robot motions can never be explained on the basis of force applied by the

operator. Therefore, this results in the human operator experiencing dynamic mechanical

resistance in the task environment. The resultant mechanical resistance can be adjusted

empirically based on intuitiveness and smoothness.

A direct consequence of the absence of an accurate representation of the relationship

between intuitive and mechanical resistance is the difficulty in formulating a rigorous

mathematical model. Even though researchers have explored different components of

physical human robot collaborations, not many researchers have explored intuitiveness
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assessments. And the few studies that explored intuitiveness in a physical human robot

collaboration only considered subjective data from questionnaires and surveys [113].

Intuitiveness is the ability to know or understand things without conscious reasoning.

It’s a cognitive process that relies on previously acquired knowledge and experience. It’s

often described as a way of understanding things without the need for rational thought,

as stated by Bastick [25].

As such, intuition is rooted in cognitive internal models and a human’s ability to

make predictions. Consequently, the intuitiveness of a human operator collaborating

with a robot is directly proportional to the ease with which the human operator can

predict or foresee robot behavior in the environment. Intuitiveness is found to increase

with human operators’ training and experience with collaborating with the robot, making

the experience more natural. However, the robot’s intuitiveness is always independent of

the human operator’s level of training or experience.

Villani [347] identified that only an intuitive human robot interaction can ensure

a safe physical human robot collaboration, which will also fully optimize the system’s

performance. Several strategies have been explored to enhance the quality of this hu-

man robot interaction with the aim of establishing a natural and intuitive form of

communication between the human operator and robot.

A robot can be aware of the condition of the human operator through its sensors.

The advancements in biomedical devices, that measure the physiological state of a

human operator, have made it possible to have a reliable estimate of the human state

comfortably and more cheaply. Many research groups are investigating ways to integrate

these physiological measurement devices into the robot to have an accurate estimation of

the human state. Galvanic skin responses have been used to measure engagement [238]

and comfort [227] in human-robot collaboration. Additionally, heart rate assessment

equipment has been widely used to estimate the human state [161, 293, 347].

However, heart rate data can be affected by various psychological and physical

factors. To have a more reliable estimation of the human state, it is better to use multiple

physiological signals. Kulic and Croft used skin conductance, contractions of the facial

muscle and heart rate [194], while Koenig used skin conductance/temperature and heart

rate [184]. Researchers have so far employed these physiological signals to estimate the

stress experienced by the human operator in human robot collaborative set-up.

However, in a physical human robot collaboration, the intuitiveness of communication

is very crucial to ensure a safe and natural interaction between the human operator and

robot. Researchers have explored this intuitiveness qualitatively and subjectively. An
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objective and quantitative approach to assess the intuition of this communication is by

measuring prediction error negativity or PEN based on the brain dynamics of the human

operator.
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3.1 Introduction

This chapter will provide an overview of the experiment details for this research

project, including the materials used and the methodologies employed to gather

and analyze data. The methodology for the ATC experiment, the pHRC experi-

ment, and the online safety alert tool for pHRC will be outlined, supporting the findings

presented in Chapters 4 to 7. The chapter organization is shown in Figure 3.1.

Figure 3.1: Organization of Chapter 3.
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3.2 ATC Experiment Methodology

3.2.1 Participants

Figure 3.2: ATC Experiment Participant Distribution.

This experiment involved the participation of 24 individuals (average age 25 ± 5, with

17 males and seven females, all of whom were right-handed) who gave written informed

consent. The experiment density plot is shown in Figure 3.2. All participants had normal

or corrected vision and no prior psychological disorders that may have impacted the

results. The experimental protocol was granted approval by the University of Technology

Sydney Human Research Ethics Expedited Review Committee (ETH19-4197).

This data collection was conducted during the first COVID lockdown in Sydney,

Australia. We took additional care to follow the additional COVID safe protocol based on

New South Wales guidelines, which was further approved by the UTS Ethics Committee
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and the University Risk Assessment team. There was difficulty in recruiting participants

for this study during this time as most of the country was staying locked inside.

We collected EEG data using the SynAmps2 Express system from Compumedics Ltd.

in Australia, which had 64 Ag/AgCl sensors. The electrodes were placed according to the

extended 10% system [58] and we made sure that the impedance for each electrode was

below 10 kΩ before each session. The data was recorded at a rate of 1000 Hz. Additionally,

we used Pupil Labs Pupil Core, a wearable eye-tracking headset from Berlin, Germany,

that has three cameras to record the participant’s eye activity and field of view at 200 Hz

and 30 Hz, respectively [172]. We also recorded Blood Volume Pulse (BVP) data using

Empatica E4, a device that uses infrared plethysmography from Empatica Srl in Milano,

Italy. We were able to synchronize events from the task scenario with the EEG, eye

activity, and BVP data in real time using the Lab Streaming Layer [191].

3.2.2 Experimental Procedures

Our study featured two tasks: the multiple objects tracking task [156] and the collision

prediction task. As shown in Figure 3.3(A), in the tracking task, participants were first

presented with a fixation cross on the screen for three seconds, followed by a freeze phase

where the dots, some of which were blue, and the rest were red, remained stationary. The

blue dots were the targets that participants were instructed to track. After three seconds

of freeze, the blue targets turned red, so that they were no longer distinguishable from

the other dots and all the dots began to move randomly. The dots had a diameter of 14

pixels, and they moved at a rate of 15 frames/second.

In the task, participants were asked to keep track of the target dots (initially blue)

for 15 seconds. Once the time was up, all the dots stopped moving, and participants were

prompted to indicate the target dots by clicking on the dots that they had been keeping

track of. The workload level of the tracking task was manipulated by varying the number

of blue dots and the total number of dots. As shown in Table 3.1, in the low workload

condition, there were 10 dots with one blue dot; in the medium workload condition, there

were 12 dots with three blue dots; and in the high workload condition, there were 15 dots

with five blue dots.

In the collision prediction task, as shown in Figure 3.3(B), participants were first

presented with a fixation cross on the screen for three seconds. This was followed by a

three-second-long freeze phase where the dots remained stationary. After that, all the

dots started moving in a predefined uniform direction. Unlike the tracking task, all dots

were of the same color (pink), and the participant’s task was to predict the trajectory
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of the dots and identify which pair of dots would collide. The trajectory of the dots was

manipulated such that there would be only one collision in each trial. Participants were

asked to identify the pair of dots that would collide and click on both dots before the

collision happened, which usually occurred in the last three seconds of the trial.

Figure 3.3: The tasks’ experimental design: (A) illustrates the design of the tracking task
and (B) illustrates the design of the collision prediction task. Note that the number of
dots shown in these diagrams is for representation purposes only.

To prevent random guesses, the number of dots that participants could select was

limited to two. Once the participant selected a dot, it would change from pink to red. The

levels of workload were manipulated by varying the number of dots. As shown in Table

3.2, the low workload condition had six dots, the medium workload condition had 12 dots,

and the high workload condition had 18 dots.

Individuals could simultaneously track up to eight objects [285] by focusing on

a central point. Therefore, there may not be any need to track each object’s motion

individually but maintaining the focus at the center of the moving objects could help

track the object’s trajectory and position. In the tracking task, participants were asked to

keep track of the target dots (initially blue) moving randomly among distractor dots for
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15 seconds. As participants could simultaneously track the motion of up to eight objects,

we tested the experiment design with different numbers of tracking dots. In a pilot study

with nine participants, we determined the optimal number of blue dots and the total

number of dots to elicit significant variations in the tracking accuracy while ensuring

participant engagement.

Further, in the collision prediction task, the participant’s task was to predict the

trajectory of the dots and identify which pair of dots would collide. Here, the pilot study

determined the total number of dots and also the number of collisions to finalize the

experiment design. So, in the collision prediction task, the total number of dots and

the number of collision for each workload level was determined based on significant

changes in time before collision and collision prediction miss rate for the participants in

the pilot study. Both tasks were executed by a JavaScript program and could be run on

any computer with an Internet Browser, keyboard, and mouse. Both of these tasks were

displayed on a 15-inch monitor with a resolution of 1920 x 1080.

Figure 3.4: A diagram that explains the process of calculating the time before the collision
in the collision prediction task.

Each individual had to complete 108 trials of each task, with 36 trials of each workload

level. The entire experiment was divided into four blocks, and each block included 27

trials of the tracking task and 27 trials of the collision prediction task. The workload

conditions in the trials were randomized within a block to avoid any habituation or

expectation effects.

At the end of each trial, participants received feedback on their performance with a

message on the screen, for the tracking task it was - "You have correctly tracked x dots

out of y dots to track" and for the collision prediction task it was "You have correctly

detected this collision" or "You have missed this collision". After reading the performance

feedback, they could move to the next trial by pressing the spacebar key. After completing

each block, participants were prompted to take a 5-minute break before proceeding to

the next block by pressing the spacebar key.

Before starting the experiment, all participants went through a training session that

typically lasted around 10 minutes. During this session, they completed six trials of
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Table 3.1: Workload Manipulation in Tracking Task

Workload Level Tracking Dots Total no.of dots
Low 1 10
Medium 3 12
High 5 15

Table 3.2: Workload Manipulation in Collision Prediction Task

Workload Level Total no.of dots
Low 6
Medium 12
High 18

each task to get familiar with the tasks and develop strategies for performing them

successfully. Participants were encouraged to continue training until they felt comfortable

with the tasks. After the training, all participants performed the tasks for about 1.5

hours while we collected EEG, eye activity, and HRV data.

3.2.3 Data Analysis

3.2.3.1 Behavioural and Performance Data Analysis

To evaluate each participant’s performance in the tracking task, we measured their

tracking accuracy. We determined the tracking accuracy for each trial by calculating the

proportion of correctly tracked dots to the total number of dots that needed to be tracked.

(3.1) T A = correct/total

where TA is the tracking accuracy, correct is the number of dots correctly tracked,

and the total is the total number of dots to track.

To measure performance in the collision prediction task, we used two metrics: time

before collision and collision miss proportion rate. The time before collision is the duration

between when the participant clicks on one of the colliding dots and when the collision

occurs (as shown in Figure 3.4). The collision miss proportion rate for a particular

workload level of the collision prediction task is the ratio of the number of collision

prediction misses to the total number of collisions for that workload level. A collision
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miss was recorded when the participant was unable to identify the pair of dots that

would collide and thus did not click on either dot before the collision occurred.

(3.2) Rate = missed/total

where Rate is the collision prediction miss proportion rate, miss is the total number

of trials where participant missed correct collision, and total is the total number of

collisions.

3.2.3.2 EEG Preprocessing

We preprocessed EEG data using the EEGLAB v2020.0 toolbox in MATLAB R2019a (The

Mathworks, Inc., Natick, MA, USA) as shown in Figure 3.5. The data was downsampled

to 250 Hz, and a band-pass filter of 2-45 Hz was applied. Channels that had three seconds

or more of flat lines were removed using the clean_flatline function. We also removed

noisy channels using the clean_channels function in EEGLAB. On average, we removed

3 ± 1 channels, and we restored these channels by interpolating data from neighboring

channels using the spherical spline method from the EEGLAB toolbox.

We removed continuous artifactual regions using the EEGLAB function pop_rejcont.

We divided the data into 0.5-second epochs with an overlap of 0.25 seconds and considered

a frequency threshold of 1 to 100 Hz. Each selected artifactual region consisted of at least

four contiguous epochs with high-frequency data (spectrum over 10 dB). Afterward, we

cleaned the windows using the clean_windows function in EEGLAB, which calculates the

power of each sliding window of one-second length, transforms it to a z-score, and rejects

all windows that fall outside of 5 standard deviations. After these artifact removal steps,

we extracted two EEG datasets: one for tracking trials and one for collision prediction

trials. Each participant had 34 ± 2 high workload, 35 ± 1 medium workload, and 34 ± 1

low workload tracking trials, and 32 ± 2 high workload, 33 ± 2 medium workload and 33

± 1 low workload collision prediction trials.
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Figure 3.5: The pipeline for preprocessing and processing EEG data for the tracking and
collision prediction tasks.

The tracking epochs were 21 seconds long, which included the 3 seconds of the fixation

period, followed by 3 seconds of the freeze phase, and then the tracking task began. The

collision prediction task epochs were 15 seconds in length, which included the initial

3 seconds of fixation period, followed by 3 seconds of freeze phase, and then, the colli-

sion prediction task started. Both the tracking and collision prediction datasets were

decomposed using Independent Component Analysis (ICA) performed using EEGLAB’s

runica algorithm [84]. Finally, we employed ICLabel [276], an automatic IC classifier, to

identify components related to brain, heart, line noise, eye, muscle, channel noise, and

other activities. This tool was used to generate class labels for each component, and all

the components that were not related to brain activity were rejected.

IC Clustering

We used the EEGLAB STUDY structure [85] to manage and process data recorded

from multiple participants as it enables component clustering to group similar indepen-

dent components across participants and allows statistical comparisons of component

activities for different workload conditions. We used clustering functions to investigate

the contributions of frontal and parietal clusters of independent components (ICs) to

the workload dynamics. Research has shown that frontal and parietal brain regions
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reflect changes in workload [12, 13, 45, 89, 221, 287, 319], and since both of our tasks

also manipulate visual load, we particularly focused on the frontal, parietal and occipital

clusters of brain activity.

We created a Study for each task, and each Study had one group with 24 participants,

with three conditions corresponding to the three levels of workload. Since the dataset of

each participant was recorded in a single session, the resulting independent component

maps were the same across all three conditions for each participant. For each participant,

we selected only those ICs with a residual variance (RV) less than 15% and inside

the brain volume, which we achieved using the Fieldtrip extension [258]. We used

the k-means clustering algorithm [143] to cluster independent components across all

participants into clusters based on two criteria with equal weight (weight = 1):

1. scalp maps

2. their equivalent dipole model locations, which was performed using DIPFIT rou-

tines in EEGLAB [259].

We identified the Talairach coordinates [195] of the fitted dipole sources of these clusters

to select frontal, parietal, and occipital clusters.

We subsequently calculated the grand-mean IC event-related spectral power changes

(ERSPs) for each condition for each cluster. ERSPs show the relative change in power

at components with respect to a baseline period before the stimulus [210]. The three

seconds of fixation phase in each tracking and collision prediction epoch was taken as

the baseline to see the changes in power spectra during the task. We examined the

ERSPs for frontal, parietal, and occipital clusters for both tracking and prediction tasks.

To compare the ERSPs of different workload conditions, we used permutation-based

statistics implemented in EEGLAB, with a Bonferroni correction and a significance

level set to p = .05. Also, for the frontal, parietal, and occipital clusters, we calculated

the spectral powers of each IC using EEGLAB’s spectopo function, which uses Welch’s

periodogram method [352] on each 2-s segment using a Hamming window with 25%

overlap for a range of frequencies from 2 to 45 Hz. For each IC, we examined the power

spectral density (PSD) at different frequency bands to identify the correlates of mental

workload.

3.2.3.3 Eye Activity data

The Pupil Core software, Pupil Capture, provides the pupil size for the left and right

eye separately, along with the associated confidence value, which represents the quality
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of the detection result. The eye activity data was processed as shown in Figure 3.6. We

removed all data points where the confidence of the pupil size was less than 0.8 from

the data. We low-pass filtered the pupil size data (using a minimum order finite impulse

response filter) at 4 Hz [280].

As pupil size is a continuous measurement that varies across participants, we nor-

malized the raw pupil size data using the baseline data (defined as the three seconds of

fixation period in each tracking and collision prediction epoch). We also extracted the

number of blinks during each trial from the pupil size measurement when the pupil size

and confidence of the measurement, reported by the Pupil Capture software, suddenly

dropped to zero.

Figure 3.6: The pipeline for Eye activity Processing.

3.2.3.4 Heart Rate Variability

We computed the inter-beat-interval (IBI) time series from the Blood Volume Pulse (BVP)

data of each tracking and collision prediction trial. We then calculated the Root Mean

Square of the Successive Differences (RMSSD) by using the PeakUtils Python package

[244] to detect peaks of the BVP and measure the intervals between adjacent beats, as

shown in Figure 3.7.
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(3.3) RMSSD =
√√√√ 1

N

N∑
1

(IBI i−1 − IBI i)2

We normalized the RMSSD data by using the three seconds fixation period in each

tracking and collision prediction epoch as the baseline.

Figure 3.7: The pipeline for Heart Rate Variability Processing.

3.2.4 Statistical Analysis

We used the SPSS statistical tool to conduct statistical analyses. To investigate the

differences in performance, EEG, eye activity and HRV parameters across participants

in the three workload levels of tracking and collision prediction tasks, we performed

a one-way repeated-measures analysis of variance (ANOVA) with workload level (low,

medium or high) as the within-subjects factor. We tested for sphericity using Mauchly‚Äôs

test. If sphericity was not satisfied (p<.05), we applied Greenhouse-Geisser correction. If

the main effect of the ANOVA was significant, we then performed post-hoc comparisons to

determine the significance of pairwise comparisons, using Bonferroni correction. Finally,

we used multiple linear regression to relate EEG, eye activity, and HRV metrics to the

performance in the tracking and collision prediction tasks, using EEG power, eye activity,

and HRV metrics as predictors, and the performance in the task as the dependent

variable.

3.2.5 Mental Workload Classification of Tracking and Collision
Prediction Tasks

The EEG data collected for the tracking and collision prediction tasks was used to develop

classification models for each task. We employed the cleaned data in developing the

workload classifiers for tracking and collision prediction tasks. We used the deep learning
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models: EEGNet, Shallow ConvNet, and Deep ConvNet for the workload classification.

We performed hyperparameter optimization for choosing parameters for each model.

Each epoch of the tracking task was 15 seconds in length and the tracking workload

data was arranged into data of dimensions 64 x 3750 x 2592. Therefore, the total data

available for training and testing the workload classifier on 24 participants over four

blocks was 64 x 3750 x 2592. The deep learning models were trained on 60% of the data:

64 x 3750 x 1556 and 64 x 3750 x 518, 20% of the data was used for validation. Adam

optimizer was used with a batch size of 128, the dropout rate was 50%, and the number

of training epochs was 1000. The model was tested on the remaining 20% of the data.

The average accuracy, F1-score, and coh-kappa of the tracking classifier are reported in

Chapter 4.

Each epoch of the collision prediction task was 12 seconds in length, however, we

only considered the last seven seconds of each collision prediction trial. This was selected

based on the observation of EEG features in the last seven seconds of the trial. Therefore,

the collision prediction workload data was arranged into data of dimensions 64 x 1750 x

2592. Therefore, the total data available for training and testing the collision prediction

workload classifier on 24 participants over four blocks was 64 x 1750 x 2592. The deep

learning models were trained on 60% of the data: 64 x 3750 x 1556 and 64 x 3750 x 518,

20% of the data was used for validation. Adam optimizer was used with a batch size of 32,

the dropout rate was 50%, and the number of training epochs was 1000. The model was

tested on the remaining 20% of the data. The average accuracy, F1-score, and coh-kappa

of the tracking classifier are reported in Chapter 4.

3.3 pHRC Experiment Methodology

3.3.1 Participants

The study was reviewed and approved by the University of Technology Sydney’s Human

Research Ethics Committee (ETH21-6346). A total of 24 participants (13 males, and 11

females, with an average age of 23 ± 4, all of whom were right-handed) took part in the

study. The experiment density plot is shown in Figure 3.8.

This data collection was conducted during the second COVID lockdown in Sydney,

Australia. We took additional care to follow the additional COVID-19 safe protocol based

on New South Wales guidelines (ensured that participants were vaccinated as per the

state guidelines), which was further approved by the UTS Ethics Committee and the
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University Risk Assessment team. As most of the population was vaccinated by then, we

were able to recruit participants comparably easier as compared to the ATC experiment.

Figure 3.8: pHRC Experiment Participant Distribution.

3.3.2 Experimental Procedures

The EEG data were collected using a wireless MOVE system from Brain Product GmbH

in Germany, which featured 29 channels. The electrodes were kept at an impedance of

less than 20 kkΩ, and the data were sampled at a rate of 1 kHz. The events from the

experiment were synced with the EEG data using Lab Streaming Layer [191].

The ANBOT [52], an intelligent industrial robot for abrasive blasting featuring a

UR10 robot arm by Universal Robots, was the collaborative robotic partner in this

experiment. ANBOT was specifically designed for collaborative grit-blasting tasks, and

featured a six-axis force-torque sensor positioned between the robotic arm and its end-
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effector to monitor the forces exerted by the human co-worker. The participants were

in contact with the robot arm through a handle mounted on the robot end-effector (see

Figure 3.9(A)). The interaction forces and torques are measured and controlled by the

ATI mini-45 transducer, placed between the robotic arm and the end-effector.

The control system employs an admittance-based approach to translate the forces

applied by the operator on the handles into desired robot movements within the Cartesian

space. To ensure safe operation without interfering with the robot’s admittance, collision

and singularity avoidance strategies were implemented. These strategies limited the

task to a specific region within the robot’s workspace, ensuring that the manipulator

remained clear of potential self-collisions and singular configurations.

During the experiment, the human co-worker continuously gripped the handlebar

attached to the robot’s end-effector, allowing for direct control. An accompanying monitor

displayed the real-time trajectory of the robot’s end-effector. Notably, for simplicity, the

experiment constrained the robot’s motion to two dimensions, enabling the human co-

worker to move the robot exclusively in vertical and horizontal directions that aligned

with the monitor’s orientation.

Prior to commencing the experiment, we provided participants with instructions

on how to operate the robot and informed them about the safety precautions in effect.

Additionally, participants were given the opportunity to familiarize themselves with the

robot’s control triggers, although this practice was separate from the actual experimental

task.

During the experiment, participants were tasked with completing an interactive

game called the ’Clock Game’ on a large LED TV. The game was designed to emulate a

blasting task and used an arithmetic task to manipulate the participants’ workload. The

point where the nozzle of the ANBOT robot arm was pointing was represented by a blue

dot on the screen, and the robot was limited to 2 degrees of freedom for the experiment.

Participants were instructed to use the buttons on the handles of the robot end-effector

to move the arm and paint the area where the nozzle was moving, simulating a paint

sprayer scenario. This required the use of both hands and kept the participants engaged

in the task.

The experiment was divided into three parts, each consisting of 90 trials that were

randomly ordered (Figure 3.9). Each section began with a 10-second period where

participants focused on a cross on the screen. Following that, a math equation would

appear on the screen for them to solve. The equations could involve adding or subtracting

one, two, or three-digit numbers.
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In the low workload condition, the arithmetic equation involved single-digit numbers,

such as the addition or subtraction of a one-digit number (e.g., 9 - 1). In the medium

workload condition, the arithmetic equation involved the addition or subtraction of

two-digit numbers with no carrying over (e.g., 13 + 24). In the high workload condition,

the arithmetic equation was more complex with the addition or subtraction of three-digit

numbers, which involved carrying over or borrowing in the ones and tens places (e.g.,

135 + 168 or 423 - 187).

The participants were presented with an arithmetic equation and had to solve it

within 5 seconds. After that, a large circle with a red dot in the center and 4 green dots

along the perimeter appeared on the screen. Each green dot had a number next to it,

and the participant’s task was to identify the green dot that matched the answer to the

equation they had solved. They had 2 seconds to identify the correct target during the

"Identify Target" phase.

After identifying the correct target, the participant had to reposition the blue dot

back to the center of the big circle, where the red dot was located. During this phase,

the participant was given new instructions to move the robot arm to the correct target

while simultaneously completing a new arithmetic equation of varying difficulty. The

participant had five seconds to complete the task; otherwise, the trial would reset.

To keep the participants engaged, we displayed a score on the screen that was based

on their accuracy in identifying the target and the sprayed area. To make sure that the

participants were completing the calculations while moving the robot arm, we removed

the arithmetic equation from the screen as soon as the arm reached the target.

As the participants were not required to input the correct answer to the calculation,

we desired to eliminate any chances of any random guessing in the ’Identify Target’

phase. In a pilot study, we realized that participants developed strategies to calculate

the correct answer without performing the entire calculation. One of the most common

strategies used by the participants involved guessing the correct answer by calculating

only the last digit of the correct answer in the medium (two-digit calculations) or high

workload (three-digit calculations) conditions. In order to prevent participants from

employing this strategy of guessing the correct answer by just figuring out the last digit,

we selected the options in a manner that there were multiple options with the same last

digit and second digit.

Also, in the pilot study, it was observed that participants continued with the calcula-

tion even after they reached the target. In order to avoid this problem, we removed the

equation from the screen as soon as the participant reached the target and immediately
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followed it with a very short two-second ’Identify Target’ phase.

Figure 3.9: The experimental design included (A) a participant wearing an EEG cap with
the transmitter in a backpack in front of a screen. The screen displayed the ’Calculate
and Blast’ portion of the trial, where the participant was moving to a target position
while performing a medium workload arithmetic calculation of 38-11, (B) an illustration
of an example trial, and (C) the layout of each experimental block.

Each experimental block consisted of 30 trials where the robot arm would stop

unexpectedly during the blasting phase, creating a cognitive conflict. This was done by

placing an invisible obstacle on the path to the target or green dot. The screen would also

turn black when the participant reached the obstacle to indicate an error. To prevent

the participant from circumventing the obstacle, it was designed as an annular barrier

that restricted the movement of the robot arm. The arm would remain stuck until the

blasting phase reset.
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The chance of the invisible obstacle appearing in the blasting path was set at one-

third to prevent participants from anticipating a sudden stop by the robot. As a result,

there were 90 trials in each workload condition, with 60 normal blasting trials and 30

error trials, and the trials with sudden robot stopping were randomly distributed.

After the blast phase, the participant received feedback with messages, such as "Yay!

Correct target", "Oops.. Wrong target" or "Sorry.. time is up" in case of the normal trials.

They received feedback such as "Aborting trial.. Correct Direction", "Aborting trial..

Wrong Direction" or "Sorry.. time is up" in case of obstacle trials. After the feedback,

the participants were asked to identify the target again based on the equation’s answer

before they were instructed to ’Get back to centre’. During each block, the participants

were randomly asked to complete the NASA-TLX questionnaire to record their subjective

workload ratings.

The participants were given a training session before the main experiment, where

they completed 30 trials of the task to become familiar with the task and the movement

of the robot arm. The experiment lasted for approximately 1.5 hours and consisted of

three blocks, with a break of 10 minutes between each block for rest.

3.3.3 Data Analysis

3.3.3.1 Subjective Measures Analysis

The participants were requested to evaluate their workload for each condition by means

of NASA-TLX scores, which were gathered in random order during each block of the

experiment. Subsequently, the mean scores for each subscale were calculated for each

condition.

3.3.3.2 Behavioural and Performance Data Analysis

The success of the blasting task was gauged by measuring three factors: target identifi-

cation accuracy, blasting time, and blasting miss rate. To evaluate target identification

accuracy, the proportion of trials where the participant correctly identified the target out

of the total number of trials was calculated for each workload level.

(3.4) Accuracy= nCorrect/nTotal

where nCorrect was the number of trials where participants correctly identified and

blasted the target, and nTotal was the total number of trials. The amount of time it took
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to move the robot arm from the center of the circle to the designated target was also

taken into account for the various workload conditions. Additionally, we evaluated the

blasting miss rate for each workload condition, which was determined by the proportion

of trials where the participant failed to reach the target within the 5-second time limit

out of the total number of trials.

(3.5) BlastingMissRate = nMiss/nTotal

where nMiss was the number of trials in which participants did not reach the target

and nTotal was the total number of trials. To gain additional insights, the average force

exerted and the average speed of the end-effector were extracted from the force-torque

sensor (ATI Mini-45) located between the handle and the blasting nozzle.

To evaluate the performance of the obstacle trials in the blasting task, two aspects

were considered: accuracy in identifying the target and the time required to reach the

obstacle. The accuracy of target identification for each workload level was established by

calculating the ratio of the number of trials where the participant correctly identified

the target, as indicated by the direction of movement of the nozzle, to the total number

of trials.

(3.6) accuracyObstacle = nCorrectO/nTotalO

where nCorrectO was the number of trials where participants correctly identified

the target and moved in the correct direction before reaching the obstacle, and O was

the total number of obstacle trials. For the various workload conditions, the duration of

time taken to move the robot arm from the center of the circle to the invisible obstacle

in the blasting path, which is any of the potential targets, was also taken into account.

Additionally, the average force exerted and the average speed of the end-effector were

obtained from the force-torque sensor (ATI Mini-45) located between the handle and

blasting nozzle.

54



3.3. PHRC EXPERIMENT METHODOLOGY

3.3.3.3 EEG Processing

Figure 3.10: EEG data processing.

The EEG data was preprocessed using the EEGLAB v2022.0 toolbox [84] in MATLAB

R2020b, as depicted in Figure 3.10. The data was first downsampled to a rate of 250 Hz,

then filtered between 1-45 Hz to remove unwanted frequencies. Line noise and channels

that showed flat lines for more than three seconds were eliminated through the use of the

clean_line and clean_flatline functions. Additionally, noisy channels were identified and

removed by the clean_channels function. On average, 2 ± 0.4 channels were removed,

which were later restored using the spherical spline method, which interpolates data

from neighboring channels. A copy of this dataset was made, and using the pop_rejcont

function, continuous artifactual regions were cut off. Then, the clean_windows function

was used to perform window cleaning. After these artifact removal steps, ICA was

performed using the AMICA algorithm in EEGLAB.

After we used ICA to analyze each participant’s data, we used ICLabel to identify
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and discard any components that had less than 30% brain activity. Then, we copied the

ICA information (icawinv, icasphere, and icaweights) back to the original dataset. From

there, we extracted all the relevant epochs and created three separate datasets for each

workload level.

IC Clustering
The data from multiple participants was organized and processed using the EEGLAB

STUDY structure [85]. A study was created for a group of 24 participants, with three

conditions corresponding to the three workload levels. Only the components within the

brain, as determined using the Fieldtrip extension [258], and with a residual variance of

less than 15% were selected for each participant. The components for all participants

were then grouped together using the k-means clustering algorithm [143], based on three

criteria that were given equal weight (weight=3):

1. The location of the dipoles,

2. The orientation of the dipoles, and

3. The scalp maps.

To identify the frontal, central, and parietal clusters, Talairach coordinates [195] were

used to locate the fitted dipole sources of these clusters. The power spectral density (PSD)

of each component was then evaluated for the frontal, central, and parietal clusters,

using the spectopo function on 2-second segments with a 25% overlap and a Hamming

window. The mean PSD in the delta (1-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), beta (12-30

Hz), and gamma (30-45 Hz) bands were examined for each independent component (IC)

of the clusters to identify any correlation with mental workload. The PSD calculated for

each IC was normalized using the fixation period as the baseline to investigate changes

in PSD during blasting under various workload conditions.

3.3.3.4 EEG Processing for Normal and Conflict Trials

IC Clustering

Multiple participant data was organized and processed using the EEGLAB STUDY

structure [84]. A study was created with a group of 24 participants, with six conditions

that corresponded to the three levels of workload and the presence or absence of obstacles.

Only the components within the brain, as determined using the Fieldtrip extension [258]

and with a residual variance (RV) of less than 15%, were selected for each participant, as
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shown in Figure 3.11. The components for all participants were then grouped together

using the k-means clustering algorithm [143] based on three criteria, each of which was

given equal weight (weight=3):

1. dipole locations,

2. dipole orientation, and

3. scalp maps.

The location of the fitted dipole sources for the frontal, central, and parietal clusters

were identified using Talairach coordinates [195], which were then used to determine

the location of these clusters.

The power spectral density (PSD) of each component in the frontal, central, and

parietal clusters was evaluated using the spectopo function on 1-second segments, with

a Hamming window. The mean PSD in the delta (1-4 Hz), theta (4-8 Hz), alpha (8-12

Hz), beta (12-30 Hz), and gamma (30-45 Hz) bands were examined for each independent

component (IC) of the clusters, specifically for the one second immediately after reaching

the target in normal conditions and for the one second immediately after reaching the

obstacle in the obstacle trials. The PSD calculated for each IC was normalized using

the fixation period as the baseline to compare changes in PSD upon reaching either the

target or obstacle under different workload conditions.

We also conducted a simple event-related potential (ERP) study with a group of 24

participants, in which three conditions were created to correspond to the three levels

of workload. Only the components within the brain, as determined using the Fieldtrip

extension [258] and with a residual variance (RV) of less than 15%, were selected for

each participant. The components for all participants were then grouped together using

the k-means clustering algorithm [143] based on three criteria, each of which was given

equal weight (weight=3):

1. dipole locations,

2. dipole orientation, and

3. scalp maps.

To evaluate the event-related error potential (ERrP), particularly in the theta band

[380], under the three workload conditions, a frontal cluster that is located near the

anterior cingulate cortex (ACC) was identified [212, 345]. The clustered components were
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then used to extract the PEN and Pe from the back-projected and channel-based ERPs.

The channel-based ERPs were filtered between 4-8 Hz and smoothed at 10 Hz. PEN was

calculated as the minimum error negativity amplitude in the 100-350 ms window after

reaching the obstacle, and Pe was calculated as the maximum error positivity in the

350-450 ms window after reaching the obstacle.

Figure 3.11: EEG data processing for obstacle trials.

3.3.4 Statistical Analysis

All statistical analyses in this study were conducted using the SPSS (IBM SPSS 26.0;

Chicago, IL, U.S.A.) tool. The variations of the NASA-TLX scores, performance, and EEG

parameters of the three workload levels of the task were investigated by conducting a

one-way repeated-measures analysis of variance (ANOVA) with the workload level as

the within-subjects factor. Mauchly’s test was used to test for sphericity, and if sphericity

was not met (p < .05), Greenhouse-Geisser correction was applied. Posthoc comparisons
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were conducted with Bonferroni corrections (α = 0.05) if the main effect of ANOVA was

found to be significant.

Additionally, Pearson correlation analyses were conducted to identify the relationship

between the subjective workload measures and the EEG powers. The correlation analyses

were also done to examine the association between EEG powers and the applied human

force. Multiple linear regression was also applied to predict physical performance from

EEG power using the Enter method. Furthermore, Pearson correlation analyses were

performed to examine the relationship between the ERrP measures and the normalized

applied human force.

3.4 Online Safety Alert tool for Physical Human
Robot Collaboration

3.4.1 Online Safety Alert Tool Framework

Figure 3.12: Framework for Online Safety Alert tool for pHRC.

We developed a framework for an Online Safety Alert Tool (shown in Figure 3.12)

that safely transitions the robot to a stop condition and provides accurate and reliable

estimation of error awareness and mental workload of the operator while blasting. For

this purpose, we used the data collected in the offline pHRC experiment of the abrasive

blasting task combined with a secondary arithmetic task.
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The online safety tool comprises of error awareness predictor and workload classifier.

The error awareness predictor estimates the error awareness of the operator, represented

by prediction error negativity amplitude, error positivity amplitude or normalized power

spectral density in the window 0.2-0.9 seconds after the error occurrence in 1-30 Hz fre-

quency bin. For this framework, we selected the threshold for error awareness predictor

that predicts PEN as the mean PEN in the lower 30% quartile for all participants under

all workload conditions. The threshold for error awareness predictor that predicts Pe

amplitude was chosen for testing the online framework as the mean Pe in the lower 30%

quartile for all participants under all workload conditions. And the threshold selected for

error awareness predictor predicts normalized PSD as the mean PSD in the lower 30%

quartile for all participants under all workload conditions.

Another major component of the online safety alert tool is the workload classifier that

detects the workload of the human operator into three levels: low, medium, or high. The

output of the workload classifier is currently used only for workload diagnosis. However,

it could be used to run a closed-loop mental workload adaptive system in the future.

The online safety alert tool was tested using an online simulation of the experiment,

and the performance of the tool was validated using within-subjects and cross-subject

cross-validation.

3.4.2 Error Awareness Predictor

The simulated offline and online EEG data during the blasting period was preprocessed

using the MNE package in Python [129]. The data was down-sampled to 250 Hz using

the mne.filter.resample function and bandpass filtered between 1 and 45 Hz using

mne.filter.filter_data. The line noise was removed using mne.filter.notch_filter function

in the mne package.

In the case of the error awareness predictor, for each window of two seconds in length,

the event-related desynchronization and event-related synchronization were computed

for frequencies ranging from 1-45 Hz and all channels using mne.time_frequency.tfr_multitaper

algorithm. Therefore, each window or epoch of two seconds was transformed to the time-

frequency data of dimensions 29 x 44 x 500. We rearranged the data by slicing the data

corresponding to each channel over the other, reshaping the data to dimensions 1276

x 500. Therefore, the total data available for training and testing the error awareness

predictor models on 24 participants over three blocks was 2160 x 1276 x 500.

The output of the predictor, error awareness, was represented by:

60



3.4. ONLINE SAFETY ALERT TOOL FOR PHYSICAL HUMAN ROBOT
COLLABORATION

• prediction error negativity (PEN),

• error positivity amplitude,

• mean power spectral density (PSD) between 1-30 Hz at the FCz channel in the

window 0.2-0.9 seconds after the error.

Prediction error negativity amplitude was identified as the minimum ERP value

in the 0.1-0.3 seconds window after the error, and the error positivity amplitude was

identified as the maximum ERP value in the 0.3-0.5 seconds window after the error. The

prediction error negativity and error positivity amplitudes were detected online using

mne.preprocessing.peak_finder algorithm.

The power spectral density was computed using mne.time_frequency.psd_welch algo-

rithm. We removed the inter-subject variability and workload features from the power

spectral density considered immediately after the error by subtracting the mean power

spectral density of the two-second EEG data prior to the error.

In the case of the error awareness predictor, for within-subjects testing, we used the

first two experimental blocks of all the subjects for training, and the last block was used

for testing. Therefore, the models were trained on 1440 x 1276 x 500 with 20% of this

data used for validation. The model was tested on the online simulation of the last block

of each participant in the within-subjects cross-validation. For cross-subject testing, we

trained the error awareness predictor on the data of 23 subjects and tested the entire set

of error trials of every left-out subject. So, in this case, the model was trained on data of

dimensions of 2070 x 1276 x 500 and validated on 20% of this data. It was tested on the

90 error trials of the test subject. The average mean squared error and mean average

error of the within-subjects and cross-subject cross-validation are reported in Chapter 7.

We used the deep learning models: EEGNet, Shallow ConvNet, and Deep ConvNet

for error awareness estimation. We performed hyperparameter optimization for choosing

parameters for each model. Adam optimizer was used with a batch size of 128, dropout

rate of 50%, and the number of training epochs was 1000.

3.4.3 Mental Workload Classifier

The simulated offline and online EEG data during the blasting period was preprocessed

using the MNE package in Python [129]. The data was down-sampled to 250 Hz using

the mne.filter.resample function and bandpass filtered between 1 and 45 Hz using

61



CHAPTER 3. METHODOLOGY

mne.filter.filter_data. The line noise was removed using mne.filter.notch_filter function

in the mne package.

In the case of the workload, we employed the first three seconds of each blasting trial

as input and computed the event-related desynchronization and event-related synchro-

nization for frequencies ranging from 1-45 Hz and all channels using mne.time_frequency.

tfr_multitaper algorithm. Therefore, each window or epoch of two seconds was trans-

formed to the time-frequency data of dimensions 29 x 44 x 750. We rearranged the data

by slicing the data corresponding to each channel over the other, reshaping the data to

dimensions 1276 x 750. Therefore, the total data available for training and testing the

workload classifier on 24 participants over three blocks was 4320 x 1276 x 750.

In the case of the workload classifier, for within-subjects testing, we used the first

two experimental blocks of all the subjects for training, and the last block was used

for testing. Therefore, the models were trained on 2880 x 1276 x 750, with 20% of this

data used for validation. The model was tested on the online simulation of the last block

of each participant in the within-subjects cross-validation with 60 normal trials. For

cross-subject testing, we trained the workload classifier on the data of 23 subjects and

tested on the entire set of normal trials of every left-out subject. So, in this case, the

model was trained on data of dimensions of 4140 x 1276 x 1250 and tested on the 180

normal trials of the test subject. The average accuracy, F1-score, and coh-kappa of the

within-subjects and cross-subject cross-validation are reported in Chapter 7.

We used the deep learning models: EEGNet, Shallow ConvNet, and Deep ConvNet

for the workload classification. We performed hyperparameter optimization for choosing

parameters for each model. Adam optimizer was used with a batch size of 256, the

dropout rate was 50%, and the number of training epochs was 2000.
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4
BIOMARKERS OF MENTAL WORKLOAD VARIATIONS IN

BASIC AIR TRAFFIC CONTROL TASKS

4.1 Background

People generally prefer not to engage in activities that require them to push their

abilities to their limits as it can be a source of stress and frustration [3]. However,

not all job settings allow for such avoidance, making it essential to establish

a harmonious relationship between a worker’s abilities and the work environment

[355]. Even though human workers can adapt to various work environments, perform

multiple tasks, and operate different equipment at the same time, poorly designed work

environments can lead to an excessive amount of sensory information, resulting in an

increased workload.

Air traffic controllers are a prime example, as they work in a highly complex environ-

ment to guarantee safe and efficient air traffic flow by organizing aircraft routes to ensure

they reach their destinations in an orderly and timely manner. They are responsible

for anticipating and preventing conflicts between aircraft by monitoring adherence to

International Civil Aviation mandated separation standards [300] and managing the

complexity that arises. They routinely handle multiple aircraft, coming from different

directions and heading to various destinations at varying speeds and altitudes [131].

However, as air traffic continues to increase, there is a growing need to research the
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mental factors that contribute to the effectiveness of air traffic controllers.

Mental workload plays a significant role in determining the effectiveness of air traffic

controllers, who work in complex and interactive environments. In recent years, their

responsibilities have shifted to a more supervisory level, requiring them to integrate

multiple streams of information, which in turn demands more cognitive resources [269],

leading to increased workload for operators [187, 196, 248]. Mental workload is defined

as the dynamic relationship between the cognitive resources required by a task and

an operator’s ability to provide those resources [355]. Human operators have limited

information processing abilities as they have a finite amount of resources with limited

capacity [169, 192].

The theory of limited cognitive resources posits that exposure to demanding task

conditions can negatively impact performance due to either resource depletion [261] or

impeded access to resources [43]. High levels of mental workload can lead to human error

[294], compromising system efficiency and safety [368]. To ensure optimal performance,

the mental workload of operators should be neither too high nor too low [41, 137],

as performance is known to decline under both overload and underload conditions

[48, 138, 341, 371].

According to the dynamic adaptive theory, the brain seeks a balance of cognitive re-

sources and comfort, and extreme task demands can hinder adaptability and performance

[139]. By predicting and adjusting mental workload, and modifying task allocation, it is

possible to maintain high performance and avoid loss of situational awareness, especially

in safety-critical work environments. Accurate and reliable measurement of mental

workload is vital in order to create better work environments and human-machine

interactions [12, 46, 309].

Researchers have employed various strategies, such as self-assessment, performance

measures, and physiological metrics, to evaluate mental workload, each with its own

advantages and limitations [254, 362]. The results obtained from these different meth-

ods for measuring mental workload can often be dissociated [370], as their sensitivity

can vary depending on the operator’s workload [82]. Some commonly used subjective

measures include the Instantaneous Self-Assessment (ISA) questionnaire [44, 167, 180],

NASA Task Load Index [142], and the Subject Workload Assessment Technique [296].

These are used to gauge the workload of the operator.

Assessing mental workload is a complex task and can’t be done accurately by using

subjective measurements alone [83]. The method of assessment shouldn’t impede on

the task at hand or alter the operator’s mental state, which can be the case with some
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subjective assessment techniques using questionnaires. Another widely used method

is performance-based workload measurement, which, like the subjective assessment

method, provides a retrospective workload assessment. However, performance-based

measures can only provide a partial picture as the same performance level can be

achieved while experiencing different levels of workload [16].

Physiological metrics have been used over the years to assess workload [54, 57, 221]

as it is highly sensitive, diagnostic, and mostly non-intrusive, providing accurate real-

time assessment of the operator’s workload [266, 380]. Using physiological data such as

neurophysiological signals to assess mental workload online, without influencing the

task, as there is no explicit output [125, 263, 264]. Neurophysiological measures can

also assess changes in mental state that are not discernible in overt task performance

[13, 38, 264, 355].

Neurophysiological measures, such as the electroencephalogram (EEG) signal, have

been frequently utilized to gauge mental workload as the effects of task demands can be

distinctly observed in variations of EEG rhythms [41, 45, 89, 125, 204, 221, 288, 290].

Researchers have also used EEG to accurately forecast performance decline resulting

from changes in workload [127, 219], and it has been observed that it is associated with an

increase in frontal theta power and alterations in parietal alpha power, which pertains

to cognitive and memory performance [119, 124, 126, 274, 330]. Several EEG-based

workload indices, such as the ratio of frontal theta to parietal alpha power [118, 154],

the ratio of beta to theta and alpha [116], and the theta-beta ratio [235], have been found

to accurately reflect workload.

However, EEG features related to mental workload have been found to vary depending

on the task, therefore incorporating other modalities like eye activity data and heart rate

data can lead to improved outcomes [173, 277]. Pupil size and blink rate have recently

gained attention as dependable indicators of workload [216]. Heart rate variability

(HRV) is another highly sensitive physiological metric for measuring variations in

mental workload [149, 171, 239, 241, 245]. Root mean square of successive differences

(RMSSD) is considered the most robust time-domain HRV measure of workload [226].

Once the mental workload of an operator can be accurately measured, it can be

utilized to drive a mental workload adaptive system [279, 316]. In such adaptive systems,

physiological measures of mental workload can be used to trigger automation that

adapts its behavior to the current mental workload of the operator [168, 310]. A mental

workload adaptive automation system should be able to adjust to variations in the

operator’s mental workload without requiring them to explicitly communicate their
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needs or activate the automation.

When human operators and automation work together to improve performance and

efficiency, the operator expects automation to act like a human colleague [12]. Adaptive

automation should be timely, stepping in at the appropriate time, and be cognitively

attuned to the operator, helping where needed and taking over tasks that are currently

overwhelming the operator.

However, currently, physiological correlates of mental workload are only used to

determine when to adapt, not what to adapt, resulting in primitive strategies employed

by adaptive automation systems. There is a need to develop intelligent adaptive systems

that can identify what form of automation to use depending on the type of mental

workload experienced by the operator. However, there is still a lack of evidence that

physiological metrics of mental workload can direct the tasks contributing to workload.

4.2 Research Hypothesis

In this study, we investigated whether the use of multimodal physiological metrics

of mental workload can provide more information about the tasks that contribute to

the workload experienced by an ATC operator. Despite several factors that influence

the complexity of ATC tasks [77, 234], such as environmental, display, traffic, and

organizational factors, the main functions of an ATC operator are tracking and collision

prediction. Therefore, we designed tracking and collision prediction tasks to investigate

the physiological effects of workload variations in these basic ATC tasks. The experiment

was structured as a classical cognitive paradigm with manipulation of workload (low,

medium, high) and repeated stimuli to study whether physiological data such as EEG, eye

activity and HRV can accurately assess the mental workload of the operator while they

perform these basic tracking and collision prediction tasks. Therefore, we hypothesize

the following:

1. The three different levels of workload defined in both tracking and collision pre-

diction tasks will result in a significant performance decline as the workload

increases.

2. Variations in workload in tracking and collision prediction tasks can be accurately

assessed using EEG, eye activity, and HRV metrics.

3. Performance in tracking and collision prediction tasks can be forecasted based on

the measured physiological signals.
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4. Physiological responses to workload variations in tracking and collision prediction

tasks will differ across tasks.

The chapter organization is shown in Figure 4.1.

Figure 4.1: Organization of Chapter 4.

4.3 Behavioural and Performance Measures during
Workload Variations

In this study, we created two tasks based on Air Traffic Control (ATC) - tracking and

collision prediction tasks- as simplified versions. Both tasks are fundamental tasks that

ATC operators perform on a regular basis, but we studied them separately to better

understand the variations in physiological response to changes in workload in each of

these tasks.

In this study, mental workload was evaluated by recording EEG, eye activity, and

BVP data while participants completed the tasks. The effects of increasing air traffic on

workload were examined by manipulating the mental workload in both tracking and

collision prediction tasks by changing the number of dots.
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4.3.1 Tracking task

In the tracking task, as the workload increased, tracking accuracy significantly decreased,

as shown in Figure 4.2(A). A repeated-measures ANOVA revealed that tracking accuracy

varied significantly between workload conditions [F(2, 54) = 239.910, p < .001, η2
p = .899].

Tracking accuracy during low workload was significantly higher than in the medium (p

< .001) and high workload conditions (p < .001). The tracking accuracy during medium

workload was significantly higher than the high workload condition (p < .001). The

results showed that performance in the tracking task, as measured by tracking accuracy,

decreased significantly as the workload increased.

4.3.2 Collision Prediction task

For the collision prediction task, the time before collision and collision prediction miss

proportion rate were taken into account. As the workload increased, the time before

collision decreased, as shown in Figure 4.2(B1). A repeated-measures ANOVA was

conducted to examine the effect of workload variations on time before collision, and

results showed that the time before collision varied significantly between workload

conditions [F(1.497, 40.406) = 132.688, p < .001, η2
p = .831]. The time before collision

decreased significantly in the medium (p < .001) and high (p < .001) workload conditions

compared to low workload conditions. The time before collision during medium workload

was also significantly greater than during high workload conditions (p = .001).

Figure 4.2: A) illustrates the tracking accuracy of all participants in the tracking task
for the three levels of workload. (B) illustrates the performance of all participants in the
collision prediction task for the three levels of workload. (B1) illustrates the mean time
before collision for all participants in the low, medium, and high workload conditions. (B2)
illustrates the collision prediction miss proportion rate for the three levels of workload.

As the workload increased, the collision prediction miss proportion rate also increased,
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as shown in Figure 4.2(B2). A one-way repeated-measures ANOVA revealed that the

collision prediction miss proportion rate varied significantly between workload conditions

[F(1.593, 43.009) = 116.338, p < .001, η2
p = .812]. The prediction miss proportion rate

was notably higher in the medium (p < .001) and high (p < .001) workload conditions

compared to the low workload condition. The collision prediction miss proportion rate

during high workload was also significantly greater than during medium workload

conditions (p < .001).

Therefore, for the collision detection task, the time before collision decreased, and the

proportion of missed collisions increased significantly as the workload level increased.

This suggests that overall performance decreased as the workload level increased in the

collision detection task, as participants took longer to identify collisions and were less

accurate in identifying collisions when the workload increased.

Therefore, it can be confirmed that the workload manipulation (by varying the number

of dots) in both tracking and collision prediction tasks successfully elicited significant

variations in performance (H1).

4.4 Independent Brain Source Clusters

The data from all participants were disentangled from the scalp EEG signal through

independent component analysis. The frontal, parietal, and occipital clusters were chosen

based on the location of fitted dipole sources [259]. For the tracking task (refer Figure

4.2), the Talairach coordinate of the frontal cluster centroid was (-1, 41, 27), the Talairach

coordinate of the parietal cluster centroid was (4, -51, 39) and the Talairach coordinate

of the occipital cluster centroid was (30, -70, 15).

For the collision prediction task (see Figure 4.3), the Talairach coordinate of the

frontal cluster centroid was (-10, 17, 46), the Talairach coordinate of the parietal cluster

centroid was (5, -47, 47) and the Talairach coordinate of the occipital cluster centroid was

(-3, -69, 20). Significant correlations between mental workload and the spectral powers

of frontal, parietal, and occipital clusters were identified.
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4.5 EEG Measure of Mental Workload

4.5.1 ERSP Changes with Mental Workload in Tracking Task

Figures 4.3 show the changes in ERSP for the frontal, parietal, and occipital clusters

during the tracking task for the three workload conditions: low, medium, and high. A

statistical analysis of the ERSP changes of the frontal cluster revealed a significant

increase in theta power from the low level to the high level (p < .05) and a significant

increase in theta power at the frontal cluster during the high workload condition as

compared to the medium workload condition. The frontal theta power was significantly

greater than the low workload condition, as shown in Figure 4.3.

However, there were no significant variations in spectral power observed at the

parietal cluster. The ERSP changes at the occipital cluster revealed a significant decrease

in alpha power from the low level to the high level (p < .05) and a significant decrease in

alpha power at the occipital cluster during the high workload conditions compared to the

medium workload condition. The occipital alpha power was significantly lower than the

low workload condition.

The tracking task required participants to allocate attentional resources to keep

track of one, three, or five dots moving randomly among distractor dots. Working memory

load is known to increase with the allocation of attentional resources, which is reflected

by an increase in frontal theta power [126, 182, 183]. The tracking task resulted in an

increase in frontal theta power, indicating that an increased working memory load was

experienced with increasing workload levels.

The task also required working memory mechanisms related to maintaining relevant

items, which is reflected by a decrease in alpha power [48, 126, 282, 363]. Alpha power

is also known to decrease with an increase in memory load [104, 105, 114, 304, 324], and

task difficulty [260, 330]. The study found that occipital alpha power decreased with

increasing workload levels in the tracking task, supporting the presence of this working

memory mechanism.

4.5.2 ERSP Changes with Mental Workload in the Collision
Prediction task

The changes in ERSP (Event-Related Spectral Perturbation) at the frontal, parietal,

and occipital clusters during different workload conditions in the collision prediction

task are illustrated in Figure 4.4. A statistical analysis of the ERSP changes at the
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frontal cluster revealed a significant increase in theta power during high workload

conditions compared to low workload conditions. Additionally, the frontal power during

high workload conditions was found to be significantly greater than that during medium

workload conditions.

The ERSP changes at the parietal cluster showed a significant increase in theta power

during high workload conditions compared to low workload conditions (p < .05) and a

significant decrease in alpha power (p < .05). There was also a significant increase in

theta power and a decrease in alpha power at the parietal cluster during high workload

conditions compared to medium workload conditions. In the medium workload condition,

the parietal theta power was found to be significantly higher than in the low workload

condition, while the parietal alpha power was significantly lower than that in the low

workload condition.

The results of the ERSP analysis on the occipital cluster in the collision prediction

task revealed a significant increase in delta and theta power during high workload

conditions when compared to low workload conditions (p < .05). This is illustrated in

Figure 4.4, which also shows that there was a significant increase in delta and theta

power at the occipital cluster during high workload conditions as compared to medium

workload conditions. Additionally, it was found that in medium workload conditions,

the delta and theta power at the occipital cluster were significantly higher than in low

workload conditions.

In the collision prediction task, participants were required to anticipate the trajectory

of the dots and predict whether they would collide, which demands attention and internal

focus. Delta power is a marker of attention or internal focus in mental tasks, and it is

known to increase with an increase in workload [140, 330, 363]. The results of the study

showed an increase in delta power at the occipital sites, indicating that the participants

allocated more attentional resources with increasing workload levels in the collision

prediction task.

Additionally, keeping track of the trajectory of six, 12, or 18 dots added to the

memory load of the participants. Studies have shown that theta power is associated with

memory load [160, 163] and working memory capacity [182, 183, 308]. The study found

a significant increase in theta power at the frontal, parietal, and occipital clusters in

the collision prediction task, confirming an increase in memory load with increasing

workload levels.

In addition, our results show that as the workload level increases, there is an increase

in parietal alpha power. This increase in alpha power with increasing workload levels is
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related to maintaining relevant items in working memory [51, 126, 282, 330, 363] and is

known to decrease with an increase in memory load [104, 105, 114, 304, 324] and task

difficulty [260, 330].

However, in the collision prediction task, the greatest decrease in parietal alpha

power was observed just before the collision, which may be related to an increase in the

time pressure [321] experienced by the participants as they try to identify and click on

the colliding pair of dots before the collision occurs.

Figure 4.3: The results of the ERSP for the tracking task show the changes in the spectral
power of the frontal [Talairach coordinate: (-1, 41, 27)] and occipital [Talairach coordinate:
(30, -70, 15)] clusters selected for the tracking task, including spatial scalp maps and
dipole source locations, for the high, medium, and low workload conditions of the task.
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Figure 4.4: The results of the ERSP for the collision prediction task illustrate the
changes in the spectral power of the frontal [Talairach coordinate: (-10, 17, 46)], parietal
[Talairach coordinate: (5, -47, 47)], and occipital [Talairach Coordinate: (-3, -69, 20)]
clusters selected for the task, including spatial scalp maps and dipole source locations,
for the high, medium, and low workload conditions of the task.
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4.5.3 Power Spectral Density Changes with Mental Workload

Figure 4.5: Figure demonstrates the power spectral density during tracking and collision
prediction tasks. (A) shows the normalized frontal theta PSD for low, medium, and high
workload conditions. (B) illustrates the normalized occipital alpha PSD for the tracking
task, separated by workload level. (C) displays the average frontal theta PSD across
low, medium, and high workload conditions of the collision prediction task. (D) shows
the average parietal theta PSD for the three workload levels. (E) illustrates the average
parietal alpha power for different workload conditions, and (F) displays the average
occipital delta PSD for low, medium, and high workload conditions. (G) presents the
average occipital theta PSD for the three workload levels in the collision prediction task.

Figure 4.5 shows the changes in the spectral power of the frontal cluster’s ICs during

the tracking task for different workload levels. The results of the statistical analysis

indicate that there was a significant difference in the frontal theta power across the

three workload conditions [F(2, 46) = 50.931, p < .001, η2
p = .822]. Specifically, the frontal

theta power was found to be higher during high workload as compared to low (p < .001)

and medium workloads (p < .001), and higher during medium workload as compared to

low workload (p = .006).

A one-way repeated-measures ANOVA revealed a significant difference in occipital

alpha power across various workload conditions [F(2, 46) = 24.780, p < .001, η2
p = .693].

The analysis indicated that occipital alpha power spectral density was found to be

significantly lower during high workload conditions in comparison to both low workload

(p < .001) and medium workload (p = .005). Additionally, medium workload conditions
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displayed a statistically significant decrease in occipital alpha power spectral density as

compared to low workload conditions (p = .018).

The frontal cluster’s ICs demonstrated varying theta power levels in response to

different workload conditions, as determined by a one-way repeated-measures ANOVA

[F(2, 46) = 8.570, p = .001, η2
p = .271]. Specifically, theta power in the frontal cluster was

found to be higher during high workload compared to low workload (p = .002), but no

statistically significant difference was observed between high and medium workload (p =

.051). Additionally, there was no statistically significant change in theta power in the

frontal cluster between the medium and low workload conditions (p = .336). On the other

hand, the parietal cluster’s ICs exhibited a significant increase in theta power and a

significant decrease in alpha power across all workload conditions (low, medium, and

high).

The results of a one-way repeated-measures ANOVA revealed that there were sig-

nificant variations in parietal theta [F(2, 46) = 47.764, p < .001, η2
p = .675] and alpha

[F(2, 46) = 38.639, p < .001, η2
p = .627] power levels across different workload conditions.

Specifically, the parietal theta power during low workload was significantly lower than

the medium (p < .001) and high workload conditions (p < .001). Additionally, the medium

workload had a lower parietal theta power level than the high workload condition (p <
.001). Furthermore, there was a significant decrease in parietal alpha power during the

medium (p = .002) and high workload conditions (p < .001) compared to the low workload

condition. The parietal alpha power level was also found to be significantly lower during

the high workload condition when compared to the medium workload (p < .001).

The results of a one-way repeated-measures ANOVA indicated that there were

significant variations in occipital delta [F(1.563, 35.951) = 35.321, p < .001, η2
p = .606]

and theta [F(2, 46) = 39.101, p < .001, η2
p = .630] power levels across different workload

conditions. Specifically, the occipital delta power was significantly higher during the

medium (p < .001) and high workload (p < .001) conditions when compared to the low

workload. Additionally, the occipital delta power during the high workload condition

was found to be significantly higher than during the medium workload condition (p =

.001). Furthermore, the occipital theta power during the low workload was significantly

lower than during the medium (p < .001) and high workload conditions (p < .001), and

the medium workload had a lower occipital theta power level than the high workload

condition (p = .001).
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4.6 Eye Activity changes with Mental Workload

Figure 4.6: The eye activity and HRV of participants observed to change during both
tracking and collision prediction tasks. (A) illustrates the normalized pupil size of all
participants, which shows a positive trend with increasing workload. (A1) shows the
normalized pupil size during the low, medium, and high workload conditions of the
tracking task, and (A2) shows the normalized pupil size during the low, medium, and
high workload conditions of the collision prediction task. (B) displays the negative trend
in the number of blinks as workload increases. (B1) shows the number of blinks during
different workload conditions of the tracking task, and (B2) shows the number of blinks
during the collision prediction task, which decreases as the workload level increases. (C)
illustrates the declining trend in the normalized RMSSD of all participants as workload
increases. (C1) shows the normalized RMSSD of all participants during the low, medium,
and high workload conditions of the tracking task, and (C2) shows the normalized
RMSSD during the collision prediction task for the three levels of workload.

We also examined eye-related metrics during changes in workload. Eye activity data was

transformed into information on pupil size and blink rate. As displayed in Figure 4.6(A),

the size of the pupils increased as the workload increased for both tracking and collision

prediction tasks. For the tracking task, a one-way repeated-measures ANOVA [F(2, 38) =

13.205, p < .001, η2
p = .410] revealed that there were significant changes in pupil size for

different workload conditions.

76



4.6. EYE ACTIVITY CHANGES WITH MENTAL WORKLOAD

Specifically, there was a significant increase in pupil size for the medium (p = .0001)

and high workload conditions (p = .001) when compared to the low workload condition.

However, the increase in pupil size for the high workload condition was not found to be

statistically significant when compared to the medium workload condition (p = .313) in

the tracking task.

The data from a one-way repeated measures ANOVA demonstrates that during the

collision prediction task, there were significant variations in pupil size across different

workload conditions [F(2, 46) = 9.276, p < .001, η2
p = .287]. Specifically, the pupil size was

found to be significantly larger for the medium (p = .011) and high workload conditions (p

< .001) when compared to the low workload condition. However, no significant difference

in pupil size was observed between the high and medium workload conditions (p = .180).

The number of blinks during tracking and collision prediction tasks decreased with

the increasing workload, as shown in Figure 4.6(B). One-way repeated-measure ANOVA

was conducted to study the effect of workload variations on the number of blinks, which

revealed significant variations in the number of blinks during the tracking task for

different workload conditions [F(2, 46) = 3.624, p = .035, η2
p = .136]. The number of blinks

in the low workload condition of the tracking task was significantly greater than that

of the high workload condition (p = .015) but not significantly greater than that of the

medium workload (p = .328). There was no significant decrease in the number of blinks

in the high workload condition as compared to the medium workload (p = .106).

The effect of workload on the number of blinks in the collision prediction task was

analyzed using one-way repeated-measure ANOVA. It showed a significant variation

in the number of blinks [F(2, 46) = 18.586, p < .001, η2
p = .447]. In the low workload

condition, the number of blinks was significantly greater in the medium (p < .001) and

the high workload conditions (p < .001). However, the number of blinks in the medium

workload condition was not significantly higher when compared to the high workload

condition (p = .604).

Pupil size significantly increased with the increasing workload in both tracking and

collision prediction tasks, and the number of blinks also decreased significantly with

the increasing workload in both tasks. Pupil size is a reliable measure of workload

[28, 213, 216, 217] as it dilates with increasing workload [26, 33, 174, 189, 215, 338, 351].

Research has shown that blink inhibition occurs during high workload [295], and blink

rate is inversely related to attentional levels, and workload experienced by the operator

[41, 45, 344, 350, 361, 363]. The results are summarized in Table 4.1.
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Table 4.1: PSD Changes for Tracking and Collision Prediction Task

Brain Region Tracking Task Collision Prediction Task
Frontal theta PSD ↑ with workload theta PSD ↑ with workload
Parietal theta and alpha PSD ↑ with

workload
Occipital alpha PSD ↓ with workload delta and theta PSD ↑ with

workload

4.7 Heart Rate Variability (RMSSD) changes with
Mental Workload

We also examined HRV metrics during changes in workload. Figure 4.6(C) illustrates

the variation in the RMSSD for various workload conditions in tasks related to tracking

and collision prediction. Analysis using one-way repeated-measures ANOVA revealed

a significant change in the RMSSD for different workload conditions in the tracking

task [F(2, 34) = 10.171, p < .001, η2
p = .374], with a decrease observed in the RMSSD for

medium (p = .001) and high workload conditions (p = .009) compared to the low workload

condition. However, there was no significant difference in the RMSSD for medium and

high workload conditions in the tracking task (p = .440).

Similarly, in the collision prediction task, the RMSSD for low workload condition was

found to be greater than the medium (p = .001) and high workload conditions (p = .009),

as shown by the one-way repeated-measures ANOVA [F(2, 44) = 4.279, p = .022, η2
p =

.201]. No significant variation in the RMSSD for medium and high workload conditions

(p = .326) was observed in the collision prediction task.

The results showed that RMSSD was negatively correlated with the mental workload

in both tasks. This decrease in RMSSD with the increasing workload is a well-established

finding in the literature [66, 67, 108, 144, 226, 268, 335]. This behavior, eye activity, and

HRV results for tracking and collision prediction tasks are summarized in Table ??.

4.8 Multiple Regression to Predict Task Performance

4.8.1 Tracking Task

A multiple regression analysis was conducted to determine if EEG, eye activity, and

HRV metrics of workload could effectively predict performance in the tracking task. The
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Table 4.2: Task Performance, Eye Activity and HRV for Tracking and Collision Prediction
Task

Tracking Task Collision Prediction Task
Task Performance ↓ with workload ↓ with workload
Pupil Size ↑ with workload ↑ with workload
Blink Rate ↓ with workload ↓ with workload
RMSSD ↓ with workload ↓ with workload

results of the regression analysis showed that the model explained 54.3% of the variance

and that the model was a significant predictor of tracking performance, as determined

by F(3, 67) = 26.543, p < .001. The analysis found that while EEG metrics (B = .067, p =

.001) and eye activity (B = -.089, p < .001) had a significant impact on the model, HRV

metrics did not (B = -.152, p = .125). The final predictive model is:

(4.1) P_t = 0.725−0.067∗EEG−0.089∗Eye−0.152∗HRV

where P_t is the tracking performance, EEG is the EEG metrics, Eye is the eye metrics

and HRV is HRV measures.

4.8.2 Collision Prediction

Multiple regression analysis was performed to investigate if EEG, eye activity, and HRV

metrics could effectively predict performance in the collision prediction task. The results

of the analysis showed that the model explained 61.7% of the variance and that the model

was a significant predictor of performance in the collision prediction task, as determined

by F(3, 68) = 24.324, p < .001. The analysis found that while eye activity (B = -.276, p =

.02) and EEG metrics (B = -.532, p < .001) had a significant impact on the model, HRV

metrics did not (B = .444, p = .443). The final predictive model is:

(4.2) P_cp = 0.055−0.532∗EEG−0.276∗Eye+0.444∗HRV

where P_cp is the performance in the collision prediction task, EEG is the EEG metrics,

Eye is the eye metrics and HRV is HRV measures.

Our findings indicate that EEG power spectra in the frontal, parietal, and occipital

regions, as well as eye activity and HRV metrics, can effectively and accurately evaluate

the mental workload of the participants in both tasks. Therefore, our second hypothesis
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Table 4.3: Tracking Task Workload Classification

Model Accuracy F1-score coh-kappa
EEGNet 62.8 0.53 0.34
Shallow ConvNet 60.1 0.50 0.28
DeepConvNet 61.04 0.52 0.31

(H2) is confirmed for both tracking and collision prediction tasks. Our third hypothesis

(H3) is also supported, as the results of the multiple regression analysis showed that

performance in the tracking and collision prediction tasks can be predicted using EEG,

eye-related, and HRV metrics.

Although EEG, eye activity, and HRV measures were able to distinguish between low

and high levels of workload effectively, some of these measures were not able to accurately

differentiate medium workload from low/high workload conditions. Two possible reasons

for this inconsistency reported in the literature are issues with experimental design [192]

or inter-individual differences [27, 29, 340]. In our experimental design, the medium

workload condition might have required nearly similar cognitive resources and, thus,

did not show a significant variation from the low/high workload condition. However,

our results still showed a significant decrease in performance with increasing workload

levels in both the tracking and collision prediction tasks.

Therefore, it is more likely that the inconsistency is caused by inter-individual

differences. It is known that the correlation between workload and task demand is not

straightforward [19, 59]. Sperandio [326] argues that the relationship can be better

understood by exploring the strategies that human operators use to manage their

cognitive resources and workload, and many researchers concur with this perspective

[19, 20, 76, 146, 209]. Different participants might reflect workload variations differently

based on their cognitive resources and the strategies that they use to perform the task.

4.9 Workload Classification Results

The workload classification results for the tracking task are shown in Table 4.3.

The results demonstrate that EEGNet was most efficient in classifying workload in

the tracking task. Shallow ConvNet and Deep ConvNet demonstrated similar perfor-

mance.
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Table 4.4: Collision Prediction Task Workload Classification

Model Accuracy F1-score coh-kappa
EEGNet 61.4 0.49 0.31
Shallow ConvNet 67.9 0.56 0.36
DeepConvNet 68.13 0.56 0.38

The workload classification results for the collision prediction task are shown in Table

4.4.

The results demonstrate that Deep ConvNet was most efficient in classifying workload

in collision prediction task. Shallow ConvNet also demonstrated comparable performance

in the classification.

4.10 Implications for Future Studies

Our results also suggest that even though eye activity and HRV metrics are sensitive to

variations in task load, they may not provide any useful information about the specific

task that causes the workload variations. However, EEG measures were found to not only

be sensitive to workload variations but also to the type of task. The increased workload

in the tracking task was reflected by an increase in frontal theta power and a decrease in

occipital alpha power. No significant changes were observed in the parietal theta, alpha,

occipital delta, or theta power with the increasing workload in the tracking task. In

the collision prediction task, the increase in workload was correlated with increases in

frontal theta, parietal theta, occipital delta, and theta power and a decrease in parietal

alpha power. No significant variation was observed in occipital alpha power during the

collision prediction task.

The neurometrics correlated with the variations in workload for the tracking and

collision prediction tasks are different, which supports our fourth hypothesis (H4) is true.

This means that neurometrics can help identify the specific task that is contributing

to an increase in workload in complex ATC environments at a given moment and can

inform strategies that can be employed by the workload adaptive system to reduce this

increase. These findings provide evidence that the use of EEG measures in a closed-loop

adaptive system can not only aid in determining "when" to deploy automation but also

"what" type of automation to use to mitigate workload variations for operators. Therefore,

the results presented here contribute to the development of adaptive strategies that are
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crucial for the design of intelligent closed-loop mental workload adaptive ATC systems.

4.11 Limitations

While we have examined the effects of workload variations systematically, the main

limitation of this study is that different variables were controlled to highlight the

impact of workload variations based on variations in traffic load in basic ATC tasks.

Our experimental scenario was not entirely realistic as several environmental factors

contribute to the workload experienced by ATC operators even while performing these

basic tasks. Additionally, a prior gaming experience can influence the strategies employed

by participants and thus, significantly affect the experienced workload. We did not study

inter-individual differences between participants in this study.

4.12 Summary

The performance and efficiency of a system can be enhanced by keeping the operator’s

workload within an optimal range. In order to understand the impact of variations

in basic task load that make up the variations in complex ATC tasks, we separately

designed two basic ATC tasks: tracking and collision prediction tasks. We successfully

uncovered EEG spectral power, eye, and HRV correlates of mental workload variations for

tracking and collision prediction tasks of air traffic controllers, providing a comprehensive

understanding of the workload demands in ATC tasks.

Our results show that EEG, eye and HRV metrics can offer a sensitive and reliable

way to predict the mental workload and performance of the operator. The neural response

differences to increased workload in the tracking and collision prediction tasks indicate

that these neural measures are sensitive to variations and types of mental workload

and have the potential to aid in not just determining ’when’ to adapt, but also ’what’

to adapt, helping to create intelligent closed-loop mental workload aware systems. The

investigation of physiological indicators of workload variation in basic ATC tasks has

practical applications for designing future adaptive systems that incorporate neuromet-

rics in determining the type of automation to use to reduce variations in workload in

complex ATC systems.
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NEURAL CORRELATES OF WORKLOAD IN PHYSICAL

HUMAN ROBOT COLLABORATION

5.1 Background

The emergence of the fifth industrial revolution has led to a growing presence

of robots in human environments. These technological advancements have en-

abled physical interactions between human users and robots. Despite significant

progress in robotics, robots must be equipped with the ability to understand human

states in order to truly work in partnership with human users.

Mental workload is a key factor in determining the state of human users as they

interact closely with robots, moving from supervisory to collaborative roles. Challenging

tasks can not only restrict access to cognitive resources [43] but can also completely

drain resources [261] required for task completion, thus affecting performance. Keeping

human users’ mental workload at an optimal level is ideal, avoiding underload conditions

that lead to boredom and overwhelming overload conditions [41, 48, 138]. These negative

effects of workload on human performance and situational awareness can raise concerns

about safety in physical interactions with robots, negatively impacting the efficiency of

the interaction [368].

Providing robots with a means of communication that accurately predicts a human’s

level of mental workload can aid in adapting strategies to enhance human productivity
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and prevent loss of awareness [12, 46, 309]. To gauge mental workload, researchers com-

monly use self-evaluation, performance-based, or physiological methods. As mental work-

load is a complex, individual concept reflecting cognitive resources, many researchers

use a combination of measures as each has its own strengths and limitations [254].

Physiological measures offer a precise and dependable way to predict mental work-

load, as well as a non-invasive assessment with high sensitivity and diagnostic ability

[266, 380]. They have been used in rehabilitation robotics to appropriately challenge

users and aid in their recovery [22, 132, 184, 250, 251]. However, it should be noted that

these measures can also be affected by physical workload. In order to accurately mea-

sure mental workload during physical interaction with robots, a reliable physiological

measure should not be impacted by physical activity [251]. One potential solution is to

focus on brain dynamics, as the brain integrates various sensory and motor inputs to

perceive the environment and perform tasks, thus potentially isolating and extracting

mental workload correlations without any influence of physical activity.

Electroencephalography (EEG) is an effective method for measuring the ongoing

electrical activity of the brain without restricting movement, due to its portability and

high temporal resolution [211]. EEG can provide insight into a user’s overall workload

level, as well as the variation of workload during a task, not just after its completion.

In recent years, researchers have used EEG measures to study the correlation between

motor control difficulty and perceived workload in haptic interactions with robots [228,

229]. However, it’s important to note that haptic interactions with robots may not involve

significant physical activity, and the relationship between mental workload and physical

activity in these interactions may differ from other types of physical interactions with

robots.

5.2 Research Hypothesis

Physical activity that is demanding can not only decrease the quality of the EEG signal

but also make it difficult to extract biomarkers for mental workload, as physical activity

also requires mental effort. This work investigates Mobile Brain/Body Imaging methods

[211] to analyze EEG features that reflect workload variation and are resistant to

movement artifacts. Data-driven approaches, such as Independent Component Analysis

[31], have shown the ability to separate EEG data into brain and artifact sources [211].

Researchers have found that theta power in the frontal region of the brain is related

to working memory capacity [166, 182, 183, 308] and memory load [160], while alpha
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power in the parietal region indicates task difficulty [330] and memory load [105].

Additionally, sensorimotor processing is reflected in the alpha and beta power in

the central region of the brain [7, 134, 274]. However, the effects of physical activity on

mental workload are a result of the additional mental resources required for sensorimotor

integration and workload [153, 190, 225, 232, 312]. Despite this, there is no agreement

on how mental workload affects physical performance [79, 153, 212, 345]. An increase in

mental workload may negatively impact the physical performance of the human partner

in interaction and compete with sensorimotor resources.

Previous studies have generally evaluated workload in laboratory settings with lim-

ited physical activity during the experiment, which does not reflect real-world conditions.

To address this, we designed our task as a clock game with a blasting task that mimics

the operation of an abrasive robot. We varied the mental workload by using arithmetic

tasks with varying difficulty levels (low, medium, and high) while keeping the physical

load constant to investigate the impact of mental workload on physical performance.

The experiment was designed as an engaging clock game to assess the reliability of

EEG signals in measuring an operator’s mental workload during active physical interac-

tion with a robot. To further validate the results, we included a subjective measure of

workload, the NASA Task Load Index (NASA TLX) questionnaire [141]. We hypothesize

that as the workload increases during the blasting task, there will be:

1. an increase in frontal theta power and a decrease in parietal alpha power,

2. changes in alpha and beta power at the central region of the brain and

3. a decline in physical performance despite keeping physical load consistent across

the three levels of mental workload.

The chapter organization is shown in Figure 5.1.

Figure 5.1: Organization of Chapter 5.
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5.3 Subjective Workload Measures

The ratings for subjective workload increased as the workload in the clock game task

increased, as shown in Figure 5.2. The scores for mental demand also significantly

increased with the workload, as shown by statistical analysis [F(2, 29) = 1754.972, p

< .01, η2
p = .992]. There was a significant increase between the low and medium (p <

.01), low and high (p < .01), and medium and high (p < .01) conditions. Interestingly, the

scores for physical demand also increased with the workload [F(2, 29) = 42.370, p < .01,

η2
p = .745]. There was a significant increase between low and high (p < .01) and medium

and high (p < .01) conditions, but no significant difference between low and medium (p =

.573) conditions.

The scores for temporal demand also significantly increased with workload [F(2, 29)

= 734.805, p < .01, η2
p = .981]. The temporal load scores showed a significant increase for

low-medium (p < .01), low and high (p < .01), and medium and high (p < .01) conditions.

Additionally, the scores for performance decreased significantly with workload [F(2,

29) = 1392.381, p < .01, η2
p = .990], with a significant decrease in high-low (p < .01),

high-medium (p < .01) and medium-low conditions (p < .01).

Figure 5.2: The NASA-TLX scores for all participants during the blasting task for the
three workload levels (** denotes p < .01).
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Table 5.1: NASA-TLX ratings for the Blasting task

Parameter Trend with Increasing Workload
Mental Load Increased
Physical Load Increased
Temporal Load Increased
Performance Decreased
Effort Increased
Frustration Increased

The scores for effort increased as the workload increased, [F(2, 29) = 783.922, p < .01,

η2
p = .982], with significant increases for low and medium (p < .01), low and high (p <

.01), and medium and high (p < .01) conditions. Additionally, the scores for frustration

also significantly increased with the workload, [F(2, 29) = 1382.903, p < .01, η2
p = .990],

with significant increases for low and medium (p < .01), low and high (p < .01), and

medium and high (p = .01) conditions. The results are also summarized in Table 5.1.

5.4 Arithmetic and Blasting task Performance

The mental workload in the blasting task was manipulated by a dual arithmetic task of

varying difficulty.

Figure 5.3: Blasting task performance results (A) illustrates the accuracy of identifying
the target, (B) illustrates the time taken for blasting, and (C) illustrates the rate of
missed blasting for the three workload levels. (** denotes p < .01).

As the workload increased, the target identification accuracy decreased significantly,

[F(2, 24) = 8.023, p = .002, η2
p = .799], as demonstrated by Figure 5.3(A). This decrease

was significant for all conditions, including low and medium (p = .007), low and high (p <
.01), and medium and high (p < .01). Additionally, the blasting time also increased with
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increasing workload [F(2, 29) = 58.349, p < .01, η2
p = .801], as shown in Figure 5.3(B),

and this increase was significant for all conditions (p < .01). Furthermore, the blasting

miss rate also increased with increasing workload, as shown in Figure 5.3(C), and this

increase was significant for all conditions.

Performance in the blasting task, assessed by the target identification accuracy, blast-

ing time and blasting miss rate, degraded notably with the rising workload. Therefore,

the workload manipulation during blasting successfully evoked substantial performance

variations.

5.5 Physical Performance

Figure 5.4: (A) illustrates the participants’ applied human force and (B) the velocity of
the end-effector for the three workload conditions of low, medium, and high. ** denotes p
< .01.

As the workload increased, the amount of human force applied decreased significantly,

[F(2, 27) = 199.359, p < .01, η2
p = .937], as shown in Figure 5.4(A). This decrease in

applied force was significant for all conditions, including low and medium (p < .01),

low and high (p < .01), and medium and high (p < .01). Additionally, the velocity of

the end-effector also decreased with increasing workload [F(2, 24) = 123.490, p < .01,

η2
p = .911], as demonstrated by Figure 5.4(B), and this decrease was significant for all

conditions (p < .01).
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The physical performance assessed by the applied human force and the resultant

end-effector velocity decreased significantly with increasing workload levels. Hence, the

increasing mental workload resulted in significant physical performance deterioration,

proving our third hypothesis (H3).

5.6 EEG Measures of Workload during Physical
Collaboration with ANBOT

In order to investigate the EEG correlates of mental workload variations during blasting,

the independent components were extricated from the scalp EEG data, and significant

correlations between the task load variations and the spectral powers at frontal, central

and parietal clusters were observed.

5.6.1 Independent Source Clusters

Figure 5.5: Frontal Cluster, (A) shows a scalp map, (B) displays the locations of the
dipoles for the components. The centroid of the cluster in the Talairach Coordinate
system is located at (4, 38, 40), and (C) presents the normalized power spectral density
of theta at the ICs selected in the Frontal cluster during blasting (** denotes p < .01).
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The clusters in the frontal, central, and parietal regions were identified based on the

locations of the dipoles [259]. The centroid of the frontal cluster in the Talairach Coordi-

nate system was located at (4, 38, 40) and consisted of 19 components from 19 subjects.

The centroid of the central cluster was located at (3, -5, 53) and had 18 components from

18 subjects. The centroid of the parietal cluster was located at (11, -49, 47) and included

24 components from 24 subjects.

5.6.2 Frontal Cluster

Figure 5.5 shows the power spectral density of the ICs in the frontal cluster for different

workload conditions during blasting. The theta power at the ICs in the frontal cluster

increased with increasing workload, as demonstrated by [F(2, 20) = 100.170, p < .01, η2
p

= .909], and this increase was significant for all conditions, including low and high (p <
.01), low and medium (p < .01), and medium and high (p < .01). However, there were

no significant differences observed in the delta, alpha, beta, or gamma power spectral

density of the ICs in the frontal cluster.

Figure 5.6: Central Cluster, (A) illustrates a scalp map, (B) shows the locations of the
dipoles for the components. The centroid of the cluster in the Talairach Coordinate
system is located at (3, -5, 53), (C) presents the normalized power spectral density of
alpha, and (D) displays the normalized power spectral density of beta at the ICs selected
in the Central cluster during blasting (** denotes p < .01).

During blasting, the participants performed a dual arithmetic task, manipulating

one-digit, two-digit and three-digit numbers, adding to their memory load. Our results

revealed a considerable increase in the frontal theta power with the increasing mental
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workload during blasting. These results suggest the increase in memory load [160] with

the increasing workload levels, also substantiated by the correlation of frontal theta

power with the perceived mental demand.

5.6.3 Central Cluster

Figure 5.6 displays the power spectral density of the ICs in the central cluster for

different workload conditions during blasting. The power of alpha in the central cluster

increased with increasing workload, as demonstrated by [F(2, 24) = 124.806, p < .01, η2
p

= .912], and this increase was significant for all conditions, including low and medium

(p < .01), low and high (p < .01), and medium and high (p = .02). Similarly, the power

of beta in the central cluster also increased with increasing workload, as demonstrated

by [F(2, 25) = 88.441, p < .01, η2
p = .876], and this increase was also significant for all

conditions, including low and medium (p < .01), low and high (p < .01), and medium

and high (p = .03). However, there were no significant changes observed in the other

frequency bands across the workload conditions.

The alpha and beta power at the central region are indicative of sensorimotor pro-

cessing [7, 134, 274], and desynchronization of alpha and beta power at the central

region during dynamic movements of the upper limbs is well-known in the literature

[193, 200, 317]. In our experiment, moving the robot arm involved the strenuous move-

ment of both upper limbs, which would explain the desynchronization of alpha and beta

power in the central region. However, as the blasting tasks were carried out under three

mental workload conditions, we observed a decrease in the alpha and beta power suppres-

sions at the central region with increasing workload. This might be due to competition

in resources for sensorimotor integration and memory load, proving our hypothesis.

5.6.4 Parietal Cluster

Figure 5.7 illustrates the power spectral density of the ICs in the parietal cluster for

the three workload levels in the blasting task. The power of alpha in the parietal

cluster decreased significantly with increasing workload, as demonstrated by [F(2, 26)

= 144.9429, p < .01, η2
p = .917], and this decrease was significant for all conditions,

including low and medium (p < .01), low and high (p < .01), and medium and high (p

< .01). Conversely, the power of beta in the parietal cluster increased with increasing

workload, as demonstrated by [F(2, 27) = 68.117, p < .01, η2
p = .835], and this increase

was also significant for all conditions, including low and medium (p < .01), low and high
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Table 5.2: PSD Changes for Blasting Task

Brain Region Blasting Task
Frontal theta PSD ↑ with workload
Central alpha and beta PSD ↑ with workload
Parietal alpha PSD ↓ and beta PSD ↑ with work-

load

(p < .01), and medium and high (p < .01). However, there were no significant changes

observed in the delta, theta, or gamma power spectral density of the ICs in the parietal

cluster. All these findings are summarized in Table 5.2.

Figure 5.7: Parietal Cluster, (A) illustrates a scalp map, (B) shows the locations of the
dipoles for the components. The centroid of the cluster in the Talairach Coordinate
system is located at (11, -49, 47), (C) presents the normalized power spectral density of
alpha, and (D) displays the normalized power spectral density of beta at the ICs selected
in the Parietal cluster during blasting (** denotes p < .01).

Further, several studies have noted a desynchronization of alpha power with in-

creased item maintenance in the working memory [51, 126, 282, 330] and memory load

[105]. Also, this decrease in alpha power could be associated with the perceived escalation

of the time pressure [321]. Our results further demonstrate a decreased parietal alpha

power with the increasing workload during blasting. This might be from the increased

task difficulty and increased temporal demand as the participants attempt to perform

arithmetic operations of varying difficulty while moving the robot arm to the target

within the fixed five seconds. These findings were further evidenced by the negative

correlation of parietal alpha power with the perceived mental and temporal load scores.
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The frontal theta and parietal alpha PSD could reliably determine the mental work-

load during blasting, proving our first hypothesis (H1).

5.7 Correlation with EEG Measures of Workload

5.7.1 NASA-TLX Scores and EEG Measures of Workload

Figure 5.8: Correlations of NASA-TLX scores - Mental Load Scores with the (A) Normal-
ized Frontal Theta, (B) Normalized Central Beta, (C) Normalized Parietal Alpha and (D)
Normalized Parietal Beta Powers; Temporal Load Scores with (E) Normalized Frontal
Theta, (F) Normalized Central Beta, (G) Normalized Parietal Alpha and (H) Normalized
Parietal Beta Powers.

A positive correlation was found between subjective mental demand scores and brain

activity in the frontal theta, r(77) = .797, p < .01, central beta, r(85) = .764, p < .01

and parietal beta regions, r(87) = .780, p < .01, as well as a negative correlation with

activity in the parietal alpha region, r(85) = -.816, p < .01. This suggests that an increase

in perceived mental load is associated with an increase in activity in the frontal theta,

central beta, and parietal beta regions, and a decrease in activity in the parietal alpha

region, as shown in Figure 5.8.

Our research found a positive correlation between subjective scores of temporal

demand and measures of brain activity, specifically in the frontal theta, r(77) = .780, p

< .01, central beta, r(85) = .788, p < .01, and parietal beta regions, r(85) = .769, p < .01

as well as a negative correlation with activity in the parietal alpha region r(85) = -.793,

p < .01. These results suggest that an increase in perceived temporal load is linked to

changes in brain activity.
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The perceived performance scores were negatively correlated with the frontal theta

power, r(77) = -.768, p < .01, with central alpha, r(83) = -.717, p < .01 and beta power,

r(85) = -.749, p < .01, and parietal beta power, r(87) = -.786, p < .01 and positively

correlated with parietal alpha power, r(93) = .839, p < .01. Therefore, the decreases in

the perceived performance were correlated with increases in frontal theta, central alpha

and beta, and parietal beta power and also, with the decreases in the parietal alpha

power.

The subjective effort scores were positively correlated with frontal theta power, r(77)

= .735, p < .01, with central beta, r(85) = .769, p < .01 and with parietal beta power, r(87)

= .737, and negatively correlated with parietal alpha power, r(85) = -.780, p < .01. So, the

increases in the perceived temporal load were associated with the increases in frontal

theta, central beta and parietal beta power and also, with the decreases in the parietal

alpha power.

The subjective frustration scores were found to be positively correlated with frontal

theta power, r(77) = .762, p < .01, with the central beta, r(85) = .712, p < .01 and with

parietal beta power, r(87) = .798, and negatively correlated with parietal alpha power,

r(85) = -.804, p < .01. So, the increases in the perceived temporal load were associated

with the increases in frontal theta, central beta and parietal beta power and also, with

the decreases in the parietal alpha power.

Furthermore, despite maintaining a uniform physical load across trials, surprisingly,

the NASA-TLX scores show an increased perceived physical demand with an increasing

mental workload. This was accompanied by an increased alpha and beta power in the

central region and an increase in beta power in the parietal region, proving our second

hypothesis (H2).

5.7.2 Applied Human Force and EEG Measures of Workload

A negative correlation was observed between the alpha power observed in the central

cluster and the applied human force, r(81) = -.770, p < .01. The central beta power had a

negative correlation with the applied human force, r(81) = -.560, p < .01. The increases

in central alpha and beta powers were correlated with decreases in applied human force.

Furthermore, the frontal theta power was found to correlate with the applied human

force negatively, r(81) = -.671, p < .01, while the parietal alpha power was found to have a

strong positive correlation with the applied human force, r(81) = .738, p < .01. Therefore,

the increases in frontal theta power and decreases in parietal alpha were correlated with

decreases in applied human force as shown in Figure 5.9.
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Figure 5.9: Correlations of Applied Force with the (A) Central Alpha, (B) Central Beta,
(C) Frontal Theta, and (D) Parietal Alpha Powers.

Nevertheless, previous studies indicate that the neural resources for cognitive process-

ing are entirely independent of those employed for motor processing [91, 128, 358]. Our

results indicate a strong correlation not just between physical performance and mental

workload but also between central alpha and beta power with the mental workload level.

This might also be due to the characteristics of the experiment design, which was put

in place to ensure that arithmetic calculations were performed while moving the robot

arm. Our experiment design removed the arithmetic equation from the screen as soon

as the participant reached the target and had the participant identify the next target

soon after. This design aspect of limiting the arithmetic calculation to while the robot

arm was being moved might have inadvertently resulted in participants prioritizing

the arithmetic calculation over reaching the target and hence, deterioration of physical

performance.
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5.8 Multiple Regression to Predict Physical
Performance

Multiple regression was employed to investigate whether EEG measures (normalized

frontal theta power, normalized central alpha and beta power, normalized parietal

alpha and beta power) could predict the physical performance as measured using the

normalized applied human force. The model explained 71.7% of the variance (R2 =

.858) and could reliably predict physical performance, F(5, 71) = 39.555, p < .01. The

normalized frontal theta power (B = -.355, p = .009), normalized parietal alpha power

(B = .272, p = .01) and normalized parietal beta power (B = -.314, p = .003) contributed

significantly to the model. The contributions of the normalized central alpha power

(B = -.022, p = .869) and normalized central beta power (B = -.165, p = .716) were not

significant. Therefore, the model for physical performance was:

(5.1)

Physical_Per f ormance = 0.272∗Pα−0.314∗Pβ−0.355∗Fθ−0.022∗Cα−0.165∗Cβ+0.227

where Pα is the normalized parietal alpha power, Pβ is the normalized parietal beta

power, Fθ is the normalized frontal theta power, Cα is the normalized central alpha

power, and Cβ is the normalized central beta power.

5.9 Summary

This work presented a systematic investigation into the validity of EEG measures in

assessing mental workload during physical human-robot collaboration. Twenty-four

participants’ EEG signals and perceived workload were examined while they moved the

robot arm and performed arithmetic calculations of varying difficulty. Task performance,

physical performance and subjective measures revealed the effectiveness of workload

manipulation in the task. Task and physical performance degraded while the perceived

workload increased with increasing workload levels. Furthermore, the theta power in

the frontal region increased along with decreased parietal alpha power with increasing

workload levels during blasting. This was accompanied by increased central alpha and

beta power with increasing workload. This work demonstrates how EEG measures can

be employed for mental workload assessment in physical human-robot collaborations

with strenuous physical activity. As our study emulated uncontrolled, real-world physical

interactions with the ANBOT, our results are encouraging.
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Additionally, increased perceived physical load and deterioration of physical perfor-

mance were observed with the increasing mental workload in physical human-robot

collaboration. Also, the changes in physical performance (evaluated by applied human

force) can be reliably estimated from the EEG measures of mental workload. The results

of this study demonstrate to the designers the relevance of maintaining the users’ mental

workload to ensure the quality of physical human-robot collaboration.
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6
EFFECTS OF MENTAL WORKLOAD VARIATIONS ON

ERROR AWARENESS IN A PHYSICAL HUMAN-ROBOT

COLLABORATION

6.1 Background

M ishaps and accidents occur in overloaded conditions due to time pressure or

hecticness and also in underloaded situations due to boredom or carelessness

[151]. Most work environments are risk-assessed to identify and mitigate

these factors. In work environments involving human-machine interactions, safety is

ensured by maintaining spatial separation between the human and robot. However, these

classical safety measures may be insufficient for a modern work environment, especially

a collaborative environment where humans and machines work in close proximity, often

with physical contact.

BCI technology plays a prominent role in enabling occupational safety in physical

human robot collaboration by providing a direct channel for communicating the cognitive

state of the user. With BCI, the robotic partner gets a direct glimpse of the user‚Äôs brain

activity affording an alternate communication pathway rather than relying on traditional

communication routes which might distract the human partner from the task at hand.

Embracing passive BCI technology in pHRC affords the ability to optimally adapt the

robot behaviour for each individual user using real-time brain activity, enriching the
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quality of the interaction [332, 377].

EEG represent the electrical activity of the brain as measured from the scalp [246]

and EEG has been employed on BCI technology to decipher the cognitive state of the

user [60, 178] and adapt the interaction accordingly.

In a pHRC, the robot might perform complex motion sequences, unpredicted positions,

and unexpected changes in velocity [379]. Any unpredicted or erroneous robot behaviour

or a faulty interaction can be measured from EEG as error-related potential naturally

generated by the brain during cognitive conflict when the human partner perceives

an unexpected behaviour or error occurrence [30, 106, 123]. This ERrP consists of a

time-locked negative peak or error-related negativity around 200 ms after the error

occurrence [107, 339]. It is mostly followed by a positive peak around 300 ms after the

error onset [106, 107], and this error positivity is related to the user‚Äôs error awareness

[353].

As this error-related potential occurs at short latency, when detected online using

machine learning methods [62, 175, 176], can be used as implicit human feedback to

optimize robot behaviour in the environment [177]. Based on the context of interaction,

ERrP detection can aid the automatic detection of higher-level user intention and achieve

personalized rule-based robot control [159] for a safe and efficient pHRC.

ERrPs detection algorithms have been employed to train a reinforcement learning

algorithm to train robots to mirror the gestures of the human user [157, 177]. ERrP was

also used in a closed-loop system to switch the trajectory of a robot arm between two

targets [306]. Further, Ehrlich and Cheng employed ERrP signals in a closed-loop system

to adapt the robot gaze based on the intention of the user [97] and later compared the

ERrP detection performance in case of unexpected movement of a robot head or cursor

[98]. However, in these studies, human users were merely passive observers of the error

unlike in real-world applications.

Prediction error negativity (PEN) is the ERrP in mobile brain-body imaging (MoBI)

setting [211] that appears during the task, prior to any external error indication, and

it was first observed in a cognitive conflict study with active physical movement [320].

In 2019, Aldini and colleagues observed PEN during an unexpected robot behaviour in

pHRC [5]. They evaluated the intuitiveness in a pHRC by comparing the modulations

in the amplitude of PEN under different degrees of mechanical resistance in the transi-

tion to an unexpected robot stopping. Recently, they evaluated the performance of six

classifiers in PEN detection, and this work is a step in the direction of intuitive pHRC

[6]. However, the integration of BCI technology with PEN for robot control demands
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failure-free integration of highly uncertain EEG signals, particularly influenced by the

physical and cognitive state of the user.

Figure 6.1: Organization of Chapter 6.

6.2 Research Hypothesis

Mentally demanding tasks might not only compromise access to cognitive resources

[43] but might completely deplete resources [261] needed for successfully executing the

task. Mental workload reflects the tuning between the task demand and the cognitive

capacity of the user [137]. As task demands and the user’s cognitive capacity continu-

ously vary over time, the mental workload experienced by a user at any point in time

could be unpredictable, and therefore, a one-size-fits-all adaptation approach may not

accommodate the inter-subject variability. Further, there has been no systematic study

on how mental workload variations impact cognitive conflict response. The detrimental

effects of workload on human performance and situational awareness are well-known in

literature; however, its influence on error awareness might also raise safety concerns in

physical human robot collaboration.

We hypothesize that with increasing workload, there will be a diminished error

awareness, reflected in reduced error-related potential. We employ MoBI methods to

study the impact of workload variations on error awareness or cognitive conflict. We

designed our experimental paradigm as an interactive clock game with blasting that

emulates the operation of the abrasive robot. The mental workload variations were

achieved using arithmetic tasks with low, medium, and high task difficulty. The physical

load was constant across these conditions to investigate how mental workload variations

influence physical performance.
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An error occurrence was achieved by an unexpected robot stopping at an invisible

obstacle during the blasting operation. The NASA Task Load Index (NASA TLX) ques-

tionnaire [141] was also employed in this investigation to validate the mental workload

variations by incorporating a subjective measure of workload. We hypothesize that an

erroneous robot behavior from an unexpected robot stopping during the blasting opera-

tion will result in a diminished PEN and Pe amplitude with increasing workload. The

chapter organization is shown in Figure 6.1.

6.3 Subjective Workload Measures during Error
Conditions under Different Workload Conditions

Figure 6.2: NASA-TLX scores during the normal and obstacle conditions for the three
workload levels (** denotes p < .01).

6.3.1 Mental Demand Scores

The subjective workload ratings increased with the workload in the clock game task

with unexpected robot stopping, as shown in Figure 6.2. The results of the two-way

repeated measures ANOVA revealed that there was a significant main effect of workload

on participants’ mental demand scores (F(2, 60) = 1499.764, p < .01, η2
p = .980). Also,
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the ANOVA revealed that mental demand scores during trials with unexpected robot

stopping were significant (F(1, 30) = 163.748, p < .01, η2
p = .845). Further, there was

a significant interaction between workload and unexpected robot stopping (F(2, 60) =

3.191, p = .048, η2
p = .096) such that participants reported increasing mental demand

scores with the increasing workload during conditions with unexpected robot stopping

than the normal conditions.

6.3.2 Physical Demand Scores

There was a significant main effect of workload on participants’ physical demand scores

(F(2, 60) = 403.112, p < .01, η2
p = .931). Also, the ANOVA revealed that physical demand

scores during trials with unexpected robot stopping was significant (F(1, 30) = 408.133,

p < .01, η2
p = .932). Further, there was a significant interaction between workload and

unexpected robot stopping (F(2, 60) = 26.118, p < .01, η2
p = .465) such that participants

reported greater physical demand scores with the increasing workload during conditions

with unexpected robot stopping than the normal conditions.

Furthermore, despite maintaining a uniform physical load across trials, the NASA-

TLX scores show an increased perceived physical demand with an increasing mental

workload during the obstacle condition.

6.3.3 Temporal Demand Scores

The results of the two-way repeated measures ANOVA revealed that there was a sig-

nificant main effect of workload on participants’ temporal demand scores (F(2, 60) =

1177.726, p < .01, η2
p = .975). Also, the ANOVA revealed that temporal demand scores

during trials with unexpected robot stopping was significant (F(1, 30) = 12.462, p = .001,

η2
p = .293). Further, there was a significant interaction between workload and unexpected

robot stopping (F(2, 60) = 15.432, p < .01, η2
p = .340) such that participants reported

increasing temporal demand scores with the increasing workload during conditions with

unexpected robot stopping than the normal conditions. There was a significant main

effect of workload on participants’ performance scores (F(2, 60) = 1016.185, p < .01, η2
p =

.971).

6.3.4 Performance Scores

ANOVA revealed that performance scores during trials with unexpected robot stopping

were significant (F(1, 30) = 925.325, p < .01, η2
p = .969). Further, there was a significant
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interaction between workload and unexpected robot stopping (F(2, 60) = 100.151, p < .01,

η2
p = .769) such that participants reported higher performance scores with the increasing

workload during conditions with unexpected robot stopping than the normal conditions.

6.3.5 Effort Scores

There was a significant main effect of workload on participants’ effort scores (F(2, 60) =

1091.580, p < .01, η2
p = .973). Also, the ANOVA revealed that effort scores during trials

with unexpected robot stopping were significant (F(1, 30) = 202.924, p = .001, η2
p = .871).

However, there was no significant interaction between workload and unexpected robot

stopping as the participants reported similar increasing effort scores with the increasing

workload during unexpected robot stopping and normal conditions.

6.3.6 Frustration Scores

There was a significant main effect of workload on participants’ frustration scores (F(2,

60) = 1368.842 p < .01, η2
p = .979). Also, the ANOVA revealed that frustration scores

during trials with unexpected robot stopping were significant (F(1, 30) = 334.303, p < .01,

η2
p = .918). Also, there was no significant interaction between workload and unexpected

robot stopping, as the participants reported similarly increasing frustration scores with

the increasing workload during unexpected robot stopping and normal conditions.

6.4 Arithmetic task Performance during Error trials

The target identification accuracy deteriorated significantly with the rising workload

during the unexpected robot stopping conditions, [F(2, 42) = 228.770, p < .001, η2
p = .916],

as shown in Figure 6.3(A). Target identification accuracy significantly decreased for low

and medium (p = .004), low and high (p < .01), and medium and high (p < .01) conditions.

The time to reach the obstacle increased with the increasing workload in the unexpected

robot stopping conditions, [F(2, 60) = 113.896, p < .01, η2
p = .792], as shown in Figure

6.3(B). The increase was significant for low and medium (p < .01), low and high (p < .01),

and medium and high conditions (p < .01).

Performance in the blasting task, assessed by the target identification accuracy and

time needed to reach the obstacle, degraded notably with the rising workload. Therefore,

the workload manipulation during blasting in error conditions successfully evoked

substantial performance variations.
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Figure 6.3: (A) shows the target identification accuracy, (B) shows the time to reach the
obstacle, (C) shows the normalized applied force, and (D) shows the normalized end-
effector velocity for the three workload levels with unexpected robot stopping condition
due to obstacle in the blasting path. ** denotes p < .01.

6.5 Physical Performance during Error trials

The applied human force decreased significantly with the increasing workload during the

unexpected robot stopping conditions, [F(2, 54) = 130.340, p < .01, η2
p = .828], as shown

in Figure 6.3(C). Applied human force decreased significantly for low and medium (p <
.01), low and high (p < .01), and medium and high conditions (p < .01). The end-effector

velocity decreased with the increasing workload during the unexpected robot stopping

conditions, [F(2, 54) = 86.647, p < .01, η2
p = .762], with significant decreases for low and

medium (p < .01), low and high (p < .01), and medium and high (p < .01), as shown in
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Figure 6.3(D).

The physical performance assessed by the applied human force and the resultant

end-effector velocity decreased significantly with increasing workload levels prior to

reaching the obstacle. Hence, the increasing mental workload resulted in significant

physical performance deterioration.

6.6 EEG Measures of Workload during Error
Processing

In order to investigate the neural correlates of error processing under three levels of

mental workload variations, the independent components were extricated from the scalp

EEG data, and significant correlations between the task load variations and the spectral

powers at frontal, central, and parietal clusters were observed.

6.6.1 Independent Source Clusters

The frontal, central, and parietal clusters were identified based on the dipole locations

[259]. The Talairach coordinate of the frontal cluster centroid was at (4, 38, 39) and

included 19 components from the 19 subjects. The Talairach coordinate of the central

cluster centroid was at (3, -5, 51) and had 18 components from 18 subjects. The Talairach

coordinate of the parietal cluster centroid was at (11, -49, 45), including 24 subjects from

24 subjects.

6.6.2 Frontal Cluster

The frontal cluster’s ICs’ PSD for the different workload conditions during blasting is

shown in Figure 6.4. There was a significant main effect of workload on frontal theta

PSD (F(2, 42) = 37.894, p < .01, η2
p = .643) during unexpected robot stopping conditions.

Frontal theta PSD increased significantly in the low-medium (p < .01), medium-high (p

= .003) and low-high (p < .01) conditions shortly after the unexpected robot stopping.

Further, the frontal theta power was significantly higher after reaching the obstacle as

compared to reaching the target for the low (p < .01), medium (p = .029), and high (p <
.01) workload conditions. However, there were no significant differences in the frontal

cluster’s delta, alpha, beta, or gamma PSD.
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Figure 6.4: Frontal Cluster - (A) scalp map, (B) dipole locations of the components, the
Talairach Coordinate of the cluster centroid was at (4, 38, 39) and (C) normalized theta
PSD for the one second immediately after reaching the target or the obstacle at the ICs
selected in the Frontal cluster during blasting. ** denotes p < .01.

During blasting, the participants performed a dual arithmetic task, manipulating

one-digit, two-digit, and three-digit numbers, adding to their memory load. Our results

revealed a considerable increase in the frontal theta power with the increasing mental

workload immediately after reaching an obstacle or unexpected stopping compared to

reaching the target or expected stopping. These results suggest the increase in memory

load [160] with the increasing workload levels after reaching the obstacle. This increase

in the memory load might also be due to the unexpected removal of the arithmetic

equation from the screen when the participants reach the obstacle, requiring them to

rely on their working memory to continue the calculations. This was further evidenced

by an increase in the mental demands score of the NASA-TLX in the obstacle condition

compared to the normal blasting condition.
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6.6.3 Central Cluster

The central cluster’s ICs’ spectral power for different workload conditions soon after

reaching the obstacle in the unexpected robot stopping condition and after reaching the

target in the normal conditions is shown in Figure 6.4. There was a significant main effect

of workload on central alpha PSD (F(2, 26) = 15.274, p < .01, η2
p = .540) during unexpected

robot stopping condition. Central alpha PSD increased significantly in the medium-high

(p = .038) and low-high (p < .01) conditions shortly after the unexpected robot stopping.

Further, the central alpha power varied significantly only for the low workload condition

(p < .01) upon reaching the obstacle compared to reaching the target. The central beta

PSD varied significantly after reaching the obstacle across the three workload levels

(F(2, 30) = 18.453, p < .01, η2
p = .552). Central beta PSD increased significantly in the

medium-high (p = .002) and low-high (p = .001) conditions shortly after the unexpected

robot stopping. Further, the central beta power increased significantly for the low (p <
.01) and medium (p < .01) workload conditions upon reaching the obstacle as compared

to reaching the target. No significant changes were noted in the other frequency bands

across the workload conditions.

Figure 6.5: Central Cluster - (A) scalp map, (B) dipole locations of the components, the
Talairach Coordinate of the cluster centroid was at (3, -5, 51), (C) normalized alpha PSD,
and (D) normalized beta PSD for the one second immediately after reaching the target
or obstacle at the ICs selected in the Central cluster (** denotes p < .01).

In our experiment, once the participants reach either the target or the obstacle,

the robot arm stops and cannot be moved until the end of the blasting period of five

seconds. We saw an increase in the alpha and beta power at the central region with

increasing workload immediately after reaching the obstacle as opposed to the similar
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alpha and beta power across workload conditions after reaching the target in the normal

condition. The alpha and beta power at the central region is indicative of sensorimotor

processing [7, 134, 274], and desynchronization of alpha and beta power at the central

region during dynamic movements of the upper limbs is well-known in the literature

[193, 200, 312]. The participants might have attempted to move the robot arm to the

target after the unexpected robot stopping resulting in a decrease in the alpha and beta

power suppressions at the central region with increasing workload.

6.6.4 Parietal Cluster

Figure 6.6: Parietal Cluster - (A) scalp map, (B) dipole locations of the components, the
Talairach Coordinate of the cluster centroid was at (11, -49, 45) and (C) normalized alpha
PSD for the one second after reaching the target or the obstacle at the ICs selected in
the Parietal cluster (** denotes p < .01).

The parietal cluster’s ICs’ spectral power for the three workload levels upon reaching the

target in the unexpected robot stopping condition or reaching the obstacle in the normal

condition is illustrated in Figure 6.6. There was a significant main effect of workload

on parietal alpha PSD (F(2, 44) = 59.458, p < .01, η2
p = .730) during unexpected robot
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stopping condition. Parietal alpha PSD decreased significantly in the low-medium (p <
.01), medium-high (p = .003), and low-high (p < .01) conditions shortly after unexpected

robot stopping. Further, the parietal alpha power varied significantly only for the low

workload condition (p < .01) upon reaching the obstacle compared to reaching the target.

No significant changes were noted in delta, theta, beta, or gamma PSD at the parietal

cluster.

Our results further demonstrate an increased parietal alpha power with the increas-

ing workload soon after reaching the obstacle compared to reaching the target. The

decrease in the parietal alpha power with increasing workload might be related to the

desynchronization of alpha power with increased item maintenance in the working

memory [51, 126, 282, 330] and memory load [105]. Our claims were also validated by

the increased mental and temporal demand score with the increasing workload in the

obstacle condition compared to the normal condition.

6.7 Error-related Potential at Different Workload
Conditions

The ErRP at the Fz electrode showed significant changes in the amplitudes of the PEN

and Pe, as shown in Figure 6.7. Further, the ANOVA results showed a significant increase

in the Prediction Error Negativity with increasing workload (F(2, 60) = 55.276, p < .01,

η2
p = .648). PEN increased significantly for low-medium (p < .01), medium-high (p <

.01) and low-high (p < .01) workload conditions, as shown in Figure 6.7(A) and 6.7(B).

The error positivity (Pe) also varied significantly across the workload levels (F(2, 60)

= 415.107, p < .01, η2
p = .933). Pe decreased significantly for low-medium (p < .01),

medium-high (p < .01) and low-high (p << .01) workload conditions, as shown in Figure

6.7(A) and 6.7(C). Further, the normalized applied force was negatively correlated with

the PEN, r(90) = -.644, p < .01 and positively correlated with Pe, r(90) = .785, p < .01.

This work also investigated the neural correlates of error processing under three

workload levels. We detected PEN and Pe after the unexpected robot stopped despite the

load on the cognitive resources induced by performing arithmetic calculations. PEN and

Pe amplitudes significantly decreased with increasing workload (proving our hypothesis).

This indicates a shortage of cognitive resources for error processing in increased workload

conditions despite similar error types and severity. Earlier studies have observed a

reduction in P300 amplitude at high workload or fatigued conditions [178, 186]. The

changes in the central alpha and beta power immediately after reaching the obstacle
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or at the error occurrence due to the participant’s continued efforts to move the robot

arm might be a potential confounding factor. However, these changes were observed in

the alpha and beta power at the central region while our ERrP processing was mainly

focused on the theta band at the frontal region, known to be the principal frequency

band and region of interest [55, 62, 155].

As PEN and Pe have low amplitudes of few microvolts, they are more prone to

distortion from artifacts introduced in the measured EEG signals during active physical

interaction with the robot [281]. In higher workload conditions, our results demonstrate

that PEN and Pe amplitudes were further diminished, raising potential safety concerns

when ERrP signals are relied upon for ensuring a safe and efficient pHRC environment.

Therefore, at high workload conditions, the user‚Äôs error processing capacity becomes

compromised, possibly allowing a safety breach that might escape the attention of the

human user.

Figure 6.7: A) ErRP at the Fz channel, (B) PEN, and (C) Pe upon unexpected robot
stopping at the obstacle for the three workload levels. (** denotes p < .01).
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6.8 Summary

This work presented a systematic investigation into the impact of workload variations

on cognitive conflict in a physical human-robot collaboration. Twenty-four participants’

EEG signals, subjective workload rating, task, and physical performance measures were

examined while they moved the robot arm and performed arithmetic calculations of

varying difficulty. Task performance, physical performance, and subjective measures

revealed the effectiveness of workload manipulation in the task. Task and physical

performance degraded while the perceived workload increased with increasing workload

levels. Furthermore, the perceived workload was greater in the error trials compared to

the normal trials. We observed a decrease in the amplitude of the error-related potential

with increasing workload levels. Typical deep learning models could predict the PEN

and Pe amplitude from the EEG data prior to the error, allowing an opportunity to

adapt the system dynamics to lower the workload of the human user. Additionally, we

observed significant increases in the frontal theta, central alpha, and beta power soon

after the error as compared to the normal condition. This work exposes the significance of

measuring and maintaining the human user’s workload at an optimal level to ensure the

safe and reliable use of BCI technology for intuitive physical human-robot collaboration.
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INTELLIGENT ONLINE WORKLOAD ASSESSMENT AND

SAFETY ALERT TOOL FOR PHYSICAL HUMAN ROBOT

COLLABORATION

7.1 Background

Accidents can happen in situations where there is too much pressure or stress, as

well as in situations where there is not enough to do, such as boredom or care-

lessness [151]. Employers typically assess the risks in the workplace to identify

and address these issues. In workplaces where people interact with machines, safety

is maintained by keeping people and machines separated. However, these traditional

safety measures may not be enough in more modern work environments, especially when

humans and machines are working together closely and sometimes in physical contact.

Assessing the level of safety in physical human robot collaboration requires various

techniques, including direct system input, behavioral or physiological data, and question-

naires. However, while using multiple methods is ideal for a more accurate evaluation

[34], some studies have chosen to only utilize questionnaires. This is likely because of

their cost-effectiveness compared to other methods, such as physiological measurements.

Another common approach is to use questionnaires in conjunction with behavioral as-

sessment. Physiological measurements are usually paired with questionnaires as well,

likely because of their cost-effectiveness. However, the use of direct input devices is less
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frequent.

Safety in physical human robot collaboration can be interpreted in a variety of ways.

Psychological safety refers to people’s perceptions of the potential consequences of taking

interpersonal risks in specific contexts, such as a workplace [95]. It can also be seen as a

shared belief among a group that allows them to take risks [2]. In the context of pHRC,

maintaining psychological safety involves making sure the human feels safe interacting

with the robot, and that the interaction does not cause any psychological discomfort or

stress because of the robot’s attribute [197].

In psychology, mental safety is sometimes used as an alternative term for psycho-

logical safety [262, 313]. In the context of physical human robot collaboration (pHRC),

mental safety is described as being related to the mental stress and anxiety caused by

close interactions with robots [346], or as the state in which humans do not feel fear or

surprise towards the robot [305]. Subjective safety can be considered as a general mea-

sure that reflects a person’s perception of the security of a particular location [270, 325].

It is not limited to personalized safety systems that account for the unique characteristics

of human beings [337], which is also sometimes referred to as subjective safety.

Especially since the robot may perform complex motion sequences, take unexpected

positions, and change velocity in a physical human robot collaboration, it would raise

safety concerns for human partners [379]. Any unpredicted or incorrect robot behavior

or a faulty interaction can be detected from EEG as an error-related potential generated

by the brain during cognitive conflict when the human partner perceives an unexpected

behavior or error occurrence [30, 106, 123]. This error-related potential (ERrP) consists

of a time-locked negative peak or error-related negativity around 200 ms after the error

occurrence [107, 339]. It is generally followed by a positive peak around 300 ms after the

error onset [106, 107], and this error positivity is related to the user’s error awareness

[353].

Since this error-related potential occurs with a short latency, when detected online

using machine learning methods [62, 175, 176], it can serve as implicit human feedback

to optimize the robot’s behavior in the environment [177]. Depending on the context of

the interaction, detecting ERrP can aid in automatically detecting the user’s higher-level

intentions and achieve personalized, rule-based robot control [159] for a safe and efficient

pHRC.

Scientists have used ERrP detection algorithms to train robots to mirror human

gestures using reinforcement learning [157, 177]. They also employed ERrP detection in

closed-loop systems to change the trajectory of a robot arm between two targets [306].
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Additionally, Ehrlich and Cheng used ERrP signals in a closed-loop system to adjust the

robot’s gaze based on the user’s intention [97] and later compared the ERrP detection

performance when the robot’s head or cursor movement was unexpected [98]. However,

in these studies, human users were simply passive observers of the errors, unlike in

real-world applications.

The Prediction error negativity, or PEN, is a type of brain activity that is seen in

mobile brain imaging studies [211] when a task is being performed. It is observed before

any external indication of an error and was first discovered during a study on cognitive

conflict and physical movement [320].

7.2 Research Hypothesis

Brain-computer interface (BCI) technology plays a crucial role in improving occupational

safety in physical human robot collaboration by providing a direct means of communicat-

ing the cognitive state of the user. With BCI, the robotic partner can directly monitor the

user’s brain activity, offering an alternative communication method instead of relying

on traditional methods, which can distract the human partner from the task at hand.

Adopting passive BCI technology in pHRC allows the ability to adapt the robot’s behav-

ior to each individual user using real-time brain activity, enhancing the quality of the

interaction [332, 377].

However, using PEN in combination with brain-computer interface technology for

controlling robots can be challenging because it requires the seamless integration of EEG

signals that can be greatly affected by the user’s physical and mental state.

Mentally demanding tasks might not only compromise access to cognitive resources

[43] but might completely deplete resources [261] needed for successfully executing the

task. Mental workload reflects the tuning between the task demand and the cognitive

capacity of the user [137]. As task demands and the user’s cognitive capacity continu-

ously vary over time, the mental workload experienced by a user at any point in time

could be unpredictable, and therefore, a one-size fits-all adaptation approach may not

accommodate the inter-subject variability.

Therefore, this research aims to develop an intelligent workload assessment and

safety alert for pHRC. we hypothesize that deep learning models will reliably classify

workload in physical human robot collaboration. We also hypothesize that the error

awareness of the operator can be accurately predicted based on their brain activity prior

to the error occurrence. We employ an online workload classifier and error awareness
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predictor for designing the framework for a safety alert tool in physical human robot

collaboration.

Our experiment was set up as a game where participants controlled a clock while

also operating an abrasive robot. We manipulated the mental demands of the task by

including arithmetic problems of varying difficulty. However, the physical demands of the

task remained the same in order to see how changes in mental workload affect physical

performance. We introduced an error into the task by having the robot unexpectedly stop

at an unseen obstacle during the blasting operation.

We used common deep learning techniques, like ShallowConvNet [314], DeepConvNet

[314], and EEGNet [198] to analyze the EEG data before the obstacle or unexpected

robot stopping, in order to estimate the PEN and Pe values. Additionally, we utilized

the same methods to classify the mental workload of the operator. Our hypothesis is

that by analyzing the EEG dynamics before the obstacle or unexpected robot stops, we

can accurately predict the PEN and Pe amplitude with high precision. The chapter

organization is shown in Figure 7.1.

Figure 7.1: Organization of Chapter 7.

7.3 Online Workload Assessment and Safety Alert tool
for pHRC

In this study, we presented a new safety alert tool for physical human-robot collaboration

that incorporates an error awareness predictor and a workload classifier. The tool was

tested on 24 healthy individuals while they were operating ANBOT in scenarios that
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required continuous physical contact. The test task involved a blasting task under

different levels of workload, which were induced by a secondary arithmetic task. In

33% of the trials, the robot would stop unexpectedly or make an error, resulting in an

error-related potential, which was evaluated using prediction error negativity, error

positivity, or power spectral density.

For this research, we developed a clock game that simulated an abrasive blasting task

with an unexpected robot stopping, and we manipulated the mental workload level by

using a dual arithmetic task of varying difficulty. We incorporated an online safety alert

tool that included both a workload classifier and an error awareness predictor. The tool

would send a signal to the ROS system controlling ANBOT to safely stop the robot when

the predicted error awareness was below a certain threshold, which was determined

by the average of the training data. The error awareness predictor triggered the safety

alert tool to intervene and stop the robot when the human operator’s error awareness

decreased. The workload classifier served as a diagnostic tool that provided real-time

information on the detected workload level.

So, we designed a safety alert tool that raises the alarm and stops the functioning of

the robot when the error awareness of the human operator diminishes beyond detection.

To evaluate the accuracy of the error awareness predictor and workload classifier, we

used a within-subject cross-validation method. We trained the models using data from the

first two blocks of the experiment and then tested them on the data from the final block.

Additionally, we used a cross-subject cross-validation method to assess the performance

of the overall online safety alert system. We trained the models using data from 23

participants and then tested them using data from one additional participant.

7.3.1 Online Error Awareness Predictor

The online error awareness predictor drives our developed framework for the online

safety alert tool for pHRC. Three types of error awareness prediction models were

developed based on the parameter being predicted:

• prediction error negativity (PEN) predictor,

• error positivity predictor and

• mean power spectral density (PSD) predictor.
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Table 7.1: Within-Subject error awareness predictor - PEN Predictor

Model mse mae
EEGNet 0.137 ± 0.034 0.271 ± 0.096
Shallow ConvNet 0.383 ± 0.09 0.365 ± 0.023
DeepConvNet 0.301 ± 0.064 0.339 ± 0.072

Table 7.2: Within-Subject error awareness predictor - Pe Predictor

Model mse mae
EEGNet 0.137 ± 0.011 0.218 ± 0.035
Shallow ConvNet 0.383 ± 0.029 0.296 ± 0.073
DeepConvNet 0.301 ± 0.018 0.232 ± 0.060

Table 7.3: Within-Subject error awareness predictor - PSD Predictor

Model mse mae
EEGNet 0.108 ± 0.027 0.252 ± 0.021
Shallow ConvNet 0.168 ± 0.039 0.278 ± 0.036
DeepConvNet 0.189 ± 0.049 0.306 ± 0.043

7.3.1.1 Within-Subject Cross Validation

The within-subject cross-validation results for the online error awareness predictor are

shown in Tables 7.1, 7.2, and 7.3. EEGNet demonstrated significantly high performance

for PEN and Pe prediction in within-subject and cross-subject cross-validation. Our

results show that both Shallow ConvNet and Deep ConvNet do not perform comparably

well for both predictors. However, in the case of PSD predictor, we observed equally good

performance by EEGNet, Shallow ConvNet, and Deep ConvNet. Therefore, it might be

reliable to design our online error awareness predictor based on the prediction of power

spectral density after the error.

7.3.1.2 Cross-Subject Cross Validation

The cross-subject cross-validation results are shown in Tables 7.4, 7.5 and 7.6.

Our results also demonstrate the performance of the error awareness models did

not deteriorate significantly in the cross-subject cross-validation. Therefore, our online

error awareness tool might be able to predict error awareness of the new subject with

reasonable certainty.
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Table 7.4: Cross-Subject error awareness predictor - PEN Predictor

Model mse mae
EEGNet 0.149 ± 0.081 0.188 ± 0.098
Shallow ConvNet 0.387 ± 0.094 0.433 ± 0.149
DeepConvNet 0.349 ± 0.110 0.391 ± 0.106

Table 7.5: Cross-Subject error awareness predictor - Pe Predictor

Model mse mae
EEGNet 0.166 ± 0.065 0.255 ± 0.082
Shallow ConvNet 0.390 ± 0.118 0.476 ± 0.121
DeepConvNet 0.332 ± 0.098 0.376 ± 0.111

Table 7.6: Cross-Subject error awareness predictor - PSD Predictor

Model mse mae
EEGNet 0.128 ± 0.081 0.263 ± 0.088
Shallow ConvNet 0.197 ± 0.067 0.302 ± 0.121
DeepConvNet 0.188 ± 0.059 0.342 ± 0.119

Measuring PEN and Pe can be challenging due to their low amplitudes of a few mi-

crovolts and the potential for distortion from artifacts introduced during active physical

interaction with the robot [281]. Our results demonstrate that a simple prediction model

with EEGNet could predict the amplitudes of PEN and Pe from the EEG data prior to the

error. This prediction model could forewarn the system and operators of the diminished

error awareness of the user, alluding to a potential safety breach in the ERrP-based

BCI system for pHRC. Therefore, our work paves the way for embracing BCI technology

in pHRC to optimally adapt the robot behavior for personalized user experience using

real-time brain activity, enriching the quality of the interaction.

7.3.2 Online Workload Classifier

The within-subject cross-validation results for the online workload classifier are shown

in Table 7.7, and the cross-subject cross-validation results are shown in Table 7.8.
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Table 7.7: Within-Subject Workload Classifier

Model Accuracy F1-score coh-kappa
EEGNet 73.4 ± 0.61 0.722 ± 0.005 0.571 ± 0.007
Shallow ConvNet 80.9 ± 0.421 0.801 ± 0.005 0.688 ± 0.004
DeepConvNet 81.97 ± 0.304 0.817 ± 0.002 0.682 ± 0.004

Table 7.8: Cross-Subject Workload Classifier

Model Accuracy F1-score coh-kappa
EEGNet 71.2 ± 0.49 0.709 ± 0.004 0.565 ± 0.005
Shallow ConvNet 78.8 ± 0.68 0.78 ± 0.006 0.639 ± 0.007
DeepConvNet 81.3 ± 0.602 0.804 ± 0.007 0.671 ± 0.005

7.3.2.1 Within-Subject Cross Validation

The results demonstrate that Deep ConvNet was most efficient in classifying workload

in physical human robot collaboration. Shallow ConvNet also demonstrates similar

performance.

7.3.2.2 Cross-Subject Cross Validation

Our results also demonstrate the performance of the workload classifier did not deterio-

rate significantly in the cross-subject cross-validation. Therefore, our online workload

classifier might be able to assess the workload of the new subject performing the blasting

task with reasonable certainty.

The results of our study showed that the workload classifier had a high ability to dif-

ferentiate between the three workload levels. Additionally, the error awareness predictor

had a high degree of accuracy for both within-subject and cross-subject cross-validation.

These findings indicate that the workload level of the operator can be accurately assessed

and, when combined with an estimation of error awareness, can be used to safely inter-

rupt the collaborative task and halt the robot’s movement until the operator’s cognitive

state improves.

Our tool demonstrates that it is possible to use EEG data to evaluate mental workload

and predict error awareness in users, and to raise safety concerns when predicted

ERrP amplitudes fall below a certain threshold, making it difficult to detect the ERrP.

This is critical for ensuring a safe and efficient environment for physical human-robot
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collaboration. This tool has far-reaching implications, not just in robotics, but in any field

that uses error-related potential brain-computer interfaces to continually monitor the

user’s state and determine the reliability of error-related potential amplitudes.

Therefore, this safety alert tool can be used to proactively detect when a human

user’s capacity to process errors has been impaired, potentially preventing a safety

incident that the human user may not have noticed. By measuring PEN and Pe values

and detecting workload, the tool provides an opportunity to adjust the environment

and reduce the user’s workload, paving the way for more effective deployment of BCI in

physical human-robot collaboration scenarios.

One potential drawback of our study is that the error awareness predictor and

workload classifier may be affected by perceptual motor confounds, as the models were

trained using data that included motor movements such as arm and body movements

used to control the robot arm. As a result, these models may not be suitable for use in

classifying workload or predicting error awareness across different tasks.

7.4 Summary

In this research, we developed a framework for an online safety alert tool that can be

utilized in situations where humans and robots work together physically. The tool is

designed to accurately detect the operator’s workload and error awareness, enabling the

robot to safely stop its movement when necessary. We have demonstrated that through

the use of minimal data processing and traditional deep learning models, it is possible to

distinguish between different levels of workload and that EEG data can be effectively

used to predict the operator’s error awareness. These findings are promising, especially

as the research replicates real-world scenarios of physical human-robot collaboration.

This tool has the potential to enhance the safety and efficiency of error-related BCI

deployment in physical human-robot collaboration by accurately detecting the operator’s

workload and error awareness. The cognitive workload and conflict model developed can

be utilized to develop a closed-loop system that adjusts for workload responses in the

human-robot collaboration environment.

Further, similar safety alert systems that identify suboptimal workload conditions

and decreased error awareness could have implications for not just safety-critical work

environments but also error-related potential-based BCI systems for rehabilitation. Main-

taining optimal human performance is paramount in safety-critical work environments

such as the military, medicine, or aviation. Therefore, deploying an online safety alert in
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demanding work environments such as surgical operations, defense operations, or air

traffic control, where an error could have dire consequences is crucial.
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CONCLUSION AND FUTURE WORK

8.1 Introduction

In the third chapter, we explained the reasoning and process behind our experiments.

This information is important so that other scientists can replicate our work and

either confirm or challenge our results. In that chapter, we discovered that both the

ATC and physical human robot collaboration experiments were successful in creating

different levels of workload. This was evident through the changes in participants’

responses on questionnaires, their performance, and physiological measures such as

EEG, eye activity, and HRV. Overall, our new approach to ATC and pHRC experiments

produced consistent results when it comes to inducing variations in workload.

In Chapter 4, we elaborate on our further investigation into physiological biomarkers

of workload in tracking and collision prediction tasks. Our work considered tracking

and collision prediction tasks of ATC separately and untangled the impact of workload

variations experienced by operators working in a complex ATC environment. The mental

workload in the tracking task was found to be positively correlated with the frontal

theta power and negatively correlated with the occipital alpha power. In contrast, for the

collision prediction task, the frontal theta, parietal theta, occipital delta, and theta power

were positively correlated, and parietal alpha power was negatively correlated with the

increases in mental workload. The pupil size, number of blinks and HRV metric, root

mean square of successive difference (RMSSD), also varied significantly with the mental
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workload in both these tasks in a similar manner. According to our study, variations in

task demands can be observed in physiological signals such as EEG, eye movement, and

heart rate variability in tasks related to air traffic control. Furthermore, the distinct

brain measurements of workload changes in tasks involving tracking and predicting

collisions indicate that these measurements can give us an understanding of the type

of mental effort required. These findings have potential applications in the design of

systems that can adapt to changes in mental workload by not only detecting when

it changes but also determining what type of adaptation is necessary. Our research

provides strong evidence for the feasibility of creating intelligent systems that can adjust

workload for enhanced efficiency and safety in air traffic control and other fields.

In Chapter 5, we consider biomarkers of the human partner’s mental workload in a

physical human collaboration. We investigated human brain dynamics as an objective

measure of mental workload in physical interaction with a collaborative robot to examine

how mental workload impacts physical performance. We found that the arithmetic task

and the physical performance deteriorated with the increasing workload during physical

interaction with the robot. Furthermore, frontal theta and parietal alpha power were

found to be effective in reliably assessing mental workload variations during strenuous

physical interactions with the robot arm, covarying with subjective workload scores.

Additionally, an increase in the perceived physical load and an increase in the alpha and

beta power at central sites of the brain accompanied the increases in workload during

blasting, albeit maintaining a uniform physical load across all conditions. Therefore,

this chapter sheds light on how mental workload impacts physical performance in the

physical human-robot collaboration.

In Chapter 6, we explore how mental workload variation influences cognitive conflict

or error awareness as a higher workload on the user compromises their access to cognitive

resources needed for error awareness. We observed an increased frontal theta and

parietal alpha power and a decreased central alpha and beta power upon reaching

the invisible obstacle (error condition) as compared to reaching the target (normal

condition). We also observed diminished amplitude for prediction error negativity (PEN)

and error positivity (Pe) in the ERrP, indicating reduced error awareness with increasing

workload. Our results demonstrate that the diminished error awareness of the user at

high workload conditions might allude to a potential safety breach in an ERrP-based

BCI system for pHRC. Therefore, this chapter impresses on the need to maintain optimal

workload conditions while using ERrP-based BCI technology in pHRC to optimally

adapt the robot behavior for personalized user experience using real-time brain activity,

124



8.1. INTRODUCTION

enriching the quality of the interaction.

In Chapter 7, we describe the design of a safety alert tool that raises an alarm

and stops the functioning of the robot when the error awareness of the human operator

diminishes beyond detection. Our results demonstrate that an error awareness prediction

model could predict the amplitudes of PEN and Pe from the EEG data prior to the error.

This chapter demonstrates that an online safety alert tool with the error awareness

prediction model and workload classifier can provide an accurate assessment of the

operator’s state, which could forewarn the system and operators of the diminished error

awareness of the user, alluding to a potential safety breach in the ERrP-based BCI

system for pHRC. Therefore, our work paves the way for embracing BCI technology

in pHRC to optimally adapt the robot behavior for personalized user experience using

real-time brain activity, enriching the quality of the interaction.

Therefore, the effects of workload variations were examined in a basic ATC-based

environment, which was a seated, controlled setting aimed at reducing noise. The effects

of workload variations in a pHRC environment were also examined. The key feature

of the pHRC environment is that it simulates a real-world working environment. This

dataset would be valuable to the broader BCI community as there are few experiments

conducted in a controlled, real-world simulation environment.

The goal of this thesis was to gain a deeper understanding of mental workload in

safety-critical work environments and to create models and algorithms for workload

classification and error awareness prediction that facilitate seamless physical collabo-

ration between humans and robots when performing labor-intensive tasks in complex,

unstructured environments.

The outcomes of this thesis will bring a BCI device a step closer to the goal of becoming

a mainstream product. This thesis will have a significant and immediate impact on the

field of assistive robotics and its real-world applications. The research will pave the way

for the creation of assistive robots that can work alongside humans in industrial settings

where human workers are still needed to perform physically demanding tasks, withstand

large forces for extended periods, adopt uncomfortable body positions, and operate in

noisy and dusty conditions, for example in manufacturing, construction, mining, and

health. The practical applications of this research are expected to have a major positive

economic impact on society, including increased productivity, lower costs associated with

workplace injuries, support for the workforce, and new business opportunities.
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8.2 Key Contributions

• We presented two paradigms (one stationary and another dynamic) that suc-

cessfully elicited workload variations, which can be used in the future for more

translatable BCI research and classifier training.

• We found that the EEG measures of workload variation in tracking and colli-

sion predictions are unique, enabling the development of future mental workload

adaptive systems that would know not just "when" to adapt but also "what" to

adapt.

• We also found a reliable biomarker for workload variations during blasting opera-

tions involving strenuous physical activity.

• We determined that the physical performance during the blasting operation can be

predicted from EEG measures of mental workload during blasting.

• We found a diminished error awareness (decreased prediction error negativity and

error positivity amplitudes) with the increasing workload during blasting operation

in a physical human robot collaboration task.

• We also developed a safety alert tool for pHRC work environment based on our

findings that the EEG data prior to an error could possibly predict the error

processing ability of the human partner.

8.3 Summary and Future Works

In this thesis, we have provided an overview of our research, detailing the methods

employed in our studies and discussing the outcomes and potential future applications.

We have introduced two paradigms, one stationary and one dynamic, which effectively

elicit variations in workload, and can be utilized in the development of classifier training

and closed-loop mental workload adaptive systems for safety-critical work environments.

Our findings indicate that EEG measures of workload variation in tracking and collision

prediction tasks are distinct, allowing for the creation of mental workload adaptive sys-

tems that can not only identify when to adapt but also what to adapt. These results were

also used to design a system for alerting air traffic controllers of potential performance

drops.
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In this research, a dependable biomarker for variations in workload during human-

robot collaboration was identified. Our findings revealed that as workload increases

during a blasting operation task, there is a reduction in error awareness (as evidenced

by decreased amplitudes in prediction error negativity and error positivity). Additionally,

based on our results, we developed a safety alert system for human-robot collaboration

work environments. Our data suggests that the EEG readings taken prior to an error

can potentially predict the human partner’s ability to process the error.

Figure 8.1: A schematic diagram showing the closed-loop mental workload adaptive
system for ATC tasks.

We anticipate that future research on the correlation between task type and mental

workload biomarkers will produce noteworthy discoveries about the efficiency of various

mental workload adaptive approaches. While previous studies have extensively examined

specific paradigms, there is a scarcity of research that compares the different paradigms

and evaluates the success of each in inducing mental workload variations. In this thesis

work, we have not succeeded in developing mental workload models or safety systems

that are applicable across platforms. We urge future researchers to develop workload

and error models that are task-independent.

In the realm of air traffic control, we can apply EEG measures to recognize when

an individual is at risk of poor performance and develop an adaptive brain-computer

interface that modifies task demands, allocation, or environmental settings to maintain

high performance in air traffic control (as illustrated in Figure 8.1).
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Another potential application is a mental workload adaptive system for human-

robot collaboration, building upon the safety alert system outlined in Chapter 7. A

visual representation of a mental workload-adaptive brain-robot interface for pHRC is

presented in Figure 8.2. The cognitive workload and conflict model developed can be

utilized to develop a closed-loop system that adjusts for workload responses in the human-

robot collaboration environment. This model will have three main objectives: to identify

suboptimal workload conditions, decrease error awareness, and perform prediction error

negativity detection, in order to adapt the robot’s actions in the environment to optimize

the performance of the human-robot collaboration system.

Figure 8.2: A schematic diagram showing the closed-loop mental workload adaptive
system for pHRC.

As a result, the closed-loop, real-time mental workload adaptive system for human-

robot collaboration will involve adapting the robot’s actions in the environment to match

the workload and intentions of the human operator (as illustrated in Figure 8.2). The

system’s efficacy can be evaluated by observing the precision of workload classification,

prediction of error awareness, and detection of error-related potentials and determining

whether the adaptive strategies implemented by the robot are successful in restoring

workload to an optimal level and resolving cognitive conflict experienced by the operator.

We suggest that future brain-computer interface research utilizing error-related

potentials could sustain optimal workload conditions to effectively employ error pro-

cessing to adjust system or robot behavior. The findings from the air traffic control and
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human-robot collaboration experiments can be further utilized in adaptive or closed-loop

BCI systems to make real-time adjustments to the EEG signal by either modulating

the signal or the user’s cognitive state. In general, there are numerous possibilities for

future research by integrating and combining the findings presented in this thesis.
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