

Multi-agent Coordination Algorithms
for Pursuit-Evasion

by Lijun Sun

Thesis submitted in fulfilment of the requirements for
the degree of

Doctor of Philosophy

under the supervision of
Professor Chin-Teng Lin,
Professor Yuhui Shi

University of Technology Sydney
Faculty of Engineering and Information Technology

July 2023

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, Lijun Sun, declare that this thesis is submitted in fulfilment of the re-
quirements for the award of Doctor of Philosophy, in the School of Computer
Science, Faculty of Engineering and Information Technology at the University
of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowl-
edged. In addition, I certify that all information sources and literature used
are indicated in the thesis.

This document has not been submitted for qualifications at any other aca-
demic institution.

This research is supported by the Australian Government Research Training
Program.

Signature:

Date: July, 2023

ii

Production Note:

Signature removed prior to publication.

ACKNOWLEDGMENTS

Iwould like to sincerely thank my two principle supervisors: Professor Chin-Teng Lin
and Professor Yuhui Shi. Thank you so much for granting me this opportunity and
financial support. I greatly appreciate your continuous patience, encouragements,

and insightful ideas for my research work. In these four years, I received numerous
help and learned a great many from two professors, which are essential to be a good
independent researcher.

I would like to thank all CIBCI (Computational Intelligence and Brain Computer
Interface Lab) members. In particular, thank Dr Yu-Kai Wang, who spent time and gave
me valuable suggestions. Thank Dr Yu-Cheng Chang for discussing research problems
and working out solutions with me. I really appreciate all your help. Thank Dr Jie Yang
for being nice and help me a lot on many issues.

I would like to specially thank my boyfriend and work partner, Dr Chao Lyu. Thank
you so much for accompanying me and supporting me. We experienced all happiness and
difficulties together. We dreamed, worked, and helped each other. It is you that allows
me to be more confident, more powerful, and happier, regardless of the circumstance.

Last, I would like to give my gratitude to my family members, my parents, my sister,
my sister’s husband, and my nephew. Thank you so much for being so considerate, which
allowed me to study without worries.

iii

DEDICATION

To my loved ones

iv

ABSTRACT

The multi-agent coordination or swarm intelligence is a paramount concern in
multi-agent systems (MAS) that determines the exclusive advantage over single-
agent systems. Although diverse swarm robots tasks are achieved and complex

multi-agent strategies emerge, the real-world application of MAS is still challenging
and limited, such as in the large-scale warehouse robots, autonomy traffic, and swarm
drones. Among diverse MAS benchmarks, the pursuit-evasion game is a popular, general,
and representative one that models practical coordination demands and has attracted
sustained research efforts. Therefore, based on the pursuit-evasion variants, this research
investigates the following five coordination aspects and proposes corresponding solutions.

First, the safe multi-agent coordination problem is investigated. Popular multi-agent
benchmarks provide limited safety support for the safe multi-agent reinforcement learn-
ing (MARL) research, where negative reward for collisions cannot guarantee the safety.
Therefore, this research proposes a new safety-constrained multi-agent environment:
MatrixWorld, based on the general pursuit-evasion game. In particular, the multi-agent
safety constraints are implemented by three classification ways of pursuit-evasion games:
the multi-agent-environment interaction model, the collision resolution mechanism in
multi-agent action execution model, and the game termination condition. Besides, Ma-
trixWorld is a lightweight co-evolution framework for the learning of pursuit tasks,
evasion tasks, or both, where more pursuit-evasion variants can be designed based on
different practical meanings of safety.

Second, the NP-hard distributed coordination problem is investigated throughout
our research. For example, in the fully observable pursuit of a single evader, this re-
search proposes the cooperative co-evolutionary particle swarm optimization algorithm
for robots (CCPSO-R). It introduces the concept of virtual agents and utilizes the cooper-
ative co-evolutionary evaluation mechanism for the decentralized cooperation of on-line
planning pursuers. Experiments are conducted on a scalable swarm of pursuers with
4 types of evaders, the results of which show the reliability, generality, and scalability
of the proposed CCPSO-R. Comparison with a representative dynamic path planning
based algorithm Multi-Agent Real-Time Pursuit (MAPS) further shows the effectiveness
of CCPSO-R.

Third, the NP-complete multi-agent task allocation problem is investigated in the
pursuit-evasion variants with more than one evaders. For example, in the fully observable
pursuit of multiple evaders, this research proposes the two-stage approach: BiPCCR,
which solves in a dynamic optimization way. In particular, a multi-evader pursuit (MEP)

v

fitness function is proposed for the involved bi-quadratic assignment problem (BiQAP),
which significantly reduces the search cost. Besides, based on the domain knowledge, one
BiQAP solver is improved to work better statistically. In this work, the safety of CCPSO-
R algorithm is enhanced in the proposed PCCPSO-R algorithm for the simultaneous
multi-agent decision-making and action execution.

Fourth, the multi-agent observation uncertainty and interaction uncertainty are
investigated in the partial observable pursuit-evasion variants. Further, to avoid the
coordination performance degradation due to communication failures and be immune
from the communication cost, a more restricted self-organizing setup with only implicit
coordination is considered. To address the above challenges, this research proposes
a distributed hierarchical framework called the fuzzy self-organizing cooperative co-
evolution (FSC2) algorithm. The experimental results demonstrate that by decomposing
the task by FSC2, superior performance are achieved compared with other implicit
coordination policies fully trained by general MARL algorithms. The scalability of FSC2
is proved that up to 2048 FSC2 agents perform efficiently with almost 100% capture
rates. Empirical analyses and ablation studies verify the interpretability, rationality, and
effectiveness of component algorithms in FSC2.

Last, open problems and magics in the autocurriculum learning are explored in the
co-evolutionary pursuit-evasion variants. To better understand related research works
and more accurately use similar terminologies, this research reviews and analyzes the
co-evolution mechanism in the multi-agent setting, which clearly reveals its relation-
ships with autocurricula, self-play, arms races, and adversarial learning. Then, through
adversarial learning, this research achieves various arms race outcomes of different
co-evolution mechanisms. Based on experiments, arms races with steady and converging
improvement are more practical for increasingly complex behaviors, while policy cycles
between two rival sides are useful for producing diverse policies. In particular, this
research finds that the passive (evasive) policy learning benefits more from co-evolution
than active (pursuing) policy learning in an asymmetric adversarial game.

vi

LIST OF PUBLICATIONS

RELATED TO THE THESIS :

1. Lijun Sun, Chao Lyu, and Yuhui Shi. Cooperative coevolution of real predator
robots and virtual robots in the pursuit domain. Applied Soft Computing 89 (2020):
106098, doi: 10.1016/j.asoc.2020.106098. (This paper was generated from Chapter
3.)

2. Lijun Sun, Chao Lyu, Yuhui Shi, and Chin-Teng Lin. Multiple-preys pursuit based
on biquadratic assignment problem. In 2021 IEEE Congress on Evolutionary Com-
putation (CEC), pp. 1585-1592. IEEE, 2021, doi: 10.1109/CEC45853.2021.9504823.
(This paper was generated from Chapter 4.)

3. Lijun Sun, Yu-Cheng Chang, Chao Lyu, Ye Shi, Yuhui Shi, and Chin-Teng Lin.
Toward multi-target self-organizing pursuit in a partially observable Markov game.
Information Sciences 648 (2023): 119475. doi: 10.1016/j.ins.2023.119475. (This
paper was generated from Chapter 5.)

4. Lijun Sun, Yu-Cheng Chang, Chao Lyu, Yuhui Shi, and Chin-Teng Lin. Matrix-
World: a pursuit-evasion platform for safe multi-agent coordination and autocur-
riculum. arXiv preprint arXiv:2307.14854 (2023). (This paper was generated from
Chapter 2 and 6.)

OTHERS :

5. Lyu, Chao, Yuhui Shi, and Lijun Sun. A novel local community detection method
using evolutionary computation. IEEE Transactions on Cybernetics 51, no. 6 (2019):
3348-3360.

6. Lyu, Chao, Yuhui Shi, and Lijun Sun. A novel multi-task optimization algorithm
based on the brainstorming process. IEEE Access 8 (2020): 217134-217149.

vii

7. Lyu, Chao, Yuhui Shi, and Lijun Sun. Community detection based on surrogate
network. In International Conference on Bio-Inspired Computing: Theories and
Applications, pp. 45-53. Singapore: Springer Singapore, 2021.

8. Lyu, Chao, Yuhui Shi, Lijun Sun, and Chin-Teng Lin. Community detection in
multiplex networks based on evolutionary multi-task optimization and evolutionary
clustering ensemble. IEEE Transactions on Evolutionary Computation (2022).

9. Lyu, Chao, Yuhui Shi, and Lijun Sun. "Data-driven evolutionary multi-task opti-
mization for problems with complex solution spaces." Information Sciences 626
(2023): 805-820.

viii

TABLE OF CONTENTS

List of Publications vii

List of Figures xii

List of Tables xvi

1 Introduction 1
1.1 Multi-agent pursuit-evasion . 1
1.2 Literature review . 4
1.3 Research overview . 9
1.4 Summary . 12

2 MatrixWorld: safety-constrained multi-agent pursuit-evasion platform 13
2.1 Background . 13
2.2 Safety-constrained multi-agent action execution model 14

2.2.1 Multi-agent-environment interaction model 14
2.2.2 Safety-constrained multi-agent collision resolution mechanism . . 16

2.3 Pursuit-evasion game variants . 16
2.4 API . 20
2.5 Summary . 20

3 Single evader pursuit with full observation 21
3.1 Background . 21
3.2 Cooperative co-evolutionary of real and virtual agents 22

3.2.1 Fitness function and evaluation . 23
3.2.2 Behavioral update rule . 27
3.2.3 Diversity maintenance mechanism 29

3.3 Experiments . 30
3.3.1 Experiment 1 (Surrounding-based pursuit) 31

ix

TABLE OF CONTENTS

3.3.2 Experiment 2 (Occupation-based pursuit) 35
3.4 Summary . 38

4 Multiple evaders pursuit with full observation 40
4.1 Background . 40
4.2 Biquadratic assignment problem . 41
4.3 The proposed two-stage approach: BiPCCR 42

4.3.1 BiQAP task allocation in the dynamic optimization 43
4.3.2 Parallel CCPSO-R algorithm for each single evader pursuit 46

4.4 Experiments . 47
4.4.1 Experiment 1 (BiQAP solver for the task allocation) 47
4.4.2 Experiment 2 (PCCPSO-R vs. CCPSO-R) 50

4.5 Summary . 51

5 Multiple evaders pursuit with partial observation 53
5.1 Background . 53
5.2 Problem formulation . 54

5.2.1 Multi-agent formulation of self-organization systems 54
5.2.2 The problem of self-organizing search and pursuit 55

5.3 Fuzzy self-organizing cooperative coevolution (FSC2) algorithm 57
5.3.1 Distributed fuzzy clustering for task allocation 58
5.3.2 Self-organizing search (SOS) policy 61
5.3.3 Cooperative coevolutuion algorithm for robots (CCR) 63

5.4 Experiments . 65
5.4.1 Environments, baselines, and experimental setups 65
5.4.2 Self-organizing pursuit (SOP) experiments 69
5.4.3 Self-organizing search (SOS) experiments 72
5.4.4 Consistency analysis in distributed task allocation 75
5.4.5 Ablation studies . 77
5.4.6 Discussion . 79

5.5 Summary . 80

6 Adversarial pursuit-evasion with partial observation 81
6.1 Background . 81
6.2 Brief survey on co-evolution, autocurriculum, and arms race 82

6.2.1 Co-evolution . 82

x

TABLE OF CONTENTS

6.2.2 Self-play . 83
6.2.3 Adaptation and arms races . 83
6.2.4 Curriculum learning (CL), automatic CL, and autocurricula 84
6.2.5 Adversarial learning . 85
6.2.6 MatrixWorld: A lightweight co-evolution environment 85

6.3 Adversarial learning algorithms for pursuit-evasion 86
6.4 Experiments . 86

6.4.1 Experimental setup . 88
6.4.2 Autocurricula in co-evolutionary pursuit-evasion 88
6.4.3 General MARL in safe multi-agent coordination scenarios 92

6.5 Summary . 94

7 Conclusion and future work 95
7.1 Conclusion . 95
7.2 Limitations and future work . 97

Bibliography 98

xi

LIST OF FIGURES

FIGURE Page

1.1 Research map of multi-agent coordination algorithms for pursuit-evasion. “-"
indicates the same with its above configuration. 12

2.1 Safety-constrained multi-agent collision resolution mechanism for the multi-
agent environment modeled by stochastic game. 16

2.2 Illustration of the surrounding based capture. 19

2.3 One trick of the coordination strategy in a toroidal world. 19

2.4 Illustration of basic usage of MatrixWorld. 20

3.1 Illustration of the convex hull of the point set P [25]. 24

3.2 Illustration of the uniformity assessment. 25

3.3 Illustration of the alternative uniformity assessment. 25

3.4 Illustration of the fitness evaluation for pi j
pursuer. 27

3.5 Illustration of the function nbn(pi j
pursuer, pi1

pursuer) in Equation (3.12). 28

3.6 Box plot of the moves to capture a specific evader with a specific number of
pursuers. 32

3.7 Bar graph of the average moves to capture a specific evader with a specific
number of pursuers. 33

3.8 Illustration of the pursuit process, taking the pursuit of a linear_smart evader
as an example. (a) is the initialization. From (a)-(b), the evader moves in
the southeast direction in a straight line. In (c), the evader encounters an
orthogonal real pursuer. So, in (d), the evader moves to a nearest unoccupied
neighbor in the south. After that, from (d) to (e), the evader continues to move
in its previous straight line direction. Until (f), the evader reaches an edge.
So, in (g), the evader re-selects the north as its new escape direction. In (h),
the evader is captured. And in (i), the pursuers swarm converge. 34

xii

LIST OF FIGURES

3.9 Illustration of the modified capture status of CCPSO-R used in the comparison
with MAPS. 36

4.1 An example multiple-evaders pursuit scenario. 42

4.2 The local capture patterns in the repair stage of PCCPSO-R. 46

4.3 The fitness evaluation time. 49

4.4 The averaged fitness values of different algorithms during the optimization
process over 50 runs. 50

5.1 Multi-target self-organizing pursuit task and computational frame-
work of FSC2 (fuzzy self-organizing cooperative coevolution). FSC2 is a
distributed framework that consists of three modules: A. fuzzy task alloca-
tion: takes partial observation as input, computes distributed fuzzy clusters
of agents and targets, and determines the current role of agent to be either a
searcher or a pursuer; B. RL search policy: a searcher searches the space
to find targets; and C. pursuit algorithm (CCR): a pursuer cooperates with
cluster members to pursue the targeted evader of its cluster. 54

5.2 Common multi-agent problem formulations and their nomenclature. 55

5.3 A screenshot of self-organizing search and pursuit in a bounded grid world,
where red squares are targets or evaders, blue squares are searchers or
pursuers, and green background around each agent shows its perception
range with an inf -norm radius of 5. 56

5.4 Illustration of uncertain partial observation under the lexicographic conven-
tion of Section 5.3.3; collisions may result if such scenarios are not detected.
A1, A2, A3, and A4 are the pursuers, T1 and T2 are the targets, X1, X2, X3,
and X4 are the open capturing positions, and these entities are numbered in
the lexicographic order given in Section 5.3.3. The green background is the
perception range of A3, and the dashed regions are the specific boundaries
where risky capturing positions may appear. For A3, X1 is a risky captur-
ing position that is located on the specific boundary of its local view and is
assigned to a local free pursuer based on the local lexicographic convention
without the detection of such scenarios. Meanwhile, the assigned capturing
position X2 of A3 has another neighboring free pursuer A2. The decision of
A3, which is made based on uncertain observation satisfying the above two
conditions as in (a), may deviate from the actual decisions of pursuers as in
(b) and risk collisions. 66

xiii

LIST OF FIGURES

5.5 Swarm performance in the multi-target self-organizing pursuit (SOP) in
40£40 grid wolds with different numbers of targets and pursuers, where the
mean and standard deviation of the experimental results in 100 independent
runs are plotted. 70

5.6 Swarm performance in the multi-target self-organizing pursuit (SOP) in
80£80 grid wolds with different numbers of targets and pursuers, where the
mean and standard deviation of the experimental results in 100 independent
runs are plotted. 71

5.7 Multi-agent collision scenario illustration in the multi-target SOP with 128
targets (red squares) and 512 agents (blue squares) in 40£40 grid world: the
two circled agents in step 14 are two searchers that collide with each other in
step 15. 71

5.8 Training performance comparison on self-organizing search (SOS) over 10
random seeds, where the solid lines and shaded areas represent the mean
and standard deviation of the corresponding performance, respectively. 72

5.9 Single SOS agent performance comparison in grid worlds of different sizes,
where the mean and standard deviation of the experimental results in 100
independent runs are plotted . 73

5.10 Swarm performance comparison of 8 SOS agents searching 50 targets in
grid worlds of different sizes, where the mean and standard deviation of the
experimental results in 100 independent runs are plotted 74

5.11 Behavior probability or action distribution of actor-critic trained self-organizing
search (SOS) policy with the empty observation, which is estimated from 100
independent runs with 1000 steps per run. The different models are actor-
critic policies trained with different random seeds. 76

5.12 The computational process of DC in Equation (5.6) and stochastic comparisons
between fuzzy clustering and hard clustering in distributed task allocation,
where the symbols “>" and “<" represent stochastically superior and inferior,
respectively, and a dashed rectangle around an agent of the same color indi-
cates its local perception scope with an inf -norm radius of 2 for the purpose
of illustration. 77

6.1 Relationships between co-evolution, self-play, autocurricula, arms races, and
adversarial learning. 82

6.2 Training performance achieved for Pursuit-Evasion-O by Algorithms 6.1, 6.2,
and 6.3 (from top to bottom). The curves are smoothed over 30 points. 90

xiv

LIST OF FIGURES

6.3 Evolutionary performance (capture rate) of evaders based on the testing
performance achieved on Pursuit-Evasion-O, which is averaged over 10 in-
dependent runs. Horizontal axis: E0 - E30, the 30 generations of evaders.
Vertical axis: P0 - P15 (left), P16 - P30 (right), the 30 generations of pursuers.
E0 and P0 are the initial evaders and pursuers. A black dashed line indicates
the associated pursuer and evader are in the same generation. 91

6.4 Generalization performance achieved for Pursuit-Evasion-O. 93
6.5 Training performance achieved for Pursuit-Evasion-S. 94

xv

LIST OF TABLES

TABLE Page

2.1 Multi-agent-environment interaction models for distributed adversarial multi-
agent systems. Task environment properties [72]: Single-agent vs. multi-
agent: whether the other agent(s) optimizes some objectives that depend on
the current agent. Cooperative vs. non-cooperative: whether all agents
share a common goal. Static vs. dynamic: whether the environmental state
or the agent’s observation changes if the agent does nothing regardless of the
flying time. Deterministic vs. nondeterministic (stochastic): whether
“the next state s0 is completed determined by the current state s and the action
a executed by the agent(s)", i.e., whether the transition function P(s0|s,a)= 1
or not. 15

2.2 Rationality and example applications of various collision outcomes in the
multi-agent setting. D: reach (target) and disappear. R: reach (target) and
alive. B: bounce back (stay put) and alive. 17

2.3 MatrixWorld: Task definition. Collision type: A-O: agent-obstacle; A-A: coop-
erative agent-agent; P-E: pursuer-evader. Collision outcome: D: reach (target)
and disappear; R: reach (target) and alive; B: bounce back (stay put) and alive. 18

3.1 Number of captures, average number of moves, and their standard deviations
to capture different evaders with various number of pursuers out of 100 test
cases. 32

3.2 Comparison results: Average number of moves and their standard deviations
to capture different evaders with various number of pursuers in different
sizes of grid worlds out of 100 test cases. 37

3.3 Statistical test for CCPSO-R vs. MAPS using the t-test at the 5% significance
level. 38

xvi

LIST OF TABLES

4.1 Solutions qualities obtained by different algorithms on the BiQAP task alloca-
tion problems over 50 runs . 48

4.2 No. of MEP fitness evaluations (4.6) of algorithms on the BiQAP task alloca-
tion problems over 50 runs . 49

4.3 Comparison of the multiple-evaders pursuit efficiency of PCCPSO-R and
CCPSO-R . 51

5.1 Reward function Ri(st,~at) for self-organizing search (SOS) 62
5.2 Reward function Ri(st,~at) for self-organizing pursuit (SOP) 68
5.3 Performance comparison on multi-target self-organizing pursuit (SOP) with

16 agents and 4 targets in 40£40 grid worlds. FSC2-HC: replace FSC2 fuzzy
clustering with hard clustering. FSC2-NM: remove agent’s memory in fuzzy
clustering. FSC2-RC: replace FSC2 fuzzy clustering with random clustering.
FSC2-FS: replace FSC2 search with fish flocking rules (no migratory urge). *
represents the statistical significance by student’s t-test at the significance
level 0.01. 68

5.4 Episode length (efficiency) comparison of FSC2 with fuzzy clustering and hard
clustering on multi-target pursuit (SOP) in 40£40 grid worlds. FSC2-HC:
replace FSC2 fuzzy clustering with hard clustering. 69

6.1 Reward function for all pursuit-evasion tasks. “°": the same. 89

xvii

C
H

A
P

T
E

R

1
INTRODUCTION

1.1 Multi-agent pursuit-evasion

Inspiration from biological pursuit-evasion. Pursuit-evasion or predator-prey is a
common natural phenomenon where predators pursue their preys for dinner, while preys
evade predators for life, and their co-evolutionary arms race and co-adaptations never
stop. For example, the coordination of predators increases their hunting efficiency and
success, such as encircle the prey and feed on it one-by-one [19]. Coordinated defensive
and evasive behaviors of preys better detect, confuse, reduce exposure to, and evade from
predators, such as the aggregation behaviors of birds and fish.

Reasons to investigate pursuit-evasion in AI. Similar to nature, in the artificial
intelligence (AI), the pursuit-evasion (PE) is a general multi-agent coordination problem
that achieves extensive attention for several reasons. First, the PE is an adversarial game
between two swarms of agents, i.e., pursuers and evaders. It involves both cooperative
and competitive interactions that are general in multi-agent systems (MAS). Second,
the pursuit and evasive behaviors are general for many multi-agent tasks. For example,
as indicated by Miller et al. [53, 54], by interpreting the pursuer and evader differently,
the evasive pursuer avoidance can be applied in collision avoidance and dispersion,
the pursuit behavior can be used in the goal-directed navigation, robot arm grasping,
foraging, following, and aggregation, while the adversarial co-evolution between pursuers
and evaders is a testbed for the investigation of adaptive behaviors and robust policies.
Third, PE has wide real-world applications, such as in the warfare [39], aerospace

1

CHAPTER 1. INTRODUCTION

[33, 87, 94, 97], football game, search-and-rescue [65], cops-and-robbers [13, 29, 59], and
pollutants and cleaning [21].

Challenges in the pursuit-evasion research. Compared with the single-agent
system, the multi-agent system is more attractive and challenging that it is beyond the
simple summation of multiple independent agents. The coordination and thus the swarm
intelligence is the key for its success. Typically, a single-agent system can be modeled
as a Markov decision process (MDP) with the Markov assumption that the current
state of the environment and action of the agent can determine the next state without
conditioning on historical states or actions. When multiple agents are involved in the
multi-agent system (MAS), a general extension of the MDP is the Markov game (MG) or
stochastic game (SG). Further, when the full observation of an agent is constrained due
to the state uncertainty, the MAS is formulated as a partially observable Markov game
(POMG). The MG generalizes the multi-agent MDP (MMDP) in terms that all agents
in the MG have their own utility or reward functions, while the same utility function is
shared by all agents in the MMDP. Similarly, the POMG generalizes the decentralized
partially observable MDP (Dec-POMDP). While the complexity of MDP and MMDP
are P-complete and EXPTIME [3, 63, 76], both the decentralized MDP (Dec-MDP) and
Dec-POMDP are NEXP-complete [11], and MG and POMG are PPAD-complete without
known polynomial time algorithms [56].

Challenge 1: safe multi-agent reinforcement learning (MARL). MARL has
achieved encouraging performance in solving complex multi-agent tasks, some of which
are human-level. However, the safety of MARL policies is one critical concern that
impedes their real-world applications. Furthermore, popular multi-agent benchmarks
provide limited safety support for safe MARL research, where negative rewards for
collisions are insufficient. Therefore, this thesis proposes a new safety-constrained multi-
agent environment: MatrixWorld, based on the general pursuit-evasion game. Besides,
research on co-evolution is still open and it is supposed to be promising for automatically
generating more complex agent behaviors and intelligence from the arms races in multi-
agent interactions. The proposed MatrixWorld is a lightweight co-evolution framework
for the learning of pursuit tasks, evasion tasks, or both, where more pursuit-evasion
variants can be designed based on different practical meanings of safety.

Challenge 2: distributed coordination.Decentralized decision-making algorithms
are preferred than centralized solutions, due to the scalability issue of the multi-agent
coordination problems. However, as proved by Bernstein et al. [11], the complexity is
fundamentally different between the centralized and decentralized control of Markov de-

2

1.1. MULTI-AGENT PURSUIT-EVASION

cision process (MDP). Even the decentralized decision-making problem with two agents
is NP-complete. This problem is investigated throughout this work. For example, in the
fully observable pursuit of a single evader where more than one pursuers are needed for
a successful capture of the evader, most previous work cannot simultaneously assure
the 100% reliable capture rate, good scalability to problem size, and generality to evader
types. Therefore, aiming at the scalable and general swarm intelligence, this research
introduces the concept of virtual agents and utilizes the cooperative co-evolutionary eval-
uation mechanism for the cooperation in the decentralized on-line planning of pursuers.

Challenge 3: multi-agent task allocation. In the fully observable pursuit of multi-
ple evaders, two task allocation problems exist. One is to assign each evader to a specific
group of pursuers for pursuing. The other is to assign each capturing position of an
evader to a specific pursuer for capturing. The first problem is a nonlinear assignment
problem that is proved to be NP-complete [18, 64], while the concurrent mutual collision
avoidance in the second problem is another challenge for the safe multi-agent coordina-
tion. Therefore, this research formulates this game as a dynamic optimization problem
and proposes a two-stage approach to solve these two problems, wherein the inherent
properties of the game and coordination algorithm with safety concerns are explored.

Challenge 4: partial observability. In the partially observable pursuit of multiple
evaders, general decentralized coordination algorithms rely on inter-agent communica-
tions for issuing commands, assigning roles, eliminating conflicts, sharing information,
negotiating, etc. Therefore, such algorithms are typically fragile to communication fail-
ures. However, reliable communication may be unavailable due to communication attacks,
incompatible protocols like human-robot interactions, limited channels, physical distance,
damage, or energy conservation. With the constraints of partial observation and noncom-
munication, the interaction uncertainty considering the independent agents’ behaviors
will be severer. As a result, the distributed task allocation of assigning evaders to groups
of pursuers becomes more challenging. Furthermore, due to the same reason, an subtask
of multi-agent search is introduced that evaders in the environment need to be first
found before they can be pursued and captured by pursuers. It is also challenging since
pursuers cannot share their search experience with each other and no global consistent
belief map can be built among them. Besides, since the evaders are moving, pursuers
need to repeatedly search the space while keeping coordination so that they are like a
multi-agent system and better than multiple independent and non-coordinated agents.
Therefore, this research proposes to alleviate these problems by developing more effective
implicit coordination algorithm that does not rely on communication.

3

CHAPTER 1. INTRODUCTION

Challenge 5: useful arms race and autocurriculum learning. The adversarial
pursuit-evasion task is more like a co-evolution framework where both pursuers and
evaders co-evolve, learn, and get improved together. In 2019, the concept of autocur-
riculum was proposed by Leibo et al. [46] to specially refer the automatic curriculum
leanring (CL) in multi-agent settings, where the sequence of tasks or challenges is self-
generated from the mutual counter-adaptations in multi-agent interactions, i.e., an arms
race. However, based on both biological observations [23] and artificial intelligence (AI)
investigations [46], it is noted that challenges do not definitely mean more difficult or
complex tasks, and adaptations to these challenges do not necessarily involve increas-
ingly strong abilities. Even the commonly adopted difficulty ranking of tasks, i.e., from
easy to hard, in curriculum learning is not guaranteed to be optimal in all cases [93].
The conditions for obtaining different arms race outcomes have attracted researchers’
attention. Particularly, people are more interested in generating stronger models, such
as agents with more complex behaviors. Therefore, this research revisits the co-evolution
mechanism in the multi-agent setting, discusses its relationships with several similar
concepts: self-play, autocurricula, arms races, and adversarial learning, and explores the
magics therein and practical way to produce useful or preferable arms race results.

1.2 Literature review

Timeline of pioneer works in pursuit-evasion. The pursuit-evasion domain is a
classic and popular benchmark problem in the multi-agent system (MAS). In the past
decades, there are several pioneer works in this filed. In 1953, according to Littlewood
[48], the lion-and-man game was invented by R. Rado where a lion wants to capture the
evading man in a bounded circular arena. In 1965, Isaacs [39] first used the differential
game to formulate the two-agent zero-sum pursuit-evasion problem. In 1978, Parsons
[65] studied the pursuit-evasion on graphs from the application that searchers need to
find a lost spelunker in a cave whose behaviors are unpredictable and even adversarial
in the worst case, and claimed that the problem was raised by Richard Breisch. In 1978
and 1983, according to Bonato [13], the cops-and-robbers game was first investigated by
Quilliot [68] and independently investigated by Nowakowski and Winkler [59]. As the
cops-and-robbers game is also called the vertex-pursuit game, it is played on a reflexive
graph where cops and robbers take turn to observe, make decision, and move until the
cops occupy the same vertexes of the robbers, i.e., the capture, or the time is run out. In
1985, Benda et al. [9] used the pursuit problem in grid worlds to investigate the optimal

4

1.2. LITERATURE REVIEW

organization structure and communication mode of agents for their optimal cooperation.
This pursuit game in grid worlds is most related to our study here.

Categories of works in pursuit-evasion. The literature work in the pursuit-
evasion domain can be broadly classified into four categories. (1) In the first category, the
works, such as Benda et al. [9], Stephens [78], and Osawa [61], investigated the pursuit
problem by correlating the organization structure of agents with the intelligence of the
system. They showed that the organization structure of agents is crucial but not by itself.
The next two categories focus more on the multi-agent coordination strategies design. (2)
The works in the second category implemented the implicit coordination with a group of
independent agents, such as Stephens et al. [79] and Haynes et al. [35, 37, 38]. Without
considering partnerships and multi-agent interactions in the strategy, i.e., no perception
of other partners, nor communications, agents may fail to cope with conflict scenarios
and thus the final cooperation performance are not satisfied. (3) In contrast, works in the
third category designed coordination strategies for cooperative agents. Tan [86] specially
compared the performance of cooperative agents with that of independent agents. The
results showed that for both normal tasks that can be accomplished by a single agent
and joint tasks that need more than one agents, perception cooperation help improve
the efficiency in accomplishing tasks compared with a group of independent agents.
Coordinated learning, such as sharing policy model parameters or experiences, can speed
up learning. More successive work tried to answer the questions like what cooperative
methods to use or how to be cooperative, such as the game theoretic techniques used by
Levy et al. [47], the case learning [36], the path planning methods [91], the reinforcement
learning (RL) approaches [4, 26, 34, 40], and the evolutionary computation (EC) [57].
In addition, representation learning was also investigated in this category, such as the
ad-hoc teaming works [5–8]. Their goal was to enable the cooperation with different,
even previously unseen or unknown teammates. Therefore, their focus is different that
models or representations of other agents are the core learning task. (4) Finally, in the
fourth category, adaptations and arms race mechanisms were explored in the adversarial
pursuit-evasion games. Its study has been started since 1994 [51, 53, 54, 71], which is
slightly later than the research on pursuit or evasion alone since 1953 [48]. As a general
co-evolution framework, its related works include co-evolution, self-play, autocurricula,
arms races, adversarial learning, etc. Our study here belongs to the last two categories,
designs the multi-agent coordination strategies, and explores arms races in the pursuit-
evasion.

Single evader pursuit with full observation. In the pursuit of a single evader,

5

CHAPTER 1. INTRODUCTION

Korf [44] manually designed greedy coordination strategies. Haynes et al. [35–38] used
the genetic programming (GP) [45], strongly typed genetic programming (STGP) [55], and
cases learning methods to improve the pursuit performance. However, the capture rate
cannot always reach 100%. Undeger and Polat [91] proposed the multi-agent real-time
pursuit (MAPS) algorithm by formulating the multi-agent dynamic pursuing problem as
a dynamic path planning and task allocation problem. Ishiwaka et al. [40] investigated
the emerging mechanism of predators’ cooperative behaviors in the continuous world
through Q-learning. Barrett et al. [4, 7] improved the ad hoc teaming performance in the
pursuit by learning the models of teammates. Stone et al.[80] gave a detailed survey on
the pursuit domain.

Multiple evaders pursuit with full observation. Compared with the single
evader pursuit game, a new task allocation problem to assign each evader to each
four pursuers is introduced in the multiple evaders pursuit domain. This is a nonlin-
ear assignment problem called the bi-quadratic assignment problem (BiQAP). First,
Burkard et al. [18] introduced the BiQAP arising from the very large scale integration
(VLSI) synthesis, which is also the only one published application of BiQAP except this
research. It is proved that BiQAP is NP-complete [18, 64]. Therefore, heuristic methods
are designed in the literature. Burkard et al. [17] proposed several approaches to BiQAP,
which includes three deterministic improvement methods, i.e., the first improvement
method (FIRST), the best improvement method (BEST), and the Heider’s improvement
method (HEIDER); three simulated annealing algorithms (SIMANNs); one taboo search
method; and one hybrid of taboo search and SIMANN. Afterward, Mavridou et al. [52]
proposed the greedy randomized adaptive search procedure (GRASP) algorithm that
integrates the FIRST algorithm as the local search method to the greedily constructed
initial solution in each of its iteration. The comparison of these algorithms on the BiQAP
benchmark problems [18] showed that HEIDER achieves the best balance between the
solution quality and the computational cost among the deterministic methods, while only
GRASP finds all optimal solutions on all test instances but consuming more computations
[17, 20, 52]. However, for the multi-agent task allocation problem, the best algorithm
like GRASP may be not the most preferable choice due to the real-time requirement in
the multi-agent game, while the simpler solver with good performance is more favorable.

Multiple evaders pursuit with partial observation. In terms of the partially ob-
servable multi-agent settings, many general multi-agent reinforcement learning (MARL)
algorithms are tested in the pursuit domain. Coordinated agents can outperform fully
independent agents [86]. In particular, the centralized training and decentralized execu-

6

1.2. LITERATURE REVIEW

tion (CTDE) is a general framework of coordinated learning for decentralized multi-agent
systems. One effective way of implementing CTDE is to apply the concept of parame-
ter sharing [34], which enables the extension of single-agent reinforcement learning
(RL) algorithms to the multi-agent setting, such as the actor-critic algorithm [85]. It
is extremely useful for the learning of large-scale homogeneous agents by training
shared (value or policy) models from collective experiences. Besides, it also benefits the
coordinated learning efficiency as shown in the experiments of [90, 98].

To enhance the cooperation of agents, many CTDE MARL algorithms use the cen-
tralized (action) value functions, such as MADDPG [49], COMA [28], QMIX [69], and
MAPPO [98]. A common issue of such centralized (action) value function learning is
that the computational complexity increases with the number of agents involved and
the trained agents are heterogeneous, which hinder the large-scale deployment. Besides,
since these centralized (action) value functions are optimized with a fixed number of
agents, when the agent swarm size changes, the policy is hard to guarantee its optimal-
ity and new training is needed. For example, in the MADDPG, each agent separately
maintains a centralized critic function that takes the joint observation and joint action
as inputs, while agents’ actor functions use only local information. In contrast, although
MAPPO also learns a centralized value function that accesses the global information out
of the partial observations of the agents, it uses the parameter sharing for homogeneous
agents and thus potential for large-scale applications. Mean field reinforcement learning
[96] also uses the CTDE framework and tackles large scale multi-agent problems by sim-
plifying the interactions between agents to the interplay between an agent and the mean
effect of its neighborhood, i.e., the virtual mean agent, through the mean field approxi-
mation. However, by employing the mean field theory, it explicitly ignores the detailed
interactions between real agents, which means it cannot deal with the collision avoidance
between agents, i.e., the safety RL issues. Another way to enhance the cooperation is to
allow communications. For example, DGN (graph convolutional reinforcement learning)
[42] achieves the cooperation of agents through local communications to interchange the
intermediate outputs of agent models. As for other MARL works tested regarding pursuit,
they are mostly subject to several or all of the constraints: small-scale, fully observable
pursuers, single-target pursuit, occupation-based capture, with communications, and
permitted collisions (see also [24]).

Adversarial pursuit-evasion. Reynolds [71] co-evolved a population of agents in
the one-versus-one role-reversal tag game, a symmetric pursuit and evasion. Sub-optimal
strategies emerge automatically through the competitive co-evolution. Miller et al. [54]

7

CHAPTER 1. INTRODUCTION

and its two extended work [51, 53] discussed the generality of pursuit-evasion to the
research of adaptive behaviors in biology, machine learning, and robot tasks. They
co-evolved the pursuit and evasion behavioral tactics and morphologies in both the
asymmetric and symmetric one-versus-one pursuit-evasion games. Nolfi et al. [58] gener-
ally discussed the relationship between co-evolution and the auto-curriculum learning.
In particular, the evolutionary arms race between pursuit and evasion strategies was
investigated in the one-versus-one scenarios based on Khepera robots. They demon-
strated that the cycling problem of strategies caused by sudden behavior pattern changes
can be reduced and more stable co-evolutionary process can be produced by evaluating
individuals in the current generation against sampled competitors from all previous
generations. They also investigated the influence of sensory abilities to the emergence of
arms races in progressively producing more general solutions. Zheng et al. [100] proposed
a co-evolutionary pursuit benchmark problem for MARL. Zhou et al. [101] transformed
the large-scale pursuit-evasion game to a two mass players differential game and find
their Nash equilibrium. Besides, in terms of adversarial game benchmarks, more complex
adversarial games were investigated in the literature, such as capture the flag (CTF)
[41], and StarCraft II learning environment (SC2LE) [97].

Multi-agent environment for safe policy and safe multi-agent reinforce-
ment learning. In thriving multi-agent reinforcement learning (MARL) research, in-
creasingly complex multi-agent behaviors have emerged in increasingly complicated
environments. However, in current practice, MARL is still weak and challenging in
resolving safety guarantees in multi-agent coordination scenarios [60, 99], such as au-
tonomous driving [95]. To date, the safe MARL has not gone beyond toy domains such as
grid worlds. Therefore, this thesis revisits the significance of the discrete pursuit-evasion
game and introduces MatrixWorld, a new safety-constrained multi-agent pursuit-evasion
platform.

Here, the safety concept is defined in terms of collision avoidance. For instance,
collisions may stem from conflicts of interest during the multi-agent cooperation, the
resolution of which is so important for determining the essential contribution of a coordi-
nation algorithm [14, 15]. When collisions occur, the multi-agent software environment
should deal with these conflicts correctly by presenting reasonable and practical collision
results and blaming the responsible party through e.g., rewards, based on which algo-
rithms can properly learn. However, as indicated by Terry et al. [88], the real collision
resolution mechanism implemented by MARL environments may be biased and lead to
unexpected outcomes for the stochastic game (SG), where the multi-agent actions should

8

1.3. RESEARCH OVERVIEW

be executed simultaneously. This may result from the bugs and complexities of codes
when resolving the race conditions.

Popular multi-agent grid-world benchmarks provide limited safety support, based on
which general MARL studies rarely report their safety performances even when they
truly matter in associated applications. For example, in the Pursuit and Battle tasks
of MAgent [100], rewards are given in terms of the attacking action. However, what if
two agents (of the same team) intend to go to the same position? The collision resolution
mechanism is transparent without any reward feedback. Similar situations are also
applicable to the predator-prey task of multi-agent particle environments (MPE) [49],
the Pursuit task of PettingZoo [88], etc. In these cases, any biased or impractical collision
resolution mechanisms with transparent information to the coordination algorithm will
impede its safety learning. Nevertheless, in practice and as shown in our experiments,
negative rewards for collisions are insufficient for guaranteeing the safety of MARL
policies, where significant efforts are expected in open safe MARL research.

Another safety limitation of popular MARL grid-world environments is that their
collision outcomes are not diverse enough to allow algorithms to learn various safety
requirements in applications. This is because they focus more on providing diverse
multi-agent behavior scenarios than diverse safety circumstances. For example, in the
same pursuit-evasion framework, if agents are drones, any collisions will lead both to
crashes (death and disappearance). However, if pursuers are predators and evaders
are prey, predators will survive and prey will die after their collisions since they are
unequal. Furthermore, if pursuers are mobile agents while evaders are stationary targets,
pursuers and evaders can collide while collisions between pursuers are not allowed, as
in the multi-agent path finding (MAPF) problem. These various safety definitions may
bring different inequalities to the learning processes of agents and thus their resultant
behaviors.

1.3 Research overview

This research investigates the multi-agent coordination algorithms for problems and
challenges in the pursuit-evasion domain, the research map of which is shown in Figure
1.1. Some coordination sub-tasks are common and fundamental to all pursuit-evasion
games and are thus investigated in all coordination algorithms, such as the distributed
pursuit problem. Algorithms proposed for more constrained pursuit-evasion games can
solve less constrained ones better, for example, the FSC2 algorithm can better solve all

9

CHAPTER 1. INTRODUCTION

previous games. The main research work and contributions of this thesis can be stated
by answering the following five questions.

Problem 1: how to design the multi-agent environment for safe multi-agent
coordination? In Chapter 2, this research considers the design and software imple-
mentation of multi-agent environments for safe multi-agent coordination research and
autocurriculum learning. Accordingly, a new safety-constrained multi-agent environment:
MatrixWorld is proposed based on the general pursuit-evasion game. Compared with
the limited safety support by popular multi-agent benchmarks, the multi-agent safety
constraints are implemented by three classification ways of the pursuit-evasion game: the
multi-agent-environment interaction model, the collision resolution mechanism in multi-
agent action execution model, and the game termination condition. Particularly, this
research shows how to cover diverse safety definitions in various applications through
our design.

Problem 2: how to design a distributed coordination algorithm? The dis-
tributed pursuit coordination problem in the fully observable single dynamic evader
pursuit game is investigated in Chapter 3. Different from previous works, the pursuit do-
main is formulated as a dynamic optimization problem and a cooperative co-evolutionary
particle swarm optimization (CCPSO-R) algorithm is proposed, which is distributed and
scalable. Unlike previous EA methods and RL algorithms that incrementally construct
the solution or learn the policy with a training stage, CCPSO-R is an on-line algorithm
that plans one step ahead under the immediate guidance of the fitness function. More-
over, different from the robotic PSO (RPSO) [22], the PSO variant specially designed
for robots, CCPSO-R separates the multi-agent collision avoidance mechanism from the
EA itself by integrating it into the modular fitness function design. In particular, real
and virtual agents coexist in CCPSO-R. Virtual agents provide the action space for the
real agents by sampling and selectively covering each real agent’s vicinity under the
guidance of PSO [77]. So, CCPSO-R is more efficient and effective compared with an
exhausted exploration of the vicinity.

Problem 3: how to solve the multi-agent task allocation problem? The coordi-
nation problem of multi-agent task allocation is explored in the pursuit game for multiple
dynamic evaders in Chapter 4. Similar to the above work, the multiple evaders pursuit
problem is formulated as a dynamic optimization problem and a two-stage approach:
BiPCCR is proposed to solve the new static optimization problem in each time step. In the
first stage, to decompose the multiple evaders pursuit (MEP) problem to multiple single
evader pursuit (SEP) problems, the biquadratic assignment problem (BiQAP) is used to

10

1.3. RESEARCH OVERVIEW

model the task allocation between each evader and each four pursuers, which extends
the application of BiQAP to the multi-agent system (MAS). To evaluate the multi-tasks
assignment, a multiple evaders pursing fitness function is developed based on the single
evader pursuing function proposed in [83]. Particular, by exploring the game properties,
this new fitness function significantly reduce the search cost to O(n) elements in the 8-D
space. Besides, based on the domain knowledge, one BiQAP solver is improved to work
better statistically. In the second stage, to more efficiently solve each allocated single
evader pursuit, the proposed PCCPSO-R algorithm improves the CCPSO-R to enable the
safe simultaneous observation, decision-making, and action execution of agents.

Problem 4: how to handle the partial observability? The partial observation
constraint and the new challenges it introduced are studied in the partially observable
pursuit game for multiple dynamic evaders in Chapter 5. Specially, to promote the
research of implicit multi-agent coordination without communications, this work fills
the current research gap and investigates the self-organizing pursuit (SOP) problem
by imitating the natural self-organization system, which is featured by large-scale,
decentralization, partial observation, no communication, no interagent collision, multiple
distributed evaders, and surrounding-based capture. Methodologically, to cope with the
more challenging observation uncertainty and interaction uncertainty [56] resulted
from no communication, the distributed hierarchical framework called the fuzzy self-
organizing cooperative coevolution (FSC2) is proposed with three component algorithms:
(1) a fuzzy task allocation algorithm that deals with the consensus issue in the distributed
task allocation without communications; (2) a reinforcement learning (RL) policy that is
trained to learn the unknown distributed search strategy for large-scale homogeneous
agents; and (3) the cooperative co-evolution algorithm for robots (CCR) that further
improves the CCPSO-R and PCCPO-R algorithms in the safe close coordination.

Problem 5: how to get increasing improvements from autocurricula and
effectively train the passive policy? Rather than only learn the active pursuing
policy, the autocurricula in co-evolutionary pursuit-evasion games is investigated in
Chapter 6. First, this research reviews and analyzes the co-evolution mechanism in
the multi-agent setting, which clearly reveals its relationships with autocurricula, self-
play, arms races, and adversarial learning. This allows us to better understand related
research works, more accurately use similar terminologies, and discuss some common
misleading expectations and magics, especially for researchers who are new to this field.
Then, toward the strategy with increasing complexities in the autocurricula, various arms
race outcomes of different co-evolution mechanisms are achieved through adversarial

11

CHAPTER 1. INTRODUCTION

learning. Based on experiments, arms races with steady and converging improvement
are more practical for increasingly complex behaviors, while policy cycles between two
rival sides are useful for producing diverse policies. In particular, this research finds
that the passive (evasive) policy learning benefits more from co-evolution than active
(pursuing) policy learning in an asymmetric adversarial game. An arms race can drive
the passive policy to a higher level than that in normal RL.

Figure 1.1: Research map of multi-agent coordination algorithms for pursuit-evasion. “-"
indicates the same with its above configuration.

1.4 Summary

The rest of this thesis is organized in a way of solving more and more constrained
pursuit-evasion tasks. Chapter 2 presents a safety-constrained multi-agent pursuit-
evasion platform, based on which the works of Chapter 3 to 6 are conducted. Chapter
3 addresses the fully observable pursuit task of a single evader. Chapter 4 deals with
the fully observable pursuit task of multiple evaders. Chapter 5 copes with the partially
observable pursuit task of multiple evaders. Chapter 6 approaches the adversarial co-
evolutionary pursuit and evasion tasks. Chapter 7 gives the conclusion, limitation, and
future work of this research.

12

C
H

A
P

T
E

R

2
MATRIXWORLD: SAFETY-CONSTRAINED MULTI-AGENT

PURSUIT-EVASION PLATFORM

2.1 Background

In the current practice, multi-agent reinforcement learning (MARL) is still weak and
challenging in resolving the safety guarantees in multi-agent coordination [60, 99], such
as autonomous driving [95]. Although complex multi-agent behaviors have already been
successfully trained, the safe MARL has not gone beyond toy domains like grid worlds. In
the current multi-agent benchmarks, such as MAgent [100], MPE [49], and PettingZoo
[88], there are two main safety related limitations. First, they focus more on the diverse
multi-agent behaviors design rather than diverse safety requirements, which is however
crucial for real-world applications. Second, their collisions resolution mechanisms are
biased, transparent, or can lead to unexpected outcomes in the simultaneous multi-agent
action execution [88], whereas the stochastic game (SG) is the most popular model for
multi-agent sequential problems.

To address the above two limitations and serve as one start work in safe MARL,
this chapter proposes a safety-constrained adversarial multi-agent environment: Ma-
trixWorld, based on co-evolutionary pursuit-evasion games. In particular, a safety-
constrained multi-agent action execution model is proposed for the general software
implementation of safe multi-agent environments. Its rationality, feasibility, and di-
versity are guaranteed by considering practical collision types and resultant collision

13

CHAPTER 2. MATRIXWORLD: SAFETY-CONSTRAINED MULTI-AGENT
PURSUIT-EVASION PLATFORM

outcomes, which will guide a learning algorithm learn correctly from right reward feed-
back. Based on MatrixWorld, nine pursuit-evasion variants are designed from real-world
applications and conventional literature works, which provide the benchmark problems
for the following chapters in this thesis.

2.2 Safety-constrained multi-agent action execution
model

The safety-constrained multi-agent action execution model includes two parts: (1) the
multi-agent-environment interaction model, which determines the execution of agents’
actions; and (2) the safety-constrained multi-agent collision resolution mechanism, which
determines the collision results and who should be responsible, i.e., the evidence to give
right rewards, etc.

2.2.1 Multi-agent-environment interaction model

For a single-agent system, the typical agent-environment interaction (AEI) loop is that:
at each time step, (1) an agent receives an observation from the environment, (2) based
on the observation the agent (policy) makes its decision and outputs an action, (3) the
action is executed in the environment, and (4) the environment changes by responding
to the action and other factors [85].

For adversarial multi-agent settings, e.g., pursuit-evasion games, their agent en-
vironment interaction models can be categorized based on two dimensions: whether
agents take turns in a swarm-by-swarm manner, and whether agents take turns in an
agent-by-agent manner, as shown in Table 2.1. Therefore, the second row in the table
is a strict stochastic game where all agents concurrently observe, make decisions, and
execute actions. The third row in the table is a two-swarm turn-taking game and a
one-swarm stochastic game for each swarm. Similar to the two-player turn-taking game,
a two-swarm turn-taking game can be defined as a game in which two swarms of agents
take turns, i.e., swarm-by-swarm, observing, making decisions, and executing actions
until the end of the game. Finally, the fourth row in Table 2.1 is a multi-agent turn-taking
game, rather than a single-agent system, because the other agents also optimize some
objectives in terms of the current agent in an AEI loop [72].

14

2.2. SAFETY-CONSTRAINED MULTI-AGENT ACTION EXECUTION MODEL
Table

2.1:M
ulti-agent-environm

entinteraction
m
odels

for
distributed

adversarialm
ulti-agentsystem

s.Task
environm

ent
properties

[72]:Single-agent
vs.

m
ulti-agent:

w
hether

the
other

agent(s)
optim

izes
som

e
objectives

that
depend

on
the

current
agent.C

ooperative
vs.non-cooperative:w

hether
all

agents
share

a
com

m
on

goal.Static
vs.dynam

ic:
w
hether

the
environm

entalstate
or

the
agent’s

observation
changes

ifthe
agentdoes

nothing
regardless

ofthe
flying

tim
e.

D
eterm

inistic
vs.nondeterm

inistic
(stochastic):w

hether
“the

nextstate
s 0is

com
pleted

determ
ined

by
the

currentstate
s
and

the
action

a
executed

by
the

agent(s)",i.e.,w
hether

the
transition

function
P
(s 0|s,a)=

1
or

not.

G
am

e
of

Tw
o-sw

arm
turn

taking
A
gent-agent

turn
taking

A
gent-environm

entinteraction
m
odel

E
nvironm

entm
odel&

properties

Single-agentsystem
M
arkov

decision
process

Adversarial multi-agent system (e.g., pursuit-evasion)

7
7

Stochastic
gam

e
-m

ulti-agent
-non-cooperative
-dynam

ic
-stochastic

3
7

Tw
o-sw

arm
turn-taking

gam
e

-m
ulti-agent

-non-cooperative
-dynam

ic
-stochastic

3
3

A
gentenvironm

entcycle
gam

e
-m

ulti-agent
-non-cooperative
-dynam

ic
-stochastic

15

CHAPTER 2. MATRIXWORLD: SAFETY-CONSTRAINED MULTI-AGENT
PURSUIT-EVASION PLATFORM

2.2.2 Safety-constrained multi-agent collision resolution
mechanism

This research implements safety constraints by designing a collision resolution mech-
anism based on meaningful and practical safety definitions. As shown in Figure 2.1,
collisions in the multi-agent setting are classified into three types: (1) agent-obstacle
collisions, (2) cooperative agent-agent collisions, and (3) competitive agent-adversary
collisions. Agent-obstacle collisions are common in single and multiple agent systems,
where only one of the two colliding objects is the decision-maker that should be held
responsible. Collisions between cooperative agents are not hostile and arise from conflicts
of interest during cooperation, where both sides are accountable. In contrast, competitive
agent-adversary collisions may be intentional from one side and unexpected from the
other, where the reward strategy depends on the give case. Furthermore, this research
considers three outcomes for any collision: (1) reach (target) and disappear, (2) reach (tar-
get) and alive, and (3) bounce back (stay put) and alive. These collision types, outcomes,
and resultant reward strategies form the collision resolution mechanism that satisfies
the safety requirements of different scenarios in Table 2.2.

Figure 2.1: Safety-constrained multi-agent collision resolution mechanism for the multi-
agent environment modeled by stochastic game.

2.3 Pursuit-evasion game variants

Pursuit-evasion game variants can be defined based on three dimensions: (1) the agent-
environment interaction model (Section 2.2.1), (2) the collision resolution mechanism
(Section 2.2.2), and (3) the capture behavior. In view of the literature conventions and

16

2.3. PURSUIT-EVASION GAME VARIANTS

Table 2.2: Rationality and example applications of various collision outcomes in the
multi-agent setting. D: reach (target) and disappear. R: reach (target) and alive. B:
bounce back (stay put) and alive.

Collision type Agent type Outcome Rationality
(example application)D R B

Agent-obstacle Agent
3 - - Vehicle crash.
- 3 - Allowed in some MARL environments.
- - 3 Practical in many real-world applications.

Agent-agent Cooperative
3 - - Vehicle crash.
- 3 - Allowed in some MARL environments.
- - 3 Bumper cars.

Agent-adversary

Evader 3 - - Vehicle crash.
Pursuer 3 - -
Evader 3 - - Predator eats prey.
Pursuer - 3 -
Evader - - 3 Pursuer is stronger.
Pursuer - 3 -
Evader - - 3 Bumper cars.
Pursuer - - 3

real-world applications, this research proposes nine pursuit-evasion tasks, i.e., the -D,
-R, -B, -O, -S, -SB, -SD, -SDB, and -TO variants of the pursuit-evasion task in Table 2.3.

This thesis mainly considers the first multi-agent-environment interaction model in
Table 2.1 for the stochastic game due to its generality in modeling multi-agent games,
based on which most of the pursuit-evasion variants are designed. In addition, the
Pursuit-Evasion-TO task is designed based on the two-swarm turn-taking and agent-
agent turn-taking model in Table 2.1 due to its advantages in theory analysis and the
past sustained research [13].

For cooperative agent-agent collisions, typical MARL tasks allow agents to collide
with each other without fatal consequences, i.e., “reach and alive". Therefore, this re-
search includes this concern in the -R, -O, -S, and -SD variants of the Pursuit-Evasion
task, which may ease the learning of complex strategies. However, in some real-world
applications, such collisions may be illegal, where the “bounce back and alive" setting
is actually applied. Hence, the -B, -SB, and -SDB variants are designed accordingly to
upgrade their safety.

For capture behaviors in the grid world, two main categories are considered. One is
the occupation-based capture in which an evader is captured if one or more pursuers

17

CHAPTER 2. MATRIXWORLD: SAFETY-CONSTRAINED MULTI-AGENT
PURSUIT-EVASION PLATFORM

Table
2.3:M

atrixW
orld:Task

definition.C
ollision

type:A
-O

:agent-obstacle;A
-A

:cooperative
agent-agent;P

-E
:pursuer-

evader.
C
ollision

outcom
e:D

:
reach

(target)
and

disappear;R
:
reach

(target)
and

alive;B
:
bounce

back
(stay

put)
and

alive.

Task
environm

ent
(Pursuit-E

vasion)

A
gent-environm

ent
interaction

C
ollision

resolution
m
echanism

C
apture

behavior
R
elated

w
ork

and
application

(exam
ples)

Tw
o-sw

arm
turn-taking

A
gent-agent

turn-taking
A
-O

A
-A

P-E

-D
E
vader

7
7

D
D

D
O
ccupation-based

R
eal-w

orld
drone

and
vehicle

sw
arm

Pursuer

-R
E
vader

7
7

B
R

R
O
ccupation-based

M
ulti-agentpath

finding
(M

A
PF)

M
PE

predator-prey
[49]

Pursuer

-B
E
vader

7
7

B
B

R
O
ccupation-based

M
ulti-agentpath

finding
(M

A
PF)

Pursuer

-O
E
vader

7
7

B
R

D
O
ccupation-based

Predator-prey;Space
search

Pursuer
R

-S
E
vader

7
7

B
R

B
Surrounding-based

B
enda

etal.[9];Sun
etal.[82]

Pursuer
R

-SB
E
vader

7
7

B
B

B
Surrounding-based

Predator-prey
Pursuer

R

-SD
E
vader

7
7

B
R

B
Surrounding-based
disappear

ifcaptured
Predator-prey

Pursuer
R

-SD
B

E
vader

7
7

B
B

B
Surrounding-based
disappear

ifcaptured
Predator-prey

Pursuer
R

-T
O

E
vader

3
3

B
R

D
O
ccupation-based

C
ops

and
R
obbers

or
vertex-pursuit[13,59,68];

PettingZoo
Pursuit[88]

Pursuer
R

18

2.3. PURSUIT-EVASION GAME VARIANTS

occupy its position. The other is the surrounding-based capture in which an evader is
captured if enough pursuers and environment boundaries or obstacles encircle it such
that it cannot move.

(a) (b) (c)

Figure 2.2: Illustration of the surrounding based capture.

Bounded world vs. toroidal world. In many researches, a toroidal world is selected
to simulate an infinite world, where an agent comes out of one edge will comes in
immediately from the opposite edge. However, this kind of world is not practical. As

(a) (b)

Figure 2.3: One trick of the coordination strategy in a toroidal world.

depicted in Figure 2.3a, if the red pentagram is a linear evader which moves in a
straight line towards north and just escapes the nearly encirclement of the pursuers
(blue squares), in the real infinite world, the pursuers will never catch the evader if they
have the same speed. But in the toroidal world, if the pursuers move as shown in Figure
2.3b, they will capture the evader in the next step. Therefore, in this research, rather
than toroidal worlds, bounded grid worlds are selected, which can at least represent
partially, although not all, the real world scenarios, such as an indoor room or an outdoor
park with boundaries, etc.

19

CHAPTER 2. MATRIXWORLD: SAFETY-CONSTRAINED MULTI-AGENT
PURSUIT-EVASION PLATFORM

2.4 API

The application programming interface (API) of MatrixWorld is designed based on the
convention of the RL community, as shown in Figure 2.4. The interface is the same
while keeping the background multi-agent-environment interaction model in Table 2.1
transparent for users’ convenience. In the dictionary information returned from the
environmental step function, this research provides (1) the game status data to monitor
and compare the game progress regardless of the specific values in a reward structure;
(2) the collision status data to give safety related feedback for performance evaluation,
reward shaping, safety constraint construction, etc.; and (3) the “alive" status data of the
agents to track their remains and population decreases due to death.

Figure 2.4: Illustration of basic usage of MatrixWorld.

2.5 Summary

This chapter investigates the safe multi-agent coordination problem by studying safe and
rational multi-agent collision resolution mechanisms in the general software implemen-
tation of multi-agent environments. A safety-constrained multi-agent pursuit-evasion
platform: MatrixWorld is presented, where nine representative pursuit-evasion games
are provided, i.e., the -D, -R, -B, -O, -S, -SB, -SD, -SDB, and -TO variants of the pursuit-
evasion task. The following chapters consider three games in the Pursuit-Evasion-S:
the full observable pursuit of single heuristic evader (Chapter 3), the full observable
pursuit of multiple heuristic evaders (Chapter 4), and the partial observable pursuit
of multiple heuristic evaders (Chapter 5), and one game in the Pursuit-Evasion-O: the
partial observable pursuit of multiple adversarial evaders (Chapter 6).

20

C
H

A
P

T
E

R

3
SINGLE EVADER PURSUIT WITH FULL OBSERVATION

3.1 Background

The pursuit domain, or pursuit-evasion problem is a classical and interesting research
domain which acts as one of the widely used fundamental testbeds for coordination tech-
niques. On one hand, its apparently simple problem setup and flexibility in approaches
or concept evaluations lead to both its popularity and the toy domain impression. On
the other hand, it is challenging and thus a good domain for the research of swarm
intelligence emerged from the cooperation among agents or agents, which has drawn
much attention of researchers on variants of the pursuit domain.

This chapter investigates the dynamic pursuit problem between a single evader and
a swarm of fully observable pursuers in the bounded grid world. The cooperative co-
evolutionary particle swarm optimization (PSO) (CCPSO-R) algorithm is proposed for the
distributed coordination of pursuers, which has the following advantages. First, CCPSO-
R is a distributed coordination algorithm. Based on the cooperative co-evolutionary
framework, CCPSO-R introduces the co-evolution of real and virtual agents to achieve
the balance of individual and swarm benefits in the multi-agent distributed decision-
making. Second, CCPSO-R is an online planning algorithm without fixed behavioral rules.
With limited domain knowledge, the fitness function is designed in a modular manner,
which considers the safe multi-agent coordination problem in the fitness evaluation
rather than the algorithm itself. Based on the immediate guidance of the proven efficient
swarm intelligence algorithm PSO, CCPSO-R plans one step ahead per time step in a

21

CHAPTER 3. SINGLE EVADER PURSUIT WITH FULL OBSERVATION

distributed way. So, no global path planner is necessary as a centralized method, no task
allocation is required as a path planning algorithm, and no model pre-training is needed
as a reinforcement learning policy. Third, the experimental results show that CCPSO-R
is reliable that it can achieve 100% capture rate over different types of evaders in a
limited time. CCPSO-R is also scalable that it can provide uniformly capture with any
number of pursuers.

3.2 Cooperative co-evolutionary of real and virtual
agents

In this research, coevolved pursuers cooperate to encircle an evader, and the performance
evaluation function is called the fitness function in the evolutionary computing (EC) [27],
which is (functionally) identical to an objective function in the optimization filed. So, the
pursuit domain problem can be treated as an optimization problem in the sense that
the goal is to improve the fitness of the pursuit process. In particular, it is a dynamic
optimization problem where the movement of the evader is a kind of environment change
to the pursuers. The optimization is conducted by a particle swarm optimization (PSO)
based cooperative co-evolutionary (CC) algorithm called CCPSO-R, which solves the
distributed on-line planning problem of pursuers in each time step.

In CCPSO-R, there are Ns independently evolved subpopulations with subpopulation
size Np, and the first individual of each subpopulation represents a unique real agent
while the others represent virtual agents. All the real agents consist of the pursuers
swarm which actually pursue the evader in the grid world, while the virtual agents are
to explore the vicinity of the corresponding real pursuer agent in its subpopulation and
guide the pursuer to a better position. So, in this sense, virtual agents can be seen as
the action space of the corresponding real pursuer. The real pursuer chooses its locally
optimal action, but in terms of the global benefit of the whole pursuers swarm. That is,
the evaluation of an agent position is conducted by considering the rest real pursuers’
positions in the other subpopulations. Since the proposed algorithm works in the mode
of cooperative co-evolutionary algorithms, it is called the cooperative co-evolutionary
PSO for robots (CCPSO-R), as illustrated in Algorithm 3.1, which will be explained in
detail from three aspects: the fitness function design and evaluation, the update rules of
agents, and the diversity maintenance mechanism in the following.

22

3.2. COOPERATIVE CO-EVOLUTIONARY OF REAL AND VIRTUAL AGENTS

Algorithm 3.1: CCPSO-R
1 Initialization
2 while the evader is not captured and time limit is not reached do
3 for each subpopulation do
4 Re-evaluate the subpopulation due to environmental changes.
5 for each virtual agent do
6 Update its velocity and position using (3.8) and (3.9).
7 Evaluate the fitness together with the rest real pursuers.

8 if unique virtual agents <Tv then
9 Re-initiate and re-evaluate the virtual agents.

10 Update the velocity and position of the real pursuer using (3.13) and (3.14).
11 Evaluate the fitness of the real pursuer with the rest real pursuers.
12 if the real pursuer becomes the global best then
13 Re-initiate and re-evaluate the virtual agents.
14 else if the real pursuer gets trapped in a deadlock then
15 Add a random noise to the real pursuer’s position.
16 Re-evaluate the whole population.

17 if the real pursuer swarm get trapped in a local optimum then
18 Add random noises to all real pursuers’ positions.
19 Re-evaluate the whole population.

3.2.1 Fitness function and evaluation

Fitness function. According to the capture definition in Chapter 2 and the task that
a swarm of pursuers need to encircle an evader, the fitness function should subject to the
following metrics.

• CLOSURE fclosure: the evader should locate inside the convex hull of the pursuers’
positions;

• SWARM EXPANSE fexpanse: the swarm of pursuers should concentrate around the
evader, i.e., a smaller swarm expanse of the pursuers is preferred;

• UNIFORMITY funi f ormity: the pursuers should distribute uniformly around the
evader;

• COLLISION AVOIDANCE frepel : collisions among real (pursuer or evader) agents
are not allowed in the practical sense.

23

CHAPTER 3. SINGLE EVADER PURSUIT WITH FULL OBSERVATION

It is obvious that a single pursuer itself cannot form a solution. In CCPSO-R, a
complete solution to the pursuit problem is composed by the positions of all the pursuers.
However, before formulating the fitness function, a definition needs to be introduced
first.

Definition of Convex Hull [25]: The convex hull of the point set P, denoted by
conv(P), is the intersection of all convex regions that contain P.

An intuitive illustration of this definition can be found in [25] as in Figure 3.1.

(a) A nonconvex region
enclosing P.

(b) A convex region en-
closing P. (c) The convex hull of P.

Figure 3.1: Illustration of the convex hull of the point set P [25].

Further, this research defines the function:

(3.1) inconv(p, conv(P)) =

8
>>>><
>>>>:

0, if point p is in conv(P)

0.5, if point p is on the edge of conv(P)

1, otherwise

Hence, the fitness function for the jth (j = 1, ...,Np) individual (agent) in the ith
(i = 1, ...,Ns) subpopulation pi j

pursuer is defined as

(3.2) f i j = f i jrepel · (f
i j
closure+ f i jexpanse+ f i juni f ormity)

where

(3.3) f i jrepel =

8
<
:
e°2·(nnd

i j°Dmin), if nndi j <Dmin

1, else

corresponds to the above COLLISION AVOIDANCE metric,

(3.4) f i jclosure = inconv(pevader, conv(p11
pursuer, ..., p

i j
pursuer, ..., p

Ns1
pursuer))

corresponds to the above CLOSURE metric,

(3.5) f i jexpanse =
1
Ns

(
NsX

k=1,k 6=i
|pk1

pursuer° pevader|+ |pi j
pursuer° pevader|)

24

3.2. COOPERATIVE CO-EVOLUTIONARY OF REAL AND VIRTUAL AGENTS

corresponds to the above SWARM EXPANSE metric, and

(3.6) f i juni f ormity = std

√"
N11 N12

N21 N22

#!

corresponds to the above UNIFORMITY metric.
In the above formulas, nndi j is the nearest neighbor distance, i.e., the minimum of

the pairwise Euclidean distances between the jth individual in the ith subpopulation
and all the real pursuers in the other subpopulations; Dmin is a specified secure distance
for collision avoidance; pevader is the position of the evader; pi j

pursuer is the position of the
jth pursuer in the ith subpopulation; std(·) stands for the standard deviation function;
and Nkh(k = 1,2;h = 1,2) is the counts of the real pursuers in the (k,h)-th bin out of
the overall four bins split by the horizontal and vertical lines which intersect at the
position of the evader, as shown in Figure 3.2. Note that, the number of the real pursuers

(a) 4 bins split around the evader. (b) Example for the uniformity assessment.

Figure 3.2: Illustration of the uniformity assessment.

on the split lines is divided by 2 and equally assigned to the two adjacent bins. Hence,
N11 =N12 =N21 =N22 = 1 for the example shown in Figure 3.2b. However, the formula

(a) The uniformity assessment is 0 by equa-
tion (3.6) based on the split of Figure 3.2a.

(b) An alternative split method for the uni-
formity assessment of equation (3.7).

Figure 3.3: Illustration of the alternative uniformity assessment.

25

CHAPTER 3. SINGLE EVADER PURSUIT WITH FULL OBSERVATION

(3.6) cannot always give the objective uniformity assessment that is consistent with a
human’s subjective judgment, as the deadlock phenomenon shown in Figure 3.3a. In
this scenario, the evader always keeps still in the center of the map, while the pursuers
start to encircle the evader from randomly generated initial positions and stop forever
since the game state shown in Figure 3.3a, which is obviously not the expected capture
state. So, the deadlock phenomenon is a game state where the pursuit task has not been
accomplished but all the pursuers stop forever as if they are locked. One reason of the
deadlock phenomenon is the fitness function wrongly evaluates an intermediate game
state as fittest, i.e., the task is finished. Therefore, to design a better fitness function,
in the uniformity assessment formula, an alternative space split strategy is performed
as shown in Figure 3.3b, and the following uniformity assessment will replace equation
(3.6) in such situations:

(3.7) f i juni f ormity = std([N12,N21,N23,N32])+ std([N11,N13,N31,N33]),

the first and second part of which are the axial and diagonal uniformity assessments,
respectively.

Fitness evaluation. To evaluate the fitness of the jth (j = 1, ...,Np) individual (agent)
in the ith (i = 1, ...,Ns) subpopulation, a complete solution should be first composed by
replacing the ith real pursuer with pi j

pursuer from the real pursuers swarm:

h
p11
pursuer, ..., p

(i°1)1
pursuer, p

i j
pursuer, p(i+1)1

pursuer, ..., p
Ns1
pursuer

i
.

Then, the fitness of an agent can be evaluated by equation (3.2), as shown in Figure 3.4.

From the practical point of view, no collisions of any two real agents are allowed.
Since there are totally Ns subpopulations in the cooperative co-evolution population, a
priority scheduler is used to coordinate among them. In particular, a priority scheduler
will decide the order of movements among real agents, which can be the evolving order
of subpopulations in asynchronous situations, and can also be used to coordinate, for
example, two real agents when they both want to go to the same position in synchronous
situations. To be as simple as possible, here the priorities are in consistent with the
indexes of subpopulations. In other words, after the evader moves, the subpopulations
evolve one-by-one and the newly updated real pursuer is counted into the dynamics
of the environment for the fitness evaluations of the subsequent subpopulations. So, if
k> h, the pursuer pk1

pursuer always moves ahead of the pursuer ph1
pursuer.

26

3.2. COOPERATIVE CO-EVOLUTIONARY OF REAL AND VIRTUAL AGENTS

Figure 3.4: Illustration of the fitness evaluation for pi j
pursuer.

3.2.2 Behavioral update rule

Two update rules are designed separately for virtual and real agents:
1. For a virtual agent j (j 2 {2, ...,Np}), the PSO update rules are as follows:

vi jpursuer = nnd(w ·vi jpursuer+ c1 · r1 · (pii jpursuer° pi j
pursuer)

+c2 · r2 · (pgi
pursuer° pi j

pursuer))(3.8)

pi j
pursuer = nbn((pi j

pursuer+vi jpursuer), pi1
pursuer)(3.9)

where

(3.10) nnd(v)= arg min
pn2SN

|\pn°\v|

and

(3.11) SN = {(1,0), (1,1), (0,1), (°1,1), (°1,0), (°1,°1), (0,°1), (1,°1)}.

nnd(v) outputs one of the eight unit vectors in SN which has the minimum angle
distance with the input velocity v. By using the function nnd(·), every agent can only
move one step by one step. In this way, unlike the multi-steps case in a general PSO, the
path planning and the worry about collisions in the half way to a destination are not ever
necessary . vi jpursuer is the velocity for the jth individual (agent) in the ith subpopulation
which has the position pi j

pursuer. In addition, pii jpursuer is the individual historical best
position for the jth individual (agent) in the ith subpopulation, while pgi

pursuer is the
global best position of the ith subpopulation. The coefficient w 2R is called the inertia

27

CHAPTER 3. SINGLE EVADER PURSUIT WITH FULL OBSERVATION

weight, c1, c2 2R+, and r1, r2 are uniformly distributed random numbers in the range of
(0,1). Besides,
(3.12)

nbn(pi j
pursuer, pi1

pursuer)=

8
>>>>><
>>>>>:

arg min
pi1
b

|\(pi1
b ° pi1

pursuer)°\(pi j
pursuer° pi1

pursuer)|,

if pi j
pursuer is out of the vicinity of pi1

pursuer

pi j
pursuer, otherwise

is designed to output the nearest boundary neighbor pi1
b in the constrained vicinity

of the real pursuer pi1
pursuer. This function is illustrated in Figure 3.5, where the con-

strained vicinity of pi1
pursuer is shown in a dashed square, which is determined as the

minimum one that can accommodate the specified number of virtual agents. Note that,
the nbn(pi j

pursuer, pi1
pursuer) function in Equation (3.9) is very important because it can

assure all the virtual agents pi j
pursuer(j ∏ 2) are in the constrained vicinity of the real pur-

suer pi1
pursuer, without which the subpopulation may lose the vicinity exploring capability

for the real pursuer.

Figure 3.5: Illustration of the function nbn(pi j
pursuer, pi1

pursuer) in Equation (3.12).

2. For the real pursuer (j = 1), the PSO update rules are as follows:

vi1pursuer = nnd(pgi
pursuer° pi1

pursuer)(3.13)

pi1
pursuer = pi1

pursuer+vi1pursuer(3.14)

So, the real pursuer does not need to perform any exploring task, but just quickly becomes
the global best in its subpopulation.

28

3.2. COOPERATIVE CO-EVOLUTIONARY OF REAL AND VIRTUAL AGENTS

To summarize, by utilizing different optimization mechanisms for different kinds of
agents, virtual agents are responsible for exploring and finding potential better positions
in the vicinity of the real pursuer, while the real pursuer in each subpopulation just
makes use of the achievements of the virtual agents and becomes the global best.

3.2.3 Diversity maintenance mechanism

When a swarm intelligence algorithm converges, all individuals may be attracted to the
same position, no matter it is the global or local optimum. However, for the pursuit case
here, the convergence of virtual agents in a subpopulation brings the disadvantage that
the capability of exploring potentially better positions is getting worse. Therefore, if
the number of unique virtual agents in a subpopulation is defined as the subpopulation
diversity, the diversity of each subpopulation must be maintained to keep its exploring
capability. Besides, due to the existence of unexpected deadlocks, suitable strategies
should be integrated in the coordination algorithm to deal with such problems.

Based on the above ideas, this research proposes the diversity maintenance mecha-
nisms which are performed as follows:

• Update the population in each generation based on the scheme that the fitness of
the newly generated individual is not worse than its parental agent, which will
guide the agent to explore more positions without harm to the fitness.

• Redistribute the virtual agents once the number of unique virtual agents positions
in a subpopulation decreases below a threshold Tv, i.e., the subpopulation converges.
That is, the subpopulation has found better solutions and all agents are attracted
to the global best. In this situation, virtual agents should be redistributed to the
space for better exploration. This strategy corresponds to the line 8-9 in Algorithm
3.1.

• Redistribute virtual agents once the real pursuer becomes the global best in the
subpopulation. Because the role of virtual agents is to help the corresponding real
pursuer to find better positions, once this real pursuer becomes the global best
in its subpopulation, the object of virtual agents is reached and they should be
redistributed to the space to find potential better positions for the real pursuer.
This strategy corresponds to the line 12-13 in Algorithm 3.1.

• Add a random noise to the position of the real pursuer if it is not the global best
in its subpopulation but abnormally keeps stills for a long time, in which it must

29

CHAPTER 3. SINGLE EVADER PURSUIT WITH FULL OBSERVATION

have gotten stuck in a deadlock. This strategy corresponds to the line 14-16 in
Algorithm 3.1.

• Add random noise to the positions of all the real pursuers if they converge when
the evader has not been captured, the situation of which can be seen as that the
swarm of pursuers gets trapped in a local optimum. This strategy corresponds to
the line 17-19 in Algorithm 3.1.

3.3 Experiments

In this section, two different experiments are presented. Experiment 1 is conducted in
a 30£30 grid world to verify the performance of the proposed CCPSO-R. Experiment
2 is to compare CCPSO-R with a representative dynamic path planning based pursuit
algorithm MAPS [91]. From the experimental results, pros and cons of two different
strategies can be seen in spite that CCPSO-R and MAPS are originally designed towards
different capture definitions.

In particular, to verify the generality of algorithms, four types of evaders are imple-
mented. The evader initially locates in the center of the world, but behaves differently
according to its type defined as follows:

• STILL EVADER: the still evader keeps still in its initial position forever.

• RANDOM EVADER: the random evader randomly moves to a next position accord-
ing to the uniform distribution.

• LINEAR EVADER: the linear evader initially chooses one of the 8 directions in
which the number of pursuers is minimum, and moves in that direction in a
straight line since then. Only when the evader locates on edges of the map, it will
re-calculate a new direction according to the same criterion. However, when the
way of the linear evader is blocked by a pursuer, it cannot move any more but only
wait for the other pursuers coming to encircle it.

• SMARTER LINEAR EVADER: the smarter linear evader, represented as lin-
ear_smart, is very similar to the linear evader. The only difference is that when
its way is blocked by a pursuer, it moves to an unoccupied neighbor which has
the minimum angle distance with its current direction and then it continues its
movement in the same direction if there are no obstacles.

30

3.3. EXPERIMENTS

From the above descriptions, the capabilities of the evaders and the difficulties of encir-
cling evaders can be intuitively ranked as “still evader < random evader < linear evader
< linear_smart evader", which will be further verified by the following experiments.

3.3.1 Experiment 1 (Surrounding-based pursuit)

3.3.1.1 Experimental setup

To verify the scalability of CCPSO-R, various sizes of the swarm of pursuers, i.e., 4, 8, 12,
16 and 24, are used, from which the advantages originated from the swarm intelligence
of swarm of pursuers can be expected.

The other implementation details are as follows: the initial real pursuers are deployed
randomly in the whole grid world without overlapping; the population size of each
subpopulation is 20; the evader moves in 90% of the time ensuring that pursuers move
faster or a longer distance than the evader; in equation (3.3) Dmin = 1 which is the
minimum secure distance between two agents; in equation (3.9) the parameters w =
1, c1 = c2 = 2 which are set as recommended in [77]; Tv is 9 in the line 8 of Algorithm 3.1
which is the number of grids for a 3£3 vicinity; when the real agent is not the global best
in its subpopulation but keeps still over 5 iterations, it is seen as getting trapped in a
deadlock which corresponds to the line 14 of Algorithm 3.1; when the swarm of pursuers
keeps still over 10 iterations, the swarm is seen as converged, and if the swarm has
converged but the evader has not been captured, the swarm is seen as getting trapped in
a local optimum which corresponds to the line 17 of Algorithm 3.1.

In addition, for environmental changes such as real pursuer agent position change in
other subpopulations, the current subpopulation needs to be re-evaluated as shown in the
line 4 of Algorithm 3.1, where the individual historical best position pii jagents will not be
inherited, and the global best pgi

agents will be re-calculated. This is because, although the
experimental results of inheriting and not inheriting the individual historical memory
pii jagents differ, it is hard to select either one due to their competitive performances.

As for the performance metrics, this research uses the number of successful captures,
the average number of moves to capture the evader, and their standard deviations over
100 randomly generated test cases given the maximum 1000 time steps, the random
seeds of which are set from 1 to 100.

31

CHAPTER 3. SINGLE EVADER PURSUIT WITH FULL OBSERVATION

Table 3.1: Number of captures, average number of moves, and their standard deviations
to capture different evaders with various number of pursuers out of 100 test cases.

No. of pursuers Metrics Evader
Still Random Linear Linear_Smart

4
No. of captures 100 100 100 100
Avg. of moves 30.450 49.840 46.900 204.060
Std. of moves 19.943 36.867 31.886 198.927

8
No. of captures 100 100 100 100
Avg. of moves 22.220 33.780 42.240 121.820
Std. of moves 13.384 23.039 46.583 111.922

12
No. of captures 100 100 100 100
Avg. of moves 20.470 24.520 30.190 76.780
Std. of moves 11.364 13.414 24.943 72.839

16
No. of captures 100 100 100 100
Avg. of moves 17.360 18.360 25.620 49.850
Std. of moves 9.648 11.277 23.560 50.048

24
No. of captures 100 100 100 100
Avg. of moves 15.060 14.060 19.670 35.400
Std. of moves 10.688 6.151 21.879 32.588

Figure 3.6: Box plot of the moves to capture a specific evader with a specific number of
pursuers.

32

3.3. EXPERIMENTS

Figure 3.7: Bar graph of the average moves to capture a specific evader with a specific
number of pursuers.

3.3.1.2 Experimental results

The simulation results are summarized in Table 3.1, from which it can be seen that
CCPSO-R is reliable with the capture rate being 100% in a limited time, no matter what
type of the evader it is. As expected before, to a swarm of pursuers, the difficulties, in
terms of the average number of moves, to capture each type of evader can be generally
ranked as “still evader < random evader < linear evader < linear_smart evader", which
can be seen more clearly from Figure 3.6. This conclusion is in consistent with the
common opinion in literature (such as [35] and [80]) that compared with the random
evader, the straight line moving evader is more effective because it breaks the movement
locality. Hence, the straight line moving evader is more difficult to be captured, which
leads to the low capture rates in previous work, such as the manually designed methods
[35, 44], EA based method [35] and the case learning method [36].

In addition, the data of Table 3.1 is shown in the manner of Figure 3.7, from which
an evident fact can be found that the more pursuers the more efficient the pursuit is.
Besides, from the decreasing standard deviations as more real pursuers are involved, as
shown in Figure 3.6, it can be concluded that with the swarm size of the pursuers gets
larger, the pursuit performance is getting more and more stable and robust.

To give a more intuitive impression of the pursuit process, several representative
episodes taken from an experiment against the linear_smart evader are displayed in
Figure 3.8.

33

CHAPTER 3. SINGLE EVADER PURSUIT WITH FULL OBSERVATION

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.8: Illustration of the pursuit process, taking the pursuit of a linear_smart evader
as an example. (a) is the initialization. From (a)-(b), the evader moves in the southeast
direction in a straight line. In (c), the evader encounters an orthogonal real pursuer. So,
in (d), the evader moves to a nearest unoccupied neighbor in the south. After that, from
(d) to (e), the evader continues to move in its previous straight line direction. Until (f),
the evader reaches an edge. So, in (g), the evader re-selects the north as its new escape
direction. In (h), the evader is captured. And in (i), the pursuers swarm converge.

34

3.3. EXPERIMENTS

3.3.1.3 Discussion

The results achieved in Section 3.3.1.2 can be explained from the algorithm’s point of
view. First, as the pursuit domain is treated as an optimization problem, as long as
the designed fitness function (or objective function) properly models the investigated
problem, minimizing the fitness function will lead pursuers to a successful capture.
Second, on one hand, every step of a real pursuer is greedy since it moves to the best
virtual agent position in its subpopulation; on the other hand, each step of a real pursuer
is not totally greedy since the virtual agents exploration in its vicinity is not exhausted.
So, pursuers may eventually capture the evader but the process may be slow.

Besides, in some of the past work, such as RL and path planning approaches, the
capture is defined differently as that the evader position is occupied by a pursuer, the
further idealization and simplification of which result in an unpractical problem setup
for agents applications. This chapter adopts another conventional definition that the
evader is encircled by pursuers such that it cannot move any more, which considers both
the collision avoidance and the safety of agents from the practical point of view. However,
to further validate the effectiveness of the proposed CCPSO-R, the comparison will be
conducted in the next sub-section.

3.3.2 Experiment 2 (Occupation-based pursuit)

For pursuit domain problems, path planning and task allocation based strategies are
intuitive and may be the first solution that comes to one’s mind. Therefore, in this section,
the proposed CCPSO-R is compared with a representative dynamic path planning based
algorithm named MAPS [91].

3.3.2.1 Experimental setup

All the experimental setups are the same as those in the Experiment 1 except the number
of pursuers, the grid world sizes, and the way in which the capture status is calculated.
For fair comparisons, the capture definition is modified to the one adopted by MAPS that
the position of the evader is occupied by any pursuer. In particular, in CCPSO-R, when
pursuers cooperate to encircle the evader, there must be at least one such moment that
the evader is adjacent to a pursuer and they get common neighbors as illustrated in
Figure 3.9. Because diagonal obstacles are considered in our collision avoidance design,
the number of the common neighbors is at most 2 except the evader’s own position. If
the evader keeps still or moves to anyone of the common neighbors the next moment,

35

CHAPTER 3. SINGLE EVADER PURSUIT WITH FULL OBSERVATION

no matter it is compelled by other coordinated pursuers or just due to the simplicity of
itself, the adjacent pursuer can definitely occupy the evader’s new location since pursuers
always move after the evader. The evader is seen as captured at this moment.

(a) Example 1. (b) Example 2. (c) Example 3.

Figure 3.9: Illustration of the modified capture status of CCPSO-R used in the comparison
with MAPS.

3.3.2.2 Experimental results

Two algorithms MAPS and CCPSO-R are run in the same randomly generated scenarios
where the initial pursuers and evader positions are the same. To see whether the map
size influences the comparison results much, a bigger grid world size 150£150 together
with a smaller grid map size 30£30 are applied with two pursuer swarm sizes 4 and 8.
Experimental results are summarized in Table 3.2. Since both algorithms capture the
evader 100%, the metric of “No. of captures" is not listed. It is not hard to understand that
generally with the increase of the pursuers number, less moves with smaller standard
deviations are needed for a capture; and with the increase of the grid map size, values in
these two metrics increase accordingly.

To further validate the significance of the comparison results in Table 3.2, t-tests are
conducted at the 5% significance level, as shown in Table 3.3. It can be seen that CCPSO-
R significantly outperforms MAPS in 11 out of the total 16 experimental scenarios where
more pursuers are involved with smarter evaders in bigger worlds.

3.3.2.3 Discussion

The comparison results show that although CCPSO-R is designed for the coordinated
encirclement of the evader until every available orthogonal neighbor of the evader has
been occupied by a pursuer, CCPSO-R also performs well in the position occupying based

36

3.3. EXPERIMENTS

Table 3.2: Comparison results: Average number of moves and their standard deviations
to capture different evaders with various number of pursuers in different sizes of grid
worlds out of 100 test cases.

Metrics Avg. of moves Std. of moves
Number of pursuers 4 8 4 8

Size of the grid map: 30£30

Evader

Still MAPS 7.09 4.87 3.777 2.751
CCPSO-R 6.5 4.66 2.819 2.271

Random MAPS 9.01 6.78 6.973 5.868
CCPSO-R 8.3 6.04 3.335 2.828

Linear MAPS 17.89 10.55 6.977 8.184
CCPSO-R 16.9 7.71 8.487 5.695

Linear MAPS 17.84 10.55 7.102 8.211
Smart CCPSO-R 16.92 7.75 8.474 5.723

Size of the grid map: 150£150

Evader

Still MAPS 36.6 26.16 18.229 14.633
CCPSO-R 33.37 23.07 13.9 10.992

Random MAPS 38.62 28.55 18.968 16.516
CCPSO-R 35.84 26.07 13.654 11.401

Linear MAPS 99.33 64.29 44.576 37.918
CCPSO-R 82.75 41.32 30.274 29.684

Linear MAPS 99.19 64.37 44.849 37.814
Smart CCPSO-R 82.84 41.44 30.192 29.798

capture definition, which proves the effectiveness of the cooperative coevolutionary based
coordination strategy.

In addition, compared with just occupying the same position of the evader with
only one pursuer, occupying all the orthogonal neighbors of the evader simultaneously
as uniformly as possible is more complicated. Therefore, the proposed CCPSO-R can
accomplish more complicated coordination tasks compared to MAPS.

On the other hand, as presented in [91] that MAPS is a real-time pursuit algorithm,
its MATLAB version, which is rewritten by us from its original C++ codes, still runs
faster than CCPSO-R. Because the calculation of the average number of moves per
second over all the test cases has a high requirement on the runtime environment for
fair comparison, this metric is not listed here. But the following conclusions can still be
drawn. MAPS is faster. However, one problem of it is that its performance is constrained
by the number of pursuers. Because one important step in MAPS is to assign the possible
escape directions of the evader to every pursuer optimally by iterating every possible

37

CHAPTER 3. SINGLE EVADER PURSUIT WITH FULL OBSERVATION

Table 3.3: Statistical test for CCPSO-R vs. MAPS using the t-test at the 5% significance
level.

World size 30£30 150£150
No. of Evader p-value Significant p-value Significantpursuers

4

Still 0.013848 Yes 0.0062804 Yes
Random 0.13224 No 0.02533 Yes
Linear 0.10273 No 7.3641e-05 Yes
Linear 0.11762 No 9.8947e-05 YesSmart

8

Still 0.13084 No 0.0017754 Yes
Random 0.11016 No 0.027238 Yes
Linear 0.00018443 Yes 1.3396e-11 Yes
Linear 0.00020334 Yes 1.1589e-11 YesSmart

assignments, the combinatorial number of which is (n°1)! where n is the number of
pursuers. With the increase of n, this combinatorial number will increase very fast and
it is becoming less practical to get all the permutations at once, which also brings more
burden to the memory. This is also the reason that only the simulation results with up to
8 pursuers are compared. But, for CCPSO-R, although it is not as efficient as MAPS, its
scalability on the pursuer swarm size is much better.

Finally, despite the fact that both MAPS and CCPSO-R adopt the same sequential
movement strategy that the evader always moves first and then the pursuers move one
by one, another loop is embedded in the current CCPSO-R implementation that each real
pursuer position can only be updated when all its corresponding virtual agents have been
updated sequentially, as shown in line 5-10 of Algorithm 3.1. It is known that embedded
loops are generally not expected for an efficient algorithm. So, a parallel update and
evaluation for the virtual agents should alleviate the efficiency constrain of CCPSO-R
which will be investigated in future work.

3.4 Summary

This chapter treated the pursuit domain as an optimization problem and presented the
cooperative coevolutionary algorithm—CCPSO-R, which, for the first time, introduces
the combination of the real agents and virtual agents into the correspondences between

38

3.4. SUMMARY

the individual representation of an EA and the agents in an application. Before the
work in this thesis, an individual in an EA will be assigned to a real agent. However,
in the proposed CCPSO-R algorithm, only the first individual in each subpopulation
corresponds to a real agent, while the rest individuals are all virtual agents, who act as
a kind of action space for real agents by sampling and exploring their vicinities.

Besides, it should be noted that there are no fixed behavior rules for the swarm of
pursuers. Instead, the swarm of agents is guided directly by the fitness function, which
is designed in a modular manner by incorporating very limited domain knowledge. As
one module, the collision avoidance consideration is integrated in the fitness function,
which itself is another fitness function for repelling and can be versatile by tuning its
parameter Dmin. If the Dmin = 1, as it is in this chapter, the agent swarm can capture
the evader while moving without collisions.

Finally, the performances of generality, stability, and scalability of the proposed
CCPSO-R with four types of evaders; the still evader, the random evader, the linear
evader, and the linear_smart evader are tested. Experimental results have been sum-
marized based on 100 randomly generated test cases whose random seeds are set as
1-100 for their reproducibility. Based on these experiments, it can be concluded that the
proposed CCPSO-R can always capture the evader stably and no additional modifications
are needed under different scenarios. In addition, a comparison with a representative
dynamic path planning and task allocation based algorithm MAPS has also been con-
ducted. Experimental results further prove the outstanding performance of the proposed
CCPSO-R.

However, to be simple, the coordination priority scheduler was designed based on
the subpopulation indexes, which indicates that the real pursuers move in a fixed
sequential order. This may be unreasonable when it is better to firstly move one specific
pursuer which blocks others’ ways. In addition, pursuers move sequentially, rather than
synchronously, will deteriorate the pursuit efficiency when the swarm of pursuers gets
larger. Therefore, three works need to be done in future: one is to study the memory
inheritance strategy in dynamic optimization problems as mentioned in Section 3.3.1.1;
one is to implement the parallel update and evaluation for the virtual agents; one is
to improve the coordination scheduler towards the synchronous cooperation based on
parallel computing by learning from experiences.

39

C
H

A
P

T
E

R

4
MULTIPLE EVADERS PURSUIT WITH FULL OBSERVATION

4.1 Background

This chapter investigates the dynamic pursuit problem between multiple evaders and a
swarm of fully observable pursuers in the bounded grid world, i.e., the multiple-evaders
pursuit (MEP) problem. If the capture of an evader is defined as that it cannot move
anymore due to the surrounding of pursuers, there are two kinds of task allocations. One
is about assigning which evader to which group of pursuers so that all evaders can be
captured. The other is about assigning which capturing position to which pursuer to
encircle the evader simultaneously. In this chapter, the MEP is modeled as a dynamic
optimization problem and each its time step is solved by a two-stage approach: BiPCCR
(BiQAP-PCCPSOR). Firstly, the first kind of task allocation problem is modeled as the
biquadratic assignment problem (BiQAP) and a MEP fitness function is proposed for
the evaluation of such BiQAP task allocations. In this way, the MEP is transformed
to several single-evader pursuit (SEP) problems. Secondly, for each SEP, this chapter
extends the coordinated SEP strategy CCPSO-R (cooperative coevolutionary particle
swarm optimization for robots) to its parallel version as PCCPSO-R to enable the parallel
implicit capturing position allocating by parallel observation, decision making, and
moving of pursuers. Through experiments of the current BiQAP solvers on the task
allocation, this chapter improves the best one of them in statistic based on the domain
knowledge. Moreover, the advantages of PCCPSO-R in the capturing efficiency over

40

4.2. BIQUADRATIC ASSIGNMENT PROBLEM

CCPSO-R is testified in the MEP experiments.

4.2 Biquadratic assignment problem

The biquadratic assignment problem (BiQAP) [18, 20, 64] of size n is a combinatorial
optimization problem, whose solution is typically represented as the permutation ',
which is the bijective mapping between two sets A = {1, ...,n} and B= {1, ...,n}, with the
objective being

(4.1) min
'2S

nX

i=1

nX

j=1

nX

k=1

nX

o=1
ci, j,k,o,'(i),'(j),'(k),'(o),

where S is the set of all permutations of {1,2, ...,n}, '(i) 2 {1,2, ...,n} is the i-th dimension
of the permutation, and ci, j,k,o,'(i),'(j),'(k),'(o) 2<n8

is the cost of assigning the numbers
i, j,k,o to '(i),'(j),'(k),'(o), respectively.

In particular, BiQAP is a nonlinear assignment problem, a special case of M-adic
assignment problem when M = 4, and a generalization of the quadratic assignment
problem (QAP). First, Burkard et al. [18] investigated BiQAP motivated by the problem
in the VLSI synthesis, which, to the best knowledge of authors, is the only one published
application of BiQAP so far. Meanwhile, they proposed the first method for generating
BiQAP benchmarks with known optimal solutions. Afterwards, since BiQAP is NP-
complete [18, 64], heuristic methods are pursued and reported in literature. In [17],
three deterministic improvement methods, i.e., the first improvement method (FIRST),
the best improvement method (BEST), and the Heider’s improvement method (HEIDER);
three simulated annealing algorithms (SIMANNs); one taboo search method; and one
hybrid of taboo search and SIMANN were proposed. Then, in [52], a greedy randomized
adaptive search procedure (GRASP) was proposed, one iteration of which first greedily
constructs an initial solution and then FIRST is applied as the local search method.

According to the experimental results of [17, 20, 52] on benchmarks generated by
the method in [18], HEIDER is the best among the deterministic methods in terms of
the tradeoff between the solution quality and the computational cost, and GRASP is the
only one algorithm that finds optimal solutions for all test instances 100% with the cost
of more computations. However, for real-world applications like the MEP BiQAP task
allocation, GRASP may be not the first-class choice, and the simpler the solver is the
better, as will be shown by the experimental results of Section 4.4.

41

CHAPTER 4. MULTIPLE EVADERS PURSUIT WITH FULL OBSERVATION

4.3 The proposed two-stage approach: BiPCCR

The multiple-evaders pursuit (MEP) occurs in a finite grid world where 5 possible actions
of agents: moving north, west, south, and east one step away, and staying still. The
capture of an evader is defined as that the evader cannot move any more due to the
surrounding of pursuers, as illustrated in Fig. 2.2. So, in general, 4 pursuers are needed
for the capture of one evader. Once an evader is captured, it will not disappear. The MEP
is said to be a success if all the evaders are captured.

Figure 4.1: An example multiple-evaders pursuit scenario.

Algorithm 4.1: Proposed two-stage approach: BiPCCR to MEP
1 Initialize the environment.
2 for each time step do
3 for each evader do
4 Observe, make decision, and take one action.

5 The central virtual pursuer observes and makes the BiQAP task allocation
decision by Algorithm 4.3.

6 All the real pursuers concurrently observe, make decision, and take one action
by PCCPSO-R.

7 if termination conditions are satisfied then
8 The game is terminated.

For one time step in MEP, as shown in Fig. 4.1, firstly, tasks need to be allocated
that each evader is assigned to each 4 pursuers and the MEP problem is transformed
to several single-evader pursuit (SEP) problems. Due to the evaluation of such a task
allocation involves the assignments between an evader and 4 pursuers, it can be naturally
modeled as the biquadratic assignment problem (BiQAP). Secondly, all the pursuers will
concurrently cooperate with their group members to capture the assigned evader where

42

4.3. THE PROPOSED TWO-STAGE APPROACH: BIPCCR

a distributed coordinated single-evader pursuit strategy CCPSO-R [83] will be modified
to its parallel version PCCPSO-R to improve the scalability. As the time goes, both
evaders and pursuers move, the environment changes, and thus both each single-evader
pursuit fitness and the task allocation fitness change. So, for the MEP game, it is in
fact a dynamic optimization problem that the centralized BiQAP task allocation and
decentralized PCCPSO-R are conducted every time step due to the past environmental
changes, until all evaders are captured or time limit is reached. As a whole, the proposed
two-stage approach to MEP is described in Algorithm 4.1, which will be introduced in
detail in Section 4.3.1 and 4.3.2.

4.3.1 BiQAP task allocation in the dynamic optimization

For the MEP, a central virtual pursuer is designed to allocate each 4 pursuers to the
pursuit of a evader. Specially, if the set of pursuers is represented by PURSUERS =
{1,2, ..,n}, and the set of evaders is represented by EVADERS = {1,2, ...,m} with n= 4m,
then the mapping from PURSUERS to EVADERS is a biquadratic semi-assignment
problem (semi-BiQAP) [16, 64] since 4 pursuers will be assigned to the same prey.

Equivalently, the semi-BiQAP between PURSUERS and EVADERS can be trans-
formed to the BiQAP between PURSUERS and EVADERS by repeating each prey 4
times, i.e., EVADERS = {1, ...,n}= {1,1,1,1, ...,m,m,m,m}. Futher, since the mapping
between PURSUERS and EVADERS is bijective, the problem is equivalent to the
BiQAP between EVADERS and PURSUERS with the objective (4.1) which is rewrit-
ten here for convenience.

(4.2) min
'2S

nX

i=1

nX

j=1

nX

k=1

nX

o=1
ci, j,k,o,'(i),'(j),'(k),'(o).

Moreover, for the practical application of MEP, the matrix [ci, j,k,o,'(i),'(j),'(k),'(o)] is
sparse that

(4.3) ci, j,k,o,'(i),'(j),'(k),'(o)

8
<
:
6= 0, if (i, j,k,o) 2K1,

= 0, otherwise

where K1 = {C(w,w+1,w+2,w+3)|w 2 {1,5, ...,n°3}} and C(·, ·, ·, ·) is all the combinations
of the 4 numbers. For example, when w= 1,

K1 = {C(0,1,2,3)}= {(0,1,2,3), (0,1,3,2), (0,2,3,1), ..., (3,2,1,0)}

43

CHAPTER 4. MULTIPLE EVADERS PURSUIT WITH FULL OBSERVATION

and |K1| = 24.
Therefore, the objective (4.2) can be simplified as

(4.4) min
'2S

X

(i, j,k,o)2K1

ci, j,k,o,'(i),'(j),'(k),'(o).

Further, since each evader is repeated 4 times in EVADERS, the cost is the same for
all (i, j,k,o) 2C(w,w+1,w+2,w+3) for any fixed w. So, the matrix [c] is symmetric and
the optimization problem of (4.4) is equivalent to

(4.5) min
'2S

X

(i, j,k,o)2K2

ci, j,k,o,'(i),'(j),'(k),'(o),

where K2 = {(w,w+1,w+2,w+3)|w 2 {1,5, ...,n°3}}.
So, when the permutation ' is given, (i) due to the sparsity of the matrix

[ci, j,k,o,'(i),'(j),'(k),'(o)], only |K1| = 4! ·n/4=O(n) non-zero elements need to be considered
, among which only |K2| = n/4 elements are distinguished due to the matrix symmetry;
(ii) to evaluate a solution ', n/4 additions of the cost coefficients ci, j,k,m,'(i),'(j),'(k),'(o)

will be needed.
As for the cost coefficient, c= f i, where f i is the fitness function for the i-th single-

evader pursuit. Therefore, this research proposes the fitness function for the MEP as

(4.6) f =
X

i2{1,2,...,n/4}
f i,

and the MEP BiQAP task allocation (4.5) is equivalent to

(4.7) min f .

In a summary, the one time step task allocation problem of assigning each evader
to 4 pursuers is modeled as the BiQAP, which is an optimization problem with the
objective (4.7). According to the convention in solving BiQAP, a solution is represented
as a permutation of {1,2, ...,n}. As for the MEP, it is a dynamic optimization problem
where the fitness function Eq (4.6) changes every time step since the agents (pursuers
and evaders) are moving. To solve such dynamic optimization problem, based on the
domain knowledge, this research proposes a scheme to greedily construct an initial good
solution based on the space distributions of agents in Algorithm 4.2. However, note that,
this procedure is conducted only once at the beginning of the game, while for successive
time steps, since the MEP is a slow-changing dynamic optimization problem, the best
solution found in the last time step is used as the initial solution for the task allocation
of the current time step.

44

4.3. THE PROPOSED TWO-STAGE APPROACH: BIPCCR

Algorithm 4.2: Greedy inidividual construction scheme
1 M√ pairwise distances between evaders and pursuers.
2 for each evader do
3 Assign the nearest 4 pursuers to the evader.
4 Delete these 4 pursuers from M.

Algorithm 4.3: HEIDER-Random [17]
1 Construct an initial solution by Algorithm 4.2 as the current solution and set the

flag converged as False.
2 Generate the two-positions interchanging set

I = {(i, j)|i, j 2 {1, ...,n}, i < j,mod(i,4) 6=mod(j,4)} and randomize its elements
order for the semi-neighborhood searching.

3 while not converged do
4 Set the flag neighborhood_exhausted as False.
5 while not neighborhood_exhausted do
6 Find the next neighbor by exchanging the i-th and j-th positions of the

current solution where (i, j) is the next element of I in the cyclic way.
7 if the neighbor’s fitness is better than the current solution then
8 neighborhood_exhausted√ True.
9 The current solution √ the neighbor.

10 else if I is traversed then
11 neighborhood_exhausted√ True.
12 converged√ True.

13 Output the current solution and its fitness.

For solving the BiQAP task allocation, this research modifies HEIDER as HEIDER-
Random to stochastically improve the solution’s quality and the algorithm’s efficiency
by two tricks in the line 2 of Algorithm 4.3: (i) randomize the neighborhood searching
order in I; (ii) remove the ineffective neighborhood searching and name it as the semi-
neighborhood searching due to the inherent semi-assignment nature of the MEP. That
is, this research does not search the neighbor derived from interchanging the i-th and
j-th positions of the current solution when the conditions i, j 2 {1, ...,n}, i < j,mod(i,4) 6=
mod(j,4) are not satisfied. This is because interchanging the relative orders of two
pursuers assigned to the same evader in the permutation solution does not change the
single-evader pursuit fitness f i and thus the task allocation fitness f .

45

CHAPTER 4. MULTIPLE EVADERS PURSUIT WITH FULL OBSERVATION

4.3.2 Parallel CCPSO-R algorithm for each single evader
pursuit

(a) Example scenario 1. (b) Case 1. (c) Case 2. (d) Case 3. (e) Case 4.

(f) Example scenario 2. (g) Case 5. (h) Case 6. (i) Case 7. (j) Case 8.

(k) Case 9. (l) Case 10. (m) Case
11.

(n) Case 12.

Figure 4.2: The local capture patterns in the repair stage of PCCPSO-R.

As shown in Algorithm 3.1 and mentioned in [83], the sequential scheme in the
observation, decision making, and moving of real pursuers limits the scalability of
CCPSO-R. Therefore, this research proposes a parallel version of CCPSO-R, which is
named as PCCPSO-R, by parallelizing the subpopulation-by-subpopulation procedure of
the for loop in Algorithm 3.1 in the following ways.

First, the single-evader pursuit function Eq (3.2) is modified as

(4.8) f i j = f i jrepel°evader · f
i j
repel°pursuer · (f

i j
closure+ f i jexpanse+ f i juni f ormity)

where f i jrepel°evader and f i jrepel°pursuer have the same form of Eq (3.3) yet with differ-
ent meanings of NNDi j and different values of the Manhattan distance Dmin. For
f i jrepel°evader, NNDi j is the nearest distance to evader agents and the secure distance

Dmin is set as 1, while for f i jrepel°pursuer, NNDi j is the nearest distance to pursuer agents
and Dmin is 2. However, note that, the function Eq (4.8) is for a pursuer’s fitness in
capturing an evader, while to evaluate the capturing fitness f i of the whole pursuer
swarm, f i jrepel°evader = f i jrepel°pursuer = 1.

Second, a repair stage is added when the pursuer swarm and their assigned evader
is close enough in a limited area such that strong and obvious capturing patterns can

46

4.4. EXPERIMENTS

be matched and more effective simple rules can be applied. In particular, for scenarios
like that shown in Fig. 4.2a, 4 local capture patterns Fig. 4.2b to Fig. 4.2e are extracted,
while for scenarios like that shown in Fig. 4.2f, 8 patterns Fig. 4.2g to Fig. 4.2n are
extracted. In these pattern cases, the red pentagram is the evader, the blue square with
an moving direction arrow is the current pursuer, the grey square is also a pursuer that
will prevent the current pursuer from moving to the next capturing position according
to the configurations in Eq (4.8), and the shallow blue and shallow green filled cells
represent the potential positions that a one-step away pursuer may locate for each
distinct capturing position. Therefore, once a pursuer detects a matched local capturing
pattern, it will enter the repair stage and behave according to the pointed moving
direction such that all pursuers will move according to the rules to capture the evader
without collisions.

4.4 Experiments

4.4.1 Experiment 1 (BiQAP solver for the task allocation)

For the comparison of BiQAP solvers, test instances are randomly generated in a 40£40
grid world with different problem sizes, which is the length of a permutation solution,
i.e., the number of pursuers, or 4 times of the number of evaders. For each test instance,
an initial good solution is constructed using the method in Algorithm 4.2 whose fitness
value is evaluated by the MEP fitness function Eq (4.6) and listed in the "Initialization"
column of Table 4.1. For GRASP, §= 1000,Æ= 0.25 and Ø= 0.3 are used as in [20, 52].
For SIMANN3, its initial temperature is 2000 for the problems of size 12 and 5000 for
the problems of size 16 as in [17]. The semi-neighborhood searching in Algorithm 4.3 is
used in all the BiQAP solvers.

The experimental results are presented in Table 4.1 and Table 4.2, where the symbol
"-" means that the corresponding experiments are not conducted due to the algorithm’s
high computational cost in terms of the time limit (0.5s here) of the MEP BiQAP task
allocation. Note that, for deterministic algorithms FIRST, BEST, and HEIDER, their
results are deterministic if the initial solution is given, while for stochastic algorithms
GRASP, SIMANN3, and HEIDER-Random, since there are other random factors other
than the initial solution, their results over independent runs may be different. Here, the
best results and their ratios are listed in the corresponding parentheses; meanwhile, the
average results and standard deviations are listed in the "avg." columns and the corre-

47

CHAPTER 4. MULTIPLE EVADERS PURSUIT WITH FULL OBSERVATION

Table 4.1: Solutions qualities obtained by different algorithms on the BiQAP task alloca-
tion problems over 50 runs

Size Instance Initialization FIRST BEST HEIDER GRASP SIMANN3 HEIDER-Random
best avg. best avg. best avg.

12

1 56.984 47.080 47.419 47.080 47.080
(0.300)

47.424
(0.318)

47.083
(0.020)

48.697
(0.491)

47.080
(0.260)

47.364
(0.274)

2 54.900 49.375 48.376 49.375 48.376
(0.640)

48.735
(0.480)

49.985
(1.000)

49.985
(0.000)

48.376
(0.660)

48.715
(0.473)

3 58.935 53.614 53.614 53.614 53.614
(0.920)

53.692
(0.266)

54.596
(1.000)

54.596
(0.000)

53.614
(0.680)

53.810
(0.393)

4 56.641 54.336 54.336 54.336 54.336
(1.000)

54.336
(0.000)

54.344
(0.020)

54.713
(0.053)

54.336
(1.000)

54.336
(0.000)

5 58.213 45.297 45.297 45.297 45.297
(1.000)

45.297
(0.000)

45.297
(0.060)

48.891
(0.939)

45.297
(1.000)

45.297
(0.000)

16

1 72.757 55.380 55.380 55.380 - - 60.876
(0.020)

64.701
(0.546)

54.745
(0.760)

54.898
(0.271)

2 77.096 60.922 60.922 60.922 - - 70.776
(0.100)

71.709
(0.311)

60.689
(0.600)

60.792
(0.129)

3 71.025 64.225 64.225 64.225 - - 65.746
(0.060)

66.349
(0.152)

64.225
(0.200)

64.225
(0.000)

4 56.182 46.444 45.958 46.444 - - 48.256
(0.020)

48.451
(0.028)

45.958
(0.140)

46.251
(0.183)

5 59.543 50.753 50.753 50.753 - - 52.562
(0.020)

58.874
(1.127)

50.118
(0.220)

50.575
(0.285)

Mean rank 1.53 1.67 1.6 1 2.4 1

sponding parentheses. The "Mean rank" row is calculated according to the algorithms’
best results. It can be seen that HEIDER-Random is the best in terms of the probability
to find the best known solutions and converge with less computational cost.

In addition, note that, all the searching algorithms here, either deterministic or
stochastic, are iterative algorithms. That is, the current iterative procedure depends on
the results of the previous iteration, the process of which is sequential. Therefore, the
algorithm’s runtime is mainly determined by the number of iterations and the time in
evaluating a solution per iteration. For the BiQAP task allocation of size n= 4 ·m, the
time to evaluate a permutation solution is m · t(f i) where m is the number of evaders
and t(f i) is the time in evaluating f i of Eq (4.6). As shown in Fig. 4.3, t(f i)º 0.0005s on
a Macbook Pro with a 2.9 GHz quad-core Intel core i7 and a 16 GB memory. So, roughly,
at most 1000 sequential calculations of f i, i.e., 1000/m algorithm’s iterations or MEP
fitness evaluations Eq (4.6) are allowed if only one solution is evaluated per iteration,
as listed in the "MaxIter" column in Table 4.2. Hence, for the problems of size 12, all
deterministic algorithms FIRST, BEST, HEIDER, and HEIDER-Random can converge,
while for the problems of size 16, only HEIDER and HEIDER-Random can converge.

48

4.4. EXPERIMENTS

Table 4.2: No. of MEP fitness evaluations (4.6) of algorithms on the BiQAP task allocation
problems over 50 runs

Size MaxIter Instance FIRST BEST HEIDER GRASP SIMANN3 HEIDER-Random
best avg. best avg. best avg.

12 333

1 221 193 87 1632.667
(0.020)

1736.367
(62.261)

694
(1.000)

694
(0.000)

68
(0.020)

97.600
(20.134)

2 165 145 95 1562.667
(0.020)

1742.207
(96.251)

694
(1.000)

694
(0.000)

57
(0.040)

80.060
(14.026)

3 223 193 92 1624.667
(0.020)

1826.987
(112.164)

694
(1.000)

694
(0.000)

61
(0.040)

85.860
(15.242)

4 253 193 97 1627.667
(0.020)

1866.027
(127.177)

694
(1.000)

694
(0.000)

65
(0.020)

87.560
(12.384)

5 225 241 106 1637.667
(0.020)

1912.047
(122.529)

694
(1.000)

694
(0.000)

63
(0.020)

89.880
(11.117)

16 250

1 1286 865 253 - - 1261
(1.000)

1261
(0.000)

138
(0.020)

217.580
(34.527)

2 1048 673 266 - - 1261
(1.000)

1261
(0.000)

134
(0.020)

223.300
(61.364)

3 691 673 245 - - 1261
(1.000)

1261
(0.000)

136
(0.020)

217.040
(40.249)

4 1214 577 268 - - 1261
(1.000)

1261
(0.000)

127
(0.020)

194.380
(41.212)

5 272 673 196 - - 1261
(1.000)

1261
(0.000)

147
(0.020)

210.720
(38.405)

Mean rank 3.86 3.13 2 6 5 1

In contrast, the computational cost of GRASP and SIMANN3 are too high to converge
within 0.5s even for the problems of size 12.

Figure 4.3: The fitness evaluation time.

Take the test instance 5 of the problem size 12 as an example. The BiQAP task
allocation fitness values of the permutation solutions over iterations are averaged over
the 50 independent runs and plotted in Fig. 4.4. It can be seen that, the greedy initial
solution construction stage of GRASP takes too much computational cost and the greedily

49

CHAPTER 4. MULTIPLE EVADERS PURSUIT WITH FULL OBSERVATION

constructed initial solution may be not as good as the initial solution constructed from
the domain knowledge as proposed in Algorithm 4.2. So, the most contributed component
of GRASP, i.e., the solution construction stage, may be unnecessary in real-world appli-
cations when better initial solutions can be constructed by practical domain knowledge.
On the other hand, SIMANN3 is sensitive to its parameters settings. First, it takes
efforts to determine its initial temperature, which additionally may be different with
the problem size. Second, although its optimal temperature value can be determined
automatically, the automation process itself also takes much computational cost. There-
fore, deterministic algorithms are more favorable for the BiQAP task allocation since
they are the simplest algorithms with the fastest converging speed when a good enough
initial solution can be given, among which HEIDER is the best in terms of the trade-off
between the solution quality and the computational cost. Since HEIDER is a special case
of HEIDER-Random with a fixed neighborhood searching cyclic order, HEIDER-Random,
which adopts a random searching order, has the probability to be superior than the
original simplest version of HEIDER.

Figure 4.4: The averaged fitness values of different algorithms during the optimization
process over 50 runs.

4.4.2 Experiment 2 (PCCPSO-R vs. CCPSO-R)

In this section, the effectiveness of PCCPSO-R over CCPSO-R on the multiple random
walking evaders pursuit problems are compared. The environmental instances in Section
4.4.1 is used as the initialization, while the HEIDER-Random algorithm are used as the
BiQAP task allocation solver, and maximal 1000 times steps are allowed to capture all
evaders. The experimental results are shown in Table 4.3 where the average steps taken

50

4.5. SUMMARY

to terminate the game and the standard deviations of the steps in all the 50 independent
runs are listed. Both CCPSO-R and PCCPSO-R achieve the 100% capture rate. It can be
seen that PCCPSO-R has a higher efficiency than CCPSO-R due to the introducing of the
local capture patterns and capturing rules in Section 4.3.2. However, due to the parallel
nature in agents’ observations, decision makings, and movements, it is not guaranteed
that no collisions in using PCCPSO-R.

Table 4.3: Comparison of the multiple-evaders pursuit efficiency of PCCPSO-R and
CCPSO-R

Problems 3-evaders pursuit (BiQAP task allocation size: 12)
1 2 3 4 5

CCPSO-R 125.38
(65.098)

122.76
(63.864)

97.68
(47.549)

122.76
(89.185)

115.88
(62.588)

PCCPSO-R 56.28
(25.499)

48.18
(12.388)

57.72
(17.266)

62.74
(26.173)

49.32
(23.835)

Problems 4-evaders pursuit (BiQAP task allocation size: 16)
1 2 3 4 5

CCPSO-R 120.14
(61.477)

145.54
(85.455)

128.28
(58.538)

126.62
(64.839)

132.36
(74.068)

PCCPSO-R 60.14
(22.107)

49.96
(10.849)

54.22
(30.190)

47.36
(23.606)

53.46
(30.517)

4.5 Summary

In this chapter, the MEP is modeled as a dynamic optimization problem where each time
step is solved by the proposed two-stage approach. In particular, the first stage is to cen-
trally assign each evader to 4 pursuers by modeling such task allocation problem as the
BiQAP, the solutions of which are evaluated by the proposed multiple-evaders pursuing
fitness function. In this way, the MEP is transformed to several SEPs. In the second
stage, each SEP is simultaneously solved by the assigned pursuers through PCCPSO-R,
which parallelizes CCPSO-R to further improve the scalability of the pursuer’s strategy
to cooperatively capture the assigned evader. Since the MEP is a slow-changing problem,
the BiQAP task allocation solution found in the previous time step is used as the initial
solution for the current time step, while the initial solution for the first time step is
constructed by the proposed greedy initial solution construction procedure based on the
domain knowledge.

51

CHAPTER 4. MULTIPLE EVADERS PURSUIT WITH FULL OBSERVATION

As for the solving of the BiQAP task allocation, due to the time limit (0.5s here) in
MAS, more complex and more powerful heuristic algorithms are inferior to the simplest
deterministic local search algorithms when a good enough initial solution can be given.
Even if the population of swarm intelligence algorithms (SIAs) is parallel, enough
generations are needed to find good enough solutions, the process of which is sequential
and thus hard to be achieved in the time limit. Therefore, based on the domain knowledge,
this research has proposed a greedy procedure to construct a good enough initial solution
for the BiQAP task allocation, and modified HEIDER as HEIDER-Random by adding
tricks and integrating application considerations.

However, there are still limitations in the proposed approach to MEP. First, the
centralized BiQAP solution to the task allocation is still not applicable to large-scale
problems due to the time limit in MAS. Second, although PCCPSO-R enable the parallel
observation, decision making and moving of pursuers by introducing two minimal secure
distances in Eq (4.8), local capture patterns, and effective rules, these patterns are not
complete to involve all possible local capturing scenarios.

52

C
H

A
P

T
E

R

5
MULTIPLE EVADERS PURSUIT WITH PARTIAL

OBSERVATION

5.1 Background

This chapter investigates the dynamic pursuit problem between multiple evaders and a
swarm of partially observable pursuers in the bounded grid world without inter-agent
communications, i.e., the self-organizing pursuit (SOP) problem. This work proposes a
framework for decentralized multi-agent systems to improve the implicit coordination
capabilities in search and pursuit. A self-organizing system is modeled as a partially
observable Markov game (POMG) featured by large-scale, decentralization, partial obser-
vation, and noncommunication. The proposed distributed algorithm: fuzzy self-organizing
cooperative coevolution (FSC2) is then leveraged to resolve the three challenges in multi-
target SOP: distributed self-organizing search (SOS), distributed task allocation, and
distributed single-target pursuit. FSC2 includes a coordinated multi-agent deep rein-
forcement learning (MARL) method that enables homogeneous agents to learn natural
SOS patterns. Additionally, a fuzzy-based distributed task allocation method is proposed,
which locally decomposes multi-target SOP into several single-target pursuit problems.
The cooperative coevolution principle is employed to coordinate distributed pursuers
for each single-target pursuit problem. Therefore, the uncertainties of inherent par-
tial observation and distributed decision-making in the POMG can be alleviated. The

53

CHAPTER 5. MULTIPLE EVADERS PURSUIT WITH PARTIAL OBSERVATION

experimental results demonstrate that by decomposing the SOP task, FSC2 achieves
superior performance compared with other implicit coordination policies fully trained
by general MARL algorithms. The scalability of FSC2 is proved that up to 2048 FSC2
agents perform efficient multi-target SOP with almost 100% capture rates. Empirical
analyses and ablation studies verify the interpretability, rationality, and effectiveness of
component algorithms in FSC2.

Figure 5.1: Multi-target self-organizing pursuit task and computational frame-
work of FSC2 (fuzzy self-organizing cooperative coevolution). FSC2 is a distributed
framework that consists of three modules: A. fuzzy task allocation: takes partial
observation as input, computes distributed fuzzy clusters of agents and targets, and
determines the current role of agent to be either a searcher or a pursuer; B. RL search
policy: a searcher searches the space to find targets; and C. pursuit algorithm (CCR):
a pursuer cooperates with cluster members to pursue the targeted evader of its cluster.

5.2 Problem formulation

5.2.1 Multi-agent formulation of self-organization systems

A multi-agent system (MAS) can be seen as a decision-making system in which each
agent is a decision maker. It can be formulated in terms of the following four factors: (1)
the number of agents: a single agent or multiple agents; (2) state transitions: present
(sequential problem) or not; (3) the uncertainty of observability: full observability, joint
full observability, or partial observability; and (4) the reward function: each agent has
an individual reward function, all agents share the same reward function, or different
groups of agents have separate reward functions. Based on the above four dimensions,
various models have been proposed and investigated, as shown in Figure 5.2a [56], and

54

5.2. PROBLEM FORMULATION

the common nomenclature for the model name abbreviations is presented in Figure 5.2b.

(a) Common multi-agent problem formulations
[56].

(b) Common nomenclature for multi-
agent models.

Figure 5.2: Common multi-agent problem formulations and their nomenclature.

A definition of self-organization was given in [19]: global level patterns unexpect-
edly emerge solely from the distributed decentralized local nonlinear interactions of
components of the system under behavioral rules (of thumb) with local information and
no external directing influences. In terms of these features, a self-organizing system
can be formulated as a POMG [56]: h∞,I ,S ,A ,O ,P,O,Ri. ∞ is the discounted factor
for return; I = {1, ...,n} represents all total n agents; S = {s} is the true state space;
A =A

1£ ...£A
n = {~a} is the joint action space; O =O

1£ ...£O
n = {~o} is the joint observa-

tion space; P(s0|s,~a) is the transition function from the current state s to the next state
s0 given the joint action ~a; O(s)= {o1(s), ...,on(s)} is the joint observation function; and
R(s,~a)= {R1(s,~a), ...,Rn(s,~a)} is the joint reward function and each agent maximizes its
own accumulated reward.

The reason the POMG rather than the Dec-POMDP (decentralized partially observ-
able Markov decision process) is used to represent a self-organizing system is that in the
Dec-POMDP, all agents are fully cooperative in that they aim to maximize a collective
reward R(s,~a), while in a general self-organizing system, even collaborative agents
have unequal rewards and need to balance the swarm benefits and their own benefits.
Therefore, POMG is more similar to the natural swarm intelligence.

5.2.2 The problem of self-organizing search and pursuit

A typical multi-target search and pursuit scenario is illustrated in Figure 5.3. Due to the

55

CHAPTER 5. MULTIPLE EVADERS PURSUIT WITH PARTIAL OBSERVATION

Figure 5.3: A screenshot of self-organizing search and pursuit in a bounded grid world,
where red squares are targets or evaders, blue squares are searchers or pursuers, and
green background around each agent shows its perception range with an inf -norm
radius of 5.

partial observation and communication limitation of agents, this research distinguishes
the self-organizing search (SOS) and self-organizing pursuit (SOP) as two different
but related multi-agent problems, where the search policy in SOS is taken as a basic
capability of agents in the SOP.

• Self-organizing search (SOS): A search is considered successful when a searcher
occupies the same position of a target, and the target will then disappear. The SOS
terminates when all targets in the environment disappear or the maximum time is
reached.

• Self-organizing pursuit (SOP): A capture is considered as successful when a
target is encircled by four pursuers and cannot move further. However, the target
will not disappear after it is captured in the SOP. The game terminates when all
targets are found and captured or the maximum time is reached.

Note that, the SOS task is only used to train the search policy in Figure 5.1, i.e.,
the space exploring ability that will be used in the SOP task. The SOS task is designed
harder than the search requirement in the SOP to better train the search policy. First,
the SOS task uses multiple static targets since searching for static targets are sometimes
harder than dynamic ones in bounded environments, as the agent has no chance to wait
for the target coming. In addition, in the SOS task, a target is designed to disappear after
being searched to make the search task harder and harder with time, especially when
there is no communication and information exchange between agents. Last, in the actual
pursuit, agents are not expected to collide with the targets or evaders. However, in the
SOS task, this research specially defines a successful search as that a searcher occupies

56

5.3. FUZZY SELF-ORGANIZING COOPERATIVE COEVOLUTION (FSC2)
ALGORITHM

a target rather than a target appears in the agent’s local view, which also only serves the
purpose of training. This is because, in the pursuit where the search policy is applied,
more than one agents are expected to find and approach the same target simultaneously
in order to finally capture it.

In the following, this research investigates the coordination strategies for agents
constrained by: (1) the observation range of an agent is the scope of radius 5 according to
the inf -norm, i.e., an 11£11 square centered at the agent; (2) communication between
agents is limited that they can only see the positions of targets and other agents in
their own local views, and no other information exchange is allowed; (3) the available
movements of all agents are 5 discrete actions {up, down, right, left, still} in the grid world.
Therefore, the inf -norm is used in the agent’s perception, and the 1-norm (Manhattan
distance) is used in the agent’s movement, which are widely adopted in MAS.

5.3 Fuzzy self-organizing cooperative coevolution
(FSC2) algorithm

In this section, this research introduces in detail the proposed distributed hierarchical
framework: fuzzy self-organizing cooperative coevolution (FSC2) in Figure 5.1. FSC2 is
a distributed algorithm for homogeneous swarm of agents that each agent consists of
three modules: (1) fuzzy clustering; (2) search policy; and (3) pursuit algorithm: CCR. Its
main idea and motivation is to decompose the distributed self-organizing pursuit (SOP)
problem into sub-tasks that are more intuitive and simpler to be well defined and solved.

The whole algorithm of FSC2 is given in Algorithm 5.1. In the multi-target pursuit
environment, targets and partial observable agents are distributed in the space. First,
two alternate basic roles of an agent are assumed: searcher or pursuer, based on the
existence of free targets that are not captured in the agent’s neighborhood. Then, agents
are clustered in a distributed way that each searcher forms a separate cluster and
pursuers are clustered based on their neighborhood relationships. This clustering process
is conducted by the first module: fuzzy clustering algorithm in Section 5.3.1, and Figure
5.1 gives an illustrative clustering result. After clustering, an agent alternates between
the second module: search policy in Section 5.3.2 and the third module: pursuit algorithm
(CCR) in Section 5.3.3, based on its real-time neighborhood.

57

CHAPTER 5. MULTIPLE EVADERS PURSUIT WITH PARTIAL OBSERVATION

Algorithm 5.1: FSC2 for each agent in the SOP
1 while the termination conditions are not satisfied do
2 role, cluster_center, cluster_members,Memory√ Fuzzy clustering

(Algorithm 5.2 in Section 5.3.1).
3 if role is a searcher then
4 As an SOS agent (Section 5.3.2), find free targets.

5 else if role is a pursuer then
6 As a CCR agent (Section 5.3.3), cooperate with cluster_members in

pursuing cluster_center.

5.3.1 Distributed fuzzy clustering for task allocation

A pursuer is defined to be free if it has not captured a target, while a target is free if
it has not been captured. So, an agent is either a searcher, which explores the space to
find a free target, or a pursuer, which cooperates with other free pursuers to capture a
free target. In the multi-target SOP, since four pursuers are required to capture a target,
distributed task allocation or clustering is needed to determine which group of pursuers
capture which free target.

The main challenge in the multi-agent distributed clustering is the consensus issue
in two folds due to the partial observation uncertainty and the interaction uncertainty.
First, since agents cannot fully observe the world or share the same knowledge through
communications, they cannot independently make exactly the same decision. To ad-
dress this issue, this research adopts the fuzzy clustering and utilizes its fuzziness in
identifying the cluster memberships to reach a consensus with a higher probability.
Second, an agent may frequently switch between the roles of searcher and pursuer over
a short period of time steps due to its partial observability, which causes instability in
the distributed clustering. We, therefore, introduce an incremental agent memory in the
fuzzy clustering.

Fuzzy membership. Since the task of the pursuers is to capture targets, for agent k,
its cluster center shall be one of all its mk local free targets T = {T1, ...,Tmk }, while its
nk local free pursuers A = {A1, ...,Ank } need to be clustered, and both Tj and Ai are 2-D
positions. The fuzzy membership value of the free pursuer Ai with respect to the cluster
center Tj in agent k’s view is calculated by

(5.1) µk
i j =

(||Ai°Tj||21)
1

1°Æ

Pmk

j=1(||Ai°Tj||21)
1

1°Æ

2 [0,1],

58

5.3. FUZZY SELF-ORGANIZING COOPERATIVE COEVOLUTION (FSC2)
ALGORITHM

where Æ> 1 is the fuzzifier [12], the value of which is 1.5 in our experiments. Thus, agent
k can obtain its fuzzy membership matrix

(5.2) Mk = [µk
i j] 2Rnk£mk

,

the i-th row Mk
i§ of which is the fuzzy membership value of agent i with respect to all

local cluster centers in agent k’s point of view. Based on Mk, agent k can obtain its
membership matrix

(5.3) M̂k ªMk,

which is a binary matrix. Its only one element with the value 1 in the i-th row M̂k
i§

is sampled from the random distribution determined by Mk
i§, since an agent can only

belong to one cluster. Based on M̂k, the cluster center of agent k is the target

(5.4) Tc|M̂k
kc 6=0,c=1,...,mk ,

while agent k’s cluster members are the pursuers

(5.5) {Ai|M̂k
ic 6= 0, i = 1, ...,nk}.

The distributed fuzzy clustering based task allocation process in Equation (5.1) to (5.5)
is summarized in Algorithm 5.2.

Agent memory. Note that, each agent’s Memory of the environment (line 1 of
Algorithm 5.2) is updated through its experiences, which includes the captured status
of targets and locked status of pursuers. So, the maximum size of Memory is the same
for all pursuers, which is determined by the possible number of targets and pursuers
in the environment. Without a Memory, an agent may oscillate between the roles of a
searcher and a pursuer. For instance, an agent may walk one step closer to a target, see
the target captured by 4 pursuers, and know that itself is a searcher; if it then walks one
step away from the target, the agent can only see 3 pursuers surrounding the target and
cannot identify for certain whether it is captured, although it previously observed its
captured status. In other cases, a target may be falsely captured such as when it is only
blocked by another free target. When that free target walks out of its way, the previous
“captured" target becomes free again. In such scenarios, the agent should also update its
Memory when it is pretty sure based on its newest observation.

In addition, note that, although the number of local clusters is determined by the
number of local free targets in Equation (5.1), the number of members in each cluster
is not specified in Equation (5.5). So, it is possible that more pursuers are clustered

59

CHAPTER 5. MULTIPLE EVADERS PURSUIT WITH PARTIAL OBSERVATION

into one same nearer target while less pursuers to a farther one. It may be a bit greedy
and redundant sometimes that pursuers first cooperate to capture one nearer target
as soon as possible and then pursue others. However, this redundancy in the self-
organizing clustering may improve the system’s robustness to individual robot’s software
or hardware failures.

Algorithm 5.2: Distributed fuzzy clustering of agent k
Input : local observation okt of agent k at time t.
Output : role, cluster_center, cluster_members,Memory.

1 Update captured targets and locked pursuers in Memory.
2 if there are no local free or neighboring targets then
3 role√ searcher.
4 cluster_center√ the agent itself Ak.
5 cluster_members√ the agent itself Ak.

6 else
7 role√ pursuer.
8 T = {T1, ...,Tmk }√ local free targets.
9 A = {A1, ...,Ank }√ local free pursuers.

10 cluster_center√ Equation (5.4).
11 cluster_members√ Equation (5.5).

Global distributed consistency metric. To evaluate the consistency in the dis-
tributed clustering process between the global n agents and m targets, a consistency
matrix C = [ci j] 2 Rn£n can be calculated from {M̂k|k = 1, ...,n}. ci j 2 {°1,1, ...,m} is the
global target index of the non-zero item of M̂i

j§, which represents the cluster (or target)
index for agent j from agent i’s point of view, and ci j =°1 means that agent i has no
idea of the cluster of agent j because agent j is located out of the local view of agent i.

The global DC (distributed consistency) can be defined as

(5.6) DC .= 2
n · (n°1)

n°1X

i=1

nX

j=i

|{k|k 2 Ĉi\ Ĉ j,and cik == c jk}|
|Ĉi\ Ĉ j|

2 [0,1],

where | · | is the cardinality of a set; Ĉi = {k|k= 1, ...,n,and cik 6=°1} is the set of visible
local pursuers for agent i. The process of computating DC in Equation (5.6) is to compare
every two rows Ci§ and Cj§ of C and calculate the ratio of consistent decisions between
agent i and agent j in their common knowledge about the other pursuers. Due to this
special meaning in our application, 0/0= 1 is defined for Equation (5.6), which means
that two agents without local physical interactions have fully consistent decisions.

60

5.3. FUZZY SELF-ORGANIZING COOPERATIVE COEVOLUTION (FSC2)
ALGORITHM

5.3.2 Self-organizing search (SOS) policy

In the self-organizing search (SOS), a searcher does not have any prior knowledge about
the environment or the number of searchers and targets. As in natural self-organization
systems, such as a school of fish or a flock of birds, the objective is to equip searchers
with the abilities that

1. a single searcher can perform an effective search by itself when there are no targets
or searchers in its local view;

2. a searcher has a tendency to follow other visible searchers so that a flock of
searchers can be formed since the natural flocking behavior can increase the
harvesting efficiency, which is especially true with a bigger group [67];

3. a flock of searchers can perform effective “migration" like actions rather than
tangling with each other so that the flock as a whole loses searching ability.

To achieve these goals, this research uses the actor-critic algorithm [43] to enable self-
organizing searchers to learn from experiences in the centralized training and decentral-
ized execution way.

The parameter µ of policy ºµ is updated with the learning rate Æ1 (3£10°4 and 10°4

in the search and pursuit experiments, respectively) according to

(5.7) µ = µ+Æ1OµJ(ºµ),

where

(5.8) OµJ(ºµ)=Eøªºµ [
tmaxX

t=0
Oµ logºµ(at|st)At],

and ø= (s0,a0, r0, s1,a1, r1, ...) is the trajectory; At is the generalized advantage estima-
tion (GAE) [74] in the form of

(5.9) At =
tmax°tX

l=0
(∞∏)l±V

t+l ,

with ∞,∏ being two constants (0.99 and 0.97 in our experiments) and

(5.10) ±V
t =R(st,~at)+∞V¡(st+1)°V¡(st).

being the temporal difference (TD) residual of the approximate value function V¡(·) with
discount ∞.

61

CHAPTER 5. MULTIPLE EVADERS PURSUIT WITH PARTIAL OBSERVATION

The parameter ¡ of the value function V¡(st) is optimized by minimizing the following
loss function with stochastic gradient descent and learning rate Æ2 (10°3 and 10°4 in the
search and pursuit experiments, respectively):

(5.11) ¡= argmin
¡

Est,R̂tªºµ
[(V¡(st)° R̂t)2].

where R̂t =
Ptmax

t0=t ∞t0°tR(st0 ,~at0) is the discounted return from point t with reward func-
tion R(st0 ,~at0) and discount factor ∞.

Reward function. For the SOS task, individual agent’s reward function Ri(st,~at)
in the POMG is given in Table 5.1. Though simple, experiments show that it achieves
satisfied cooperation, and no additional efforts in the multi-agent credit assignment are
needed as in the Dec-POMDP formulation.

Table 5.1: Reward function Ri(st,~at) for self-organizing search (SOS)

Action Reward
Search for a target 10 to the contributing agent
Collide with another agent -12 £ # of agents collided with
Collide with an obstacle Die in its location
Move before termination -0.05

This research once tries to give the search reward to the contributing flock, which
is a connected component of the graph whose vertexes are agents and edges represent
local observations among agents. It is assumed that if one member agent searches
for a target, the whole flock of agents obtain the reward equally to encourage flocking
behavior. However, with such a reward mechanism, agents tangle with each other in local
regions, although they indeed prefer gathering. Instead, when a reward is only given to
the contributing agent that finds the target, as in Table 5.1, the training performance
improves significantly.

Note that, the episode reward is defined as the mean of all agents’ discounted accu-
mulated rewards in the same environment. In this way, the episode reward score will
not increase with the number of agents involved, and thus, the scores are comparable
between trials with different numbers of agents.

Parameter sharing based centralized training. In training, agents in the same
environment instance maintain a central experience pool and train shared critic and
actor models with their newest collective episode experiences. The shared models in
different environment instances are coordinated by communicating and averaging their
gradients to stabilize the training.

62

5.3. FUZZY SELF-ORGANIZING COOPERATIVE COEVOLUTION (FSC2)
ALGORITHM

5.3.3 Cooperative coevolutuion algorithm for robots (CCR)

According to FSC2 (Algorithm 5.1), after distributed task allocation, the mission of a free
pursuer is to cooperate with other cluster members pursuing the targeting cluster center.
For the single-target pursuit, the CCR (cooperative coevolution for robots) algorithm is
proposed based on CCPSO-R [83, 84], which further improves the cooperation of pursuers
in their simultaneously decision making and execution process.

Cooperative coevolutionary evaluation scheme. Similar to CCPSO-R [83], the
real agents in the CCR are the pursuers that execute physical actions in the environment,
which can be represented by 2-D positions {Ai, i = 1, ...,n}. For each real agent Ai, all the
neighboring positions one step away from it, including its current position, form a group
of virtual agents {A1

i = Ai, ...,A5
i } that can act as the candidate next positions for the real

agent. The decision-making process of a real pursuer is to evaluate its virtual agents
in the cooperative coevolutionary scheme and greedily select the best one as its next
position. The pursuit performance is ensured by the evaluation quality of the virtual
agents, i.e., how well the fitness function is designed to guarantee conflict-free efficient
cooperation in the pursuit.

In particular, the cooperative coevolutionary evaluation scheme means that the
fitness evaluation of an individual agent is not only determined by itself, but also by the
other real agents. For the target cluster center Tc and pursuer cluster {A1, ...,A

j
i , ...,Ani },

where the i-th member A j
i is the j-th virtual agent of the i-th real pursuer and ni is the

total number of cluster members, the fitness function f i jstp was proposed in CCPSO-R
[83] as follows:

(5.12) f i jstp = f i jclosure+ f i jexpanse+ f i juni f ormity,

where

(5.13) f i jclosure = inconv(Tc,A1, ...,A
j
i , ...,Ani)

evaluates whether the target Tc is located in the convex hull formed by the pursuer
cluster: 0 indicates that it is inside, 0.5 indicates that it is on the edge, and 1 indicates
that it is outside;

(5.14) f i jexpanse =
1
ni (

niX

k=1,k 6=i
||Ak°Tc||1+||A j

i °Tc||1)

gives the spatial extent of the pursuer cluster in terms of Tc; and

(5.15) f i juni f ormity = std

√"
N11 N12

N21 N22

#!

63

CHAPTER 5. MULTIPLE EVADERS PURSUIT WITH PARTIAL OBSERVATION

or

(5.16) f i juni f ormity = std([N12,N21,N23,N32])+ std([N11,N13,N31,N33]).

evaluates how evenly the pursuer cluster is distributed around Tc based on the standard
deviation std(·) where Ni j is the number of pursuers in the (i, j)-th space bin (for details,
see [83]).

However, f i jstp only solves the cooperative single-target pursuit problem by letting
agents make decisions sequentially, while its parallel decision-making version PCCPSO-
R [84] can only resolve partial conflicts by introducing two secure distances in the fitness
function. Hence, a new fitness function is proposed based on f i jstp to enable conflict-free
cooperation in single-target pursuit. In detail, the fitness function for the j-th virtual
agent of the i-the real pursuer A j

i can be defined as

(5.17) f i j =

8
>>>>>>>>>><
>>>>>>>>>>:

1, if nndi j
entity == 0 or

(nndi j
target 6= 1 & nndi j

pursuer == 1)

f i jconvention, else if nndi j
target == 1 &

nndi j
pursuer == 1

f i jstp, else

where nndi j
entity is the distance to the nearest neighbor with the set entity, which could

be pursuers, targets or obstacles. In the simultaneous decision-making and execution
process, the secure distance between a pursuer and a target is 1 and that between
pursuers is 2 to ensure that there are no collisions, and pursuers are not allowed to
approach closer than this limit unless they are capturing a target. However, when the
condition (nndi j

target == 1 & nndi j
pursuer == 1) is satisfied, it means that more than one

pursuers may choose to occupy the same capturing position in the next step, where a
conflict may occur but can be resolved by the lexicographic convention fitness function
f i jconvention as follows.

Lexicographic convention. In the proposed lexicographic ordering, 2-D positions
are sorted first in the ascending order of their first-dimension values and then based
on their second-dimension values, and this is known by all agents. This is used in the
lexicographic convention that pursuers coordinate their choices of one-step-away open
capturing positions by the following steps.

1. All local open capturing positions are sorted.

64

5.4. EXPERIMENTS

2. All local free pursuers are sorted.

3. The neighboring open capturing positions and pursuers are paired in the priority
order.

If the next candidate position or virtual agent A j
i of the current real pursuer Ai is

its assigned capturing position under a certain partial observation, fconvention = °1;
otherwise, fconvention =1, which means that the choice not satisfying the lexicographic
convention is not allowed.

Concept of certain partial observation. The concept of certain partial observation
is introduced to ensure multi-agent collision free in the pursuit. It is in contrast to the
uncertain partial observation, which is defined as the partial observation that satisfies
the following two conditions, as illustrated in Figure 5.4. First, there exist risky capturing
positions, which are the open capture positions on specific boundaries of the local view
that will be assigned to a local free pursuer based on the lexicographic convention. Second,
there are other free pursuers neighboring the assigned captured position. Under such
uncertain observations, an agent may make risky decisions that may lead to collisions.
For simplicity, the current agent is prevented from taking the assigned capturing position
by setting fconvention =1. Although this may influence the efficiency, it can ensure that
there are no collisions in the single-target pursuit due to the observation uncertainty in
the POMG.

5.4 Experiments

5.4.1 Environments, baselines, and experimental setups

Environments First, for the convenience in comparing the self-organizing search
(SOS) agents trained by different MARL algorithms with their official public code,
several changes were made to the PettingZoo Pursuit-V3 environment [89], including
the initialization, reward function, some utility functions, and bugs. Second, for the
multi-target self-organizing pursuit (SOP), the environment is implemented by our-
selves with more compact code and adjusted to the self-organizing game setups. The
local observation oi(s) of agent i is always represented as an 11£11£3 binary matrix,
where the 3 channels are for targets, agents, and obstacles. All code is available at
https://github.com/LijunSun90/pursuitFSC2.

65

CHAPTER 5. MULTIPLE EVADERS PURSUIT WITH PARTIAL OBSERVATION

(a) Incorrect decisions by A3 due to its obser-
vation uncertainty.

(b) Actual decisions of pursuers.

Figure 5.4: Illustration of uncertain partial observation under the lexicographic conven-
tion of Section 5.3.3; collisions may result if such scenarios are not detected. A1, A2, A3,
and A4 are the pursuers, T1 and T2 are the targets, X1, X2, X3, and X4 are the open
capturing positions, and these entities are numbered in the lexicographic order given
in Section 5.3.3. The green background is the perception range of A3, and the dashed
regions are the specific boundaries where risky capturing positions may appear. For
A3, X1 is a risky capturing position that is located on the specific boundary of its local
view and is assigned to a local free pursuer based on the local lexicographic convention
without the detection of such scenarios. Meanwhile, the assigned capturing position X2
of A3 has another neighboring free pursuer A2. The decision of A3, which is made based
on uncertain observation satisfying the above two conditions as in (a), may deviate from
the actual decisions of pursuers as in (b) and risk collisions.

Baselines for SOS In the performance comparison of self-organizing search (SOS),
the actor-critic trained search policy are compared with the following search strategies.

• A swarm of independent random-walk searchers: Each searcher randomly walks
in the space, taking no account of its surroundings and past history.

• A swarm of independent complete searchers: A complete searcher searches the
space in a systematic way to ensure that every position on the map is visited at
least once. This search is complete so that all targets are guaranteed to be found
without a time limit. The optimal systematic search strategy is a solution to the
Hamiltonian path problem where every position is visited exactly once, which is
NP-complete [30]. For simplicity, an intuitive systematic strategy is employ, in
which the searcher first moves to its nearest map corner and then, starting from
that corner, performs zigzag or snakelike walking assuming that the searcher
knows the scope of the grid world but does not know the targets’ positions. Since
the search success is defined as the agent occupying the target’s position, the simple

66

5.4. EXPERIMENTS

systematic searcher is actually equivalent to a searcher with a perception range of
1.

• A swarm of ApeX-DQN searchers, the current documented best performing MARL
in pursuit [90]: This work tested the learning rates {10°6, 10°5, 10°4, 10°3}; the
batch sizes {128, 256, 512, 1024}; the rollout fragment lengths {32, 128}; and Adam
epsilons {0.00015, 10°8}, where the best values are shown in bold, and the other
parameter values are the same as in [90].

• A swarm of coordinated MADDPG searchers: The OpenAI MADDPG implementa-
tion 1 is used in which an agent has access to all other agents’ observations and
actions through interagent communication; these are used in training the critic
function Q(~o,~a). This work tested the learning rates {10°4, 10°3, 10°2}; the batch
sizes {256, 512, 1024}; and the model update rates {4, 100, 500}, where the best
values are shown in bold.

Baselines for SOP In the overall performance of the multi-target self-organizing
pursuit (SOP), this research compares tree implicit coordination methods: FSC2 and
three others trained by the following MARL algorithms.

• Actor-critic [85] (with parameter sharing): practical well-performed RL algorithm
which is suitable for large-scale homogeneous agents. This work tested the learning
rates {10°4, 5£10°4} (best value in bold) and three reward functions. Besides, this
work tested trained the value function {10, 80} times every training epoch and got
similar final performance. The other hyperparameters are the same as those for
the actor-critic algorithm in the self-organizing search experiments.

• MAPPO [98]: state-of-the-art on-policy MARL algorithm, which has the potential
for large-scale applications. This work tested two inputs to the centralized value
function: {concentration of all agents’ observations, agent-specific global state}
(similar), the learning rates {10°4, 5£10°4} (best value in bold), three reward func-
tions, and train both policy and value functions 10 times per training epoch. The
implementation is based on the official code 2, and other hyperparameters are the
default values provided by [98] for the MPE environments, which are verified with
small experiments.

1https://github.com/openai/maddpg
2https://github.com/marlbenchmark/on-policy

67

CHAPTER 5. MULTIPLE EVADERS PURSUIT WITH PARTIAL OBSERVATION

• IPPO [75] (with parameter sharing): independent proximal policy optimization
(PPO) algorithm with the same local observation as input for both the policy and
value functions like the actor-critic baseline. All the other hyperparameters are
the same with MAPPO.

Common experimental setup The policy and value models in all MARL algorithms
use the same architecture: two-layer ReLU multi-layer perceptions (MLP) with hidden
layers of size 400 and 300. In the SOP task, layer normalization [1] is added to each
hidden and output layer for the three baseline algorithms: actor-critic, PPO, and MAPPO.

• Reward function: For self-organizing search (SOS) tasks, all MARL algorithms
use the same reward function in Table 5.1. For self-organizing pursuit (SOP) tasks,
all MARL algorithms use the same reward function in Table 5.2.

Table 5.2: Reward function Ri(st,~at) for self-organizing pursuit (SOP)

Action Reward
Capture a target 10
Neighbor a target 0.1
Collide -12
Move before termination -0.05

Table 5.3: Performance comparison on multi-target self-organizing pursuit (SOP) with
16 agents and 4 targets in 40£40 grid worlds. FSC2-HC: replace FSC2 fuzzy clustering
with hard clustering. FSC2-NM: remove agent’s memory in fuzzy clustering. FSC2-RC:
replace FSC2 fuzzy clustering with random clustering. FSC2-FS: replace FSC2 search
with fish flocking rules (no migratory urge). * represents the statistical significance by
student’s t-test at the significance level 0.01.

Algorithm FSC2 FSC2-HC FSC2-NM FSC2-RC FSC2-FS Actor-critic IPPO MAPPO

Clustering Memory 3 3 7 7 3 - - -
Fuzzy

membership 3 7 3 7 3 - - -

Self-organizing search 3 3 3 3 7 - - -

Capture rate 1
(0)

1
(0)

0.975*
(0.075)

0.965*
(0.086)

0.885*
(0.155)

0.91*
(0.139)

0.452*
(0.228)

0.6475*
(0.223)

Episode length 108.09
(50.256)

119.35
(75.99)

156.39*
(133.278)

178.77*
(147.369)

308.94*
(181.485)

281.97*
(176.28)

496.06*
(38.505)

478.84*
(63.689)

Collisions 0
(0)

0
(0)

0
(0)

0
(0)

0
(0)

6.59*
(6.935)

31.14*
(25.285)

12.47*
(20.991)

68

5.4. EXPERIMENTS

Table 5.4: Episode length (efficiency) comparison of FSC2 with fuzzy clustering and hard
clustering on multi-target pursuit (SOP) in 40£40 grid worlds. FSC2-HC: replace FSC2
fuzzy clustering with hard clustering.

No. of agents 16 32 64 128 256 512 1024

FSC2
108.09
(50.256)

114.51
(69.885)

134.22
(102.551)

107.15
(78.498)

112.83
(119.471)

285.51
(216.59)

338.18
(230.582)

FSC2-HC
119.35
(75.99)

115.09
(83.229)

115.32
(90.802)

126.77
(118.194)

133.85
(141.501)

289.65
(216.986)

353.1
(224.407)

5.4.2 Self-organizing pursuit (SOP) experiments

For the overall performance in multi-target self-organizing pursuit (SOP), the proposed
FSC2 method is compared with three implicit coordination policies trained by the CTDE
parameter sharing based actor-critic algorithm, PPO, and MAPPO, respectively. These
methods solve the large-scale implicit multi-agent coordination problem constrained
by partial observation and no inter-agent communications in three ways: hierarchi-
cal decomposition, parameter sharing based coordinated reinforcement learning, and
centralized value function enhanced coordinated reinforcement learning.

The results are shown in Figure 5.5 and Table 5.3. It can been seen that FSC2
significantly outperforms the other methods over all metrics. Compared with PPO-based
methods, the actor-critic algorithm achieves better results even with less model updates
in the training. Compared with IPPO, MAPPO performs better most of the time but its
centralized value function does not achieve better multi-agent collision avoidance when
the swarm density is extremely higher than that in its training.

From the video rendering results, the swarm search strategy, especially the swarm
migration ability (see Section 5.3.2), plays an vital role in the overall performance,
the ineffectiveness of which contributes to the inferior performances of general MARL
policies. Besides, another main challenge of general MARL algorithms is the multi-agent
safety issue, such as the collisions. It is very hard to achieve the safety guarantee by
a reward function, which is especially challenging with more agents and conflicts of
interests being involved [99]. The conflicts are non-trivial to be resolved since agents
make decisions and execute actions simultaneously in POMG. In contrast, FSC2 employs
the CCR algorithm as the third module in its framework for the close coordination of
agents, the safety of which is guaranteed by the fitness function in the online planning.

69

CHAPTER 5. MULTIPLE EVADERS PURSUIT WITH PARTIAL OBSERVATION

Scalability and swarm performance of FSC2 The swarm performance and scala-
bility of up to 2048 FSC2 agents are tested in multi-target SOP in 40£40 and 80£80 grid
worlds, as shown in Figures 5.5 and 5.6, respectively. Almost all experiments achieve
a nearly 100% average capture rate except that when the number of pursuers is too
small to cover the space in the maximum of 500 time steps, such as in the cases of 4 and
8 pursuers in 80£80 grid worlds in Figure 5.6. However, the more than 68% average
capture rate proves the efficient search ability of FSC2 agents in such trials.

Figure 5.5: Swarm performance in the multi-target self-organizing pursuit (SOP) in
40£40 grid wolds with different numbers of targets and pursuers, where the mean and
standard deviation of the experimental results in 100 independent runs are plotted.

Note that, the collisions in 0.22% and 2.1% of the trials in Figures 5.5 and 5.6 occur
when the FSC2 agent is a searcher, i.e., the SOS agent in Algorithm 5.1. This does not
mean a performance degradation of SOS agents in SOP tasks. Rather, it reveals the weak
safety guarantee of RL algorithms. Figure 5.7 gives two consecutive frames showing
an inter-agent collision when 128 targets and 512 pursuers are deployed in the 40£40
grid world. Although SOS agents learn to interact with each other in the multi-agent
environment and the collisions are reduced significantly, it cannot be avoided absolutely.
In the search subtask, SOS agents are only trained in very simple environments where

70

5.4. EXPERIMENTS

Figure 5.6: Swarm performance in the multi-target self-organizing pursuit (SOP) in
80£80 grid wolds with different numbers of targets and pursuers, where the mean and
standard deviation of the experimental results in 100 independent runs are plotted.

Figure 5.7: Multi-agent collision scenario illustration in the multi-target SOP with 128
targets (red squares) and 512 agents (blue squares) in 40£40 grid world: the two circled
agents in step 14 are two searchers that collide with each other in step 15.

boundary walls are the only obstacles. By deploying SOS agents in the multi-target SOP,
however, they are often surrounded by increasingly complex distribution of captured
targets and locked pursuers that are equivalent to obstacles, and the environment is
more like a complicated maze. Besides, compared with the collision avoidance with static

71

CHAPTER 5. MULTIPLE EVADERS PURSUIT WITH PARTIAL OBSERVATION

obstacles, the multi-agent collision avoidance is a more complicated coordination problem
that is harder to be fully guaranteed by RL. In such scenarios, FSC2 agents can still
capture nearly 100% of the targets within the limit of 500 time steps without collisions
most of the time, which can also be seen from the large standard deviation of the nonzero
mean collisions in Figures 5.5 and 5.6.

In addition, the relatively stable swarm performance of FSC2 agents indicates that
the three proposed subsolutions in FSC2, i.e., the MARL-trained self-organizing search
(SOS) agents, fuzzy-based distributed task allocation, and the CCR-based single-target
pursuit, all fulfill their responsibilities effectively and efficiently, which also indicates
the good scalability of FSC2 agents. Due to the fully distributed nature of the proposed
self-organizing algorithm FSC2, its application and performance are not restricted by
the swarm size.

5.4.3 Self-organizing search (SOS) experiments

Figure 5.8: Training performance comparison on self-organizing search (SOS) over 10
random seeds, where the solid lines and shaded areas represent the mean and standard
deviation of the corresponding performance, respectively.

The training performances of the actor-critic, ApeX-DQN, and MADDPG models for 8
agents searching 50 targets in 40£40 grid worlds are shown in Figure 5.8. The average
episode reward, episode length, number of collisions between agents, and number of
collisions with obstacles all contribute to the reward received by agents as given in Table
5.1 and thus the agents’ training, while the episode search rate is not part of the reward
function and is presented to illustrate the effectiveness of the training.

The actor-critic model has the best training performance in terms of convergence
speed, the final converged values, and the stability of the training performance. In
contrast, both MADDPG and ApeX-DQN are influenced more by the random seeds in
the training. MADDPG oscillates severely during the training process. Regarding to
ApeX-DQN, it is observed that the convergence speed is not the most important metric
since its performance may degrade and diverge badly with a faster convergence speed.
Therefore, the parameters are chosen to enable ApeX-DQN’s performance to improve

72

5.4. EXPERIMENTS

steadily, the final performance of which is proven to be better than the best training
performance of the parameters with faster convergence that later degrade.

Figure 5.9: Single SOS agent performance comparison in grid worlds of different sizes,
where the mean and standard deviation of the experimental results in 100 independent
runs are plotted

Second, a single agent’s searching performance is compared in the 20£ 20,40£
40,60£ 60, and 80£ 80 grid worlds with 5 targets in Figure 5.9. With the increase
of the environment size and the sparsity of targets, the performances of all policies
change accordingly, and the actor-critic searcher is always the best. For the random-walk
searcher, the environment size has little influence on its performance due to its local
random movements, which take longer to explore farther regions. For the systematic
searcher, when the environment size is too large to allow it to perform a complete
systematic search in a limited time, its performance is slightly better than that of the
random-walk searcher. Therefore, compared with a complete searcher, the actor-critic
searcher has better performance in searching targets in a limited time in most scenarios.

Third, the swarm performance of different policies are compared by searching 50
targets with 8 searchers in 20£20,40£40,60£60, and 80£80 grid worlds, as shown
in Figure 5.10. The smaller the environment is, the larger the swarm density is, and
the more challenging the multi-agent coordination is; and the actor-critic swarm always
performs best. Although MADDPG is the algorithm that considers the multi-agent
interactions the most in its critic function learning, its performance is not as good as

73

CHAPTER 5. MULTIPLE EVADERS PURSUIT WITH PARTIAL OBSERVATION

Figure 5.10: Swarm performance comparison of 8 SOS agents searching 50 targets in
grid worlds of different sizes, where the mean and standard deviation of the experimental
results in 100 independent runs are plotted

that of actor-critic. In addition, since MADDPG learns a unique critic function for each
agent, when the number of agents changes, it needs to relearn.

Finally, the comparison of Figures 5.9 and 5.10 proves two facts. First, the superiority
of a swarm of independent agents over a single-agent system stems from the benefits of
introducing more agents, such as random-walk agents and systematic agents. Second,
coordinated inferior agents may sometimes outperform single superior agents in some
aspects, such as the swarm of ApeX-DQN agents that outperform the single actor-critic
agent.

Explainable search behavior analysis and sparse targets exploration One ba-
sic problem to be solved in self-organizing search is how a searcher behaves when there
is no information (no targets and no other searchers) in its current perception, i.e., in
the case of an empty observation. To simulate natural flocking, Reynolds [70] proposed
three behavioral rules for individual agents: (1) avoid collisions with neighbors; (2) match
velocity with neighbors, and (3) stay close to neighbors, which also appear in the three
behavior patterns of individual fish models in the movement of a school [67]. However,
as indicated in [70], these three behaviors can only support aimless flocking; it is also
observed in our experiments that if only these three rules are applied, agents can group

74

5.4. EXPERIMENTS

together yet become tangled with each other in local regions so that the whole group
loses the search ability.

Similar to the case of adding a global direction or global target as the flock’s migratory
urge in [70], it is observed that the successfully trained self-organizing searchers learn
similar behaviors by themselves. As shown in Figure 5.11, the actor-critic searcher’s
behavior is tested by always feeding it with the empty observation, and then estimate
the searcher’s action distribution over its 5 legal actions by running these tests in 100
independent runs with 1000 steps per run.

It can be seen that although different policies trained with different random seeds
have different preferences, the common result is that they prefer a particular action
most of the time and stochastically choose other actions. In contrast to the random walk
with a uniform action distribution, shown as the red dashed line in Figure 5.11, this
trained action distribution ensures that a searcher will move in one direction most of
the time and occasionally switch to another direction, which benefits the target search
since the searchers are moving farther away, exploring nonrepeatable areas most of the
time, and covering a wide expanse of the map in a limited time. This searching behavior
also provides a way to the space exploration problem with sparse targets, as the example
shown in Figure 5.9.

In addition, since the self-organizing searchers are homogeneous, when all searchers
perform similar behaviors, as a whole, the self-organizing search swarm behaves as
an emergent self-organized pattern. In other words, the self-organized pattern in the
self-organizing search emerges here because the agents are homogeneous and behave
according to the same meaningful actions.

5.4.4 Consistency analysis in distributed task allocation

In the distributed task allocation, pursuers and targets are grouped into clusters such
that the multi-target SOP is locally decomposed into several single-target pursuit prob-
lems. However, in this distributed decision-making process, there may be inconsistency
to some extent. As illustrated in Figure 5.12a, due to the partial observability of pursuers,
it is common that an agent can only observe part of another agent’s local perception so
that they have different knowledge of the world, which is the source of inconsistency in
distributed clustering.

For hard clustering, such as k-means, an agent randomly selects one of its nearest
targets as its cluster center, while for fuzzy clustering, the choice of targets is determined
stochastically by the fuzzy membership matrices. The random choices between the

75

CHAPTER 5. MULTIPLE EVADERS PURSUIT WITH PARTIAL OBSERVATION

Figure 5.11: Behavior probability or action distribution of actor-critic trained self-
organizing search (SOS) policy with the empty observation, which is estimated from 100
independent runs with 1000 steps per run. The different models are actor-critic policies
trained with different random seeds.

nearest targets in hard clustering and fuzzy membership values in the fuzzy clustering
may all stochastically result in different consistency matrices C. The DC value of each
matrix C is multiplied with its corresponding probability and obtain the stochastic DC
value. Figure 5.12a gives an example scenario in which fuzzy clustering is stochastically
superior to hard clustering. Such scenarios occur when the uncertainty outside of the
common observation area brings better options for the agents, such as T2 to A2 in Figure
5.12a. In contrast, as illustrated in Figure 5.12b, fuzzy clustering is stochastically inferior
to hard clustering when the uncertainty outside of the common observation area fails
to provide better options for the agents, such as T3 to A2, and when there is no any
uncertainty.

However, since uncertainty is inherent in the partially observable game, an agent
can never determine the level of uncertainty from only its own local view without other
related information communicated between neighboring agents. In addition, what is
important here is that with fuzzy clustering, in scenarios where fuzzy clustering is
stochastically inferior to hard clustering, its stochastic process enables it to be as good as
or even better than hard clustering. In contrast, with hard clustering, in scenarios where
hard clustering is not stochastically superior to fuzzy clustering, its clustering result will
never beat the fuzzy clustering result. Therefore, fuzzy clustering reduces the influence of
uncertainty in distributed task allocation in partially observable environments, especially
in cases without interagent communication.

76

5.4. EXPERIMENTS

(a) Illustrative scenarios: fuzzy clustering is stochastically superior to hard cluster-
ing. Note that, in M2, the membership value of A1 to T2 is 0 because A2 can infer
that T2 is outside the perception scope of A1 as all agents are homogeneous and
have the same perception radius.

(b) Illustrative scenarios: fuzzy clustering is stochastically inferior to hard clustering.

Figure 5.12: The computational process of DC in Equation (5.6) and stochastic compar-
isons between fuzzy clustering and hard clustering in distributed task allocation, where
the symbols “>" and “<" represent stochastically superior and inferior, respectively, and
a dashed rectangle around an agent of the same color indicates its local perception scope
with an inf -norm radius of 2 for the purpose of illustration.

5.4.5 Ablation studies

Influence of fuzziness: fuzzy clustering vs. hard clustering The fuzzy membership
value calculation of Equation (5.1) to (5.4) are replaced in the fuzzy clustering with a
hard clustering method. Since the cluster centers are known to be local free targets as
introduced in Section 5.3.1, there is no need to calculate the k cluster centers as k-means.
But, similar to the hard-clustering in k-means, an agent greedily selects the nearest
cluster center and joins that cluster. The result is shown in the column of FSC2-HC of
Table 5.3. In the 100 experiments, the efficiency degradation of FSC2-HC is observed in

77

CHAPTER 5. MULTIPLE EVADERS PURSUIT WITH PARTIAL OBSERVATION

terms of the episode length, but the statistical significance evidence is not obtained from
student t-test. Following the same statistical comparison of Table 5.3, the efficiency of
FSC2 and FSC2-HC are compared in 40£40 grid worlds with the 16, 32, 64, 128, 256,
512, and 1024 agents and get the same conclusion, as shown in Table 5.4. The conclusion
here is in accordance with the clustering consistency analysis that the fuzziness of fuzzy
clustering and its stochastic clustering enable the fuzzy clustering to be as good as or
even better than hard clustering. In other words, the task time is extended due to the
inconsistent distributed hard clustering. Besides, another reason that the stochastic
significance is not achieved may be that the fuzzifier parameter Æ in Equation (5.1) is
not optimized and our test experiments are not large enough to observe the difference.

Influence of memory The agent memory in the fuzzy clustering of Algorithm 5.2
is removed. The comparison result is shown in the FSC2-NM column of Table 5.3. It
is seen that without the agent memory, the multi-target pursuit performance degrade
significantly. As introduced in Section 5.3.1, without the memory, an agent is hard
to cope with temporal uncertainty due to the partial observation and may switch the
roles between searcher and pursuer. It causes the inconsistent or unstable successive
decision-making of agents in the time scale and thus reduce the overall task performance.

Influence of clustering In this part, the first module of FSC2: fuzzy clustering is
totally replaced with the random clustering to see to what extent an effective clustering
method can influence the overall multi-target pursuit. The result is shown in the FSC2-
RC of Table 5.3. It can be seen that, a random clustering performs significantly worse
than FSC2, FSC2-HC, and FSC2-NM, which prove the necessity of effective clustering to
the whole task completion.

Influence of “migration" ability in search In Section 5.3.2, three abilities for a
successful self-organizing searcher are proposed: (1) the ability to effective search as
a single agent; (2) the ability to form flocks and get benefits from the swarm; and (3)
the ability to perform effective “migration" like actions in order to realize the swarm
potential. In this part, the third ability is removed by replacing the second module of
FSC2: RL trained search policy, with the three behavioral rules proposed by Reynolds
[70] in simulating natural flocking and school of fish [67]. The three rules are: (1)
avoid collisions with neighbors; (2) match velocity with neighbors, and (3) stay close to
neighbors. As indicated in [70], these three behaviors can only support aimless flocking,
i.e., no “migration" ability. The result is shown in the FSC2-FS column of Table 5.3, which
significantly perform worse than others in terms of both capture rate and efficiency. It
proves the importance of “migration" ability in the self-organizing search.

78

5.4. EXPERIMENTS

5.4.6 Discussion

Computational complexity analysis. For a distributed partially observable agent
without communication, the computational complexity is not related to the swarm
size but only related to the observation range. Assume that there are n pursuers and
m targets in the local observation defined by the range r, where n+m ∑ r2, and let
ci, i = 1,2, ... be some constants. First, for the distributed task allocation in Section 5.3.1,
the time complexity in terms of Equations (5.2) to (5.5) is (c1 ·n ·m+ c3 ·m)+ c3 ·n ·m+ c4 ·
m+c5 ·n=O(n ·m). Second, for the SOS in Section 5.3.2, the time complexity of the policy
model with input size 3r2 is O(r2). Third, for the single-target pursuit in Section 5.3.3,
the time complexity 3 of Equation (5.12) is O(nlogn)+c1 ·n+c2 ·(m+n)=O(nlogn), while
the time complexity of calculating the lexicographic convention in Equation (5.17) is
O(n2)+O(m2)+O(n·m)=O(max(n,m)2) in the worst case. Therefore, based on Algorithm
5.1, FSC2’s time complexity is O(max(n,m, r)2) in the worst case.

Generalization of FSC2 and comparison with existing work. As introduced
in Chapter 2, there are many capture definitions in the pursuit domain. The proposed
FSC2 algorithm can be extended to other multi-agent pursuit games, although it is
originally proposed for the 4-pursuer-surrounding-based capture. For example, FSC2
satisfies the mass capture based pursuit in [101]. In FSC2, when pursuers surround the
target, the mass center of pursuers will match that of the target. But instead of the mass
center of the group including all pursuers matching that of the evader group and thus
one mass capture in [101], four pursuers take charge of each target and thus there are
many distributed mass captures in the FSC2. Therefore, compared with the mean field
reinforcement learning of Zhou et al. [101], FSC2 is more suitable for the pursuit where
pursuers and targets are spatially distributed. In particular, FSC2 can additionally deal
with the interagent collision avoidance. On the other hand, FSC2 can directly solve the
pursuit problems with one more time step if the capture is occupation-based and the
number of pursuers needed for a target is not greater than 4, as in MPE [49]. FSC2
agents only need to walk towards the target one more step after they surround the
target and the target cannot move. Actually, in addition to the occupation-based pursuit,
pursuers can do many things as long as the target is surrounded, such as tagging the
target as in MAgent [100]. In the proposed fuzzy-based distributed task allocation, the
number of agents is not limited in a cluster to greedily capture one visible target with as
many pursuers as possible. This is beneficial when applying the FSC2 in other pursuit
problems under the occupation-based capture yet with more than 4 pursuers for each

3http://www.qhull.org/html/qh-code.htm#performance

79

CHAPTER 5. MULTIPLE EVADERS PURSUIT WITH PARTIAL OBSERVATION

target. In addition, the fitness function, i.e., Equation (5.17), of the CCR algorithm
is originally designed to suit the capture with more than 4 pursuers, as shown in its
sequential decision-making version: CCPSO-R [83]. The only necessary modifications
are the capture definition and the order of agents in which they walk toward the target
to ensure that there are no collisions.

5.5 Summary

This chapter investigated the large-scale partial observable multi-target SOP problem
by formulating it as a POMG and proposed the distributed algorithm FSC2 based on
the fuzzy logic, MARL, and evolutionary computation. It does not rely on interagent
communication and is thus naturally robust to unavoidable communication failures in
general multi-agent game setups. In particular, FSC2 dealt with two kinds of uncertain-
ties in SOP: observation uncertainty and interaction uncertainty. By comparing with
other implicit coordination policies, the superior performance of FSC2 and the benefits of
the hierarchical framework by decomposing the task are proved. The scalability, inter-
pretability, and rationality of FSC2 have been verified through experiments, empirical
analyses, and ablation studies.

However, the safety of interagent collision avoidance is difficult to be guaranteed by
MARL without explicit communications, which has also been verified by our experiments.
This was one motivation that MARL is only applied in the search sub-task, not the
target pursuit task which needs more close coordination and challenges the RL methods
more. In future work, more complex self-organizing patterns are expected to emerge
that are not simply due to homogeneous agents, and the distributed implicit multi-
agent coordination problem needs to be further investigated, especially in terms of the
multi-agent safety issue.

80

C
H

A
P

T
E

R

6
ADVERSARIAL PURSUIT-EVASION WITH PARTIAL

OBSERVATION

6.1 Background

This chapter investigates the adversarial pursuit-evasion game, where both pursuers
and evaders co-evolve. First, this chapter presents a brief survey and clarifies the
relationships between several similar concepts: co-evolution, self-play, autocurricula,
adaptation, arms races, and adversarial learning, as shown in Figure 6.1. The aim is to
better understand and highlight the role of co-evolution in multi-agent settings, more
accurately use related terminologies, and discuss some common misleading expectations
and magics, especially for researchers who are new to this field. Based on this, it is argued
that MatrixWorld can serve as the first environment for autocurriculum research, where
ideas can be quickly verified and well understood. Then, this research designs three
adversarial learning algorithms based on different co-evolution mechanisms. Based
on the experiments, various arms race outcomes are achieved. In particular, arms
races with steady and converging improvement are more practical for increasingly
complex behaviors, while policy cycles between two rival sides are useful for producing
diverse policies. Besides, this research finds that the passive (evasive) policy learning
benefits more from co-evolution than active (pursuing) policy learning in an asymmetric
adversarial game.

81

CHAPTER 6. ADVERSARIAL PURSUIT-EVASION WITH PARTIAL OBSERVATION

6.2 Brief survey on co-evolution, autocurriculum,
and arms race

Figure 6.1: Relationships between co-evolution, self-play, autocurricula, arms races, and
adversarial learning.

6.2.1 Co-evolution

Co-evolution is an natural phenomenon that witnesses the evolutionary progress and co-
adaptations of, such as biological species. As an evolutionary and learning mechanism, its
appealing properties, including autonomous co-adaptation and arms races, the natural
modeling of coupled relationships, and performance improvement, contribute to its
sustained success in diverse research fields and applications.

The most distinct feature of co-evolution is that the fitness evaluation of one indi-
vidual depends on other individuals, where each individual is a separately evolving or
learning agent. Co-evolution happens when adaptations occur between different agents,
such as pursuers and evaders, environmental configurations and the agents therein. Its
effectiveness is promoted by iterative coordinated learning among diverse individuals,
which may induce a steadier and more guaranteed improvement. Therefore, co-evolution
is more akin to a framework that can integrate different evolutionary computations
(ECs), reinforcement learning (RL) algorithms, etc.

The available co-evolution methods can be broadly classified into three categories.
First, there are competitive and cooperative co-evolution, which describe the relationships
between individuals. However, they do not determine the number of populations that
co-evolve. Individuals in one population can be competitive, while individuals from

82

6.2. BRIEF SURVEY ON CO-EVOLUTION, AUTOCURRICULUM, AND ARMS RACE

multiple populations may be cooperative. The number of co-evolving populations defines
the second category: intra-population and inter-population co-evolution methods. Third,
co-evolution can be classified into symmetric and asymmetric contests. Symmetric co-
evolution is for homogeneous agents in the sense that they learn similar skills for the
same tasks. In contrast, asymmetric co-evolution is for heterogeneous agents that target
different skills for different, perhaps competitive, tasks.

6.2.2 Self-play

Self-play is a kind of competitive co-evolution process. It generally refers to the com-
petitive interactions of multiple agents but can also occur between different “minds"
(policy models) of the same physical agent, such as Alice and Bob in the research of
Sukhbaatar et al. [81]. Its idea is that learning progress is only achieved by the interplay
or interaction between agents without external interference. For example, Jaderberg
et al. [41] trained symmetric adversarial agents in a competitive game (capture the
flag) by letting the agents in a population play with each other. Baker et al. [2] trained
asymmetric adversarial agents in another competitive game: hide-and-seek through
multi-agent competitions.

6.2.3 Adaptation and arms races

Arms races between two rival sides are common in nature, such as those between
predators and prey, and between parasites and hosts. Biologically, Dawkins et al. [23]
discussed an arm race as an evolutionary process of reciprocal counter-adaptations and
the resultant challenges faced by two sides. Based on this definition, it seems that the
most crucial feature for identifying an arms race in a co-evolution process is the driving
force derived from mutual counter-adaptations. However, note that, adaptations and
challenges do not necessarily mean more complex, stronger, or more general skills, which
will be further explored in Section 6.2.4.

In addition, Dawkins et al. [23] proposed a two-way classification paradigms for arms
races, i.e., symmetric or asymmetric, and interspecific or intraspcific, which form four
possible combinations with biological examples. This is also consistent with the categories
of co-evolution. In addition, they summarized four classes of arms race endpoints: one
side wins by driving the other to extinction, one side wins by first reaching its optimum,
equilibrium endpoints, and cyclic endings. One of the interesting discussions provided by
Dawkins et al. [23] indicates that the average success of one side, such as the capture rate

83

CHAPTER 6. ADVERSARIAL PURSUIT-EVASION WITH PARTIAL OBSERVATION

of predators, does not necessarily increase with the evolutionary time in an arms race.
This is because both rival sides are improving. Then, the question of how to evaluate an
arms race is progressing is actually the same as asking how the arms race will terminate,
as described by the four possible outcomes of arms races.

6.2.4 Curriculum learning (CL), automatic CL, and
autocurricula

Curriculum learning (CL) [10] refers to a training strategy that learns from a sequence
of related tasks organized with increasing difficulty, which generally achieves better
results faster than normal learning methods. Rather than manually designing a set of
tasks and the time required to switch between them, automatic CL automates part or
all of the training process [93]. In particular, the autocurriculum concept proposed by
Leibo et al. [46] specifically refers to automatic CL in multi-agent settings, where the
sequence of tasks or challenges is self-generated from mutual counter-adaptations in
multi-agent interactions, i.e., an arms race. In this sense, an autocurriculum can be seen
as equivalent to self-play.

However, based on both biological observations [23] and artificial intelligence (AI)
investigations [46], it is noted that challenges do not definitely mean more difficult or
complex tasks, and adaptations to these challenges do not necessarily involve increas-
ing strong abilities. Even the commonly adopted difficulty ranking of tasks, i.e., from
easy to hard, in curriculum learning is not guaranteed to be optimal in all cases [93].
The conditions for obtaining different arms race outcomes have attracted researchers’
attention. Particularly, people are more interested in generating stronger models, such
as agents with more complex behaviors. Compared with the various optimal rankings
of task difficulties, seemingly, the conclusions on how to avoid policy cycles are more
consistent. It has been shown that the policy cycling issue may occur in both symmetric
and asymmetric arms races, for example, in a symmetric intra-population adversarial
game of rock-paper-scissors [46] where the same agent strategy can play two different
roles, and an asymmetric game [58]. Nolfi et al. [58] investigated the policy cycling
problem in the co-evolution and proposed that it could be reduced by evaluating the
current policy with all past policies, which successfully drives the evolutionary process
to an arms race with increasing complexity. The same conclusion was also identified
by Leibo et al. [46] and Vinyals et al. [92]: self-play algorithms that do forgetting past
policies provide a way to break out the policy cycling problem. In addition, Leibo et al.

84

6.2. BRIEF SURVEY ON CO-EVOLUTION, AUTOCURRICULUM, AND ARMS RACE

[46] pointed out that the ceiling of the intelligence that can be achieved by an arms race
is determined by the “environment’s carrying capacity", or the task definition that the
autocuriculum is trying to solve. This research actually states that optima are defined
by the problem itself. For example, in a pursuit-evasion game without tools, novel tool
usages will never emerge.

6.2.5 Adversarial learning

Adversarial learning (AL) is a training framework that optimizes adversarial models
with conflicting objectives and is typically implemented in an alternative learning mode.
Different from minimax search algorithms [72] in which an agent optimizes itself against
an optimal adversary, AL can be more general, as will be shown in our experiments
(Section 6.4). Subsequently, AL is not the only way to co-evolve adversarial agents
and is more of an example implementation of self-play. For example, in the symmetric
adversarial game “capture the flag" [41], population-based RL was used to train a
population of agents with similar skills that could play two adversarial game roles.

In addition, one main application of AL is to target an ultimate protagonist model
rather than an adversary model, such as the generator model in generative adversarial
networks (GANs) [32] and primary agents in the robust adversarial reinforcement
learning (RARL) [50, 62, 66]. Last, note that not all adversarial work refers to co-
evolutionary adversarial learning, and they may be merely normal learning approaches
in adversarial settings. In these works, only one side in the adversarial setting is
intentionally trained to be an opponent of the other, such as the adversarial policies in
RL [31] and adversarial examples.

6.2.6 MatrixWorld: A lightweight co-evolution environment

Biologically, predators pursue their prey for dinner, while prey evade predators for
life, and their co-evolutionary arms race and co-adaptations never stop. In AI, the co-
evolutionary pursuit-evasion has been studied since 1994 [51, 53, 54, 71], which is
slightly later than the research on pursuit or evasion alone, which has taken place
since 1953 [48]. Compared with complex 3D first-person video games such as Quake III
Arena [41], real-time strategy games such as StarCraft II [73], or adversarial games that
need millions of episodes for arms races [2], MatrixWorld is a lightweight and simple
co-evolution framework based on the pursuit-evasion game.

85

CHAPTER 6. ADVERSARIAL PURSUIT-EVASION WITH PARTIAL OBSERVATION

As discussed above, research on co-evolution is still open and it is supposed to be
promising for automatically generating more complex agent behaviors and intelligence
from the arms races in multi-agent interactions. This research suggests that MatrixWorld
can serve as the first environment for quickly verifying and effectively understanding
research ideas in autocurricula.

6.3 Adversarial learning algorithms for
pursuit-evasion

This research particularly explores three representative co-evolution frameworks and
their influences on the arms race process and outcomes.

• Pursuer specialist vs. evader specialist (Algorithm 6.1): Pursuers are trained to be
specialized for the current evaders, and so are the evaders.

• Pursuer generalist vs. evader specialist (Algorithm 6.2): Pursuers are trained to be
general, while the evaders are trained to be specialized to their opponents, which is
an unfair training system but may be more practical in the real world. For example,
police can learn from all past criminal data, while criminals may only access the
current police data.

• Pursuer generalist vs. evader generalist (Algorithm 6.3): Pursuers are trained to
be general and robust for all past evaders, and so are the evaders.

The alternative learning scheme of adversarial learning is applied that when one side
learns the other side is fixed.

6.4 Experiments

In this section, through adversarial learning, various arms race outcomes of different
co-evolution mechanisms are achieved in MatrixWorld. Based on experiments, arms races
with steady and converging improvement are more practical for increasingly complex
behaviors, while policy cycles between two rival sides are useful for producing diverse
policies. In particular, this research finds that the passive (evasive) policy learning
benefits more from co-evolution than active (pursuing) policy learning in an asymmetric
adversarial game. An arms race can drive the passive policy to a higher level than that

86

6.4. EXPERIMENTS

Algorithm 6.1: Adversarial learning: Pursuer specialist vs. evader specialist
1 Initialize pursuer model µp

0 and evader model µe
0.

2 for generation k= 1 :N do
3 µ

p
k,kp=0 = µ

p
k°1.

4 for kp = 1 :Np do
5 Collect experiences by µ

p
k,kp°1 and µe

k°1.
6 Pursuer model update µ

p
k,kp°1 ! µ

p
k,kp .

7 µ
p
k = µ

p
k,Np .

8 µe
k,ke=0 = µe

k°1.
9 for ke = 1 :Ne do

10 Collect experiences by µ
p
k and µe

k,ke°1.
11 Evader model update µe

k,ke°1 ! µe
k,ke .

12 µe
k = µe

k,Ne .
13 return µ

p
N ,µ

e
N .

Algorithm 6.2: Adversarial learning: Pursuer generalist vs. evader specialist
1 Initialize pursuer model µp

0 and evader model µe
0.

2 for generation k= 1 :N do
3 µ

p
k,kp=0 = µ

p
k°1.

4 for kp = 1 :Np do
5 ke = kp mod k.
6 Collect experiences by µ

p
k,kp°1 and µe

ke .
7 Pursuer model update µ

p
k,kp°1 ! µ

p
k,kp .

8 µ
p
k = µ

p
k,Np .

9 µe
k,ke=0 = µe

k°1.
10 for ke = 1 :Ne do
11 Collect experiences by µ

p
k and µe

k,ke°1.
12 Evader model update µe

k,ke°1 ! µe
k,ke .

13 µe
k = µe

k,Ne .
14 return µ

p
N ,µ

e
N .

in normal RL. Finally, based on experiments in Pursuit-Evasion-S, this research shows
the demanding safety assurance regarding the reward shaping or other techniques in
safe MARL.

87

CHAPTER 6. ADVERSARIAL PURSUIT-EVASION WITH PARTIAL OBSERVATION

Algorithm 6.3: Adversarial learning: Pursuer generalist vs. evader generalist
1 Initialize pursuer model µp

0 and evader model µe
0.

2 for generation k= 1 :N do
3 µ

p
k,kp=0 = µ

p
k°1.

4 for kp = 1 :Np do
5 ke = kp mod k.
6 Collect experiences by µ

p
k,kp°1 and µe

ke .
7 Pursuer model update µ

p
k,kp°1 ! µ

p
k,kp .

8 µ
p
k = µ

p
k,Np .

9 µe
k,ke=0 = µe

k°1.
10 for ke = 1 :Ne do
11 kp = ke mod (k+1).
12 Collect experiences by µ

p
kp and µe

k,ke°1.
13 Evader model update µe

k,ke°1 ! µe
k,ke .

14 µe
k = µe

k,Ne .
15 return µ

p
N ,µ

e
N .

6.4.1 Experimental setup

The policy models for the pursuers and evaders are both two-layer ReLU multi-layer
perceptrons (MLPs) with hidden sizes of [400, 300]. The actor-critic [85] algorithm is
adopted in the centralized training and decentralized learning (CTDE) scheme, with the
policy and value learning rates set to 3£10°4 and 10°3, respectively. To stabilize the
learning process, the actor model is trained 5 times, while value function is trained 1
time per epoch. N = 30 generations of co-evolution are conducted for Algorithms 6.1, 6.2,
and 6.3, with Np =Ne = 400 epochs in each generation. For the Pursuit-Evasion-O task,
8 pursuers compete with 30 evaders in 40£40 grid worlds, while for Pursuit-Evasion-S,
20 pursuers compete with 5 evaders since 4 pursuers are required for every evader in
the surrounding-based capture paradigm. The reward functions are shown in Table 6.1.

Suggestion: Set the hyperparameters Np and Ne to allow the (moving average)
learning performance improve to some extent. In this way, an arms race can be observed
in the adversarial learning; otherwise, neither rival side can learn effectively.

6.4.2 Autocurricula in co-evolutionary pursuit-evasion

Adaptation and arms race occur between pursuers and evaders. As shown in the
training performance presented in Figure 6.2, the learning of pursuers brings challenges

88

6.4. EXPERIMENTS

Table 6.1: Reward function for all pursuit-evasion tasks. “°": the same.

Pursuer Evader
Action Reward Action Reward

Capture an evader 10 Being captured -10
Neighbor an evader 0.1 Being neighbored -0.1

Collide -12 ° -12
Move before termination -0.05 ° -0.05

to the evaders’ policis, the capture rate increases, and vice versa. The performance of the
agents (pursuers and evaders) continues to improve with iterative generations. Their
performance variance brought by policy adaptations tends to converge as the number
of generations increases, but this is not the end of the arms race. When many more
generations than N = 30 are observed, say 100 generations, this research finds that the
performance variance diverges again, which demonstrates the sustained adaptations
during the arms race.

Policy cycles occur in the specialist-vs.-specialist framework, but they are
avoided in the generalist-vs.-generalist scheme. As shown in Figure 6.3, the evolu-
tionary performance (capture rate) of the evaders are tested against the pursuers in each
generation. The policy cycles are observed in Figure 6.3a, where both the pursuers and
evaders learn only against their contemporary opponents. The evaders’ performances
against the pursuers in a specific generation, i.e., one row in the figure, fluctuate periodi-
cally from generation to generation, or even decrease sometimes. This indicates that due
to the mutual adaptations of pursuers and evaders, their skills periodically appear and
disappear, which is called a policy cycle [58]. On the other hand, such policy cycles from
counter-adaptations are useful for producing diverse policies with similar complexity
levels. In contrast, when the pursuers are trained to be general in Algorithm 6.2, the
policy cycle problem is less severe in Figure 6.3b. Furthermore, when both the pursuers
and evaders learn against all past opponents, the skill of competing with a specific
pursuer is preserved in later generations, which can be seen from the stable performance
in Figure 6.3c after the evaders first learn against that pursuer. This indicates that
learning against past opponents helps avoid forgetting already learned skills. This result
is consistent with the idea of past literature works on eliminating policy cycles, such as
[46, 58, 92].

An arms race is more useful for learning passive policies. In Figure 6.4, the
generalization performance of the agent in each generation is tested by averaging its

89

CHAPTER 6. ADVERSARIAL PURSUIT-EVASION WITH PARTIAL OBSERVATION

Figure 6.2: Training performance achieved for Pursuit-Evasion-O by Algorithms 6.1, 6.2,
and 6.3 (from top to bottom). The curves are smoothed over 30 points.

90

6.4. EXPERIMENTS

(a) Pursuer specialist vs. evader specialist (Algorithm 6.1)

(b) Pursuer generalist vs. evader specialist (Algorithm 6.2)

(c) Pursuer generalist vs. evader generalist (Algorithm 6.3)

Figure 6.3: Evolutionary performance (capture rate) of evaders based on the testing
performance achieved on Pursuit-Evasion-O, which is averaged over 10 independent
runs. Horizontal axis: E0 - E30, the 30 generations of evaders. Vertical axis: P0 - P15
(left), P16 - P30 (right), the 30 generations of pursuers. E0 and P0 are the initial evaders
and pursuers. A black dashed line indicates the associated pursuer and evader are in
the same generation.

91

CHAPTER 6. ADVERSARIAL PURSUIT-EVASION WITH PARTIAL OBSERVATION

performance against the opponents across all generations. At the same time, this research
compares it with three baselines.

• Baseline 1: the pursuer that is trained by competing with randomly walking
evaders.

• Baseline 2: the evader that is trained by competing with randomly walking pur-
suers.

• Baseline 3: the evader that is trained by competing with well-learned pursuers.
The well-learned pursuer is trained by competing with randomly walking evaders.
That is, the baseline 3 is trained via manual curriculum learning.

The conclusion that an arms race is more useful for learning passive (evasive) policies
can be drawn based on two consistent observations from Figure 6.4a to 6.4c. First, adver-
sarial learned evaders have better generalization performance than the baseline evaders,
while adversarial learned pursuers do not achieve significantly better generalization
performance than the baseline pursuers. Second, it can be seen that the complexity of a
passive evasive policy highly depends on opponents’ ability. When trained only against
random pursuers, the evaders’ performance is hard to improve once it reaches a certain
level, which is the worst in Figure 6.4. If trained against stronger pursuers, i.e., well-
learned pursuer, their performance is significantly enhanced. The best evader policies
are obtained by adversarial learning. This indicates that autocurriculum learning is
achieved and increasingly strong pursuers drive the continuous learning of evaders.

6.4.3 General MARL in safe multi-agent coordination scenarios

Compared with Pursuit-Evasion-O, more multi-agent conflicts of interest may occur in
Pursuit-Evasion-S since more explicit multi-agent coordination is required to capture
each evader with four pursuers. Therefore, this research demonstrates the difficulties
faced by general MARL in guaranteeing safe multi-agent coordination with only negative
rewards for collisions in Pursuit-Evasion-S. As shown in Figure 6.5, after training for
1000+ epochs, the reward and capture rates improve significantly. However, more conflicts
of interest occur with increasingly efficient capture behavior, as shown in the collision
statuses. The multi-agent collisions do not absolutely vanish with a longer training time,
especially in test scenarios, although the costs of collisions are larger than the benefits of
capturing an evader in the reward structure (Table 6.1).

92

6.4. EXPERIMENTS

(a) Pursuer specialist vs. evader specialist (Algorithm 6.1)

(b) Pursuer generalist vs. evader specialist (Algorithm 6.2)

(c) Pursuer generalist vs. evader generalist (Algorithm 6.3)

Figure 6.4: Generalization performance achieved for Pursuit-Evasion-O.

93

CHAPTER 6. ADVERSARIAL PURSUIT-EVASION WITH PARTIAL OBSERVATION

Figure 6.5: Training performance achieved for Pursuit-Evasion-S.

6.5 Summary

This chapter has revisited the concepts of co-evolution, autocurricula, self-play, arms
races, and adversarial learning, and has clarified their relationships for better under-
standing and more accurate terminology usage. Through experiments, this research
shows that ideas of autocurricula can be quickly verified and well understood in Matrix-
World. Finally, this research demonstrate the difficulties of general MARL algorithms in
the safe multiagent coordination with only negative reward for collisions, which is one
motivation of our work and challenge to the safe MARL community.

94

C
H

A
P

T
E

R

7
CONCLUSION AND FUTURE WORK

7.1 Conclusion

This thesis has investigated the multi-agent coordination algorithms for pursuit-evasion
games. The research objective is to achieve emerging swarm intelligence in the dis-
tributed implicit coordination of large-scale multi-agent systems (MAS), with only obser-
vations and no communications, as some of self-organizing systems in nature. To this
end, five research questions have been answered in the thesis: how to resolve collisions in
the multi-agent environment; how to be cooperative in a distributed way; how to allocate
the multi-agent task; how to overcome the partial observation; how to get the arms race
from the competitive co-evolution.

First, a safety-constrained multi-agent pursuit-evasion platform: MatrixWorld, has
been proposed in Chapter 2. It addresses the limited safety support of popular multi-
agent environments and contributes to the safe multi-agent coordination and autocur-
riculum learning in four ways. (1) The proposed safety-constrained multi-agent action-
execution model is general for the software implementation of safe multi-agent envi-
ronments. Its rationality, feasibility, and diversity in terms of the safety definition will
guide algorithms learn correctly from right feedback. (2) Nine pursuit-evasion variants
has been defined for example scenarios like real-world vehicle swarm, multi-agent path
finding (MAPF), popular pursuit-evasion setups, and classic cops-and-robbers problem.
(3) Safety related environmental information has been provided in the API for the open
safe MARL research, such as performance evaluation, reward shaping, and safety con-

95

CHAPTER 7. CONCLUSION AND FUTURE WORK

straints construction. (4) MatrixWorld can serve as a lightweight co-evolution framework
for autocurriculum research, where ideas can be quickly verified and well understood.

Second, for the distributed coordination problem, this research finds that the coop-
erative co-evolution performance evaluation mechanism is useful to reach the swarm
benefits from the distributed agent’s perspective, and scalable with the swarm size. Be-
sides, among the swarm intelligence (SI) algorithms, the position concept and update rule
in particle swarm optimization algorithm (PSO) naturally fit the multi-agent scenario.
Based on these findings, this research has proposed the cooperative co-evolutionary
particle swarm optimization algorithm for robots (CCPSO-R) for the full observable
pursuit of a single evader (Chapter 3). Further, the concept of virtual agents has been
introduced along with the real agents to allow the concurrent search of swarm and
individual benefits. A modular fitness functions has been heuristically designed, which
separates the collision avoidance mechanism from SI itself. Experiments have shown the
better reliability, generality, scalability, and effectiveness of CCPSO-R, compared with
the repsentative dynamic path planning method.

Third, for the multi-agent task allocation problem, this research finds that the main
limitation of centralized task allocation methods is that its optimization time is hard
to match the real-time requirement in dynamic MAS, even when the search space
is reduced significantly by utilizing the domain knowledge. For example, in the full
observable pursuit of multiple evaders (Chapter 4), the proposed BiPCCR algorithm
is struggle to deal with the swarm size larger than 16 agents. Besides, this research
also finds that the fuzziness and soft clustering in fuzzy logic provide a feasible way to
cope with the consensus issue in the distributed implicit task allocation. For example,
in the partial observable pursuit of multiple evaders (Chapter 5), the necessity and
effectiveness of the FSC2 component algorithm: fuzzy clustering have been proved by
the superior overall performance of FSC2, empirical analyses, and ablation studies.

Fourth, for the partial observation problem, this research finds that it challenges
all sub-tasks in the partial observable pursuit (Chapter 5). Accordingly, this research
has proposed the FSC2 (fuzzy self-organizing cooperative co-evolution) algorithm. To
overcome the frequent switch of agent roles in the distributed task allocation, FSC2
introduces the incremental agent memory. To achieve global coordination in the sparse
targets exploration, FSC2 utilizes the reinforcement learning to learn the unknown
local search policy. To address the safety risk arsing from the observation uncertainty in
decisions, FSC2 designs the lexicographic convention and defines the concept of certain
partial observation in the close single evader capture. Empirical analyses and ablation

96

7.2. LIMITATIONS AND FUTURE WORK

studies have verified the interpretability, rationality, and effectiveness of the above
designs. Experiments have demonstrated the superior performance of FSC2 compared
with policies fully trained by general MARL algorithms. In this case, the pursuit by 2048
agents are demonstrated.

Fifth, for the competitive co-evolution of adversarial agents, this research finds that
the co-evolution is a bigger framework, self-play is a kind of competitive co-evolution,
autocurricula can be seen as equivalent to self-play, an arms race is an evolutionary
process driven by mutual counter-adaptations and not necessarily means increasingly
complex multi-agent behaviors, and adversarial learning is an alternative learning mode
in the current practice, which is more of an example implementation of self-play. Through
adversarial learning experiments, various arms race outcomes have been achieved by
different co-evolution frameworks. In particular, this research finds that the arms race
in an asymmetric adversarial game can drive the passive (evadive) policy to increasing
complexities, the learning of which highly depends on its opponents’ ability.

7.2 Limitations and future work

There are limitations in this work. For example, to keep safe coordination, this research
integrates the collision avoidance constraint in the cooperative co-evolution fitness
function and designs the lexicographic convention for close multi-agent coordination.
Although these methods work well, they are inefficient sometimes and even trapped in
rare deadlocks, which need to be optimized by, such as learning algorithms, in the future.
Another limitation of this research is that the large-scale multi-agent coordination is
achieved because the swarm agents are homogeneous and the proposed algorithms are
not optimized based on the swarm size. However, the homogeneity assumption is not
always true in real-world applications. In the future, more efforts can be devoted to
achieve the scalable coordination for heterogeneous multi-agent swarm.

Finally, this research recommends the proposed safety-constrained multi-agent action
execution model to be used in other multi-agent environments for safe coordination
research. The pursuit-evasion based MatrixWorld can be used as the first lightweight
co-evolution environment to quickly verify and well understand autocurriculum ideas,
which can be then applied in more complex but heavy multi-agent problems. Besides,
MatrixWorld can be also utilized to investigate many other grid world based tasks,
including the multi-agent path finding (MAPF), etc. Last, the proposed FSC2 algorithms
can serve as a strong baseline for the large-scale distributed pursuit problem.

97

BIBLIOGRAPHY

[1] J. L. BA, J. R. KIROS, AND G. E. HINTON, Layer normalization, arXiv preprint
arXiv:1607.06450, (2016).

[2] B. BAKER, I. KANITSCHEIDER, T. MARKOV, Y. WU, G. POWELL, B. MCGREW,
AND I. MORDATCH, Emergent tool use from multi-agent autocurricula, in
International Conference on Learning Representations, 2019.

[3] N. BALAJI, S. KIEFER, P. NOVOTNỲ, G. A. PÉREZ, AND M. SHIRMOHAMMADI,
On the complexity of value iteration, arXiv preprint arXiv:1807.04920, (2018).

[4] S. BARRETT, A. ROSENFELD, S. KRAUS, AND P. STONE, Making friends on the fly:
Cooperating with new teammates, Artificial Intelligence, 242 (2017), pp. 132 –
171.

[5] S. BARRETT AND P. STONE, An analysis framework for ad hoc teamwork tasks, in
Proceedings of the 11th International Conference on Autonomous Agents and
Multiagent Systems - Volume 1, AAMAS 12, Richland, SC, 2012, International
Foundation for Autonomous Agents and Multiagent Systems, pp. 357–364.

[6] , Cooperating with unknown teammates in complex domains: A robot soccer
case study of ad hoc teamwork, in Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, AAAI 15, AAAI Press, 2015, pp. 2010–
2016.

[7] S. BARRETT, P. STONE, AND S. KRAUS, Empirical evaluation of ad hoc teamwork
in the pursuit domain, in The 10th International Conference on Autonomous
Agents and Multiagent Systems - Volume 2, AAMAS ’11, Richland, SC, 2011,
International Foundation for Autonomous Agents and Multiagent Systems,
pp. 567–574.

98

BIBLIOGRAPHY

[8] S. BARRETT, P. STONE, S. KRAUS, AND A. ROSENFELD, Teamwork with lim-
ited knowledge of teammates, in Proceedings of the Twenty-Seventh AAAI
Conference on Artificial Intelligence, AAAI 13, AAAI Press, 2013, pp. 102–108.

[9] M. BENDA, V. JAGANNATHAN, AND R. DODHIAWALA, On optimal cooperation of
knowledge sources-an empirical investigation, tech. rep., BCS-G2010-28, Boeing
Advanced Technology Center, Boeing Computing Services, Seattle, Washington,
1986.

[10] Y. BENGIO, J. LOURADOUR, R. COLLOBERT, AND J. WESTON, Curriculum learn-
ing, in Proceedings of the 26th annual international conference on machine
learning, 2009, pp. 41–48.

[11] D. S. BERNSTEIN, R. GIVAN, N. IMMERMAN, AND S. ZILBERSTEIN, The complexity
of decentralized control of markov decision processes, Mathematics of operations
research, 27 (2002), pp. 819–840.

[12] J. C. BEZDEK, Pattern recognition with fuzzy objective function algorithms,
Springer, Boston, MA, 2013.

[13] A. BONATO, The game of cops and robbers on graphs, American Mathematical
Soc., 2011.

[14] C. BOUTILIER, Planning, learning and coordination in multiagent decision pro-
cesses, in TARK, vol. 96, Citeseer, 1996, pp. 195–210.

[15] , Sequential optimality and coordination in multiagent systems, in IJCAI,
vol. 99, 1999, pp. 478–485.

[16] R. BURKARD, M. DELL’AMICO, AND S. MARTELLO, Assignment Problems, Society
for Industrial and Applied Mathematics, 2012.

[17] R. E. BURKARD AND E. ÇELA,Heuristics for biquadratic assignment problems and
their computational comparison, European Journal of Operational Research,
83 (1995), pp. 283–300.

[18] R. E. BURKARD, E. CELA, AND B. KLINZ, On the biquadratic assignment problem,
in Quadratic Assignment and Related Problems: DIMACS Workshop, May
20-21, 1993, vol. 16, American Mathematical Soc., 1994, pp. 117–146.

99

BIBLIOGRAPHY

[19] S. CAMAZINE, J.-L. DENEUBOURG, N. R. FRANKS, J. SNEYD, G. THERAULA, AND

E. BONABEAU, Self-organization in biological systems, Princeton university
press, 2001.

[20] E. CELA, The quadratic assignment problem: theory and algorithms, vol. 1,
Springer Science & Business Media, 2013.

[21] T. H. CHUNG, G. A. HOLLINGER, AND V. ISLER, Search and pursuit-evasion in
mobile robotics, Autonomous robots, 31 (2011), p. 299.

[22] M. S. COUCEIRO, R. P. ROCHA, AND N. M. F. FERREIRA, A novel multi-robot
exploration approach based on particle swarm optimization algorithms, in 2011
IEEE International Symposium on Safety, Security, and Rescue Robotics, Nov
2011, pp. 327–332.

[23] R. DAWKINS AND J. R. KREBS, Arms races between and within species, Proceedings
of the Royal Society of London. Series B. Biological Sciences, 205 (1979), pp. 489–
511.

[24] C. DE SOUZA, R. NEWBURY, A. COSGUN, P. CASTILLO, B. VIDOLOV, AND

D. KULIƒÁ, Decentralized multi-agent pursuit using deep reinforcement learn-
ing, IEEE Robotics and Automation Letters, 6 (2021), pp. 4552–4559.

[25] S. L. DEVADOSS AND J. O’ROURKE, Discrete and computational geometry, Prince-
ton University Press, 2011.

[26] M. EGOROV, Multi-agent deep reinforcement learning, CS231n: Convolutional
Neural Networks for Visual Recognition, (2016).

[27] A. EIBEN AND J. SMITH, Introduction to evolutionary computing, Springer, 2015.

[28] J. FOERSTER, G. FARQUHAR, T. AFOURAS, N. NARDELLI, AND S. WHITESON,
Counterfactual multi-agent policy gradients, in Proceedings of the AAAI confer-
ence on artificial intelligence, vol. 32, 2018.

[29] F. V. FOMIN, P. A. GOLOVACH, AND J. KRATOCHVÍL, On tractability of cops and
robbers game, in Fifth Ifip International Conference On Theoretical Computer
Science – Tcs 2008, G. Ausiello, J. Karhumäki, G. Mauri, and L. Ong, eds.,
Boston, MA, 2008, Springer US, pp. 171–185.

100

BIBLIOGRAPHY

[30] M. R. GAREY AND D. S. JOHNSON, Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman, USA, 1979.

[31] A. GLEAVE, M. DENNIS, C. WILD, N. KANT, S. LEVINE, AND S. RUSSELL,
Adversarial policies: Attacking deep reinforcement learning, arXiv preprint
arXiv:1905.10615, (2019).

[32] I. GOODFELLOW, J. POUGET-ABADIE, M. MIRZA, B. XU, D. WARDE-FARLEY,
S. OZAIR, A. COURVILLE, AND Y. BENGIO, Generative adversarial nets, in Ad-
vances in Neural Information Processing Systems, Z. Ghahramani, M. Welling,
C. Cortes, N. Lawrence, and K. Weinberger, eds., vol. 27, Curran Associates,
Inc., 2014.

[33] Y. GUAN, D. MAITY, C. M. KRONINGER, AND P. TSIOTRAS, Bounded-rational
pursuit-evasion games, in 2021 American Control Conference (ACC), 2021,
pp. 3216–3221.

[34] J. K. GUPTA, M. EGOROV, AND M. KOCHENDERFER, Cooperative multi-agent
control using deep reinforcement learning, in Autonomous Agents and Multia-
gent Systems, G. Sukthankar and J. A. Rodriguez-Aguilar, eds., Cham, 2017,
Springer International Publishing, pp. 66–83.

[35] T. HAYNES AND S. SEN, Evolving behavioral strategies in predators and prey,
in Adaption and Learning in Multi-Agent Systems, G. Weiß and S. Sen, eds.,
Berlin, Heidelberg, 1996, Springer Berlin Heidelberg, pp. 113–126.

[36] , Learning cases to resolve conflicts and improve group behavior, International
Journal of Human-Computer Studies, 48 (1998), pp. 31–49.

[37] T. HAYNES, R. L. WAINWRIGHT, AND S. SEN, Evolving cooperation strategies., in
ICMAS, 1995, p. 450.

[38] T. HAYNES, R. L. WAINWRIGHT, S. SEN, AND D. A. SCHOENEFELD, Strongly
typed genetic programming in evolving cooperation strategies., in ICGA, vol. 95,
1995, pp. 271–278.

[39] R. ISAACS, Differential games: a mathematical theory with applications to warfare
and pursuit, control and optimization, New York: John Wiley and Sons, 1965.

101

BIBLIOGRAPHY

[40] Y. ISHIWAKA, T. SATO, AND Y. KAKAZU, An approach to the pursuit problem on a
heterogeneous multiagent system using reinforcement learning, Robotics and
Autonomous Systems, 43 (2003), pp. 245 – 256.

[41] M. JADERBERG, W. M. CZARNECKI, I. DUNNING, L. MARRIS, G. LEVER, A. G.
CASTANEDA, C. BEATTIE, N. C. RABINOWITZ, A. S. MORCOS, A. RUDERMAN,
ET AL., Human-level performance in 3d multiplayer games with population-
based reinforcement learning, Science, 364 (2019), pp. 859–865.

[42] J. JIANG, C. DUN, T. HUANG, AND Z. LU, Graph convolutional reinforcement
learning, in International Conference on Learning Representations, 2019.

[43] V. KONDA AND J. TSITSIKLIS, Actor-critic algorithms, Advances in neural infor-
mation processing systems, 12 (1999).

[44] R. E. KORF, A simple solution to pursuit games, in Working Papers of The 11th
International Workshop on Distributed Artificial Intelligence, 1992, pp. 183–
194.

[45] J. R. KOZA, Genetic programming, MIT Press, Cambridge, MA, 1992.

[46] J. Z. LEIBO, E. HUGHES, M. LANCTOT, AND T. GRAEPEL, Autocurricula and the
emergence of innovation from social interaction: A manifesto for multi-agent
intelligence research, arXiv preprint arXiv:1903.00742, (2019).

[47] R. LEVY AND J. S. ROSENSCHEIN, A game theoretic approach to distributed
artificial intelligence and the pursuit problem, ACM SIGOIS Bulletin, 13 (1992),
p. 11.

[48] J. E. LITTLEWOOD, A mathematician’s miscellany, Methuen & Co. Ltd., London,
1953.

[49] R. LOWE, Y. WU, A. TAMAR, J. HARB, P. ABBEEL, AND I. MORDATCH,Multi-agent
actor-critic for mixed cooperative-competitive environments, Neural Information
Processing Systems (NIPS), (2017).

[50] X. MA, K. DRIGGS-CAMPBELL, AND M. J. KOCHENDERFER, Improved robust-
ness and safety for autonomous vehicle control with adversarial reinforcement
learning, in 2018 IEEE Intelligent Vehicles Symposium (IV), IEEE, 2018,
pp. 1665–1671.

102

BIBLIOGRAPHY

[51] P. MAES, M. J. MATARIC, J.-A. MEYER, J. POLLACK, AND S. W. WILSON, Co-
evolution of pursuit and evasion ii: Simulation methods and results, (1996).

[52] T. MAVRIDOU, P. PARDALOS, L. PITSOULIS, AND M. G. RESENDE, A grasp for the
biquadratic assignment problem, European Journal of Operational Research,
105 (1998), pp. 613 – 621.

[53] G. F. MILLER AND D. CLIFF, Co-evolution of pursuit and evasion I: Biological
and game-theoretic foundations, School of Cognitive and Computing Sciences,
University of Sussex Brighton, 1994.

[54] , Protean behavior in dynamic games: Arguments for the co-evolution of pursuit-
evasion tactics, From animals to animats, 3 (1994), pp. 411–420.

[55] D. J. MONTANA, Strongly typed genetic programming, Evolutionary computation,
3 (1995), pp. 199–230.

[56] K. H. W. MYKEL J. KOCHENDERFER, TIM A. WHEELER, Algorithms for Decision
Making, MIT Press, 2022.

[57] G. NITSCHKE, Co-evolution of cooperation in a pursuit evasion game, in Pro-
ceedings 2003 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2003)(Cat. No. 03CH37453), vol. 2, IEEE, 2003, pp. 2037–2042.

[58] S. NOLFI AND D. FLOREANO, How co-evolution can enhance the adaptive power
of artificial evolution: Implications for evolutionary robotics, in Evolutionary
Robotics: First European Workshop, EvoRobot98 Paris, France, April 16–17,
1998 Proceedings 1, Springer, 1998, pp. 22–38.

[59] R. NOWAKOWSKI AND P. WINKLER, Vertex-to-vertex pursuit in a graph, Discrete
Mathematics, 43 (1983), pp. 235 – 239.

[60] A. OROOJLOOY AND D. HAJINEZHAD, A review of cooperative multi-agent deep
reinforcement learning, Applied Intelligence, (2022), pp. 1–46.

[61] E. OSAWA, A metalevel coordination strategy for reactive cooperative planning., in
ICMAS, vol. 95, 1995, pp. 297–303.

[62] X. PAN, D. SEITA, Y. GAO, AND J. CANNY, Risk averse robust adversarial reinforce-
ment learning, in 2019 International Conference on Robotics and Automation
(ICRA), IEEE, 2019, pp. 8522–8528.

103

BIBLIOGRAPHY

[63] C. H. PAPADIMITRIOU AND J. N. TSITSIKLIS, The complexity of markov decision
processes, Mathematics of operations research, 12 (1987), pp. 441–450.

[64] P. M. PARDALOS AND L. S. PITSOULIS, Nonlinear assignment problems: algo-
rithms and applications, vol. 7, Springer Science & Business Media, 2013.

[65] T. D. PARSONS, Pursuit-evasion in a graph, in Theory and Applications of Graphs,
Berlin, Heidelberg, 1978, Springer Berlin Heidelberg, pp. 426–441.

[66] L. PINTO, J. DAVIDSON, R. SUKTHANKAR, AND A. GUPTA, Robust adversarial
reinforcement learning, in International Conference on Machine Learning,
PMLR, 2017, pp. 2817–2826.

[67] T. PITCHER, A. MAGURRAN, AND I. WINFIELD, Fish in larger shoals find food
faster, Behavioral Ecology and Sociobiology, 10 (1982), pp. 149–151.

[68] A. QUILLIOT, Jeux et pointes fixes sur les graphes, PhD thesis, Université de Paris
VI, 1978.

[69] T. RASHID, M. SAMVELYAN, C. SCHROEDER, G. FARQUHAR, J. FOERSTER, AND

S. WHITESON, Qmix: Monotonic value function factorisation for deep multi-
agent reinforcement learning, in International Conference onMachine Learning,
PMLR, 2018, pp. 4295–4304.

[70] C. W. REYNOLDS, Flocks, herds and schools: A distributed behavioral model, in Pro-
ceedings of the 14th annual conference on Computer graphics and interactive
techniques, 1987, pp. 25–34.

[71] , Competition, coevolution and the game of tag, in Proceedings of the Fourth
International Workshop on the Synthesis and Simulation of Living Systems,
1994, pp. 59–69.

[72] S. RUSSELL AND P. NORVIG, Artificial Intelligence: A Modern Approach, 4th
Edition, Pearson Education, 2021.

[73] M. SAMVELYAN, T. RASHID, C. SCHROEDER DE WITT, G. FARQUHAR,
N. NARDELLI, T. G. RUDNER, C.-M. HUNG, P. H. TORR, J. FOERSTER, AND

S. WHITESON, The starcraft multi-agent challenge, in Proceedings of the 18th
International Conference on Autonomous Agents and MultiAgent Systems,
2019, pp. 2186–2188.

104

BIBLIOGRAPHY

[74] J. SCHULMAN, P. MORITZ, S. LEVINE, M. JORDAN, AND P. ABBEEL, High-
dimensional continuous control using generalized advantage estimation, arXiv
preprint arXiv:1506.02438, (2015).

[75] J. SCHULMAN, F. WOLSKI, P. DHARIWAL, A. RADFORD, AND O. KLIMOV, Proxi-
mal policy optimization algorithms, arXiv preprint arXiv:1707.06347, (2017).

[76] S. SEUKEN AND S. ZILBERSTEIN, Formal models and algorithms for decentralized
control of multiple agents, tech. rep., Technical Report 05-68, Department of
Computer Science, University of Massachusetts Amherst, 2005.

[77] Y. SHI AND R. EBERHART, A modified particle swarm optimizer, in 1998 IEEE
International Conference on Evolutionary Computation Proceedings. IEEE
World Congress on Computational Intelligence (Cat. No.98TH8360), May 1998,
pp. 69–73.

[78] L. STEPHENS, Agent organization as an effector of dai system performance, in
Proceedings of the 9th Workshop on Distributed Artificial Intelligence, 1989,
1989.

[79] L. M. STEPHENS AND M. B. MERX, The effect of agent control strategy on the
performance of a dai pursuit problem, in Proceedings of the 10th International
Workshop on Distributed Artificial Intelligence, 1990.

[80] P. STONE AND M. VELOSO, Multiagent systems: A survey from a machine learning
perspective, Autonomous Robots, 8 (2000), pp. 345–383.

[81] S. SUKHBAATAR, Z. LIN, I. KOSTRIKOV, G. SYNNAEVE, A. SZLAM, AND R. FER-
GUS, Intrinsic motivation and automatic curricula via asymmetric self-play,
arXiv preprint arXiv:1703.05407, (2017).

[82] L. SUN, Y.-C. CHANG, C. LYU, Y. SHI, Y. SHI, AND C.-T. LIN, Toward multi-target
self-organizing pursuit in a partially observable markov game, arXiv preprint
arXiv:2206.12330, (2022).

[83] L. SUN, C. LYU, AND Y. SHI, Cooperative coevolution of real predator robots
and virtual robots in the pursuit domain, Applied Soft Computing, 89 (2020),
p. 106098.

105

BIBLIOGRAPHY

[84] L. SUN, C. LYU, Y. SHI, AND C.-T. LIN, Multiple-preys pursuit based on bi-
quadratic assignment problem, in 2021 IEEE Congress on Evolutionary Com-
putation (CEC), 2021, pp. 1585–1592.

[85] R. S. SUTTON AND A. G. BARTO, Reinforcement learning: An introduction, MIT
press, 2018.

[86] M. TAN, Multi-agent reinforcement learning: Independent vs. cooperative agents, in
Proceedings of the tenth international conference on machine learning, 1993,
pp. 330–337.

[87] X. TANG, D. YE, L. HUANG, Z. SUN, AND J. SUN, Pursuit-evasion game switching
strategies for spacecraft with incomplete-information, Aerospace Science and
Technology, 119 (2021), p. 107112.

[88] J. TERRY, B. BLACK, N. GRAMMEL, M. JAYAKUMAR, A. HARI, R. SULLIVAN,
L. S. SANTOS, C. DIEFFENDAHL, C. HORSCH, R. PEREZ-VICENTE, ET AL.,
Pettingzoo: Gym for multi-agent reinforcement learning, Advances in Neural
Information Processing Systems, 34 (2021), pp. 15032–15043.

[89] J. K. TERRY, B. BLACK, M. JAYAKUMAR, A. HARI, R. SULLIVAN, L. SAN-
TOS, C. DIEFFENDAHL, N. L. WILLIAMS, Y. LOKESH, C. HORSCH, ET AL.,
Pettingzoo: Gym for multi-agent reinforcement learning, arXiv preprint
arXiv:2009.14471, (2020).

[90] J. K. TERRY, N. GRAMMEL, A. HARI, L. SANTOS, AND B. BLACK, Revisiting
parameter sharing in multi-agent deep reinforcement learning, arXiv preprint
arXiv:2005.13625, (2020).

[91] C. UNDEGER AND F. POLAT, Multi-agent real-time pursuit, Autonomous Agents
and Multi-Agent Systems, 21 (2010), pp. 69–107.

[92] O. VINYALS, I. BABUSCHKIN, W. M. CZARNECKI, M. MATHIEU, A. DUDZIK,
J. CHUNG, D. H. CHOI, R. POWELL, T. EWALDS, P. GEORGIEV, ET AL., Grand-
master level in starcraft ii using multi-agent reinforcement learning, Nature,
575 (2019), pp. 350–354.

[93] X. WANG, Y. CHEN, AND W. ZHU, A survey on curriculum learning, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 44 (2021), pp. 4555–4576.

106

BIBLIOGRAPHY

[94] Z. WANG, B. GONG, Y. YUAN, AND X. DING, Incomplete information pursuit-
evasion game control for a space non-cooperative target, Aerospace, 8 (2021).

[95] C. WU, A. R. KREIDIEH, K. PARVATE, E. VINITSKY, AND A. M. BAYEN, Flow: A
modular learning framework for mixed autonomy traffic, IEEE Transactions
on Robotics, 38 (2021), pp. 1270–1286.

[96] Y. YANG, R. LUO, M. LI, M. ZHOU, W. ZHANG, AND J. WANG, Mean field multi-
agent reinforcement learning, in International conference on machine learning,
PMLR, 2018, pp. 5571–5580.

[97] D. YE, M. SHI, AND Z. SUN, Satellite proximate pursuit-evasion game with dif-
ferent thrust configurations, Aerospace Science and Technology, 99 (2020),
p. 105715.

[98] C. YU, A. VELU, E. VINITSKY, J. GAO, Y. WANG, A. BAYEN, AND Y. WU, The
surprising effectiveness of ppo in cooperative multi-agent games, Advances in
Neural Information Processing Systems, 35 (2022), pp. 24611–24624.

[99] K. ZHANG, Z. YANG, AND T. BAŞAR,Multi-agent reinforcement learning: A selective
overview of theories and algorithms, Handbook of reinforcement learning and
control, (2021), pp. 321–384.

[100] L. ZHENG, J. YANG, H. CAI, M. ZHOU, W. ZHANG, J. WANG, AND Y. YU,Magent: A
many-agent reinforcement learning platform for artificial collective intelligence,
Proceedings of the AAAI Conference on Artificial Intelligence, 32 (2018).

[101] Z. ZHOU AND H. XU, Decentralized optimal large scale multi-player pursuit-
evasion strategies: A mean field game approach with reinforcement learning,
Neurocomputing, (2021).

107

	List of Publications
	List of Figures
	List of Tables
	Introduction
	Multi-agent pursuit-evasion
	Literature review
	Research overview
	Summary

	MatrixWorld: safety-constrained multi-agent pursuit-evasion platform
	Background
	Safety-constrained multi-agent action execution model
	Multi-agent-environment interaction model
	Safety-constrained multi-agent collision resolution mechanism

	Pursuit-evasion game variants
	API
	Summary

	Single evader pursuit with full observation
	Background
	Cooperative co-evolutionary of real and virtual agents
	Fitness function and evaluation
	Behavioral update rule
	Diversity maintenance mechanism

	Experiments
	Experiment 1 (Surrounding-based pursuit)
	Experiment 2 (Occupation-based pursuit)

	Summary

	Multiple evaders pursuit with full observation
	Background
	Biquadratic assignment problem
	The proposed two-stage approach: BiPCCR
	BiQAP task allocation in the dynamic optimization
	Parallel CCPSO-R algorithm for each single evader pursuit

	Experiments
	Experiment 1 (BiQAP solver for the task allocation)
	Experiment 2 (PCCPSO-R vs. CCPSO-R)

	Summary

	Multiple evaders pursuit with partial observation
	Background
	Problem formulation
	Multi-agent formulation of self-organization systems
	The problem of self-organizing search and pursuit

	Fuzzy self-organizing cooperative coevolution (FSC2) algorithm
	Distributed fuzzy clustering for task allocation
	Self-organizing search (SOS) policy
	Cooperative coevolutuion algorithm for robots (CCR)

	Experiments
	Environments, baselines, and experimental setups
	Self-organizing pursuit (SOP) experiments
	Self-organizing search (SOS) experiments
	Consistency analysis in distributed task allocation
	Ablation studies
	Discussion

	Summary

	Adversarial pursuit-evasion with partial observation
	Background
	Brief survey on co-evolution, autocurriculum, and arms race
	Co-evolution
	Self-play
	Adaptation and arms races
	Curriculum learning (CL), automatic CL, and autocurricula
	Adversarial learning
	MatrixWorld: A lightweight co-evolution environment

	Adversarial learning algorithms for pursuit-evasion
	Experiments
	Experimental setup
	Autocurricula in co-evolutionary pursuit-evasion
	General MARL in safe multi-agent coordination scenarios

	Summary

	Conclusion and future work
	Conclusion
	Limitations and future work

	Bibliography

