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ABSTRACT  
 

 

Permanent Magnet Synchronous Machines (PMSMs) are widely used in industry due to 

their high power density, high torque/current ratio, low power losses, and high efficiency. 

Model predictive control (MPC) is a popular control method for PMSMs, but 

conventional MPC methods have limitations in terms of unsatisfactory steady-state 

performance, variable switching frequency, and reliance on weighting factors. To 

overcome these drawbacks, two enhanced MPC methods based on current and torque 

control have been proposed. These approaches can eliminate weighting factors, generate 

two switching vectors per control cycle, and exhibit superior performance compared to 

the conventional MPC. 

However, model uncertainties and parameter mismatching are unavoidable in PMSM 

drives, significantly affecting the control performance. To evaluate the robustness of a 

control system and determine the robustness level, a novel and systemic robustness 

evaluation method based on the concept of Six-Sigma methodology has been proposed. 

This method is validated based on the conventional MPC and five other robust predictive 

control methods. 

Data-driven controls have emerged as a promising alternative to robust MPC, such as 

model-free predictive current control (MFPCC) for PMSM drives. However, inaccuracies 

in prediction and performance degradation can occur when the switching vectors remain 

unchanged for consecutive control cycles, causing unapplied switching to stagnate. To 

overcome this limitation, an adaptive MFPCC (A-MFPCC) has been proposed, which 

incorporates a modified current difference updating mechanism. By generating a 

reference vector based on current tracking error, the A-MFPCC method enforces the 

update of current differences, preventing stagnation and optimizing the current tracking 

performance. 
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Reinforcement learning (RL) based control is another data-driven method, but standard 

RL-based control usually is trained over a single training task with specific operating 

conditions and a fixed parameter set. To address this challenge, multi-set robust RL 

(MSR-RL) based current control of PMSM drives has been proposed. MSR-RL aims to 

learn a single optimal policy that remains robust across multiple parameter sets or 

contexts. The proposed A-MFPCC and MSR-RL methods have been validated through 

numerical simulations, experimental tests, and robustness evaluations, demonstrating 

superior performance across various operating conditions compared to their 

conventional counterparts.  
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CHAPTER   1 
 

1       INTRODUCTION  
 

 

1.1 Background and Significance 

Electrical machines are increasingly used in various industrial, domestic, and 

transportation applications. A tremendous number of electrical machines are being used 

worldwide, utilizing about 46.2% of the total global electricity consumption [1.1]. With 

the global concerns of energy conservation, environmental preservation, and 

sustainability development, high-efficiency electrical machines have attracted much 

attention in the academic and industrial fields [1.2-1.3]. Permanent magnet synchronous 

machines (PMSMs) with features of high-power density, high efficiency, higher torque, 

and less electrical losses became the ideal machines for several applications, including 

traction systems (e.g., electric vehicle (EV)) [1.4], robotics [1.5-1.6], machine tools [1.7], 

actuators [1.8], servo drives [1.9], air conditioning [1.10-1.11], washing machine [1.12-

1.13], and vacuum cleaner [1.14]. To optimize the performance of PMSMs in these 

applications, machine controls are introduced [1.15]. 

For decades, conventional vector control methods have been implemented for 

PMSM drives. Vector control offers superior performance and overcomes all the issues 

of scalar control [1.16]. Two vector control methods are commonly used in PMSM drives, 

field-oriented control (FOC) and direct torque control (DTC) [1.17]. FOC has the merits 

of fast dynamic response and good state-steady performance, but it incorporates a 

complex structure comprising two current controllers and a PWM modulator [1.18]. On 

the other hand, DTC has a simple structure and a rapid dynamic response. However, the 
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conventional DTC produces high torque ripples, current harmonics, variable switching 

frequency, and degraded performance at lower speed operations [1.19-1.20]. 

In the last decade, MPC methods for PMSM drives have garnered industrially and 

academically growing attention. This is due to the merits of a basic concept, fast dynamic 

response, multi-variable control, nonlinearity control, and constraint inclusion [1.21-

1.26]. MPC reduces the drive system complexity by eliminating the modulation scheme 

and/or current controllers used in FOC [1.27]. Also, it selects a switching vector based on 

minimizing a cost function instead of a heuristic switching table used in DTC. Thus, a 

more accurate and optimum switching vector is obtained [1.28]. However, the 

conventional MPC still faces some challenges, such as high torque and current ripples, 

variable switching frequency, proper selection of weighting factor, and high 

computational requirements. Therefore, numerous studies have focused on improving the 

conventional MPC to eliminate these challenges. For instance, additional vectors are 

applied along with the optimum vector during a control cycle [1.29-1.31]. In addition, 

weighting factor elimination and switching frequency regulation are implemented to 

improve the conventional MPC [1.32-1.33]. 

Despite these improvements, a key disadvantage of MPC is its dependency on 

uncertain machine models. Various manufacturing and operational uncertainties exist in 

the practical operation of PMSMs [1.34], which may not all have been captured in the 

machine model used for prediction. Thus, prediction accuracy and control performance 

are significantly affected when uncertainties occur. To reduce the effect of uncertainties 

on the PMSM drive performance, RPC methods are introduced to enhance the system's 

robustness and compensate for the impact caused by these uncertainties. Various RPC 

methods have been introduced by implementing serval techniques and mechanisms, such 
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as using observers [1.35], optimizing cost function [1.36], combining control techniques 

[1.37], using prediction error correction [1.38], and using the model-free method [1.39]. 

Model-free predictive control (MFPC) has recently emerged as a promising 

alternative to robust MPC methods. MFPC can eliminate the prediction dependency on a 

simplified parametric machine model by developing a prediction model independent of 

the machine model and parameters [1.40]. MFPC can be achieved using an ultra-local 

model [1.41], where an ultra-local model replaces a complex system model with one or 

two unknowns that can be estimated based on measured input and output data [1.42-1.43]. 

On the other hand, MFPCC can be achieved by solely using the system's measured input 

and/or output data and their variations [1.44-1.46]. However, inaccurate estimation and 

stagnation can occur depending on the technique used to achieve MFPC (e.g., current 

difference, ultra-local model), and higher computational effort may be required [1.39, 

1.44]. 

Recently, reinforcement learning (RL) has emerged as a promising approach for 

achieving data-driven control in PMSM drives. A computationally efficient controller 

optimized offline is obtained by training an RL agent with appropriate rewards based on 

PMSM data [1.47-1.48], unlike MFPC, which requires continuous optimization during 

online control and can be computationally intensive. The effectiveness of RL-based 

controllers depends on the amount and quality of the data used for training. In the standard 

RL-based controller, an agent learns an optimal policy that maximizes its expected 

cumulative reward over a single training task with specific operating conditions and a 

single parameter set. Thus, new operating conditions and different parameter sets (due to 

parameter mismatching) can lead to poor performance, robustness, or instability in the 

controlled system [1.49]. 
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Although there are various robust control methods, there is a lack of knowledge 

on the definition and criteria of robustness. This raises questions about the basis for 

determining whether a control system is robust or non-robust and how to quantify the 

level of robustness of a control system. In other words, it is unclear what criteria should 

be used to define a robust control system and how to compare the robustness of different 

control systems. This highlights the need for further research to understand better the 

definition and criteria of robustness in control systems and to develop methods for 

measuring the robustness index of a control system. 

This research proposes a clear and adequate robustness definition, demonstrated 

based on a simple second-order system and DC motor drives. A control system's 

robustness criteria and boundaries are established by considering different performance 

indicators. In addition, practical parameter variation (mismatching) ranges are generated 

considering operating conditions and operational factors such as temperature changes and 

manufacturing tolerances. Then, the robustness indices are computed using the Six-Sigma 

concept by considering various performance indicators and setting their boundaries 

(acceptance level for different application requirements). This method is validated based 

on six different predictive control methods of PMSM drives. 

To improve the performance of data-driven control and achieve higher sigma 

levels, this research proposes two novel data-driven control methods for PMSM drives. 

The first method is an adaptive model-free predictive current control (A-MFPCC) with a 

modified current difference updating technique. A reference vector is generated 

considering the tracking error and the position of the reference current vector, ensuring 

regular updates of the current difference and preventing stagnation. The second method 

is a multi-set robust reinforcement learning (MSR-RL) based current control of PMSM 

drives. The MSR-RL aims to learn a single optimal policy robust to several different 
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parameter sets. Instead of learning a policy over a single training task with a single 

parameter set, the proposed MSR-RL learns a single policy over multiple training tasks 

with various parameter sets. The resultant policy can be robust to all these parameter sets 

and generalized to the new ones. The effectiveness of the proposed A-MFPCC and MSR-

RL is validated through comparison with conventional methods based on numerical 

simulation, experimental tests, and robustness evaluation.  

 

1.2 Research Contributions 

The main contributions of this research are summarized as follows: 

• Two improved MPC methods are proposed to eliminate the issue of conventional 

MPCs. These methods apply two vectors in each control cycle to improve steady-

state performance and regulate the switching frequency and utilize the fuzzy 

decision-making criteria to eliminate the use of weighting factors. 

• A novel robustness evaluation method based on the Six-Sigma concept is proposed. 

A control system's robustness index or sigma level can be determined by defining 

specific indicators and evaluating the control system against them for a number of 

samples within bounded uncertainty ranges. The proposed method is applied to MPC 

and some existing RPC methods for PMSMs. Their robustness indexes (sigma levels) 

are obtained by evaluating them with different bounded uncertainty ranges and based 

on three different application requirements. 

• An adaptive MFPCC (A-MFPCC) with a modified current difference updating 

technique is introduced. A reference vector is generated considering the tracking 

error and the position of the reference current vector, ensuring regular updates of the 

current difference and preventing stagnation. 
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• A novel MSR-RL-based current control of PMSM drives is introduced. MSR-RL 

learns a single policy over multiple training tasks with various parameter sets, 

resulting in a robust policy that can be generalized to the new ones. 

 

1.3 Thesis Outline 

This thesis consists of seven chapters, including this chapter that provides an 

overview of the research background, significance, contributions, and the overall 

structure of the thesis. The subsequent chapters are outlined as follows: 

Chapter 2 offers a comprehensive literature survey on PMSM drives and 

commonly employed control methods. Additionally, this chapter critically reviews 

various RPC methods, including model-free control and data-driven RL-based control. 

Chapter 3 delves into the proposed two-vector dimensionless MPCs based on 

fuzzy decision-making criteria. This chapter presents mathematical modelling, 

simulation, and experimental tests of these methods applied to PMSM drives. 

Chapter 4 discusses the novel robustness evaluation method based on Six Sigma 

methodology. The definition and criteria of system robustness are presented and 

illustrated through a simple second-order system. Furthermore, the validation of the 

proposed method is showcased in this chapter based on six predictive control methods for 

PMSM drives. 

Chapter 5 focuses on the proposed A-MFPCC scheme for PMSM drives. It 

encompasses mathematical modelling and comparisons with two other MFPCC schemes 

through simulation, experiments, and robustness evaluation. 

Chapter 6 introduces the proposed MSR-RL-based current control for PMSM 

drives. The concept of RL-based control, MSR-RL modelling, and multi-task training are 
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discussed extensively. Additionally, this chapter presents a comparison between MSR-

RL and standard RL through numerical simulation, experimental tests, and robustness 

evaluation. 

Chapter 7 summarizes the main findings and contributions achieved in this thesis. 

Furthermore, this chapter outlines the future research perspective for this field. 
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CHAPTER  2 
 

2 A LITERATURE SURVEY ON PERMANENT MAGNET 
SYNCHRONOUS MACHINE DRIVES 

 

 

2.1 Introduction  

The role of AC machines in control systems is to convert electric energy into 

mechanical energy to move/drive a load. Several types of AC machines are currently being 

used in various applications. Permanent magnet synchronous machines (PMSMs) are among 

the most commonly used and preferred AC machines due to their high torque to current ratio, 

high power density, low power losses, and high efficiency. However, the higher cost, low 

robustness (in comparison with induction machines (IMs), and high complexity control are 

drawbacks of PMSMs. Various control strategies have been developed to cope with these 

issues and utilize the high efficiency PMSMs in various applications, including vector control 

techniques or field-oriented control (FOC) and direct torque control (DTC). Over the past ten 

years, predictive control, or MPC methods have been introduced as exemplary control 

methods for PMSM drives with several advantages over vector control techniques. Intensive 

efforts have recently been made to apply, develop, and improve MPC methods for PMSM 

drives, including improved and robust MPC methods. 

This chapter presents a literature survey on PMSM drives, including conventional 

MPC and robust MPC methods. First, the state of the art of PMSM fundamentals is 

introduced in Section 2.2. Then, a brief discussion on the PMSMs drives, including scalar 
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control and vector control (FOC and DTC), is presented in Section 2.3. Next, a detailed 

discussion on predictive control methods for PMSM drives, including the concept of 

predictive control, conventional MPC, and improved MPC methods, are presented in 

Sections 2.4 and 2.5. After that, a discussion and investigation of various PMSM drive 

uncertainties and their effects on the drive performance are presented in Section 2.6. A 

discussion of various RPC methods is presented in Section 2.7. The last section (Section 2.8) 

discusses data-driven control methods, including model-free and RL-based control. 

 

2.2 PMSM Fundamentals  

PMSMs are AC machines that utilize permanent magnets (PMs) for excitation. 

Depending on the location of PMs on the machine, two types of PMSMs are classified: 

PMSMs with PMs on the rotor or PMSMs with PMs on the stator. 

2.2.1 PMSMs with PMs on Rotor 

This is a common type of PMSMs widely used in various applications. Depending on 

the location of PMs on the rotor configuration, they can be divided into two main types: 

exterior or surface-mounted PMSMs (SPMSMs) and interior PMSMs (IPMSMs). In 

SPMSMs, the PMs are located on the surface of the rotor to directly face the air gap and 

stator winding, while in IPMSMs, the PMs are buried inside the rotor cores [2.1-2.3]. The 

structures of SPMSMs and IPMSMs are presented in Fig. 2.1. Regarding dynamic models, 

the main difference between an SPMSM and an IPMSM is that the IPMSM has a variable 

reluctance that varies with the rotor angle. 
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In contrast, the SPMSM has a fixed reluctance for any rotor angle. That leads to a 

uniform air gap and, thus, an equal magnetizing inductance for the direct and quadrature axis 

[2.4-2.5]. Besides, other novel PMSMs with PMs on rotor designs have been proposed to 

achieve additional features for specific applications, including PM hysteresis hybrid rotor 

machines that can produce high starting torque [2.6], 4-layer hybrid windings synchronous 

machines that can achieve high air-gap and power density [2.7] and double rotor permanent 

magnet machine to be used as traction machine and can achieve high torque and fewer torque 

ripples [2.8]. 

 

(a)                                                                   (b) 

Fig. 2.1.   Structures of PMSMs with PMs on the rotor, (a) IPMSM, (b) SPMSM 

[2.9]. 

2.2.2 PMSMs with PMs on Stator  

With the PMs located on the stator, the rotor must have a silent pole configuration, 

thus being similar to the switched reluctance machines (SRMs). Such PMSMs types have the 

merits of simplicity, rugged structure, and high-speed operations. If the PMs are located on 

the stator back-iron, it is called doubly salient permanent magnet machines (DSPMMs) [2.10-

2.11]. If the PMs are fitted to the stator teeth, it is called flux-switching permanent magnet 
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machines (FSPMMs) [2.12-2.13]. The configurations of DSPMMs and FSPMMs are 

presented in Fig. 2.2. 

 

(a) 

 

(b) 

Fig. 2.2.   Structures of PMSMs with PMs on the stator, (a) stator doubly fed 

DSPMM [2.11], (b) FSPMM with phase-group concentrated-coil (PGCC) windings [2.14]. 
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2.3 Conventional PMSM Drives 

PMSM control techniques are evolving like other AC machines. In the past, PMSM 

drives have been controlled utilizing scalar control (V/F) by controlling the magnitude of 

voltage and frequency of the supply to maintain a constant (V/Hz) over the entire speed 

operation. Scalar control is an open-loop control suitable for applications that do not require 

a good dynamic performance [2.15]. However, for high-performance PMSM drives, scalar 

control is inadequate, and advanced control methods need to be applied [2.16]. Vector control 

offers superior performance and overcomes all the issues of scalar control. It utilizes the 

space vector concept and phase-transformation techniques to obtain an independent flux and 

torque control, therefore, incorporating a separately excited DC motor control [2.17]. Two 

popular vector control methods are commonly used in PMSM drives, namely FOC and DTC 

[2.18]. 

FOC was first introduced in the early 1970s as an attempt to control AC machines, 

similar to separately excited DC machines with independent torque and flux control [2.19]. 

The principle of FOC incorporates flux and torque decoupling control by transforming the 

stator currents into d-q rotating frames where the flux is controlled with a d-component. In 

contrast, the torque is controlled with a q-component [2.20-2.21]. In contrast, DTC was first 

introduced in the mid of 1980s [2.22-2.23] to control the torque and flux of AC machines 

and generate the inverter switching pulses based on a pre-defined switching table. Compared 

to FOC, DTC directly generates the inverter pulses based on the switching table without 

using a modulator [2.24]. The configuration of vector control consists of PMSM, phase-

transformation, speed controller, current/torque and flux controllers, and inverter, as shown 

in Fig. 2.3. 
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Fig. 2.3.   Block diagram of vector control technique for PMSM drives. 

 

2.4 Model Predictive Control of PMSM Drives. 

MPC is an advanced control method that has recently emerged in machine drives. 

This is due to nonlinearity control, constraint inclusion, simplicity, elimination of current 

controllers compared to FOC, and selection of more accurate switching vectors compared to 

DTC. The principle of MPC is predicting the future states of machine variables based on their 

present states. The operation of MPC includes measurement of the machine variables, 

estimation of the variables that cannot be measured, and finally, prediction of future values 

based on the measured and estimated values [2.25-2.26]. Based on the controlled variables, 

MPC can be classified into predictive torque control (PTC), which uses torque and flux as 

the control variables [2.27]. Predictive current control (PCC) uses the stator currents as the 

control variables [2.28], predictive speed control (PSC) uses the speed of the machine as the 

control variable [2.29], and cascade predictive control which regulates the torque/ current 
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and motor speed with two separate MPCs [2.30].MPC can be classified into a continuous 

control set (CCS-MPC) and a finite control set (FCS-MPC) based on the switching signal 

state. The implementation of CCS-MPC is based on voltage vector calculation by minimizing 

the cost function for reference tracking and requires a PWM modulator to generate the 

switching pulses.  

In contrast, FCS-MPC is based on determining an optimal voltage vector that 

minimizes a pre-defined cost function and directly generates the switching signals without a 

modulator [2.31]. A comparison of FCS-MPC and CCS-MPC for machine drives was 

discussed in [2.32] and [2.33] compared the performance of FCS-MPC and CCS-MPC and 

showed both obtained similar performance. Considering the discrete nature of the power 

converter, FCS-MPC is commonly used in power converters and machine drives [2.31]. The 

block diagram of the general MPC is shown in Fig. 2.4. 

Referenec Variable
Cost function VSI

Sa,Sb,Sc

Vabc

Variables 
prediction 

Variables 
estimation  

X*(k)

PMSM

X(k)

Measured variable

X(k+1)

 

Fig. 2.4.   General block diagram of MPC-based PMSM drives. 

2.4.1 Continuous Control Set MPC (CCS-MPC) 

In CCS-MPC, the discrete nature of the power converter is not considered; instead, a 

PWM modulator is used to abstract the integer nature of the converter. The principle of CCS-
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MPC is similar to vector control (FOC), where a modulator is used, and a regulated switching 

frequency is attained, except that CCS-MPC achieves a faster transient response with a slight 

overshoot [2.34]. A continuous reference voltage is computed via the cost function 

minimization and then synthesized by a PWM modulator to obtain the switching pulses. The 

design methodology of CCS-MPC is based on Taylor series expansion to solve an 

optimization problem. Unlike FCS-MPC, the constraints on the switch changes cannot be 

handled in CCS-MPC because a PWM modulator is always required to generate the 

switching pulses for the converter. The advantages of CCS-MPC include regulated switching 

frequency, less computation, and smaller current and torque ripples, however; it is very 

sensitive to parameters mismatching and external disturbance. 

CCS-MPC has been applied for PMSM drives in [2.35], where a disturbance observer 

was combined with CCS-MPC to estimate the lumped disturbance and compensate for their 

effects. Also, [2.36] has proposed a CCS-MPC for PMSM drives using a multi-step tracking 

error technique to reduce the overshoot of the current response and incorporate external 

disturbance and parameter mismatching. Besides, [2.37] utilized CCS-MPC to control 

PMSM drives for the PV water pumping system, and [2.38] implemented CCS-MPC for 

PMSM drives with the consideration of input voltage constraints.  

2.4.2 Finite control Set MPC (FCS-MPC) 

Finite or direct control set MPC considers the discrete nature of the power converter 

and minimizes a cost function to directly generate finite switching pulses for the converter. 

The FCS-MPC method incorporates the concept of DTC, where both attain high sampling 

frequency and variable switching frequency, except that FCS-MPC method can achieve a 

better current response and a lower sampling frequency [2.39-2.40]. The design methodology 
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of FCS-MPC is based on the Euler discretization method to solve the optimization problem. 

The advantages of this method include less complexity where the PWM modulator is 

eliminated, good steady-state response, and flexibility to define the control objectives [2.41]. 

However, high torque, current ripples, and high computation requirements are the drawbacks 

of FCS-MPC [2.42-2.43]. A detailed discussion of the advancement in FCS-MPC for power 

converters and machine drives was presented in [2.44], which shows that FCS-MPC has a 

comparable performance with the classical control methods and is generally superior in 

transient response and flexibility.  

FCS-MPC is the most popular MPC method usually applied for PMSM drives, such 

as speed control [2.29, 2.45],  torque control [2.46-2.52], and current control [2.53-2.58]. 

Besides, several studies have focused on eliminating the drawbacks of FCS-MPC-based 

PMSM drives, such as variable switching frequency [2.59-2.60], higher torque ripples [2.61-

2.62], higher computational burden [2.63-2.64], and the effect of weighting factor [2.65-

2.66]. 

2.4.3 Cost Function Selection 

The cost function can include several types of terms related to different control 

requirements for the system [2.31]. One such type is the reference following cost function, 

which includes terms representing a variable following a reference, such as current control, 

torque control, and flux control. These terms can be expressed generally as the error between 

the predicted variable and its reference [2.48].  

Actuation constraint cost function, where any measure of control effort is considered 

an additional term in the cost function. In power converters and drives, the control effort is 

related to the voltage or current variations, the switching frequency, or the switching losses. 
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For example, in a three-phase inverter, the control effort can be represented by the change in 

the voltage vector, where the difference between the previous and the current-voltage vector 

is added as an additional term to the cost function [2.67].  

2.5 Improved MPC Methods 

Despite the merits of MPC control methods, their conventional structure still faces 

some challenges, such as high torque and current ripples, variable switching frequency, 

proper selection of weighting factor, and high computational requirements. Therefore, 

numerous studies have focused on improving conventional MPC types to eliminate these 

challenges.  

The first essential improvement made to the MPC is the time-delay compensation. In 

the conventional MPC, the machine variables are measured at time instant (k) and then 

predicted at time instant (k+1). However, the actuating signals (voltage vector) are only 

available at time instant (k+2); this creates a step time delay [2.63]. To compensate for this 

delay, the variables are predicted at time instant (k+2). Various literature has included the 

time-delay compensation for MPC; for example, [2.68] proposed an MPC for PMSM drive 

based on real-time optimization considering one-step delay compensation. Similarly, [2.69-

2.71] have used two-step prediction to compensate for the time delay between state 

measurement and actuation state and avoid drive performance deterioration. Due to the 

simplicity and influence of time-delay compensation in MPC based PMSM drive, it has been 

embedded improvement to MPC schemes including other modified MPC.  

2.5.1 Multi-Vector MPC  

In the conventional MPC methods, only one optimum voltage vector is applied for 

the entire control cycle, which tends to produce a variable switching frequency and increase 
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the torque ripple. To eliminate this issue, additional vectors are applied along with the 

optimum vector during a control cycle with an appropriate duty ratio control. In [2.61], two-

vector-based PCC for PMSM drives with vector duration control was proposed. The first 

vector was selected similarly to conventional MPC, while the second vector was among the 

adjacent vectors to the first optimum vector to ensure only one change of switching state at 

each control cycle, thus avoiding high switching frequency. In addition, a duty cycle 

optimization was used to ensure adequate time duration of the first vector. 

Furthermore, [2.62] has proposed a three-vector PCC for PMSM drives based on the 

space vector modulation (SVM) technique. In this method, two active voltage vectors and a 

zero vector are selected to be applied for one control cycle, and their durations are calculated 

based on deadbeat control. The cost function is evaluated for three voltage vectors, then 

applied in one control cycle with the help of space vector modulation (SVM) to predict the 

next switching state. Unlike [2.61], which firstly evaluates the cost function to obtain the 

optimum first vector and calculates its duration, then selects the second vector from a 

combination of two adjacent active vectors to the first vector and zero vector and applies it 

for the rest of the duration. Similarly, [2.72] proposed a two-vector-based PTC with duty 

ratio control for PMSM drives, where the selection of the first and second vectors is similar 

to [2.61], except the vector duration is evaluated in the cost function. In addition, a two-

vector-based PCC of PMSM drives was proposed in [2.73] to improve the steady-state 

performance. Firstly, a reference vector was calculated based on deadbeat current control; 

the first optimum vector was selected as the nearest active vector to the reference vector. 

While the second vector was selected among three candidates to be two adjacent active 

vectors to the first vector and zero vector, and thus a candidate with minimal distance from 
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the reference vector was selected. Unlike other two-vector MPC, this method does not require 

the calculation of the current slope to obtain the vector duration. In the same context, [2.74] 

proposed a generalized multi-vector MPC for PMSM drives, which combines two MPC 

methods to obtain the reference vector and calculates the duties cycle based on the space 

vector or sinusoidal pulse width modulation (PWM) concept.  

In summary, multi-vector-based MPC methods are an essential improvement to the 

conventional MPC, where several studies consider it for PMSMs [2.75-2.76] and other 

machine drives [2.77-2.78]. It has been reported to improve the steady-state performance, 

reduce the torque and current ripples, regulate the switching frequency, and accurately select 

the voltage vector. 

2.5.2 Weighting Factor Selection 

The cost function of PTC method is typically based on torque and flux, which have 

different magnitudes and units. Therefore, a weighting factor is required to balance the 

performance of torque and flux. The selection of the weighting factor is based on the rated 

value of torque and flux. However, the selection of the weighting factor significantly impacts 

the drive performance; thus, this fixed value weighting factor might be inadequate for 

enhanced drive performance. Several research papers have considered different approaches 

to obtain an appropriate weighting factor. In [2.65], PTC without weighting factor for PMSM 

drives was proposed where a cost function-based voltage vector tracking error was used 

instead of a torque-flux error-based function. The deadbeat-direct torque flux control (DB-

DTFC) principle was utilized to obtain the reference voltage vector that ensures the torque 

and flux error converge to zero. Thus, a cost function-based voltage vector was proposed, 

which does not require a weighting factor. The advantages of such a method are eliminating 
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non-trivial tuning of the weighting factor and reducing the computational burden associated 

with the cost function-based flux-torque error.  

A similar principle has been adopted in [2.66], where PTC of PMSM drive-based 

voltage vector cost function was proposed. In addition, [2.79] has eliminated the weighting 

factor from PTC based PMSM drive by using a new lookup table of DTC, and only three 

voltage vectors are predicted and evaluated in the cost function. Torque-flux error-based cost 

function is commonly used for PTC; alternatively, the proposed method predicts the angle 

between the stator and rotor flux vectors and evaluates a cost function based on the error 

between the predicted angle and a reference angle. This method eliminates the weighting 

factor issue and reduces the system computation cost since it uses a new lookup table of DTC 

with only three voltage vectors. Furthermore, an improved weighting factor selection of PTC 

for PMSM drives has been proposed in [2.80]. An optimal weighting factor was selected 

using a radial basis function neural network (RBFNN).  

In general scope, weighting factor selection techniques and guidelines in MPC methods 

are discussed in [2.81-2.82]. In addition, a weighting factor selection method for MPC in 

power converter using a neural network method has been proposed in [2.83]. With the neural 

network, a powerful and fast optimization is obtained, the responses from the network very 

well match the responses derived from the model, and the acquired weighting factor is robust 

to load variations.  

2.5.3 Switching Frequency Regulation 

Common-mode voltage (CMV) suppression to regulate the switching frequency is 

another improvement of conventional MPC methods for PMSM drives. CMV is the voltage 

between the midpoint DC-link capacitor and the neutral point of the load. If the frequency of 
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CMV is very high, the leakage current and electromagnetic interface can increase, and the 

motor shaft can be damaged [2.84-2.86]. Various studies have proposed different methods to 

address the effects caused by CMV in PMSM drives, including improvement to the 

conventional MPC techniques. In [2.59], an MPC with constant switching frequency was 

proposed to suppress the CMV in PMSM drives. Compared to the conventional MPC, where 

only one active vector is applied, this method utilized four active vectors in the next control 

cycle. The switching sequence model is developed to keep the switching frequency fixed and 

equal to the control frequency. This method applies the four active voltage vectors [2.87], 

where a zero vector is avoided to restrict the amplitude of CMV, and two non-adjacent 

vectors are used to create the equivalent zero vector.  

The CMV and switching frequency can be improved with a total prohibition of zero 

vector, but the current signal quality is significantly affected. Therefore, [2.60] has proposed 

an MPC for PMSM drives with the realization of both CMV suppression and current 

distortion. A variable MPC was developed to suppress the CMV while maintaining good 

current quality and low switching frequency. The proposed scheme did not completely forbid 

the use of zero vector; alternatively, it sets an evaluation mechanism to determine whether to 

use zero vector or not. Three active and zero vectors are obtained with four cost functions 

during each control cycle. As the cost function of MPC represents the difference between the 

reference current and predicted current, a current error limit was introduced based on the 

current distortion requirement [2.88]. 

In addition, common mode current (CMC) suppression was proposed for MPC of 

PMSM drives in [2.89]. Because the variation in CMV primarily causes CMC, the study 

suggested decreasing the CMV variation by optimizing the output sequence of the voltage 
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vectors. Considering three output vectors (two active and zero vectors) for PTC-based PMSM 

drives, if these vectors are optimized, there is no variation in the next control cycle. This can 

be achieved by incorporating the CMV variation in the cost function. The issues of this 

method are that the calculation and prediction of CMV will increase the computational 

requirement of the system, the selection of appropriate weighting factors for torque-flux and 

CMV variation is an ambiguous process, and their values significantly impact the system 

performance. 

Furthermore, the CMV suppression method based on two-vector MPC for PMSM 

drives was proposed in [2.90]. Like [2.59] and [2.87], the proposed method eliminates the 

use of zero vector and utilizes only six active vectors considered in the cost function 

optimization. It also utilizes the concept of two-vector-based MPC similar to [2.91] with 

different calculation methods of the optimal durations of the selected vectors. Under the 

premise of better current quality, reduced CMV, and less computational burden, an efficient 

method was designed to calculate the optimal duration of the two selected vectors. The first 

vector is selected based on the conventional MPC, while the second vector is selected in 

accordance with the error between reference and predicted currents. For six active vectors, 

the current error is classified into four categories. Based on these categories, the second 

vector should be selected such that a minimal cost function is obtained.  

Moreover, a new CMV reduction method was proposed in [2.92], where an H7 

inverter (VSI with additional switch S7) using Zener diode-based PCC for PMSM drive was 

implemented to block the DC-bus voltage when a zero vector is applied. Compared to other 

CMV reduction methods, the proposed method reduces drive complexity and considers the 
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dead-time effects in the PMSM drive system. However, this method requires an additional 

compensation algorithm for the gate signal of the additional switch (S7). 

Finally, CMV suppression in PMSM drives with MPC is an outstanding improvement 

for the conventional MPC since it can reduce the switching frequency and/or improve the 

current quality. An effective MPC with CMV reduction should realize the trade-off between 

switching frequency, CMV suppression, and current distortion.  

 

2.6 PMSM Drive Uncertainties  

In PMSMs drives, uncertainties are unavoidable and generated from diverse sources 

such as load changes, environments, and the mechanical or electrical parts of the motor 

systems [2.93, 2.94]. PMSM drives' uncertainty can be classified into manufacturing or 

structural and operational or environmental uncertainties. The structural uncertainties are 

related to the machine structure and dimension, material diversity, assembly imperfection, 

frictions, and mechanical factors [2.95-2.102]. In contrast, operational ones are related to the 

uncertainties generated during the system operation, including machine parameter 

mismatching, inverter dead-time, measurement error, and external load disturbance [2.103-

2.107]. Depending on the type and level of uncertainty, PMSM drives may fail or be 

significantly affected, resulting in poor or unsatisfactory performance, such as high torque 

ripples, high current harmonics, slow dynamic response, and low efficiency [2.108-2.109].  

The dynamics of PMSMs are essentially nonlinear and subjected to a wide range of 

disturbances or uncertainties in many high-performance applications. The disturbances or 
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uncertainties in PMSM systems can be classified as unmodelled dynamics, parametric 

uncertainties, and external disturbances.  

2.6.1 Unmodeled Dynamics 

The actual PMSM drive system has complex dynamics in which some properties are 

not modelled, constituting the unmodelled dynamics. The unmodelled dynamics of PMSM 

drives are as follows. 

A.     Machine Body Structure Induced Torque 

Due to the utilization of different rotor materials in PMSMs, the body structure may 

induce various pulsating torques. For example, the cogging torque is generated by the 

interaction of the rotor magnetic flux and angular variations in the stator magnetic reluctance 

[2.95]. The cogging torque even exists when the system is disconnected from the power 

source, as the cogging torque is generated from the structure of the motor. From the energy 

perspective, the energy storage in the air gap of the stator slot is not constant, and the 

fluctuation in this energy causes torque fluctuation. Cogging torque compensation using a 

mathematical method is very difficult because of the lack of a precise cogging torque model.  

However, it can be simplified as a periodic function of the rotor position [2.110] and 

represented by a Fourier series [2.111]. 

Cogging torque is a primary source of machine torque ripples, a noise factor, and it 

is difficult to start the motor with high cogging torque. Also, it causes several adverse effects 

on the PMSM operation, such as mechanical vibrations that may reduce the machine 

bearings' lifetime, acoustic noise, and positioning errors in the case of precision systems 

[2.112-2.113]. To mitigate the effect of cogging torque, the machine body structure can be 

improved by considering different methods, such as optimizing pole shape and stator teeth 
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[2.114], adequate selection of the number of poles and slots [2.115], skewing the stator core 

or PMs [2.116], asymmetrical positioning of PMs or stator teeth [2.117-2.118], segmentation 

of PMs [2.119], and filling the stator slots with magnetic wedges. 

In addition, magnetic flux harmonics are a significant cause of torque pulsation. The 

most widely used material in the magnet of PMSMs is Neodymium Iron Boron (NdFeB), 

whose flux density is easily affected by temperature variation. The resultant demagnetization 

phenomenon of PMs due to temperature rise significantly impacts the maximum torque 

capability and the efficiency of PMSMs [2.96]. Owing to the motor structure and processing 

defect, the motor's air-gap magnetic density is non-sinusoidal; for example, the motor slot 

structure's existence can destroy the flux density's sinusoidal nature. This results in an 

imperfect sinusoidal flux-density distribution that produces periodic torque ripples 

interacting with standard stator currents. An improvement in structure design was introduced 

for ideal excitation magnetic field to suppress harmonic components using finite element 

analysis [2.120-2.122]. 

B.    Dead-Time Effects 

In a power electronics device, a dead-time is a short blanking time between the 

device's ON- and OFF-state to prevent the phase shortage of inverter arms. The dead-time 

causes a loss of a portion of the duty cycle, thus distorting the voltage applied to the drives 

[2.123-2.125]. Such effects become extremely severe near the zero crossing of the current. 

The resultant current deterioration leads to ripples in the electromagnetic torque. A voltage-

fed inverter is never ideal; in practice, the switching dead-time, the device's ON-state voltage 

drop, and the dc-bus voltage variations can adversely affect the control performance, 

particularly during the steady-state operation. The most obvious effect is the distortion of the 
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output current caused mainly by the low-order harmonics [2.105]. In the current control loop, 

the dead-time effect introduces periodic disturbances, which could lead to distortion of stator 

currents, especially in extremely low speed and heavy load conditions [2.126-2.128].  In the 

MPC of PMSM, the dead-time induced harmonics lead to prediction error. Even though these 

harmonics are quite small, the prediction error will be amplified when the prediction step 

increases. Their effects on the control system cannot be neglected to obtain high-performance 

control [2.129].  

C.     Measurement Error Effects 

 In AC machine drives, position or current measurement errors inevitably cause 

torque ripples. For example, the offset error in current measurements superimposing directly 

on the phase currents via the Clarke and Park transformations causes ripples on stator currents 

in the dq frame [2.130]. During the current measurement, inaccurate current acquisition 

introduces measurement noise, causing a DC offset. The output of the current sensor must be 

scaled to match the input of the A/D converter. In the digital form, the controller rescales the 

value of the A/D output to obtain the actual value of the current, thus introducing a scaling 

error [2.106].  

In real applications, stator currents are measured through the Hall sensor or high-

precision resistance, which can lead to periodic measurement errors. The current 

measurement errors include current dc offsets and scaling errors. The DC offsets can cause 

the measured current error in the dq coordinates to oscillate at the electrical angle frequency, 

and the scaling errors can cause the measured current error in the dq coordinates to oscillate 

at twice the electrical angle frequency [2.131]. 
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2.6.2 Parametric Uncertainties 

PMSMs consist of different parameters subjected to variations during operation due 

to temperature rise or other environmental effects. These include electrical parameters of 

stator resistance (𝑅𝑠), stator direct inductance (𝐿𝑑), stator quadrature inductance (𝐿𝑞), the 

permanent magnet flux linkage (𝑝𝑚), and mechanical parameters of rotor moment of inertia 

(𝐽), and viscous friction coefficient (𝐵). These parameters' typical or nominal values are 

normally obtained with offline measurements at nominal operating conditions or provided 

by the motor manufacturer [2.132-2.134]. However, considering the manufacturing 

tolerances and changes in the operating conditions, the actual values of these parameters may 

differ from the nominal ones. Thus, PMSM parameter variation will occur due to 

manufacturing tolerances and/or operational factors. Manufacturing tolerance is a certain 

inaccuracy range in a given typical value of a machine variable due to geometric dimensions 

and material properties tolerances. Thus, the manufacturing tolerance of each parameter 

depends on the machine manufacturers and what geometric dimensions and materials are 

used. Besides, operational factors are changed in operating conditions, such as temperature 

and load variations. 

Parametric uncertainties can significantly affect PMSM drive performance, 

especially with parameters-dependent control methods like MPC. For instance, the stator 

resistance (𝑅𝑠)  varies with the variation of winding temperature, which significantly impacts 

the current-loop regulation performance. These effects become severe at low speeds or high-

load torque conditions [2.135]. Besides, the PM flux linkage (𝑝𝑚) depends on the dq-axis 

currents and the magnet temperature. A mismatch of the rotor flux has a significant influence 

on medium and high speeds because the back electromotive force (EMF) is proportional to 
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the rotor flux. If the rotor flux is inaccurate, a constant current error occurs in steady-state, 

and overcurrent or undercurrent occurs in transient state [2.104]. The variation of PM flux 

can also lead to a steady-state current error with nonzero velocity [2.136]. The machine 

inductances (𝐿𝑑,𝐿𝑞) mainly influenced by the flux density and dq-axis currents and slightly 

vary with temperature changes. Also, the inductances vary nonlinearly with respect to the 

load conditions due to magnetic saturation. The effect of inductance variation is mainly 

coupled with the current change, and the transient performance is primarily affected in the 

current dynamic period [2.137]. 

Furthermore, as the variations of electrical parameters significantly affect the 

performance of current and torque control loops, mechanical parameters also vary during 

real-time operations and significantly influence the speed control loop. For example, the 

machine inertia (𝐽) varies when a load is applied to the machine. The shape and the 

dimensions of mechanical loads mainly affect the variation of mechanical parameters [2.138-

2.140]. The inertia of the whole drive system for some applications is time-varying [2.103]. 

If the system's inertia increases to some values more than the original, the speed response 

will have a bigger overshoot and a longer settling time [2.141]. 

The performance of MPC of PMSM drives highly depends on machine parameters, 

and variations in these parameters distort the measured and predictive current. Consequently, 

errors between the predictive, measured, and reference currents will be introduced. Thus, the 

final voltage vector cannot be precisely predicted by MPC. 
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2.7 Robust Predictive Control Methods of PMSM Drives 

PMSM drives are generally formed with feedback controllers, including feedback 

speed, currents, torque, and/or flux controls. In control theory, the primary aim of feedback 

control is to force a system output to track a reference (desired) input of that system, as well 

as reject disturbances and suppress measurement noises [2.142-2.144]. Various control 

techniques can be used to design a feedback controller for a process [2.145-2.148]; however, 

the controller is always designed based on an approximate model representing the dynamic 

behaviour of that process [2.148]. The model's accuracy varies but never perfectly describes 

the actual process; also, the behaviour of the process change with time, and these changes 

are mostly not captured by the model [2.149]. This is referred to as model uncertainty which 

can degrade the controller performance in the real process [2.150]. Uncertainties are inherent 

in real-world processes, and robust control methods are introduced to cope with these 

uncertainties [2.151].  

Robust control implies the ability of a control system to maintain desired performance 

(robustness) in the presence of uncertainties. Control system robustness is the property of 

tolerating uncertainties in the system without exceeding predefined tolerance bounds in the 

vicinity of some nominal dynamic performance [2.152-2.154]. Sometimes, robustness is 

evaluated as the system stability is far from being affected by uncertainties /disturbances. 

However, although stability is necessary for robustness, it is not the only desired control 

objective, and system performance has to be considered [2.149, 2.155, 2.156]. Therefore, 

robust analysis of a control system with uncertainties not only evaluates the stability property 

but also assesses whether system performance remains within predefined bounds in the 

vicinity of nominal performance for a complete set of system uncertainties [2.157-2.158]. 
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With various uncertainties and their diverse effects on the performance of PMSM 

drives, robust PMSM control methods have been introduced to enhance the system's 

robustness. Due to the merits of predictive controls and their high dependency on the machine 

model and parameters, RPCs have been massively investigated for PMSM drives. Based on 

the robust mechanisms, RPCs can be divided into different types: RPC-based, prediction 

error correction, observers, model-free, optimized cost function, and hybrid techniques. 

2.7.1 RPC-Based Prediction Error Correction 

One of the simplest robust methods is the RPC-based prediction error correction, 

where the prediction error is included in the prediction stage to compensate for any control 

effort. Such a method was proposed in [2.159], where a current error correction controller 

was implemented to generate a more accurate reference current. This can compensate for the 

output current incapability of tracking the reference current due to parameter variation and 

the non-linear operation of the inverter. Although this method has obtained specific good 

results, however; it increases the complexity of the current regulation scheme and neglects 

the effects of winding resistance and other drive uncertainties. 

Another RPC-based prediction error was proposed in [2.160] using the principle 

feedforward linearization method to solve the problem of parameter sensitivity of PMSMs. 

The weighted errors between the predicted and measured values in the last sampling instant 

are added to prediction equations in the next sampling instant to compensate for parameter 

mismatching. This method has reported a reduction in the parametric sensitivity of PTC 

compared to the conventional PTC while maintaining excellent dynamic performance. 

However, only the effect of machine inductance was considered, while other parameters were 

neglected. Also, the prediction errors of the switching states applied during each sampling 
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instant are different. Therefore, using the prediction error of the last sampling might not be 

accurate to compensate for parameter variation in the next sampling.  

RPC-based prediction error was proposed in [2.161], where the same principle in 

[2.160] was applied to the PCC of PMSM drives with the difference that the prediction error 

of each switching state is added to the prediction equations of the same switching state. Thus, 

by adding the prediction errors to the current’s prediction stage with weighting factors, the 

predicted currents are close enough to the motor currents' real behaviour, enabling the PCC 

algorithm to select a better switching state for the next control cycle. The same method was 

applied to PTC-based PMSM drives in [2.162]. With a variation of machine inductance, this 

method showed a better response than the conventional MPC and  RPC in [2.160]. However, 

this method only considers the effects of machine inductance, while other uncertainties were 

neglected. Also, a stagnant prediction update may occur if the present switching state is the 

same as the last one. 

Moreover, another RPC-based prediction error was proposed in [2.163], where a 

current variation mechanism was implemented for MPC-based PMSM drives to compensate 

for parameter mismatching and improve stagnant current updates. Also, this method utilizes 

a modified current prediction equation to predict future currents. The performance of this 

method has been investigated under different PMSM parameters variation. Still, it comprises 

intensive computation steps, which may increase the computational burden.  

RPC-based prediction error was discussed in [2.164], where the current prediction 

error caused by parameter variation is used to design a self-regulation technique and 

compensate for the parameter mismatch. Then, the performance is enhanced by correcting 

the current mathematical model in the control algorithm. Despite improving parameter 
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robustness in the proposed method, the estimation strategy's complexity requires massive 

computation, and not all system uncertainties were considered. Another RPC-based current 

error and parallel compensation terms were introduced in [2.195]. A robust MPC based on a 

current error with parallel compensation terms onto predictive deadbeat control was designed 

to compensate for the effects of parameter mismatch in real-time implementation. The 

proposed method utilizes deadbeat control, which requires a PWM modulator to generate the 

switching pulses and enhance the system's complexity. Besides, only the effects of 

inductance and resistance variations were considered, while other uncertainties were 

neglected.  

Furthermore, RPC-based prediction error was discussed in [2.165], where a current 

prediction error reduction method based on online inductance correction was proposed. It 

can directly correct the inductance value of the prediction model only using one proportional 

regulator, which is simple and easy to implement. Compared with other methods, the 

proposed method can reduce the calculation burden. However, only the effect of inductance 

mismatch was considered, while other uncertainties were neglected.  

2.7.2 RPC-Based Observer  

Another RPC type for PMSM drives is based on observers. In this type, single or 

multiple observers are employed to mitigate the effects of PMSM drive uncertainties. 

Observers can be used to estimate the disturbances and/or uncertainties in the drive system 

and compensate for their impact. An example of this RPC was proposed in [2.166], where an 

incremental prediction model was implemented to eliminate the permanent magnet flux 

linkage parameter. An inductance disturbance controller that includes a simple disturbance 

observer and inductance extraction algorithm was implemented to reduce the effects of 
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machine inductance mismatch. Though specific performances have been improved with this 

method, it enhances the system complexity, and only the impact of machine inductance was 

considered, while other parameters were neglected.  

In addition, a non-linear RPC scheme with a disturbance observer in a cascaded 

structure for a PMSM drive in the presence of input constraints was proposed in [2.167]. It 

consists of two MPC: the inner MPC is used to regulate the armature current by acting on the 

armature voltage, whereas the outer MPC is employed to track the speed reference by 

considering the q-axis component of the armature current (iq) as the input control. Besides, 

to eliminate the undesired side effect known as integrator windup, an anti-windup 

compensator is derived from the design of the disturbance observer. The design complexity 

involving two MPC methods and an observer is one of the drawbacks of this method. Also, 

the performance of this method was only investigated for low-speed operation.  

The RPC-based observer was introduced in [2.168], where a state and disturbance 

observer was used to estimate the variable parameters, compensating for parameter 

mismatching and unmodeled uncertainties. Though this method has reported good stability 

and constraint satisfaction, the two observers used require a high-capability processor to 

implement in real time. Another RPC-based observer was discussed in [2.104], where an 

incremental model was adopted to eliminate rotor flux, thus improving flux robustness. Also, 

the incremental model was combined with an extended state observer (ESO) to estimate the 

error caused by machine inductance variation and compensate in the prediction model. This 

method improved the robustness against flux and inductance uncertainties. However, other 

uncertainties were neglected. 
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Another RPC-based observer was proposed in [2.169], where a new PMSM model 

consisting of ideal and disturbance parameters was considered. A speed controller-based 

sliding mode and a current controller-based deadbeat MPC were designed based on the ideal 

part. Also, a high-order sliding mode observer was developed based on the disturbance part 

to estimate the parameters and disturbance uncertainties and compensate for them in the 

current and speed controller. This method has achieved quick transient response and good 

steady-state performance. However, the complexity of the control method requires massive 

computation capability for real-time implementation, and it is time-consuming.  

RPC-based observer was proposed in [2.170], where a predictive stator flux control 

for PMSM drives was designed to ensure good drive performance despite disturbance. A 

composite discrete sliding mode observer was utilized to estimate the disturbances and 

compensate for the flux prediction. This method has reduced the torque ripple and current 

distortion regardless of the disturbances. However, the effects of machine inductance and 

resistance were not considered. Besides that, [2.171] proposed a robust MPC for PMSM 

drive, where the optimal voltage vector combination selection of the three-vector MPCC is 

simplified, reducing the computational complexity. The super twisting algorithm-based 

second-order sliding-mode observer was designed to observe the lump disturbance. The 

estimated lump disturbance was used to compensate for the original PMSM model so that 

the problem of steady-state current error under parameter mismatch can be solved. Finally, 

the robustness against the motor parameters variation was effectively improved. The 

shortcoming of this method is that not all parameters variation were taken into consideration.  

RPC-based observer was discussed in [2.172], where an accurate PMSM model was 

analyzed considering the influence of parameter mismatches and measurement errors. A 
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modified MPC containing an accurate PMSM voltage and nonperiodic and periodic 

disturbance models were developed. Then, a novel current and disturbance observer (NCDO) 

in the modified MPC. The disturbances that the NCDO predicts are regarded as feedforward 

voltage compensation and are directly added into a modified PMSM voltage model. A good 

performance of the proposed DPCC with NCDO under parameters mismatch and current-

measurement error conditions were achieved. However, only the machine inductance 

mismatch was considered, and the current regulation schemes and observer enhance the 

system complexity and computational burden. 

Besides that, robust predictive current control for PMSM drives based on disturbance 

observer was introduced in [2.173]. A new predictive current control with a discrete-time 

DOB estimates the disturbance of the parameter variation online for an IPMSM drive was 

developed. The proposed observer aims to overcome the parameter sensitivity from the 

resistance and inductance uncertainties and make a prediction without the need for rotor flux 

information. The estimated disturbances are compensated with the predicted reference 

voltage model considering a digital delay. Compared to the conventional MPC, the proposed 

method can eliminate a steady-state current and transient-state error caused by system 

disturbances. The PMSM drive with this method under mismatched parameters showed a 

good performance. However, the method comprises two observers and utilizes a PWM 

modulator which enhances the system complexity and computational burden, thus increasing 

the cost of digital implementation.  

Virtual vector-based robust MPC for PMSM drives was proposed in [2.174]; the 

fundamental concept of this method is to reduce the required parameter information in the 

predictive model. Then, the influence of remaining parameter mismatches was suppressed 
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through the discrete disturbance observer. This discrete disturbance observer has a unified 

form with a predictive model, which can simplify the drive system. The virtual and basic 

vectors tend to increase the computation iterations, leading to a high computational burden 

on the drive system. Also, [2.175] has proposed robust MPC for PMSM drive based on 

observer using a multi-step error tracking technique. An extended PMSM model was 

incorporated by considering the external disturbance and parameter variation in the 

disturbance part. Then a sliding mode observer is employed to compensate for the effects of 

these disturbances. The proposed method reduces the overshoot and keeps good steady-state 

performance. Still, the complexity of the current control and computation required by the 

observer are among the disadvantages of this method.  

In addition, another RPC-based observer was discussed in [2.176], where a robust 

predictive torque controller is designed based on an unknown torque disturbance observer, 

which can enhance robustness against parameter mismatch and load torque disturbance. 

However, this method utilizes an SVM modulator which increases the computation 

requirement of the system. RPC-based observer was discussed in [2.177], where a novel 

disturbance method is used based on equivalent input disturbance, a signal applied to the 

input voltage, and producing the same effects as the actual disturbance. Then, this observer 

is combined with MPC for PMSM drives to eliminate the effects caused by machine 

uncertainties. The issue with this method is that the actual disturbance may differ from the 

observer's estimated disturbance.  

Another RPC-based observer was discussed in [2.137], where a robust predictive 

current control-based adaptive gain disturbance observer for PMSM drive was developed. 

First, an online adaptation mechanism was designed to extend the robust inductance limit. 
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Then an adaptive disturbance with the adaptation mechanism is combined with MPC to 

eliminate the static current error and enhance the transient response and parameter 

robustness. The issue with this method is that adding an observer enhances the control 

algorithm complexity and increases the implementation difficulty and the hardware 

computational burden. In addition, an explicit MPC-based disturbance observer was 

discussed in [2.178], where an improved disturbance observer based on the augmented 

model, in conjunction with the concept of offset-free MPC, to estimate both the disturbance 

terms and the state variables from the predicted and measured outputs. The estimated total 

disturbance removes all the influences of plant/model mismatches and unmodeled nonlinear 

terms within the closed-loop framework of explicit MPC. Besides the observer and explicit 

MPC, the space vector pulse width modulator (SVPWM) requirement enhances the 

complexity and computational burden of the drive system.  

2.7.3 Model-Free RPC 

Model-free predictive control is another type of RPC for PMSM drives. In this RPC, 

the prediction process is performed without using the machine parameters, thus avoiding the 

effects of parametric uncertainties. An example of this RPC  was proposed in  [2.179], where 

a model free based on the current difference detection technique was implemented. This 

method does not require any knowledge of the parameters of the motor. The stator current 

during each switching interval is assumed to be a linear. Thus, the current difference within 

each interval can be precisely computed. The stator current is detected twice at each 

switching instant to improve the accuracy of the current difference, and a simple subtraction 

operation is used to compute the current difference. Despite this method's simplicity and 

model independency, the accuracy of the current prediction at low speed is not good enough.  
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Another RPC-based model-free was discussed in [2.180], where the PMSM model 

was designed considering the effects of inverter nonlinearity and parametric uncertainties. 

Then, model-free predictive control was designed based on the ultra-local model and 

combined with the PMSM model and deadbeat predictive control. The proposed method does 

not require the knowledge of parameters. Still, the complexity of the predictive control with 

two predictive models of the d- and q-axes and the SVM PWM modulator can enhance the 

drive system complexity, which may increase the computational burden and hardware cost. 

In [2.181], an improved RPC-based model-free was proposed for PMSM by 

introducing an advanced current gradient updating mechanism. This method does not require 

a mathematical model and instead employs information about the current gradients to predict 

future currents. Another RPC-based model-free was presented in [2.182], where a model-

free predictive current control based on the current difference was proposed for PMSM 

drives. The concept is based on the idea in [2.179], with a simplified synchronized update 

mechanism of current differences. Each of the seven basic voltage vectors of the two-level 

inverter was updated in real-time without extensive calculations. This method's drawbacks 

are system complexity with long calculations and the inaccuracy of current difference 

estimation may still lead to stagnation. In [2.183], RPC was proposed based on model-free 

PMSM drives based on an ultra-local model and using an extended state observer. It applies 

the same concept as [2.180], but the disturbances are estimated using an extended state 

observer. Besides that, [2.184] proposed an improved RPC-based model-free SPMSM drives. 

It applies the same concept as [2.180], but the disturbances are estimated using a sliding 

model observer.  
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2.7.4 RPC-Based Optimized Cost Function 

Another RPC type for PMSM drives is based on an optimized cost function, where 

the cost function is modified to achieve drive robustness. An example of this RPCC type was 

proposed in [2.185]. A novel cost function was proposed based on the predicted integral 

action of the tracking error, and the controller was developed under the assumption that the 

system is free from any disturbance and mismatched parameters. It was shown that this leads 

to an integral action in the controller, which is exploited to improve the disturbance 

attenuation without using an offset observer. Based on simulation and experimental results, 

the proposed method has shown high performance concerning speed tracking and current 

control of the motor. Another RPC-based optimized cost function was proposed in [2.186], 

where a novel cost function that utilizes torque tracking, maximum torque per ampere 

condition, switching losses minimization, and system constraints to reduce the current, 

torque, flux ripples, and acoustic noise. Compared with DTC and conventional MPC, this 

method has shown improved performance, reduced torque ripple, lower current harmonics, 

reduced switching frequency, and less acoustic noise. However, compared to conventional 

MPTC, the new cost function utilizes four weighting factors. Their fixed values may degrade 

the performance, and the effects of parameters variation were not considered. Also, it requires 

the prediction of current, torque, and flux, which increases the system's calculation steps. 

In [2.29], a direct speed MPC was developed based on a novel cost function with 

three terms: tracking term to track the speed reference, attraction region term to attract the 

system state in steady-state efficiently, and limitation term to limit the current. Besides, the 

proposed cost function utilized a new technique to reject the disturbance and noise. Although, 

this method reduces the system complexity by combining speed and current control in one 
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controller. However, the effects of parameter variations and other model uncertainties were 

not considered. Also, the proposed cost function contains three weighting factors in which 

the selection of their values influences system performance. The same method was applied 

for predictive direct torque control in [2.187] based field weakening operation and [2.188] 

based maximum torque per ampere operation.  

Besides, robust MPC for PMSM with a newly designed cost function was proposed 

in [2.189]. A robust FCS-PCC strategy with a cost function in proportional-integral (PI) form 

for PMSM drives is very simple and practical to implement. The accumulated errors are 

weighted with the sampling time, and the integral action is activated in a predefined range. 

In this way, the design of the Integral coefficients is facilitated. This method demonstrates 

superior robustness compared to the conventional MPC under parameter mismatch. The 

drawback of this method is it requires intensive calculation steps and time to obtain the best 

performance. 

2.7.5 RPC-Based Hybrid Technique 

Another RPC type is based on hybrid techniques, combining two or more control 

techniques to produce a robust control strategy capable of dealing with machine uncertainties. 

An example of this RPC type was proposed in [2.190], where the complementary features of 

continuous input and discrete input MPC techniques were combined to ensure stability, 

robustness, optimal nonlinearity, and constraint inclusion for VSI-fed PMSM drive. A 

continuous control was designed based on the Lyapunov function to ensure stability with 

feedback control and robustness with adaptive control. Because the stability is guaranteed by 

at least one discrete switching state, the continuous control is converted into relevant 

constraints of the discrete control MPC. Thus, utilizing the discrete MPC optimization with 
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exhaustive search to find the switching pulses for VSI. The disadvantages of this method are 

the system complexity and possible computational burden increment. In addition, different 

gains and weighting factors are used, which require tuning and proper selections to avoid 

performance degradation in which their values may affect the performance.  

Another RPC-based hybrid technique was introduced in [2.46], where a deadbeat 

(DB) solution was combined with MPTC to select the best voltage vector (VV). The cost 

function needs to evaluate only three VVs selected by the DB solution instead of evaluating 

eight feasible VVs for a 2-level Inverter. The calculation iteration is reduced, and the 

parameter variation is investigated. Although a good steady-state response was achieved, the 

parameter mismatch affects the system stability during the transient response. The effects of 

magnet saturation and other machine uncertainties were neglected. Another RPC-based 

hybrid technique was discussed in [2.128], where integral-resonant control composed of 

several paralleled quasi-resonant controllers is embedded in the standard MPC algorithm to 

restrain the periodic disturbances. The proposed method does not need to store a large number 

of past time variables so that the computational complexity is reduced. In addition, it has 

relatively strong frequency robustness because the resonant internal model can adjust its 

control bandwidth conveniently. This method has the merits of suppressing periodic 

disturbance. However, the effect of other uncertainties was not considered.  

RPC-based hybrid technique was introduced in [2.129], where a less computational 

simplified repetitive controller with two resonant units and phase compensation was 

combined with MPC for PMSM drives to realize the system’s robustness against 

disturbances. Based on simulation and experimental results, the current ripple significantly 

reduced with the proposed SRC method in the presence of disturbances. A similar approach 
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was proposed in [2.191], which attempted to combine the features of both MPC and RC for 

linear motion drives to reduce the tracking error from the periodic disturbances. However, 

these methods require a long adjustment time to produce the best performance and can only 

be applied to a repetitive task. Moreover, another RPC-based hybrid technique was proposed 

in [2.192]. A hybrid flux prediction that combines the voltage and current model was 

developed in the prediction stage. A closed-loop current prediction model was designed to 

improve the performance in the presence of parameter variation. Though the parameter 

mismatching was compensated, the complexity of the proposed current, voltage, and flux 

model enhanced the overall computation requirement of the system.  

 

2.8 Data-Driven Control of PMSM Drives 

Model uncertainties and parameter mismatching are inevitable in PMSM drives. The 

PMSM model fails to capture various dynamics and changing parameters with different 

operating conditions [2.109]. These uncertainties can significantly impact the performance 

of model-based control, leading to reduced system robustness [2.166]. Although various 

techniques have been developed to enhance the robustness of model-based control methods, 

they often increase system complexity and computational requirements and may involve 

effective tuning of multiple parameters. 

A practical alternative to robust control methods, offering efficient computation, is 

data-driven control approaches. These approaches enable control based on system 

input/output data, eliminating the need for a system model and its associated parameters. One 

approach is model-free predictive control (MFPC), which performs online prediction solely 

based on measured input data without relying on a parametric system model. In contrast, 
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reinforcement learning (RL) achieves data-driven control by training the RL algorithm 

offline, resulting in a computationally efficient controller compared to MFPC. 

2.8.1 Model-Free Predictive Control (MFPC)  

MFPC-based current control (MFPCC) has received significant attention in the field 

of PMSM drives. Depending on the technique used to achieve MFPC (such as current 

difference and ultra-local model), stagnation effects can occur, and higher computational 

effort may be required [2.179-2.180]. MFPCC can be achieved using an ultra-local model 

[2.193], where an ultra-local model replaces a complex system model with one or two 

unknowns that can be estimated based on measured input and output data [2.184, 2.194]. The 

effectiveness of such MFPCCs highly depends on the estimation accuracy; also, some 

estimation methods may increase the computation requirements of the system. 

On the other hand, MFPCC can be achieved by solely using the measured currents 

and their variations. This type of MFPCC mainly depends on the current differences. The 

current difference due to the recently applied voltage vector is used to estimate the current 

differences due to the remaining possible vectors of a two-level inverter [2.179]. However, 

inaccurate prediction can occur when the same voltage vector is applied for long control 

intervals, resulting in stagnation of the other vectors. This issue was attempted in [2.195] and 

[2.181] by using the current differences due to the past two/three successive voltage vectors 

to estimate the differences due to the remaining vectors.  

However, the voltage vector applied over two/ three consecutive control cycles 

cannot be the same for these techniques. This could cause the applied voltage vector to 

change between two vectors for long control intervals; thus, current difference updating 

becomes ineffective, and stagnation may occur. Furthermore, most existing MFPCCs utilize 
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the measured current and applied voltage variations to compensate for the effect of parameter 

variations. However, parameter inaccuracies influence the reference current when a speed 

control loop is used. This results in suboptimal tracking performance and high current ripple. 

Two-vector modulation MFPCC based on the current tracking error slope was 

proposed in [2.196]. The current differences due to the possible active voltage vectors were 

determined using the method proposed in [2.181]. Two adjacent voltage vectors were 

identified, assuming the tracking error slope falls between two adjacent current differences. 

Then, these two vectors and a zero vector create three candidates of two-vector combinations 

that can be applied in each control cycle. This method considers tracking error and two-vector 

modulation to reduce current ripple. However, when the tracking error slope does not change 

for a few successive control cycles, only two vectors will be applied, and stagnation may 

occur. This issue can be more severe in nominal cases with constant steady-state tracking 

error slope causing a prolonged stagnation, leading to inaccurate prediction, and degrading 

the performance. 

2.8.2 Reinforcement Learning-Based Control  

RL-based control has emerged as a promising approach for achieving data-driven 

control in PMSM drives [2.197-2.198]. An optimal control action is obtained by training an 

RL agent with appropriate rewards based on measured PMSM data. This results in a 

computationally efficient controller optimized offline during the training process. RL can be 

employed to enhance the performance of standard PMSM control strategies (i.e., FOC, DTC, 

and MPC). For instance, [2.199] utilized RL to obtain the weight coefficients of an improved 

MPC for PMSM drives, and [2.200-2.201] implemented deep RL to optimize the parameters 

of active disturbance rejection control of PMSM. 
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Furthermore, RL can replace the standard control methods of PMSM drives entirely.  

RL-based current control [2.202] and DTC [2.203] of PMSM drives were implemented by 

training a deep Q-learning network to learn optimal controllers. These learning-based 

controllers were then deployed to a real-world drive system and demonstrated comparable 

performance to the standard controllers [2.198]. RL-based speed control was also trained to 

achieve optimal speed tracking and replace the standard speed control [2.204-205]. 

The effectiveness of RL-based controllers depends on the amount and quality of the 

data used for training. In the standard RL-based controller, an agent learns an optimal policy 

that maximizes its expected cumulative reward over a single training task with specific 

operating conditions and a single parameter set. Thus, new operating conditions and different 

parameter sets (due to parameter mismatching) can lead to poor performance and robustness 

or instability in the controlled system [2.206].  

The optimal learned policy varies for different parameter sets, making it difficult to 

generalize and adapt a learned policy to new operating conditions with new parameter sets. 

To generate a policy that can adapt to new tasks (e.g., new motors), meta-RL [2.207] was 

used to learn a policy that can adapt to new tasks more efficiently and quickly by leveraging 

prior experience on similar tasks. With a data set of different motor parameters, the 

environment of each motor data is pictured as a partially observable Markov decision process 

(POMDP), where the environment state is not fully available to the agent. Then, additional 

contexts (variables) containing information about the momentary environment are included 

in the environment state.  

However, these contexts can be static within each measurement, and incorporating 

them into the state creates a larger COMDP and reduces the learned policy's generalizing 
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power [2.208]. Furthermore, Meta-RL can be computationally intensive since it requires 

much data to learn the meta-policy and adapt to new tasks efficiently. Additionally, there is 

a risk of overfitting to the training tasks, where the agent memorizes the training tasks and 

cannot adequately generalize to test tasks. This can lead to poor performance on unseen tasks 

or tasks that are significantly different from the training tasks [2.209]. 

 

2.9 Summary  

This chapter presents a comprehensive analysis of the literature on PMSM drives. 

Mainly, RPC methods are critically investigated and classified into five types based on the 

robust mechanism employed. A robust model-free type with no machine model or parameters 

is found to be a better alternative to robust MPC methods, which tend to increase system 

complexity. Various model-free control techniques for PSMSM drives are discussed 

intensively in this chapter. Data-driven control methods, including model-free and RL-based 

controls, are also investigated in this chapter. 

Furthermore, the literature studies of RPC methods are quantitatively analyzed 

against a set of indicators, as presented in Appendix B. Various research gaps are identified 

in the literature, and corresponding solutions are proposed to fill these gaps, as will be 

presented in the following chapters. The gaps identified can be summarized as follows: 

• The drawbacks of conventional MPCs have been realized by various improvements 

such as multi-vector, weighting factor elimination, and switching frequency regulation. 

However, it is essential to maintain performance trade-off while dealing with the 

various issues of conventional MPCs. Most existing improved MPCs deal with specific 

issues and neglect the others, resulting in overall performance degradation. For 
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instance, regulating the switching frequency by prohibiting zero vectors can result in 

high current ripples. Two improved MPCs are proposed in this research (see Chapter 

3) that consider various issues of MPCs while maintaining an overall performance 

trade-off. 

• Various robust controls were introduced in the literature. However, it is unclear what 

criteria should be used to define a robust control system and how to compare the 

robustness of different control systems. A systemic robustness evaluation method 

based on Six-Sigma Methodology is introduced (see Chapter 4) to numerically obtain 

any control systems' sigma levels (robustness index) subjected to a bounded range of 

uncertainties. 

• Model-free control methods were found to be a better approach to eliminating the 

effects of uncertainties, particularly parametric uncertainty. The main issue of the 

various model-free predictive current control (MFPCC) is the switching vector 

stagnation when the applied switching vector is not updated for a long interval. This 

research addresses this issue by developing an adaptive MFPCC (see Chapter 5) that 

utilizes a reference vector to force updating the current differences and improve 

tracking performance. 

• Reinforcement learning (RL) based controls were implemented to achieve a data-

driven PMSM drive based on offline optimized policy, resulting in a computationally 

efficient controller compared to MFPCC. However, standard RL is usually trained in 

specific operating conditions with single parameter sets. Thus, new operating 

conditions with different parameter sets (due to parameter mismatching) can lead to 

poor performance, robustness, or instability in the controlled system. This issue is 



Chapter 2. A Literature Survey on Permanent Magnet Synchronous Machine Drives 

53 
 

addressed by proposing a multi-set robust reinforcement learning (see Chapter 6) to 

learn a single optimal policy robust to several different parameter sets. 
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CHAPTER  3 
 

3 TWO-VECTOR DIMENSIONLESS MODEL PREDICTIVE 
CONTROL OF PMSM DRIVES BASED ON FUZZY DECISION 

MAKING 
 

 

3.1 Introduction   

Model predictive controls (MPCs) with the merits of non-linear multi-variable control 

can perform better than other commonly used control methods for PMSM drives. However, 

the conventional MPCs have various issues, including unsatisfactory steady-state 

performance, variable switching frequency, and challenging selection of appropriate 

weighting factors. All these issues significantly impact the overall drive performance of 

conventional MPCs of PMSMs. Thus, a practical MPC should realize the trade-off between 

these different issues because focusing on one issue and neglecting the others can degrade 

the performance over various operating conditions. 

This chapter proposes two improved MPC methods to deal with different issues of 

conventional MPCs. The first method is based on model predictive torque control (MPTC) 

and implements two-vector and two cost functions (torque and flux). Fuzzy decision-making 

eliminates the weighting factor and selects the first optimum vector. The torque cost function 

selects the second vector whose duty cycle is determined based on torque error to decrease 

torque ripples further. The second method is based on model predictive current control 

(MPCC) with two voltage vectors. The first vector is selected in the same way as in the 
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conventional MPCC. Two separate current cost functions and fuzzy decision-making are 

used to select the second vector, whose duty cycle is determined based on the current error. 

Both proposed methods utilize the space vector PWM modulator to regulate the switching 

frequency. 

The rest of this chapter is organized as follows. Section 3.2 discusses the mathematical 

modelling of PMSM drive systems with MPC. Section 3.3 discusses the proposed improved 

MPC methods. Sections 3.4 and 3.5 present the numerical simulation and experimental tests, 

respectively. Section 3.6 presents the quantitative performance comparison of the proposed 

methods with conventional MPC. Section 3.7 presents the quantitative comparison of the 

proposed method and MPC with a regulated switching frequency. Section 3.8 summarizes 

the findings and outcomes of the chapter. 

 

3.2 PMSM Drive Modelling  

PMSM drive system involves various models and subsystems that need to be 

designed and mathematically modelled before developing a simulation or experimental 

design of the system. Mathematical models, inverters, and control methods are essential parts 

of the drive system. 

3.2.1 PMSM Dynamic Model  

In order to design an efficient PMSM drive system, it is crucial to develop an accurate 

PMSM mathematical model. Considering a three-phase PMSM in Fig. 3.1 represented in abc 

and dq reference frames. The three-phase voltages can be obtained as follows: 

𝑣𝑎,𝑏,𝑐 = 𝑅𝑠𝑖𝑎,𝑏,𝑐 +
𝑑

𝑑𝑡
𝑎,𝑏,𝑐                                                                     (3.1) 
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Fig. 3.1.   PMSM in abc and dq frames. 

 

Fig. 3.2.   Equivalent dq-circuit of PMSM. 

Using phase transformation, the equivalent dq-circuits of PMSM can be obtained 

(Fig. 3.2), and the three-phase voltages can be transformed from an abc-frame into a dq-

frame as: 

𝑣𝑑 = 𝑅𝑠𝑖𝑑 +
𝑑𝜓𝑑
𝑑𝑡

− 𝜔𝑠𝑞                                                                       (3.2) 

𝑣𝑞 = 𝑅𝑠𝑖𝑞 +
𝑑𝜓𝑞

𝑑𝑡
+ 𝜔𝑠𝑑                                                                        (3.3) 

and the flux equations are: 

𝑑 = 𝐿𝑑𝑖𝑑 +𝑃𝑀                                                                                    (3.4) 

𝑞 = 𝐿𝑞𝑖𝑞                                                                                           (3.5) 
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The mechanical and electrical torque can be expressed as follow: 

𝑇𝑒 =
3

2

𝑃

2
[(𝐿𝑑 − 𝐿𝑞)𝑖𝑑𝑖𝑞 +𝑃𝑀𝑖𝑞]                                           (3.6) 

𝑇𝑚 = 𝑇𝐿 + 𝐽
𝑑

𝑑𝑡
𝜔𝑟 + 𝐵𝜔𝑟                                                         (3.7)  

where 𝑣𝑑  and 𝑣𝑞 are the d- and q-axis voltages, 𝑖𝑑  and  𝑖𝑞 the d- and q-axis currents, 𝐿𝑑 and 

𝐿𝑞 (𝐿𝑞 = 𝐿𝑑 in the case of surface-mounted PMSM) the d- and q-axis inductances, 

respectively; 𝑅𝑠 is the stator resistance, 𝜔 is the machine speed, and 𝑝𝑚 the permanent 

magnet flux in the rotor; 𝑇𝑚, 𝑇𝑒, and 𝑇𝐿  are the mechanical torque, electrical torque, and load 

torque, respectively; 𝐽 is the momentum of inertia, and 𝐵 is the vicious friction coefficient. 

3.2.2 Three-phase Inverter  

A voltage Source Inverter (VSI) is a device that converts a DC voltage to an AC 

voltage of variable frequency and magnitude fed to the AC motors. Pulse Width Modulation 

(PWM) method is used to generate switching pulses to control the switches states of the 

inverter. Fig. 3.3 shows a three-phase VSI comprising six power switches, diodes, and DC 

link capacitors. The output voltages Va, Vb, and Vc are applied to the stator windings of a 

motor. The basic operation can be understood by assuming a constant value for the DC link 

voltage in the three-phase VSI circuit, which implements the concept of switching pulses. 

Each inverter phase leg is independently operated. The switching pulses of the three inverter 

legs are denoted as Sa, Sb, and Sc. The line voltages can be derived using the switching pulses 

and DC voltage as: 

𝑉𝑎𝑏 = 𝑉𝑑𝑐 (𝑆𝑎 − 𝑆𝑏)   (3.8) 
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𝑉𝑏𝑐 = 𝑉𝑑𝑐 (𝑆𝑏 − 𝑆𝑐) (3.9) 

𝑉𝑐𝑎 = 𝑉𝑑𝑐 (𝑆𝑐 − 𝑆𝑎)       (3.10) 

where 𝑉𝑎𝑏 , 𝑉𝑏𝑐 and 𝑉𝑐𝑎  are the line voltages and 𝑉𝑑𝑐 is the DC supply voltage. 

From the line voltages equations, the phase voltages can be derived by assuming the 

system is balanced in the way of the summations of three-phase currents, and voltages are 

equal to zero. The phase voltages in terms of the line voltages are given as follows: 

𝑉𝑎𝑛 =
𝑉𝑎𝑏 − 𝑉𝑐𝑎

3
                                               (3.11) 

   𝑉𝑏𝑛 =
𝑉𝑏𝑐 − 𝑉𝑎𝑏

3
                                             (3.12) 

   𝑉𝑐𝑛 =
𝑉𝑐𝑎 − 𝑉𝑏𝑐

3
                                             (3.12) 

Vdc

+

-

Q1
D1Sa

Q2
D2

Q3
D3

Q5
D5

Q4
D4

Q6
D6

Va Vb Vc

Sb Sc

Sb ScSa

 

Fig. 3.3.   Three-phase Voltage Source Inverter. 

Substituting (3.11), (3.12), and (3.13) into (3.8), (3.9), and (3.10), one obtains the 

line-to-neutral voltages of the load as the following: 

𝑉𝑎𝑛 =
𝑉𝑑𝑐
3
  (2Sa − Sb − Sc) 

     (3.14) 

𝑉𝑏𝑛 =
𝑉𝑑𝑐
3
 (2Sb − Sc − Sa)   

(3.15) 

𝑉𝑐𝑛 =
𝑉𝑑𝑐
3
  (2𝑆𝑐 − 𝑆𝑎 − 𝑆𝑏)  

(3.16) 
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3.2.3 Model Predictive Control  

The purpose of the control method in a high-performance PMSM drive is to generate 

the switching pulses for the inverter. MPC generates the pulses by minimizing a cost function 

to select the optimum switching states. The operation of MPC includes measurement of the 

machine variables, estimation of the variables that cannot be measured, and finally, 

prediction of future values based on the measured and estimated values [3.1-3.2]. Based on 

the predicted variables, MPC can be classified into MPTC [3.3] and MPCC [3.4]. 

MPTC predicts future torque and flux values based on the measured stator currents and 

rotor speed. To obtain the prediction equations of MPTC, the voltage equations of PMSMs, 

(3.2) and (3.3) can be rearranged to solve for 𝑑𝑖𝑑
𝑑𝑡

 and 𝑑𝑖𝑞
𝑑𝑡

 as follows: 

𝑑𝑖𝑑
𝑑𝑡
= − 

𝑅𝑠
𝐿𝑑
𝑖𝑑 +

𝐿𝑞

𝐿𝑑
 𝜔𝑖𝑞 +

1

𝐿𝑑
𝑣𝑑                                                                  (3.17) 

   
𝑑𝑖𝑞

𝑑𝑡
= − 

𝑅𝑠
𝐿𝑞
𝑖𝑞 −

𝐿𝑑
𝐿𝑞
 𝜔𝑖𝑑 − 𝜔𝑚 + 

1

𝐿𝑞
𝑣𝑞                                                      (3.18) 

At sampling time 𝑇𝑠, using Euler derivative approximation for 𝑑𝑖𝑑𝑞
𝑑𝑡

, one can have: 

𝑑𝑖𝑑𝑞

𝑑𝑡
=
𝑖𝑑𝑞(𝑘 + 1) − 𝑖𝑑𝑞(𝑘)

𝑇𝑠 
                                                                     (3.19) 

Hence, the 𝑖𝑑𝑞 currents at (𝑘 + 1)𝑡ℎ time instant can be calculated by substituting 

(3.19) into (3.17) and (3.18) as follows: 

𝑖𝑑(𝑘 + 1) = (1 −
𝑅𝑠𝑇𝑠
𝐿𝑑
) 𝑖𝑑(𝑘) +

𝐿𝑞

𝐿𝑑
𝑇𝑠 𝜔 𝑖𝑞(𝑘) +

𝑇𝑠
𝐿𝑑
𝑣𝑑                                (3.20) 
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𝑖𝑞(𝑘 + 1) = (1 −
𝑅𝑠𝑇𝑠
𝐿𝑞
) 𝑖𝑞(𝑘) −

𝐿𝑑
𝐿𝑞
𝑇𝑠 𝜔 𝑖𝑑(𝑘) − 𝑇𝑠𝜔𝑃𝑀 +

𝑇𝑠
𝐿𝑞
𝑣𝑑                    (3.21) 

The stator flux at (𝑘 + 1)𝑡ℎ time instant can be predicted using the predicted current in 

(3.20) and (3.21) as: 

𝑑(𝑘 + 1) = 𝐿𝑑𝑖𝑑(𝑘 + 1) +𝑃𝑀                                                                       (3.22) 

𝑞(𝑘 + 1) = 𝐿𝑞𝑖𝑞(𝑘 + 1)                                                                                  (3.23) 

Also, the torque at (𝑘 + 1)𝑡ℎ time instant can be predicted using predicted current and 

flux as: 

𝑇𝑒(𝑘 + 1) =
3

2
𝑝(𝑑(𝑘 + 1)𝑖𝑞(𝑘 + 1) −𝑞(𝑘 + 1)𝑖𝑑(𝑘 + 1))                              (3.24) 

Finally, the cost function of MPTC can be expressed as: 

𝑔𝑀𝑃𝑇𝐶 = (𝑇
∗ − 𝑇𝑒(𝑘 + 1))

2 + 𝛾(𝑠
∗−𝑠(𝑘 + 1))

2                                          (3.25) 

where 𝑠 is stator flux (𝑠 = 𝑑 + 𝑗𝑞) and 𝛾 the weighting factor. Conversely, MPCC 

predicts the future values of the stator currents based on measured stator currents, rotor speed, 

and estimated voltages. MPCC works by obtaining the dq currents and machine position at 

sampling instant (k), and then the dq voltages are calculated and used to predict the dq 

currents for the (k+1)th sampling interval. The dq currents at (k+1)th time instant are 

predicted using (3.20) and (3.21) [3.5-3.6]. MPCC cost function to select the optimum 

voltage vector is: 

𝑔𝑀𝑃𝐶𝐶 = (𝑖𝑑
∗ − 𝑖𝑑(𝑘 + 1))

2
 + (𝑖𝑞

∗−𝑖𝑞(𝑘 + 1))
2

                                       (3.26) 
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The block diagram of MPC for PMSM drives is shown in Fig. 3.4, where Fig. 3.4(a) 

shows MPTC and Fig. 3.4 (b) shows MPCC. 

 
(a) 

 
(b) 

Fig. 3.4.   Block diagrams of MPCs, (a) MPTC, (b) MPCC. 
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3.3 Proposed Two-Vector Dimensionless MPC  

The proposed methods aim to improve the steady-state performance, regulate the 

switching frequency, and eliminate the weighting factor while maintaining an overall 

performance trade-off. 

Prior to discussing the proposed method, it is essential to consider one-step delay 

compensation. In the conventional MPC, the machine variables are measured at time instant 

(k) and then predicted at time instant (k+1). However, the actuating signals (voltage vector) 

are only available at (k+2)th time instant. This creates a step time delay [3.7]. To compensate 

for this delay, the variables are predicted at (k+2)th time instant. Thus, the cost functions of 

the conventional MPCC and MPTC in (3.25) and (3.26) are rewritten as follows [3.8]: 

𝑔𝑀𝑃𝑇𝐶 = (𝑇𝑒
∗ − 𝑇𝑒(𝑘 + 2))

2
+ 𝛾(𝑠

 ∗−𝑠(𝑘 + 2))
2
                                         (3.27) 

𝑔𝑀𝑃𝐶𝐶 = (𝑖𝑑
∗ − 𝑖𝑑(𝑘 + 2))

2
+ (𝑖𝑞

∗−𝑖𝑞(𝑘 + 2))
2

                                              (3.28) 

3.3.1 Method-I: Two-Vector dimensionless FDM-MPTC  

The most common issue in MPTC is the selection of the weighting factor. The cost 

function of MPTC in (3.27) contains two objective functions based on torque and flux. Each 

objective function has a different degree of importance, and torque and flux have different 

magnitudes and units. Thus, a weighting factor (𝛾) must be included to balance the 

performance. The selection of the weighting factor is an ambiguous process, and a significant 

performance effect can be experienced if an inappropriate value is selected. The weighting 

factor can be optimized manually (offline) based on empirical procedures [3.9] or based on 

other methods such as parameter sweep [3.10] and Genetic algorithm [3.11]. However, these 

methods are time-consuming and influenced by parameters and operating conditions [3.12]. 

In addition, different approaches are considered to eliminate the weighting factors in MPC 
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of PMSM drives, including using cost function-based voltage vector tracking error instead 

of torque-flux error [3.13] or using a new lookup table of DTC [3.14]. 

This research proposes a two-vector MPTC based on fuzzy decision-making (FDM) 

to eliminate the weighting factor and improve steady-state performance. Generally, choosing 

the weighting factor (𝛾) requires the absolute importance of both torque and flux objective 

functions. However, FDM depends on the relative importance of each objective function over 

another and can be chosen based on the decision maker's subjective and qualitative 

experience and judgment. The torque and flux objective functions in (3.27) can be rewritten 

individually as: 

𝑔𝑇 = (𝑇𝑒
∗ − 𝑇𝑒(𝑘 + 2))

2
                                                                     (3.29) 

𝑔 = (𝑠
 ∗−𝑠(𝑘 + 2))

2
                                                                   (3.30) 

The proposed method utilizes two switching vectors over one control cycle. The 

torque objective function in (3.29) is evaluated separately based on eight voltage vectors 

(𝑉0 − 𝑉7) of a 2-level three-phase inverter and minimized to obtain an optimum first voltage 

vector 𝑉1. The second optimum voltage vector 𝑉2 is obtained based on FDM using the torque 

and flux objective function. 

The torque and flux objective functions in (3.29) and (3.30) are evaluated based on 

eight voltage vectors (𝑉0 − 𝑉7) of a 2-level three-phase inverter, the final optimum voltage 

vector is determined using FDM. FDM is used where insufficient and incomplete data exist 

for the solution [3.15]. It is a bit different from the conventional fuzzy approach and has been 

introduced for MPC in [3.16] but not for the aim of eliminating the weighting factor and was 

applied for MPC in power converters [3.17] and induction motors [3.18]. To apply FDM in 

MPC, the specification of membership and decision functions are required. The linear 
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membership function is the common form used in MPC. Therefore, a cost function is 

evaluated at eight voltage vectors 𝑔𝑖(𝑉𝑠) , (𝑉𝑠 = 0 − 7), and the linear membership function 

mi(Vs) is:  

mi(𝑉𝑠) = (
𝑔𝑖
𝑚𝑎𝑥  − 𝑔𝑖(𝑉𝑠)

𝑔𝑖
𝑚𝑎𝑥 − 𝑔𝑖

𝑚𝑖𝑛
 )

𝑅𝑖

                                                         (3.31) 

where 𝑅𝑖 is a priority weight factor determined based on each objective function's relative 

importance.  

In [3.19],  the numbers for various relative importance cases are listed and assigned 

depending on the priority importance of an objective function over the other. For the 

proposed method, an intermediate value of two (𝑅𝑖 = 2) is selected as the priority weight for 

both torque and flux objective functions. Hence, the membership function of the torque 

objective function mT(𝑉𝑠) and flux objective function m(𝑉𝑠) are: 

mT(𝑉𝑠) = (
𝑔𝑇
𝑚𝑎𝑥  − 𝑔𝑇(𝑉𝑠)

𝑔𝑇
𝑚𝑎𝑥 − 𝑔𝑇

𝑚𝑖𝑛
  )

2

                                                               (3.32) 

m(𝑉𝑠) = (
𝑔
𝑚𝑎𝑥  − 𝑔(𝑉𝑠)

𝑔
𝑚𝑎𝑥 − 𝑔

𝑚𝑖𝑛
  )

2

                                                             (3.33) 

The cost functions of torque 𝑔𝑇(𝑉𝑠) and flux 𝑔(𝑉𝑠) are evaluated based on eight different 

voltage vectors (𝑉𝑠 = 0 − 7). Then, using the obtained values, their maximum (𝑔𝑇𝑚𝑎𝑥 , 𝑔𝑚𝑎𝑥), 

and minimum values (𝑔𝑇𝑚𝑖𝑛, 𝑔𝑚𝑖𝑛) as in (3.32) and (3.33), the torque and flux membership 

functions (mT, m) in the range of [0 1] are obtained. Thus, an optimum voltage vector can 

be selected by minimizing and maximizing a decision function as: 

mD(𝑉𝑠) = min{𝑚𝑇(𝑉𝑠),𝑚(𝑉𝑠)}                                                    (3.34) 

The optimum voltage vector (𝑉𝑜𝑝𝑡)  is selected as: 

𝑉𝑜𝑝𝑡 = max
𝑠=0−7

(mD(𝑉𝑠))                                                                     (3.35) 
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With the previously obtained vector 𝑉1 by minimizing the torque cost function and 

making the optimum vector obtained in (3.35) as 𝑉𝑜𝑝𝑡 = 𝑉2, this will result in two different 

voltage vectors (𝑉1, 𝑉2). By computing the dq voltages components of each of these two 

vectors as: 

𝑢𝑑𝑞1 = 𝑢𝑑𝑞
(𝑉1)                                                                              (3.36) 

𝑢𝑑𝑞2 = 𝑢𝑑𝑞
(𝑉2)                                                                           (3.37) 

The final reference voltage 𝑢𝑑𝑞
𝑟𝑒𝑓 is obtained as the combinations of the dq voltages 

components of two vectors with different duty cycles as: 

𝑢𝑑𝑞
𝑟𝑒𝑓
=
𝑡1 × 𝑢𝑑𝑞1
𝑇𝑠

+
(𝑇𝑠 − 𝑡1) × 𝑢𝑑𝑞2

𝑇𝑠
                                                (3.38) 

where 𝑇𝑠 is the sampling time, and 𝑡1 (0 < 𝑡1 < 𝑇𝑠)  the time assigned for the first vector 

(𝑉1). The duty cycle 𝑑1 of 𝑉1 is determined based on the torque error: 

𝑑1 = |
𝑇𝑒
∗ − 𝑇𝑒(𝑘 + 2)

𝐶𝑇
|                                                                 (3.39) 

where 𝐶𝑇 is a positive constant value to be chosen to minimize the torque ripple. 

Hence, the proposed FDM-MPTC can eliminate the weighting factor by transforming 

the torque and flux terms into dimensionless quantities using FDM and obtaining the 

optimum voltage vector with the factorless MPTC. To improve the steady-state performance 

and reduce torque ripples, a second vector is obtained by evaluating the torque cost function. 

This vector and the optimum vector are applied in each control cycle. This will improve the 

torque performance and reduce torque ripple because the second vector is obtained by 

evaluating the torque cost function and its duty cycle based on the torque error. If the torque 

ripple is high, the vector obtained from the torque cost function (𝑉1) will be applied for a 

longer time to reduce torque ripple. Finally, PWM modulator-based space vector regulates 
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the switching frequency and accounts for a trade-off between the steady-state performance, 

weighting factor, and switching frequency. The reference 𝑢𝑑𝑞
𝑟𝑒𝑓 in (3.38) is fed to the SVM 

PWM modulator; thus, the inverter's switching pulses with a regulated switching frequency 

are generated. Fig. 3.5 shows a block diagram of the proposed FDM-MPTC. 

 

Fig. 3.5.   The Block Diagram of the proposed FDM-MPTC for PMSM drives. 

3.3.2 Method II: Two-vector FDM-MPCC 

The conventional MPCC evaluates the cost function (3.31) based on the current 

difference to obtain the optimum switching vector for the next control cycle. Most 

improvement of MPCC applies one or more vectors along with the optimum vector over one 

control cycle. Usually, the weighting factor is not required in MPCC. However, weighting 

factors are used to render the cost functions comparable in magnitude and units. Clearly, the 

MPCC's cost function terms have the same unit but may have different magnitudes. Thus, 

the weighting factor can be used, like in [3.20], which presented an MPCC cost function with 

a weighting factor computed using a fuzzy logic controller based on current errors. This 

research applies two-vector MPCC with duty cycle control over one control cycle. The first 

vector is selected using FDM presented in Method-I by rewriting the cost function in (3.31) 
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into two separate objective functions. The 𝑖𝑑𝑞 current differences as the d- and q-objective 

functions are as follows: 

𝑔𝑑(𝑉𝑠) = (𝑖𝑑
∗ − 𝑖𝑑(𝑘 + 2))

2
                                                        (3.40) 

𝑔𝑞(𝑉𝑠) = (𝑖𝑞
∗−𝑖𝑞(𝑘 + 2))

2

                                                          (3.41) 

The membership functions 𝑚𝑖 for the current cost functions 𝑔𝑑(𝑉𝑠) and 𝑔𝑞(𝑉𝑠) can 

be expressed in the general form with different priority weights as: 

mi(𝑉𝑠) = (
𝑔𝑖
𝑚𝑎𝑥  − 𝑔𝑖(𝑉𝑠)

𝑔𝑖
𝑚𝑎𝑥 − 𝑔𝑖

𝑚𝑖𝑛
 )

𝑅𝑖

                                                       (3.42) 

The priority weight 𝑅𝑖 in (3.42) is determined based on the relative importance of 

each objective function. First, a pairwise comparison matrix Γ is constructed by comparing 

the objective function with each other. Since the current iq directly influences the torque and 

current performance, the q-objective function is given moderate importance over the d-

objective function to improve the torque performance. The comparison matrix Γ between the 

two objective functions (𝑔𝑑, 𝑔𝑞) can be obtained as: 

Γ = [
1 3
1

3
1
]                                                                                    (3.43) 

By computing the eigenvector γ corresponding to the maximum value of the 

eigenvalues of Γ, the priority weight 𝑅𝑖 can be expressed as: 

𝑅𝑖 = [ 𝑅1….  𝑅𝑖] =
γi𝑚𝑎𝑥  

∑ γi𝑚𝑎𝑥 
𝑖
𝑖=1

                                                (3.44) 

In our case, the priority weight  𝑅𝑖 = [𝑅𝑞  𝑅𝑑], which has been obtained as 𝑅𝑞 = 0.75 

and 𝑅𝑑 = 0.25. More details on obtaining the comparison matrix and computing the priority 
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weight can be found in [3.19]. The membership function of the d- and q-objective 

functions( mq(𝑉𝑠),m𝑑(𝑉𝑠)) are: 

md(𝑉𝑠) = (
𝑔𝑑
𝑚𝑎𝑥  − 𝑔𝑑(𝑉𝑠)

𝑔𝑑
𝑚𝑎𝑥 − 𝑔𝑑

𝑚𝑖𝑛
 )

𝑅𝑑

                                                   (3.45) 

mq(𝑉𝑠) = (
𝑔𝑞
𝑚𝑎𝑥  − 𝑔𝑞(𝑉𝑠)

𝑔𝑞
𝑚𝑎𝑥 − 𝑔𝑞

𝑚𝑖𝑛
 )

𝑅𝑞

                                                    (3.46) 

The d-objective function 𝑔𝑑(𝑉𝑠) and q-objective function 𝑔𝑑(𝑉𝑠) are evaluated based 

on eight different voltage vectors (𝑉𝑠 = 0 − 7). Then, using the obtained values, their 

maximum (𝑔𝑑𝑚𝑎𝑥 , 𝑔𝑑𝑚𝑎𝑥) and minimum values (𝑔𝑑𝑚𝑖𝑛, 𝑔𝑑𝑚𝑖𝑛) as in (3.45) and (3.46), the 

membership functions (md, m𝑑) in the range of [0 1] are obtained. An optimum voltage 

vector is selected by minimizing a decision function as: 

mD(𝑉𝑠) = min{𝑚𝑑(𝑉𝑠),𝑚𝑞(𝑉𝑠)}                                                    (3.47) 

Then, the first optimum vector is determined by maximizing the decision function in 

(3.47) as: 

𝑉1 = max
𝑠=0−7

(mD(𝑉𝑠))                                                                          (3.48) 

The second vector is determined by minimizing the cost function in (3.26) as: 

𝑉2 = min
𝑠=0−7

(gMPCC)                                                               (3.49)  

By computing the dq voltage components of two vectors (𝑉1, 𝑉2), the final reference 

voltage 𝑢𝑑𝑞 is obtained as the combinations of the dq voltages components of the two vectors 

with duty cycles as: 

𝑢𝑑𝑞
𝑟𝑒𝑓
=
𝑡1 × 𝑢𝑑𝑞1
𝑇𝑠

+
(𝑇𝑠 − 𝑡1) × 𝑢𝑑𝑞2

𝑇𝑠
                                            (3.50) 

The duty cycle 𝑑1 of 𝑉1 is determined based on iq current error as: 
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𝑑1 = |
𝑖𝑞
∗−𝑖𝑞(𝑘 + 2)

𝐶𝑞
|                                                     (3.51) 

where 𝐶𝑞 is a positive constant value.  

Similar to Method-I, a PWM modulator-based SVM is used to regulate the switching 

frequency, where the 𝑢𝑑𝑞
𝑟𝑒𝑓 in (3.50) is fed into the PWM modulator to generate the switching 

pulses. The block diagram of FDM-MPCC is shown in Fig. 3.6. 

 

Fig. 3.6.    The Block Diagram of the proposed FDM-MPCC for PMSM drives. 
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3.4 Numerical Simulation  

In this section, the proposed two MPC methods (FDM-MPTC and FDM-MPCC) are 

designed and simulated using Matlab/Simulink based on a 1kW PMSM. To verify the 

effectiveness of these two methods, the conventional MPC (PCC) is applied to the PMSM 

and compared with the proposed methods considering different characteristics. The MPC 

applies one vector in each control cycle but has been optimized for better performance. The 

PMSM parameters are kept the same for all simulations, as in Table 3.1. The numerical 

simulation combines start-up, steady-state, and external load tests. The motor starts at 0s with 

a reference speed (500 rpm or 1000 rpm), and an external load (2 Nm) is applied at 0.1s. 

 

Table 3.1   PMSM drives parameters. 

Parameter Symbol Value and unit 

Stator Resistance  𝑅𝑠 0.47Ω 

d-Axis Inductance  𝐿𝑑 14.2mH 

q-Axis Inductance  𝐿𝑞 15.9mH 

Permanent magnet Flux Ψ𝑚 0.1057 Wb 

Number of Pole Pairs 𝑃 3 

Rated Speed 𝜔𝑛 1000 rpm 

Rated Torque  𝑇𝑛 2 Nm 

dc-Link voltage  𝑉𝐷𝐶 200V 

Inertia  𝐽 0.002 kg/𝑚2 

viscous Friction 𝐵 0.0006 Nm/rad/s 

Sampling Time 𝑡𝑠 100µs 
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Figs 3.7 and 3.8 show the dynamic responses at 500 and 1000 rpm with an external 

load of 2 Nm applied at t = 0.3 s for MPC and the proposed FDM-MPTC and FDM-MPCC. 

From top to bottom, the waveforms are stator current and torque on the left side of the figure 

and stator flux and rotor speed on the right side. As can be seen from the curves, the proposed 

FDM-MPTC and FDM-MPCC show an excellent dynamic response with lower overshoot, 

faster settling time, smaller flux and torque ripples, and smoother stator current responses 

than compared to MPC. 

Fig. 3.9 presents the waveforms of switching frequency, the harmonic spectra of 

stator currents, and the selected voltage vectors at the steady state of 1000 rpm (the rated 

speed) with a load torque of 2 Nm. It is seen that the proposed FDM-MPTC and FDM-MPCC 

show almost fixed average switching frequency, which is better and more regulated than 

MPC. MPC has an unregulated average switching frequency because the switching pulses 

are directly generated without a PWM modulator. In addition, the total harmonic distortion 

(THD) of the stator current is calculated up to 6 kHz maximum frequency. The proposed 

FDM-MPTC and FDM-MPCC record THD values of 4.61% and 4.12%, respectively. In 

contrast, MPC has a broad harmonic spectrum, and the stator current THD is up to 6.31%, 

much higher than the proposed methods. 
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(a)

(b)

(c)
Fig. 3.7.   Responses of rotor speed, stator current, torque, and stator flux at 1000 rpm with 

sudden load change for (a) MPC, (b) proposed FDM-MPCC, and (c) proposed FDM-

MPTC.
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(a)

(b)

(c)
Fig. 3.8.   Responses of rotor speed, stator current, torque, and stator flux at 500 rpm with 

sudden load change for (a) MPC, (b) proposed FDM-MPCC, and (c) proposed FDM-

MPTC.
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(a)

(b)

(c)
Fig. 3.9.   Switching frequency, the harmonic spectrum of stator current, and selected 

switching vectors for (a) MPC, (b) proposed FDM-MPCC, and (c) proposed FDM-MPTC.
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3.5 Experimental Test 

3.5.1 Experimental Setup  

To validate the effectiveness of the proposed designs and simulation results, an 

experimental setup is built based on a PMSM drive system. The experimental 

implementation is accomplished by making a real-time interface between MATLAB/ 

SIMULINK and dSPACE DS 1104 controller board. The experimental system is divided into 

two parts, which are software and hardware. The software includes modelling and controlling 

the drive system using MATLAB/SIMULINK and ControlDesk. In contrast, the hardware 

consists of a digital controller based on dSPACE DS 1104, gate drive modules, a three-phase 

power inverter, a DC source, current sensors, an encoder, a three-phase PMSM, and load. 

The complete experimental setup of the PMSM drive system is shown in Fig. 3.10. In 

addition, a detailed describtion of hardware components is presented in the next sections. 

 

Fig. 3.10.   Experimental setup of PMSM drives system. 
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3.5.1.1 ControlDesk 

ControlDesk is a well-established experiment software from dSPACE, designed to 

provide users with comprehensive control, monitoring, and automation capabilities for 

experiments, while also facilitating the efficient development of controllers. The workflow 

typically begins by desgning a system model in MATLAB/ SIMULINK, then a real time 

code in C  language is generataed and uploaded to dSPACE 1104 borad. Subsequently, the 

real-time code generated can be utilized within ControlDesk to construct control systems for 

real-world applications.Users can perform real time control of the hardware by fine-tuning 

system parameters online, such as specifying step input speed commands or adjusting scaling 

factors. In addition, ControlDesk enable real time monitoring of the system , in which the 

hardware measurement such as speed and currents are displayed and monitored in real time. 

Subsequently, the desired system measurement data are sampled at 5 kHz sampling 

frequency and  saved as mat files for in-depth analysis in MATLAB. Fig. 3.11 illustrates a 

typical layout of ControlDesk. 

Fig. 3.11.   Layout of ControlDesk. 
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3.5.1.2 dSPACE

Most applications that require the high speed processing of a large amount of numerical 

data need to use the digital signal processors (DSP). Therefore, an evaluation module named 

digital signal processing and control engineering (dSPACE DS 1104) is used in this drive 

application. The dSPACE DS 1104 is a control board and a stand-alone card that serves as 

an excellent platform to develop and build the drive system as shown in Fig. 3.12. This type 

of DSP is equipped with an on-board peripherals such as Analog–to-Digital (ADC) and 

Digital-to-Analog (DAC) to be used in the digital control systems.

HOST PC
MATLAB

&
Dspace1104

I/O board

Fig. 3.12.   dSPACE1104  illustration with I/O board.

3.5.1.3 Inverter Control Circuit

The control circuit shown in Fig.3.13 is a control interface board specifically designed 

to control the motor through three-phase inverter. This board is powered by 5 𝑉𝐷𝐶 supply and 

can be divided  into three parts,namedly inverter, gate drivers, and interface part. The inverter 

part comprise three-phase inverter (made of six INFINEON IKW40T120FKSA1 IGBTs and 

two DC-Link capacitors) and two current sensors. The gate drivers part consists of various 
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optocouplers to generate the required switching pulses for IGBTs. The interface part acts as 

interconnection panel between dspace and other hardware components. It takes the control 

signal from dSPACE and send them to the gate driver, also it receive the current sensors and 

speed encoder measuurments and feed it back to dSPACE for processing.  

In addition, 200Vdc is supplied to the inverter through external DC power supply. The 

workflow of the control circuit begins by generating a control signals through dSPACE which 

are sent to gate driver circuit via interface panel. Then, the DC supply is powerd on and the 

switching pulses generated by the gate drivers are used to control the inverter to produce 

three phase voltage to operate the motor. The measurements of speed encoder and current 

sensors are fedbcak to the dSPACE via interface panel for processing and forming the closed 

loop system. 

 
Fig. 3.13.   Control circuit board. 
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3.5.2 Start-up and Load Tests 

This section analyses the responses during start-up, deceleration, and in the 

presence of external load disturbances. The reference speed was set to 1000 rpm to 

examine the start-up behaviour, allowing the motor speed to accelerate steadily from a 

standstill to its rated speed of 1000 rpm. The response exhibits a slight overshoot, as 

depicted in Fig. 3.14. For the deceleration test, the motor operates at a speed of 500 rpm, 

then a reference speed of -1000 rpm is applied, and the obtained responses are depicted 

in Fig. 3.15. Furthermore, the load torque responses are investigated by operating the 

motor at a constant speed of 1000 rpm while subjecting it to a 2 Nm external load applied 

to the shaft. The corresponding responses to load disturbance are illustrated in Fig. 3.16. 

The curves from top to bottom in Figs 3.14 to 3.16 are stator current, torque, and rotor 

speed. 

Upon analysis, it becomes evident that the proposed FDM-MPCC and FDM-

MPTC exhibit superior dynamic performance compared to MPC. These methods 

showcase faster settling times, ensuring quicker stabilization of the motor speed. 

Moreover, they exhibit remarkable resilience against load disturbances. Compared to 

MPC, the motor speed quickly returns to its steady-state position following a disturbance, 

indicating excellent load disturbance rejection capabilities. 

In summary, the FDM-MPCC and FDM-MPTC techniques demonstrate 

commendable dynamic performance and efficient load disturbance rejection, surpassing 

the performance of MPC in both start-up and external load scenarios. 
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(a)

(b)

(c)

Fig. 3.14.   Start-up response from standstill to 1000 rpm for (a) MPC, (b) FDM-MPTC, 

and (c) FDM-MPCC.
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(a)

(b)

(c)

Fig. 3.15. Deceleration response from 500 to -1000 rpm for (a) MPC, (b) FDM-MPTC, 

and (c) FDM-MPCC.
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(a)

(b)

(c)

Fig. 3.16.   Responses to external load disturbance (2 Nm) for (a) MPC, (b) FDM-MPTC,

and (c) FDM-MPCC.
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3.5.3 Steady-State Responses  

To delve deeper into the performance evaluation of the proposed FDM-MPTC and 

FDM-MPCC methods, an examination of their steady-state responses under various speed 

operations, both with and without load, is conducted. To highlight the effectiveness of these 

techniques, a performance comparison is conducted with the conventional MPC in different 

operating conditions. This evaluation uses two speeds (500 rpm and 1000 rpm) with and 

without load conditions. 

Firstly, the responses at 500 rpm are analyzed to assess the system's behaviour. Fig. 

3.17 illustrates the system's response without any load, while Fig. 3.18 depicts the response 

under a 2 Nm load torque. Furthermore, the responses at 1000 rpm are investigated to 

evaluate the performance of the FDM-MPTC and FDM-MPCC techniques at rated speed. 

Fig. 3.19 presents the system's response without any load, while Fig. 3.20 showcases the 

response under a load condition. The graphs in Figs 3.17 to 3.20 represent stator current, flux, 

torque, and applied switching vectors. 

Analyzing these steady-state responses gives a more comprehensive understanding 

of the effectiveness of the proposed FDM-MPTC and FDM-MPCC methods compared to 

conventional MPC. The proposed methods exhibit excellent steady-steady torque, flux, and 

current responses with fewer ripples and distortions. This illustrates the significance of 

applying a two-vector and eliminating the weighting factor in enhancing the performance of 

the PMSM drive system. 
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(a)

(b)

(c)

Fig. 3.17.   Steady-state responses at 500 rpm (no load) for (a) MPC, (b) FDM-MPTC, and 

(c) FDM-MPCC.
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(a)

(b)

(c)

Fig. 3.18.   Steady-state responses at 500 rpm (2 Nm load) for (a) MPC, (b) FDM-MPTC, 

and (c) FDM-MPCC.
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(a)

(b)

(c)

Fig. 3.19.   Steady-state responses at 1000 rpm (no load) for (a) MPC, (b) FDM-MPTC, and 

(c) FDM-MPCC.
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(a)

(b)

(c)

Fig. 3.20.   Steady-state responses at 1000 rpm (2 Nm load) for (a) MPC, (b) FDM-MPTC, 

and (c) FDM-MPCC.
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3.6 Quantitative Analysis and Comparison of Control Methods 

The proposed FDM-MPTC and FDM-MPCC performances can be further evaluated 

under different operating conditions. The stator current and torque tracking performances 

and switching frequency at steady state with different speeds and torque are assessed. By 

varying the motor speed and applying different load torques, the current ripples, torque 

ripples, and average switching frequency are computed and recorded using the following 

formulas: 

𝑇𝑟𝑖𝑝 = √
1

𝑁
∑(𝑇𝑒(𝑖) − 𝑇𝑎𝑣𝑔)

2
𝑁

𝑖=1

                                                (3.52) 

𝑖𝑟𝑖𝑝 = √
1

𝑁
∑(𝑖𝑎𝑟𝑒𝑓(𝑖) − 𝑖𝑎)

2
𝑁

𝑖=1

                                               (3.53) 

The average inverter switching frequency  𝐹𝑎𝑣𝑔is obtained by counting the total 

switching jumps N of six legs of a two-level inverter over a fixed period of 0.05s. 

𝐹𝑎𝑣𝑔 =

𝑁
6

00.05
2

                                                   (3.54)   

The current ripples 𝑖𝑟𝑖𝑝, torque ripples 𝑇𝑟𝑖𝑝, and average switching frequency  𝐹𝑎𝑣𝑔 

of MPC, FDM-MPCC, and FDM-MPTC at three speeds with no load, 1 Nm load, and 2 Nm 

load are presented in Tables 3.2 to 3.10. The motor operates at a speed of (200, 500, or 1000) 

rpm, and the corresponding load is applied to the motor shaft. Then the load and current 

ripples are computed for a duration of 0.5 s. The average switching frequency is computed 

for the three controllers with a fixed duration of 0.05 s. 
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Table 3.2   Torque ripples of conventional MPC 𝑇𝑟𝑖𝑝 (Nm). 

𝑻𝒓𝒊𝒑 (Nm) 

 

Speed (rpm) 

200 500 1000 

 

Torque 

(Nm) 

0 0.16 0.29 0.43 

1 0.18 0.27 0.37 

2 0.15 0.25 0.36 

 

Table 3.3   Torque ripples of FDM-MPCC 𝑇𝑟𝑖𝑝 (Nm). 

𝑻𝒓𝒊𝒑 (Nm) 

 

Speed (rpm) 

200 500 1000 

 

Torque 

(Nm) 

0 0.097 0.11 0.12 

1 0.075 0.091 0.11 

2 0.062 0.081 0.095 

 

Table 3.4   Torque ripples of FDM-MPTC 𝑇𝑟𝑖𝑝 (Nm). 

𝑻𝒓𝒊𝒑 (Nm) 

 

Speed (rpm) 

200 500 1000 

 

Torque 

(Nm) 

0 0.061 0.082 0.092 

1 0.051 0.069 0.091 

2 0.048 0.064 0.084 
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Table 3.5   Current ripples of MPC 𝑖𝑟𝑖𝑝 (A). 

𝒊𝒓𝒊𝒑 (A) Speed (rpm) 

200 500 1000 

 

Torque 

(Nm) 

0 0.42 0.45 0.53 

1 0.48 0.53 0.56 

2 0.46 0.43 0.45 

 

Table 3.6   Current ripples of FDM-MPCC 𝑖𝑟𝑖𝑝 (A). 

𝒊𝒓𝒊𝒑 (A) Speed (rpm) 

200 500 1000  

 

Torque 

(Nm) 

0 0.21 0.22 0.24 

1 0.23 0.27 0.28 

2 0.20 0.16 0.17 

 

Table 3.7   Current ripples of FDM-MPTC 𝑖𝑟𝑖𝑝 (A). 

𝒊𝒓𝒊𝒑 (A) Speed (rpm) 

200 500 1000 

 

Torque 

(Nm) 

0 0.24 0.26 0.32 

1 0.27 0.31 0.35 

2 0.22 0.19 0.26 
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Table 3.8   Average switching frequency of MPC 𝐹𝑎𝑣𝑔 (Hz). 

𝑭𝒂𝒗𝒈 (Hz) Speed (rpm) 

200 500 1000 

 

Torque 

(Nm) 

0 2375.4 2228.1 1829.0 

1 2161.5 1985.5 1730.9 

2 2019.9 2029.7 1688.7 

 

Table 3.9   Average switching frequency of FDM-MPCC 𝐹𝑎𝑣𝑔 (Hz). 

𝑭𝒂𝒗𝒈 (Hz) Speed (rpm) 

200 500 1000 

 

Torque 

(Nm) 

0 3924.0 3436.5 3199.1 

1 3813.2 3177.4 3024.0 

2 3369.9 3254.8 2976.4 

 

Table 3.10   Average switching frequency FDM-MPTC 𝐹𝑎𝑣𝑔 (Hz). 

𝑭𝒂𝒗𝒈 (Hz) Speed (rpm) 

200 500 1000 

 

Torque 

(Nm) 

0 4217.4 3556.2 3321.0 

1 3934.8 3279.5 3161.7 

2 3449.8 3361.1 3189.3 
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The quantitative results in Tables 3.2 to 3.7 show that implementing the proposed 

FDM-MPCC and FDM-MPTC significantly reduced the torque and current ripples compared 

to the conventional MPC at different speed operation and load conditions. For instance, at 

1000 rpm with a 2 Nm load, FDM-MPCC and FDM-MPTC reduced the torque ripples by 

72.1% and 75.3% and the current ripples by 62.2% and 42.2%, respectively. Thus, it can be 

concluded that the performance of the proposed FDM-MPTC and FDM-MPCC is better than 

that of the conventional MPC in the high, medium, and low-speed and load regions. 

In addition, based on the quantitative results, it appears that FDM-MPTC has the lowest 

torque ripples under all three operating conditions, with FDM-MPCC having the second 

lowest and MPC having the highest. Regarding current ripples, FDM-MPCC performs best 

under no load and 1 Nm and 2 Nm load conditions. The switching frequency is highest for 

FDM-MPTC under all three operating conditions and lowest for MPC. On the other hand, 

the trade-off between torque and current ripples is another essential aspect of comparing the 

controller's performance. For example, while FDM-MPTC has the lowest torque ripples, it 

has higher current ripples than FDM-MPCC.  

 

3.7 Evaluation with Regulated Switching Frequency  

The simulation, experimental tests, and quantitative analyses presented in previous 

sections were all conducted under the same control system sampling frequency. Due to the 

nature of the MPC algorithm, the switching frequencies of these control methods vary 

depending on the applied switching vectors. To achieve a fair comparison, the switching 

frequencies of these control methods should be maintained at a similar level. The quantitative 

analysis in Section 3.6 shows that the inverter's average switching frequency varies not only 
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with the control methods but also with the speed and load conditions. As a result, it will be 

challenging and complex to conduct all the tests under a similar inverter switching frequency. 

To thoroughly investigate the effectiveness of the proposed MPC methods and fairly compare 

it with conventional MPC, performance evaluation at rated conditions (1000 rpm and 2 Nm) 

is performed with the regulation of MPC switching frequency to be approximately at a similar 

level to the proposed method. To regulate the switching frequency of MPC, an additional 

cost function constraint is applied to reduce the number of switching commutations between 

two control cycles. The inverter switching states are represented as: 

𝑆 = [𝑆𝑎, 𝑆𝑏, 𝑆𝑐]
𝑇                                                                          (3.54) 

To regulate the switching frequency, the switching states change must be limited to 

no more than one change per control cycle. The change in switching states can be obtained 

by summing the switching states 𝑆 , between two control cycles as follows:  

∆𝑆 =∑𝑆(𝑘 + 1) − 𝑆(𝑘)                                                                   (3.55) 

Then, a cost function constraint is included to limit the switching states change to no more 

than one per cycle as follows:  

𝐶𝑠𝑤(𝑘) = Lim(∆𝑆) = {
∞     𝑖𝑓 ∆𝑆 > 1
0       𝑖𝑓 ∆𝑆 ≤ 1 

                                   (3.56) 

The constraint (𝐶𝑠𝑤) is included in the cost function evaluation in (3.28), which is rewritten 

as follows: 

𝑔𝑀𝑃𝐶𝐶 = (𝑖𝑑
∗ − 𝑖𝑑(𝑘 + 2))

2
+ (𝑖𝑞

∗−𝑖𝑞(𝑘 + 2))
2

 + 𝑤 𝐶𝑠𝑤(𝑘 + 2)                               (3.57) 

where 𝑤 is a weighting factor. 
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The constraint 𝐶𝑠𝑤 will prevent the selection of a switching state with more than one 

switch change per cycle. Thus, a regulated and approximately fixed switching frequency can 

be obtained for MPC. 

With a requlated switching frequency, the simulation results at the rated condition are 

obtained for the three controllers, as presented in Fig. 3.21(a). Similarly, the experimental 

tests with a requlated switching frequency are conducted at rated speed (1000 rpm) and 

torque (2 Nm), as shown in Fig. 3.21(b). It can be seen that the performance of the 

conventional MPC is improved with a fixed switching frequency. However, the performance 

of the proposed FDM-MPTC and FDM-MPCC is still superior, as confirmed by the 

quantitative data of torque ripples, current ripples, and current harmonics in Table 3.11. 

 
Table 3.11   Quantitative comparison of MPC, FDM-MPTC, and FDM-MPCC with 

the same switching frequency. 

 

Method 

Torque Ripple 

𝑻𝒓𝒊𝒑 (Nm) 

Current Ripple 

𝒊𝒓𝒊𝒑 (A) 

Current 

THD% 

MPC 0. 26 0.28 5.3% 

FDM-MPCC 0. 094 0.17 4.1% 

FDM-MPTC 0.086 0.24 4.6% 

 



Chapter 3. Two-Vector Dimensionless Model Predictive Control of PMSM Drives Based on 
Fuzzy Decision Making

110

(a)

(b)

Fig. 3.21.   Performance comparison of MPC, FDM-MPTC, and FDM-MPCC with 

regulated switching frequency, (a) simulation results, and (b) experimental results.
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3.8 Summary  

The unsatisfactory steady-state performance, unregulated switching frequency, and 

ambiguous process of weighting factor selection made conventional MPC methods less 

effective than conventional control methods for AC machine drives. Thus, various 

improvements, such as two or more vectors during one control cycle, weighting factor 

eliminations, and switching frequency regulation techniques, were implemented to maintain 

the effectiveness of MPCs. This chapter proposed two MPC methods based on predictive 

torque/flux and current controls to reduce the torque ripple, regulate switching frequency, 

and maintain good current quality. The proposed methods utilize two vectors for one control 

cycle and eliminate the issue of weighing factors using FDM. Compared with the 

conventional MPCs, the proposed methods have shown superiority in terms of different 

characteristics under transient and steady-state conditions. The proposed FDM-MPCC has 

shown better current response and maintained reduced current ripples compared to the 

proposed FDM-MPTC.  
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CHAPTER 4 

 

4      A NOVEL ROBUSTNESS EVALUATION METHOD BASED ON 
SIX-SIGMA METHODOLOGY FOR PREDICTIVE CONTROL OF 

PMSM DRIVES 
 

 

4.1 Introduction  

Several robust predictive controls (RPCs) for PMSMs have been investigated with 

different robustness techniques, like prediction error correction. The prediction error is 

included in the prediction stage to compensate for any control effort [4.1-4.2]. Besides, 

observers are employed to establish an RPC method, where a specific type of observer is 

used to deal with uncertainties, such as disturbance observer [4.3], extended state observer 

(ESO) [4.4], and sliding mode observer [4.5]. In addition, model-free control is another 

technique to achieve RPCs for PMSMs, where the prediction process is independent of the 

machine model and parameters. Using ultra-local models, estimating the system unknowns 

[4.6], and using the current differences at different samples [4.7] are some types of model-

free RPC for PMSM drives. Moreover, RPCs can be achieved by modifying the cost function 

to include several constraints and objectives [4.8-4.9]. In addition, combining predictive 

control with other control techniques can form a variety of RPC methods, such as MPC with 

deadbeat (DB) solution [4.10], integral-resonant control [4.11], and repetitive control [4.12]. 

However, there is a lack of discussion on the control system's uncertainties and robustness 

fundamentals. Most existing RPCs do not adequately describe uncertainties and their effect 

on performance. The robustness to uncertainties differs from one control method to another, 
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and yet no systemic procedure to evaluate and quantify the robustness. Moreover, PMSM 

uncertainties (e.g., parametric uncertainty) can be estimated to be within a bounded range 

depending on the machine structure (e.g., manufacturing tolerances) and the expected 

operating conditions (e.g., rated and maximum temperature). Therefore, to effectively 

evaluate a robust control method, realistic and practical uncertainty ranges must be 

considered instead of random uncertainty values, such as a 200% error in specific parameters, 

which is unrealistic and unlikely to occur in practical situations. 

This chapter presents a clear and systemic method for evaluating the control system's 

robustness. The concept of robust control and the effect of uncertainties on performance are 

illustrated. Realistic and practical uncertainty ranges based on manufacturing and operational 

sources are obtained. The six-sigma methodology is used to evaluate the robustness of a 

control system, including second-order, DC motor drive, and RPC of PMSM drives. 

 

4.2 Uncertainties and Robustness Fundamentals  

To design a control system for a specific real plant, an approximate mathematical 

model that represents the plant needs to be obtained. Thus, various controllers can be 

designed according to the system requirements. However, the model never accurately 

describes the dynamic behaviour of the real plant, where some plant dynamics are not 

captured in the model [4.13]. Moreover, the system parameters typically are fixed and 

estimated/ measured at specific operating conditions. In the real system, these parameters are 

subjected to change in response to the system's operational, environmental, and/or structural 

variations. Therefore, the plant missing (unmodelled) dynamics and system parameters 

variation normally are referred to as control system uncertainties [4.14]. Most control system 
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uncertainties are generated due to plant structure differences, materials diversity, assembly 

imperfection, friction and mechanical factors, and environmental and operating condition 

changes. The sources of uncertainties can be grouped into manufacturing and operational 

sources. For instance, uncertainties can be generated due to materials diversity caused by 

manufacturing tolerances or operating temperature variations [4.15]. These uncertainties can 

highly degrade the system and may lead to instability. Thus, the design of a control method 

that deals with uncertainties was considered, and this control method is referred to as robust 

control. 

Since the late 1970s, robustness has become a primary objective of control research, 

and numerous control methods have been proposed as robust controls of processes with 

uncertainties. A control system is typically considered robust if a good control performance 

is achieved in the presence of uncertainties. However, a control system's robustness definition 

and robustness level have not been clearly described. Thus, clearly defining the term 

robustness is desirable and proposing a practical approach to evaluate the robustness level of 

a control system. 

To evaluate the effects of uncertainties on the system performance, the uncertainties 

need to be determined and represented mathematically. For example, parametric uncertainty 

can be represented and quantified by assuming that each uncertain parameter is bounded 

within some range [min max]. By considering a control system shown in Fig. 4.1 that has an 

uncertain parameter 𝑋𝑖 bounded in the range 𝑋𝑚𝑖𝑛 ≤ 𝑋𝑖 ≤ 𝐶𝑚𝑎𝑥 . The uncertain parameter 

𝑋𝑖 can be modelled as: 

𝑋𝑖 = 𝑋̅(1 + 𝑟𝑥∆)                                                               (4.1) 
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where 𝑋̅ = 𝑋𝑚𝑖𝑛+𝑋𝑚𝑎𝑥

2
 is the mean parameter (nominal) value; 𝑟𝑥 =

𝑋𝑚𝑎𝑥−𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥+𝑋𝑚𝑖𝑛
 is the relative 

uncertainty in the parameter, and ∆  any real scalar satisfying  |∆| ≤ 1. The parametric 

uncertainty (𝐺𝑝) can be written in a multiplicative form as follows: 

𝐺𝑝 = 
𝑥̅

𝜏𝑠 + 1
(1 + 𝑟𝑥∆), |∆| ≤ 1                                                         (4.2) 

 

Fig. 4.1. Perturbed uncertain system. 

Besides, to represent the unmodelled dynamics (u) mathematically with a weight 

(Wu) for the system shown in Fig. 4.2. The unmodelled dynamics uncertainty (𝐺𝑢) can be 

expressed in multiplicative form as: 

𝐺𝑢 =  𝐺(𝑠)(1 +𝑊𝑢(𝑠)∆𝑢(𝑠)), |∆𝑢(𝑗𝜔)| ≤ 1 ∀𝜔                                       (4.3) 

Lumped uncertainty represents one or several sources of parametric and/or 

unmodelled dynamics uncertainty combined into  single lumped perturbation of a chosen 
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structure. For instance, parametric and unmodelled dynamics uncertainties can be modelled 

as a single uncertatinty  as follows: 

𝐺𝑝𝐺𝑢 = 
𝑥̅

𝜏𝑠 + 1
(1 + 𝑟𝑥∆)(1 +𝑊𝑢(𝑠)∆𝑢(𝑠)), |∆| ≤ 1, |∆𝑢(𝑗𝜔)| ≤ 1 ∀𝜔                 (4.4) 

Moreover, external disturbances and measurement noises are also primary sources of 

performance degradation. The lumed uncertainy (𝐺𝐿) of the perturbed uncertain system, as 

shown in Fig. 4.1, considering the uncertain parameter 𝑋𝑖, controller (K), disturbances (d), 

measurement noise (𝜀), and unmodelled dynamics u can be represented as follows: 

𝐺𝐿 = 𝐾 (
𝑥̅

𝜏𝑠 + 1
(1 + 𝑟𝑥∆)(1 +𝑊𝑢(𝑠)∆𝑢(𝑠))) + 𝑑 − 𝜀                                             (4.5) 

The robustness of a control system is a measure of how well it can perform in the 

presence of uncertainties or how sensitive it is to system uncertainties. In other words, a 

control system (Fig. 4.1) with measured output (𝑌), uncertainties (𝑈𝑖), the robustness of the 

control system depends on how sensitive the output 𝑌 to the uncertainties 𝑈𝑖. This can be 

expressed mathematically as the differential sensitivity (𝑆𝑈𝑖
𝑌 ) of 𝑌 with respect to the 

uncertainties 𝑈𝑖 , which is the percentage change in 𝑌 divided by the percentage change in 

𝑈𝑖  that has caused the change in 𝑌 to occur, as the following: 

𝑆𝑈𝑖
𝑌 =

𝜕𝑌

𝜕𝑈𝑖
=
∆

∆𝑈𝑖
                                                                            (4.6) 

Moreover, the effects of various uncertainties on a control system can be evaluated 

by considering the system in Fig. 4.1 with output 𝑌 having a number of uncertain elements 

(𝑈1 → 𝑈𝑖). These uncertain elements include parametric and unmodelled dynamics 

uncertainties, disturbances, and noises. When these elements vary (∆𝑈𝑖) (uncertainties 
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occur), the system output 𝑌 is affected and consequently varied, which can be reflected as 

(∆𝑌). Thus, the effect on the system output 𝑌 due to the occurrence of uncertainties(∆𝑈𝑖) can 

be represented as incremental changes (derivative 𝑑𝑦) and mathematically expressed as: 

𝑑𝑦 = ∑ 𝑈𝑖𝑌𝑖𝑑𝑈𝑖  
𝑛
𝑖=1   for n uncertainties                              (4.7)  

Thus, a small value of (𝑑𝑦) indicates high system robustness. 

To illustrate the meaning of robustness graphically, the robustness of the control 

system in Fig. 4.1 can be described by its ability to have one or more properties 𝑌 within 

predetermined bounds in the presence of unknown parts or uncertain parameters. To obtain 

the robustness range of a control system performance, the nominal performance has to be 

obtained first. Then, the maximum and minimum bounds for robustness can be defined from 

the nominal point. Suppose the system 𝑌 has a nominal output 𝑌0 where there are no 

uncertainties. Thus, the range for robustness would be within the bounds[𝑌𝑚𝑖𝑛, 𝑌𝑚𝑎𝑥]. For 

any system output 𝑌𝑖 to be robust, it should be within the bounds such that: 

𝑌𝑖    
𝑟𝑜𝑏𝑢𝑠𝑡 
→     𝑖𝑓  𝑌𝑚𝑖𝑛 ≤ 𝑌𝑖 ≤ 𝑌𝑚𝑎𝑥                                                                  (4.8) 

Any output  𝑌𝑖 that is outside the pre-defined bounds [𝑌𝑚𝑖𝑛, 𝑌𝑚𝑎𝑥] is considered non-

robust. To illustrate the concept, let's consider the control system (Fig. 4.1) with plant 𝐺(𝑠) =

𝑋𝑖

0.5𝑠+1
. If the uncertain parameter 𝑥𝑖 of plant 𝐺(𝑠)  has a nominal value of 4 and is varied in 

the range [1, 7], and other uncertainties also occurred to the system. First, the nominal 

response (𝑌𝑛𝑜𝑚𝑖𝑛𝑎𝑙) is generated (𝑋𝑛𝑜𝑚𝑖𝑛𝑎𝑙 = 4), and no other uncertainties exist, as shown 

in Fig. 4.2(a). Then, the robust performance range is defined [𝑌𝑚𝑖𝑛, 𝑌𝑚𝑎𝑥], for instance, 

overshoot must be less than 15% (𝑌𝑚𝑎𝑥) and settling time must be less than 7s (𝑌𝑚𝑎𝑥) as 
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depicted in Fig. 4.2(b). Then, a set of step responses (𝑌𝑖) with different uncertainties 

generated. The responses that fall within the pre-defined bounds [𝑌𝑚𝑖𝑛, 𝑌𝑚𝑎𝑥] are considered 

robust responses (𝑌𝑟𝑜𝑏𝑢𝑠𝑡), and this is called the robustness range (𝑌𝑟𝑜𝑏𝑢𝑠𝑡−𝑟𝑎𝑛𝑔𝑒). While the 

responses that fall outside the bounds range are considered non-robust (𝑌𝑛𝑜𝑛−𝑟𝑜𝑏𝑢𝑠𝑡) as 

shown in Fig. 4.2(c).

(a)                                                                 (b)

(c)

Fig. 4.2.   Feedback control system robustness illustration (a) nominal performance, (b) 

nominal and robust performance range, and (c) nominal, robustness ranges and non-robust 

performance.
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4.3 PMSM Drive Uncertainties 

In order to design an efficient control strategy for PMSMs, an accurate mathematical 

model of the machine needs to be developed. A three-phase PMSM with symmetrical 

winding and identical parameters can be transformed into a dq equivalent model. The voltage 

and flux linkage equations of a PMSM in d-q form are expressed as: 

𝑣𝑑 = 𝑅𝑠𝑖𝑑 + 𝐿𝑑
𝑑𝑖𝑑
𝑑𝑡
− 𝜔𝐿𝑞𝑖𝑞                                                          (4.9) 

𝑣𝑞 = 𝑅𝑠𝑖𝑞 + 𝐿𝑞
𝑑𝑖𝑞

𝑑𝑡
+ 𝜔𝐿𝑑𝑖𝑑 + 𝜔Ψ𝑝𝑚                                      (4.10) 

Ψ𝑑 = 𝐿𝑑𝑖𝑑 +Ψ𝑝𝑚                                                                           (4.11) 

Ψ𝑞 = 𝐿𝑞𝑖𝑞                                                                                         (4.12) 

𝑇𝑚 = 𝑇𝐿 + 𝐽
𝑑𝜔

𝑑𝑡
+ 𝐵𝜔                                                                   (4.13)  

𝑇𝑒 =
3

2
𝑝[Ψ𝑝𝑚𝑖𝑞 + (𝐿𝑑 − 𝐿𝑞)𝑖𝑞𝑖𝑑]                                              (4.14) 

Typically, a PMSM control method is designed based on the developed model. 

However, PMSM nonlinear behavior and complex dynamics result in various unmodelled 

dynamics of the real PMSM. These dynamics are unavoidable in the real system, exist in 

different parts of the machine drive system, and are rarely captured in the model. Due to the 

material diversity of PMSM rotor, the machine structure can exhibit unmodelled dynamics 

in the form of induced pulsating torques such as cogging torque [4.16] and flux harmonics 

due to the PM material of PMSM. The machine's PM can be demagnetized with temperature 

rise, significantly affecting the maximum torque capability and PMSM efficiency [4.17].  
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In addition, the nonlinear operation of the inverter can generate unmodelled dynamics 

in the form of a deadtime effect. A voltage-fed inverter is never ideal; in practice, the 

switching dead time, the device's ON-state voltage drop, and the dc-bus voltage variations 

can adversely affect the control performance, particularly during the steady-state operation 

[4.18]. Besides, measurement errors due to sensors offset are another source of unmodelled 

dynamics, where the errors in measurements of either position or current inevitably cause 

torque ripples.  

To design MPC for PMSM drives, the current at (𝑘 + 1) can be predicted based on 

the machine equations as follows: 

𝑖𝑑(𝑘 + 1) = 𝑖𝑑(𝑘) − (
𝑅𝑠𝑇𝑠
𝐿𝑑
) 𝑖𝑑(𝑘) +

𝐿𝑞

𝐿𝑑
𝑇𝑠 𝜔 𝑖𝑞(𝑘) +

𝑇𝑠
𝐿𝑑
𝑣𝑑                                (4.15) 

𝑖𝑞(𝑘 + 1) = 𝑖𝑞(𝑘) − (
𝑅𝑠𝑇𝑠
𝐿𝑞
) 𝑖𝑞(𝑘) −

𝐿𝑑
𝐿𝑞
𝑇𝑠 𝜔 𝑖𝑑(𝑘) −

𝑇𝑠𝜔Ψ𝑝𝑚

𝐿𝑞
+
𝑇𝑠
𝐿𝑞
𝑣𝑑           (4.16) 

The MPC of PMSM drives is subjected to uncertainties from manufacturing (e.g., 

assembly imperfection, PM material diversity) and operational (e.g., temperature variations, 

measurement offset), resulting in unmodelled dynamics and parametric uncertainties[4.16]. 

Parametric uncertainty due to machine parameter variations is the most common PMSMs 

drive uncertainty and severely affects performance [4.19]. Hence, this research considered 

only parametric uncertainty. 

Generally, when designing a PMSM drive, the nominal values of both electrical 

parameters (𝑅𝑠, 𝐿𝑑 , 𝐿𝑞 , Ψ𝑝𝑚), and mechanical parameters (J, B) are used. However, these 

values can vary during operations due to temperature changes, load torque, and magnetic 

saturation. The mismatch or variation of any of the machine parameters will lead to an error 



Chapter 4. A Novel Robustness Evaluation Method Based on Six-Sigma Methodology for 
Predictive Control of PMSM Drives 

123 
 

in the predicted variable. For instance, the predicted currents in (4.15) and (4.16) with 

parameters mismatching can be rewritten as follows: 

𝑖𝑑(𝑘 + 1) = 𝑖𝑑(𝑘) − (
𝑅𝑠 + ∆𝑅𝑠
𝐿𝑑 + ∆𝐿𝑑

)𝑇𝑠𝑖𝑑(𝑘) + ( 
𝐿𝑞 + ∆𝐿𝑞
𝐿𝑑 + ∆𝐿𝑑

)𝑇𝑠 𝜔 𝑖𝑞(𝑘) + (
1

𝐿𝑑 + ∆𝐿𝑑
)𝑇𝑠𝑣𝑑     (4.17) 

𝑖𝑞(𝑘 + 1) = 𝑖𝑑(𝑘) − (
𝑅𝑠 + ∆𝑅𝑠
𝐿𝑞 + ∆𝐿𝑞

)𝑇𝑠𝑖𝑞(𝑘) − ( 
𝐿𝑑 + ∆𝐿𝑑
𝐿𝑞 + ∆𝐿𝑞

)𝑇𝑠 𝜔 𝑖𝑑(𝑘)

− (
𝑌𝑝𝑚 + ∆𝑌𝑝𝑚

𝐿𝑞 + ∆𝐿𝑞
)𝑇𝑠𝜔 + (

1

𝐿𝑞 + ∆𝐿𝑞
)𝑇𝑠𝑣𝑞                                                  (4.18) 

where ∆𝑅𝑠 , ∆𝐿𝑞, ∆𝐿𝑑, ∆Ψ𝑝𝑚 are parameter errors between the nominal parameter values and 

the mismatching values. 

The stator resistance variation significantly impacts the current-loop regulation 

performance, and this effect becomes much more severe at low speeds or in high load torque 

conditions. The effect of inductance variation is mainly coupled with the current change, so 

the transient performance will be primarily affected in the current dynamic period [4.20]. A 

mismatch of the rotor flux significantly influences performance at medium and high speeds 

because the back electromotive force (EMF) is proportional to the rotor flux. If the rotor flux 

varies, a constant current error occurs in the steady state, and overcurrent or undercurrent 

occurs in the transient state [4.4]. Moreover, the inertia J of a PMSM system, including both 

rotor and load, is time-varying for some special applications, e.g., an electric winding 

machine, where the inertia of the whole system increases as time goes by [4.21]. If the 

system's inertia increases to a value higher than the original, the speed response will have a 

bigger overshoot and a longer settling time. 
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Parameter mismatching is one of the crucial PMSM drive uncertainties that can 

degrade the performance. The variations of PMSM parameters severely affect the prediction 

accuracy of predictive control methods, which is why several RPC methods primarily focus 

on compensating for the effects due to parameter mismatching. However, the expected 

variation range for each parameter based on actual practical conditions should be obtained to 

design an effective robust control. In other words, it is essential to obtain realistic and 

practical variations ranges for these parameters by considering the manufacturing tolerances 

and changes in the operating conditions. Manufacturing tolerance is a specific inaccuracy 

range in a typical value of a machine variable due to tolerances of geometric dimensions and 

material properties.  

Operational factors are another cause of PMSM parameter variations. For example, 

the stator winding resistance (𝑅𝑠) depends on the stator winding temperature. The nominal 

value of 𝑅𝑠 or 𝑅𝑠0 provided by the manufacturer is obtained at 25 °C (room temperature). 

The 𝑅𝑠 at an operational temperature t (°C) of stator winding (if the temperature is known) 

can be calculated using the nominal resistance value 𝑅𝑠0 measured at temperature  𝑡0 = 25 °C 

by 

𝑅𝑠 = 𝑅𝑠0[1 + 𝛼(𝑡 − 𝑡0)]                                                       (4.19) 

where 𝛼 is a material constant (for copper, 𝛼 =  0.004 𝐾−1). 

The PM flux linkage (Ψ𝑃𝑀) depends on the direct and quadrature axis currents (𝑖𝑑 , 𝑖𝑞), 

and the magnet temperature. The machine inductances (𝐿𝑑 , 𝐿𝑞) depend on the currents (𝑖𝑑 , 𝑖𝑞) 

and the flux density, slightly affected significantly by machine temperature. In addition, 𝐿𝑑 

and 𝐿𝑞 vary non-linearly with respect to the load conditions due to magnetic saturation. 
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Mechanical parameters of PMSM also vary during real-time operations. For example, 

moment inertia (𝐽) varies when a load is applied to the machine or connected to an external 

system. The shape and the dimensions of mechanical loads mainly affect the variation of 

mechanical parameters [4.22]. 

In general, the parametric uncertainties of both electrical and mechanical parameters 

of PMSM are caused by manufacturing tolerances and operational factors. Thus, if the 

manufacturing tolerance (∆𝑀) and operational variation (∆𝑂) of a parameter are expressed as 

a percentage of the nominal values, the total uncertainties (variation range) of a parameter, 

e.g., 𝑅𝑠, can be obtained as: 

𝑅𝑠 = 𝑅0(1 + ∆𝑀(𝑅0))(1 + ∆𝑂(𝑅0) )                                                 (4.20) 

If ∆𝑀(𝑅0) = ±10% and ∆𝑂(𝑅0) = [−5%,+30%], the uncertainties of 𝑅𝑠 can be expressed 

as 

𝑅𝑠 = 𝑅0(1 + [−10%,+10%])(1 + [−5%,+30% ]) 

𝑅𝑠 = 𝑅0[−14.5%,+43%]                                                  (4.21) 

The manufacturing tolerances (∆𝑀) can be obtained from the catalogue datasheets of 

different manufacturers, while the operational variation (∆𝑂) can be obtained by considering 

two situations (rated and maximum operating conditions). For example, ∆𝑂 of 𝑅𝑠 due to 

temperature change can be obtained by using (4.19). For a machine with a rated temperature 

of 70 °𝐶 and maximum temperature of 155 °𝐶 (class F insulation material), 𝑅𝑠 will increase 

by +18% and +52% of the nominal value at rated and maximum temperature. Also, 𝑅𝑠 can 

be lower than the nominal values at a low temperature and before the machine warms up. 
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Thus minimum −5% and maximum −10% decrease of 𝑅𝑠 from the nominal value can be 

experienced. The operational variation (∆𝑂) of other parameters determined based on several 

PMSM parameters identification methods, such as recursive least-squares (RLS) algorithms, 

neural networks (NN), model reference adaptive system (MRAS) based algorithms, online 

clustering, and particle swarm optimization (PSO) [4.23-4.24]. Thus, with  %∆𝑀 ,%∆𝑂 of 

each parameter and using (4.20), the total variation ranges of PMSM parameters at rated and 

maximum conditions are summarized in Table 4.1. 

Table 4.1   PMSM parameters potential variations due to manufacturing  

tolerances and rated & maximum conditions. 

Rated condition 

%∆ \ parameter  𝑅𝑠 𝐿𝑑 𝐿𝑞 Ψ𝑝𝑚 𝐽 𝐵 

+% 30% 32% 32% 15.5% 26.5% 15.5% 

−% 14.5% 57.5% 57.5% 23.5% 14.5% 7.85% 

Maximum condition 

+% 78% 43.7% 43.7% 21% 32% 20.75% 

−% 19% 74.5% 74.5% 32.5% 19% 9.75% 

 

4.4 The Proposed Six-Sigma Robustness Evaluation Method 

Six-sigma is a quality measure that quantitatively describes a process or product's 

performance. The term "sigma" basically is standard deviation 𝜎 which measures how a set 

of data is dispersed around the mean value 𝜇 of this data. MOTOROLA and GE developed 

the six-sigma quality management system to design products that meet customer needs with 

very low defect levels [4.25]. Considering normal distribution data, the sigma levels (±𝜎) as 
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the number of defects per million are presented in Table 4.2. Fig. 4.3 illustrates the normal 

distribution curves of sigma levels 1 to 6 with 𝜇 = 0, the upper specification limit (USL) =

6, and the lower specification limit (LSL) = −6. The areas under the normal distribution in 

Fig. 4.3 associated with each σ-level relate directly to the probability of performance falling 

in that particular range (for example, ±1 𝜎 is equivalent to a probability of 0.683). 

Initially, ±3𝜎 approach was used, where 3𝜎 is equivalent to the probability of 99.73% 

or the probability of failure (POF) is 0.27% (2,700 defects per million). This probability was 

deemed acceptable considering short-term quality control. However, in the long term, an 

approximate 1.5𝜎 shift in the mean 𝜇 was experienced, according to MOTOROLA and GE 

[4.25]. Due to this 1.5𝜎 shift, the 3𝜎 quality control insufficient in long-term, thus the 6𝜎 

quality control was used to define the long-term sigma quality. The 6𝜎 in short and long 

terms as percentage variation and number of defective per million (DPMO) are in Table 4.2 

[4.26]. 

Table 4.2   Sigma level as percentage variation and defects per million. 

Sigma level Percentage variation DPMO (S) DPMO (L) 

±1𝜎 68.26% 317,400 697,700 

±2𝜎 95.46% 45,400 308,733 

±3𝜎 99.73% 2,700 66,803 

±4𝜎 99.9937% 63 6,200 

±5𝜎 99.999943% 0.57 233 

±6𝜎 99.9999998% 0.002 3.4 

 

It is important to note that the "Six" in Six-sigma does not mean only 6𝜎-level is 

considered. Six-sigma is a quality measure or improvement technique that can be used to 
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obtain the corresponding or the desired (𝑛𝜎). Sigma level is a key property of the Six Sigma 

method that measures the capability of a process to produce defect-free performance. Another 

essential property of the six-sigma method is the Z-value, which measures how many 

standard deviations, 𝜎, a process specification, 𝑋, is away from the process's mean, 𝜇. It 

calculates the process capability index, which indicates how well the process performs 

relative to its specifications. The concept of Z-value based on a defined USL is shown in Fig. 

4.4. 

 

Fig. 4.3.   Normal distribution curves with respect to sigma levels from 1 to 6 under the 

conditions of mean = 0, LSL = −6, and USL = 6 [4.27]. 
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Fig. 4.4.   Normal probability density function (NPDF) and 𝑍𝑈𝑆𝐿 and its relationship 

to POF with one-sided hypothesis test conditions for cases with USL [4.27]. 

Six-sigma properties can be used to evaluate and quantify the performance robustness 

of a control system. First, a set of performance indicators, 𝐾𝑖, that adequately reflects the 

system performance, and their acceptance levels or upper specification limit, 𝑈𝑆𝐿𝑖, must be 

defined. The robustness criteria of the control system with performance indicators (𝐾𝑖) and 

specification limits (𝑈𝑆𝐿𝑖) are expressed as: 

𝐾𝑖 ≤ 𝑈𝑆𝐿𝑖, 𝑖 = 1,2, … ,𝑚                                       (4.22) 

where Ki represents the ith performance indicator of a control system, like torque ripple in a 

motor drive system should be less than 0.4 Nm. 

The Z-value of the ith performance indicator is defined as: 

           𝑍𝑖 =
𝑈𝑆𝐿𝑖−𝜇𝑖

𝜎𝑖
, 𝑖 = 1,2, … ,𝑚                               (4.23) 

where  μ𝑖 and  σ𝑖 are the mean and standard deviation of the ith performance indicator, 

respectively. 

The Z-value, 𝑍𝑖, accurately indicates the robustness level of an individual indicator, 

𝐾𝑖, relative to the speciation limit, 𝑈𝑆𝐿𝑖. However, it is difficult to indicate the overall system 
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robustness using the Z-value for a system with several indicators. Therefore, sigma levels, 

𝑛𝜎, and POF are used to indicate the overall system robustness. Based on the number of 

defects, the POF of the system, 𝑃𝑂𝐹𝑠𝑦𝑠, can be obtained and used to compute the system 

sigma level, 𝑛𝑠𝑦𝑠. For a control system with N samples (total number), if ND is the number 

of defects, the system's POF and equivalent sigma level can be obtained by [4.27]: 

            𝑃𝑂𝐹𝑠𝑦𝑠 =
𝑁𝐷

𝑁
                                                                (4.24) 

            𝑛𝑠𝑦𝑠 = Φ−1(1 −
𝑃𝑂𝐹𝑠𝑦𝑠

2
)                                                  (4.25) 

where Φ−1(𝑥) is the inverse transformation of a standard cumulative distribution function. 

4.5 Robustness Evaluation of the Second-Order and DC Motor Drive Systems 

To validate the proposed six-sigma robustness evaluation methods, a closed-loop 

second-order system with uncertain parameters  ζ𝑖  and ω𝑛𝑖 (Fig. 4.5) is considered. In order 

to evaluate the robustness of the stability and performance of the system, some indicators 

must be defined. The step response characteristics, such as overshoot (OS), settling time (Ts), 

and root-mean-square error (RMSE), can be used as performance indicators and the location 

of the real parts of closed-loop poles (𝑃𝐶𝐿𝑃) can be used to indicate stability. Therefore, the 

performance and stability indicators (𝐾) and their defined 𝑈𝑆𝐿𝑠 are set as follows: 

K = [

𝐾1
𝐾2
𝐾3
𝐾4

] = [

𝑅𝑀𝑆𝐸(𝑋𝑐)
𝑇𝑠(𝑋𝑐)
𝑂𝑆(𝑋𝑐)

𝑅𝑒[𝑃𝐶𝐿𝑃(𝑋𝑐)]

] ≤ [

0.03
0.02
0.04
0

] = USL    (4.26) 

where 𝑋𝑐 = [ ζ𝑖, ω𝑛𝑖] is the model's uncertain parameters. 
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Fig. 4.5.  Second-order closed-loop control system with uncertainties. 

To evaluate the robustness numerically, the PID controller is designed for the system 

to achieve optimal performance at the nominal values of  ζ𝑖 𝑎𝑛𝑑 ω𝑛𝑖 as 0.6 and 5, 

respectively. Then, four different sets of bounded uncertainty (variation) ranges of 

  ζ𝑖 𝑎𝑛𝑑 ω𝑛𝑖 with 10,000 normally distributed samples for each set generated. The Z-value 

of settling time (𝑍𝑇𝑠), overshoot (𝑍𝑜𝑠) and RMSE (𝑍𝑅𝑀𝑆𝐸) are obtained based on (4.23), and 

the sigma level of system performance (𝑛𝑠𝑦𝑠), system stability (𝑛𝑠𝑡𝑎𝑏) and POF of system 

performance are computed based on (4.24) and (4.25), as presented in Table 4.3. 

Table 4.3 Robustness evaluation of second-order system with parameter 

uncertainties. 

ω𝑛𝑖   ζ𝑖 𝑍𝑇𝑠 𝑍𝑂𝑆 𝑍𝑅𝑀𝑆𝐸  𝑛𝑠𝑦𝑠 𝑛𝑠𝑡𝑎𝑏  𝑃𝑂𝐹𝑠𝑦𝑠 

[4,6] [0.5,0.7] 57.4 45.3 119.1 6 6 0 

[3, 7] [0.4, 0.8] 25.5 20 29.0 6 6 0 

[2, 8] [0.3, 0.9] 4.9 4.2 6.6 3.7 6 0.0215% 

[0,10] [0.2,1] 1.5 1.8 2.4 1.4 5.4 16.15% 

 

It can be observed from Table 4.3 that as the uncertainties increase, the sigma levels 

of the system performance and stability decrease. Besides, the robustness of stability is 

broader than performance, where in some cases, the performance robustness is low, but the 
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system is still robustly stable.In addition, considering a more practical system like a DC 

motor drive is simple to control and can be represented by a loop transfer function. Thus, 

with an open loop transfer function of the DC motor in (4.27) and a suitable controller, 

robustness analysis of DC motor drive can be performed in the same way as the system in 

Fig. 4.5. 

𝐺(𝑠) =
𝐾𝑡

𝐽𝐿𝑠3 + (𝐽𝑅 + 𝐵𝐿)𝑠2 + 𝐵𝑅𝑠 + 𝐾𝑡
2                                                          (4.27) 

where J is the moment of inertia, B the motor’s viscous friction constant, 𝐾𝑡 the motor torque 

constant, R the motor resistance, and L the motor inductance. 

To numerically evaluate the DC motor drive robustness, the indicators (𝐾) and 𝑈𝑆𝐿𝑠 

are defined as follows: 

K = [

𝐾1
𝐾2
𝐾3
𝐾4

] = [

𝑅𝑀𝑆𝐸(𝑋𝑐)
𝑇𝑠(𝑋𝑐)
𝑂𝑆(𝑋𝑐)

𝑅𝑒[𝑃𝐶𝐿𝑃(𝑋𝑐)]

] ≤ [

0.03
0.04
0.03
0

] = USL                                        (4.28) 

where 𝑋𝑐 = [𝑅𝑖, 𝐿𝑖 , 𝐽𝑖 , 𝐵𝑖]. 

A DC motor drive is optimized to achieve nominal performance at nominal 

parameters in Table 4.4. Then, the robustness evaluation results with three variation ranges 

of nominal parameters ( ±50%, ±75%, ±100%) are listed in Table 4.5. 

Table 4.4 Nominal DC motor parameters. 

Parameter  𝑅(Ω) 𝐿(𝐻) 𝐽(𝑘𝑔.𝑚2) 𝐵(𝑁.𝑚. 𝑠) 𝐾𝑡 

Value 4 2.75𝑒−6 3.23𝑒−6 3.51𝑒−6 0.0274 
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Table 4.5  Robustness evaluation of DC motor drive with parameters uncertainties. 

Range  𝑍𝑇𝑠 𝑍𝑂𝑆 𝑍𝑟𝑚𝑠𝑒 𝑛𝑠𝑦𝑠 𝑛𝑠𝑡𝑎𝑏  𝑃𝑂𝐹𝑠𝑦𝑠 

±50% 26.3 16.7 28.7 6 6 0.0 

±75% 6.6 5.1 9.4 4.3 6 0.0017% 

±100% 2.5 1.8 2.8 1.6 6 10.96% 

 

 

 

4.6 Evaluation of Different RPC Methods of PMSM Drives  

PMSM drives are subjected to various uncertainties, including parametric and 

unmodelled dynamics uncertainties. MPC is highly dependent on the machine model and 

parameters; thus, high uncertainties affect MPC's operations and lead to unacceptable 

performance for some applications. RPC methods have been introduced to maintain a good 

control performance in the presence of uncertainties. Various RPC methods for PMSM drives 

have been proposed in the literature, considering different techniques to deal with 

uncertainties. The robustness of these RPCs is commonly illustrated by considering a few 

cases with mismatching parameters applied (deterministic approach). However, how robust 

(robustness level) each of these RPCs with bounded uncertainties range has not been assessed 

against specific application requirements (stochastic approach). With the proposed six-sigma 

robustness evaluation method, the robustness levels of any RPCs or any control method for 

PMSMs can be determined numerically with a bounded uncertainties range considering 



Chapter 4. A Novel Robustness Evaluation Method Based on Six-Sigma Methodology for 
Predictive Control of PMSM Drives 

134 
 

different applications requirement.  

To validate and illustrate the proposed method, the conventional MPC and five existing 

RPC methods for PMSM drives are used to assess their robustness to uncertainties. From the 

literature survey (Chapter 2), RPC methods are classified into five types: RPC-based 

prediction error, observer, hybrid (combined) techniques, optimized cost function, and 

model-free. Thus, a controller from each category is selected to perform a robustness 

evaluation based on the proposed six sigma robustness evaluation method. Predictive current 

control-based prediction error correction proposed in [4.1] is used and will be referred to as 

RPC-I. To achieve robustness and compensate for any parameter mismatching, this method 

used the weighted errors between the predicted and measured values in the last sampling 

instant and added them to prediction equations in the next sampling instant. Robust MPC 

with simplified repetitive control introduced in [4.12] is also used and will be referred to as 

RPC-II. This method applies a less computationally simplified repetitive controller with two 

resonant units and phase compensation to MPC to realize the system's robustness against 

disturbances.  

Model predictive current control based on an incremental model and disturbance 

observer proposed in [4.28] is another RPC to be used and will be referred to as RPC-III. In 

this method, an incremental prediction model was implemented to eliminate the permanent 

magnet flux link-age parameter, and an inductance disturbance controller that includes a 

simple disturbance observer and inductance extraction algorithm was implemented to reduce 

the effects of machine inductance mismatch.  Robust model predictive direct torque control 

based on the optimized cost function proposed in [4.9] is also used and will be referred to as 

RPC-IV. This method's cost function is modified to include specific objectives and 

constraints to achieve drive robustness. A direct torque MPC based on maximum torque per 
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ampere (MTPA) criteria was developed with a novel cost function with three terms. They 

are: tracking term to ensure reference tracking, attraction region term to define where the 

steady-state control states should be, and limitation term to limit the control states to their 

admissible values.  

The robust model-free predictive current control-based current detection technique 

proposed in [4.7] is also used and will be referred to as RPC-V. This method works by 

calculating the difference between the measured currents at different samples; then, these 

differences are used to predict the current in the next sampling. Thus, no machine parameters 

are required to perform the prediction.  

 

4.6.1 Numerical Verification and Experimental Validation 

Prior to conducting a robustness evaluation of conventional MPC and RPCs, these 

methods are to be validated by numerical simulation and experimental results. MPC and the 

five existing RPC methods were designed and implemented in Matlab/Simulink based on 

PMSM drive with parameters in Table 3.1. The sampling frequency of 10 kHz and the same 

machine parameters were applied to all controllers. The start-up responses from standstill to 

rated speed (1000 rpm) with load torque (2 Nm) applied at 0.2s are shown in Fig. 4.6 with 

nominal parameters and Fig. 4.7 with mismatching parameters (1.5𝑅𝑠, 0.5𝐿𝑑,0.5𝐿𝑞,0.7𝜓𝑃𝑚 

). From top to bottom, the graphs are phase A stator current (𝑖𝑎), direct-axis and quadrature-

axis currents (𝑖𝑑 , 𝑖𝑞), motor torque (𝑇𝑒), and rotor speed (𝜔𝑟).  As can be seen from the 

responses in Fig. 4.7, the performance is critically affected by mismatching parameters. 

Compared to the responses at nominal parameters, high current, and torque ripples are 

produced, and slow speed responses are experienced. Higher performance degradation is 
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recorded for the conventional MPC compared to the other RPC methods because no 

robustness mechanism was implemented for MPC. 

In addition to the simulation studies, MPC and five RPC methods are experimentally 

validated on a two-level inverter-fed PMSM drive system, the same as shown in Fig. 3.10. A 

dSPACE DS1104 PPC/DSP control board is employed to implement the real-time algorithm, 

a 2500-pulse incremental encoder is used to obtain the motor speed and position, and 

dSPACE ControlDesk interfaced with DS1104 is used for real-time control, monitoring, and 

record all experimental results. Magtrol DSP6000 high-speed programmable dynamometer 

controller is used to apply external load.  

First, the six control methods are tested during start-up, where motor speed starts from 

a standstill to rated speed (1000 rpm) are shown in Fig. 4.8, and the steady-state responses 

with load disturbances (2 Nm) applied at 0.5s are demonstrated in Fig. 4.9. The curves in 

Figs 4.8 and 4.9 from top to bottom are phase A stator current (𝑖𝑎), direct-axis and quadrature-

axis currents (𝑖𝑑 , 𝑖𝑞), motor torque (𝑇𝑒), and rotor speed (𝜔𝑟). 
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(a)                                                                        (b)

(c)                                                                       (d)

(e)                                                                (f) 

Fig. 4.6.   Simulation start-up performances with nominal PMSM parameters for (a) 

MPC, (b)RPC-I, (c) RPC-II, (d) RPC-III, (e) RPC-IV, and (f) RPC-V.
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(a)                                                                        (b)

(c)                                                                      (d)

(e)                                                                         (f)

Fig. 4.7.   Simulation start-up performances with mismatching PMSM parameters for 

(a) MPC, (b)RPC-I, (c) RPC-II, (d) RPC-III, (e) RPC-IV, and (f) RPC-V.
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(a)                                                                      (b)

(c)                                                                    (d)

(e)                                                                             (f)

Fig. 4.8.   Experimental start-up response from 0 to 1000 rpm for (a) MPC, (b)RPC-I, 

(c) RPC-II, (d) RPC-III, (e) RPC-IV, and (f) RPC-V.
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(a)                                                                (b)

(c)                                                                       (d)

(e)                                                                           (f)

Fig. 4.9.   Experimental steady-state response under 2 Nm load torque for (a) MPC, 

(b)RPC-I, (c) RPC-II, (d) RPC-III, (e) RPC-IV, and (f) RPC-V.
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4.6.2 Quantitative Analysis  

To further assess the performance against changes in operating conditions and 

parameter uncertainties, the above control methods are evaluated numerically by measuring 

the torque and current tracking performances at the steady state. At different operating 

conditions and several parameters variation, the current and torque ripples are computed 

using (3.52) and (3.53)[4.29]. 

In this evaluation, two cases are considered. In the first case, MPC and the five RPC 

methods are evaluated with different speeds and load torques at nominal machine parameters. 

Under no load, 1 Nm, and 2 Nm load torque conditions, five different speeds 

(200,400,600,800 and 1000 rpm) are applied. At each test, the torque ripples and stator 

current ripples are computed. Fig. 4.10 shows the torque ripples of MPC and RPC methods 

at no load, 1 Nm, and 2 Nm loads, and five different speeds. Similarly, the current ripples are 

presented in Fig. 4.11 under no load, 1 Nm, and 2 Nm load torque. 

In the second case, the motor operates at 1000 rpm and under 2 Nm load torque, and 

then the machine parameters vary in ranges according to Table 4.1. The torque and current 

ripples are computed with PMSM parameters changing in the range from -∆% to ∆% of their 

nominal values. The torque and current ripples of MPC and RPC methods with variations of 

𝐿𝑞,𝐿𝑑,𝑅𝑠 and Ψ𝑝𝑚 are presented in Figs 4.12- 4.15. 𝐿𝑞 and 𝐿𝑑  are varied from -70% to 40% 

of the nominal value, while other PMSM parameters are kept at their nominal values. 𝑅𝑠 is 

varied from -20% to 80% of the nominal value, while other PMSM parameters are kept at 

their nominal values. Ψ𝑝𝑚 is varied from -30% to 20% of the nominal value, while other 

PMSM parameters are kept at their nominal values. 
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From the obtained data of torque and current ripples at different torque and speed 

conditions, it can be observed that MPC has the highest torque and current ripples under 

different load conditions and at different speed operations. RPC methods vary in their 

response to load and speed variation. RPC-IV achieved the best torque ripples compared to 

other RPC methods. Compared to MPC and at 1000 rpm, RPC-IV reduced the torque ripples 

by 61.1%, 58.4 %, and 58.7% under no load, half load, and full load conditions, respectively. 

Conversely, RPC-V achieved the smallest current ripples compared to MPC and other RPC 

methods. At 1000 rpm and no load, half load, and full load conditions, RPC-V reduced the 

current ripples by 55.4%, 53.2 %, and 63%, respectively, compared to MPC. 

With different parameters variation, higher effects are produced with the variation of 

inductances (𝐿𝑑, 𝐿𝑞)  particularly at low values, where very high ripples are recorded. While 

the variation of permanent magnet flux linkage (Ψ𝑝𝑚) has less effect compared to the 

variations of inductance, and the high ripples are recorded with high values of (Ψ𝑝𝑚). The 

variation of stator resistance (𝑅𝑠) does not have much effect on the current and torque ripples. 

The highest torque and current ripples are recorded when 𝐿𝑑  and 𝐿𝑞 are decreased by 70%. 

When 𝐿𝑞 is reduced by 70%, the torque and current ripples respectively increased by 321.8% 

and 179% for MPC, 280.1% and 205% for RPC-I, 243.9% and 91.4% for RPC-II, 190.1% 

and 120.8% for RPC-III, 160.1% and 127.2% for RPC-IV, and 153.7% and 100.1% for RPC-

V higher than the values recorded at nominal (𝐿𝑞). However, compared to MPC, the torque 

and current ripples respectively reduced by 17.6% and 20.8% for RPC-I, 35.2% and 44.6% 

for RPC-II, 49.5% and 56.8% for RPC-III, 55.9% and 39.5% for RPC-IV, and 57.4% and 

61.7% for RPC-V. Similarly, with -70% mismatch in the d-axis inductance (𝐿𝑑), the torque 

and current ripples respectively increased by 244.5% and 230% for MPC, 155% and 236.5% 
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for RPC-I, 141.8% and 128.8% for RPC-II, 137.4% and 156.1% for RPC-III, 132.6% and 

110.9% for RPC-IV, and 123.7% and 121.7% for RPC-V higher than the values recorded at 

nominal (𝐿𝑞). Compared to MPC, the torque and current ripples respectively reduced by 

16.5% and 26.1% for RPC-I, 35.8% and 63.2% for RPC-II, 41.6% and 57.6% for RPC-III, 

44.5% and 52.5% for RPC-IV, and 47.4% and 65.1% for RPC-V. The torque and current 

ripples significantly increase as the machine inductances (𝐿𝑑, 𝐿𝑞) decrease from their 

nominal values. The torque and current ripples are slightly affected as the inductances 

increase from their nominal values.  

In addition, the torque ripples of all controllers increase steadily as the value of Ψ𝑝𝑚 

increases. The highest values are generated at 20% increase in Ψ𝑝𝑚 , in which increments 

from the values generated at nominal Ψ𝑝𝑚 are recorded as 22.9%, 21%, 19.5%, 18.3%, 

19.8%, and 19.6% for MPC, RPC-I, RPC-II, RPC-III, RPC-IV, and RPC-IV, respectively. 

The current ripples vary non-linearly with the variation of Ψ𝑝𝑚 MPC produces the worst 

current ripples, and RPC-V and RPC-III recorded the lowest ones. At 20% increase in Ψ𝑝𝑚 

, RPC-V and RPC-III recorded 46.2% and 44.7% less current ripples than MPC. Moreover, 

the torque and current ripples are slightly influenced by the variation of stator resistance (𝑅𝑠). 

MPC produced the worst torque and current ripples with the variation of 𝑅𝑆. While RPC-IV 

showed the best torque ripples and RPC-V showed the best current ripples. Overall, all RPC 

methods showed good response compared to MPC at different operating conditions (load, 

speed). RPC-V has the best response regarding current ripples and maintaining a trade-off 

between torque and current ripples.  
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(a)

(b)

(c)

Fig. 4.10.   Comparison of torque ripples in different control methods under (a) no load,

(b)half load, and (c) full load conditions.
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(a)

(b)

(c)

Fig. 4.11.   Comparison of stator current (𝑖𝑎) ripples in different control methods under (a) 

no load, (b)half load, and (c) full load conditions.

-0.1

0.1

0.3

0.5

0.7

200 400 600 800 1000C
ur

re
nt

 R
ip

pl
e 

(A
)

Speed (rpm)

Current  ripple (No load)

MPC RPC-I RPC-II RPC-III RPC-IV RPC-V

0

0.2

0.4

0.6

0.8

200 400 600 800 1000

C
ur

re
nt

 R
ip

pl
e 

(A
)

Speed (rpm)

Current ripple (Half Load)

MPC RPC-I RPC-II RPC-III RPC-IV RPC-V

0

0.2

0.4

0.6

0.8

200 400 600 800 1000

C
ur

re
nt

   
R

ip
pl

e 
(A

)

Speed (rpm)

Current ripple (Full Load)

MPC RPC-I RPC-II RPC-III RPC-IV RPC-V



Chapter 4. A Novel Robustness Evaluation Method Based on Six-Sigma Methodology for 
Predictive Control of PMSM Drives

146

(a)

(b)

Fig. 4.12.   Comparison of different control methods under the variation of machine 

inductance (𝐿𝑞), (a) Torque ripples, (b) stator current (𝑖𝑎) ripples.
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(a)

(b)

Fig. 4.13.   Comparison of different control methods under the variation of machine 

inductance (𝐿𝑑), (a) Torque ripples, (b) stator current (𝑖𝑎) ripples.
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(a)

(b)

Fig. 4.14.   Comparison of different control methods under the variation of stator 

Resistance (𝑅𝑠), (a) Torque ripples, (b) stator current (𝑖𝑎) ripples.
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(a) 

 

(b) 

Fig. 4.15.   Comparison of different control methods under the variation of permanent flux 

linkage (Ψ𝑃𝑀), (a) Torque ripples, (b) stator current (𝑖𝑎) ripples. 
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4.6.3 Parameter Sensitivity Analysis  

Sensitivity analysis is the study of how uncertainty in the output of a model can be 

attributed to different sources of uncertainty in the model input[4.30]. In other words, 

sensitivity analysis is a technique used to assess the influence of changes in input parameters 

on the output of a system or model [4.31]. In the case of PMSM control, it aims to evaluate 

how variations in specific motor parameters affect its performance characteristics. There are 

two main types of sensitivity analysis: local and global. In the context of PMSM control, 

sensitivity analysis can be used to study how variations in the control parameters affect the 

motor's performance. Local sensitivity analysis involves varying one machine parameter at a 

time while keeping all other parameters constant. Local sensitivity analysis is relatively easy 

to perform and can provide insights into the relative importance of different control 

parameters. However, it does not account for interactions between parameters and may miss 

significant effects that arise from simultaneous variations of multiple parameters.  

In contrast, global sensitivity analysis involves varying multiple control parameters 

simultaneously over their entire range of possible values. For example, one could vary all the 

machine parameters over a range of values and then study how the motor's performance 

varies across this range. Global sensitivity analysis can account for interactions between 

parameters and identify critical nonlinear effects that may be missed by local sensitivity 

analysis. This section presents the global sensitivity analysis using Monte Carlo techniques 

to study the effect of varying machine parameters on the machine drive performance.  

Various performance indicators are evaluated across a global set of samples to explore the 

design space. 
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Various machine parameters are used for this analysis, including the stator resistance 

𝑅𝑠, d- and q-axes inductances 𝐿𝑑, 𝐿𝑞, permanent magnet flux in the rotor Ψ𝑝𝑚, the 

momentum of inertia 𝐽, and viscous friction coefficient 𝐵. These parameters are varied 

simultaneously over a range of values a specific range, and then various performance 

indicators are evaluated, including settling time (𝑇𝑆), overshoot (𝑂𝑆), root mean square error 

(𝑅𝑀𝑆𝐸) of speed, torque ripples, and current ripples. The sensitivity analysis is carried out 

based on MPCC of PMSM drives with nominal parameters presented in Table 3.1 and their 

variation range of possible values at maximum operating conditions in Table 4.1. The 

workflow of sensitivity analysis of PMSM drives is described as follows: 

i. Sample the machine parameters using experimental design principles. For each 

parameter, generate multiple values (1000 values) based on the parameter's possible 

range (Table 4.1). The parameter sample space is defined based on normal 

probability distributions for each parameter. 

ii. Performance indicators are defined by creating a design requirement on the model 

signals for each indicator. 

iii. The performance indicators (design requirement) are evaluated using Monte Carlo 

simulations at each combination of parameter values. The indicator outputs and 

parameters are normalized in a range [0 1], then plotted to analyze trends visually. 

iv. The relation between the evaluated requirement and the samples is evaluated based 

on correlation and standardized regression. 

Parameter sample space (normal probability distribution) is created by generating 

random samples of each machine's parameters (1000 samples) based on their maximum 

possible variation range (Table 4.1), as presented in Fig. 4.16. Each performance indicator is 
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evaluated, normalized, and visually plotted against the parameter samples (normalized) to 

identify trends. Scatter plot (Fig. 4.17) displaying the evaluated performance indicator 

normalized values as a function of each parameter in the parameter sample space. This plot 

provides visual intuition about how the various parameters affect the performance indicators. 

A linear fit line is added to the scatter plot to identify the effect of each parameter in the 

indicators. The best-fit line indicates that the parameter has a lot of influence on the 

indicators. Furthermore, the parameters and indicators data are normalized to [0, 1] range for 

better and more meaningful visual representation. By normalizing data to the [0, 1] range, 

the minimum value in the dataset is mapped to 0, and the maximum value is mapped to 1. 

The values in between are linearly scaled based on their relative positions within the 

minimum and maximum values. Normalizing the data brings them to a uniform scale, which 

simplifies the process of comparing values and recognizing patterns or trends. 

 

Fig. 4.16.   Machine parameter sample space. 
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The plot in Fig. 4.17 shows that the settling time is directly proportional to the 

variation of machine inertia (𝐽); as the inertia increases, the settling time increase. The 

maximum settling time is 24.5% higher than the mean value of the settling time data. No 

other proper trends can be found to show how the settling time changes with the variations 

of other parameters. Furthermore, no specific appropriate trends can be found to show how 

machine parameter variation affects the overshoot and RMSE speed. 

The torque ripples increase monotonically with the decrease in the values of d-axis 

inductance (𝐿𝑑). No other trends between changes in torque ripples and variations of other 

machine parameters. The highest torque ripple is 34.9% higher than the mean value of the 

torque ripple. The current ripples are found to be inversely proportional to the variation of d-

axis and q-axis inductances (𝐿𝑑 , 𝐿𝑞) as the values of 𝐿𝑑 and 𝐿𝑞 decrease, higher current 

ripples are obtained. The highest current ripple is 29.6% higher than the mean value of the 

current ripples.  

In addition to visually analyzing the effect of machine parameter variations on the 

performance indicators, the relation between varying parameters and indicators can be 

statistically quantified by computing the correlation and standardized regression. Parameter 

influences in each indicator are obtained based on correlation and regression coefficients, as 

illustrated by the tornado plot shown in Fig. 4.18. The coefficients are plotted in order of the 

influence of parameters on the performance indicator. The parameter with the most 

significant influence on the indicator is displayed on the top, giving the plot a tornado shape. 

A negative coefficient indicates an inversely proportional relationship between the 

performance indicator and the parameter, while a positive coefficient implies a directly 

proportional relationship between them. 
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(a)

(b)

Fig. 4.17.   Scatter plot of performance indicators against parameter variation

(normalized), (a) settling time, overshoot, and RMSE of speed, (b) torque and current 

ripples.

The coefficient values are in the [-1, 1] range, and high parameter influences are 

indicated by the values approaching 1 or -1. Correlation and regression coefficient values 
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close to 1 imply a (direct) linear relation between the performance indicator and the respected 

parameter. While values close to -1 mean an (inverse) linear relation between them.

Fig. 4.18.   Tornado plot of parameter influences on performance indicators.

The parameter influences presented in Fig. 4.18 indicate that settling time and 

overshoot indicators are highly sensitive to the variation of machine inertia (𝐽). RMSE of 

speed is sensitive to d-axis inductance (𝐿𝑑). Torque ripple is significantly influenced by the 

q-axis inductance (𝐿𝑞) variation. The current ripple is highly sensitive to the variation in the 

d-axis inductance (𝐿𝑑), followed by the variation of q-axis inductance (𝐿𝑞).

In summary, the machine inductances (𝐿𝑑, 𝐿𝑞) and inertia (𝐽) are the most parameters 

that influence the performance indicators. Transient performance indicators are significantly 

affected by the variation in machine inertia, while steady-state indicators are highly affected 

by the variation in machine inductance. However, the impact in transient indicators (e.g., 
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settling time and overshoot) is relatively small compared to that in steady-state indicators 

(e.g., torque and current ripples). For instance, the highest settling time and overshoot values 

are 30.5% and 37.45% than those obtained at nominal parameters. In contrast, the highest 

torque and current ripples are 269.2% and 325.5% higher than those obtained at nominal 

parameters. 

4.6.4 Robustness Evaluation  

While sensitivity analysis provides valuable insights into the impact of parameter 

variations on a PMSM control method's performance, it alone is insufficient to indicate the 

control system's robustness to motor parameter variations. Sensitivity analysis focuses on 

quantifying the influence of parameters on the system's performance indicators and 

identifying the parameters with significant impact. Thus, the simulation, experimental, 

quantitative, and sensitivity analyses of MPC and RPC methods give a general overview of 

the robustness of these controllers. However, the simulation, experimental, and quantitative 

analyses only consider single uncertainties cases (deterministic approach), and sensitivity 

analysis only shows which parameters highly influence the performance. These analyses do 

not precisely determine how well (robustness level) a drive system performed (compared to 

other methods) in the presence of uncertainties. Hence, the proposed robustness evaluation 

method based on Six Sigma numerically identifies the drive system's robustness. 

PMSM drive robustness can be divided into two types: stability and performance. 

Stability is necessary for performance robustness, meaning the stability robustness level is 

much larger than the performance robustness level. Therefore, only performance robustness 

is considered in this evaluation. To evaluate the performance robustness of PMSM drives, 

indicators that essentially indicate the performance are to be identified. Some of these 
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indicators are the transient response characteristics such as settling time (𝑇𝑆) and overshoot 

(𝑂𝑆), and steady-state characteristics such as root mean square error (𝑅𝑀𝑆𝐸) of speed, 

torque, and current ripples. Then, each indicator's robustness acceptance level (USL) needs 

to be defined. For instance, a torque ripple indicator with USL of 0.4 means the torque ripples 

of a controller must not exceed 0.4 Nm over different uncertainties to be considered robust. 

To select appropriate USLs for all indicators, the performance requirement of a specific 

PMSM drive application is considered. 

PMSM drives can be used in several applications, such as water-pumping systems, 

EVs, aircraft flight control, radar systems, and satellites. Each application has different 

performance requirements; for example, water pumping can operate with low PMSM drive 

performance, EVs may require moderate drive performance, and applications like radar 

systems require high drive performance. Thus, the performance indicators 𝐾𝑖 with 

specification limits considering applications with low requirements (Application-I), 

moderate requirements (Application-II), and high requirements (Application-III) are listed in 

Table 4.6. Therefore, a robustness evaluation model of PMSM drive with 𝐾𝑖 performance 

indicators and their 𝑈𝑆𝐿𝑖 can be defined as follows: 

K =

[
 
 
 
 
𝐾1
𝐾2
𝐾3
𝐾4
𝐾5]
 
 
 
 

=

[
 
 
 
 
 
𝑇𝑠(𝑋𝑐)
𝑂𝑆(𝑋𝑐)

𝑅𝑀𝑆𝐸𝜔(𝑋𝑐)

𝑇𝑟𝑖𝑝(𝑋𝑐)

𝑖𝑟𝑖𝑝(𝑋𝑐) ]
 
 
 
 
 

≤ USL                                                    (4.29) 

where 𝑋𝑐 = [𝑅𝑠𝑛  , 𝐿𝑑𝑛 , 𝐿𝑞𝑛 , 𝜓𝑃𝑀𝑛 , 𝐽𝑖 , 𝐵𝑖] represent the machine parameters with( 𝑖 =

1… .𝑁) variation samples. From Table 4.6, USLs are: 



Chapter 4. A Novel Robustness Evaluation Method Based on Six-Sigma Methodology for 
Predictive Control of PMSM Drives 

158 
 

𝑈𝑆𝐿 =

[
 
 
 
 
0.2
0.05
0.003
0.8
1.2 ]

 
 
 
 

                                                                                   (4.30)  

for Application-I, 

𝑈𝑆𝐿 =

[
 
 
 
 
0.15
0.03
0.002
0.6
0.7 ]

 
 
 
 

                                                                                  (4.31)  

for Application-II, and 

𝑈𝑆𝐿 =

[
 
 
 
 
0.1
0.02
0.001
0.4
0.5 ]

 
 
 
 

                                                                                  (4.32)  

for Application-III. 

Table 4.6   Performance requirements of different PMSM drive applications. 

Indicator 

(𝐾) 

Specification limits (𝑈𝑆𝐿) 

Application-I  Application-II  Application-III  

𝑇𝑠 ≤ 0.2 ≤ 0.15 ≤ 0.1 

𝑂𝑆 ≤ 5% ≤ 3% ≤ 2% 

𝑅𝑀𝑆𝐸𝜔 ≤ 0.003 ≤ 0.002 ≤ 0.001 

𝑇𝑟𝑖𝑝 ≤ 0.8 ≤ 0.6 ≤ 0.4 

𝑖𝑟𝑖𝑝 ≤ 1.2 ≤ 0.7 ≤ 0.5 
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The conventional MPC and the five RPC methods are evaluated for performance 

robustness based on the proposed six-sigma robustness evaluation method. The evaluation is 

done based on the PMSM drive with nominal parameters (Table 3.1) and their uncertainties 

ranges (Table 4.1) with 10000 (N) samples of parameter variations and based on three 

different application requirements (Table 4.6). First, machine parameter variation samples 

are generated for two ranges (rated and maximum conditions). The machine operates from a 

standstill to 1000 rpm (rated speed), and then 2 Nm load torque is applied during steady-

state. The six control methods (MPC, RPC-I, RPC-II, RPC-III, RPC-IV, and RPC-V) are 

evaluated by computing the settling time (𝑇𝑠), overshoot (𝑂𝑆), RMSE of speed (𝑅𝑀𝑆𝐸𝜔), 

torque ripples  (𝑇𝑟𝑖𝑝), and stator current 𝑖𝑎 ripples (𝑖𝑟𝑖𝑝) at every parameter variation sample. 

The robustness evaluation process is illustrated by the flowchart presented in Fig. 4.19. 

The Z values of settling time (𝑍𝑇𝑠), overshoot (𝑍𝑂𝑆), RMSE of speed (𝑍𝜔), torque 

ripple (𝑍𝑇𝑟𝑖𝑝), and current ripple (𝑍𝑖𝑟𝑖𝑝) performance indicators, and the sigma level (𝑛𝑠𝑦𝑠 ) 

and the probability of failure of system performance (𝑃𝑂𝐹𝑠𝑦𝑠 )  are computed as in Table 4.7. 

As can be seen from the obtained 𝑛𝑠𝑦𝑠 in Table 4.7, at the rated parameter uncertainty 

(variation) ranges and application with low requirement (Application-I), both controllers, 

including MPC, achieved 6𝜎. With a moderate application requirement (Application-II), 

MPC and RPC-I only achieved 2.2𝜎 and 3.6𝜎, respectively, while other RPC methods 

achieved 6𝜎. As for applications with high requirements (Application-III), no controller 

achieved 6𝜎, and the highest system sigma level is 2.8𝜎 achieved by RPC-V compared to 

0𝜎, 2.0𝜎 , 2.2𝜎 2.1𝜎 and 2.5𝜎 achieved by MPC, RPC-I, RPC-II, RPC-III, and RPC-IV, 

respectively.  
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Define the system indicators 𝐾𝑖 and their 
acceptance levels 𝑈𝑆𝐿𝑖. 

Generate (N=10000) normally distributed samples 
of machine parameters.  

Simulate RPC method and compute indicators 
𝐾𝑖 for all parameters samples.   

Compute the mean 𝑢𝑖 and standard deviation 𝜎𝑖 
for each indicator 𝐾𝑖 

Obtain the Z-Value  𝑍𝑖 of each indicator using 
equation (4.23) 

𝐾𝑖 ≥ 𝑈𝑆𝐿𝑖  ? 

 
Yes   

 

Start  

Defect samples (ND) 

Compute 𝑃𝑂𝐹𝑠𝑦𝑠 and 𝑛𝑠𝑦𝑠 using 
equations (4.24) and (4.25) 

 

 Display the performance indicators Z-value 𝑍𝑖 
and the system 𝑃𝑂𝐹𝑠𝑦𝑠 and 𝑛𝑠𝑦𝑠. 

 

End 

Fig. 4.19.   Flow chart of robustness evaluation process. 
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Table 4.7   Robustness evaluations of MPC, RPC-I, RPC-II, RPC-III, RPC-IV, and 

RPC-V with two uncertainty ranges based on three applications' requirements. 

Indicator 𝑍𝑇𝑠 𝑍𝑂𝑆 𝑍𝜔 𝑍𝑇𝑟𝑖𝑝𝑝 𝑍𝑖𝑟𝑖𝑝𝑝 𝑛𝑠𝑦𝑠 𝑃𝑂𝐹 

Controller Rated condition uncertainties (Application-I) 

MPC 63.3 66.2 54.6 16.7 9.1 6.0 0 

RPC-I 73.4 207.8 173.9 18.6 14.7 6.0 0 

RPC-II 73.7 162.3 122.2 28.8 24.6 6.0 0 

RPC-III 73.7 42.4 113.3 27.5 23.8 6.0 0 

RPC-IV 49.9 12.7 132.8 37.7 18.4 6.0 0 

RPC-V 82.2 53.6 50.9 35.5 25.9 6.0 0 

 Maximum condition uncertainties (Application-I) 

MPC 46.8 54.4 30.7 10.2 4.9 3.1 0.19% 

RPC-I 55.6 163.3 111.0 11.5 8.1 3.6 0.03% 

RPC-II 55.8 105.7 83.0 18.6 15.6 6.0 0 

RPC-III 55.8 36.3 71.7 17.3 14.6 6.0 0 

RPC-IV 35.2 12.2 94.0 22.9 11.8 6.0 0 

RPC-V 61.4 52.1 43.9 21.0 14.3 6.0 0 

 Rated condition uncertainties (Application-II) 

MPC 44.4 38.5 35.1 11.4 2.2 2.2 2.78% 

RPC-I 51.9 120.9 113.7 12.7 5.5 3.6 0.03% 

RPC-II 52.1 95.8 79.2 17.0 8.5 6.0 0 

RPC-III 52.1 25 73.1 16.2 8.2 6.0 0 

RPC-IV 35.2 6.9 86.7 26.6 7.1 6.0 0 

RPC-V 58.7 31.6 31.4 24.8 10.0 6.0 0 

 Maximum condition uncertainties (Application II) 

MPC 32.7 31.6 19.6 6.9 0.9 1.5 13.36% 

RPC-I 39.2 95.0 72.6 7.8 2.8 2.4 1.64% 

RPC-II 39.4 62.3 53.8 10.9 5.2 3.3 0.10% 

RPC-III 36.4 21.4 46.2 10.0 4.8 3.2 0.14% 

RPC-IV 24.8 6.7 61.3 16.0 4.3 3.1 0.19% 
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RPC-V 43.8 30.7 27.0 14.6 5.3 3.8 0.01% 

 Rated condition uncertainties (Application-III) 

MPC 25.6 24.7 15.7 6.1 -0.6 0.4 70.85% 

RPC-I 30.4 77.5 53.6 6.8 1.8 2.0 4.55% 

RPC-II 30.5 62.5 36.1 5.1 2.1 2.2 2.78% 

RPC-III 30.4 16.2 32.8 4.8 2.0 2.1 3.573% 

RPC-IV 20.5 4.1 40.6 15.5 2.5 2.5 1.24% 

RPC-V 35.2 20.6 11.9 14.1 3.7 2.8 0.51% 

 Maximum condition uncertainties (Application-III) 

MPC 18.7 20.2 8.6 3.6 -0.7 0.3 76.65% 

RPC-I 22.8 60.8 34.1 4.4 0.7 1.4 16.15% 

RPC-II 22.9 40.6 24.4 3.1 1.0 1.5 13.36% 

RPC-III 22.9 13.8 20.6 2.8 0.9 1.5 13.36% 

RPC-IV 14.4 4.0 28.6 9.3 1.3 1.7 8.91% 

RPC-V 26.1 20.0 10.2 8.2 1.7 2.0 4.55% 

 

At the maximum parameter uncertainty ranges, MPC and RPC-I only achieved 3.1𝜎 

and 3.6𝜎, respectively, and other RPCs achieved 6𝜎 for Application-I. No controller 

achieved 6𝜎 at maximum parameter uncertainty ranges for moderate and high application 

requirements, and RPC-V achieved the highest sigma level with 3.8𝜎 and 2.0𝜎 for 

Application-II and Application-III, respectively. The increase in uncertainty ranges critically 

influences the robustness, especially for applications with high requirements. For instance, 

for Application-III, at the maximum uncertainty ranges, low system performance robustness 

was recorded for MPC, RPC-I, RPC-II, and RPC-III with 100%, 16.15%,13.36%, and 

13.36% POF, respectively. RPC-V achieved the best sigma level and low POF at various 

uncertainty ranges and for different application requirements. 

The current and torque ripples are the most critical performance indicators and the 
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main factor for dropping 𝑛𝜎 for the overall system. In other words, although some controllers 

have good robustness for most of the performance indicators, their low robustness levels of 

torque and/or current ripples result in low 𝑛𝜎 for overall system performance. In contrast, 

controllers which maintain trade-offs among torque and current ripples and other 

performance indicators achieved a good overall system sigma level. 

In addition, the Z-value of individual performance indicators is used to show the 

robustness difference for different controllers, especially when multiple controllers achieve 

a similar system's sigma level. The Z-value describes how far the specification limits of each 

application are from the average value of the N-sample data of each performance indicator. 

The Z values of torque and current ripples are the most critical indicators for a controller's 

robustness. Thus, to illustrate the concept of Z-value, the process capability of the torque and 

current ripple indicators with rated and maximum uncertainty ranges are shown in Figs 4.20 

and 4.21.  USL-I, USL-II, and USL-III, and Z.USL-I, Z.USL-II, and Z.USL-III are the 

specification limits (Table 4.6) and Z-values for applications I, II, and III, respectively. 

The process capability plots show how far the specification limits positions of 

different applications from the mean (𝜇) of torque and current ripples of each controller. The 

dispersion of torque and current ripples around the mean (𝜇) shows how good each controller 

is in maintaining minimum torque or current ripples with parameter variations. For example, 

the process capability plots of torque ripples show RPC-IV's effectiveness in minimizing 

torque ripples. Similarly, the current ripple capability plots illustrate how good RPC-V is in 

maintaining low current ripples over different parameter variations. Thus, RPC-IV produced 

the highest Z-values of torque ripples, and RPC-V produced the highest Z-values of current 

ripples at all parameter variation ranges.  
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(a) 

 
(b) 

Fig. 4.20.   Process capability plot with rated parameters uncertainties range for MPC, 

RPC-I, RPC-II, RPC-III, RPC-IV, and RPC-V, (a) torque ripple( 𝑇𝑟𝑖𝑝), (b) current ripple 

(𝑖𝑟𝑖𝑝). 
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(a) 

 
(b) 

Fig. 4.21.   Process capability plot with maximum parameters uncertainties range for MPC, 

RPC-I, RPC-II, RPC-III, RPC-IV, and RPC-V, (a) torque ripple( 𝑇𝑟𝑖𝑝), (b) current ripple 

(𝑖𝑟𝑖𝑝).   
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The Z values of different performance indicators show the strengths and weaknesses 

of different controllers to specific indicators and which controller can maintain a robustness 

trade-off among all the indicators. For instance, RPC-I has the highest Z-values of overshoot 

(𝑍𝑂𝑆) and RMSE of speed (𝑍𝜔), but their Z-values of torque and current ripples decrease 

significantly as the uncertainties increase. RPC-IV also has the best Z-values of torque 

ripples, but their Z-values of overshoot are the worst. Hence, achieving good robustness for 

all performance indicators is essential to obtain good overall system robustness. For example, 

MPC and RPC-I have achieved good speed performance robustness (𝑇𝑠, 𝑂𝑆, 𝑅𝑀𝑆𝐸𝜔), but 

they were unable to maintain good torque and current (𝑇𝑟𝑖𝑝, 𝑖𝑟𝑖𝑝) robustness over different 

parameter uncertainty ranges. On the other hand, RPC-IV and RPC-V may have achieved 

less overshoot robustness than MPC and RPC-I, but they maintained a robustness trade-off 

with other indicators, thus achieving higher system sigma levels. 

The proposed six-sigma robustness evaluation method offers a simple and reliable 

robustness evaluation tool, which can be used to assess any system's robustness to 

uncertainties. This means the robustness level of a control system can be determined by 

evaluating its quality indicators against defined acceptance levels (specification limits) for N 

samples of uncertainties. Therefore, when considering a specific application requirement 

(e.g., EV), the best controller that is more robust to uncertainties can be selected effectively. 

The control methods and the application requirements used in this research are just examples 

to illustrate the proposed six-sigma robustness evaluation method. However, other control 

methods for PMSM drives, systems, and application performance requirements can be used. 

Hence, the proposed method is a quality measure of a control system that can be used to 

numerically assess the robustness of any control system to uncertainties. 
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4.7 Summary  

Various robust PMSM drive methods, including RPC, have been introduced to deal 

with the different drive uncertainties. Most of these methods lack discussion on uncertainties 

modelling, robustness definition, and evaluations. Thus, in this research, a novel robustness 

evaluation method based on the Six Sigma concept is proposed and used to evaluate control 

system robustness numerically. Based on the proposed method, five RPC methods of PMSM 

drive and conventional MPC are assessed at two uncertainty ranges and considering three 

different application requirements. Different robustness levels are obtained for each method 

in the presence of uncertainties. Besides, considering different application requirements, the 

robustness levels of RPC methods differ accordingly. With such robustness evaluations, 

selecting the best RPC method that fits the required applications is more accessible. 
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CHAPTER 5 

 

5      ADAPTIVE MODEL-FREE PREDICTIVE CURRENT 
CONTROL OF PMSM DRIVES 

 

 

5.1 Introduction  

Model-free predictive current control (MFPCC) has recently emerged as a promising 

alternative to robust MPC methods. MFPCC eliminates the prediction dependency on a 

simplified parametric machine model by developing a prediction model independent of the 

machine model and parameters [5.1]. MFPCC can be achieved using an ultra-local model 

[5.2], where an ultra-local model replaces a complex system model with one or two 

unknowns that can be estimated based on the system’s measured data [5.3-5.4].  

On the other hand, MFPCC can be achieved by solely using the system's measured 

input and/or output data and their variations. In such methods, the current differences due to 

the possible voltage vectors are stored and employed for predicting the future current. The 

current differences due to the applied voltages over the past one, two, or three control cycles 

are typically used to predict the current in the next control cycle. These current differences 

are updated continuously as new voltage vectors are applied [5.5-5.7]. However, when the 

same voltage vector is applied for an extended control period, the update mechanism is 

corrupted, and stagnation can occur, resulting in an inaccurate prediction and performance 

degradation. 

Most existing MFPCCs utilize the measured current and applied voltage variations to 

compensate for the effect of parameter variations. However, parameter inaccuracies 

influence the reference current when a speed control loop is used. This results in suboptimal 
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tracking performance and high current ripple. Thus, the tracking error must be considered in 

the prediction stage to account for the effect of parameter variations in the speed control loop. 

This research proposes an adaptive MFPCC (A-MFPCC) with a modified current 

difference updating technique for PMSM drives. First, an incremental prediction model with 

two lumped parameters is derived. Then, using the recursive least square (RLS) algorithm to 

estimate these parameters, a model-free current prediction can be achieved in a similar 

manner to MFPCC based ultra-local model. To avoid the additional RLS computation 

requirement and account for tracking error, the derived incremental prediction model and 

tracking error variations are used to establish a prediction model independent of the machine 

model and parameters. Thus, the measured and reference currents deviations due to 

parameter mismatching can be eliminated. With a reference voltage vector generated based 

on the reference current vector position and the tracking error, the current difference is 

obtained due to the applied and reference voltage vector. Using a reference voltage vector 

accounts for the tracking error in each control cycle and avoids stagnation by constantly 

updating the current differences. 

In comparison to existing methods, the proposed A-MFPCC does not require two or 

three successive applied voltage vectors to be different. Thanks to the generated reference 

voltage vector, which adaptively updates the current differences despite the successively 

applied voltage vectors being similar. With the proposed A-MFPCC, the stagnation effect is 

eliminated, and tracking error is considered in the prediction stage. Thus, effective current 

prediction and better tracking performance can be achieved. The effectiveness of the 

proposed method is validated by comparison with two other MFPCC schemes based on 

simulation, experimental results, and robustness evaluation. 
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5.2 The Proposed Adaptive Model-Free Predictive Current Control (A-MFPCC) 

The currents dynamic equations of PMSM in 𝑑𝑞-frame are presented in Chapter 3 

and rewritten here as follows: 

𝑑𝑖𝑑
𝑑𝑡
= − 

𝑅𝑠
𝐿𝑑
𝑖𝑑 +

𝐿𝑞

𝐿𝑑
 𝜔𝑖𝑞 +

1

𝐿𝑑
𝑣𝑑                                                          (5.1) 

   
𝑑𝑖𝑞

𝑑𝑡
= − 

𝑅𝑠
𝐿𝑞
𝑖𝑞 −

𝐿𝑑
𝐿𝑞
 𝜔𝑖𝑑 −

𝜔𝑝𝑚

𝐿𝑞
+ 
1

𝐿𝑞
𝑣𝑞                                      (5.2) 

The currents 𝑖𝑑𝑞 at time step (𝑘 + 1) can be predicted by discretizing (3) and (4) at 

sampling time 𝑇𝑠 as follows: 

𝑖𝑑(𝑘 + 1) = (1 −
𝑅𝑠𝑇𝑠
𝐿𝑑
) 𝑖𝑑(𝑘) +

𝐿𝑞

𝐿𝑑
𝑇𝑠 𝜔(𝑘)𝑖𝑞(𝑘) +

𝑇𝑠
𝐿𝑑
𝑣𝑑(𝑘)                                    (5.3) 

𝑖𝑞(𝑘 + 1) = (1 −
𝑅𝑠𝑇𝑠

𝐿𝑞
) 𝑖𝑞(𝑘) −

𝐿𝑑

𝐿𝑞
𝑇𝑠 𝜔(𝑘)𝑖𝑑(𝑘) − 𝑇𝑠𝜔(𝑘)

𝑝𝑚

𝐿𝑞
+
𝑇𝑠

𝐿𝑞
𝑣𝑞(𝑘)             (5.4)          

The accuracy of the prediction model in (5.3) and (5.4) is highly dependent on both 

the machine parameters and the mathematical model of PMSM. However, machine 

parameters vary due to machine structure and changes in operating conditions. To account 

for parameters variation, the prediction model is rewritten considering parameters 

mismatching as follows: 

𝑖𝑑(𝑘 + 1) = (1 − 𝑇𝑠
𝑅𝑠 + ∆𝑅𝑠
𝐿𝑑 + ∆𝐿𝑑

) 𝑖𝑑(𝑘) + 𝑇𝑠
𝐿𝑞 + ∆𝐿𝑞

𝐿𝑑 + ∆𝐿𝑑
𝜔(𝑘)𝑖𝑞(𝑘) +

𝑇𝑠
𝐿𝑑 + ∆𝐿𝑑

𝑣𝑑(𝑘)    (5.5) 

𝑖𝑞(𝑘 + 1)  = (1 − 𝑇𝑠
𝑅𝑠 + ∆𝑅𝑠
𝐿𝑞 + ∆𝐿𝑞

) 𝑖𝑞(𝑘) −
𝐿𝑑 + ∆𝐿𝑑
𝐿𝑞 + ∆𝐿𝑞

𝑇𝑠 𝜔(𝑘)𝑖𝑑(𝑘)                             

−𝑇𝑠𝜔(𝑘)
𝑝𝑚 + ∆𝑝𝑚

𝐿𝑞 + ∆𝐿𝑞
+

𝑇𝑠
𝐿𝑞 + ∆𝐿𝑞

𝑣𝑑(𝑘)                                 (5.6) 
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Based on (5.5) and (5.6), it is evident the machine parameters and their deviations 

(∆𝑅𝑠 , ∆𝐿𝑞, ∆𝐿𝑑, and ∆𝑝𝑚) play a significant part in deciding the accuracy of the predicted 

currents. A mismatch or uncertainty in one of the machine parameters leads to prediction 

inaccuracy and degrades the control performance. The conventional prediction model in (5.3) 

and (5.4) achieve current prediction using a one-time step 𝑘𝑇𝑠  data. With two-time steps data 

(𝑘 − 1)𝑇𝑠 and 𝑘𝑇𝑠, an incremental prediction model can be obtained [5.8]. Based on the 

predicted currents at time step k-1 in (5.3) and (5.4), the current at step 𝑘  is predicted as 

follows: 

𝑖𝑑(𝑘) = (1 −
𝑅𝑠𝑇𝑠

𝐿𝑑
) 𝑖𝑑(𝑘 − 1) +

𝐿𝑞

𝐿𝑑
𝑇𝑠 𝜔(𝑘 − 1)𝑖𝑞(𝑘 − 1) +

𝑇𝑠

𝐿𝑑
𝑣𝑑(𝑘 − 1)                (5.7)  

𝑖𝑞(𝑘) = (1 −
𝑅𝑠𝑇𝑠

𝐿𝑞
) 𝑖𝑞(𝑘 − 1) −

𝐿𝑑

𝐿𝑞
𝑇𝑠 𝜔(𝑘 − 1)𝑖𝑑(𝑘 − 1) − 𝑇𝑠𝜔

𝑝𝑚

𝐿𝑞
+ 

𝑇𝑠

𝐿𝑞
𝑣𝑞(𝑘 − 1)  (5.8)  

The mechanical speed 𝜔 can be assumed constant over a few control cycles because 

the mechanical time constant 𝜏𝑚   is much larger than the electrical time constants 𝜏𝑑 =

𝐿𝑑

𝑅𝑠
, 𝜏𝑞 =

𝐿𝑞

𝑅𝑠
. Thus, by subtracting (5.7) and (5.8) from (5.3) and (5.4), the current incremental 

prediction model at k+1 can be expressed as: 

𝑖𝑑(𝑘 + 1) = 𝑖𝑑(𝑘) + (1 −
𝑅𝑠𝑇𝑠
𝐿𝑑
) (𝑖𝑑(𝑘) − 𝑖𝑑(𝑘 − 1))    

+
𝐿𝑞

𝐿𝑑
𝑇𝑠𝜔 (𝑖𝑞(𝑘) − 𝑖𝑞(𝑘 − 1))  +

𝑇𝑠

𝐿𝑑
(𝑣𝑑(𝑘)   − 𝑣𝑑(𝑘 − 1)  )                  (5.9)  

𝑖𝑞(𝑘 + 1) = 𝑖𝑞(𝑘) + (1 −
𝑅𝑠𝑇𝑠
𝐿𝑞
) (𝑖𝑞(𝑘) − 𝑖𝑞(𝑘 − 1)) 

−
𝐿𝑑
𝐿𝑞
𝑇𝑠𝜔(𝑖𝑑(𝑘) − 𝑖𝑑(𝑘 − 1)) +

𝑇𝑠
𝐿𝑞
(𝑣𝑞(𝑘)   − 𝑣𝑞(𝑘 − 1))                     (5.10) 

With a short enough sampling time 𝑇𝑠, much smaller than electrical time constants 𝜏𝑑 
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and 𝜏𝑞 , the current difference deviations ∆𝛿𝑖𝑑   and ∆𝛿𝑖𝑑  , as shown in [5.7] and [5.9], can be 

approximated by: 

[
∆𝛿𝑖𝑑
∆𝛿𝑖𝑞

] = [

𝑇𝑠

𝐿𝑑
𝛿𝑣𝑑

𝑇𝑠

𝐿𝑞
𝛿𝑣𝑞

]                                                          (5.11)  

[
(𝑖𝑑(𝑘 + 1) − 𝑖𝑑(𝑘))   − (𝑖𝑑(𝑘) − 𝑖𝑑(𝑘 − 1))

(𝑖𝑞(𝑘 + 1) − 𝑖𝑞(𝑘))  − (𝑖𝑞(𝑘) − 𝑖𝑞(𝑘 − 1))
] = [

𝑇𝑠

𝐿𝑑
(𝑣𝑑(𝑘) − 𝑣𝑑(𝑘 − 1))

𝑇𝑠

𝐿𝑞
(𝑣𝑞(𝑘) − 𝑣𝑞(𝑘 − 1))

]            (5.12)  

Based on (5.11) and (5.12), the incremental prediction model in (5.9) and (5.10) can 

be simplified as follows: 

𝑖𝑑(𝑘 + 1) = 𝑖𝑑(𝑘) + (1 −
𝑅𝑠𝑇𝑠
𝐿𝑑
) (𝑖𝑑(𝑘) − 𝑖𝑑(𝑘 − 1)) +

𝑇𝑠
𝐿𝑑
(𝑣𝑑(𝑘) − 𝑣𝑑(𝑘 − 1))  (5.13) 

𝑖𝑞(𝑘 + 1) = 𝑖𝑞(𝑘) + (1 −
𝑅𝑠𝑇𝑠
𝐿𝑞
) (𝑖𝑞(𝑘) − 𝑖𝑞(𝑘 − 1))

+
𝑇𝑠
𝐿𝑞
(𝑣𝑞(𝑘)  − 𝑣𝑞(𝑘 − 1))                                                                            (5.14) 

For simplicity, (5.13) and (5.14) can be rewritten as: 

𝑖𝑠(𝑘 + 1) = 𝑖𝑠(𝑘) + 𝛼(𝑖𝑠(𝑘) − 𝑖𝑠(𝑘 − 1)) + 𝛽(𝑣𝑠(𝑘) − 𝑣𝑠(𝑘 − 1))         (5.15) 

where  𝑖𝑠(𝑘 + 1) = [𝑖𝑑(𝑘 + 1)  𝑖𝑞(𝑘 + 1)]
𝑇
, 𝑖𝑠(𝑘) = [𝑖𝑑(𝑘)  𝑖𝑞(𝑘)]

𝑇
, 

  𝑣𝑠(𝑘) = [𝑣𝑑(𝑘) 𝑣𝑑(𝑘)]
𝑇, 𝛼 = [1 − 𝑅𝑠𝑇𝑠

𝐿𝑑
   1 −

𝑅𝑠𝑇𝑠

𝐿𝑞
 ]
𝑇

, and 𝛽 = [
𝑇𝑠

𝐿𝑑
     

𝑇𝑠

𝐿𝑞
]
𝑇

. 

5.2.1 MFPCC Based on Recursive Least Square (MFPCC-I) 

Based on (5.15), an incremental prediction model is established with two unknown 

parameters 𝛼 and 𝛽. The currents 𝑖𝑠(𝑘 + 1) can be predicted by estimating 𝛼 and 𝛽 at every 
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time step 𝑘𝑇𝑠 based on the system input and output data. Different methods can be used to 

estimate 𝛼 and 𝛽, such as sliding mode observer, extended state observer, and other 

estimation techniques. However, these methods are computationally intensive and 

incorporate various coefficients to be tuned, and their selections influence the estimation 

accuracy. Here, an effective and less computational recursive least square (RLS) algorithm 

is used to estimate 𝛼 and 𝛽 based on the current and past measurement of currents and 

voltages. At every time step k, the RLS algorithm estimates 𝛼 and 𝛽  which are used to predict 

the current in the next step 𝑖𝑠(𝑘 + 1). In general, the RLS algorithm is defined as follows: 

𝑦(𝑘) =  𝑥𝑇(𝑘)𝜃(𝑘)                                                    (5.16) 

where 𝑦(𝑘) is the observed output, 𝜃(𝑘) the vector of unknown parameters, and 𝑥𝑇(𝑘)  the 

input vector. Based on (5.16), the prediction model in (5.15) is rewritten in linear regression 

form as follows: 

𝑖𝑠(𝑘 + 1) − 𝑖𝑠(𝑘)  ⏟            
𝑦(𝑘)

= [𝑖𝑠(𝑘) − 𝑖𝑠(𝑘 − 1)   𝑣𝑠(𝑘) − 𝑣𝑠(𝑘 − 1)]⏟                        
𝑥𝑇(𝑘)

[
𝛼
𝛽]⏟

 𝜃(𝑘) 

       (5.17) 

The unknown parameter estimation, 𝜃(𝑘), is computed for every time step k based 

on observed output data 𝑦(𝑘) and measured input data 𝑥𝑇(𝑘)  as follows: 

𝜃(𝑘), =  𝜃(𝑘 − 1),+ 𝐾(𝑘) [𝑦(𝑘) − 𝑥𝑇(𝑘) 𝜃(𝑘 − 1)]                   (5.18) 

𝐾(𝑘) =
𝑃(𝑘 − 1)𝑥(𝑘)

𝜆 + 𝑥𝑇(𝑘)𝑃(𝑘 − 1)𝑥(𝑘)
                                               (5.19) 

𝑃(𝑘) =  
1

𝜆
  [𝑃(𝑘 − 1) − 𝐾(𝑘)𝑥𝑇(𝑘)𝑃(𝑘 − 1)]                                (5.20) 

where λ is the forgetting factor (a value between 0 and 1 determining how much weight to 

give to the older data); 𝐾(𝑘) is the gain matrix, and 𝑃(𝑘) the covariance matrix. The 

estimation of the unknown 𝜃  using the RLS can be summarized in Algorithm 5.1.  
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Algorithm 5.1: Recursive Least Square 
Initialization  
                𝜃(𝑘 − 1) = 𝜃(0)  
               𝑃(𝑘 − 1) = 𝑃(0) 
For each time step k=1,2…. 

- obtain input 𝑥𝑇(𝑘),and estimate output 𝑦(𝑘) 
- Compute the estimation error: 

𝜀(𝑘)  =  𝑦(𝑘)  −   𝑥𝑇(𝑘)𝜃(𝑘 − 1) 
- Compute the gain vector (5.19). 
- Update 𝜃(𝑘)(5.18), and 𝑃(𝑘) (5.20). 
- Predict the output for next time step k+1  
End For 

 

The current at time step k+2 can be predicted as follows: 

   𝑖𝑠(𝑘 + 2) = 𝑖𝑠(𝑘 + 1) + 𝛼̂(𝑘 + 1)(𝑖𝑠(𝑘 + 1) − 𝑖𝑠(𝑘)) 

+𝛽̂(𝑘 + 1)(𝑣𝑠(𝑘 + 1) − 𝑣𝑠(𝑘))          (5.21) 

The optimum switching vector is selected by minimizing a cost function as follows: 

𝑔 = (𝑖𝑠
𝑟𝑒𝑓
− 𝑖𝑠

𝑘+2)
2
                                                 (5.22) 

where  𝑖𝑠
𝑟𝑒𝑓 is the reference current obtained from the speed control loop. The overall working 

principle of the MFPCC-I-based PMSM drive is illustrated by the block diagram shown in 

Fig. 5.1 and the flow chart presented in Fig. 5.2. 

 
Fig. 5.1.    A block diagram of MFPCC-based RLS (MFPCC-I). 
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Fig. 5.2.   Flow chart of MFPCC based RLS (MFPCC-I). 
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5.2.2 MFPCC-Based current difference update (MFPCC-II)  

The current difference variation due to two successive applied voltage vectors can be 

expressed based on (5.15) as follows[5.7]:  

(𝑖𝑠(𝑘) − 𝑖𝑠(𝑘 − 1))   − (𝑖𝑠(𝑘 − 1) − 𝑖𝑠(𝑘 − 2)) = 𝛽(𝑣𝑠(𝑘) − 𝑣𝑠(𝑘 − 1))          (5.23) 

For the possible voltage vectors  𝑣𝑠𝑗 , 𝑗 ∈ {0,1,2. .7}, (5.23) can be written as: 

(𝑖𝑠(𝑘) − 𝑖𝑠(𝑘 − 1))𝑗   − (𝑖𝑠
(𝑘 − 1) − 𝑖𝑠(𝑘 − 2)) = 𝛽 (𝑣𝑠(𝑘)𝑗 − 𝑣𝑠(𝑘 − 1))          (5.24) 

With a short enough sampling time (𝑇𝑠), the machine inductance can be assumed 

constant over two adjacent sampling instants. Thus, 𝛽 can be eliminated by combining (5.23) 

and (5.24) as follows: 

(𝑖𝑠(𝑘) − 𝑖𝑠(𝑘 − 1))𝑗   − (𝑖𝑠
(𝑘 − 1) − 𝑖𝑠(𝑘 − 2)) 

(𝑖𝑠(𝑘) − 𝑖𝑠(𝑘 − 1))   − (𝑖𝑠(𝑘 − 1) − 𝑖𝑠(𝑘 − 2))
=
(𝑣𝑠(𝑘)𝑗 − 𝑣𝑠(𝑘 − 1))

(𝑣𝑠(𝑘) − 𝑣𝑠(𝑘 − 1))
           (5.25)  

Then, the current difference for the possible voltage vector 𝑣𝑠𝑗 , 𝑗 ∈ {0,1,2. .7} can be 

estimated by constantly updating two successive current differences in each control cycle as 

follows: 

(𝑖𝑠(𝑘) − 𝑖𝑠(𝑘 − 1))𝑗 = (𝑖𝑠
(𝑘 − 1) − 𝑖𝑠(𝑘 − 2)) 

+
(𝑣𝑠(𝑘)𝑗−𝑣𝑠(𝑘−1))((𝑖𝑠(𝑘)−𝑖𝑠(𝑘−1))−(𝑖𝑠(𝑘−1)−𝑖𝑠(𝑘−2)) )

𝑣𝑠(𝑘)−𝑣𝑠(𝑘−1)
                              (5.26) 

Then, the current at step time k+1 is predicted as follows: 

𝑖𝑠(𝑘 + 1)𝑗 = 𝑖𝑠(𝑘) + (𝑖𝑠(𝑘) − 𝑖𝑠(𝑘 − 1))𝑗                                     (5.27) 
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where 𝑖𝑠(𝑘) is the measured current at 𝑘𝑇𝑠; 𝑖𝑠(𝑘 + 1)𝑗 is the estimated current at (𝑘 + 1)𝑇𝑠 

under the possible voltage vector 𝑣𝑠(𝑘)𝑗 applied in 𝑘𝑇𝑠, and (𝑖𝑠(𝑘) − 𝑖𝑠(𝑘 − 1))𝑗  the 

current difference caused by the 𝑣𝑠𝑗 . Then, the current at (𝑘 + 2)𝑇𝑠 is predicted as follows: 

𝑖𝑠(𝑘 + 2)𝑗 = 𝑖𝑠(𝑘 + 1)𝑗 + (𝑖𝑠(𝑘 + 1) − 𝑖𝑠(𝑘))𝑗                                     (5.28)      

where 𝑖𝑠(𝑘 + 2)𝑗  is the predicted current at(𝑘 + 2)𝑇𝑠 due to the applied voltage vector 

𝑣𝑠 (𝑘 + 1)𝑗, and (𝑖𝑠(𝑘 + 1) − 𝑖𝑠(𝑘))𝑗  is the current difference caused by 𝑣𝑠(𝑘 + 1)𝑗. 

Based on (5.27), (5.28), and Fig. 5.3, it can be seen that the current differences due 

to the applied voltage vectors are essential for MFPCC-II, as their accuracy can directly affect 

the current estimations and current predictions. However, for this method to work, two 

successive voltage vectors cannot be the same. Thus, the update process can be corrupted 

when only two vectors are applied for a few control cycles, and stagnation may occur. 

 

Fig. 5.3.   Current difference update technique in MFPCC-II. 
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5.2.3 MFPCC-Based Adaptive Reference Vector (A-MFPCC) 

The measured current and applied voltage variations over two successive control 

cycles can be used to estimate the effect of parameter variations on the measured currents. 

However, parameter inaccuracies influence the reference current when a speed control loop 

is used. Thus, high parameter variations and speed measurement errors produce suboptimal 

tracking performance and high current ripple. Therefore, it is important to consider current 

tracking improvement within the prediction stage so that the predicted switching vector 

minimizes the tracking error.  

The tracking performance improvements are not considered in MFPCC-I and 

MFPCC-II. This may result in high current ripples for these methods with parameter 

mismatching. Additionally, MFPCC-I utilizes the RLS algorithm, which includes some 

estimation errors and can be computationally intensive. In MFPCC-II, the current difference 

estimation requires the last two successive applied voltage vectors to be different, which may 

activate only two vectors for an extended control interval, resulting in stagnation. Long 

stagnation significantly produces inaccurate predictions and degrades performance. 

In this research, a reference voltage vector is generated based on the reference current 

vector position and the tracking error and used to obtain the current difference due to the 

applied and reference voltage vector. Then, the current difference due to the possible voltage 

vector is estimated without using any machine parameter. The tracking performance is 

improved by considering the tracking error in the prediction stage, and the reference vector 

adaptively updates the current difference to avoid stagnation. A block diagram of the 

proposed A-MFPCC is presented in Fig. 5.4. 
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Fig. 5.4.   A block diagram of the proposed A-MFPCC for PMSM drives. 

 

A. Adaptive current difference estimation 

During each control cycle 𝑘𝑇𝑠 , the current is evaluated for eight possible voltage 

vectors  𝑣𝑠𝑗 , 𝑗 ∈ {0,1,2. .7}. Each possible voltage vector, when applied, results in different 

current variations and tracking error variations. Thus, it is essential to investigate the 

relationship between the applied voltage vector and corresponding current and tracking error 

variations. From (5.15), the relationship between two applied voltage vectors and the current 

variation over two consecutive control cycles can be expressed as: 

𝛼(∆𝑖𝑠(𝑘) − ∆𝑖𝑠(𝑘 − 1)) = 𝛽(𝑣𝑠(𝑘) − 𝑣𝑠(𝑘 − 1))                 (5.29) 

where ∆𝑖𝑠(𝑘) = 𝑖𝑠(𝑘) − 𝑖𝑠(𝑘 − 1)  and  ∆𝑖𝑠(𝑘 − 1)=𝑖𝑠(𝑘 − 1) − 𝑖𝑠(𝑘 − 2). 

From (5.24), the current difference variation between two successive control cycles 

is equivalent to the corresponding voltage deviation. To consider the relationship between 
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tracking error and applied voltage, the current tracking error is first defined as follows: 

𝑒𝑖𝑠(𝑘) = 𝑖𝑠
∗(𝑘) − 𝑖𝑠(𝑘)                                          (5.30) 

Based on (5.29), the tracking error variation over two consecutive control cycles can 

be represented by the difference between a reference voltage vector 𝑣𝑠∗ and input voltage 

vector 𝑣𝑠, as follows: 

∆𝑒𝑖𝑠(𝑘) − ∆𝑒𝑖𝑠(𝑘 − 1) = 𝛽(𝑣𝑠
∗(𝑘) − 𝑣𝑠(𝑘))                            (5.31) 

where ∆𝑒𝑖𝑠(𝑘) = 𝑒𝑖𝑠(𝑘) − 𝑒𝑖𝑠(𝑘 − 1), ∆𝑒𝑖𝑠(𝑘 − 1) = 𝑒𝑖𝑠(𝑘 − 1) − 𝑒𝑖𝑠(𝑘 − 2), and 𝑣𝑠∗ is 

the reference voltage vector.  

Initially, the reference vector, 𝑣𝑠∗, can be obtained using the deadbeat solution, where 

the current  𝑖𝑠(𝑘 + 2)  is considered the reference current 𝑖𝑠
∗ (𝑘) to achieve fast tracking 

at the start of k+2. By solving 𝑖𝑠(𝑘 + 2) = 𝑖𝑠
∗ (𝑘), the reference voltage vector at k can be 

obtained as: 

 𝑣𝑠
∗(𝑘) =

1

𝛽
(𝑖𝑠
∗ (𝑘) − 𝑖𝑠(𝑘) − 𝛼(𝑖𝑠(𝑘) − 𝑖𝑠(𝑘 − 1))) + 𝑣𝑠(𝑘 − 1)            (5.32) 

However, in this research, 𝑣𝑠∗ is determined based on the current reference vector 𝑖𝑠∗̅  

position and the current error 𝑒𝑖𝑠. A detailed explanation of the generation of the reference 

vector 𝑣𝑠∗ is presented in the following section. 

From (5.29) and (5.31), the relationship between tracking error and current difference 

variations is expressed as follows: 

(∆𝑒𝑖𝑠(𝑘) − ∆𝑒𝑖𝑠(𝑘 − 1)) − 𝛼(∆𝑖𝑠(𝑘) − ∆𝑖𝑠(𝑘 − 1))

= 𝛽((𝑣𝑠
∗(𝑘) − 𝑣𝑠(𝑘))  − (𝑣𝑠(𝑘) − 𝑣𝑠(𝑘 − 1)))                                        (5.33) 
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At steady state, the current reference, 𝑖𝑠∗, is constant between two successive control 

cycles, and thus: 

(∆𝑒𝑖𝑠(𝑘) − ∆𝑒𝑖𝑠(𝑘 − 1)) − (∆𝑖𝑠(𝑘) − ∆𝑖𝑠(𝑘 − 1)) = 2(∆𝑖𝑠(𝑘) − ∆𝑖𝑠(𝑘 − 1))     (5.34) 

𝛼(∆𝑖𝑠(𝑘) − ∆𝑖𝑠(𝑘 − 1)) =
𝛽

2
((𝑣𝑠

∗(𝑘) − 𝑣𝑠(𝑘))  − (𝑣𝑠(𝑘) − 𝑣𝑠(𝑘 − 1)))    (5.35) 

During each control cycle 𝑘𝑇𝑠, the voltage vector 𝑣𝑠(𝑘) can be one of the possible 

vectors, 𝑣𝑠 = 𝑣𝑠𝑗 , 𝑗 ∈ [0,1,2… .7]. Considering the eight possible vectors, (5.35) is updated 

as follows: 

𝛼 (∆𝑖𝑠(𝑘)𝑗 − ∆𝑖𝑠(𝑘 − 1)) =
𝛽

2
((𝑣𝑠

∗(𝑘) − 𝑣𝑠(𝑘)𝑗)  − (𝑣𝑠(𝑘)𝑗 − 𝑣𝑠(𝑘 − 1)))    (5.36) 

Hence, by using the current variation and voltage deviation over the past two 

successive control cycles, the current difference due to each possible voltage vector,  ∆𝑖𝑠(𝑘)𝑗, 

can be estimated by combining (5.35) and (5.36) as follows: 

∆𝑖𝑠(𝑘)𝑗−∆𝑖𝑠(𝑘−1)

∆𝑖𝑠(𝑘)−∆𝑖𝑠(𝑘−1)
=
(𝑣𝑠
∗(𝑘)−𝑣𝑠(𝑘)𝑗) −(𝑣𝑠(𝑘)𝑗−𝑣𝑠(𝑘−1))

(𝑣𝑠
∗(𝑘)−𝑣𝑠(𝑘)) −(𝑣𝑠(𝑘)−𝑣𝑠(𝑘−1))

                   (5.37) 

∆𝑖𝑠(𝑘)𝑗 = ∆𝑖𝑠(𝑘 − 1) +
((𝑣𝑠

∗(𝑘)−𝑣𝑠(𝑘)𝑗) −(𝑣𝑠(𝑘)𝑗−𝑣𝑠(𝑘−1)))(∆𝑖𝑠(𝑘)−∆𝑖𝑠(𝑘−1))

(𝑣𝑠
∗(𝑘)−𝑣𝑠(𝑘)) −(𝑣𝑠(𝑘)−𝑣𝑠(𝑘−1))

          (5.38)  

Based on (5.38), the parameters 𝛼 and 𝛽 are eliminated, and the current at time steps 

(k+1) and (k+2) can be predicted as follows: 

𝑖𝑠(𝑘 + 1) = 𝑖𝑠(𝑘) + ∆𝑖𝑠(𝑘)𝑗                                             (5.39) 

𝑖𝑠(𝑘 + 2) = 𝑖𝑠(𝑘 + 1) + ∆𝑖𝑠(𝑘 + 1)𝑗                                 (5.40) 
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(b)

Fig. 5.5.   The proposed A-MFPCC, (a) Current prediction and current differences 

estimation, and (b) stagnation elimination compared to MFPCC-II.   

Thus, the current prediction is accomplished in a model-free approach without using 

the machine model, parameter, or any estimation method. In addition, the prediction process 

account for the tracking error during each sampling instant 𝑘𝑇𝑠, by adaptively improving the 

prediction accuracy based on a reference voltage vector 𝑣𝑠∗ . Unlike MFPCC-II, the proposed 
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A-MFPCC does not require two successive voltage vectors to be different, which avoids 

applying only two vectors for an extended period. The adaptive reference vector constantly 

forces updating the applied voltage to minimize tracking error and prevent stagnation.  

Fig. 5.5 shows the current difference estimation, prediction, and stagnation 

elimination of the proposed A-MFPCC. The reference voltage vector improves the selection 

of an optimum switching vector, reducing the tracking error. In addition, it eliminates 

stagnation by constantly updating the current differences, improving the prediction accuracy. 

 

B. Reference Vector Generation  

The reference voltage vector 𝑣𝑠∗ is determined based on the reference current vector 

position. The reference current vector, 𝑖𝑠∗̅, is expressed as: 

𝑖𝑠∗̅ = 𝑖𝛼
∗ + 𝑗𝑖𝛽

∗ = 𝐼∗∠𝜃𝑠𝑒𝑐
∗                                              (5.41) 

where 𝐼∗ is the reference current magnitude, 𝜃𝑠𝑒𝑐∗  the reference angle that defines which sector 

the reference current vector 𝑖𝑠∗̅  is in. 

The reference current trajectory in the space phasor is shown in Fig. 5.6. Based on 

the obtained 𝜃𝑠𝑒𝑐∗ , the sector of the reference current vector 𝑖𝑠∗̅  can be determined. To force 

the measured currents 𝑖𝑠 to follow the reference current 𝑖𝑠∗, a reference voltage vector 𝑣𝑗∗, (𝑗 =

0,1,2, … 7) can be obtained based on the current tracking deviation (∆𝑖𝑠∗ = 𝑖𝑠∗ − 𝑖𝑠). The 

current deviation, ∆𝑖𝑠∗, direction and magnitude are used to select an appropriate vector (𝑣𝑠∗)  

that can minimize the tracking error.  
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Fig. 5.6.    Reference current trajectory and current error sign sequence. 

Considering the difference between the three-phase currents, and reference currents 

(𝑖𝑎𝑏𝑐
∗ − 𝑖𝑎𝑏𝑐 ) and obtained sector from the position of the reference current vector, the 

reference vector 𝑣𝑠∗ can be determined as depicted in Fig. 5.6. Based on the error sign, the 

state is determined as: 

𝑠𝑖𝑔𝑛(∆𝑖𝑠
∗) = {

1,    ∆𝑖𝑠
∗ > 0 

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                            (5.42) 

where ∆𝑖𝑠∗ = 𝑖𝑎𝑏𝑐∗ − 𝑖𝑎𝑏𝑐 . 
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5.3 Numerical Simulation 

Numerical simulations using Matlab/Simulink are performed to demonstrate the 

effectiveness of the proposed A-MFPCC for PMSM drive at different operating conditions. 

Two MFPCC schemes are considered for comparison, namely, MFPCC-I and MFPCC-II, 

discussed in Sections 5.2.1 and 5.2.2. MFPCC-I uses the ultra-local model with two 

unknowns estimated by using RLS. MFPCC-II considers the current differences due to two 

successive voltage vectors to estimate the differences for the remaining vectors. The PMSM 

drive system is designed with a proportional-integral (PI) controller for the outer speed 

control loop and MFPCC-I, MFPCC-II, or the proposed A-MFPCC for the inner current 

control loop. The same drive parameters listed in Table 3.1 are used for evaluating the three 

controllers. 

To assess the effectiveness of MFPCC-I, MFPCC-II, and the proposed A-MFPCC under 

various operating conditions, simulations are conducted at three different speeds (1000, 600, 

and 200 rpm) and with the rated load torque (2 Nm). In addition, the controllers are evaluated 

against parameter variations by testing them with both nominal and mismatched machine 

parameters, expressly set as: 0.8𝑅𝑠, 0.3𝐿𝑑 , 0.3𝐿𝑞 , and 0.7𝜓𝑃𝑀. The simulation results 

capture the controllers' transient and steady-state responses from 0 rpm up to the desired 

speed, with a load torque of 2 Nm, applied at 0.3s. At the rated speed (1000 rpm), the 

performance of MFPCC-I, MFPCC-II, and the proposed A-MFPCC with both nominal and 

mismatched parameters are presented in Fig. 5.7. Similarly, the performance comparison at 

600 and 200 rpm with nominal and mismatched parameters are presented in Figs 5.8 and 5.9, 

respectively.  
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Each of Figs 5.7 and 5.8 comprises three parallel columns illustrating the responses of 

MFPCC-I, MFPCC-II, and the proposed A-MFPCC, respectively. The curves in each 

column, from top to bottom, correspond to the phase a stator current, 𝑖𝑎, dq-axis currents, 

estimated torque, and motor speed, respectively. 

 

(a) 

 

(b) 

Fig. 5.7.   Performance of MFPCC-I, MFPCC-II, and the proposed A-MFPCC at rated 

speed (1000 rpm) and torque (2 Nm) with (a) nominal and (b) mismatched parameters. 



Chapter 5. Adaptive Model-Free Predictive Current Control of PMSM Drives 

190 
 

 

(a) 

 

(b) 

Fig. 5.8.   Performance of MFPCC-I, MFPCC-II, and the proposed A-MFPCC at rated 

speed (600 rpm) and torque (2 Nm) with (a) nominal and (b) mismatched parameters. 
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(a) 

 

(b) 

Fig. 5.9.   Performance of MFPCC-I, MFPCC-II, and the proposed A-MFPCC at rated 

speed (200 rpm) and torque (2 Nm) with (a) nominal and (b) mismatched parameters. 
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With nominal machine parameters, all controllers exhibit satisfactory performance 

with a fast dynamic response and good steady-state tracking capability. Notably, the 

proposed A-MFPCC demonstrates better current performance than the other controllers, 

producing smoother and less ripple current signals. With mismatched machine parameters, 

MFPCC-I and MFPCC-II show significant performance deterioration. Conversely, the 

proposed A-MFPCC, despite being affected by parameter mismatching, maintained an 

excellent current performance with low distortion and fluctuations compared to the other 

controllers. This can be attributed to the adaptive reference voltage vector employed by A-

MFPCC, which continuously updates the current difference based on the tracking error, 

thereby maintaining good tracking performance even in the presence of parametric 

uncertainties. 

To gain a deeper insight into the impact of parametric uncertainties on current 

performance, the total harmonic distortion (THD) of stator current 𝑖𝑎 is calculated up to 5000 

Hz. Fig. 5.10 shows the harmonic spectra of the steady state stator currents 𝑖𝑎 at 1000 rpm 

with a 2 Nm load for MFPCC-I, MFPCC-II, and the proposed A-MFPCC with the nominal 

and mismatched parameters. The results indicate that the proposed A-MFPCC achieves the 

lowest stator current THDs of 3.64% and 8.83% for nominal and mismatched machine 

parameters, respectively. In contrast, MFPCC-I and MFPCC-II record higher stator current 

THDs of 6.28% and 8.51% for nominal parameters and 16.68% and 17.08% for mismatched 

parameters, respectively. These findings demonstrate the superior performance of the 

proposed A-MFPCC in maintaining low THD levels even in the presence of parametric 

uncertainties. 
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(a) 

(b)

Fig. 5.10.   Harmonic spectra of stator currents 𝑖𝑎 of MFPCC-I, MFPCC-II and the 

proposed MF-APCC at (a) nominal and (b)mismatched parameters.
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5.4 Experimental Validation 

The proposed A-MFPCC is experimentally validated based on a PMSM drive system 

with a two-level inverter, as shown in Fig. 3.10. The control and motor parameters used in 

the experiment are the same as those presented in Table 3.1. Matlab/Simulink software 

interfaced with a dSPACE DS1104 PPC/DSP control board is employed for the real-time 

implementation of the control algorithm. This board serves as the platform for executing the 

algorithm. As for the inverter, an Insulated-Gate Bipolar Transistor (IGBT) integrated with 

a three-phase intelligent power module is utilized. The gating pulses required by the inverter 

are generated by the algorithm and subsequently transmitted through DS1104. To apply the 

load during the experiment, a programmable dynamometer controller DSP6000 is employed. 

Furthermore, the motor speed is measured using an interior 2500-pulse incremental encoder. 

To facilitate the monitoring, real-time control, and recording of all experimental results, 

ControlDesk is utilized. 

In line with the simulation analysis, the performance of the A-MFPCC is evaluated 

experimentally and compared against MFPCC-I and MFPCC-II. The experimental results 

encompass a comparative analysis of the three controllers under various operating conditions, 

including start-up, load disturbance, and steady-state operations. Specifically, during the 

start-up tests, the controller performances are assessed as the motor speed progressively 

accelerated from a standstill to the rated speed of 1000 rpm with a slight overshoot. The 

corresponding responses of the controllers to the load disturbance are obtained by subjecting 

the motor, operating at a steady state of 1000 rpm, to a load torque of 2 Nm. 
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                            (a)                                       (b)                                               (c)

Fig. 5.11.   Experimental performance comparison during start-up from standstill to rated 

speed (1000 rpm) for (a) MFPCC-I, (b) MFPCC-II, and (c) the proposed A-MFPCC.

                            (a)                                       (b)                                               (c)

Fig. 5.12.   Experimental performance comparison to 2 Nm load disturbance at a steady-

state of 1000 rpm for (a) MFPCC-I, (b) MFPCC-II, and (c) the proposed A-MFPCC.
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The experimental results, presented in Figs 5.11 and 5.12, correspond to the stator 

current 𝑖𝑎, q-axis current, d-axis current, estimated torque, and motor speed. All controllers 

exhibited exceptional dynamic performance during the start-up tests, with minimal overshot 

and rapid reference tracking. Additionally, the controllers displayed excellent disturbance 

rejection capabilities during the load disturbance tests. All controllers recovered from the 

load disturbance and resumed their steady-state conditions. However, the proposed A-

MFPCC exhibits superior performance under certain circumstances. For instance, the current 

fluctuations observed during start-up and load disturbance tests are significantly lower than 

MFPCC-I and MFPCC-II. Furthermore, A-MFPCC exhibits faster recovery, within 0.3125s, 

from the load disturbance with a marginal speed drop of 113 rpm compared to MFPCC-I, 

which takes 0.35s with a speed drop of 150 rpm, and MFPCC-II, which takes 0.375s with a 

speed drop of 175 rpm. 

In this research, the controllers' steady state current tracking responses are assessed 

at 1000, 600, and 200 rpm with a 2 Nm load applied to the motor shaft. The responses of 

measured stator current 𝑖𝑎, q-axis current 𝑖𝑞, the d-axis current 𝑖𝑑, and their respective 

reference signals are captured for MPCC-I, MPCC-II, and A-MFPCC. Fig. 5.13 shows the 

steady state stator current 𝑖𝑎, q-axis current 𝑖𝑞, d-axis current 𝑖𝑑, and their corresponding 

reference signals at the rated speed (1000 rpm), while the responses at 600 rpm and 200 rpm 

are presented in Figs 5.14 and 5.15, respectively. The experimental results demonstrate the 

superiority of the proposed A-MFPCC compared to MPCC-I and MPCC-II regarding the 

steady state current tracking performance. This is attributed to the adaptive reference voltage 

vector employed by A-MFPCC. The current difference is updated based on the tracking error 

between measured and reference currents.  
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(a) 

(b)

(c)

Fig. 5.13.   Steady-state current responses of MFPCC-I, MFPCC-II, and A-MFPCC at 

1000 rpm, (a) stator current 𝑖𝑎, (b) q-axis current 𝑖𝑞, and (c) d-axis current 𝑖𝑑 .
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(a) 

(b)

(c)

Fig. 5.14.   Steady-state current responses of MFPCC-I, MFPCC-II, and A-MFPCC at 600 

rpm, (a) stator current 𝑖𝑎, (b) q-axis current 𝑖𝑞, and (c) d-axis current 𝑖𝑑 .
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(a)

(b)

(c)

Fig. 5.15.   Steady-state current responses of MFPCC-I, MFPCC-II, and A-MFPCC at 200 

rpm, (a) stator current 𝑖𝑎, (b) q-axis current 𝑖𝑞, and (c) d-axis current 𝑖𝑑 .
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5.5 Quantitative Analysis and Comparison  

This section presents a quantitative analysis of MFPCC-I, MFPCC-II, and proposed 

A-MFPCC at different operating conditions and against parameter mismatching. The three 

controllers are parameter-free control, which makes it challenging to evaluate their 

performance against parametric uncertainties in real-time experiments where actual machine 

parameters are unavailable. Nonetheless, the controllers' performances are evaluated under 

various operating conditions. Therefore, the controllers are quantitatively evaluated against 

parameter variations based on numerical simulations and against speed and load torque 

variation based on experimental tests. 

5.5.1 Variation of Machine Parameters 

Parameter variations are the most severe uncertainties for PMSM drive, significantly 

degrading the drive system performance. The ability of a control to maintain a good drive 

performance in the presence of parameter uncertainties is a critical indicator of its robustness. 

In this section, the motor parameters (𝑅𝑠, 𝐿𝑑 , 𝐿𝑞 , 𝜓𝑃𝑀) are varied to their permissible range 

(±∆) of the nominal values based on Table 4.1, then the proposed A-MFPCC, MFPCC-I, and 

MFPCC-II are tested with these variations accordingly. For instance, the value of stator 

resistance 𝑅𝑠 varied between −20% and 80% of the nominal 𝑅𝑠 and other motor parameters 

are kept as nominal values. The same process is repeated with the variations of other 

parameters. For each parameter variation, the three control methods are tested, and the 

numerical values of the settling time 𝑇𝑠, overshoot 𝑂𝑆, torque ripples 𝑇𝑟𝑖𝑝, and current ripples 

𝑖𝑎𝑟𝑖𝑝 are recorded.  

The performance of MFPCC-I, MFPCC-II, and A-MFPCC in terms of settling time, 

overshoot, torque, and current ripples with the variations of stator resistance 𝑅𝑠 are shown in 
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Fig. 5.16. The performances are slightly affected by the variations of 𝑅𝑠. A-MFPCC recorded 

the best torque and current ripple robustness, and MFPCC-I recorded the best settling time 

robustness. For the overshoot, both controllers recorded inconsistent performance.  

(a) (b) 

(b)                                                                    (d)  
Fig. 5.16.   Performance comparisons of three controllers with the variation of (𝑅𝑠), (a) 

settling time (Ts), (b) Overshoot (OS), (c) Torque ripple, and (d) current ripple. 

The performances of MFPCC-I, MFPCC-II, and A-MFPCC in terms of settling time, 

overshoot, torque, and current ripples with the variations of d-axis machine inductance 𝐿𝑑 

are shown in Fig. 5.17. The variations of 𝐿𝑑 significantly influence the drive performance, 

especially at low values (−%∆) below the nominal value, while at high values (+%∆) above 

the nominal value, the performance is almost the same as the nominal value. MFPCC-II 
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records the best settling time robustness, while A-MFPCC records the best torque and current 

ripple robustness. It is worth noting that A-MFPCC showed better robustness only in terms 

of torque and current ripples. However, its robustness to other indicators is comparable to the 

other controllers. 

(a) (b) 

(c)                                                                   (d)  

Fig. 5.17.   Performance comparisons of the three controllers with the variation of 

inductance (𝐿𝑑), (a) settling time (Ts), (b) Overshoot (OS), (c) Torque ripple, and (d) 

current ripple. 

The performances of MFPCC-I, MFPCC-II, and A-MFPCC in terms of settling time, 

overshoot, torque, and current ripples with the variations of q-axis machine inductance 𝐿𝑞 

are shown in Fig. 5.18. Similar to 𝐿𝑑, the variations of 𝐿𝑞 significantly influence the drive 
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performance, especially at low values. The proposed A-MFPCC has shown the best 

robustness regarding current ripples and comparable and almost similar robustness with 

MFPCC-II regarding torque ripples. MFPCC-I has shown the best robustness in terms of 

settling time and overshoot. Overall, the proposed A-MFPCC showed good robustness with 

the variation of 𝐿𝑞, and maintained a trade-off between a good transient response (settling 

time, overshoot) and a steady state response (torque and current ripples), leading to good 

overall system robustness. 

(a)               (b) 

(c)                                                                   (d)  

Fig. 5.18.   Performance comparisons of the three controllers with the variation of 

inductance (𝐿𝑞), (a) settling time (Ts), (b) Overshoot (OS), (c) Torque ripple, and (d) 

current ripple. 
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The performances of MFPCC-I, MFPCC-II, and A-MFPCC in terms of settling time, 

overshoot, torque, and current ripples with the variations of permanent magnet flux Ψ𝑃𝑀  are 

shown in Fig. 5.19. Unlike 𝐿𝑑  and 𝐿𝑞, Ψ𝑃𝑀  affects the drive performance with high values 

(+%∆) above the nominal value, particularly for torque ripples. The proposed A-MFPCC 

has shown the best robustness with the variation of Ψ𝑃𝑀  in terms of overshoot, torque ripples, 

and current ripples. In contrast, the best settling time robustness is achieved by MFPCC-I but 

at the cost of the lowest torque and current ripple robustness.   

(a) (b) 

(c)                                                                   (d)  

Fig. 5.19.   Performance comparisons of the three controllers with the variation of 

permanent magnet flux (Ψ𝑃𝑀 ), (a) settling time (Ts), (b) Overshoot (OS), (c) Torque 

ripple, and (d) current ripple. 
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The variations of machine parameters significantly impact the drive performance 

reflected by high torque and current ripples, high overshot, and longer settling times. The 

variations of stator resistance 𝑅𝑠 and permanent magnet flux Ψ𝑃𝑀 have slight impacts on the 

performance compared to the variations of machine inductances 𝐿𝑑 and 𝐿𝑞. For instance, the 

worst current ripples with the variation of 𝑅𝑠 are 0.5%, 1.6%, and 1.2% higher than the values 

recorded at nominal 𝑅𝑠 for A-MFPCC, MFPCC-I, and MFPCC-II, respectively. Similarly, 

the worst current ripples with the variation of Ψ𝑃𝑀  are 10.4%,19%, and 15% higher than the 

values recorded at nominal Ψ𝑃𝑀 for A-MFPCC, MFPCC-I, and MFPCC-II, respectively. On 

the other hand, variations of 𝐿𝑑 and 𝐿𝑞, the worst current ripple values are higher than the 

values at nominal 𝐿𝑑 and 𝐿𝑞 by 108% and 94.2% for A-MFPCC, 122.4% and 93% for 

MFPCC-II, and 126.7% and 101.4% for MFPCC-I.  

In summary, the variations of machine inductances of 𝐿𝑑 and 𝐿𝑞 have the highest 

impact on the drive performance with all three controllers. The proposed A-MFPCC has 

shown good robustness to parameter uncertainties, particularly in terms of torque and current 

ripples. The proposed A-MFPCC may have sacrificed some of its robustness in the transient 

state (settling time and overshoot) but showed strong robustness in the steady state (torque 

and current ripples), thus, maintaining good overall robustness of the drive system. The 

excellent tracking performance of A-MFPCC is attributed to the adaptive reference vector 

generated based on the position reference current and tracking error. This vector is applied 

each control cycle in the prediction stage; thus, the switching vector that minimizes the 

current tracking error is selected. Moreover, the reference vector constantly updates the 

current difference, preventing switching stagnation as in MFPCC-II.  
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5.5.2 Variations of Operating Conditions (Speed and Load Torque) 

MFPCC-I, MFPCC-II, and A-MFPCC are optimized for optimal performance. 

Therefore, it is difficult to differentiate their performance solely based on graphical results. 

Hence, a quantitative comparison is conducted between them based on torque and stator 

current 𝑖𝑎 ripples at different speed operations and load conditions. The torque and stator 

current 𝑖𝑎 ripples for the three controllers are computed at a steady state for 0.5s. The motor 

operates at a desired speed, and a desired load torque is applied, after which the ripples are 

calculated for 5000 sampling instants (0.5s). For instance, the motor operates from a standstill 

to the desired speed (1000 rpm), and when it reaches the desired speed, a desired load torque 

(2 Nm) is applied, and the ripples are computed for a duration of 0.5s. This test is repeated 

with different load torque values ranging from 0 to 2 Nm and for various speed operations 

(200, 400, 600, and 800 rpm). The torque ripples of MFPCC-I, MFPCC-II, and A-MFPCC 

at different speed operations and load conditions are presented in Tables 5.1-5.3. Similarly, 

the stator current 𝑖𝑎 ripples are presented in Tables 5.4-5.6. Torque and current ripples are 

significant measures that indicate the controller performance, showing how well a controller 

tracks the desired performance in various operating conditions. The torque ripples 𝑇𝑟𝑖𝑝 and 

current ripples 𝑖𝑎𝑟𝑖𝑝 are computed using (3.52) and (3.53). 
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Table 5.1   Torque ripples of MFPCC-I at different speeds and load conditions (Unit: Nm). 

𝑻𝒓𝒊𝒑(𝑵𝒎) Speed (rpm) 

200 400 600 800 1000 

 

 

 

 

Torque 

(Nm) 

0 0.152 0.155 0.158 0.153 0.157 

0.25 0.147 0.153 0.151 0.16 0.157 

0.5 0.155 0.164 0.158 0.16 0.15 

0.75 0.156 0.159 0.158 0.157 0.156 

1 0.152 0.153 0.159 0.154 0.157 

1.25 0.152 0.157 0.157 0.158 0.165 

1.5 0.158 0.156 0.162 0.157 0.16 

1.75 0.154 0.154 0.156 0.156 0.163 

2 0.159 0.158 0.162 0.16 0.162 

 

Table 5.2   Torque ripples of MFPCC-II at different speeds and load conditions          

(Unit: Nm). 

𝑻𝒓𝒊𝒑(𝑵𝒎) Speed (rpm) 

200 400 600 800 1000 

 

 

 

 

Torque 

(Nm) 

0 0.115 0.116 0.117 0.119 0.119 

0.25 0.116 0.116 0.12 0.12 0.12 

0.5 0.116 0.113 0.12 0.117 0.118 

0.75 0.116 0.115 0.118 0.117 0.12 

1 0.115 0.115 0.119 0.117 0.119 

1.25 0.115 0.117 0.117 0.117 0.12 

1.5 0.116 0.117 0.12 0.12 0.121 

1.75 0.116 0.116 0.116 0.119 0.12 

2 0.114 0.116 0.118 0.116 0.122 
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Table 5.3   Torque ripples of proposed A-MFPCC at different speeds and load conditions 

(Unit: Nm). 

𝑻𝒓𝒊𝒑(𝑵𝒎) Speed (rpm) 

200 400 600 800 1000 

 

 

 

 

Torque 

(Nm) 

0 0.097 0.089 0.09 0.104 0.11 

0.25 0.123 0.123 0.123 0.123 0.124 

0.5 0.06 0.076 0.081 0.086 0.084 

0.75 0.058 0.058 0.065 0.07 0.074 

1 0.057 0.065 0.066 0.071 0.075 

1.25 0.06 0.061 0.069 0.071 0.077 

1.5 0.059 0.065 0.068 0.073 0.077 

1.75 0.06 0.065 0.07 0.075 0.077 

2 0.061 0.068 0.074 0.076 0.08 

 

Table 5.4   Current ripples of MFPCC-I at different speeds and load conditions (Unit: A). 

𝒊𝒓𝒊𝒑(𝑨) Speed (rpm) 

200 400 600 800 1000 

 

 

 

 

Torque 

(Nm) 

0 0.371 0.355 0.353 0.354 0.365 

0.25 0.362 0.372 0.364 0.369 0.379 

0.5 0.377 0.378 0.385 0.383 0.39 

0.75 0.387 0.397 0.401 0.405 0.414 

1 0.403 0.416 0.417 0.437 0.44 

1.25 0.435 0.444 0.444 0.455 0.467 

1.5 0.461 0.465 0.478 0.491 0.498 

1.75 0.491 0.506 0.502 0.523 0.527 

2 0.533 0.515 0.524 0.55 0.552 
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Table 5.5   Current ripples of MFPCC-II at different speeds and load conditions (Unit: A). 

𝒊𝒓𝒊𝒑(𝑨) Speed (rpm) 

200 400 600 800 1000 

 

 

 

 

Torque 

(Nm) 

0 0.334 0.337 0.383 0.377 0.425 

0.25 0.325 0.332 0.361 0.37 0.37 

0.5 0.326 0.322 0.322 0.339 0.36 

0.75 0.314 0.316 0.314 0.336 0.351 

1 0.302 0.327 0.302 0.34 0.323 

1.25 0.31 0.31 0.3 0.309 0.326 

1.5 0.321 0.307 0.335 0.339 0.345 

1.75 0.32 0.334 0.332 0.329 0.36 

2 0.341 0.336 0.337 0.322 0.364 

 

Table 5.6   Current ripples of proposed A-MFPCC at different speeds and load conditions 

(Unit: A). 

𝒊𝒓𝒊𝒑(𝑨) Speed (rpm) 

200 400 600 800 1000 

 

 

 

 

Torque 

(Nm) 

0 0.272 0.258 0.265 0.325 0.349 

0.25 0.299 0.317 0.315 0.325 0.331 

0.5 0.216 0.242 0.257 0.266 0.243 

0.75 0.189 0.213 0.216 0.227 0.216 

1 0.186 0.206 0.215 0.22 0.22 

1.25 0.177 0.209 0.213 0.226 0.229 

1.5 0.19 0.209 0.218 0.226 0.228 

1.75 0.189 0.216 0.223 0.235 0.235 

2 0.184 0.215 0.231 0.24 0.239 
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To visualize the differences in torque and current ripples among the three controllers, 

Figs. 5.20 and 5.21 present graphical representations of torque and current ripples for 

MFPCC-I, MFPCC-II, and A-MFPCC at different speeds (200, 400, 600, 800, and 1000 rpm) 

and load conditions (no-load, half-load, and full-load). These figures provide a clear 

overview of the variations in torque and current ripples. 

The proposed A-MFPCC has demonstrated superior torque and current ripples 

performance among the three controllers (MFPCC-I, MFPCC-II, and A-MFPCC), revealing 

that the A-MFPCC consistently outperforms the other two controllers in terms of torque and 

current ripples at all operating conditions. For instance, at 1000 rpm with 2 Nm, the A-

MFPCC recorded 0.08 Nm torque ripples and 0.239 A current ripples, while the MFPCC-II 

and MFPCC-I recorded 0.122 Nm and 0.162 Nm torque ripples and 0.364 A and 0.552 A 

current ripples, respectively. This demonstrates a significant improvement in torque ripples 

by 34.4% and 50.6% and current ripples by 34.3% and 56.7% for the A-MFPCC, 

respectively, compared to MFPCC-I and MFPCC-II. 

The quantitative analysis of torque and current ripples at various operating conditions 

provides strong evidence supporting the superiority of the proposed A-MFPCC over 

MFPCC-I and MFPCC-II. Additionally, the comparison between MFPCC-I and MFPCC-II 

demonstrates that MFPCC-II performs better, particularly in terms of current ripples, where 

MFPCC-I shows higher values. In conclusion, the A-MFPCC outperforms MFPCC-I and 

MFPCC-II in terms of torque and current ripples across different operating conditions, with 

MFPCC-II performing better than MFPCC-I. 
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(a) 

 
(b) 

 
(c) 

Fig. 5.20.   Torque ripples for different control methods under various speed operations, (a) 

no load, (b) half-load, and (c) full load. 
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(a) 

 
(b) 

 
(c) 

Fig. 5.21.   Stator current 𝑖𝑎 ripples for different control methods various speed operations, 

(a) no load, (b) half-load, and (c) full-load. 
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5.6 Robustness Evaluation  

The simulation, experimental, and quantitative evaluations provide an initial 

assessment of the proposed A-MFPCC, MFPCC-I, and MFPCC-II controllers' performance 

robustness under varying operating conditions and parametric uncertainties. The results show 

that both controllers perform satisfactorily across a specific range of speed operations, torque 

conditions, and parameter mismatches. However, it is essential to note that these evaluations 

only test the controllers' performance under specific operating conditions and deterministic 

sets of single-parameter uncertainties. In practice, a broader range of parametric uncertainties 

can affect the controllers' robustness, and it is essential to consider stochastic sets of bounded 

range uncertainties to perform a comprehensive robustness evaluation. To this end, the Six 

Sigma robustness evaluation method introduced in Chapter 4 is used to numerically 

determine the controllers' robustness indexes (sigma level). This approach involves the use 

of large parameter sets and encompasses multiple performance indicators to ensure a 

comprehensive assessment. 

A set of performance indicators 𝐾𝑖  that can reflect the system's robustness to 

parameter variations are defined. This includes both transient and steady-state response 

characteristics, such as settling time (𝑇𝑠), overshoot (𝑂𝑆), root mean square error of speed 

(𝑅𝑀𝑆𝐸𝜔), torque ripples (𝑇𝑟𝑖𝑝), and current ripples (𝑖𝑟𝑖𝑝). Each indicator is crucial in 

designing a PMSM drive for a specific application. Depending on the application 

requirements, each performance indicator (𝐾𝑖) has a corresponding USL. For example, a 

racing car would necessitate a faster settling time (e.g., 𝑇𝑠 ≤ 0.1𝑠), whereas a passenger car 

might allow for a slower settling time (e.g., 𝑇𝑠 ≤ 0.2𝑠). Therefore, the upper specification 

limit for each performance indicator (𝐾𝑖) varies based on the intended application. 
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The evaluation considers low, medium, and high-performance applications to cater 

to various performance requirements. Low-performance applications like water pumping 

systems have relatively lenient specification limits. Medium-performance applications, such 

as electric vehicles, have moderate limits. On the other hand, high-performance applications, 

such as radar systems and CNC machines, demand stringent and precise limits. Table 5.7 

presents the performance indicators (𝐾𝑖) and their respective 𝑈𝑆𝐿 for each application 

category (low, medium, and high performance). 

Table 5.7   PMSM drive Performance indicators and limits considering three different 

applications requirements. 

Performance Indicator 

(𝐾𝑖) 

upper Specification limits (𝑈𝑆𝐿) 

Application-I Application-II Application-III 

𝑇𝑠 ≤ 0.2 ≤ 0.15 ≤ 0.1 

𝑂𝑆 ≤ 5% ≤ 3% ≤ 2% 

𝑅𝑀𝑆𝐸𝜔 ≤ 0.1 ≤ 0.08 ≤ 0.06 

𝑇𝑟𝑖𝑝 ≤ 0.8 ≤ 0.6 ≤ 0.4 

𝑖𝑎𝑟𝑖𝑝 ≤ 0.9 ≤ 0.7 ≤ 0.5 

 

With the changes in operating conditions, PMSM parameters vary within a specific 

range [-%, +%] of their nominal values. Therefore, the possible variation ranges of PMSM 

electrical parameters considering rated and maximum operating conditions are presented in 

Table 4.1. The evaluation process involves generating 10,000 samples of normally 

distributed data of machine parameters (𝑅𝑠, 𝐿𝑑 , 𝐿𝑞 , 𝜓𝑃𝑀 , 𝐽, 𝐵) between a bounded range 

(Table 4.1). The controllers are then simulated, and the resulting performance indicators, 𝐾𝑖, 
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are computed for each sample. Specifically, the motor runs from a standstill to the rated speed 

of 1000 rpm, with a steady state load torque of 2 Nm. The resulting 10,000 data points of 

each 𝐾𝑖 are used to calculate the mean 𝜇𝑖 and standard deviation 𝜎𝑖 . The Z-value 𝑍𝑖 of each 

performance indicator, the system sigma level, 𝑛𝑠𝑦𝑠 and system probability of failure 𝑃𝑂𝐹𝑠𝑦𝑠 

are computed as discussed in Chapter 4. 

The robustness evaluation process based on Six Sigma involves a few steps. The first 

step is to define a set of performance indicators, 𝐾𝑖, which can reflect the system's 

performance robustness. Then, set a robustness limit for each indicator 𝑈𝑆𝐿𝑠 such that any 

values exceeding this limit are non-robust. The machine parameters are generated based on 

two bounded ranges (Table 4.1) with (N=10000) normally distributed samples. Using 

Matlab/Simulink environment, each controller is simulated with all the samples, and the 

indicators are computed, resulting in 10000 data for each indicator. The indicators are 

computed by running the motor from a standstill to the rated speed (1000 rpm) and applying 

2 Nm load torque at a steady state. The settling time 𝑇𝑠 and overshoot 𝑂𝑆 performance 

indicators are computed during the transient state, while 𝑅𝑀𝑆𝐸𝜔, 𝑇𝑟𝑖𝑝 and 𝑇𝑟𝑖𝑝 are computed 

during a steady state for a duration of 0.5 s.  

Table 5.8 presents the results of the robustness evaluation for the proposed A-

MFPCC, MFPCC-I, and MFPCC-II controllers, including their Z-values, system sigma 

levels, and POFs for three different application requirements and two parameter-variation 

ranges. The obtained system sigma levels 𝑛𝑠𝑦𝑠 clearly demonstrate the superiority of the 

proposed A-MFPCC, which achieved 6𝜎 for four out of six cases. Under maximum condition 

uncertainties, A-MFPCC achieved 4.6𝜎 and 3.9𝜎 for Applications II and III, respectively, 

while for the other cases, it achieved 6𝜎. In comparison, MFPCC-I and MFPCC-II only 
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achieved 6𝜎 in three cases. At the rated condition uncertainties, MFPCC-I and MFPCC-II 

achieved 2.5𝜎  and 2.8𝜎 for Application III, respectively. Under maximum condition 

uncertainties, MFPCC-I achieved 3.1𝜎 and 1.7𝜎 for Applications II and III, while MFPCC-

II achieved 3.8𝜎 and 2𝜎, respectively. 

The Z-values of the performance indicators show the strengths and weaknesses of 

each control method and their ability to maintain a trade-off between all indicators. For 

instance, MFPCC-I showed good robustness in terms of overshot and RMSE speed but at the 

cost of torque and current ripples. Specifically, MFPCC-I showed low torque and current 

ripples Z-values under high uncertainties and application requirements, resulting in low 

system sigma levels despite their high Z-values of overshoot and RMSE. On the other hand, 

MFPCC-II's weakness is current ripples, but it showed strengths in terms of torque ripples 

and settling time. The proposed A-MFPCC, it may have sacrificed some robustness for 

specific indicators but maintained a trade-off between all performance indicators, resulting 

in a higher system sigma level. For example, the proposed A-MFPCC exhibits lower Z-values 

for overshoot 𝑍𝑂𝑆 compared to MFPCC-I and lower Z-values for RMSE of speed 

𝑍𝜔compared to MFPCC-II. This suggests that the A-MFPCC controller prioritizes a trade-

off between torque and current ripple indicators, potentially at the expense of overshoot and 

RMSE performance indicators. 
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Table 5.8   Robustness evaluations of MFPCC-I, MFPCC-II, and A-MFPCC with two 

parameter uncertainty ranges based on three applications' requirements. 

Indicator 𝑍𝑇𝑠 𝑍𝑂𝑆 𝑍𝜔 𝑍𝑇𝑟𝑖𝑝𝑝 𝑍𝑖𝑟𝑖𝑝𝑝 𝑛𝑠𝑦𝑠 𝑃𝑂𝐹  

Controller Rated condition uncertainties (application-I) 

MFPCC-I 61.5 192.5 593.5 18.6 12.7 6.0 0 

MFPCC-II 82.2 26.1 349.6 35.5 16.4 6.0 0 

A-MFPCC 68.6 51.6 331.4 27.3 29.4 6.0 0 

 Maximum condition uncertainties (application I) 

MFPCC-I 46.2 170.2 312.6 11.5 7.0 6.0 0 

MFPCC-II 61.4 25.4 234.1 21.0 8.9 6.0 0 

A-MFPCC 50.2 44.1 167.1 13.9 22.0 6.0 0 

 Rated condition uncertainties (application-II) 

MFPCC-I 43.0 113.0 366.2 12.6 8.2 6.0 0 

MFPCC-II 58.7 15.1 321.4 24.8 10 6.0 0 

A-MFPCC 49.3 28.6 264.8 19.5 20.1 6.0 0 

 Maximum condition uncertainties (application II) 

MFPCC-I 32.2 99.7 261.3 7.8 4.4 3.1 0.1935% 

MFPCC-II 43.8 14.7 212.4 14.6 5.3 3.8 0.0144% 

A-MFPCC 35.3 24.3 133.4 9.8 14.9 4.6 ≈ 0 

 Rated condition uncertainties (application-III) 

MFPCC-I 24.4 73.2 138.7 6.5 3.7 2.5 1.2419% 

MFPCC-II 35.2 9.6 70.3 14.1 3.6 2.8 0.5110% 

A-MFPCC 28.2 17.1 63.2 11.7 10.8 6.0 0 

 Maximum condition uncertainties (application-III) 

MFPCC-I 18.2 64.5 79.3 3.9 1.7 1.7 8.9130% 

MFPCC-II 26.1 9.4 61.0 8.2 1.7 2.0 4.5500% 

A-MFPCC 20.5 14.5 51.8 5.7 7.9 3.9 0.0096% 
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To illustrate the concept of the Z-value, capability plots of performance indicators, 

𝐾𝑖 (settling time, overshoot, torque, and current ripples), are presented for MFPCC-I, 

MFPCC-II, and the proposed A-MFPCC in Figs 5.22-5.35. These plots depict the position of 

specification limits (USL-I, USL-II, and USL-III) relative to each indicator's mean (𝜇𝑖) for 

the three controllers, considering two uncertainty ranges. The capability plots provide 

insights into the data distribution of each performance indicator and their proximity to the 

application's specification limits. These plots are particularly useful in evaluating the distance 

between the performance indicators and the specified limits for different applications (I, II, 

and III). The number of data samples exceeding the specification limits can impact the 

achieved sigma levels. For example, under maximum condition uncertainties, MFPCC-I 

surpasses the limits of application-III in 891 samples, resulting in an overall system sigma 

level of 1.7σ. 

 

Fig. 5.22.   Capability plot of settling time (𝑇𝑠) at two uncertainty ranges for 

MFPCC-I, MFPCC-II, and the proposed A-MFPCC. 
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Fig. 5.23.   Capability plot overshoot at two uncertainty ranges for MFPCC-I, MFPCC-II, 

and the proposed A-MFPCC. 

 

Fig. 5.24.   Capability plot torque ripple at two uncertainty ranges for MFPCC-I, MFPCC-

II, and the proposed A-MFPCC. 
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Fig. 5.25.   Capability plot of current ripple at two uncertainties ranges for MFPCC-I, 

MFPCC-II, and the proposed A-MFPCC. 

 

5.7 Summary  

The proposed A-MFPCC eliminates the prediction based on a simplified parametric 

machine model by developing a model-free prediction model utilizing a modified current 

difference updating technique with the inclusion of the reference tracking error. The work 

presented in this chapter can be summarized into the following: 

• An incremental prediction model with two lumped parameters is derived and used to 

develop two conventional MFPCC methods (MFPCC-I, MFPCC-II). 

• A reference voltage vector was generated based on the reference current vector position 

and the tracking error and used to obtain the current difference due to the applied and 



Chapter 5. Adaptive Model-Free Predictive Current Control of PMSM Drives 

221 
 

reference voltage vector. Then, the current difference due to the possible voltage vector 

was derived without using any machine parameter (A-MFPCC). 

• The proposed A-MFPCC effectiveness was validated by comparison with two MFPCC 

methods (MFPCC-I, MFPCC-II) based on simulation and experimental results.  

• The proposed A-MFPCC showed superior performance in terms of different measures 

with various parameter variations and operating conditions. 

• The robustness evaluation showed that the proposed A-MFPCC achieved a sigma level 

much higher than the other two methods. 

Apart from that, model-free approaches including MFPCC-I,MFPCC-II and A-MFPCC 

are data-driven controllers that rely on the measured current and voltage to predict the future 

behavior of the motor current. Sensor noise can introduce errors in these measurements, 

leading to inaccuracies in the predicted current. This can result in suboptimal control 

performance. However, the proposed A-MFPCC generate the switching pulses based on 

measured current differences, voltage deviation and a generated reference voltage. This 

reference voltage is generated based on the error between the measured current and the 

reference current. Theferoe, the sensor noise impact on the prediction accuracy is minimized, 

because the the swithcing pulse are selected such that minimum current error is produced. 

Furthermore, the proposed A-MFPCC require the calculation of a reference voltage 

vector and need the current difference and voltage deviation over two concective sampling 

cycles to perform current prediction. This require faster sampling frequency for better 

performance . The various calculation  algorithms and faster sampling requirement  can be a 

limitation in terms of computational resources and real-time processing. 
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CHAPTER 6 

 

6       ROBUST MODEL-FREE REINFORCEMENT LEARNING-
BASED CURRENT CONTROL OF PMSM DRIVES UNDER 

MULTIPLE UNCERTAINTY SETS 
 

 

6.1 Introduction 

Model uncertainties and parameter mismatching are unavoidable in PMSM 

drives, and they significantly affect the performance and robustness of model-dependent 

control approaches [6.1]. In response to this challenge, data-driven control approaches 

are utilized to eliminate the dependency on machine models and parameters. Model-free 

predictive control (MFPC) is a well-known data-driven control in PMSM drives. 

However, inaccurate estimation and stagnation can occur depending on the technique 

used to achieve MFPC (such as current difference and ultra-local model), and higher 

computational effort may be required [6.2-6.3]. 

Recently, reinforcement learning (RL) has emerged as a promising approach for 

achieving data-driven control in PMSM drives. An optimal control action can be obtained 

by training an RL agent with appropriate rewards based on measured PMSM data. This 

results in a computationally efficient controller optimized offline during training [6.4-

6.5]. Unlike MFPC, which requires continuous optimization during online control and 

can be computationally intensive, RL-based controllers offer the advantage of reduced 

computational effort. 

The effectiveness of RL-based controllers depends on the amount and quality of 

the data used for training. In the standard RL-based controller, an agent learns an optimal 
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policy that maximizes its expected cumulative reward over a single training task with 

specific operating conditions and a single parameter set. Thus, new operating conditions 

and different parameter sets (due to parameter mismatching) can lead to poor 

performance, robustness, or instability in the controlled system [6.6]. A robust RL-based 

controller is often employed to deal with this issue, in which an agent learns an optimal 

policy that can perform well with worst-case uncertainty [6.7]. However, it may limit the 

flexibility of the learned policy or result in an overly conservative policy that performs 

poorly with all other cases, including nominal cases. 

This research proposes a multi-set robust RL (MSR-RL) based current control of 

PMSM drive. The MSR-RL aims to learn a single optimal policy robust to several 

different parameter sets. This is done by leveraging the multi-task RL setting to optimize 

a policy that can generalize to and provide good worst-case performance with respect to 

new parameter sets. Instead of learning a policy over a single training task with a single 

parameter set, the proposed MSR-RL learns a single policy over multiple training tasks 

with various parameter sets. The resultant policy can be robust to new parameter sets and 

generalized to the remaining ones.  

 

6.2 Reinforcement Learning Basics  

RL is a machine learning technique where an agent learns to make decisions in an 

environment to maximize a reward signal. The agent interacts with the environment by 

taking action and receiving feedback through rewards or punishments. RL aims to learn 

a policy that maps states to actions, maximizing the expected cumulative reward [6.8]. 

RL can be applied in control systems to learn control policies that optimize 

objectives, such as minimizing energy consumption or maximizing performance. It can 
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also be used to learn control policies for systems that are challenging to model or have 

complex dynamics, such as robots or autonomous vehicles [6.9]. Incorporating RL into 

control enables more flexible and adaptive control systems that can improve their 

performance through experiential learning. However, using RL in control presents 

challenges such as balancing exploration and exploitation, addressing partial 

observability, and managing environmental uncertainty [6.10]. 

The learning process relies on a set of decisions aimed at maximizing the 

cumulative reward, which is predetermined. The agent's input signals consist of 

observations and rewards. Observations encompass a predefined set of signals that 

characterize the process, while rewards measure the success of the resulting action signal. 

The control quantities of the controlled process represent the actions, while observations 

encompass the signals visible to the agent and take the form of measured signals, their 

rate of change, and associated errors [6.11]. 

Fig. 6.3 shows the RL process's general block diagram, which includes an agent, 

environment, action, observations, and rewards. At each time step k, the agent executes 

an action, 𝑎𝑘, and receives observations 𝑂𝑘 and rewards 𝑅𝑘. The environment receives an 

action,  𝑎𝑘 , and emits observation 𝑂𝑘+1 and scalar reward 𝑅𝑘+1. A reward 𝑅𝑘 is a scalar 

feedback signal which indicates how well the agent is doing at time step k. RL is based 

on the reward hypothesis, which is defined such that the maximization of expected 

cumulative reward can describe all goals: max𝐸[∑ 𝑅𝑘+𝑖+1
∞
𝑖=0 ]. The agent's job is to 

maximize the return 𝑔𝑘 which is the discounted future rewards: 

𝑔𝑘 =∑𝛾𝑖
∞

𝑖=0

𝑅𝑘+𝑖+1                                                                     (6.1) 

Another essential part of the RL process is the history and state. History is the 

sequence of observations, actions, and rewards expressed as the following: 
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𝐻𝑘 = 𝑂1, 𝑅1, 𝑎1, . . . , 𝑎𝑘−1, 𝑂𝑘 , 𝑅𝑘 (6.2)

The state is the information used to determine what happens next; formally, it is 

a function of history: 𝑆𝑘 = 𝑓 (𝐻𝑘). There are two types of states, the environmental state,

𝑆𝑘
𝑒, whatever data the environment uses to pick the next observation/reward. Agent state 

𝑆𝑘
𝑎 , whatever information the agent uses to pick the next action. 

Fig. 6.1.   General block diagram reinforcement learning process.

The main components of an RL agent include the policy and the value function. 

The policy represents the agent's behaviour as a mapping from the state to the action. The 

value function is a prediction of future rewards, which is used to evaluate the goodness 

or badness of states and, therefore, to select actions. RL agents can be further categorized 

into model-based and model-free RL. In model-based RL, the agent uses a model to 

represent the environment, predict the next observations, and execute an action, 

regardless of the consequences. On the other hand, in model-free RL (MFRL), the agent 

does not use a model but learns through experience, taking into account the consequences 

of applying an action [6.12].

In general, RL is a fundamental machine learning paradigm typically formulated 

as a Markov decision process (MDP), represented by a tuple (𝑆, 𝐴, 𝑃, 𝑅, 𝛾). In this 

formulation, the environment defines the state space (𝑆), while the agent holds the action 

Agent

Reward   

O s r a ion   

Action   

DNN Policy
 ( , )
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space (𝐴). The agent interacts with the environment to update its policy (π), which maps 

environment states to actions. During each iteration, the agent selects an action (𝑎𝑘  ∈  𝐴) 

based on its policy (π). Subsequently, the environment generates the next state (𝑠𝑘+1) 

according to its transition probability (𝑃). This probability function takes the current state 

and action as inputs and produces a distribution over the possible next states. The 

environment also provides instantaneous feedback to the agent in the form of a reward 

(𝑅). This iteration continues until the agent discovers the optimal policy (𝜋∗) that 

maximizes the infinite horizon discounted reward 𝐽(𝜋). The optimization problem for 

finding the optimal policy can be expressed as follows: 

𝜋∗ ∈ argmax
𝜋
𝐽(𝜋) = 𝐸∑𝛾𝑘

∞

𝑘=1

 𝑅 (𝑠𝑘, 𝑎𝑘)                                                   (6.3) 

where γ represents the discounting factor, and J(π) denotes the infinite horizon discounted 

reward, E denotes the expectation over possible sequences of states and rewards generated 

by following policy π. The optimal policy ensures that the agent accumulates the 

maximum possible reward from the environment.  

In the context of Model-Free RL (MFRL), both the action space (A) and state 

space (S) can be either continuous or discrete. MFRL can be categorized into two main 

types: value-based and policy-based agents. Policy-based agents estimate the desirability 

of a state 𝑠 by using a state value function 𝑉(𝑠). Examples of such agents include deep 

deterministic policy gradient (DDPG) and actor-critic (AC) algorithms. On the other 

hand, value-based agents estimate the quality of state 𝑠 by utilizing the state-action value 

function 𝑄(𝑠, 𝑎), as demonstrated in the deep Q-learning network (DQN) agent. Initially, 

Q-values in Q-learning were stored in a Q-table [6.13]. However, due to the inefficiency 

of the table-based approach, a deep neural network (DNN) with powerful approximation 

capabilities was introduced [6.14]. This neural network maps states to Q-values more 
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efficiently, effectively replacing the Q-table. Consequently, this approach became known 

as DQN RL. 

DQN RL agents are well-suited for discrete control tasks such as an inverter 

(on/off control). Thus, in this research, a model-free DQN RL algorithm is employed. 

The state-action value function of DQN 𝑄𝜋(𝑠, 𝑎) defines the value of being in state 𝑠, 

taking an action 𝑎, and subsequently following a policy π. The Bellman optimality 

equation for 𝑄∗ is expressed as follows: 

𝑄∗(𝑠𝑘, 𝑎𝑘) = 𝑟(𝑠𝑘, 𝑎𝑘) + 𝛾max
𝑎𝑘+1

 𝑄∗(𝑠𝑘+1, 𝑎𝑘+1)                                   (6.4) 

In DQN RL, a learning rate 𝛼  is utilized to fine-tune the optimization process and 

regulate the adjustment of neural network weights to minimize the loss function. The 

learning rate is a parameter that falls within the range of 0 to 1 and plays a crucial role in 

determining the step size for each episode. The new Q-value for a specific state-action 

pair, 𝑄𝑛𝑒𝑤(𝑠𝑘, 𝑎𝑘) is expressed as follows: 

𝑄𝑛𝑒𝑤(𝑠𝑘, 𝑎𝑘) = (1 − 𝛼)𝑄(𝑠𝑘, 𝑎𝑘)⏞      
𝑜𝑙𝑑

+ 𝛼 (𝑟(𝑠𝑘, 𝑎𝑘) + 𝛾max
𝑎𝑘+1

 𝑄∗(𝑠𝑘+1, 𝑎𝑘+1))
⏞                      

𝑙𝑒𝑎𝑟𝑛𝑒𝑑 𝑣𝑎𝑙𝑢𝑒

      (6.5) 

Thus, the new Q-value is equal to a weighted sum of our old value and the learned 

value. Based on the obtained new Q-value , the policy 𝜋 is improved by computing a 

better policy as follows: 

 𝜋𝑘+1(𝑠𝑘, 𝑎𝑘) = 𝑎𝑟𝑔max
𝑎𝑘+1

𝑄𝑘
𝜋(𝑠𝑘, 𝑎𝑘)                                                   (6.6)     

This process is repeated until convergence, i.e., when the policy cannot be 

improved anymore. The goal of the DQN is to meet the convergence of Q-value; thus, 

(6.4) can be further expressed as the cost function 𝐽(𝜃): 
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𝐽(𝜃) = (𝑄(𝑠𝑘, 𝑎𝑘; 𝜃) − 𝑟(𝑠𝑘, 𝑎𝑘) + 𝛾𝑚𝑎𝑥  𝑄(𝑠𝑘+1, 𝑎𝑘+1; 𝜃))
2                     (6.7) 

where 𝑄(𝑠𝑘, 𝑎𝑘; 𝜃) represents approximation function, 𝑟(𝑠𝑘 , 𝑎𝑘) represents previous 

rewards, 𝛾𝑚𝑎𝑥  𝑄(𝑠𝑘+1, 𝑎𝑘+1; 𝜃)  denotes the immediate and future rewards, and 𝜃 

represents the network weights for training. The lower the cost function, the lower the 

difference between the predicted and target Q values. 

 

6.3 Multi-Set Robust RL-Based Current Control of PMSM Drives 

In standard RL, an agent learns an optimal policy that maximizes its expected 

cumulative reward over a single training task with specific operating conditions and a 

single parameter set. Thus, new operating conditions and different parameter sets (due to 

parameter mismatching) can lead to poor performance, robustness, or instability in the 

controlled system. A common solution to this issue is using a robust RL-based controller 

in which an agent learns an optimal policy that can perform well with worst-case 

uncertainty [6.7]. However, the worst case incorporates a single parameter set applied for 

a single training task which may limit the flexibility of the learned policy. Using a large 

uncertainty case can result in an overly conservative policy that performs poorly with all 

other cases, including nominal cases. 

The optimal learned policy varies for different parameter sets, making it difficult 

to generalize and adapt a learned policy to new operating conditions with new parameter 

sets. To generate a policy that can adapt to new tasks (e.g., new motors), meta-RL [6.15] 

is used to learn a policy that can adapt to new tasks more efficiently and quickly by 

leveraging prior experience on similar tasks. With a data set of different motor 

parameters, the environment of each motor data was pictured as a partially observable 

Markov decision process (POMDP), where the environment state is not fully available to 
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the agent. Then, additional contexts (variables) containing information about the 

momentary environment are included in the environment state. However, these contexts 

can be static within each measurement, and incorporating them into the state creates a 

larger COMDP and reduces the learned policy's generalizing power [6.16]. 

Furthermore, Meta-RL can be computationally intensive since it requires much 

data to learn the meta-policy and adapt to new tasks efficiently. Additionally, there is a 

risk of overfitting to the training tasks, where the agent memorizes the training tasks and 

cannot adequately generalize to test tasks. This can lead to poor performance on unseen 

tasks or tasks significantly different from the training tasks [6.17]. 

This research proposes a multi-set robust RL (MSR-RL) based current control of 

PMSM drive. The MSR-RL aims to learn a single optimal policy robust to several 

different parameter sets. This is done by leveraging the multi-task RL setting to optimize 

a policy that can generalize to and provide good worst-case performance with respect to 

new parameter sets. Instead of learning a policy over a single training task with a single 

parameter set, the proposed MSR-RL learns a single policy over multiple training tasks 

with various parameter sets. The resultant policy can be robust to new parameter sets and 

generalized to the remaining ones. 

The parameter sets are referred to as contexts, and each context's environment is 

represented as a Contextual Markov decision process (CMDP). The objective is to learn 

a policy that maximizes the accumulated reward over all contexts. Each CMDP represents 

a training task during the training, and tasks with shared information are clustered into 

models. These models are exploited to create a robust unified policy for all the clustered 

models and new unseen models. To illustrate the concept of the proposed MSR-RL and 
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how it is different from standard single-task RL and meta-RL, their general frameworks 

are presented in Fig. 6.2.

(a)       (b)

(c)
Fig. 6.2.   Reinforcement learning frameworks, (a) single task RL, 

(b) meta-RL, and (c) multi-set robust RL.

6.3.1 Controller Design 

The environment in MSR-RL is represented by CMDP with 𝐶 context space 

(parameter sets). The CMDP is defined by a tuple (𝐶; 𝑆; 𝐴; 𝑀(𝑐))where 𝐶 is the context 

space; S and A are the state and action space, and 𝑀 is function mapping any context 𝑐 ∈

𝐶 to an MDP 𝑀(𝑐) = (𝑆, 𝐴, 𝑝(𝑠, 𝑎), 𝑟(𝑠, 𝑎)).

With 𝐻 = {ℎ1, ℎ2 … . . ℎ𝑛} training episodes, the environment applies a context 
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(set of PMSM parameters) 𝑐 ∈ 𝐶 at the beginning of each training episode. Then, an initial 

state is generated based on the initial policy, 𝜋0∗, and the agent interacts with the 

environment as in the standard RL. With a finite context space 𝐶, the goal is maximizing 

cumulative rewards for all contexts. To learn a policy that is robust to all context space 𝐶 

(uncertainty sets) and can be generalized to a new uncertainty set, the regret concept R is 

used. Regret measures the difference between cumulative rewards generated with the 

current policy and the best possible policy in hindsight. Mathematically, the regret R is 

expressed as the difference between the rewards of potential action and the action that has 

been taken as the following: 

𝑅ℎ = 𝑄𝜋
∗ (𝑠ℎ, 𝑎ℎ) −∑𝑟(𝑠𝑘, 𝑎𝑘)

𝐾

𝑘=1

                                                            (6.8) 

where 𝑄𝜋∗ (𝑠ℎ, 𝑎ℎ) is expected discounted rewards for applying optimal policy 𝜋∗ and 

𝑟(𝑠𝑘, 𝑎𝑘) is the reward at time step k in a training episode h with context 𝑐 ∈ 𝐶. 

The goal is to learn a policy that bounds the cumulative regret, 𝑅𝑛, i.e., the sum 

of the regrets for the number of training episodes, n, converges to a small value 𝜖, as the 

following: 

𝑅𝑛 =∑𝑄𝜋
∗ (𝑠ℎ, 𝑎ℎ)

𝑛

ℎ=1

−∑∑𝑟(𝑠𝑘, 𝑎𝑘)

𝐾

𝑘=1

𝑛

ℎ=1

                                   (6.9)    

A good policy is expected to strike a balance between the exploration of unvisited 

action spaces and the exploitation of visited action spaces. In standard RL training, 

exploration is typically performed within a single context. However, in the proposed 

MSR-RL, multiple contexts need to be explored. To achieve this, a finite context space 𝐶 

is considered, where each context 𝑐 ∈  𝐶 corresponds to a distinct parameter set and is 

referred to as a task. Each task is represented by MDP model, thus with 𝐶 tasks, multiple 
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models (𝑀1, 𝑀2, . . . , 𝑀𝐶) are created. The model's information (𝑀1(𝑐),𝑀2(𝑐), . . . , 𝑀𝐶(𝑐)) 

are partitioned into mini-batches. Then, in each training episode, previously observed 

models are clustered together to form a single representative model, facilitating 

information consolidation. Concurrently, new models are explored to acquire additional 

knowledge and expand the context space. 

Let 𝑀1 and 𝑀2 to be represented by two MDPs with the same action and state 

space, and the same context 𝑐 ∈  𝐶, the 𝜖-approximated model relationship can be 

defined as follows: 

𝑀1(𝑐) =  (𝑆, 𝐴, 𝑝1(𝑠, 𝑎), 𝑟(𝑠, 𝑎))                                           (6.10) 

𝑀2(𝑐)  =  (𝑆, 𝐴, 𝑝2(𝑠, 𝑎), 𝑟(𝑠, 𝑎))                                           (6.11) 

𝑀2 is said to be 𝜖-approximated model of 𝑀1if the state action pairs (𝑠, 𝑎) meet:  

|𝑝1(𝑠, 𝑎) − 𝑝2(𝑠, 𝑎)| ≤ 𝜖                                                                 (6.12) 

Through the clustering and exploration process, a set of 𝑁 models are identified, 

encompassing a diverse range of contexts. These models are then employed for 

exploitation, wherein a unified policy is generated to accommodate all the formed models 

and adapt to new ones. By leveraging the identified models, the policy aims to maximize 

performance across different contexts, minimizing regret during learning. The proposed 

MSR-RL learning framework shown in Fig. 6.3 utilizes an additional DNN for clustering, 

maximizing the generalization power of the learned policy and avoiding the creation of 

large models. In contrast to meta-RL approaches based on POMDPs, which incorporate 

a hidden context into each model state 𝑆 regardless of previous models. By avoiding the 

creation of large models with distinct and unrelated dynamics, the learned policy can be 

effectively generalized to diverse models. 
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Fig. 6.3.   The Proposed MSR-RL learning frameworks.

6.3.2 The RL Environment

The RL environment serves as a platform for the interaction between an RL agent 

and its surroundings, enabling the agent to learn and optimize its decision-making 

process. In the case of PMSMs, the RL environment represents the operational context in 

which the motor operates. It encompasses various components and factors that influence 

motor behaviour, including the physical characteristics of the motor, such as electrical 

and mechanical parameters, as well as its internal dynamics and external factors affecting 

performance. These factors include load torque, rotor position, stator current, and 

electrical and mechanical constraints. In general, RL-based current control of PMSM 

drives is trained offline using a simulation model of the PMSM drive. This model is a 

mathematical representation that describes the dynamics of the PMSM and is expressed 

in the dq- coordinates as follows:

𝑣𝑑 = 𝑅𝑠𝑖𝑑 + 𝐿𝑑
𝑑𝑖𝑑
𝑑𝑡
− 𝜔𝐿𝑞𝑖𝑞 (6.13)
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𝑣𝑞 = 𝑅𝑠𝑖𝑞 + 𝐿𝑞
𝑑𝑖𝑞

𝑑𝑡
+ 𝜔𝐿𝑑𝑖𝑑 + 𝜔𝑝𝑚                                                 (6.14) 

𝑑𝑖𝑑
𝑑𝑡
= − 

𝑅𝑠
𝐿𝑑
𝑖𝑑 +

𝐿𝑞

𝐿𝑑
 𝜔𝑖𝑞 +

1

𝐿𝑑
𝑣𝑑                                                           (6.15) 

   
𝑑𝑖𝑞

𝑑𝑡
= − 

𝑅𝑠
𝐿𝑞
𝑖𝑞 −

𝐿𝑑
𝐿𝑞
 𝜔𝑖𝑑 −

𝑝𝑚

𝐿𝑞
𝜔 + 

1

𝐿𝑞
𝑣𝑞                                       (6.16) 

However, this model is a simplified representation that neglects several real-world 

PMSM dynamics. Additionally, the model heavily relies on machine parameters, which 

can vary due to machine structure and changes in operating conditions. Training an RL 

agent solely based on this model using a single parameter set, such as nominal or worst-

case parameters, can limit the flexibility of the learned policy. Consequently, parameter 

mismatching can lead to poor performance, lack of robustness, or instability in the 

controlled system. The proposed MSR-RL method addresses this challenge, which trains 

the RL agent based on multiple parameter sets. By considering various parameter sets, 

the agent learns a single optimal policy that is robust to these sets and adaptive to new 

ones. This approach aims to mitigate the adverse effects of parameter mismatching and 

enhance the performance, robustness, and stability of the controlled PMSM system. 

6.3.3 Observations, Rewards, and Action 

The selection of appropriate observations, rewards, and actions is a crucial factor 

in determining the effectiveness of the RL-based controller. For current control of PMSM 

drives, standard observations are measured and reference dq currents, measured and 

reference speed, measured position, and dq voltages, expressed as: 

𝑜𝑘 = [𝜔∗, 𝜔, 𝜃, 𝑖𝑑
∗ , 𝑖𝑑

𝑘, 𝑖𝑞
∗ , 𝑖𝑞

𝑘, 𝑣𝑑
𝑘−1, 𝑣𝑞

𝑘−1]
𝑇
                                         (6.17) 

In various MFPCs, the effect of parameter variations is compensated for by 

estimating the current gradient. Thus, to help the RL agent learn better and account for 
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parameter mismatching, the current gradient is included in the observation space as 

follows: 

 (6.18) 

Rewards are an essential part of the RL learning process; it tells the agent how 

good or bad the selected action is. Therefore, rewards must be appropriately calculated to 

help the agent learn an optimal policy. In current control, the objective is to minimize the 

current error, and the quadric objective function can be written as: 

 (6.19) 

The objective function 𝑔𝑘, along with constraint violation penalty and past action,

are employed as a reward signal for RL agent as follows: 

 (6.20) 

where 𝑤1, 𝑤2 and 𝑤3 are the reward gains, and 𝑢𝑗
𝑘−1 is the past control action; 𝑃𝑘  is a

penalty term to ensure safe operation and discourage overcurrent region during the 

training by penalizing the agent when the measured current 𝑖𝑠𝑘 = √(𝑖𝑑𝑘)
2
+ (𝑖𝑞

𝑘)
2
 exceeds

the nominal current 𝑖𝑛, and can be calculated as the following: 

 (6.21) 

The PMSM drive is characterized by a discrete action space (switching vectors. 

𝑠𝑗); the DQN RL agent is utilized in this research. Based on the observation's signals 𝑜𝑘,

and rewards 𝑟𝑘, the RL agent will select an action 𝑎𝑘. The action is a switching vector to

where and are the dq current gradients.
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operate the inverter. With a two-level three-phase inverter, eight possible vectors can be 

applied. Thus, the RL action can be expressed as: 

𝑎𝑘 = 𝑠𝑗 ∈ {0,1,2……7}                                            (6.18) 

RL algorithms use function approximators, such as neural networks, to estimate 

the values or policies. These networks can be sensitive to the scale of the input data, and 

significant differences in scales may lead to difficulties in training. Normalizing the 

observations can mitigate issues such as vanishing or exploding gradients, which can 

hinder learning and slow down convergence. Therefore, the observations are normalized 

to a range of [-1, 1]. 

The working principle of the proposed MSR-RL-based current control of PMSM 

drives can be illustrated as follows. First, finite parameter sets (context) are created. 

Second, at the beginning of each training episode, a context 𝑐 ∈ 𝐶 is randomly selected 

by the environment, where each context is represented by MDP (𝑀𝐶). Afterwards, an 

initial state is chosen according to an initial state distribution, 𝜋0∗. Finally, the agent 

interacts with the chosen 𝑀𝑐 for K time steps (k=1,2, 3,…,K) as in the standard RL. In 

the next training episode, new contexts are selected, similar models are clustered, and 

new models are explored. Thus, N-clustered models are identified, and then a single 

policy is generated to accommodate all the formed models and adapt to new ones. The 

principle and workflow of the proposed MSR-RL-based current control of PMSM drive 

is illustrated by Algorithm 6.1 and the block diagram in Fig. 6.4. 
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A      h   6. :  MSR-RL  

Create parameter sets (context space) C. 

F   h=1,2…. n training episode    

    Initialize policy 𝜋ℎ0 

    Initialize Q-function 𝑄ℎ0(𝑠, 𝑎) 

    Select a task with a context 𝑐 ∈ 𝐶. 

    Generate initial state 𝑝ℎ0(𝑠, 𝑎) based on 𝜋ℎ0 

    Generate discounted long-term rewards 𝑄
𝜋ℎ
0
∗ (𝑠, 𝑎) 

    F   k=1,2… K steps    

        Execute an action 𝑎𝑘 based on the initial state 𝑝ℎ0(𝑠, 𝑎). 

        and policy  𝜋ℎ0.                              

        Observe the next state 𝑝ℎ𝑘(𝑠, 𝑎) and reward 𝑟𝑘 

        Update Q-function 𝑄ℎ𝑘(𝑠, 𝑎) 

         Update policy 𝜋ℎ𝑘 

         Compute the cumulative rewards 𝑟ℎ = 𝑟𝑘  + 𝑟𝑘+1 

         Return the optimal policy 𝜋ℎ∗ .  

           F   

      Update discounted long-term rewards 𝑄𝜋ℎ∗
∗ (𝑠, 𝑎) 

      Partition each task info into mini-batches. 

      Cluster tasks into 𝜖-approximated models 𝑀𝑁. 

         Learn a policy by exploiting formed models 𝑀𝑁 

       Minimize the cumulative regret 𝑅𝐻. 

             If the cumulative regret 𝑅𝑛 = ∑ 𝑅ℎ
𝑛
ℎ=1 > 𝜖 

             Continue training.  

                    

               Terminate the training. 

      Return the robust policy 𝜋𝑛∗ . 

    F   
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Fig. 6.4.   The proposed MSR-RL-based current control of PMSM drives. 

 

6.4 Training and Simulation Analysis 

This section outlines the methodology employed to develop, train, and validate 

the proposed MSR-RL approach for the PMSM drive system using Matlab/Simulink. 

MSR-RL aims to train the agent with a finite set of parameter contexts, enabling the 

acquisition of an optimal policy that can be applied to new parameter sets. The training 

process utilizes the nominal machine parameters specified in Table 3.1 and their 

respective ranges of potential variations. 

Subsequently, the learned policy obtained from the MSR-RL training is tested 

using different parameter sets, and its performance is evaluated under various operating 

conditions. A comparative analysis is conducted against standard RL, represented by a 

single-task DQN-RL agent trained using a single parameter set. This comparison 

encompasses numerical performance investigations that evaluate the system performance 

with nominal and mismatched machine parameters across diverse operating conditions. 
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6.4.1 Uncertainties and Safety Considerations  

PMSM drive systems inherently contend with a multitude of uncertainties, 

encompassing load variations, noise, and sensor errors. These uncertainties present a 

formidable challenge when applying standard  RL algorithms, often leading to difficulties 

in achieving effective policy adaptation in response to real-world environmental changes. 

Moreover, the utilization of RL algorithms, primarily trained on simulation data, is 

constrained by practical system limitations and safety considerations, which may impede 

their capacity for large-scale data sampling, thereby affecting algorithm efficiency and 

overall performance. 

However, the proposed MSR-RL offers a novel approach to address these 

challenges. Unlike conventional RL methods that learn policies from single training tasks 

with specific parameter sets, MSR-RL endeavors to cultivate a single comprehensive 

policy over multiple training tasks characterized by diverse parameter sets. The outcome 

of this approach is a policy endowed with robustness, capable of adapting to new 

parameter sets and exhibiting generalization to a broader spectrum of operating 

conditions. 

The MSR-RL framework is designed to be resilient against uncertainties, 

specifically calibrated to handle variations in parameter sets and load conditions. In 

practice, MSR-RL is subjected to extensive training episodes, totaling 10,000 or more, to 

ensure comprehensive exploration of potential operating conditions within the system. 

This rigorous training regime, coupled with the application of clustering techniques, 

empowers MSR-RL to acquire a unified policy that deftly navigates through diverse 

operating conditions, effectively addressing the practical uncertainties inherent in PMSM 

drives. 
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Furthermore, to ensure the proposed MSR-RL can safely operate in real-time 

application after training using simulation data, various safety measures are considered 

during the design and training of MSR-RL. These safety measures include: 

Safety Constraints: Safety constraints are implemented and incorporated into the reward 

functions, such as current and voltage limit, to guide the RL agent to learn a safe control 

policy. These constraints, exemplified by current and voltage limits, play a pivotal role in 

guiding the RL agent towards the acquisition of safe control policies. Actions that 

transgress these predefined safety limits are met with substantial penalties, emphasizing 

the importance of compliance with safety boundaries. 

Reward Function Augmentation: The reward function within MSR-RL is augmented 

to penalize deviations from desired system behavior stemming from uncertainties. This 

reinforcement encourages the agent to prioritize safety and robustness in its learned 

policies, thereby enhancing its capacity to navigate uncertain environments. 

Safe Exploration Strategies: MSR-RL incorporates safe exploration strategies, such as 

epsilon-greedy with adaptive exploration rates. These strategies are instrumental in 

ensuring that the RL agent refrains from exploring actions that could potentially lead to 

hazardous conditions during the learning process. By implementing these safe exploration 

methods, MSR-RL further enhance its ability to operate safely in real-time applications. 

In summary, the incorporation of safety considerations and the strategic handling 

of uncertainties within the MSR-RL framework provdes a solid foundation for the 

practical deployment of this innovative control strategy in PMSM drive systems. Through 

rigorous training, safety-conscious reward structures, and safe exploration strategies, 

MSR-RL emerges as a robust and adaptable solution capable of addressing the various 

challenges posed by real-world applications. 
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6.4.2 RL Hyperparameters Tuning  

RL algorithms come with a set of critical settings called hyperparameters, including 

the learning rate, discount factor, and exploration strategy. These hyperparameters 

significantly impact the algorithm's performance, particularly in motor control tasks. 

However, finding the optimal combination of these settings often involves time-

consuming trial-and-error processes, introducing complexity during algorithm design and 

debugging. To address this challenge, several methods are available to optimize 

hyperparameters effectively: 

1. Automated Hyperparameter Optimization 

To simplfiy the hyperparameter tuning process and alleviate the burden of manual 

adjustment, automated hyperparameter optimization tools can be used,including : 

Bayesian Optimization: This technique employs probabilistic models to predict which 

hyperparameter configurations are most likely to lead to improved RL performance. It 

iteratively evaluates different hyperparameter settings, focusing on promising areas of the 

configuration space. Bayesian optimization efficiently narrows down the search for 

optimal hyperparameters. 

Grid Search: Grid search systematically explores a predefined range of hyperparameter 

values, evaluating the performance of the RL algorithm for each combination. While it is 

more computationally expensive than Bayesian optimization, grid search provides a 

comprehensive view of the hyperparameter landscape. 

2. Online Hyperparameter Adaptation 

Online hyperparameter adaptation is a dynamic approach that adjusts 

hyperparameters during RL training based on the agent's real-time performance. This 

adaptation helps reduce the reliance on manual tuning and enhances algorithm efficiency. 
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It begins with the initialization of the RL algorithm with initial hyperparameter values. 

As training unfolds, the algorithm continuously monitors the agent's interactions with the 

environment, assessing its learning progress and overall performance. Periodic 

performance evaluations are conducted, employing predefined criteria to gauge the 

agent's efficiency. Based on these evaluations, the algorithm adjusts hyperparameters on 

the fly to enhance the learning process. This iterative approach repeats until the RL 

algorithm achieves its desired performance or meets predefined convergence criteria. By 

adapting hyperparameters to the agent's real-time experience, Online Hyperparameter 

Adaptation improves efficiency and robustness, making RL algorithms more adaptable in 

dynamic environments while reducing the need for manual intervention. 

3. Parameter Sweeping Technique 

Parameter sweeping is a systematic method that involves varying hyperparameters 

within predetermined ranges. This technique explores a set of hyperparameter values to 

assess their impact on RL performance. Parameter sweeping provides valuable insights 

into the influence of different hyperparameter settings on the algorithm's behavior and 

allows for the identification of optimal configurations. 

In summary, tuning hyperparameters in RL algorithms is crucial for achieving optimal 

performance in motor control and other applications. To streamline this process and 

reduce the complexity of manual tuning, automated optimization methods like Bayesian 

optimization and grid search are employed. Online hyperparameter adaptation further 

enhances efficiency by adjusting settings based on real-time performance. Additionally, 

the parameter sweeping technique systematically explores the effects of different 

hyperparameter values to fine-tune the RL algorithm. These methods collectively 

contribute to the refinement and effectiveness of RL in practical applications. 
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6.4.3 Training and Parameter Sets (Contexts) 

Through a trial-and-error process, RL training empowers agents to acquire 

intelligent decision-making capabilities in complex and dynamic environments. The 

agent explores the environment, learns from its experiences, and gradually enhances its 

decision-making skills. In general, the training process of the RL agent involves several 

key steps. Initially, the agent is initialized to set up its initial state. Then, the environment 

is reset for each episode to prepare for the interaction. The agent observes the environment 

and computes an action using its current policy. This action is applied to the environment, 

leading to the next observation and a corresponding reward. The agent learns from this 

experience, updating its knowledge based on the observed state-action-reward transitions. 

Subsequently, the agent computes the next action based on the updated policy and repeats 

the process, iteratively interacting with the environment and refining its decision-making 

strategy. The training continues until a specific termination condition is met, indicating 

the completion of the training process. Throughout this process, the agent explores 

different actions, receives feedback from the environment, and adjusts its policy to 

optimize its decision-making capabilities. 

However, conventional RL methods treat each training task independently 

without considering potential relations between tasks. In the proposed MSR-RL, a multi-

task RL training framework is employed to simultaneously learn related tasks by 

extracting and utilizing shared information across them. Shared representations can be 

used effectively by creating models for tasks with similar structures based on the 

underlying task structure. In MSR-RL, tasks with similar information are clustered 

together, forming models that accommodate these tasks while exploring unseen tasks. 

The agent interacts with each task within a cluster, partitioning the information into mini-

batches, and the process iterates to generate multiple clustered models. These models are 
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then exploited, enabling the agent to generate a policy that adapts to the formed models 

and new, unseen tasks, thereby enhancing overall performance. 

MSR-RL-based current control of PMSM drives incorporates finite parameter 

sets, known as contexts, to enhance training. At the start of each training episode, a task 

with a random parameter set is selected from the available sets. Tasks with similar 

parameters or approximately close structures are clustered and learned simultaneously. 

The parameter sets are generated such that PMSM parameters vary within a specific range 

of their nominal values. Table 6.1 presents the possible variation ranges of PMSM 

parameters considering maximum operating conditions. 

Table 6.1   PMSM parameter variation ranges 

Parameter Unit Increase (+) Decrease (-) 

𝑅𝑠  Ω 80% -20% 

𝐿𝑑  mH 40% -70% 

𝐿𝑞  mH 40% -70% 

ΨPM  Wb 20% -30% 

J  𝑘𝑔𝑚2 32% -19% 

B  Nm/rad/s 20% -10% 

 

Using Matlab/Simulink, the proposed MSR-RL with DQN for the current control 

of the PMSM drive is implemented and trained using 100 parameter sets obtained from 

Table 6.1, each representing six different parameters. The training process involves a 

maximum of 10,000 episodes, each with a maximum of 10,000 steps. The termination 

condition for training is based on the average rewards obtained, while the reference q-

axis current determines episode termination. To ensure sufficient training episodes and 

convergence of the episode reward to the long-term reward, the termination average 

reward value is set at -50. In each episode, a random parameter set is selected from the 

100 sets, and with the help of an additional DNN, episodes with similar parameter sets or 
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structures are clustered into models. The number of clustered models can be equal to or 

less than the number of parameter sets.

The training process incorporates various operating conditions, such as different 

speed operations and load conditions, to ensure robustness. Performance metrics like 

cumulative, average, and discounted long-term rewards are recorded throughout the 

training process to monitor training progress. Over the course of 10,000 episodes, N-

clustered models are identified and utilized to learn a policy that maximizes cumulative 

rewards while minimizing accumulated regret. The training statistics presented in Fig. 6.5 

indicate that the cumulative reward reached a maximum value of -59, closely approaching 

the discounted long-term reward with a slight offset due to the discount factor.

Fig. 6.5.   Training stats of the proposed MSR-RL-based current control of PMSM 

drives.

The RL agent interacts with the environment, gathering knowledge through these 

interactions. Initially, the agent's actions may lead to suboptimal performance, but as it 

receives rewards, it learns to avoid actions with low rewards and improves the 
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performance of the PMSM drive system. The performance of the PMSM drive system is 

analyzed at different stages of training, specifically during the early training (episode 1) 

and mid-training (episode 5000), as shown in Fig. 6.6.

(a)

(b)

Fig. 6.6.   PMSM drives performance during (a) early training (episode 1) and (b) mid-

training (episode 5000).

The agent's progressive improvement in performance over the training episodes

can be seen through the training stats in Fig. 6.5. This improvement is achieved by 
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leveraging the relationships shared among the training episodes to form N-clustered 

models, each encompassing a set of related tasks. Across the 10,000 training episodes, 

these models are effectively utilized to learn a unified optimal policy capable of 

generalizing across all clustered and new, unseen models. This approach enhances the 

agent's decision-making abilities and enables it to achieve high performance across 

various task scenarios.

To validate the robustness of the learned policy, it is tested with 1000 different 

parameter sets, combining sets used in training with new, unseen sets. For each parameter 

set (iteration), the accumulated and average rewards are computed over 10,000-time steps 

and compared with the rewards obtained using the optimal policy. The results of these 

iterations and average rewards, shown in Fig. 6.7, demonstrate the learned policy's ability 

to maintain rewards that closely align with the final optimal training rewards depicted in 

Fig. 6.5. This indicates the effectiveness of the learned policy in maintaining performance 

across diverse parameter sets.

Fig. 6.7.   Average and cumulative rewards for testing the learned policy of 

MSR-RL over 1000 iterations.
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6.4.4 Deployment and Numerical Validation

The evaluation of the learned policy demonstrates the agent's impressive ability 

to adapt to new, unseen tasks and paves the way for its practical deployment. With the 

knowledge gained through extensive training, the trained MSR-RL agent can be 

effectively utilized by generating a policy function that can be employed for both 

simulation and experimental validation purposes. The deployment of the trained agent 

represents the final stage in the RL workflow, marking the transition from the training 

setup to the actual utilization of the learned policy. This deployment process involves 

replacing the RL training framework with a dedicated policy block, which takes 

observations from the environment and generates corresponding actions. Fig. 6.8 visually 

represents the learning and deployment stages, illustrating the seamless transition from 

training to deployment. Notably, the deployed policy operates without the need for 

explicit rewards. Instead, it solely relies on incoming observations to inform its decision-

making process and generate optimal actions.

Fig. 6.8.  RL agent learning and deployment.

To demonstrate the effectiveness of the proposed MSR-DQN RL approach, a 

comprehensive performance comparison with the standard DQN RL method is 

conducted. The standard RL agent is trained using a single parameter set and subsequently 
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deployed for validation and comparison against the proposed MSR-RL. The performance 

comparison is made through numerical simulations under various operating conditions, 

considering nominal and mismatched machine parameters. Firstly, the performances of 

the MSR-RL and standard RL are evaluated at the rated speed of 1000 rpm and torque of 

2 Nm, using both the nominal machine parameters (Table 3.1) and the mismatched 

parameters, specifically 0.8𝑅𝑠, 0.3𝐿𝑑 , 0.3𝐿𝑞 , 𝑎𝑛𝑑 0.7𝛹𝑃𝑀. The corresponding results are 

illustrated in Fig. 6.9. Moreover, the performances at 600 rpm and 200 rpm under a 2 Nm 

load are also examined to analyze the agent's capabilities comprehensively. These results 

are presented in Figs. 6.10 and 6.11, respectively. The top-to-bottom curves in these 

figures represent the phase a stator current, d- and q-axis currents, and motor speed.  

The performance comparison between the proposed MSR-RL and the standard 

RL across various operating conditions and machine parameters unequivocally 

demonstrates the superior effectiveness of the proposed MSR-RL. Notably, the standard 

RL exhibits significant performance degradation, particularly when faced with 

mismatched machine parameters, while the MSR-RL consistently performs well across 

diverse operating conditions. Examining the behaviour of stator currents and motor speed 

reveals that the MSR-RL exhibits rapid dynamic response and exceptional tracking 

performance, regardless of whether the nominal or mismatched parameters are used. 

On the other hand, the standard RL delivers acceptable performance with the 

nominal parameters but experiences high current distortion and poor tracking when 

subjected to mismatched parameters. Unlike the proposed MSR-RL, which sustains an 

excellent performance of the drive system due to its robust policy optimized through 

various parameter sets. 
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Moreover, the performances of the proposed MSR-RL and the standard RL are 

numerically compared based on the total harmonic distortion (THD) spectrum of the 

phase a current under nominal and mismatched parameters. The current signals are 

captured during the steady state of 1000 rpm with a torque of 2 Nm applied. The captured 

current signals are subsequently analyzed to extract the THD spectrum, which enables 

the computation of the THD up to a frequency of 5 kHz, encompassing a broad range of 

harmonics.  

 
(a) 

 
(b) 

Fig. 6.9.   Performance comparison of proposed MSR-RL and standard RL at 1000 rpm 

and 2 Nm load torque, (a) nominal and (b) mismatched parameters. 
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(a) 

 
(b) 

Fig. 6.10.   Performance comparison of proposed MSR-RL and standard RL at 600 rpm 

and 2 Nm load torque, (a) nominal and (b) mismatched parameters. 
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(a) 

 
(b) 

Fig. 6.11.   Performance comparison of proposed MSR-RL and standard RL at 200 rpm 

and 2 Nm load torque, (a) nominal and (b) mismatched parameters. 
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Fig. 6.12 visually presents the outcomes of this comparison, illustrating the THD 

spectra for the proposed MSR-RL and the standard RL under nominal and mismatched 

parameters. Remarkably, the THD achieved by the MSR-RL is substantially lower than 

that of the standard RL, irrespective of whether nominal or mismatched parameters are 

considered. Specifically, the MSR-RL records THD values of 4.38% and 9.33% 

compared to 7.61% and 15.6% for the standard RL under nominal and mismatched 

parameters, respectively.

(a)

(b)

Fig. 6.12.   The proposed MSR-RL and standard RL THD spectrum, 

(a) nominal and (b) mismatched parameters.
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This comprehensive assessment, encompassing motor performance and harmonic 

analysis, facilitates a comprehensive understanding of the effectiveness and superiority 

of the proposed MSR-RL approach in controlling PMSM drives, particularly in the 

presence of uncertainties. The results obtained from these evaluations provide compelling 

evidence of the MSR-RL's potential to adapt to new environments, maintain exceptional 

tracking performance, and effectively mitigate undesired harmonic components in the 

current waveform. 

To further validate the robustness of the proposed MSR-RL against parameter 

mismatching, a quantitative analysis is conducted to evaluate the tracking performance 

of MSR-RL and standard RL against parameter variations. The proposed MSR-RL and 

standard RL tracking capabilities are evaluated by computing the current ripples with the 

variations of 𝐿𝑑 and 𝐿𝑞, as shown in Fig. 6.13. Different values of 𝐿𝑑 and 𝐿𝑞 are generated 

within a bounded range according to Table 6.1, and the current ripples are computed. 

The quantitative analyses demonstrate MSR-RL's superior performance compared 

to the standard RL, mainly with variations in 𝐿𝑑  and 𝐿𝑞. The standard RL, trained with a 

single parameter set, exhibited substantial performance degradation with mismatched 

parameters. In contrast, MSR-RL shows consistent and robust performance with 

mismatched parameters. This difference highlights the adaptability and generalizability 

of the learned policy within the MSR-RL framework, enabling it to handle diverse 

environmental conditions effectively. 
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(a) 

 
(b) 

Fig. 6.13.   Current ripples of MSR-RL and standard RL  

with the variation of (a) 𝐿𝑑, (b) 𝐿𝑞. 

 

6.5 Experimental Validation 

To validate the workability and assess the effectiveness of MSR-RL, experimental 

tests are conducted on a PMSM drive system utilizing a two-level inverter and a dSPACE 

DS1104 PPC/DSP controller, as shown in Fig. 6.14. The experimental setup can be 

divided into two main components: the software part, which encompasses 
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Matlab/Simulink and dSPACE ControlDesk, and the hardware part, consisting of the 

motor, inverter, and DC supply. The software and hardware components are seamlessly 

integrated through the DS1104 controller. Various measurements, including motor speed, 

position, and currents, are acquired and fed back to the software for the inverter's 

processing and generating suitable switching pulses.  

Fig. 6.14.   Experimental setup of PMSM drive system. 

While the proposed MSR-RL and standard RL have been rigorously tested and 

validated through numerical simulations across diverse operating conditions, verifying 

their performance in real-time experiments under different scenarios is crucial. This 

validation is carried out by subjecting the drive system to start-up, load disturbance, and 

steady-state tests. In the start-up tests, MSR-RL and standard RL are evaluated by 

initiating the motor from a standstill and gradually accelerating it to the rated speed of 

1000 rpm. The corresponding measurements, including stator current (𝑖𝑎), dq-currents, 

and motor speed are recorded and presented in Fig. 6.15. On the other hand, load 

disturbance tests involve operating the motor at a steady-state speed of 1000 rpm and then 

applying a 2 Nm load torque to the motor shaft. The resulting motor currents and speed 

responses are captured and illustrated in Fig. 6.16. In both Figs. 6.15 and 6.16, the plotted 

ControlDesk and Matlab

3-phase Inverter

PMSM

dSPACE DS 1104

Dynamometer
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curves, from top to bottom, represent the stator current (𝑖𝑎), dq-axis measured and 

reference current (𝑖𝑑𝑞, 𝑖𝑑𝑞∗ ), and measured rotor speed (𝜔𝑟). 

Fig. 6.15.  Experimental start-up test of MSR-RL and standard RL from standstill to 

rated speed (1000 rpm).

Fig. 6.16.  Load disturbance test (2 Nm) of MSR-RL and standard RL 

at rated speed (1000 rpm).
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The proposed MSR-RL demonstrates a superior dynamic response compared to 

the standard RL approach. In the start-up phase, where the motor initiates from a standstill 

and accelerates to its rated speed, the MSR-RL rapidly accelerates with a slight overshoot, 

swiftly reaching the steady-state speed of 1000 rpm. Conversely, the standard RL exhibits 

a comparatively slower acceleration profile. Moreover, the proposed MSR-RL exhibits 

robust load disturbance rejection capabilities. When a load disturbance of 2 Nm is applied 

to the motor shaft at 0.25s, the MSR-RL experiences a modest speed drop of 108 rpm, 

promptly recovering its steady-state condition within 0.35 s. In contrast, the standard RL 

encounters a more pronounced speed drop of 171.8 rpm and takes 0.45 s to restore its 

steady-state condition. Additionally, the steady-state current responses of the MSR-RL 

exhibit smoother profiles with reduced ripple compared to the standard RL. 

Both the MSR-RL and standard RL models are trained under diverse load 

conditions. However, it is essential to note that the actual parameters of a real-world 

PMSM may deviate from the nominal parameters employed during the training process 

of the standard RL. Consequently, the improved performance of the MSR-RL can be 

attributed to its training using multiple parameter sets, adapting more effectively to 

uncertainties inherent in real-world PMSM.  

Further experimental investigations are conducted to evaluate the performance of 

the proposed MSR-RL and the standard RL under steady-state conditions. These 

investigations focus on observing the motor's measured currents, including 𝑖𝑎, 𝑖𝑞, and 𝑖𝑑, 

along with their corresponding reference signals, 𝑖𝑎∗ , 𝑖𝑞∗ , and 𝑖𝑑∗ . The steady-state current 

responses of both the MSR-RL and the standard RL are captured during three different 

speed operations, namely 200 rpm, 600 rpm, and 1000 rpm. A load of 2 Nm is applied to 

the motor shaft during these operations. 
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Figs. 6.17 (a) and (b) depict the captured steady-state current responses of the 

MSR-RL and the standard RL, respectively. The results demonstrate the exceptional 

tracking performance of the proposed MSR-RL, surpassing that of the standard RL across 

low, medium, and high-speed operations. Notably, the steady-state current ripples of the 

MSR-RL are significantly reduced compared to those of the standard RL. This reduction 

in ripples highlights the robustness of the learned policy of the MSR-RL in adapting to 

different operating conditions, further affirming its superior performance. 

In addition to speed variations, the performance of the MSR-RL is being assessed 

under varying load conditions, as illustrated in Fig. 6.18. The motor is operated at a steady 

state of 1000 rpm, and the responses of the estimated torque, stator current, and dq-axis 

currents are observed under three load conditions: no-load, half-load (1 Nm), and full-

load (2 Nm). The results showcase the ability of the MSR-RL to effectively handle 

different load conditions, maintaining stable and accurate torque estimation and 

consistent stator and dq-axis current responses. 

Quantitative analyses are conducted at various operating conditions to further 

analyze the performance numerically since real-time access to machine parameters is 

unavailable. The evaluation focuses on computing the steady-state stator current ripples, 

considering different speed and load conditions. Eight load torques are applied at a steady 

state of 1000 rpm, ranging from minimal to maximum values. Five different speeds are 

examined while maintaining a fixed load torque of 2 Nm. The current ripples are 

calculated for each operating condition, yielding valuable insights into the controller's 

performance, as presented in Fig. 6.19. 
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(a)

(b)
Fig. 6.17.   Steady-state currents at different speeds (200, 600, 1000) rpm, (a) MSR-RL, 

and (b) standard RL.
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Fig. 6.18.   Performance of proposed MSR-RL at steady-state of 1000 rpm 

with no-load, half-load, and full-load.

   

(a)                                                                   (b)

Fig. 6.19.  Current ripple comparison of MSR-RL and standard RL with 

(a) different load torques at rated speed (1000 rpm) and 

(b) various speeds under rated torque (2 Nm).
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The experimental testing conducted across different operating conditions provides 

compelling evidence supporting the superiority of the proposed MSR-RL compared to 

the standard RL. The MSR-RL exhibits faster transient responses and less distortion in 

the steady-state compared to the standard RL, as validated through the start-up, load 

disturbance, and steady-state tests. These findings highlight the optimality of the learned 

policy within the MSR-RL framework, enabling robust adaptation to new environments. 

Moreover, the quantitative analysis considering variations in speed and load further 

reinforces the superiority of the MSR-RL over the standard RL. The MSR-RL 

consistently outperforms the standard RL regarding its ability to mitigate steady-state 

current ripples, indicating its superior control performance and enhanced robustness 

across different operating conditions. 

 

6.6 Robustness Evaluation 

The robustness of the proposed MFR-RL has been demonstrated through 

simulation and experimental evaluations, which have shown good performance under 

specific operating conditions and parameter sets. However, it is essential to note that these 

evaluations do not comprehensively assess the controller's robustness, as they have not 

considered various other conditions and parameter sets. Additionally, these evaluations 

do not provide information about the robustness index or how robust the proposed 

controller compares to other controllers. Therefore, this research employs a six-sigma 

design robustness evaluation presented in Chapter 4 to thoroughly evaluate the proposed 

MSR-RL and standard RL. This approach uses large parameter sets and encompasses 

multiple performance indicators to ensure a comprehensive assessment. 
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The performance indicators used in the evaluation include both transient and 

steady-state response characteristics, such as settling time (𝑇𝑠), overshoot (𝑂𝑆), root mean 

square error of speed (𝑅𝑀𝑆𝐸𝜔), torque ripples (𝑇𝑟𝑖𝑝), and current ripples (𝑖𝑟𝑖𝑝). Each 

indicator is crucial in designing a PMSM drive for a specific application. Depending on 

the application requirements, each performance indicator (𝐾𝑖) has a corresponding upper 

𝑈𝑆𝐿. For example, a racing car would necessitate a faster settling time (e.g., 𝑇𝑠 ≤ 0.1𝑠), 

whereas a passenger car might allow for a slower settling time (e.g., 𝑇𝑠 ≤ 0.3𝑠). 

Therefore, the USL for each performance indicator (𝐾𝑖) varies based on the intended 

application. 

The evaluation considers low, medium, and high-performance applications to 

cater to a wide range of performance requirements. Low-performance applications like 

water pumping systems have relatively lenient specification limits. Medium-performance 

applications, such as electric vehicles, have moderate limits. On the other hand, high-

performance applications, such as radar systems and CNC machines, demand stringent 

and precise limits. Table 6.2 presents the performance indicators and their respective 

USLs for each application category (low, medium, and high performance). 

Table 6.2  Performance indicators and their respective upper specification limits  

Indicator 

(𝐾𝑖) 

Upper Specification limits (𝑈𝑆𝐿)  

Application-I  Application-II  Application-III  

𝑇𝑠  ≤ 0.2 ≤ 0.15 ≤ 0.1 

𝑂𝑆  ≤ 5% ≤ 3% ≤ 2% 

𝑅𝑀𝑆𝐸𝜔 ≤ 0.03 ≤ 0.02 ≤ 0.01 

𝑇𝑟𝑖𝑝 ≤ 0.8 ≤ 0.6 ≤ 0.4 

𝑖𝑟𝑖𝑝 ≤ 0.9 ≤ 0.7 ≤ 0.5 
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The evaluation process involves generating 10,000 normally distributed samples 

of machine parameter variation with a specific range (Table 6.1). The proposed MSR-RL 

and standard RL are then simulated, and the resulting performance indicators are 

computed for each sample. Specifically, the motor runs from a standstill to the rated speed 

of 1000 rpm, with a steady-state load torque of 2 Nm. The resulting 10,000 data points of 

each 𝐾𝑖 are used to calculate the mean 𝜇𝑖 and standard deviation 𝜎𝑖. The Z-value 𝑍𝑖 of 

each performance indicator, the system sigma level 𝑛𝑠𝑦𝑠 and system probability of failure 

𝑃𝑂𝐹𝑠𝑦𝑠 are computed as discussed in Chapter 4. 

The Z-values, system sigma levels and POF are calculated for MSR-RL and 

standard RL based on a dataset of 10,000 samples, as shown in Table 6.3. MSR-RL 

demonstrates strong robustness compared to standard RL across all performance 

indicators for the three application requirements. In the case of low requirements 

(Application-I), standard RL achieves a sigma level of 2.7σ and a POF of 0.73%. 

However, for medium and high requirements (Applications-II and III), standard RL only 

achieves sigma levels of 1.9σ (POF of 5.51%) and 1.2σ (POF of 21.51%), respectively. 

In contrast, MSR-RL achieves a 6σ sigma level for Application-I, while sigma levels of 

3.9𝜎(POF of 0.01%) and 3.2σ (POF of 0.16%) are achieved for Applications-II and III 

requirements, respectively. 

The Z-values of the performance indicators provide insights into the strengths and 

weaknesses of each control method, as well as their ability to strike a balance among all 

indicators. For instance, the Z-values of overshoot and root mean square error (RMSE) 

for standard RL adequately meet the requirements of all three applications. However, the 

Z-values of torque and current ripples are considerably low, particularly for medium and 

low-requirement applications. As a result, standard RL yields lower sigma levels and 
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higher POFs. On the other hand, the proposed MSR-RL maintains a trade-off across all 

indicators, leading to higher sigma levels for all application requirements. 

Table 6.3   Robustness evaluation results of MSR-RL and standard RL. 

Indicator 𝑍𝑇𝑠 𝑍𝑂𝑆 𝑍𝜔 𝑍𝑇𝑟𝑖𝑝𝑝 𝑍𝑖𝑟𝑖𝑝𝑝  𝑛𝑠𝑦𝑠 𝑃𝑂𝐹 

Controller  (Application-I) 

S-RL 20.1 44.7 53.0 7.6 3.6 2.7 0.73% 

MSR-RL 33.4 61.9 146.5 23.7 17.9 6.0 0 

  (Application-II) 

S-RL 13.5 25.9 33.9 5.2 1.9 1.9 5.51% 

MSR-RL 22.5 36.2 94.0 17.5 12.3 3.9 0.01% 

 (Application-III) 

S-RL 6.7 16.5 21.2 2.8 0.3 1.2 21.51% 

MSR-RL 11.7 23.4 59.0 11.3 6.6 3.2 0.16% 

 

It is worth noting that sigma levels below 6σ do not necessarily render a control 

system unacceptable. In the industry, a sigma level of 3σ is considered acceptable, and 

6σ is introduced to account for the long-term shift (approximately 1.5σ) in the mean. In 

some cases, achieving 6σ is not feasible for specific control methods or application 

requirements. Consequently, controllers with sigma levels below 6σ can still be reliable. 

For instance, a sigma level of 3.2σ of MSR-RL for Application-III implies that only 16 

parameter combinations out of the total samples (1000) result in any performance 

indicator exceeding the specification limits of Application-III. 

The Z-value is a measure of the distance between USL and the mean (𝜇𝑖) of a 

performance indicator's data. In other words, it is a measure of the number of standard 

deviations (𝜎) between USL and the mean (𝜇𝑖). This can be illustrated by the capability 

plots of torque and current ripple performance indicators presented in Figs. 6.20 and 6.21 

for standard RL and MSR-RL. The capability plots provide insights into the data 
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distribution of torque and current ripple performance indicators and their proximity to the 

application's specification limits (USL-I, USL-II, USL-III). The torque ripple capability 

plot shows that the standard RL data are widely dispersed around the mean (𝜇 = 0.1643), 

exceeding Application-III requirements (USL-III=0.4) and a Z-value of 2.8. In contrast, 

MSR-RL data are narrowly around the mean (𝜇 = 0.0334) with no values exceeding any 

of the three applications USLs (USL-I, USL-II, USL-III). 

Furthermore, the capability plots of current ripples of standard RL and MSR-RL 

show that the standard RL data has exceeded the USLs of all applications, resulting in 

low Z-values. Particularly, 2151 samples (out of 10000) of standard RL current ripple 

data are recorded beyond USL-III. In contrast, MSR-RL current ripples capability plot 

shows a few data exceeding the USLs of Applications-II and III. Thus, MSR-RL achieves 

high Z-values of current ripples for three application requirements. 

 

Fig. 6.20.   Capability plot of torque ripples for standard RL and proposed MSR-RL. 
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Fig. 6.21.   Capability plot of current ripples for standard RL and proposed MSR-RL. 

 

6.7 Comparison of MSR-RL and A-MFPCC 

Data-driven MSR-RL based current control of PMSM drives is achieved based on 

a pre-trained policy, resulting in less computational online control. In contrast, A-MFPCC 

(Chapter 5) controls the PMSM drives through online optimization, requiring additional 

computational capacity compared to MSR-RL. Therefore, it is essential to conduct a 

performance comparison between MSR-RL and A-MFPCC based on PMSM drives to 

see if a computationally efficient MSR-RL can achieve good performance as A-MFPCC 

at different operating conditions. MSR-RL and A-MFPCC were evaluated at different 

operating conditions and showed excellent performance compared to their corresponding 

conventional methods. MSR-RL and A-MFPCC were optimized to achieve the best 

performance possible; thus, it can be challenging to differentiate their performance 

difference based on graphical results. This section presents a quantitative analysis and 

robustness evaluation of MSR-RL and A-MFPCC. 
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6.7.1 Quantitative Analysis  

Torque and current ripples are essential performance indicators to judge the 

performance of a PMSM control method. MSR-RL and A-MFPCC are quantitatively 

compared against parameter mismatching and changes in operating conditions. Higher 

performance effects are experienced with the variations of machine inductances (𝐿𝑑 , 𝐿𝑞); 

thus, both controllers are simulated at different values of 𝐿𝑑 and 𝐿𝑞, according to Table 

6.2. The corresponding numerical data of torque and current ripples with the variation of 

Ld and Lq are plotted in Figs. 6.22 and 6.23, respectively.  

Furthermore, MSR-RL and A-MFPCC are quantitatively evaluated at different 

speeds and load conditions. Experimental tests are conducted for both controllers based 

on PMSM drives at five speeds (200, 400, 600, 800, and 1000 rpm) and under load 

conditions between 0.25 Nm and 2 Nm. The current ripples are computed for each 

operating condition, and the resulting quantitative data of MSR-RL and A-MFPCC are 

presented in Fig. 6.24. 

The quantitative analysis against parameter variations and changes in operating 

conditions has shown that the proposed MSR-RL based current control of PMSM drive 

can achieve comparable performance to A-MFPCC. Notably, an offset difference in the 

performance, with A-MFPCC achieving better performance. This suggests that MSR-RL 

was not trained in all possible conditions or that the parameter sets used for training were 

not large enough to cover the whole parameter variations range. Furthermore, MSR-RL 

may have reduced the computational cost compared to A-MFPCC. However, with the 

availability of a high computation capacity processor (i.e., dSPACE), even a high 

computational controller can be implemented with a smaller sampling size. 
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(a) 

 
(b) 

Fig. 6.22.   Quantitative comparison of MSR-RL and A-MFPCC with the variation of 

inductance (𝐿𝑑), (a) torque ripples, and (b) current ripples. 
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(a) 

 
(b) 

Fig. 6.23.   Quantitative comparison of MSR-RL and A-MFPCC with the variation of 

inductance (𝐿𝑞), (a) torque ripples, and (b) current ripples. 
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(a) 

 
(b) 

Fig. 6.24.   Current ripple comparison of MSR-RL and A-MFPCC with (a) different 

load torques at rated speed (1000 rpm) and (b) various speeds under torque (2 Nm). 
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6.7.2 Robustness Evaluation 

Robustness to uncertainties is a primary goal of both MSR-RL and A-MFPCC. 

Therefore, their robustness is evaluated using the proposed method (Chapter 4). Based on 

the maximum parameter variations (Table 6.1), the robustness evaluation of MSR-RL and 

A-MFPCC is conducted, and the corresponding sigma levels and Z-Values are presented 

in Table 6.5. 

Table 6.5: Robustness evaluation results of the MSR-RL and A-MFPCC. 

Indicator 𝑍𝑇𝑠 𝑍𝑂𝑆 𝑍𝜔 𝑍𝑇𝑟𝑖𝑝𝑝 𝑍𝑖𝑟𝑖𝑝𝑝  𝑛𝑠𝑦𝑠 𝑃𝑂𝐹 

Controller  (Application-I) 

A-MFPCC 50.2 44.1 167.1 13.9 22.0 6.0 0 

MSR-RL 33.4 61.9 146.5 23.7 17.9 6.0 0 

  (Application-II) 

A-MFPCC 35.3 24.3 133.4 9.8 14.9 4.6 ≈ 0 

MSR-RL 22.5 36.2 94.0 17.5 12.3 3.9 0.01% 

 (Application-III) 

A-MFPCC 20.5 14.5 51.8 5.7 7.9 3.9 0.01% 

MSR-RL 11.7 23.4 43.0 11.3 6.6 3.2 0.16% 

 

 

The robustness evaluation in Table 6.5 shows that both controllers achieved good 

robustness regarding three application requirements. A sigma level of 6𝜎 was achieved 

for both controllers for low requirements (application-I). For Application-II, MSR-RL 

achieved 3.9𝜎, while A-MFPCC achieved 4.6𝜎. As for Application-III, A-MFPCC 

achieved 3.9𝜎, while MSR-RL achieved only 3.2𝜎. MSR-RL achieved sigma levels 

lower than A-MFPCC even though the Z-values of MSR-RL are higher for the overshoot 

and torque ripple performance indicators. This is because the sigma levels are computed 

based on the number of defects, while Z-values are computed based on the mean (𝜇) and 



Chapter 6. Robust Model-Free Reinforcement Learning-Based Current Control of 
Pmsm Drives Under Multiple Uncertainty Sets 

 

274 
 

standard deviation (𝜎). This means MSR-RL may have achieved effective performance 

for most of the data samples, maintaining low values of the performance indicators far 

away from the specification limits. However, it exceeds the limit for a few samples, 

resulting in a low sigma level and high Z-values (because the mean is small compared to 

the specification limit). This can be illustrated by the capability plot of torque and current 

ripples of A-MFPCC and MSR-RL presented in Fig. 6.25. 

Furthermore, the Z-Values of performance indicators show the weakness of MSR-

RL is the settling time robustness. This means MSR-RL dynamic robustness is the main 

factor affecting overall system robustness. Thus, it is essential to improve the dynamic 

response of MSR-RL, including the optimization of the speed controller for better settling 

time robustness and achieving 6𝜎 for all three application requirements. 

MSR-RL and A-MFPCC have shown excellent robustness over maximum 

parameter variations (Table 6.1) with three application requirements (Table 6.3). This 

indicates the effectiveness of MSR-RL and its ability to perform as the online optimized 

controller (A-MFPCC).  



Chapter 6. Robust Model-Free Reinforcement Learning-Based Current Control of 
Pmsm Drives Under Multiple Uncertainty Sets 

 

275 
 

 

(a) 

 

(b) 

Fig. 6.25.   Capability plots of A-MFPCC and MSR-RL for (a) torque ripples and (b) 

current ripples. 
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6.8 Summary  

This chapter introduced an MSR-RL-based current control of PMSM drives. 

Standard RL methods often struggle to adapt to new operating conditions and parameter 

sets, reducing system performance and robustness. To overcome these limitations, the 

proposed MSR-RL leveraged multi-task RL to train a single policy that can generalize 

and perform well across a wide range of parameter sets. 

MSR-RL achieved strong robustness and improved adaptability to new parameter 

sets by utilizing multiple training tasks with varying parameters. The parameter sets, 

represented as contexts in the form of Contextual Markov decision processes (CMDPs), 

allow for optimizing a policy that maximizes the cumulative reward over all contexts. By 

clustering tasks with shared information into models, a unified policy is generated, 

ensuring robustness not only to the clustered models but also to unseen models. 

The proposed MSR-RL approach presented several advantages compared to 

standard RL methods. The need to train separate policies for different parameter sets was 

eliminated, reducing computational effort and enhancing efficiency. Additionally, the 

learned policy can adapt to new operating conditions and parameter sets, thereby 

improving the overall performance and robustness of the system. 

The performance comparisons based on simulation, experiments, quantitative, 

and robustness evaluation have validated the superiority of MSR-RL over standard RL in 

different operating conditions. Additionally, the comparison of MSR-RL with A-MFPCC 

indicates the ability of MSR-RL to achieve similar performance with fewer online 

computational requirements. 
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CHAPTER 7 

7          CONCLUSION AND FUTURE WORKS 
 

 

7.1 Conclusion  

The main findings and achievements presented in this thesis are summarized as 

follows: 

• A comprehensive literature survey was conducted about PMSMs and their control 

methods. PMSM drive uncertainties, robust control methods, and data-driven control 

methods were critically investigated. 

•  Improved two-vector MPCs were proposed to eliminate the shortcomings of 

conventional MPC. Fuzzy decision-making criteria were used to eliminate the 

weighting factors and select an additional switching vector. The proposed methods 

were validated by simulation, experiment, and quantitative analysis and performed 

better than the conventional MPC. 

• A novel robustness evaluation method was introduced based on the Six Sigma design 

methodology. Five RPC methods and conventional MPC were numerically evaluated 

based on the proposed method, and their robustness levels (sigma levels) were 

obtained. This method was also used to evaluate the robustness of the proposed 

controllers in the subsequent chapters. 

• An adaptive model-free predictive current control (A-MFPCC) with an adaptive 

current difference updating mechanism was proposed. A reference vector was 

generated based on the position of the current reference and current error, then was 
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used to update the current difference and prevent stagnation. The effectiveness of this 

method was validated by conducting a comparison with two other MFPCC schemes 

based on simulation, experiment, and robustness evaluation. The proposed method 

performed better than other methods over different operating conditions. 

• Robust data-driven RL-based control was proposed for PMSM drives. The proposed 

method was trained using multiple parameter sets to obtain a robust policy for all 

parameter variations. Considering finite parameter sets, the proposed MSR-RL was 

trained and validated based on PMSM drives. Compared to standard RL, the proposed 

MSR-RL showed strong robustness to parameter variations and changes in operating 

conditions. The controller was validated through a comparison with standard RL based 

on simulation, experimental, and robustness evaluations. 

• The proposed MSR-RL and A-MFPCC were evaluated and compared over different 

operating conditions and parameter variations. The quantitative and robustness 

analyses have shown the ability of MSR-RL to achieve comparable performance to A-

MFPCC with fewer online computational requirements. 

 

7.2 Future Works 

This project has investigated various robust control methods for PMSM drives, 

including model-free and data-driven RL robust control methods. However, there is always 

room for future improvements. The potential improvements and future perspective of this 

research are presented as follows: 

• Robustness evaluation with other uncertainties, e.g., unmodelled dynamics. Currently, 

robustness evaluation is performed with parameter variations only. Thus, evaluating 
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the robustness by considering parameter variations and unmodelled dynamics is 

essential. 

• Considering the stability robustness evaluation and more performance indicators like 

switching frequency. 

• Robust optimization can be implemented to enhance the performance of the proposed 

controllers. Speed control and other system parameters can be optimized through this 

technique in the future.  

• Exploration of novel methods for reducing the sample size in robustness evaluation, 

particularly through stratified sampling, bootstrapping, machine learning techniques, 

statistical methods, Bayesian inference, meta-analysis, sequential testing, simulation 

and modeling, expert knowledge, and data preprocessing, can enable more efficient 

evaluations while maintaining data quality. 

• Integrating the robust optimization of control systems with the robust optimization of 

electrical machines.    

• Large-scale machine drive setup to be considered, e.g., high-power rating machines 

suitable for EVs to validate the controller performance. 

• Using real-time measurement data for RL training. Currently, RL is trained based on 

simulation data; thus, in the future, it is essential to collect extensive measurement data 

of the drive system at various operating conditions and use it for RL training. 

• Considering different machine learning algorithms, including different RL agents than 

the one currently used 

• Exploring the possibility of merging different control methods will be considered. his 

includes combining data-driven control methods such as A-MFPCC and MSR-RL to 
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generate robust adaptive and computationally efficient control methods. Additionally, 

six-sigma robust optimization can be used to optimize the proposed A-MFPCC 

parameters and RL hyperparameters. 
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APPENDICES  
 

 

APPENDIX A 

 

Appendix A.1   Impact of Covid-19 on Research Progress 

The COVID-19 pandemic significantly influenced the progression of this doctoral 

research project. Commencing in January 2020, the project was swiftly confronted with the 

Australian government's travel ban, preventing me from entering the country until late 

December 2021. My supervisors and I had to adapt our approach throughout this prolonged 

period, shifting our focus toward theoretical and simulation-based investigations. 

By April 2022, when access to the UTS labs was finally reinstated, we commenced 

building the experimental setup. By the end of that year, experimental results were obtained, 

leading to the publication of one research article. However, due to the limited time available 

(only six months) to complete the Ph.D., I had to prioritize writing my thesis while 

simultaneously working on three additional papers for publication. One of these papers has 

been successfully completed and submitted for publication, which is now under revision. 

However, recognizing the extended review process often associated with esteemed journals, 

we prioritized the thesis's completion before dedicating our efforts to finalizing the remaining 

papers. 

The challenges posed by the COVID-19 pandemic necessitated adaptability and 

resilience, requiring us to reframe our research approach and maximize available resources. 

While the initial experimental phase experienced delays, the shift towards comprehensive 

theoretical and simulation-based investigations ensured that progress was maintained. 
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Despite the constrained timeframe, completing the Ph.D. thesis became a focal point, 

underscoring the significance and novelty of this comprehensive body of work, which we 

believe holds potential for publication in high-quality journals. 

Appendix A.2   List of Publication  

 

Published Articles 

[1] N. Farah, G. Lei, J. Zhu, and Y. Guo, "Two-vector Dimensionless Model 

Predictive Control of PMSM Drives Based on Fuzzy Decision Making," in CES 

Transactions on Electrical Machines and Systems, vol. 6, no. 4, pp. 393-403, 

December 2022, doi: 10.30941/CESTEMS.2022.00051. 

Articles Under Revision 

 

[1]  N. Farah, G. Lei, J. Zhu, and Y. Guo, "A Novel Robustness Evaluation Method 

for Predictive Control of PMSM Drives," under revision, " IEEE Transactions 

on Energy Conversion. 

[2]  N. Farah, G. Lei, J. Zhu, and Y. Guo, " Robust Model-Free Reinforcement 

Learning Based Current Control of PMSM Drives," under revision,, IEEE 

Transactions on Transportation Electrification. 

Articles Under Review 

 

[1]  N. Farah, G. Lei, J. Zhu, and Y. Guo, "Adaptive Model-Free Predictive Current 

Control of PMSM Drives," under review, IEEE Transactions on Industrial 

electronics. 
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Appendix B. Quantitative Analysis of the Literature  

The various RPC methods of PMSM drives in the literature are divided into categories 

depending on the type of robust control used. RPC -based prediction error correction, 

observers, optimized cost function, model-free, and combined or hybrid techniques are some 

of these categories. A quantitative comparison of several methods of each category is 

conducted by considering a set of performance measures based on PMSM drives 

applications. These applications required /preferred PMSM drive performance can be used 

as indicators to perform the comparison. Different performance indicators can be identified 

as essential measures to determine how effective a control method of PMSM drive is for a 

specific application. These indicators include dynamic response, steady-state response, 

control robustness, and drive efficiency. The level of each indicator for the various RPC 

methods is determined by considering a quantitative scale (0-5) depending on the 

effectiveness of each control method. Table B.1 presents four essential performance 

indicators of the control method of PMSM drive, along with explanations of the quantitative 

scales for each indicator. 

Based on these indicators, several RPC methods of PMSM drives have been 

quantitatively analysed by rating their effectiveness regarding each indicator with an 

appropriate scale. Then, the total sum of the scales is calculated to show which robust method 

has the highest scale and perfectly matches the essential requirements for a specific 

application. Depending on each application, the above indicators differ in importance. For 

example, efficiency is more critical in certain applications than dynamic response, while 

other applications require high dynamic response no matter the efficiency. Therefore, it is 
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essential to include a weighting factor for each indicator depending on its significance to the 

application. 

Table B.1: Performance indicators of PMSM control methods 

  scale Indicator 

Dynamic Response (DR) 

0 (worst) The system response cannot track the reference at all 

1(bad ) The system response takes a very long time to track the reference 

2(average ) The system response is slow and has a long settling time 

3(good ) The system response tracks the reference with a moderate settling time 

4( very good) The system tracks the reference with a quite good settling time 

5(excellent) The system response is fast, with a faster settling time 

 Steady-state response (SSR) 

0 (worst) The steady-state response fluctuates with high ripples. 

1(bad ) The response is not tracking the reference properly and has high ripples. 

2(average ) The response is tracking the reference but has high ripples. 

3(good ) The response is tracking the reference but has moderate ripples. 

4( very good) The response is tracking the reference but has low ripples. 

5(excellent) The response is precisely tracking the reference and has minimum 

ripples. 

 Control Robustness (CR) 

0 (worst) No robustness, and with any uncertainty, system loses performance 

tracking 
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1(bad ) Low robustness and high uncertainties, the system loses performance 

tracking. 

2(average ) The system can withstand uncertainties but with very poor performance. 

3(good ) The system can withstand uncertainties with acceptable performance. 

4( very good) The system can withstand uncertainties with very good performance but 

has no robust method for all uncertainties. 

5(excellent) The system has a robust mechanism for all uncertainties and has perfect 

performance under any uncertainties. 

 Efficiency (ƞ) 

0 (worst) The system losses are maximum with the lowest efficiency. 

1(bad ) The system has high losses with lower efficiency 

2(average ) The system losses are moderate with moderate efficiency. 

3(good ) The system losses are low with good efficiency 

4( very good) The system has a loss minimization technique with high efficiency. 

5(excellent) The system has minimum losses with the highest efficiency. 

 

The four indicators are equally crucial for washing machine applications, but the 

dynamic response is more critical than the efficiency for servo-drive applications. Thus, the 

importance of these indicators can be weighted with an appropriate weighting factor. For 

example, if the significance of the efficiency for the servo drive is 80%, a weighting factor 

of 0.8 is used for the switching frequency with a servo drive application. Using weighting 

factors for certain indicators will produce different total scores of a specific PMSM drive 

method. Servo-drives, EVs, and washing machine PMSM applications with the 
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corresponding weighting factor (𝛾) for the dynamic response, steady-state response, control 

robustness, and efficiency performance indicators are presented in Table B.2. Several RPC 

methods of PMSM drives have been quantitatively analysed based on four performance 

indicators with three application weighting factors, as shown in Table B.3. 

 

Table B.2 The weighting factor (𝛾) for performance indicators of three PMSM drive 

applications  

𝛾 

Application 

Dynamic 

response 

(DR) 

Steady-state 

response 

(SSR) 

Control 

robustness 

(CR) 

efficiency (ƞ) 

Servo drives 1 0.8 0.8 0.75 

EV 0.7 1 0.8 0.9 

Washing 

machine 

1 1 1 1 

 

Table B.1: Quantitative analysis of RPC studies for PMSM drive 

Study RPC based on: DR SSR CR ƞ Total 

Servo 

drive 

EVs Washing 

machine 

[B.1] Optimized cost 

function 
3 4 3 3.2 

11 11.38 13.2 

[B.2] Observer  3 4 4 3.2 11.8 
12.18 14.2 
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[B.3] Optimized cost 

function 
4 3 2 2.4 

9.8 9.56 11.4 

[B.4] Hybrid techniques 3 4 4 4 12.4 12.9 15 

[B.5] Observer 3 4 4 4 12.4 12.9 15 

[B.6] Prediction error  3 4 4 4 12.4 12.9 15 

[B.7] Observer 4 3 4 4 12.6 12.6 15 

[B.8] Hybrid techniques 5 4 3 4 13.6 13.5 16 

[B.9] Observer 3 4 5 4 13.2 13.7 16 

[B.10] Observer 4 4 4 3 12.65 12.7 15 

[B.11] Hybrid techniques 5 4 5 4 15.2 15.1 18 

[B.12] Observer 4 4 4 3 12.65 12.7 15 

[B.13] Hybrid techniques 4 4 5 4 14.2 14.4 17 

[B.14] Observer 4 4 4 4 13.4 13.6 16 

[B.15] Optimized cost 

function 
3 3 4 3 

10.85 11 13 

[B.16] Prediction error 4 4 4 4 13.4 13.6 16 

[B.17] Prediction error 4 3 4 3 11.85 11.7 14 

[B.18] Prediction error 4 3 4 3 11.85 11.7 14 

[B.19] Hybrid techniques 4 4 4 4 13.4 13.6 16 

[B.20] Model-free  4 4 5 4 14.2 14.4 17 

[B.21] Model-free 5 4 5 4 15.2 15.1 18 
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