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ABSTRACT

Permanent Magnet Synchronous Machines (PMSMs) are widely used in industry due to
their high power density, high torque/current ratio, low power losses, and high efficiency.
Model predictive control (MPC) is a popular control method for PMSMs, but
conventional MPC methods have limitations in terms of unsatisfactory steady-state
performance, variable switching frequency, and reliance on weighting factors. To
overcome these drawbacks, two enhanced MPC methods based on current and torque
control have been proposed. These approaches can eliminate weighting factors, generate
two switching vectors per control cycle, and exhibit superior performance compared to

the conventional MPC.

However, model uncertainties and parameter mismatching are unavoidable in PMSM
drives, significantly affecting the control performance. To evaluate the robustness of a
control system and determine the robustness level, a novel and systemic robustness
evaluation method based on the concept of Six-Sigma methodology has been proposed.
This method is validated based on the conventional MPC and five other robust predictive

control methods.

Data-driven controls have emerged as a promising alternative to robust MPC, such as
model-free predictive current control (MFPCC) for PMSM drives. However, inaccuracies
in prediction and performance degradation can occur when the switching vectors remain
unchanged for consecutive control cycles, causing unapplied switching to stagnate. To
overcome this limitation, an adaptive MFPCC (A-MFPCC) has been proposed, which
incorporates a modified current difference updating mechanism. By generating a
reference vector based on current tracking error, the A-MFPCC method enforces the
update of current differences, preventing stagnation and optimizing the current tracking

performance.
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Reinforcement learning (RL) based control is another data-driven method, but standard
RL-based control usually is trained over a single training task with specific operating
conditions and a fixed parameter set. To address this challenge, multi-set robust RL
(MSR-RL) based current control of PMSM drives has been proposed. MSR-RL aims to
learn a single optimal policy that remains robust across multiple parameter sets or
contexts. The proposed A-MFPCC and MSR-RL methods have been validated through
numerical simulations, experimental tests, and robustness evaluations, demonstrating
superior performance across various operating conditions compared to their

conventional counterparts.
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CHAPTER 1

INTRODUCTION

1.1 Background and Significance

Electrical machines are increasingly used in various industrial, domestic, and
transportation applications. A tremendous number of electrical machines are being used
worldwide, utilizing about 46.2% of the total global electricity consumption [1.1]. With
the global concerns of energy conservation, environmental preservation, and
sustainability development, high-efficiency electrical machines have attracted much
attention in the academic and industrial fields [1.2-1.3]. Permanent magnet synchronous
machines (PMSMs) with features of high-power density, high efficiency, higher torque,
and less electrical losses became the ideal machines for several applications, including
traction systems (e.g., electric vehicle (EV)) [1.4], robotics [1.5-1.6], machine tools [1.7],
actuators [1.8], servo drives [1.9], air conditioning [1.10-1.11], washing machine [1.12-
1.13], and vacuum cleaner [1.14]. To optimize the performance of PMSMs in these

applications, machine controls are introduced [1.15].

For decades, conventional vector control methods have been implemented for
PMSM drives. Vector control offers superior performance and overcomes all the issues
of'scalar control [1.16]. Two vector control methods are commonly used in PMSM drives,
field-oriented control (FOC) and direct torque control (DTC) [1.17]. FOC has the merits
of fast dynamic response and good state-steady performance, but it incorporates a
complex structure comprising two current controllers and a PWM modulator [1.18]. On

the other hand, DTC has a simple structure and a rapid dynamic response. However, the
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conventional DTC produces high torque ripples, current harmonics, variable switching

frequency, and degraded performance at lower speed operations [1.19-1.20].

In the last decade, MPC methods for PMSM drives have garnered industrially and
academically growing attention. This is due to the merits of a basic concept, fast dynamic
response, multi-variable control, nonlinearity control, and constraint inclusion [1.21-
1.26]. MPC reduces the drive system complexity by eliminating the modulation scheme
and/or current controllers used in FOC [1.27]. Also, it selects a switching vector based on
minimizing a cost function instead of a heuristic switching table used in DTC. Thus, a
more accurate and optimum switching vector is obtained [1.28]. However, the
conventional MPC still faces some challenges, such as high torque and current ripples,
variable switching frequency, proper selection of weighting factor, and high
computational requirements. Therefore, numerous studies have focused on improving the
conventional MPC to eliminate these challenges. For instance, additional vectors are
applied along with the optimum vector during a control cycle [1.29-1.31]. In addition,
weighting factor elimination and switching frequency regulation are implemented to

improve the conventional MPC [1.32-1.33].

Despite these improvements, a key disadvantage of MPC is its dependency on
uncertain machine models. Various manufacturing and operational uncertainties exist in
the practical operation of PMSMs [1.34], which may not all have been captured in the
machine model used for prediction. Thus, prediction accuracy and control performance
are significantly affected when uncertainties occur. To reduce the effect of uncertainties
on the PMSM drive performance, RPC methods are introduced to enhance the system's
robustness and compensate for the impact caused by these uncertainties. Various RPC

methods have been introduced by implementing serval techniques and mechanisms, such
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as using observers [1.35], optimizing cost function [1.36], combining control techniques

[1.37], using prediction error correction [1.38], and using the model-free method [1.39].

Model-free predictive control (MFPC) has recently emerged as a promising
alternative to robust MPC methods. MFPC can eliminate the prediction dependency on a
simplified parametric machine model by developing a prediction model independent of
the machine model and parameters [1.40]. MFPC can be achieved using an ultra-local
model [1.41], where an ultra-local model replaces a complex system model with one or
two unknowns that can be estimated based on measured input and output data [1.42-1.43].
On the other hand, MFPCC can be achieved by solely using the system's measured input
and/or output data and their variations [1.44-1.46]. However, inaccurate estimation and
stagnation can occur depending on the technique used to achieve MFPC (e.g., current
difference, ultra-local model), and higher computational effort may be required [1.39,

1.44].

Recently, reinforcement learning (RL) has emerged as a promising approach for
achieving data-driven control in PMSM drives. A computationally efficient controller
optimized offline is obtained by training an RL agent with appropriate rewards based on
PMSM data [1.47-1.48], unlike MFPC, which requires continuous optimization during
online control and can be computationally intensive. The effectiveness of RL-based
controllers depends on the amount and quality of the data used for training. In the standard
RL-based controller, an agent learns an optimal policy that maximizes its expected
cumulative reward over a single training task with specific operating conditions and a
single parameter set. Thus, new operating conditions and different parameter sets (due to
parameter mismatching) can lead to poor performance, robustness, or instability in the

controlled system [1.49].
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Although there are various robust control methods, there is a lack of knowledge
on the definition and criteria of robustness. This raises questions about the basis for
determining whether a control system is robust or non-robust and how to quantify the
level of robustness of a control system. In other words, it is unclear what criteria should
be used to define a robust control system and how to compare the robustness of different
control systems. This highlights the need for further research to understand better the
definition and criteria of robustness in control systems and to develop methods for

measuring the robustness index of a control system.

This research proposes a clear and adequate robustness definition, demonstrated
based on a simple second-order system and DC motor drives. A control system's
robustness criteria and boundaries are established by considering different performance
indicators. In addition, practical parameter variation (mismatching) ranges are generated
considering operating conditions and operational factors such as temperature changes and
manufacturing tolerances. Then, the robustness indices are computed using the Six-Sigma
concept by considering various performance indicators and setting their boundaries
(acceptance level for different application requirements). This method is validated based

on six different predictive control methods of PMSM drives.

To improve the performance of data-driven control and achieve higher sigma
levels, this research proposes two novel data-driven control methods for PMSM drives.
The first method is an adaptive model-free predictive current control (A-MFPCC) with a
modified current difference updating technique. A reference vector is generated
considering the tracking error and the position of the reference current vector, ensuring
regular updates of the current difference and preventing stagnation. The second method
is a multi-set robust reinforcement learning (MSR-RL) based current control of PMSM

drives. The MSR-RL aims to learn a single optimal policy robust to several different
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parameter sets. Instead of learning a policy over a single training task with a single

parameter set, the proposed MSR-RL learns a single policy over multiple training tasks

with various parameter sets. The resultant policy can be robust to all these parameter sets

and generalized to the new ones. The effectiveness of the proposed A-MFPCC and MSR-

RL is validated through comparison with conventional methods based on numerical

simulation, experimental tests, and robustness evaluation.

1.2

Research Contributions

The main contributions of this research are summarized as follows:
Two improved MPC methods are proposed to eliminate the issue of conventional
MPCs. These methods apply two vectors in each control cycle to improve steady-
state performance and regulate the switching frequency and utilize the fuzzy
decision-making criteria to eliminate the use of weighting factors.
A novel robustness evaluation method based on the Six-Sigma concept is proposed.
A control system's robustness index or sigma level can be determined by defining
specific indicators and evaluating the control system against them for a number of
samples within bounded uncertainty ranges. The proposed method is applied to MPC
and some existing RPC methods for PMSMs. Their robustness indexes (sigma levels)
are obtained by evaluating them with different bounded uncertainty ranges and based
on three different application requirements.
An adaptive MFPCC (A-MFPCC) with a modified current difference updating
technique is introduced. A reference vector is generated considering the tracking
error and the position of the reference current vector, ensuring regular updates of the

current difference and preventing stagnation.
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e A novel MSR-RL-based current control of PMSM drives is introduced. MSR-RL
learns a single policy over multiple training tasks with various parameter sets,

resulting in a robust policy that can be generalized to the new ones.

1.3 Thesis Outline
This thesis consists of seven chapters, including this chapter that provides an
overview of the research background, significance, contributions, and the overall

structure of the thesis. The subsequent chapters are outlined as follows:

Chapter 2 offers a comprehensive literature survey on PMSM drives and
commonly employed control methods. Additionally, this chapter critically reviews

various RPC methods, including model-free control and data-driven RL-based control.

Chapter 3 delves into the proposed two-vector dimensionless MPCs based on
fuzzy decision-making criteria. This chapter presents mathematical modelling,

simulation, and experimental tests of these methods applied to PMSM drives.

Chapter 4 discusses the novel robustness evaluation method based on Six Sigma
methodology. The definition and criteria of system robustness are presented and
illustrated through a simple second-order system. Furthermore, the validation of the
proposed method is showcased in this chapter based on six predictive control methods for

PMSM drives.

Chapter 5 focuses on the proposed A-MFPCC scheme for PMSM drives. It
encompasses mathematical modelling and comparisons with two other MFPCC schemes

through simulation, experiments, and robustness evaluation.

Chapter 6 introduces the proposed MSR-RL-based current control for PMSM

drives. The concept of RL-based control, MSR-RL modelling, and multi-task training are
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discussed extensively. Additionally, this chapter presents a comparison between MSR-
RL and standard RL through numerical simulation, experimental tests, and robustness

evaluation.

Chapter 7 summarizes the main findings and contributions achieved in this thesis.

Furthermore, this chapter outlines the future research perspective for this field.
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CHAPTER 2

A LITERATURE SURVEY ON PERMANENT MAGNET
SYNCHRONOUS MACHINE DRIVES

2.1 Introduction

The role of AC machines in control systems is to convert electric energy into
mechanical energy to move/drive a load. Several types of AC machines are currently being
used in various applications. Permanent magnet synchronous machines (PMSMs) are among
the most commonly used and preferred AC machines due to their high torque to current ratio,
high power density, low power losses, and high efficiency. However, the higher cost, low
robustness (in comparison with induction machines (IMs), and high complexity control are
drawbacks of PMSMs. Various control strategies have been developed to cope with these
issues and utilize the high efficiency PMSMs in various applications, including vector control
techniques or field-oriented control (FOC) and direct torque control (DTC). Over the past ten
years, predictive control, or MPC methods have been introduced as exemplary control
methods for PMSM drives with several advantages over vector control techniques. Intensive
efforts have recently been made to apply, develop, and improve MPC methods for PMSM

drives, including improved and robust MPC methods.

This chapter presents a literature survey on PMSM drives, including conventional
MPC and robust MPC methods. First, the state of the art of PMSM fundamentals is

introduced in Section 2.2. Then, a brief discussion on the PMSMs drives, including scalar
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control and vector control (FOC and DTC), is presented in Section 2.3. Next, a detailed
discussion on predictive control methods for PMSM drives, including the concept of
predictive control, conventional MPC, and improved MPC methods, are presented in
Sections 2.4 and 2.5. After that, a discussion and investigation of various PMSM drive
uncertainties and their effects on the drive performance are presented in Section 2.6. A
discussion of various RPC methods is presented in Section 2.7. The last section (Section 2.8)

discusses data-driven control methods, including model-free and RL-based control.

2.2 PMSM Fundamentals
PMSMs are AC machines that utilize permanent magnets (PMs) for excitation.
Depending on the location of PMs on the machine, two types of PMSMs are classified:

PMSMs with PMs on the rotor or PMSMs with PMs on the stator.

2.2.1 PMSMs with PMs on Rotor

This is a common type of PMSMs widely used in various applications. Depending on
the location of PMs on the rotor configuration, they can be divided into two main types:
exterior or surface-mounted PMSMs (SPMSMs) and interior PMSMs (IPMSMs). In
SPMSMs, the PMs are located on the surface of the rotor to directly face the air gap and
stator winding, while in IPMSMs, the PMs are buried inside the rotor cores [2.1-2.3]. The
structures of SPMSMs and IPMSMs are presented in Fig. 2.1. Regarding dynamic models,
the main difference between an SPMSM and an IPMSM is that the [IPMSM has a variable

reluctance that varies with the rotor angle.
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In contrast, the SPMSM has a fixed reluctance for any rotor angle. That leads to a
uniform air gap and, thus, an equal magnetizing inductance for the direct and quadrature axis
[2.4-2.5]. Besides, other novel PMSMs with PMs on rotor designs have been proposed to
achieve additional features for specific applications, including PM hysteresis hybrid rotor
machines that can produce high starting torque [2.6], 4-layer hybrid windings synchronous
machines that can achieve high air-gap and power density [2.7] and double rotor permanent
magnet machine to be used as traction machine and can achieve high torque and fewer torque

ripples [2.8].

(2) (b)

Fig. 2.1. Structures of PMSMs with PMs on the rotor, (a) IPMSM, (b) SPMSM
[2.9].

2.2.2 PMSMs with PMs on Stator

With the PMs located on the stator, the rotor must have a silent pole configuration,
thus being similar to the switched reluctance machines (SRMs). Such PMSMs types have the
merits of simplicity, rugged structure, and high-speed operations. If the PMs are located on
the stator back-iron, it is called doubly salient permanent magnet machines (DSPMMs) [2.10-

2.11]. If the PMs are fitted to the stator teeth, it is called flux-switching permanent magnet
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machines (FSPMMs) [2.12-2.13]. The configurations of DSPMMs and FSPMMs are

presented in Fig. 2.2.

Stator yoke

Adrgap Tor extra flus path

Armature winding

Seator pole

Rator pole

Permanent magned

DeC excination winding

Winding

(b)

Fig. 2.2. Structures of PMSMs with PMs on the stator, (a) stator doubly fed
DSPMM [2.11], (b) FSPMM with phase-group concentrated-coil (PGCC) windings [2.14].
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23 Conventional PMSM Drives

PMSM control techniques are evolving like other AC machines. In the past, PMSM
drives have been controlled utilizing scalar control (V/F) by controlling the magnitude of
voltage and frequency of the supply to maintain a constant (V/Hz) over the entire speed
operation. Scalar control is an open-loop control suitable for applications that do not require
a good dynamic performance [2.15]. However, for high-performance PMSM drives, scalar
control is inadequate, and advanced control methods need to be applied [2.16]. Vector control
offers superior performance and overcomes all the issues of scalar control. It utilizes the
space vector concept and phase-transformation techniques to obtain an independent flux and
torque control, therefore, incorporating a separately excited DC motor control [2.17]. Two
popular vector control methods are commonly used in PMSM drives, namely FOC and DTC

[2.18].

FOC was first introduced in the early 1970s as an attempt to control AC machines,
similar to separately excited DC machines with independent torque and flux control [2.19].
The principle of FOC incorporates flux and torque decoupling control by transforming the
stator currents into d-q rotating frames where the flux is controlled with a d-component. In
contrast, the torque is controlled with a g-component [2.20-2.21]. In contrast, DTC was first
introduced in the mid of 1980s [2.22-2.23] to control the torque and flux of AC machines
and generate the inverter switching pulses based on a pre-defined switching table. Compared
to FOC, DTC directly generates the inverter pulses based on the switching table without
using a modulator [2.24]. The configuration of vector control consists of PMSM, phase-
transformation, speed controller, current/torque and flux controllers, and inverter, as shown

in Fig. 2.3.
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Fig. 2.3. Block diagram of vector control technique for PMSM drives.

24 Model Predictive Control of PMSM Drives.

MPC is an advanced control method that has recently emerged in machine drives.
This is due to nonlinearity control, constraint inclusion, simplicity, elimination of current
controllers compared to FOC, and selection of more accurate switching vectors compared to
DTC. The principle of MPC is predicting the future states of machine variables based on their
present states. The operation of MPC includes measurement of the machine variables,
estimation of the variables that cannot be measured, and finally, prediction of future values
based on the measured and estimated values [2.25-2.26]. Based on the controlled variables,
MPC can be classified into predictive torque control (PTC), which uses torque and flux as
the control variables [2.27]. Predictive current control (PCC) uses the stator currents as the
control variables [2.28], predictive speed control (PSC) uses the speed of the machine as the

control variable [2.29], and cascade predictive control which regulates the torque/ current
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and motor speed with two separate MPCs [2.30].MPC can be classified into a continuous
control set (CCS-MPC) and a finite control set (FCS-MPC) based on the switching signal
state. The implementation of CCS-MPC is based on voltage vector calculation by minimizing
the cost function for reference tracking and requires a PWM modulator to generate the

switching pulses.

In contrast, FCS-MPC is based on determining an optimal voltage vector that
minimizes a pre-defined cost function and directly generates the switching signals without a
modulator [2.31]. A comparison of FCS-MPC and CCS-MPC for machine drives was
discussed in [2.32] and [2.33] compared the performance of FCS-MPC and CCS-MPC and
showed both obtained similar performance. Considering the discrete nature of the power
converter, FCS-MPC is commonly used in power converters and machine drives [2.31]. The

block diagram of the general MPC is shown in Fig. 2.4.

Sa,Sb,S
Referenec Variable GOOSE
—]  Cost function » VSI
X*(k) Vabe
[y
X(k+1)
Variables PMSM
prediction -
Variables » X(k)

estimation Measured variable

Fig. 2.4. General block diagram of MPC-based PMSM drives.

2.4.1 Continuous Control Set MPC (CCS-MPC)
In CCS-MPC, the discrete nature of the power converter is not considered; instead, a

PWM modulator is used to abstract the integer nature of the converter. The principle of CCS-
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MPC is similar to vector control (FOC), where a modulator is used, and a regulated switching
frequency is attained, except that CCS-MPC achieves a faster transient response with a slight
overshoot [2.34]. A continuous reference voltage is computed via the cost function
minimization and then synthesized by a PWM modulator to obtain the switching pulses. The
design methodology of CCS-MPC is based on Taylor series expansion to solve an
optimization problem. Unlike FCS-MPC, the constraints on the switch changes cannot be
handled in CCS-MPC because a PWM modulator is always required to generate the
switching pulses for the converter. The advantages of CCS-MPC include regulated switching
frequency, less computation, and smaller current and torque ripples, however; it is very

sensitive to parameters mismatching and external disturbance.

CCS-MPC has been applied for PMSM drives in [2.35], where a disturbance observer
was combined with CCS-MPC to estimate the lumped disturbance and compensate for their
effects. Also, [2.36] has proposed a CCS-MPC for PMSM drives using a multi-step tracking
error technique to reduce the overshoot of the current response and incorporate external
disturbance and parameter mismatching. Besides, [2.37] utilized CCS-MPC to control
PMSM drives for the PV water pumping system, and [2.38] implemented CCS-MPC for

PMSM drives with the consideration of input voltage constraints.

2.4.2 Finite control Set MPC (FCS-MPC)

Finite or direct control set MPC considers the discrete nature of the power converter
and minimizes a cost function to directly generate finite switching pulses for the converter.
The FCS-MPC method incorporates the concept of DTC, where both attain high sampling
frequency and variable switching frequency, except that FCS-MPC method can achieve a

better current response and a lower sampling frequency [2.39-2.40]. The design methodology
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of FCS-MPC is based on the Euler discretization method to solve the optimization problem.
The advantages of this method include less complexity where the PWM modulator is
eliminated, good steady-state response, and flexibility to define the control objectives [2.41].
However, high torque, current ripples, and high computation requirements are the drawbacks
of FCS-MPC [2.42-2.43]. A detailed discussion of the advancement in FCS-MPC for power
converters and machine drives was presented in [2.44], which shows that FCS-MPC has a
comparable performance with the classical control methods and is generally superior in

transient response and flexibility.

FCS-MPC is the most popular MPC method usually applied for PMSM drives, such
as speed control [2.29, 2.45], torque control [2.46-2.52], and current control [2.53-2.58].
Besides, several studies have focused on eliminating the drawbacks of FCS-MPC-based
PMSM drives, such as variable switching frequency [2.59-2.60], higher torque ripples [2.61-
2.62], higher computational burden [2.63-2.64], and the effect of weighting factor [2.65-

2.66].

2.4.3 Cost Function Selection

The cost function can include several types of terms related to different control
requirements for the system [2.31]. One such type is the reference following cost function,
which includes terms representing a variable following a reference, such as current control,
torque control, and flux control. These terms can be expressed generally as the error between

the predicted variable and its reference [2.48].

Actuation constraint cost function, where any measure of control effort is considered
an additional term in the cost function. In power converters and drives, the control effort is

related to the voltage or current variations, the switching frequency, or the switching losses.
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For example, in a three-phase inverter, the control effort can be represented by the change in
the voltage vector, where the difference between the previous and the current-voltage vector

is added as an additional term to the cost function [2.67].

2.5 Improved MPC Methods
Despite the merits of MPC control methods, their conventional structure still faces
some challenges, such as high torque and current ripples, variable switching frequency,
proper selection of weighting factor, and high computational requirements. Therefore,
numerous studies have focused on improving conventional MPC types to eliminate these

challenges.

The first essential improvement made to the MPC is the time-delay compensation. In
the conventional MPC, the machine variables are measured at time instant (k) and then
predicted at time instant (k+/). However, the actuating signals (voltage vector) are only
available at time instant (k+2); this creates a step time delay [2.63]. To compensate for this
delay, the variables are predicted at time instant (k+2). Various literature has included the
time-delay compensation for MPC; for example, [2.68] proposed an MPC for PMSM drive
based on real-time optimization considering one-step delay compensation. Similarly, [2.69-
2.71] have used two-step prediction to compensate for the time delay between state
measurement and actuation state and avoid drive performance deterioration. Due to the
simplicity and influence of time-delay compensation in MPC based PMSM drive, it has been

embedded improvement to MPC schemes including other modified MPC.

2.5.1 Multi-Vector MPC
In the conventional MPC methods, only one optimum voltage vector is applied for

the entire control cycle, which tends to produce a variable switching frequency and increase
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the torque ripple. To eliminate this issue, additional vectors are applied along with the
optimum vector during a control cycle with an appropriate duty ratio control. In [2.61], two-
vector-based PCC for PMSM drives with vector duration control was proposed. The first
vector was selected similarly to conventional MPC, while the second vector was among the
adjacent vectors to the first optimum vector to ensure only one change of switching state at
each control cycle, thus avoiding high switching frequency. In addition, a duty cycle

optimization was used to ensure adequate time duration of the first vector.

Furthermore, [2.62] has proposed a three-vector PCC for PMSM drives based on the
space vector modulation (SVM) technique. In this method, two active voltage vectors and a
zero vector are selected to be applied for one control cycle, and their durations are calculated
based on deadbeat control. The cost function is evaluated for three voltage vectors, then
applied in one control cycle with the help of space vector modulation (SVM) to predict the
next switching state. Unlike [2.61], which firstly evaluates the cost function to obtain the
optimum first vector and calculates its duration, then selects the second vector from a
combination of two adjacent active vectors to the first vector and zero vector and applies it
for the rest of the duration. Similarly, [2.72] proposed a two-vector-based PTC with duty
ratio control for PMSM drives, where the selection of the first and second vectors is similar
to [2.61], except the vector duration is evaluated in the cost function. In addition, a two-
vector-based PCC of PMSM drives was proposed in [2.73] to improve the steady-state
performance. Firstly, a reference vector was calculated based on deadbeat current control;
the first optimum vector was selected as the nearest active vector to the reference vector.
While the second vector was selected among three candidates to be two adjacent active

vectors to the first vector and zero vector, and thus a candidate with minimal distance from

23



Chapter 2. A Literature Survey on Permanent Magnet Synchronous Machine Drives

the reference vector was selected. Unlike other two-vector MPC, this method does not require
the calculation of the current slope to obtain the vector duration. In the same context, [2.74]
proposed a generalized multi-vector MPC for PMSM drives, which combines two MPC
methods to obtain the reference vector and calculates the duties cycle based on the space

vector or sinusoidal pulse width modulation (PWM) concept.

In summary, multi-vector-based MPC methods are an essential improvement to the
conventional MPC, where several studies consider it for PMSMs [2.75-2.76] and other
machine drives [2.77-2.78]. It has been reported to improve the steady-state performance,
reduce the torque and current ripples, regulate the switching frequency, and accurately select

the voltage vector.

2.5.2 Weighting Factor Selection

The cost function of PTC method is typically based on torque and flux, which have
different magnitudes and units. Therefore, a weighting factor is required to balance the
performance of torque and flux. The selection of the weighting factor is based on the rated
value of torque and flux. However, the selection of the weighting factor significantly impacts
the drive performance; thus, this fixed value weighting factor might be inadequate for
enhanced drive performance. Several research papers have considered different approaches
to obtain an appropriate weighting factor. In [2.65], PTC without weighting factor for PMSM
drives was proposed where a cost function-based voltage vector tracking error was used
instead of a torque-flux error-based function. The deadbeat-direct torque flux control (DB-
DTEFC) principle was utilized to obtain the reference voltage vector that ensures the torque
and flux error converge to zero. Thus, a cost function-based voltage vector was proposed,

which does not require a weighting factor. The advantages of such a method are eliminating
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non-trivial tuning of the weighting factor and reducing the computational burden associated

with the cost function-based flux-torque error.

A similar principle has been adopted in [2.66], where PTC of PMSM drive-based
voltage vector cost function was proposed. In addition, [2.79] has eliminated the weighting
factor from PTC based PMSM drive by using a new lookup table of DTC, and only three
voltage vectors are predicted and evaluated in the cost function. Torque-flux error-based cost
function is commonly used for PTC; alternatively, the proposed method predicts the angle
between the stator and rotor flux vectors and evaluates a cost function based on the error
between the predicted angle and a reference angle. This method eliminates the weighting
factor issue and reduces the system computation cost since it uses a new lookup table of DTC
with only three voltage vectors. Furthermore, an improved weighting factor selection of PTC
for PMSM drives has been proposed in [2.80]. An optimal weighting factor was selected

using a radial basis function neural network (RBFNN).

In general scope, weighting factor selection techniques and guidelines in MPC methods
are discussed in [2.81-2.82]. In addition, a weighting factor selection method for MPC in
power converter using a neural network method has been proposed in [2.83]. With the neural
network, a powerful and fast optimization is obtained, the responses from the network very
well match the responses derived from the model, and the acquired weighting factor is robust

to load variations.

2.5.3 Switching Frequency Regulation
Common-mode voltage (CMV) suppression to regulate the switching frequency is
another improvement of conventional MPC methods for PMSM drives. CMV is the voltage

between the midpoint DC-link capacitor and the neutral point of the load. If the frequency of
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CMV is very high, the leakage current and electromagnetic interface can increase, and the
motor shaft can be damaged [2.84-2.86]. Various studies have proposed different methods to
address the effects caused by CMV in PMSM drives, including improvement to the
conventional MPC techniques. In [2.59], an MPC with constant switching frequency was
proposed to suppress the CMV in PMSM drives. Compared to the conventional MPC, where
only one active vector is applied, this method utilized four active vectors in the next control
cycle. The switching sequence model is developed to keep the switching frequency fixed and
equal to the control frequency. This method applies the four active voltage vectors [2.87],
where a zero vector is avoided to restrict the amplitude of CMV, and two non-adjacent

vectors are used to create the equivalent zero vector.

The CMV and switching frequency can be improved with a total prohibition of zero
vector, but the current signal quality is significantly affected. Therefore, [2.60] has proposed
an MPC for PMSM drives with the realization of both CMV suppression and current
distortion. A variable MPC was developed to suppress the CMV while maintaining good
current quality and low switching frequency. The proposed scheme did not completely forbid
the use of zero vector; alternatively, it sets an evaluation mechanism to determine whether to
use zero vector or not. Three active and zero vectors are obtained with four cost functions
during each control cycle. As the cost function of MPC represents the difference between the
reference current and predicted current, a current error limit was introduced based on the

current distortion requirement [2.88].

In addition, common mode current (CMC) suppression was proposed for MPC of
PMSM drives in [2.89]. Because the variation in CMV primarily causes CMC, the study

suggested decreasing the CMV variation by optimizing the output sequence of the voltage
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vectors. Considering three output vectors (two active and zero vectors) for PTC-based PMSM
drives, if these vectors are optimized, there is no variation in the next control cycle. This can
be achieved by incorporating the CMV variation in the cost function. The issues of this
method are that the calculation and prediction of CMV will increase the computational
requirement of the system, the selection of appropriate weighting factors for torque-flux and
CMV variation is an ambiguous process, and their values significantly impact the system

performance.

Furthermore, the CMV suppression method based on two-vector MPC for PMSM
drives was proposed in [2.90]. Like [2.59] and [2.87], the proposed method eliminates the
use of zero vector and utilizes only six active vectors considered in the cost function
optimization. It also utilizes the concept of two-vector-based MPC similar to [2.91] with
different calculation methods of the optimal durations of the selected vectors. Under the
premise of better current quality, reduced CMV, and less computational burden, an efficient
method was designed to calculate the optimal duration of the two selected vectors. The first
vector is selected based on the conventional MPC, while the second vector is selected in
accordance with the error between reference and predicted currents. For six active vectors,
the current error is classified into four categories. Based on these categories, the second

vector should be selected such that a minimal cost function is obtained.

Moreover, a new CMV reduction method was proposed in [2.92], where an H7
inverter (VSI with additional switch S§7) using Zener diode-based PCC for PMSM drive was
implemented to block the DC-bus voltage when a zero vector is applied. Compared to other

CMV reduction methods, the proposed method reduces drive complexity and considers the
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dead-time effects in the PMSM drive system. However, this method requires an additional

compensation algorithm for the gate signal of the additional switch (S7).

Finally, CMV suppression in PMSM drives with MPC is an outstanding improvement
for the conventional MPC since it can reduce the switching frequency and/or improve the
current quality. An effective MPC with CMV reduction should realize the trade-off between

switching frequency, CMV suppression, and current distortion.

2.6 PMSM Drive Uncertainties

In PMSMs drives, uncertainties are unavoidable and generated from diverse sources
such as load changes, environments, and the mechanical or electrical parts of the motor
systems [2.93, 2.94]. PMSM drives' uncertainty can be classified into manufacturing or
structural and operational or environmental uncertainties. The structural uncertainties are
related to the machine structure and dimension, material diversity, assembly imperfection,
frictions, and mechanical factors [2.95-2.102]. In contrast, operational ones are related to the
uncertainties generated during the system operation, including machine parameter
mismatching, inverter dead-time, measurement error, and external load disturbance [2.103-
2.107]. Depending on the type and level of uncertainty, PMSM drives may fail or be
significantly affected, resulting in poor or unsatisfactory performance, such as high torque

ripples, high current harmonics, slow dynamic response, and low efficiency [2.108-2.109].

The dynamics of PMSMs are essentially nonlinear and subjected to a wide range of

disturbances or uncertainties in many high-performance applications. The disturbances or
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uncertainties in PMSM systems can be classified as unmodelled dynamics, parametric

uncertainties, and external disturbances.

2.6.1 Unmodeled Dynamics
The actual PMSM drive system has complex dynamics in which some properties are
not modelled, constituting the unmodelled dynamics. The unmodelled dynamics of PMSM

drives are as follows.

A. Machine Body Structure Induced Torque

Due to the utilization of different rotor materials in PMSMs, the body structure may
induce various pulsating torques. For example, the cogging torque is generated by the
interaction of the rotor magnetic flux and angular variations in the stator magnetic reluctance
[2.95]. The cogging torque even exists when the system is disconnected from the power
source, as the cogging torque is generated from the structure of the motor. From the energy
perspective, the energy storage in the air gap of the stator slot is not constant, and the
fluctuation in this energy causes torque fluctuation. Cogging torque compensation using a
mathematical method is very difficult because of the lack of a precise cogging torque model.
However, it can be simplified as a periodic function of the rotor position [2.110] and

represented by a Fourier series [2.111].

Cogging torque is a primary source of machine torque ripples, a noise factor, and it
is difficult to start the motor with high cogging torque. Also, it causes several adverse effects
on the PMSM operation, such as mechanical vibrations that may reduce the machine
bearings' lifetime, acoustic noise, and positioning errors in the case of precision systems
[2.112-2.113]. To mitigate the effect of cogging torque, the machine body structure can be

improved by considering different methods, such as optimizing pole shape and stator teeth
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[2.114], adequate selection of the number of poles and slots [2.115], skewing the stator core
or PMs [2.116], asymmetrical positioning of PMs or stator teeth [2.117-2.118], segmentation

of PMs [2.119], and filling the stator slots with magnetic wedges.

In addition, magnetic flux harmonics are a significant cause of torque pulsation. The
most widely used material in the magnet of PMSMs is Neodymium Iron Boron (NdFeB),
whose flux density is easily affected by temperature variation. The resultant demagnetization
phenomenon of PMs due to temperature rise significantly impacts the maximum torque
capability and the efficiency of PMSMs [2.96]. Owing to the motor structure and processing
defect, the motor's air-gap magnetic density is non-sinusoidal; for example, the motor slot
structure's existence can destroy the flux density's sinusoidal nature. This results in an
imperfect sinusoidal flux-density distribution that produces periodic torque ripples
interacting with standard stator currents. An improvement in structure design was introduced
for ideal excitation magnetic field to suppress harmonic components using finite element

analysis [2.120-2.122].

B. Dead-Time Effects

In a power electronics device, a dead-time is a short blanking time between the
device's ON- and OFF-state to prevent the phase shortage of inverter arms. The dead-time
causes a loss of a portion of the duty cycle, thus distorting the voltage applied to the drives
[2.123-2.125]. Such effects become extremely severe near the zero crossing of the current.
The resultant current deterioration leads to ripples in the electromagnetic torque. A voltage-
fed inverter is never ideal; in practice, the switching dead-time, the device's ON-state voltage
drop, and the dc-bus voltage variations can adversely affect the control performance,

particularly during the steady-state operation. The most obvious effect is the distortion of the

30



Chapter 2. A Literature Survey on Permanent Magnet Synchronous Machine Drives

output current caused mainly by the low-order harmonics [2.105]. In the current control loop,
the dead-time effect introduces periodic disturbances, which could lead to distortion of stator
currents, especially in extremely low speed and heavy load conditions [2.126-2.128]. In the
MPC of PMSM, the dead-time induced harmonics lead to prediction error. Even though these
harmonics are quite small, the prediction error will be amplified when the prediction step
increases. Their effects on the control system cannot be neglected to obtain high-performance

control [2.129].

C. Measurement Error Effects

In AC machine drives, position or current measurement errors inevitably cause
torque ripples. For example, the offset error in current measurements superimposing directly
on the phase currents via the Clarke and Park transformations causes ripples on stator currents
in the dg frame [2.130]. During the current measurement, inaccurate current acquisition
introduces measurement noise, causing a DC offset. The output of the current sensor must be
scaled to match the input of the A/D converter. In the digital form, the controller rescales the
value of the A/D output to obtain the actual value of the current, thus introducing a scaling

error [2.106].

In real applications, stator currents are measured through the Hall sensor or high-
precision resistance, which can lead to periodic measurement errors. The current
measurement errors include current dc offsets and scaling errors. The DC offsets can cause
the measured current error in the dg coordinates to oscillate at the electrical angle frequency,
and the scaling errors can cause the measured current error in the dg coordinates to oscillate

at twice the electrical angle frequency [2.131].
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2.6.2 Parametric Uncertainties
PMSMs consist of different parameters subjected to variations during operation due
to temperature rise or other environmental effects. These include electrical parameters of

stator resistance (Ry), stator direct inductance (Lg), stator quadrature inductance (Lg), the
permanent magnet flux linkage ( %#,,,,), and mechanical parameters of rotor moment of inertia

(J), and viscous friction coefficient (B). These parameters' typical or nominal values are
normally obtained with offline measurements at nominal operating conditions or provided
by the motor manufacturer [2.132-2.134]. However, considering the manufacturing
tolerances and changes in the operating conditions, the actual values of these parameters may
differ from the nominal ones. Thus, PMSM parameter variation will occur due to
manufacturing tolerances and/or operational factors. Manufacturing tolerance is a certain
inaccuracy range in a given typical value of a machine variable due to geometric dimensions
and material properties tolerances. Thus, the manufacturing tolerance of each parameter
depends on the machine manufacturers and what geometric dimensions and materials are
used. Besides, operational factors are changed in operating conditions, such as temperature

and load variations.

Parametric uncertainties can significantly affect PMSM drive performance,
especially with parameters-dependent control methods like MPC. For instance, the stator
resistance (Rg) varies with the variation of winding temperature, which significantly impacts
the current-loop regulation performance. These effects become severe at low speeds or high-
load torque conditions [2.135]. Besides, the PM flux linkage ( #,,,) depends on the dg-axis
currents and the magnet temperature. A mismatch of the rotor flux has a significant influence

on medium and high speeds because the back electromotive force (EMF) is proportional to
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the rotor flux. If the rotor flux is inaccurate, a constant current error occurs in steady-state,
and overcurrent or undercurrent occurs in transient state [2.104]. The variation of PM flux
can also lead to a steady-state current error with nonzero velocity [2.136]. The machine
inductances (Lg,Lq) mainly influenced by the flux density and dg-axis currents and slightly
vary with temperature changes. Also, the inductances vary nonlinearly with respect to the
load conditions due to magnetic saturation. The effect of inductance variation is mainly
coupled with the current change, and the transient performance is primarily affected in the

current dynamic period [2.137].

Furthermore, as the variations of electrical parameters significantly affect the
performance of current and torque control loops, mechanical parameters also vary during
real-time operations and significantly influence the speed control loop. For example, the
machine inertia (J) varies when a load is applied to the machine. The shape and the
dimensions of mechanical loads mainly affect the variation of mechanical parameters [2.138-
2.140]. The inertia of the whole drive system for some applications is time-varying [2.103].
If the system's inertia increases to some values more than the original, the speed response

will have a bigger overshoot and a longer settling time [2.141].

The performance of MPC of PMSM drives highly depends on machine parameters,
and variations in these parameters distort the measured and predictive current. Consequently,
errors between the predictive, measured, and reference currents will be introduced. Thus, the

final voltage vector cannot be precisely predicted by MPC.
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2.7 Robust Predictive Control Methods of PMSM Drives

PMSM drives are generally formed with feedback controllers, including feedback
speed, currents, torque, and/or flux controls. In control theory, the primary aim of feedback
control is to force a system output to track a reference (desired) input of that system, as well
as reject disturbances and suppress measurement noises [2.142-2.144]. Various control
techniques can be used to design a feedback controller for a process [2.145-2.148]; however,
the controller is always designed based on an approximate model representing the dynamic
behaviour of that process [2.148]. The model's accuracy varies but never perfectly describes
the actual process; also, the behaviour of the process change with time, and these changes
are mostly not captured by the model [2.149]. This is referred to as model uncertainty which
can degrade the controller performance in the real process [2.150]. Uncertainties are inherent
in real-world processes, and robust control methods are introduced to cope with these

uncertainties [2.151].

Robust control implies the ability of a control system to maintain desired performance
(robustness) in the presence of uncertainties. Control system robustness is the property of
tolerating uncertainties in the system without exceeding predefined tolerance bounds in the
vicinity of some nominal dynamic performance [2.152-2.154]. Sometimes, robustness is
evaluated as the system stability is far from being affected by uncertainties /disturbances.
However, although stability is necessary for robustness, it is not the only desired control
objective, and system performance has to be considered [2.149, 2.155, 2.156]. Therefore,
robust analysis of a control system with uncertainties not only evaluates the stability property
but also assesses whether system performance remains within predefined bounds in the

vicinity of nominal performance for a complete set of system uncertainties [2.157-2.158].

34



Chapter 2. A Literature Survey on Permanent Magnet Synchronous Machine Drives

With various uncertainties and their diverse effects on the performance of PMSM
drives, robust PMSM control methods have been introduced to enhance the system's
robustness. Due to the merits of predictive controls and their high dependency on the machine
model and parameters, RPCs have been massively investigated for PMSM drives. Based on
the robust mechanisms, RPCs can be divided into different types: RPC-based, prediction

error correction, observers, model-free, optimized cost function, and hybrid techniques.

2.7.1 RPC-Based Prediction Error Correction

One of the simplest robust methods is the RPC-based prediction error correction,
where the prediction error is included in the prediction stage to compensate for any control
effort. Such a method was proposed in [2.159], where a current error correction controller
was implemented to generate a more accurate reference current. This can compensate for the
output current incapability of tracking the reference current due to parameter variation and
the non-linear operation of the inverter. Although this method has obtained specific good
results, however; it increases the complexity of the current regulation scheme and neglects

the effects of winding resistance and other drive uncertainties.

Another RPC-based prediction error was proposed in [2.160] using the principle
feedforward linearization method to solve the problem of parameter sensitivity of PMSMs.
The weighted errors between the predicted and measured values in the last sampling instant
are added to prediction equations in the next sampling instant to compensate for parameter
mismatching. This method has reported a reduction in the parametric sensitivity of PTC
compared to the conventional PTC while maintaining excellent dynamic performance.
However, only the effect of machine inductance was considered, while other parameters were

neglected. Also, the prediction errors of the switching states applied during each sampling
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instant are different. Therefore, using the prediction error of the last sampling might not be

accurate to compensate for parameter variation in the next sampling.

RPC-based prediction error was proposed in [2.161], where the same principle in
[2.160] was applied to the PCC of PMSM drives with the difference that the prediction error
of each switching state is added to the prediction equations of the same switching state. Thus,
by adding the prediction errors to the current’s prediction stage with weighting factors, the
predicted currents are close enough to the motor currents' real behaviour, enabling the PCC
algorithm to select a better switching state for the next control cycle. The same method was
applied to PTC-based PMSM drives in [2.162]. With a variation of machine inductance, this
method showed a better response than the conventional MPC and RPC in [2.160]. However,
this method only considers the effects of machine inductance, while other uncertainties were
neglected. Also, a stagnant prediction update may occur if the present switching state is the

same as the last one.

Moreover, another RPC-based prediction error was proposed in [2.163], where a
current variation mechanism was implemented for MPC-based PMSM drives to compensate
for parameter mismatching and improve stagnant current updates. Also, this method utilizes
a modified current prediction equation to predict future currents. The performance of this
method has been investigated under different PMSM parameters variation. Still, it comprises

intensive computation steps, which may increase the computational burden.

RPC-based prediction error was discussed in [2.164], where the current prediction
error caused by parameter variation is used to design a self-regulation technique and
compensate for the parameter mismatch. Then, the performance is enhanced by correcting

the current mathematical model in the control algorithm. Despite improving parameter
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robustness in the proposed method, the estimation strategy's complexity requires massive
computation, and not all system uncertainties were considered. Another RPC-based current
error and parallel compensation terms were introduced in [2.195]. A robust MPC based on a
current error with parallel compensation terms onto predictive deadbeat control was designed
to compensate for the effects of parameter mismatch in real-time implementation. The
proposed method utilizes deadbeat control, which requires a PWM modulator to generate the
switching pulses and enhance the system's complexity. Besides, only the effects of
inductance and resistance variations were considered, while other uncertainties were

neglected.

Furthermore, RPC-based prediction error was discussed in [2.165], where a current
prediction error reduction method based on online inductance correction was proposed. It
can directly correct the inductance value of the prediction model only using one proportional
regulator, which is simple and easy to implement. Compared with other methods, the
proposed method can reduce the calculation burden. However, only the effect of inductance

mismatch was considered, while other uncertainties were neglected.

2.7.2 RPC-Based Observer

Another RPC type for PMSM drives is based on observers. In this type, single or
multiple observers are employed to mitigate the effects of PMSM drive uncertainties.
Observers can be used to estimate the disturbances and/or uncertainties in the drive system
and compensate for their impact. An example of this RPC was proposed in [2.166], where an
incremental prediction model was implemented to eliminate the permanent magnet flux
linkage parameter. An inductance disturbance controller that includes a simple disturbance

observer and inductance extraction algorithm was implemented to reduce the effects of
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machine inductance mismatch. Though specific performances have been improved with this
method, it enhances the system complexity, and only the impact of machine inductance was

considered, while other parameters were neglected.

In addition, a non-linear RPC scheme with a disturbance observer in a cascaded
structure for a PMSM drive in the presence of input constraints was proposed in [2.167]. It
consists of two MPC: the inner MPC is used to regulate the armature current by acting on the
armature voltage, whereas the outer MPC is employed to track the speed reference by
considering the g-axis component of the armature current (i;) as the input control. Besides,
to eliminate the undesired side effect known as integrator windup, an anti-windup
compensator is derived from the design of the disturbance observer. The design complexity
involving two MPC methods and an observer is one of the drawbacks of this method. Also,

the performance of this method was only investigated for low-speed operation.

The RPC-based observer was introduced in [2.168], where a state and disturbance
observer was used to estimate the variable parameters, compensating for parameter
mismatching and unmodeled uncertainties. Though this method has reported good stability
and constraint satisfaction, the two observers used require a high-capability processor to
implement in real time. Another RPC-based observer was discussed in [2.104], where an
incremental model was adopted to eliminate rotor flux, thus improving flux robustness. Also,
the incremental model was combined with an extended state observer (ESO) to estimate the
error caused by machine inductance variation and compensate in the prediction model. This
method improved the robustness against flux and inductance uncertainties. However, other

uncertainties were neglected.
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Another RPC-based observer was proposed in [2.169], where a new PMSM model
consisting of ideal and disturbance parameters was considered. A speed controller-based
sliding mode and a current controller-based deadbeat MPC were designed based on the ideal
part. Also, a high-order sliding mode observer was developed based on the disturbance part
to estimate the parameters and disturbance uncertainties and compensate for them in the
current and speed controller. This method has achieved quick transient response and good
steady-state performance. However, the complexity of the control method requires massive

computation capability for real-time implementation, and it is time-consuming.

RPC-based observer was proposed in [2.170], where a predictive stator flux control
for PMSM drives was designed to ensure good drive performance despite disturbance. A
composite discrete sliding mode observer was utilized to estimate the disturbances and
compensate for the flux prediction. This method has reduced the torque ripple and current
distortion regardless of the disturbances. However, the effects of machine inductance and
resistance were not considered. Besides that, [2.171] proposed a robust MPC for PMSM
drive, where the optimal voltage vector combination selection of the three-vector MPCC is
simplified, reducing the computational complexity. The super twisting algorithm-based
second-order sliding-mode observer was designed to observe the lump disturbance. The
estimated lump disturbance was used to compensate for the original PMSM model so that
the problem of steady-state current error under parameter mismatch can be solved. Finally,
the robustness against the motor parameters variation was effectively improved. The

shortcoming of this method is that not all parameters variation were taken into consideration.

RPC-based observer was discussed in [2.172], where an accurate PMSM model was

analyzed considering the influence of parameter mismatches and measurement errors. A
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modified MPC containing an accurate PMSM voltage and nonperiodic and periodic
disturbance models were developed. Then, a novel current and disturbance observer (NCDO)
in the modified MPC. The disturbances that the NCDO predicts are regarded as feedforward
voltage compensation and are directly added into a modified PMSM voltage model. A good
performance of the proposed DPCC with NCDO under parameters mismatch and current-
measurement error conditions were achieved. However, only the machine inductance
mismatch was considered, and the current regulation schemes and observer enhance the

system complexity and computational burden.

Besides that, robust predictive current control for PMSM drives based on disturbance
observer was introduced in [2.173]. A new predictive current control with a discrete-time
DOB estimates the disturbance of the parameter variation online for an IPMSM drive was
developed. The proposed observer aims to overcome the parameter sensitivity from the
resistance and inductance uncertainties and make a prediction without the need for rotor flux
information. The estimated disturbances are compensated with the predicted reference
voltage model considering a digital delay. Compared to the conventional MPC, the proposed
method can eliminate a steady-state current and transient-state error caused by system
disturbances. The PMSM drive with this method under mismatched parameters showed a
good performance. However, the method comprises two observers and utilizes a PWM
modulator which enhances the system complexity and computational burden, thus increasing

the cost of digital implementation.

Virtual vector-based robust MPC for PMSM drives was proposed in [2.174]; the
fundamental concept of this method is to reduce the required parameter information in the

predictive model. Then, the influence of remaining parameter mismatches was suppressed
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through the discrete disturbance observer. This discrete disturbance observer has a unified
form with a predictive model, which can simplify the drive system. The virtual and basic
vectors tend to increase the computation iterations, leading to a high computational burden
on the drive system. Also, [2.175] has proposed robust MPC for PMSM drive based on
observer using a multi-step error tracking technique. An extended PMSM model was
incorporated by considering the external disturbance and parameter variation in the
disturbance part. Then a sliding mode observer is employed to compensate for the effects of
these disturbances. The proposed method reduces the overshoot and keeps good steady-state
performance. Still, the complexity of the current control and computation required by the

observer are among the disadvantages of this method.

In addition, another RPC-based observer was discussed in [2.176], where a robust
predictive torque controller is designed based on an unknown torque disturbance observer,
which can enhance robustness against parameter mismatch and load torque disturbance.
However, this method utilizes an SVM modulator which increases the computation
requirement of the system. RPC-based observer was discussed in [2.177], where a novel
disturbance method is used based on equivalent input disturbance, a signal applied to the
input voltage, and producing the same effects as the actual disturbance. Then, this observer
is combined with MPC for PMSM drives to eliminate the effects caused by machine
uncertainties. The issue with this method is that the actual disturbance may differ from the

observer's estimated disturbance.

Another RPC-based observer was discussed in [2.137], where a robust predictive
current control-based adaptive gain disturbance observer for PMSM drive was developed.

First, an online adaptation mechanism was designed to extend the robust inductance limit.
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Then an adaptive disturbance with the adaptation mechanism is combined with MPC to
eliminate the static current error and enhance the transient response and parameter
robustness. The issue with this method is that adding an observer enhances the control
algorithm complexity and increases the implementation difficulty and the hardware
computational burden. In addition, an explicit MPC-based disturbance observer was
discussed in [2.178], where an improved disturbance observer based on the augmented
model, in conjunction with the concept of offset-free MPC, to estimate both the disturbance
terms and the state variables from the predicted and measured outputs. The estimated total
disturbance removes all the influences of plant/model mismatches and unmodeled nonlinear
terms within the closed-loop framework of explicit MPC. Besides the observer and explicit
MPC, the space vector pulse width modulator (SVPWM) requirement enhances the

complexity and computational burden of the drive system.

2.7.3 Model-Free RPC

Model-free predictive control is another type of RPC for PMSM drives. In this RPC,
the prediction process is performed without using the machine parameters, thus avoiding the
effects of parametric uncertainties. An example of this RPC was proposed in [2.179], where
a model free based on the current difference detection technique was implemented. This
method does not require any knowledge of the parameters of the motor. The stator current
during each switching interval is assumed to be a linear. Thus, the current difference within
each interval can be precisely computed. The stator current is detected twice at each
switching instant to improve the accuracy of the current difference, and a simple subtraction
operation is used to compute the current difference. Despite this method's simplicity and

model independency, the accuracy of the current prediction at low speed is not good enough.
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Another RPC-based model-free was discussed in [2.180], where the PMSM model
was designed considering the effects of inverter nonlinearity and parametric uncertainties.
Then, model-free predictive control was designed based on the ultra-local model and
combined with the PMSM model and deadbeat predictive control. The proposed method does
not require the knowledge of parameters. Still, the complexity of the predictive control with
two predictive models of the d- and g-axes and the SVM PWM modulator can enhance the

drive system complexity, which may increase the computational burden and hardware cost.

In [2.181], an improved RPC-based model-free was proposed for PMSM by
introducing an advanced current gradient updating mechanism. This method does not require
a mathematical model and instead employs information about the current gradients to predict
future currents. Another RPC-based model-free was presented in [2.182], where a model-
free predictive current control based on the current difference was proposed for PMSM
drives. The concept is based on the idea in [2.179], with a simplified synchronized update
mechanism of current differences. Each of the seven basic voltage vectors of the two-level
inverter was updated in real-time without extensive calculations. This method's drawbacks
are system complexity with long calculations and the inaccuracy of current difference
estimation may still lead to stagnation. In [2.183], RPC was proposed based on model-free
PMSM drives based on an ultra-local model and using an extended state observer. It applies
the same concept as [2.180], but the disturbances are estimated using an extended state
observer. Besides that, [2.184] proposed an improved RPC-based model-free SPMSM drives.
It applies the same concept as [2.180], but the disturbances are estimated using a sliding

model observer.
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2.7.4 RPC-Based Optimized Cost Function

Another RPC type for PMSM drives is based on an optimized cost function, where
the cost function is modified to achieve drive robustness. An example of this RPCC type was
proposed in [2.185]. A novel cost function was proposed based on the predicted integral
action of the tracking error, and the controller was developed under the assumption that the
system is free from any disturbance and mismatched parameters. It was shown that this leads
to an integral action in the controller, which is exploited to improve the disturbance
attenuation without using an offset observer. Based on simulation and experimental results,
the proposed method has shown high performance concerning speed tracking and current
control of the motor. Another RPC-based optimized cost function was proposed in [2.186],
where a novel cost function that utilizes torque tracking, maximum torque per ampere
condition, switching losses minimization, and system constraints to reduce the current,
torque, flux ripples, and acoustic noise. Compared with DTC and conventional MPC, this
method has shown improved performance, reduced torque ripple, lower current harmonics,
reduced switching frequency, and less acoustic noise. However, compared to conventional
MPTC, the new cost function utilizes four weighting factors. Their fixed values may degrade
the performance, and the effects of parameters variation were not considered. Also, it requires

the prediction of current, torque, and flux, which increases the system's calculation steps.

In [2.29], a direct speed MPC was developed based on a novel cost function with
three terms: tracking term to track the speed reference, attraction region term to attract the
system state in steady-state efficiently, and limitation term to limit the current. Besides, the
proposed cost function utilized a new technique to reject the disturbance and noise. Although,

this method reduces the system complexity by combining speed and current control in one
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controller. However, the effects of parameter variations and other model uncertainties were
not considered. Also, the proposed cost function contains three weighting factors in which
the selection of their values influences system performance. The same method was applied
for predictive direct torque control in [2.187] based field weakening operation and [2.188]

based maximum torque per ampere operation.

Besides, robust MPC for PMSM with a newly designed cost function was proposed
in [2.189]. A robust FCS-PCC strategy with a cost function in proportional-integral (PT) form
for PMSM drives is very simple and practical to implement. The accumulated errors are
weighted with the sampling time, and the integral action is activated in a predefined range.
In this way, the design of the Integral coefficients is facilitated. This method demonstrates
superior robustness compared to the conventional MPC under parameter mismatch. The
drawback of this method is it requires intensive calculation steps and time to obtain the best

performance.

2.7.5 RPC-Based Hybrid Technique

Another RPC type is based on hybrid techniques, combining two or more control
techniques to produce a robust control strategy capable of dealing with machine uncertainties.
An example of this RPC type was proposed in [2.190], where the complementary features of
continuous input and discrete input MPC techniques were combined to ensure stability,
robustness, optimal nonlinearity, and constraint inclusion for VSI-fed PMSM drive. A
continuous control was designed based on the Lyapunov function to ensure stability with
feedback control and robustness with adaptive control. Because the stability is guaranteed by
at least one discrete switching state, the continuous control is converted into relevant

constraints of the discrete control MPC. Thus, utilizing the discrete MPC optimization with
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exhaustive search to find the switching pulses for VSI. The disadvantages of this method are
the system complexity and possible computational burden increment. In addition, different
gains and weighting factors are used, which require tuning and proper selections to avoid

performance degradation in which their values may affect the performance.

Another RPC-based hybrid technique was introduced in [2.46], where a deadbeat
(DB) solution was combined with MPTC to select the best voltage vector (VV). The cost
function needs to evaluate only three VVs selected by the DB solution instead of evaluating
eight feasible VVs for a 2-level Inverter. The calculation iteration is reduced, and the
parameter variation is investigated. Although a good steady-state response was achieved, the
parameter mismatch affects the system stability during the transient response. The effects of
magnet saturation and other machine uncertainties were neglected. Another RPC-based
hybrid technique was discussed in [2.128], where integral-resonant control composed of
several paralleled quasi-resonant controllers is embedded in the standard MPC algorithm to
restrain the periodic disturbances. The proposed method does not need to store a large number
of past time variables so that the computational complexity is reduced. In addition, it has
relatively strong frequency robustness because the resonant internal model can adjust its
control bandwidth conveniently. This method has the merits of suppressing periodic

disturbance. However, the effect of other uncertainties was not considered.

RPC-based hybrid technique was introduced in [2.129], where a less computational
simplified repetitive controller with two resonant units and phase compensation was
combined with MPC for PMSM drives to realize the system’s robustness against
disturbances. Based on simulation and experimental results, the current ripple significantly

reduced with the proposed SRC method in the presence of disturbances. A similar approach
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was proposed in [2.191], which attempted to combine the features of both MPC and RC for
linear motion drives to reduce the tracking error from the periodic disturbances. However,
these methods require a long adjustment time to produce the best performance and can only
be applied to a repetitive task. Moreover, another RPC-based hybrid technique was proposed
in [2.192]. A hybrid flux prediction that combines the voltage and current model was
developed in the prediction stage. A closed-loop current prediction model was designed to
improve the performance in the presence of parameter variation. Though the parameter
mismatching was compensated, the complexity of the proposed current, voltage, and flux

model enhanced the overall computation requirement of the system.

2.8 Data-Driven Control of PMSM Drives
Model uncertainties and parameter mismatching are inevitable in PMSM drives. The
PMSM model fails to capture various dynamics and changing parameters with different
operating conditions [2.109]. These uncertainties can significantly impact the performance
of model-based control, leading to reduced system robustness [2.166]. Although various
techniques have been developed to enhance the robustness of model-based control methods,
they often increase system complexity and computational requirements and may involve

effective tuning of multiple parameters.

A practical alternative to robust control methods, offering efficient computation, is
data-driven control approaches. These approaches enable control based on system
input/output data, eliminating the need for a system model and its associated parameters. One
approach is model-free predictive control (MFPC), which performs online prediction solely

based on measured input data without relying on a parametric system model. In contrast,
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reinforcement learning (RL) achieves data-driven control by training the RL algorithm

offline, resulting in a computationally efficient controller compared to MFPC.

2.8.1 Model-Free Predictive Control (MFPC)

MFPC-based current control (MFPCC) has received significant attention in the field
of PMSM drives. Depending on the technique used to achieve MFPC (such as current
difference and ultra-local model), stagnation effects can occur, and higher computational
effort may be required [2.179-2.180]. MFPCC can be achieved using an ultra-local model
[2.193], where an ultra-local model replaces a complex system model with one or two
unknowns that can be estimated based on measured input and output data [2.184, 2.194]. The
effectiveness of such MFPCCs highly depends on the estimation accuracy; also, some

estimation methods may increase the computation requirements of the system.

On the other hand, MFPCC can be achieved by solely using the measured currents
and their variations. This type of MFPCC mainly depends on the current differences. The
current difference due to the recently applied voltage vector is used to estimate the current
differences due to the remaining possible vectors of a two-level inverter [2.179]. However,
inaccurate prediction can occur when the same voltage vector is applied for long control
intervals, resulting in stagnation of the other vectors. This issue was attempted in [2.195] and
[2.181] by using the current differences due to the past two/three successive voltage vectors

to estimate the differences due to the remaining vectors.

However, the voltage vector applied over two/ three consecutive control cycles
cannot be the same for these techniques. This could cause the applied voltage vector to
change between two vectors for long control intervals; thus, current difference updating

becomes ineffective, and stagnation may occur. Furthermore, most existing MFPCCs utilize
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the measured current and applied voltage variations to compensate for the effect of parameter
variations. However, parameter inaccuracies influence the reference current when a speed

control loop is used. This results in suboptimal tracking performance and high current ripple.

Two-vector modulation MFPCC based on the current tracking error slope was
proposed in [2.196]. The current differences due to the possible active voltage vectors were
determined using the method proposed in [2.181]. Two adjacent voltage vectors were
identified, assuming the tracking error slope falls between two adjacent current differences.
Then, these two vectors and a zero vector create three candidates of two-vector combinations
that can be applied in each control cycle. This method considers tracking error and two-vector
modulation to reduce current ripple. However, when the tracking error slope does not change
for a few successive control cycles, only two vectors will be applied, and stagnation may
occur. This issue can be more severe in nominal cases with constant steady-state tracking
error slope causing a prolonged stagnation, leading to inaccurate prediction, and degrading

the performance.

2.8.2 Reinforcement Learning-Based Control

RL-based control has emerged as a promising approach for achieving data-driven
control in PMSM drives [2.197-2.198]. An optimal control action is obtained by training an
RL agent with appropriate rewards based on measured PMSM data. This results in a
computationally efficient controller optimized offline during the training process. RL can be
employed to enhance the performance of standard PMSM control strategies (i.e., FOC, DTC,
and MPC). For instance, [2.199] utilized RL to obtain the weight coefficients of an improved
MPC for PMSM drives, and [2.200-2.201] implemented deep RL to optimize the parameters

of active disturbance rejection control of PMSM.
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Furthermore, RL can replace the standard control methods of PMSM drives entirely.
RL-based current control [2.202] and DTC [2.203] of PMSM drives were implemented by
training a deep Q-learning network to learn optimal controllers. These learning-based
controllers were then deployed to a real-world drive system and demonstrated comparable
performance to the standard controllers [2.198]. RL-based speed control was also trained to

achieve optimal speed tracking and replace the standard speed control [2.204-205].

The effectiveness of RL-based controllers depends on the amount and quality of the
data used for training. In the standard RL-based controller, an agent learns an optimal policy
that maximizes its expected cumulative reward over a single training task with specific
operating conditions and a single parameter set. Thus, new operating conditions and different
parameter sets (due to parameter mismatching) can lead to poor performance and robustness

or instability in the controlled system [2.206].

The optimal learned policy varies for different parameter sets, making it difficult to
generalize and adapt a learned policy to new operating conditions with new parameter sets.
To generate a policy that can adapt to new tasks (e.g., new motors), meta-RL [2.207] was
used to learn a policy that can adapt to new tasks more efficiently and quickly by leveraging
prior experience on similar tasks. With a data set of different motor parameters, the
environment of each motor data is pictured as a partially observable Markov decision process
(POMDP), where the environment state is not fully available to the agent. Then, additional
contexts (variables) containing information about the momentary environment are included

in the environment state.

However, these contexts can be static within each measurement, and incorporating

them into the state creates a larger COMDP and reduces the learned policy's generalizing
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power [2.208]. Furthermore, Meta-RL can be computationally intensive since it requires
much data to learn the meta-policy and adapt to new tasks efficiently. Additionally, there is
a risk of overfitting to the training tasks, where the agent memorizes the training tasks and
cannot adequately generalize to test tasks. This can lead to poor performance on unseen tasks

or tasks that are significantly different from the training tasks [2.209].

2.9 Summary
This chapter presents a comprehensive analysis of the literature on PMSM drives.
Mainly, RPC methods are critically investigated and classified into five types based on the
robust mechanism employed. A robust model-free type with no machine model or parameters
is found to be a better alternative to robust MPC methods, which tend to increase system
complexity. Various model-free control techniques for PSMSM drives are discussed
intensively in this chapter. Data-driven control methods, including model-free and RL-based

controls, are also investigated in this chapter.

Furthermore, the literature studies of RPC methods are quantitatively analyzed
against a set of indicators, as presented in Appendix B. Various research gaps are identified
in the literature, and corresponding solutions are proposed to fill these gaps, as will be

presented in the following chapters. The gaps identified can be summarized as follows:

e The drawbacks of conventional MPCs have been realized by various improvements
such as multi-vector, weighting factor elimination, and switching frequency regulation.
However, it is essential to maintain performance trade-off while dealing with the
various issues of conventional MPCs. Most existing improved MPCs deal with specific

issues and neglect the others, resulting in overall performance degradation. For
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instance, regulating the switching frequency by prohibiting zero vectors can result in
high current ripples. Two improved MPCs are proposed in this research (see Chapter
3) that consider various issues of MPCs while maintaining an overall performance
trade-off.

Various robust controls were introduced in the literature. However, it is unclear what
criteria should be used to define a robust control system and how to compare the
robustness of different control systems. A systemic robustness evaluation method
based on Six-Sigma Methodology is introduced (see Chapter 4) to numerically obtain
any control systems' sigma levels (robustness index) subjected to a bounded range of
uncertainties.

Model-free control methods were found to be a better approach to eliminating the
effects of uncertainties, particularly parametric uncertainty. The main issue of the
various model-free predictive current control (MFPCC) is the switching vector
stagnation when the applied switching vector is not updated for a long interval. This
research addresses this issue by developing an adaptive MFPCC (see Chapter 5) that
utilizes a reference vector to force updating the current differences and improve
tracking performance.

Reinforcement learning (RL) based controls were implemented to achieve a data-
driven PMSM drive based on offline optimized policy, resulting in a computationally
efficient controller compared to MFPCC. However, standard RL is usually trained in
specific operating conditions with single parameter sets. Thus, new operating
conditions with different parameter sets (due to parameter mismatching) can lead to

poor performance, robustness, or instability in the controlled system. This issue is
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addressed by proposing a multi-set robust reinforcement learning (see Chapter 6) to

learn a single optimal policy robust to several different parameter sets.
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CHAPTER 3

TWO-VECTOR DIMENSIONLESS MODEL PREDICTIVE
CONTROL OF PMSM DRIVES BASED ON FUZZY DECISION
MAKING

3.1 Introduction

Model predictive controls (MPCs) with the merits of non-linear multi-variable control
can perform better than other commonly used control methods for PMSM drives. However,
the conventional MPCs have various issues, including unsatisfactory steady-state
performance, variable switching frequency, and challenging selection of appropriate
weighting factors. All these issues significantly impact the overall drive performance of
conventional MPCs of PMSMs. Thus, a practical MPC should realize the trade-off between
these different issues because focusing on one issue and neglecting the others can degrade

the performance over various operating conditions.

This chapter proposes two improved MPC methods to deal with different issues of
conventional MPCs. The first method is based on model predictive torque control (MPTC)
and implements two-vector and two cost functions (torque and flux). Fuzzy decision-making
eliminates the weighting factor and selects the first optimum vector. The torque cost function
selects the second vector whose duty cycle is determined based on torque error to decrease
torque ripples further. The second method is based on model predictive current control

(MPCC) with two voltage vectors. The first vector is selected in the same way as in the
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conventional MPCC. Two separate current cost functions and fuzzy decision-making are
used to select the second vector, whose duty cycle is determined based on the current error.
Both proposed methods utilize the space vector PWM modulator to regulate the switching

frequency.

The rest of this chapter is organized as follows. Section 3.2 discusses the mathematical
modelling of PMSM drive systems with MPC. Section 3.3 discusses the proposed improved
MPC methods. Sections 3.4 and 3.5 present the numerical simulation and experimental tests,
respectively. Section 3.6 presents the quantitative performance comparison of the proposed
methods with conventional MPC. Section 3.7 presents the quantitative comparison of the
proposed method and MPC with a regulated switching frequency. Section 3.8 summarizes

the findings and outcomes of the chapter.

3.2 PMSM Drive Modelling
PMSM drive system involves various models and subsystems that need to be
designed and mathematically modelled before developing a simulation or experimental
design of the system. Mathematical models, inverters, and control methods are essential parts

of the drive system.

3.2.1 PMSM Dynamic Model
In order to design an efficient PMSM drive system, it is crucial to develop an accurate
PMSM mathematical model. Considering a three-phase PMSM in Fig. 3.1 represented in abc

and dg reference frames. The three-phase voltages can be obtained as follows:

] d
Va,bc = Rsla,b,c + E sUa,b,c 3.1
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a-axis

Fig. 3.1. PMSM in abc and dg frames.
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(a) g-axis circuit (b) d-axis circuit

Fig. 3.2. Equivalent dg-circuit of PMSM.

Using phase transformation, the equivalent dg-circuits of PMSM can be obtained
(Fig. 3.2), and the three-phase voltages can be transformed from an abc-frame into a dg-

frame as:

Vg = Rsig + % —ws ¥ (3.2)
Vg = Rsig + % + ws ¥y (3.3)
and the flux equations are:
Yy = Lgig + ¥You (3.4)
¥ = L4l (3.5)
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The mechanical and electrical torque can be expressed as follow:
3P .. .
Te=53 [(La — Lg)iaiq + omiq) (3.6)

d
T,=T, +]aa)r + Bw, (3.7)

where v, and v, are the d- and g-axis voltages, iy and i, the d- and g-axis currents, L; and
Ly (Lg =Lg in the case of surface-mounted PMSM) the d- and g-axis inductances,
respectively; Rg is the stator resistance, w is the machine speed, and ¥, the permanent

magnet flux in the rotor; T;,,, T,, and T; are the mechanical torque, electrical torque, and load

torque, respectively; J is the momentum of inertia, and B is the vicious friction coefficient.

3.2.2 Three-phase Inverter

A voltage Source Inverter (VSI) is a device that converts a DC voltage to an AC
voltage of variable frequency and magnitude fed to the AC motors. Pulse Width Modulation
(PWM) method is used to generate switching pulses to control the switches states of the
inverter. Fig. 3.3 shows a three-phase VSI comprising six power switches, diodes, and DC
link capacitors. The output voltages V., Vs, and V. are applied to the stator windings of a
motor. The basic operation can be understood by assuming a constant value for the DC link
voltage in the three-phase VSI circuit, which implements the concept of switching pulses.
Each inverter phase leg is independently operated. The switching pulses of the three inverter
legs are denoted as S, S», and Sc. The line voltages can be derived using the switching pulses

and DC voltage as:

Vab = Vac (Sa - Sb) (3.8)
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Ve = Vac (Sp — S¢) (3.9)
Vea = Vac (Sc — Sa) (3.10)

where V,,, V). and V., are the line voltages and V.. is the DC supply voltage.

From the line voltages equations, the phase voltages can be derived by assuming the
system is balanced in the way of the summations of three-phase currents, and voltages are

equal to zero. The phase voltages in terms of the line voltages are given as follows:

_ Vab_Vca (311)

I/an - 3
_ Vbc - Vab (312)

Vbn - 3
_ Vea = Ve (3.12)

cn 3

+

Vdc — -/

Fig. 3.3. Three-phase Voltage Source Inverter.

Substituting (3.11), (3.12), and (3.13) into (3.8), (3.9), and (3.10), one obtains the

line-to-neutral voltages of the load as the following:

Va 3.14

Van = ?C (Zsa — Sp— Sc) ( )
v, 3.15

Vo = —25 (2Sp = Sc —Sa) G
Vac (3.16)

Ven =? (ZSC_ Sa — Sb)
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3.2.3 Model Predictive Control

The purpose of the control method in a high-performance PMSM drive is to generate
the switching pulses for the inverter. MPC generates the pulses by minimizing a cost function
to select the optimum switching states. The operation of MPC includes measurement of the
machine variables, estimation of the variables that cannot be measured, and finally,

prediction of future values based on the measured and estimated values [3.1-3.2]. Based on

the predicted variables, MPC can be classified into MPTC [3.3] and MPCC [3.4].

MPTC predicts future torque and flux values based on the measured stator currents and

rotor speed. To obtain the prediction equations of MPTC, the voltage equations of PMSMs,

(3.2) and (3.3) can be rearranged to solve for % and % as follows:

da R, yLa 42 (3.17)
dt = Ld lg Ld wlq Ld 17 .
dig R Ly . 1
E:—Zlq—z a)ld—wﬁ”m+ qu (318)

. . . . . . . dig
At sampling time Ty, using Euler derivative approximation for d—tq, one can have:

digg  igqUe+1) = igg(k)
dt T,

(3.19)

Hence, the ig, currents at (k + 1)th time instant can be calculated by substituting

(3.19) into (3.17) and (3.18) as follows:

. ReTs\ | Lg . T
ik +1) = (1 - )ld(k)+—Tswlq(k) + 2y, (3.20)
Lq Lq Lg
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. RsTs . Ld . Ts
e+ =(1- ig(k) ——Ts wig(k) — Tsw ¥py +—v4 (3.21)
Lq Lq Lq

The stator flux at (k + 1)th time instant can be predicted using the predicted current in

(3.20) and (3.21) as:
Pa(k+1) =Laig(k+ 1) + Yoy (3.22)
Yok +1) =Lgig(k+ 1) (3.23)
Also, the torque at (k + 1)th time instant can be predicted using predicted current and
flux as:

T,(k+1) = %p( Wy (k + 1ig(k + 1) — ¥ (k + Dig(k + 1)) (3.24)

Finally, the cost function of MPTC can be expressed as:
gupre = (T" — Te(k + 1))? + y(F— F(k + 1)? (3.25)

where ¥ is stator flux (¥ = ¥; +j 'Pq ) and y the weighting factor. Conversely, MPCC

predicts the future values of the stator currents based on measured stator currents, rotor speed,
and estimated voltages. MPCC works by obtaining the dg currents and machine position at
sampling instant (k), and then the dg voltages are calculated and used to predict the dg
currents for the (k+1)th sampling interval. The dg currents at (k+1)th time instant are
predicted using (3.20) and (3.21) [3.5-3.6]. MPCC cost function to select the optimum

voltage vector is:

gurce = (i’ —la(k + )" + (1" —1g(k + 1))2 (3.26)
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The block diagram of MPC for PMSM drives is shown in Fig. 3.4, where Fig. 3.4(a)

shows MPTC and Fig. 3.4 (b) shows MPCC.

Speed Controller

N,
N7

FI

Predictive controller

I 3-phase Inverter
Sa
! > S, |:
Eq(3.25 il
16.29) S, l: VsI
™
l A A
Yik+) L(k+1) |
|: Torque and flux P |
Prediction -
| l iag(K) | e
A A
| e wo L
I Flux estimation < |
e e —— e— — — )

Speed Controller

v

P

(2)

Predictive controller

| Cost function

Eq(3.26)

l A A
ifk+l)

ik+1)

h 4

Current Prediction

A A
| iak) igfk)

VSI

Va

Fig. 3.4. Block diagrams of MPCs, (a) MPTC, (b) MPCC.
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33 Proposed Two-Vector Dimensionless MPC
The proposed methods aim to improve the steady-state performance, regulate the
switching frequency, and eliminate the weighting factor while maintaining an overall
performance trade-off.

Prior to discussing the proposed method, it is essential to consider one-step delay
compensation. In the conventional MPC, the machine variables are measured at time instant
(k) and then predicted at time instant (k+1/). However, the actuating signals (voltage vector)
are only available at (k+2)th time instant. This creates a step time delay [3.7]. To compensate
for this delay, the variables are predicted at (k+2)¢h time instant. Thus, the cost functions of

the conventional MPCC and MPTC in (3.25) and (3.26) are rewritten as follows [3.8]:

gupre = (T3 = To(k +2))" +y( %= %k +2))" (3.27)

gurce = (ia” = talk +2))" + (ig" ik + 2))2 (3.28)

3.3.1 Method-I: Two-Vector dimensionless FDM-MPTC
The most common issue in MPTC is the selection of the weighting factor. The cost
function of MPTC in (3.27) contains two objective functions based on torque and flux. Each
objective function has a different degree of importance, and torque and flux have different
magnitudes and units. Thus, a weighting factor (y) must be included to balance the
performance. The selection of the weighting factor is an ambiguous process, and a significant
performance effect can be experienced if an inappropriate value is selected. The weighting
factor can be optimized manually (offline) based on empirical procedures [3.9] or based on
other methods such as parameter sweep [3.10] and Genetic algorithm [3.11]. However, these
methods are time-consuming and influenced by parameters and operating conditions [3.12].

In addition, different approaches are considered to eliminate the weighting factors in MPC
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of PMSM drives, including using cost function-based voltage vector tracking error instead
of torque-flux error [3.13] or using a new lookup table of DTC [3.14].

This research proposes a two-vector MPTC based on fuzzy decision-making (FDM)
to eliminate the weighting factor and improve steady-state performance. Generally, choosing
the weighting factor (y) requires the absolute importance of both torque and flux objective
functions. However, FDM depends on the relative importance of each objective function over
another and can be chosen based on the decision maker's subjective and qualitative
experience and judgment. The torque and flux objective functions in (3.27) can be rewritten

individually as:
2
gr = (Ts = T.(k +2)) (3.29)

gy =(¥—¥lk+2)° (3:30)

The proposed method utilizes two switching vectors over one control cycle. The
torque objective function in (3.29) is evaluated separately based on eight voltage vectors
(Vo — V) of a 2-level three-phase inverter and minimized to obtain an optimum first voltage
vector V;. The second optimum voltage vector V, is obtained based on FDM using the torque
and flux objective function.

The torque and flux objective functions in (3.29) and (3.30) are evaluated based on
eight voltage vectors (Vy — V;) of a 2-level three-phase inverter, the final optimum voltage
vector is determined using FDM. FDM is used where insufficient and incomplete data exist
for the solution [3.15]. It is a bit different from the conventional fuzzy approach and has been
introduced for MPC in [3.16] but not for the aim of eliminating the weighting factor and was
applied for MPC in power converters [3.17] and induction motors [3.18]. To apply FDM in

MPC, the specification of membership and decision functions are required. The linear
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membership function is the common form used in MPC. Therefore, a cost function is
evaluated at eight voltage vectors g;(V;), (V; = 0 — 7), and the linear membership function

m;(Vs) is:

max _ R;
gi gi(Vs) ) (331)

ml(VS) = ( gmax _ glmin

L

where R; is a priority weight factor determined based on each objective function's relative
importance.

In [3.19], the numbers for various relative importance cases are listed and assigned
depending on the priority importance of an objective function over the other. For the
proposed method, an intermediate value of two (R; = 2) is selected as the priority weight for
both torque and flux objective functions. Hence, the membership function of the torque

objective function my (V) and flux objective function m w(V;) are:

max __ 14 2
mT(VS) = (ngax gTTr(liri) ) (3'32)
Ir " —9Ir
2
97" — g¢()
my(V;) = < ;,gax — g’;}i’f (3.33)

The cost functions of torque gr(V;) and flux g ¢(V%) are evaluated based on eight different

voltage vectors (V; = 0 — 7). Then, using the obtained values, their maximum (g7***, g'%**),

and minimum values (g7, g'#™) as in (3.32) and (3.33), the torque and flux membership
functions (mt, my) in the range of [0 1] are obtained. Thus, an optimum voltage vector can
be selected by minimizing and maximizing a decision function as:
myp (V5) = min{m¢ (1), my(V5)} (3.34)
The optimum voltage vector (V,,,¢) is selected as:

Vope = max (mp (V%)) (3.35)
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With the previously obtained vector V; by minimizing the torque cost function and
making the optimum vector obtained in (3.35) as V,,,; = V5, this will result in two different
voltage vectors (V;,V,). By computing the dg voltages components of each of these two

vectors as:

udql = udq (Vl) (336)

Uaq, = udq(Vz) (3.37)

ef

q 1s obtained as the combinations of the dg voltages

The final reference voltage uZ

components of two vectors with different duty cycles as:

uref _ t1 X udq1 N (Ts - tl) X udqz
4 T Ts

(3.38)

where T is the sampling time, and t; (0 < t; < T) the time assigned for the first vector

(V1). The duty cycle d; of V; is determined based on the torque error:

d1=

(3.39)

T —T,(k + 2)
Cr

where Cr 1s a positive constant value to be chosen to minimize the torque ripple.

Hence, the proposed FDM-MPTC can eliminate the weighting factor by transforming
the torque and flux terms into dimensionless quantities using FDM and obtaining the
optimum voltage vector with the factorless MPTC. To improve the steady-state performance
and reduce torque ripples, a second vector is obtained by evaluating the torque cost function.
This vector and the optimum vector are applied in each control cycle. This will improve the
torque performance and reduce torque ripple because the second vector is obtained by
evaluating the torque cost function and its duty cycle based on the torque error. If the torque
ripple is high, the vector obtained from the torque cost function (V;) will be applied for a

longer time to reduce torque ripple. Finally, PWM modulator-based space vector regulates

80



Chapter 3. Two-Vector Dimensionless Model Predictive Control of PMSM Drives Based on
Fuzzy Decision Making

the switching frequency and accounts for a trade-off between the steady-state performance,
weighting factor, and switching frequency. The reference ung in (3.38) is fed to the SVM

PWM modulator; thus, the inverter's switching pulses with a regulated switching frequency

are generated. Fig. 3.5 shows a block diagram of the proposed FDM-MPTC.

Predictive controller
e e e o e o Reference voltage
Speed Controller |

w Cost function I clelaion  pwyp 3-phase Iverter
* 124
'.f \: i il BN > i
\/ ™ £q(320330),6.32- | 2| oz [ s Ta
- A * L > B
] ¥ | 39ad(39) g T T M| v -
I v
| [ A
Hf+Y) T |
P |
Prediction and one step |,
| compensation | )
A abe-dg
| v i |
| Flux estimation < i
b —— — — ax

Fig. 3.5. The Block Diagram of the proposed FDM-MPTC for PMSM drives.

3.3.2 Method II: Two-vector FDM-MPCC

The conventional MPCC evaluates the cost function (3.31) based on the current
difference to obtain the optimum switching vector for the next control cycle. Most
improvement of MPCC applies one or more vectors along with the optimum vector over one
control cycle. Usually, the weighting factor is not required in MPCC. However, weighting
factors are used to render the cost functions comparable in magnitude and units. Clearly, the
MPCC's cost function terms have the same unit but may have different magnitudes. Thus,
the weighting factor can be used, like in [3.20], which presented an MPCC cost function with
a weighting factor computed using a fuzzy logic controller based on current errors. This
research applies two-vector MPCC with duty cycle control over one control cycle. The first

vector is selected using FDM presented in Method-I by rewriting the cost function in (3.31)
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into two separate objective functions. The iy, current differences as the d- and g-objective

functions are as follows:
- . 2
9aVs) = (ia" —ia(k +2)) (3.40)

2
9q%) = (ig"=igUe +2)) (3.41)
The membership functions m; for the current cost functions g4(Vs) and g, (Vs) can

be expressed in the general form with different priority weights as:

g _gi(Vs)> : (3.42)

max min
— 9

m;(Vs) = (

9i

The priority weight R; in (3.42) is determined based on the relative importance of

each objective function. First, a pairwise comparison matrix I' is constructed by comparing

the objective function with each other. Since the current i, directly influences the torque and

current performance, the g-objective function is given moderate importance over the d-

objective function to improve the torque performance. The comparison matrix I" between the
two objective functions (g4, g4) can be obtained as:

s
r=|1 (3.43)
3 1

By computing the eigenvector y corresponding to the maximum value of the

eigenvalues of I, the priority weight R; can be expressed as:

‘Y.
R;=[Ry ... Rj] = o2& — (3.44)
i=1Yimax

In our case, the priority weight R; = [R; Rg], which has been obtained as R; = 0.75

and R; = 0.25. More details on obtaining the comparison matrix and computing the priority
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weight can be found in [3.19]. The membership function of the d- and g-objective

functions( mq (Vs),my (V5)) are:

Rg
9a™ —ga(%)
ma (V) = ( ;glax — ggli; (3.45)
g — g, (V) \*
mq(VS) = gmax _ gmin (3'46)
q q

The d-objective function g, (V;) and g-objective function g4 (V;) are evaluated based
on eight different voltage vectors (V; = 0 — 7). Then, using the obtained values, their
maximum (g7, g™**) and minimum values (g™, g™") as in (3.45) and (3.46), the
membership functions (mg, my) in the range of [0 1] are obtained. An optimum voltage
vector is selected by minimizing a decision function as:

mp (V) = min{mga (V;), mq (V)} (3.47)

Then, the first optimum vector is determined by maximizing the decision function in
(3.47) as:

V1 = max (mp (V) (3.48)

The second vector is determined by minimizing the cost function in (3.26) as:

V2 = min (gmpcc) (3.49)

By computing the dgq voltage components of two vectors (V3, V,), the final reference
voltage uy, is obtained as the combinations of the dg voltages components of the two vectors

with duty cycles as:

uref _ ty X udql n (Ts - tl) X udqz
4 T T

(3.50)

The duty cycle d; of V; is determined based on iq current error as:
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d, = (3.51)

iy —iq(k +2)
Cq

where C is a positive constant value.
Similar to Method-I, a PWM modulator-based SVM is used to regulate the switching
frequency, where the ung in (3.50) is fed into the PWM modulator to generate the switching

pulses. The block diagram of FDM-MPCC is shown in Fig. 3.6.

Predictive controller
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-1 id* | Mmd@Es) [y :Eq(S.SO) < R PR
r — "
4 F 3
| } I Ve
| a2 ig(k+2) |
m. | d
| | Predictionandonestep | | g 1) abe-dg
™ compensation h |
I ——— I o}

Fig. 3.6. The Block Diagram of the proposed FDM-MPCC for PMSM drives.
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34 Numerical Simulation

In this section, the proposed two MPC methods (FDM-MPTC and FDM-MPCC) are
designed and simulated using Matlab/Simulink based on a 1kW PMSM. To verify the
effectiveness of these two methods, the conventional MPC (PCC) is applied to the PMSM
and compared with the proposed methods considering different characteristics. The MPC
applies one vector in each control cycle but has been optimized for better performance. The
PMSM parameters are kept the same for all simulations, as in Table 3.1. The numerical
simulation combines start-up, steady-state, and external load tests. The motor starts at Os with

a reference speed (500 rpm or 1000 rpm), and an external load (2 Nm) is applied at 0.1s.

Table 3.1 PMSM drives parameters.

Parameter Symbol Value and unit
Stator Resistance Ry 0.47Q
d-Axis Inductance Lq 14.2mH
g-Axis Inductance L, 15.9mH
Permanent magnet Flux v, 0.1057 Wb
Number of Pole Pairs P 3
Rated Speed Wy, 1000 rpm
Rated Torque T, 2 Nm
dc-Link voltage Vbe 200V
Inertia Ji 0.002 kg/m?
viscous Friction B 0.0006 Nm/rad/s
Sampling Time ts 100ps
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Figs 3.7 and 3.8 show the dynamic responses at 500 and 1000 rpm with an external
load of 2 Nm applied at # = 0.3 s for MPC and the proposed FDM-MPTC and FDM-MPCC.
From top to bottom, the waveforms are stator current and torque on the left side of the figure
and stator flux and rotor speed on the right side. As can be seen from the curves, the proposed
FDM-MPTC and FDM-MPCC show an excellent dynamic response with lower overshoot,
faster settling time, smaller flux and torque ripples, and smoother stator current responses
than compared to MPC.

Fig. 3.9 presents the waveforms of switching frequency, the harmonic spectra of
stator currents, and the selected voltage vectors at the steady state of 1000 rpm (the rated
speed) with a load torque of 2 Nm. It is seen that the proposed FDM-MPTC and FDM-MPCC
show almost fixed average switching frequency, which is better and more regulated than
MPC. MPC has an unregulated average switching frequency because the switching pulses
are directly generated without a PWM modulator. In addition, the total harmonic distortion
(THD) of the stator current is calculated up to 6 kHz maximum frequency. The proposed
FDM-MPTC and FDM-MPCC record THD values of 4.61% and 4.12%, respectively. In
contrast, MPC has a broad harmonic spectrum, and the stator current THD is up to 6.31%,

much higher than the proposed methods.
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Fig. 3.7. Responses of rotor speed, stator current, torque, and stator flux at 1000 rpm with
sudden load change for (a) MPC, (b) proposed FDM-MPCC, and (c¢) proposed FDM-
MPTC.
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Fig. 3.8. Responses of rotor speed, stator current, torque, and stator flux at 500 rpm with

sudden load change for (a) MPC, (b) proposed FDM-MPCC, and (c) proposed FDM-

MPTC.
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Fig. 3.9. Switching frequency, the harmonic spectrum of stator current, and selected

switching vectors for (a) MPC, (b) proposed FDM-MPCC, and (c) proposed FDM-MPTC.
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3.5 Experimental Test

3.5.1 Experimental Setup

To validate the effectiveness of the proposed designs and simulation results, an
experimental setup is built based on a PMSM drive system. The experimental
implementation is accomplished by making a real-time interface between MATLAB/
SIMULINK and dSPACE DS 1104 controller board. The experimental system is divided into
two parts, which are software and hardware. The software includes modelling and controlling
the drive system using MATLAB/SIMULINK and ControlDesk. In contrast, the hardware
consists of a digital controller based on dSPACE DS 1104, gate drive modules, a three-phase
power inverter, a DC source, current sensors, an encoder, a three-phase PMSM, and load.
The complete experimental setup of the PMSM drive system is shown in Fig. 3.10. In

addition, a detailed describtion of hardware components is presented in the next sections.

i .
S Dynamo-meter-DSP6000
- .~ Y

N

e

———
— |
= |

o Computer with DS1104 N =

.\“

Fig. 3.10. Experimental setup of PMSM drives system.
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3.5.1.1 ControlDesk

ControlDesk is a well-established experiment software from dSPACE, designed to
provide users with comprehensive control, monitoring, and automation capabilities for
experiments, while also facilitating the efficient development of controllers. The workflow
typically begins by desgning a system model in MATLAB/ SIMULINK, then a real time
code in C language is generataed and uploaded to dSPACE 1104 borad. Subsequently, the
real-time code generated can be utilized within ControlDesk to construct control systems for
real-world applications.Users can perform real time control of the hardware by fine-tuning
system parameters online, such as specifying step input speed commands or adjusting scaling
factors. In addition, ControlDesk enable real time monitoring of the system , in which the
hardware measurement such as speed and currents are displayed and monitored in real time.
Subsequently, the desired system measurement data are sampled at 5 kHz sampling
frequency and saved as mat files for in-depth analysis in MATLAB. Fig. 3.11 illustrates a

typical layout of ControlDesk.

Fig. 3.11. Layout of ControlDesk.
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3.5.1.2 dSPACE
Most applications that require the high speed processing of a large amount of numerical

data need to use the digital signal processors (DSP). Therefore, an evaluation module named
digital signal processing and control engineering (ASPACE DS 1104) is used in this drive
application. The dSPACE DS 1104 is a control board and a stand-alone card that serves as
an excellent platform to develop and build the drive system as shown in Fig. 3.12. This type
of DSP is equipped with an on-board peripherals such as Analog—to-Digital (ADC) and
Digital-to-Analog (DAC) to be used in the digital control systems.

HOST PC

MATLAB

&
Dspacel104

1/0 board

Fig. 3.12. dSPACEI1104 illustration with I/O board.

3.5.1.3 Inverter Control Circuit

The control circuit shown in Fig.3.13 is a control interface board specifically designed
to control the motor through three-phase inverter. This board is powered by 5 V- supply and
can be divided into three parts,namedly inverter, gate drivers, and interface part. The inverter
part comprise three-phase inverter (made of six INFINEON IKW40T120FKSAT1 IGBTs and

two DC-Link capacitors) and two current sensors. The gate drivers part consists of various
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optocouplers to generate the required switching pulses for IGBTs. The interface part acts as
interconnection panel between dspace and other hardware components. It takes the control
signal from dSPACE and send them to the gate driver, also it receive the current sensors and

speed encoder measuurments and feed it back to dSPACE for processing.

In addition, 200V dc is supplied to the inverter through external DC power supply. The
workflow of the control circuit begins by generating a control signals through dSPACE which
are sent to gate driver circuit via interface panel. Then, the DC supply is powerd on and the
switching pulses generated by the gate drivers are used to control the inverter to produce
three phase voltage to operate the motor. The measurements of speed encoder and current
sensors are fedbcak to the dSPACE via interface panel for processing and forming the closed

loop system.

Fig. 3.13. Control circuit board.
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3.5.2 Start-up and Load Tests

This section analyses the responses during start-up, deceleration, and in the
presence of external load disturbances. The reference speed was set to 1000 rpm to
examine the start-up behaviour, allowing the motor speed to accelerate steadily from a
standstill to its rated speed of 1000 rpm. The response exhibits a slight overshoot, as
depicted in Fig. 3.14. For the deceleration test, the motor operates at a speed of 500 rpm,
then a reference speed of -1000 rpm is applied, and the obtained responses are depicted
in Fig. 3.15. Furthermore, the load torque responses are investigated by operating the
motor at a constant speed of 1000 rpm while subjecting it to a 2 Nm external load applied
to the shaft. The corresponding responses to load disturbance are illustrated in Fig. 3.16.
The curves from top to bottom in Figs 3.14 to 3.16 are stator current, torque, and rotor

speed.

Upon analysis, it becomes evident that the proposed FDM-MPCC and FDM-
MPTC exhibit superior dynamic performance compared to MPC. These methods
showcase faster settling times, ensuring quicker stabilization of the motor speed.
Moreover, they exhibit remarkable resilience against load disturbances. Compared to
MPC, the motor speed quickly returns to its steady-state position following a disturbance,

indicating excellent load disturbance rejection capabilities.

In summary, the FDM-MPCC and FDM-MPTC techniques demonstrate
commendable dynamic performance and efficient load disturbance rejection, surpassing

the performance of MPC in both start-up and external load scenarios.
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Fig. 3.14. Start-up response from standstill to 1000 rpm for (a) MPC, (b) FDM-MPTC,
and (¢) FDM-MPCC.
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3.5.3 Steady-State Responses

To delve deeper into the performance evaluation of the proposed FDM-MPTC and
FDM-MPCC methods, an examination of their steady-state responses under various speed
operations, both with and without load, is conducted. To highlight the effectiveness of these
techniques, a performance comparison is conducted with the conventional MPC in different
operating conditions. This evaluation uses two speeds (500 rpm and 1000 rpm) with and

without load conditions.

Firstly, the responses at 500 rpm are analyzed to assess the system's behaviour. Fig.
3.17 illustrates the system's response without any load, while Fig. 3.18 depicts the response
under a 2 Nm load torque. Furthermore, the responses at 1000 rpm are investigated to
evaluate the performance of the FDM-MPTC and FDM-MPCC techniques at rated speed.
Fig. 3.19 presents the system's response without any load, while Fig. 3.20 showcases the
response under a load condition. The graphs in Figs 3.17 to 3.20 represent stator current, flux,

torque, and applied switching vectors.

Analyzing these steady-state responses gives a more comprehensive understanding
of the effectiveness of the proposed FDM-MPTC and FDM-MPCC methods compared to
conventional MPC. The proposed methods exhibit excellent steady-steady torque, flux, and
current responses with fewer ripples and distortions. This illustrates the significance of
applying a two-vector and eliminating the weighting factor in enhancing the performance of

the PMSM drive system.
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Fig. 3.17. Steady-state responses at 500 rpm (no load) for (a) MPC, (b) FDM-MPTC, and
(c) FDM-MPCC.

99



Chapter 3. Two-Vector Dimensionless Model Predictive Control of PMSM Drives Based on
Fuzzy Decision Making

Current ia(A)

0.25
Time(s)

0.45 0.5 o

0.2

0.25
Time(s)

0.3

e

Torque T (N.m)
T

2500 -

2000

Fsw(Hz)

1500

-
B

0.1

0.15

0.2

0.25
Time(s)

0.3

1000
o

0.45 0.5

(2)

FDM-MPTC

a
n

Current i (A)
o

e

Torque T E(X.m)

Time(s)

Time(s)

0.2

0.2

0.25
Time(s)

0.3

0.15

0.1

s

Flux ¢ (wb)
e
>
b

Time(s)

Fsw(Hz)

a

Current i (A)
°
T

Time(s)

s

Flux 1) (wb)

e

Torque T (N.m)

L
0.25

Time(s)

i
0.25
Time(s)

0.3

1 A |

0.05

0.1

0.15

0.2

0.25 0.3 0.45
Time(s)

0.35 0.4

(©

L I I I I
0.25 0.3 0.35 0.4
Time(s)

Fig. 3.18. Steady-state responses at 500 rpm (2 Nm load) for (a) MPC, (b) FDM-MPTC,

and (c) FDM-MPCC.

100



Chapter 3. Two-Vector Dimensionless Model Predictive Control of PMSM Drives Based on

Fuzzy Decision Making

MPC
1
{
|
{
< | 2
= E
s ol LS 00s 1
g
E | £
5] [ = oF ]
|
| -0.05 1
{
5 H | 1 | | | | | 01 | : 1 | | H | i :
0 005 01 015 02 025 03 035 04 045 05 005 01 015 02 025 03 035 04 045 05
Time(s) Time(s)
4 : - - - : - : . 3000 T T T T T T T
{
3 1 2900 - 1
- |
Z? 1
|
£, | g 2800 E
= - 2
[ H
E 2 2700 1
Z o [T T A A i
IS
I
2600 - |
1 1
(
2 i i i . . i i i i | 2500 | | | i . . | | |
0 005 01 0I5 02 025 03 035 04 045 05 0 005 01 015 02 025 03 035 04 045 05
Time(s) Time(s)
FDM-MPTC
10 - : : : : : - : 0.2
0.15
~ 57 7]
< 2 o1
= B
T O N g I s W W ST 0,05
£ z
3 = 0
S 1
-0.05
T Y B S R T A Liii i i TS T aiiiil -0.1
0 005 01 0I5 02 025 03 035 04 045 05 0 005 01 0I5 02 025 03 035 04 045 05
Time(s) Time(s)
a— Pt s s — T 3500 ; : : T
|
L 1 |
3 3000 - 4
z, . =
<, < 2500 ]
© H |
g WWWWWWWWWWWWWWW £ 2000 - 1
g0 3
Bys 4 1500 | |
|
gl [ e e P 1000 : i | | | . .
0 005 01 0I5 02 025 03 035 04 045 05 05 01 0I5 02 025 03 035 04 045 05
Time(s) Time(s)

(b)

FDM-MPCC

Current in(A)
Flux 4 (wb)

5 L L L L L L L L

=01t
025 03 0
Time(s)

0.05

5000

0.1

0.15

0.2

025 03
Time(s)

4500 7

4000 -

e

3500 -

Torque T (N.m)
Fsw(Hz)

3000

. i ; ; ; |
0.25 0.3
Time(s)

L
0.15 0.2

(©)

Time(s)

Fig. 3.19. Steady-state responses at 1000 rpm (no load) for (a) MPC, (b) FDM-MPTC, and
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3.6 Quantitative Analysis and Comparison of Control Methods
The proposed FDM-MPTC and FDM-MPCC performances can be further evaluated
under different operating conditions. The stator current and torque tracking performances
and switching frequency at steady state with different speeds and torque are assessed. By
varying the motor speed and applying different load torques, the current ripples, torque
ripples, and average switching frequency are computed and recorded using the following

formulas:

1 N
Trip - NZ(Te(i) - Tavg)z (3-52)

(iayey (0 — ia)z (3.53)

-

lrip = N
=1

The average inverter switching frequency Fy,4is obtained by counting the total

switching jumps N of six legs of a two-level inverter over a fixed period of 0.05s.

b=

Fovg = 00205 (3.54)

The current ripples i, torque ripples T,;p, and average switching frequency Fyyq4

ip;
of MPC, FDM-MPCC, and FDM-MPTC at three speeds with no load, 1 Nm load, and 2 Nm
load are presented in Tables 3.2 to 3.10. The motor operates at a speed of (200, 500, or 1000)
rpm, and the corresponding load is applied to the motor shaft. Then the load and current

ripples are computed for a duration of 0.5 s. The average switching frequency is computed

for the three controllers with a fixed duration of 0.05 s.
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Table 3.2 Torque ripples of conventional MPC T;;, (Nm).

T,y (Nm) Speed (rpm)
200 500 1000
0 0.16 0.29 0.43
Torque 1 0.18 0.27 0.37
(Nm) 2 0.15 0.25 0.36

Table 3.3 Torque ripples of FDM-MPCC T.;;, (Nm).

T;ip (Nm) Speed (rpm)
200 500 1000
0 0.097 0.11 0.12
Torque 1 0.075 0.091 0.11
(Nm) 2 0.062 0.081 0.095

Table 3.4 Torque ripples of FDM-MPTC T,.;;, (Nm).

T;ip (Nm) Speed (rpm)
200 500 1000
0 0.061 0.082 0.092
Torque 1 0.051 0.069 0.091
(Nm) 2 0.048 0.064 0.084
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Table 3.5 Current ripples of MPC i, (A).

Lrip (A) Speed (rpm)
200 500 1000
0 0.42 0.45 0.53
Torque 1 0.48 0.53 0.56
(Nm) 2 0.46 0.43 0.45

Table 3.6 Current ripples of FDM-MPCC i, (A).

Lrip (A) Speed (rpm)
200 500 1000
0 0.21 0.22 0.24
Torque 1 0.23 0.27 0.28
(Nm) 2 0.20 0.16 0.17

Table 3.7 Current ripples of FDM-MPTC i.;;, (A).

Lrip (A) Speed (rpm)
200 500 1000
0 0.24 0.26 0.32
Torque 1 0.27 0.31 0.35
(Nm) 2 0.22 0.19 0.26
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Table 3.8 Average switching frequency of MPC F,,,, (Hz).

F 44 (Hz) Speed (rpm)
200 500 1000
0 2375.4 2228.1 1829.0
Torque 1 2161.5 1985.5 1730.9
(Nm) 2 2019.9 2029.7 1688.7
Table 3.9 Average switching frequency of FDM-MPCC Fg,,; (Hz).
F gy (Hz) Speed (rpm)
200 500 1000
0 3924.0 3436.5 3199.1
Torque 1 3813.2 3177.4 3024.0
(Nm) 2 3369.9 3254.8 2976.4

Table 3.10 Average switching frequency FDM-MPTC F,,,; (Hz).

Foyg (Hz) Speed (rpm)
200 500 1000
0 42174 3556.2 3321.0
Torque 1 3934.8 3279.5 3161.7
(Nm) 2 3449.8 3361.1 3189.3
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The quantitative results in Tables 3.2 to 3.7 show that implementing the proposed
FDM-MPCC and FDM-MPTC significantly reduced the torque and current ripples compared
to the conventional MPC at different speed operation and load conditions. For instance, at
1000 rpm with a 2 Nm load, FDM-MPCC and FDM-MPTC reduced the torque ripples by
72.1% and 75.3% and the current ripples by 62.2% and 42.2%, respectively. Thus, it can be
concluded that the performance of the proposed FDM-MPTC and FDM-MPCC is better than

that of the conventional MPC in the high, medium, and low-speed and load regions.

In addition, based on the quantitative results, it appears that FDM-MPTC has the lowest
torque ripples under all three operating conditions, with FDM-MPCC having the second
lowest and MPC having the highest. Regarding current ripples, FDM-MPCC performs best
under no load and 1 Nm and 2 Nm load conditions. The switching frequency is highest for
FDM-MPTC under all three operating conditions and lowest for MPC. On the other hand,
the trade-off between torque and current ripples is another essential aspect of comparing the
controller's performance. For example, while FDM-MPTC has the lowest torque ripples, it

has higher current ripples than FDM-MPCC.

3.7 Evaluation with Regulated Switching Frequency
The simulation, experimental tests, and quantitative analyses presented in previous
sections were all conducted under the same control system sampling frequency. Due to the
nature of the MPC algorithm, the switching frequencies of these control methods vary
depending on the applied switching vectors. To achieve a fair comparison, the switching
frequencies of these control methods should be maintained at a similar level. The quantitative

analysis in Section 3.6 shows that the inverter's average switching frequency varies not only
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with the control methods but also with the speed and load conditions. As a result, it will be
challenging and complex to conduct all the tests under a similar inverter switching frequency.
To thoroughly investigate the effectiveness of the proposed MPC methods and fairly compare
it with conventional MPC, performance evaluation at rated conditions (1000 rpm and 2 Nm)
is performed with the regulation of MPC switching frequency to be approximately at a similar
level to the proposed method. To regulate the switching frequency of MPC, an additional
cost function constraint is applied to reduce the number of switching commutations between

two control cycles. The inverter switching states are represented as:
S =1[54,5 5" (3.54)

To regulate the switching frequency, the switching states change must be limited to
no more than one change per control cycle. The change in switching states can be obtained

by summing the switching states S , between two control cycles as follows:

AS = ZS(k +1) = Sk (3.55)

Then, a cost function constraint is included to limit the switching states change to no more

than one per cycle as follows:

Cow(k) = Lim(AS) = { © if AS>1

0 ifAS<1 (3.56)

The constraint (Cy,,) is included in the cost function evaluation in (3.28), which is rewritten

as follows:

gurce = (ia" = talk +2))" + (ig"—iq (k + 2))2 + W Cop(k +2) (3.57)

where w is a weighting factor.
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The constraint Cj,, will prevent the selection of a switching state with more than one
switch change per cycle. Thus, a regulated and approximately fixed switching frequency can

be obtained for MPC.

With a requlated switching frequency, the simulation results at the rated condition are
obtained for the three controllers, as presented in Fig. 3.21(a). Similarly, the experimental
tests with a requlated switching frequency are conducted at rated speed (1000 rpm) and
torque (2 Nm), as shown in Fig. 3.21(b). It can be seen that the performance of the
conventional MPC is improved with a fixed switching frequency. However, the performance
of the proposed FDM-MPTC and FDM-MPCC is still superior, as confirmed by the

quantitative data of torque ripples, current ripples, and current harmonics in Table 3.11.

Table 3.11 Quantitative comparison of MPC, FDM-MPTC, and FDM-MPCC with

the same switching frequency.

Torque Ripple Current Ripple Current

Method T,y (Nm) Lrip (A) THD%
MPC 0.26 0.28 5.3%
FDM-MPCC 0. 094 0.17 4.1%
FDM-MPTC 0.086 0.24 4.6%
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Fig. 3.21. Performance comparison of MPC, FDM-MPTC, and FDM-MPCC with

regulated switching frequency, (a) simulation results, and (b) experimental results.
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3.8 Summary

The unsatisfactory steady-state performance, unregulated switching frequency, and
ambiguous process of weighting factor selection made conventional MPC methods less
effective than conventional control methods for AC machine drives. Thus, various
improvements, such as two or more vectors during one control cycle, weighting factor
eliminations, and switching frequency regulation techniques, were implemented to maintain
the effectiveness of MPCs. This chapter proposed two MPC methods based on predictive
torque/flux and current controls to reduce the torque ripple, regulate switching frequency,
and maintain good current quality. The proposed methods utilize two vectors for one control
cycle and eliminate the issue of weighing factors using FDM. Compared with the
conventional MPCs, the proposed methods have shown superiority in terms of different
characteristics under transient and steady-state conditions. The proposed FDM-MPCC has
shown better current response and maintained reduced current ripples compared to the

proposed FDM-MPTC.
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CHAPTER 4

A NOVEL ROBUSTNESS EVALUATION METHOD BASED ON
SIX-SIGMA METHODOLOGY FOR PREDICTIVE CONTROL OF
PMSM DRIVES

4.1 Introduction

Several robust predictive controls (RPCs) for PMSMs have been investigated with
different robustness techniques, like prediction error correction. The prediction error is
included in the prediction stage to compensate for any control effort [4.1-4.2]. Besides,
observers are employed to establish an RPC method, where a specific type of observer is
used to deal with uncertainties, such as disturbance observer [4.3], extended state observer
(ESO) [4.4], and sliding mode observer [4.5]. In addition, model-free control is another
technique to achieve RPCs for PMSMs, where the prediction process is independent of the
machine model and parameters. Using ultra-local models, estimating the system unknowns
[4.6], and using the current differences at different samples [4.7] are some types of model-
free RPC for PMSM drives. Moreover, RPCs can be achieved by modifying the cost function
to include several constraints and objectives [4.8-4.9]. In addition, combining predictive
control with other control techniques can form a variety of RPC methods, such as MPC with

deadbeat (DB) solution [4.10], integral-resonant control [4.11], and repetitive control [4.12].

However, there is a lack of discussion on the control system's uncertainties and robustness
fundamentals. Most existing RPCs do not adequately describe uncertainties and their effect

on performance. The robustness to uncertainties differs from one control method to another,
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and yet no systemic procedure to evaluate and quantify the robustness. Moreover, PMSM
uncertainties (e.g., parametric uncertainty) can be estimated to be within a bounded range
depending on the machine structure (e.g., manufacturing tolerances) and the expected
operating conditions (e.g., rated and maximum temperature). Therefore, to effectively
evaluate a robust control method, realistic and practical uncertainty ranges must be
considered instead of random uncertainty values, such as a 200% error in specific parameters,

which is unrealistic and unlikely to occur in practical situations.

This chapter presents a clear and systemic method for evaluating the control system's
robustness. The concept of robust control and the effect of uncertainties on performance are
illustrated. Realistic and practical uncertainty ranges based on manufacturing and operational
sources are obtained. The six-sigma methodology is used to evaluate the robustness of a

control system, including second-order, DC motor drive, and RPC of PMSM drives.

4.2 Uncertainties and Robustness Fundamentals

To design a control system for a specific real plant, an approximate mathematical
model that represents the plant needs to be obtained. Thus, various controllers can be
designed according to the system requirements. However, the model never accurately
describes the dynamic behaviour of the real plant, where some plant dynamics are not
captured in the model [4.13]. Moreover, the system parameters typically are fixed and
estimated/ measured at specific operating conditions. In the real system, these parameters are
subjected to change in response to the system's operational, environmental, and/or structural
variations. Therefore, the plant missing (unmodelled) dynamics and system parameters

variation normally are referred to as control system uncertainties [4.14]. Most control system
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uncertainties are generated due to plant structure differences, materials diversity, assembly
imperfection, friction and mechanical factors, and environmental and operating condition
changes. The sources of uncertainties can be grouped into manufacturing and operational
sources. For instance, uncertainties can be generated due to materials diversity caused by
manufacturing tolerances or operating temperature variations [4.15]. These uncertainties can
highly degrade the system and may lead to instability. Thus, the design of a control method
that deals with uncertainties was considered, and this control method is referred to as robust

control.

Since the late 1970s, robustness has become a primary objective of control research,
and numerous control methods have been proposed as robust controls of processes with
uncertainties. A control system is typically considered robust if a good control performance
is achieved in the presence of uncertainties. However, a control system's robustness definition
and robustness level have not been clearly described. Thus, clearly defining the term
robustness is desirable and proposing a practical approach to evaluate the robustness level of

a control system.

To evaluate the effects of uncertainties on the system performance, the uncertainties
need to be determined and represented mathematically. For example, parametric uncertainty
can be represented and quantified by assuming that each uncertain parameter is bounded
within some range [min max)]. By considering a control system shown in Fig. 4.1 that has an
uncertain parameter X; bounded in the range X,,;, < X; < Cinax - The uncertain parameter

X; can be modelled as:

X; = X(1+1.4) (4.1)
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XmintXmax Xmax—Xmin

where X = is the mean parameter (nominal) value; r,, = is the relative

Xmax+Xmin
uncertainty in the parameter, and A any real scalar satisfying |A| < 1. The parametric

uncertainty (G,,) can be written in a multiplicative form as follows:

x
= < .
Gy = —— (L+7), Al <1 (4.2)

Lumped uncertainty (GL)

System disturbances

" | — 1

a I
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Fig. 4.1. Perturbed uncertain system.

Besides, to represent the unmodelled dynamics (4u) mathematically with a weight
(W) for the system shown in Fig. 4.2. The unmodelled dynamics uncertainty (G,) can be

expressed in multiplicative form as:
Gy = G()(1+ Wy (s)Au(5)), 18, (jw)| € 1Vw (4.3)

Lumped uncertainty represents one or several sources of parametric and/or

unmodelled dynamics uncertainty combined into single lumped perturbation of a chosen
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structure. For instance, parametric and unmodelled dynamics uncertainties can be modelled

as a single uncertatinty as follows:

X
GpG, = " (1478 (1 + Wy ()A,(s)), 18] < 1, 1A, (jw)| < 1 Vo (4.4)

Moreover, external disturbances and measurement noises are also primary sources of
performance degradation. The lumed uncertainy (G;) of the perturbed uncertain system, as
shown in Fig. 4.1, considering the uncertain parameter X;, controller (K), disturbances (d),

measurement noise (¢), and unmodelled dynamics Au can be represented as follows:

G, =K (% (1+n8)(1+ Wu(s)Au(s))> +d—¢ (4.5)

The robustness of a control system is a measure of how well it can perform in the
presence of uncertainties or how sensitive it is to system uncertainties. In other words, a
control system (Fig. 4.1) with measured output (Y), uncertainties (U;), the robustness of the
control system depends on how sensitive the output Y to the uncertainties U;. This can be
expressed mathematically as the differential sensitivity (S,’,’i) of Y with respect to the
uncertainties U; , which is the percentage change in Y divided by the percentage change in

U; that has caused the change in Y to occur, as the following:

Sy = ov _ A (4.6)
Ui T au; T AU; '

Moreover, the effects of various uncertainties on a control system can be evaluated
by considering the system in Fig. 4.1 with output Y having a number of uncertain elements
(U; = U;). These uncertain elements include parametric and unmodelled dynamics

uncertainties, disturbances, and noises. When these elements vary (AU;) (uncertainties
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occur), the system output Y is affected and consequently varied, which can be reflected as
(AY). Thus, the effect on the system output Y due to the occurrence of uncertainties(AU;) can

be represented as incremental changes (derivative dy) and mathematically expressed as:

dy = Y-, U;Y;dU; for n uncertainties 4.7)

Thus, a small value of (dy) indicates high system robustness.

To illustrate the meaning of robustness graphically, the robustness of the control
system in Fig. 4.1 can be described by its ability to have one or more properties Y within
predetermined bounds in the presence of unknown parts or uncertain parameters. To obtain
the robustness range of a control system performance, the nominal performance has to be
obtained first. Then, the maximum and minimum bounds for robustness can be defined from
the nominal point. Suppose the system Y has a nominal output Y, where there are no
uncertainties. Thus, the range for robustness would be within the bounds|Yy,in, Yimaxl- For

any system output ¥; to be robust, it should be within the bounds such that:

robust |
Yi E— lf Ymin < Yl < Ymax (4-8)

Any output Y; that is outside the pre-defined bounds [Y;;in, Ymax] is considered non-

robust. To illustrate the concept, let's consider the control system (Fig. 4.1) with plant G(s) =

Xi

0.55+1°

If the uncertain parameter x; of plant G(s) has a nominal value of 4 and is varied in

the range [1, 7], and other uncertainties also occurred to the system. First, the nominal

response (Ynominary is generated (Xpominar = 4), and no other uncertainties exist, as shown

in Fig. 4.2(a). Then, the robust performance range is defined [Yy,in, Yimax], for instance,

overshoot must be less than 15% (Y;,,4,) and settling time must be less than 7s (Y,4,) as
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depicted in Fig. 4.2(b). Then, a set of step responses (Y;) with different uncertainties
generated. The responses that fall within the pre-defined bounds [Yy,in, Yimax] are considered
robust responses (Yr-opys¢), and this is called the robustness range (Yropust—range)- While the
responses that fall outside the bounds range are considered non-robust (Y,,on—robust) as

shown in Fig. 4.2(c).
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4.3 PMSM Drive Uncertainties
In order to design an efficient control strategy for PMSMs, an accurate mathematical
model of the machine needs to be developed. A three-phase PMSM with symmetrical
winding and identical parameters can be transformed into a dg equivalent model. The voltage

and flux linkage equations of a PMSM in d-q form are expressed as:

. dig .
Vg = Rsld + Ld E - (l)quq (49)
] diq ]
Vg = Rsig + Ly ar + wlgig + 0¥y, (4.10)
l'pd = Ldid + l'ppm (411)
W, = L4l (4.12)
dw
Tm=TL +JE+BO) (4.13)
3 . .
T, = Ep[l{lpmzq + (La — Lq)igial (4.14)

Typically, a PMSM control method is designed based on the developed model.
However, PMSM nonlinear behavior and complex dynamics result in various unmodelled
dynamics of the real PMSM. These dynamics are unavoidable in the real system, exist in
different parts of the machine drive system, and are rarely captured in the model. Due to the
material diversity of PMSM rotor, the machine structure can exhibit unmodelled dynamics
in the form of induced pulsating torques such as cogging torque [4.16] and flux harmonics
due to the PM material of PMSM. The machine's PM can be demagnetized with temperature

rise, significantly affecting the maximum torque capability and PMSM efficiency [4.17].

121



Chapter 4. A Novel Robustness Evaluation Method Based on Six-Sigma Methodology for
Predictive Control of PMSM Drives

In addition, the nonlinear operation of the inverter can generate unmodelled dynamics
in the form of a deadtime effect. A voltage-fed inverter is never ideal; in practice, the
switching dead time, the device's ON-state voltage drop, and the dc-bus voltage variations
can adversely affect the control performance, particularly during the steady-state operation
[4.18]. Besides, measurement errors due to sensors offset are another source of unmodelled
dynamics, where the errors in measurements of either position or current inevitably cause

torque ripples.

To design MPC for PMSM drives, the current at (k + 1) can be predicted based on

the machine equations as follows:

. . RsTs\ | L, . T
i+ 1) = iy(k) — ( )ld(k) + 29T w iy (k) + S g (4.15)
Lg Lg Lq
R.T L T.w'W. T.
igUe+1) = iy (k) — < = ) ig(k) — 2Ty wig(k) ——""+ v,  (4.16)
Lq Lq Lq Lq

The MPC of PMSM drives is subjected to uncertainties from manufacturing (e.g.,
assembly imperfection, PM material diversity) and operational (e.g., temperature variations,
measurement offset), resulting in unmodelled dynamics and parametric uncertainties[4.16].
Parametric uncertainty due to machine parameter variations is the most common PMSMs
drive uncertainty and severely affects performance [4.19]. Hence, this research considered

only parametric uncertainty.

Generally, when designing a PMSM drive, the nominal values of both electrical
parameters (Rg, Ly, Lg, Wpm), and mechanical parameters (J, B) are used. However, these

values can vary during operations due to temperature changes, load torque, and magnetic

saturation. The mismatch or variation of any of the machine parameters will lead to an error
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in the predicted variable. For instance, the predicted currents in (4.15) and (4.16) with

parameters mismatching can be rewritten as follows:

i (k+1) = iy(k —(wﬁ' k +<M)T i (k +<—>T 4.17
falk+ 1) = 1000 = (P57 Bial0 + (P g T w1000 + (g ) Tova (417)
R, + AR, Ly+ ALy

i (k+1)=iz(k)—|——— | T5i (k) — | —— |T.wiyz(k
lq( + ) ld( ) (Lq-l- ALq> slq( ) <Lq+ ALq swld( )

Yom + A, 1
—|—FT. — | T. 4.18
<Lq+ aL, )= \L ¥ ar, ) s (4.18)

where AR, ,ALg, ALy, AW, are parameter errors between the nominal parameter values and

the mismatching values.

The stator resistance variation significantly impacts the current-loop regulation
performance, and this effect becomes much more severe at low speeds or in high load torque
conditions. The effect of inductance variation is mainly coupled with the current change, so
the transient performance will be primarily affected in the current dynamic period [4.20]. A
mismatch of the rotor flux significantly influences performance at medium and high speeds
because the back electromotive force (EMF) is proportional to the rotor flux. If the rotor flux
varies, a constant current error occurs in the steady state, and overcurrent or undercurrent
occurs in the transient state [4.4]. Moreover, the inertia J of a PMSM system, including both
rotor and load, is time-varying for some special applications, e.g., an electric winding
machine, where the inertia of the whole system increases as time goes by [4.21]. If the
system's inertia increases to a value higher than the original, the speed response will have a

bigger overshoot and a longer settling time.
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Parameter mismatching is one of the crucial PMSM drive uncertainties that can
degrade the performance. The variations of PMSM parameters severely affect the prediction
accuracy of predictive control methods, which is why several RPC methods primarily focus
on compensating for the effects due to parameter mismatching. However, the expected
variation range for each parameter based on actual practical conditions should be obtained to
design an effective robust control. In other words, it is essential to obtain realistic and
practical variations ranges for these parameters by considering the manufacturing tolerances
and changes in the operating conditions. Manufacturing tolerance is a specific inaccuracy
range in a typical value of a machine variable due to tolerances of geometric dimensions and

material properties.

Operational factors are another cause of PMSM parameter variations. For example,
the stator winding resistance (Rg) depends on the stator winding temperature. The nominal
value of R; or Ry provided by the manufacturer is obtained at 25 °C (room temperature).
The R; at an operational temperature ¢ (°C) of stator winding (if the temperature is known)

can be calculated using the nominal resistance value Rg, measured at temperature t, = 25 °C
by

Rs = Ryo[1 + a(t —ty)] (4.19)
where a is a material constant (for copper, @ = 0.004 K~1).

The PM flux linkage (Wpp) depends on the direct and quadrature axis currents (ig, iy),
and the magnet temperature. The machine inductances (Lg4, Lg) depend on the currents (ig, i4)
and the flux density, slightly affected significantly by machine temperature. In addition, L,

and L, vary non-linearly with respect to the load conditions due to magnetic saturation.
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Mechanical parameters of PMSM also vary during real-time operations. For example,
moment inertia (J) varies when a load is applied to the machine or connected to an external
system. The shape and the dimensions of mechanical loads mainly affect the variation of

mechanical parameters [4.22].

In general, the parametric uncertainties of both electrical and mechanical parameters
of PMSM are caused by manufacturing tolerances and operational factors. Thus, if the
manufacturing tolerance (A,,;) and operational variation (A, ) of a parameter are expressed as
a percentage of the nominal values, the total uncertainties (variation range) of a parameter,

e.g., R;, can be obtained as:
Ry = Ro(1+ Ay (Ry))(1+ Ap(Ry)) (4.20)

If Ay (Ry) = £10% and Ay (Ry) = [—5%, +30%], the uncertainties of R, can be expressed

as
R, = Ro(1 4+ [—10%, +10%])(1 + [—5%, +30% ])
R, = Ry[—14.5%, +43%] (4.21)

The manufacturing tolerances (A,,) can be obtained from the catalogue datasheets of
different manufacturers, while the operational variation (A,) can be obtained by considering
two situations (rated and maximum operating conditions). For example, A, of Rg due to
temperature change can be obtained by using (4.19). For a machine with a rated temperature
of 70 °C and maximum temperature of 155 °C (class F insulation material), R will increase
by +18% and +52% of the nominal value at rated and maximum temperature. Also, R can

be lower than the nominal values at a low temperature and before the machine warms up.

125



Chapter 4. A Novel Robustness Evaluation Method Based on Six-Sigma Methodology for
Predictive Control of PMSM Drives

Thus minimum —5% and maximum —10% decrease of R from the nominal value can be
experienced. The operational variation (A,) of other parameters determined based on several
PMSM parameters identification methods, such as recursive least-squares (RLS) algorithms,
neural networks (NN), model reference adaptive system (MRAS) based algorithms, online
clustering, and particle swarm optimization (PSO) [4.23-4.24]. Thus, with %A, ,%A, of
each parameter and using (4.20), the total variation ranges of PMSM parameters at rated and
maximum conditions are summarized in Table 4.1.

Table 4.1 PMSM parameters potential variations due to manufacturing

tolerances and rated & maximum conditions.

Rated condition

%A \ parameter | R, Ly L, Yom Ji B
+% 30% 32% | 32% | 15.5% | 26.5% | 15.5%
—% 14.5% | 57.5% | 57.5% | 23.5% | 14.5% | 7.85%

Maximum condition

+% 78% | 43.7% | 43.7% | 21% | 32% | 20.75%

—% 19% | 74.5% | 74.5% | 32.5% | 19% | 9.75%

4.4 The Proposed Six-Sigma Robustness Evaluation Method
Six-sigma is a quality measure that quantitatively describes a process or product's
performance. The term "sigma" basically is standard deviation o which measures how a set
of data is dispersed around the mean value u of this data. MOTOROLA and GE developed
the six-sigma quality management system to design products that meet customer needs with

very low defect levels [4.25]. Considering normal distribution data, the sigma levels (+0) as
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the number of defects per million are presented in Table 4.2. Fig. 4.3 illustrates the normal
distribution curves of sigma levels 1 to 6 with u = 0, the upper specification limit (USL) =
6, and the lower specification limit (LSL) = —6. The areas under the normal distribution in
Fig. 4.3 associated with each o-level relate directly to the probability of performance falling

in that particular range (for example, +1 o is equivalent to a probability of 0.683).

Initially, +30 approach was used, where 30 is equivalent to the probability of 99.73%
or the probability of failure (POF) is 0.27% (2,700 defects per million). This probability was
deemed acceptable considering short-term quality control. However, in the long term, an
approximate 1.5¢ shift in the mean u was experienced, according to MOTOROLA and GE
[4.25]. Due to this 1.50 shift, the 30 quality control insufficient in long-term, thus the 60
quality control was used to define the long-term sigma quality. The 60 in short and long

terms as percentage variation and number of defective per million (DPMO) are in Table 4.2

[4.26].
Table 4.2 Sigma level as percentage variation and defects per million.
Sigma level Percentage variation DPMO (S) DPMO (L)

t+1lo 68.26% 317,400 697,700
+20 95.46% 45,400 308,733
130 99.73% 2,700 66,803
t4o0 99.9937% 63 6,200
+50 99.999943% 0.57 233
+60 99.9999998% 0.002 34

It is important to note that the "Six" in Six-sigma does not mean only 60-level is

considered. Six-sigma is a quality measure or improvement technique that can be used to
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obtain the corresponding or the desired (no). Sigma level is a key property of the Six Sigma
method that measures the capability of a process to produce defect-free performance. Another
essential property of the six-sigma method is the Z-value, which measures how many
standard deviations, g, a process specification, X, is away from the process's mean, p. It
calculates the process capability index, which indicates how well the process performs

relative to its specifications. The concept of Z-value based on a defined USL is shown in Fig.

4.4.

Normal Distribution Curves

0.6 4

Sigma level: ) (—- Sigma Level POF(S) POF(L)

i 31.7% 69.8%
051 5 —— f \ 2 454% 30.8% i

! \ 3 0.27% 6.68%
0.4 - " \ 0.0063% 0.621% |

& 4o "' \ ' =0 0.0233%

'% ‘I & =0 =0

a 031 30—'—1 L.I Note, Sz short term and L: long term ]
s
t 1
0.2t 2 e, ~ \:.\ i
I 1
0.1 F POF under LSL |la——-—/4"ﬁ. — _1!' AY POF under USL i
/7 Y
-"7 If VoS T O
- - o/ \ ~ ~ -
0 R - S e 1 —_—
-6 -5 4 -3 -2 -1 0 1 2 3 4 5 6
LSL usL

Fig. 4.3. Normal distribution curves with respect to sigma levels from 1 to 6 under the

conditions of mean = 0, LSL =—6, and USL =6 [4.27].
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Fig. 4.4. Normal probability density function (NPDF) and Z;5; and its relationship
to POF with one-sided hypothesis test conditions for cases with USL [4.27].

Six-sigma properties can be used to evaluate and quantify the performance robustness
of a control system. First, a set of performance indicators, K;, that adequately reflects the
system performance, and their acceptance levels or upper specification limit, USL;, must be
defined. The robustness criteria of the control system with performance indicators (K;) and

specification limits (USL;) are expressed as:
K, <USL;,i=12,..,m (4.22)

where K; represents the i performance indicator of a control system, like torque ripple in a
motor drive system should be less than 0.4 Nm.
The Z-value of the i performance indicator is defined as:

7, =LMK 12 m (4.23)

Oj

where p; and o; are the mean and standard deviation of the i performance indicator,

respectively.

The Z-value, Z;, accurately indicates the robustness level of an individual indicator,

K;, relative to the speciation limit, USL;. However, it is difficult to indicate the overall system
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robustness using the Z-value for a system with several indicators. Therefore, sigma levels,
no, and POF are used to indicate the overall system robustness. Based on the number of
defects, the POF of the system, POF,, can be obtained and used to compute the system
sigma level, n,,,;. For a control system with N samples (total number), if ND is the number

of defects, the system's POF and equivalent sigma level can be obtained by [4.27]:

POF,, ==~ (4.24)
_ POF;ys
Ngys = @711 ——22) (4.25)

where ®@~1(x) is the inverse transformation of a standard cumulative distribution function.

4.5 Robustness Evaluation of the Second-Order and DC Motor Drive Systems
To validate the proposed six-sigma robustness evaluation methods, a closed-loop
second-order system with uncertain parameters (; and w,; (Fig. 4.5) is considered. In order
to evaluate the robustness of the stability and performance of the system, some indicators
must be defined. The step response characteristics, such as overshoot (0OS), settling time (7’s),
and root-mean-square error (RMSE), can be used as performance indicators and the location
of the real parts of closed-loop poles (P;p) can be used to indicate stability. Therefore, the

performance and stability indicators (K) and their defined USLs are set as follows:

K, RMSE(X.) 0.03
K, Ts(X.) 0.02

K= = < |VY4[ = usL 4.26
K3 0S(X.) 0.04 (4.26)
K, Re[Pc1p(Xc)] 0

where X, = [ (;, w,;] is the model's uncertain parameters.
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Fig. 4.5. Second-order closed-loop control system with uncertainties.

To evaluate the robustness numerically, the PID controller is designed for the system

to achieve optimal performance at the nominal values of (; and w,; as 0.6 and 5,
respectively. Then, four different sets of bounded uncertainty (variation) ranges of
(; and wy; with 10,000 normally distributed samples for each set generated. The Z-value
of settling time (Z,), overshoot (Z,s) and RMSE (Zyysg) are obtained based on (4.23), and
the sigma level of system performance (7,y), sSystem stability (ngqp) and POF of system

performance are computed based on (4.24) and (4.25), as presented in Table 4.3.

Table 4.3 Robustness evaluation of second-order system with parameter

uncertainties.
Wp; Zi ZTS ZOS ZRMSE nsys Nstab POP:s‘ys
[4.,6] [0.5,0.7] 574 | 453 | 119.1 6 6 0
[3,7] |[04,08] [255] 20 | 290 | 6 6 0

[2,8] |[03,09] | 49 | 42 | 66 | 37 | 6 |0.0215%

[0,10] |[0.2,1] 15| 18 | 24 | 14 | 54 | 16.15%

It can be observed from Table 4.3 that as the uncertainties increase, the sigma levels
of the system performance and stability decrease. Besides, the robustness of stability is

broader than performance, where in some cases, the performance robustness is low, but the
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system is still robustly stable.In addition, considering a more practical system like a DC
motor drive is simple to control and can be represented by a loop transfer function. Thus,
with an open loop transfer function of the DC motor in (4.27) and a suitable controller,
robustness analysis of DC motor drive can be performed in the same way as the system in

Fig. 4.5.

K;
Ls3+ (JR + BL)s? + BRs + K?

G(s) = 7 (4.27)

where J is the moment of inertia, B the motor’s viscous friction constant, K; the motor torque
constant, R the motor resistance, and L the motor inductance.

To numerically evaluate the DC motor drive robustness, the indicators (K) and USLs

are defined as follows:

K, RMSE(X.) 0.03
K, Ts(X.) 0.04

K= < |YV%] = ysL 4.28
K, 05(X,) 0.03 (4.28)
Ky Re[Pcp(X,)] 0

where X, = [R;, L;, Ji, Bi].

A DC motor drive is optimized to achieve nominal performance at nominal
parameters in Table 4.4. Then, the robustness evaluation results with three variation ranges

of nominal parameters ( £50%, +75%, +100%) are listed in Table 4.5.

Table 4.4 Nominal DC motor parameters.

Parameter | R(Q) | L(H) |J(kg.m?) | B(N.m.s) K,

Value 4 |2.75e % | 3.23¢7° 3.51e"® | 0.0274
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Table 4.5 Robustness evaluation of DC motor drive with parameters uncertainties.

Range Zrs Zos Zrmse | Tsys Mstab POFsyq
+50% 26.3 16.7 28.7 6 6 0.0
+75% 6.6 5.1 9.4 43 6 0.0017%

+100% 2.5 1.8 2.8 1.6 6 10.96%

4.6 Evaluation of Different RPC Methods of PMSM Drives

PMSM drives are subjected to various uncertainties, including parametric and
unmodelled dynamics uncertainties. MPC is highly dependent on the machine model and
parameters; thus, high uncertainties affect MPC's operations and lead to unacceptable
performance for some applications. RPC methods have been introduced to maintain a good
control performance in the presence of uncertainties. Various RPC methods for PMSM drives
have been proposed in the literature, considering different techniques to deal with
uncertainties. The robustness of these RPCs is commonly illustrated by considering a few
cases with mismatching parameters applied (deterministic approach). However, how robust
(robustness level) each of these RPCs with bounded uncertainties range has not been assessed
against specific application requirements (stochastic approach). With the proposed six-sigma
robustness evaluation method, the robustness levels of any RPCs or any control method for

PMSMs can be determined numerically with a bounded uncertainties range considering
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different applications requirement.

To validate and illustrate the proposed method, the conventional MPC and five existing
RPC methods for PMSM drives are used to assess their robustness to uncertainties. From the
literature survey (Chapter 2), RPC methods are classified into five types: RPC-based
prediction error, observer, hybrid (combined) techniques, optimized cost function, and
model-free. Thus, a controller from each category is selected to perform a robustness
evaluation based on the proposed six sigma robustness evaluation method. Predictive current
control-based prediction error correction proposed in [4.1] is used and will be referred to as
RPC-I. To achieve robustness and compensate for any parameter mismatching, this method
used the weighted errors between the predicted and measured values in the last sampling
instant and added them to prediction equations in the next sampling instant. Robust MPC
with simplified repetitive control introduced in [4.12] is also used and will be referred to as
RPC-II. This method applies a less computationally simplified repetitive controller with two
resonant units and phase compensation to MPC to realize the system's robustness against
disturbances.

Model predictive current control based on an incremental model and disturbance
observer proposed in [4.28] is another RPC to be used and will be referred to as RPC-III. In
this method, an incremental prediction model was implemented to eliminate the permanent
magnet flux link-age parameter, and an inductance disturbance controller that includes a
simple disturbance observer and inductance extraction algorithm was implemented to reduce
the effects of machine inductance mismatch. Robust model predictive direct torque control
based on the optimized cost function proposed in [4.9] is also used and will be referred to as
RPC-IV. This method's cost function is modified to include specific objectives and

constraints to achieve drive robustness. A direct torque MPC based on maximum torque per

134



Chapter 4. A Novel Robustness Evaluation Method Based on Six-Sigma Methodology for
Predictive Control of PMSM Drives

ampere (MTPA) criteria was developed with a novel cost function with three terms. They
are: tracking term to ensure reference tracking, attraction region term to define where the
steady-state control states should be, and limitation term to limit the control states to their
admissible values.

The robust model-free predictive current control-based current detection technique
proposed in [4.7] is also used and will be referred to as RPC-V. This method works by
calculating the difference between the measured currents at different samples; then, these
differences are used to predict the current in the next sampling. Thus, no machine parameters

are required to perform the prediction.

4.6.1 Numerical Verification and Experimental Validation

Prior to conducting a robustness evaluation of conventional MPC and RPCs, these
methods are to be validated by numerical simulation and experimental results. MPC and the
five existing RPC methods were designed and implemented in Matlab/Simulink based on
PMSM drive with parameters in Table 3.1. The sampling frequency of 10 kHz and the same
machine parameters were applied to all controllers. The start-up responses from standstill to
rated speed (1000 rpm) with load torque (2 Nm) applied at 0.2s are shown in Fig. 4.6 with
nominal parameters and Fig. 4.7 with mismatching parameters (1.5R, 0.5L4,0.5L4,0.7¢p,
). From top to bottom, the graphs are phase A stator current (i), direct-axis and quadrature-
axis currents (iq,i;), motor torque (T,), and rotor speed (w,). As can be seen from the

responses in Fig. 4.7, the performance is critically affected by mismatching parameters.
Compared to the responses at nominal parameters, high current, and torque ripples are

produced, and slow speed responses are experienced. Higher performance degradation is
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recorded for the conventional MPC compared to the other RPC methods because no
robustness mechanism was implemented for MPC.

In addition to the simulation studies, MPC and five RPC methods are experimentally
validated on a two-level inverter-fed PMSM drive system, the same as shown in Fig. 3.10. A
dSPACE DS1104 PPC/DSP control board is employed to implement the real-time algorithm,
a 2500-pulse incremental encoder is used to obtain the motor speed and position, and
dSPACE ControlDesk interfaced with DS1104 is used for real-time control, monitoring, and
record all experimental results. Magtrol DSP6000 high-speed programmable dynamometer
controller is used to apply external load.

First, the six control methods are tested during start-up, where motor speed starts from
a standstill to rated speed (1000 rpm) are shown in Fig. 4.8, and the steady-state responses
with load disturbances (2 Nm) applied at 0.5s are demonstrated in Fig. 4.9. The curves in
Figs 4.8 and 4.9 from top to bottom are phase A stator current (i,), direct-axis and quadrature-

axis currents (ig, I4), motor torque (7T ), and rotor speed (w;.).
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6. Simulation start-up performances with nominal PMSM parameters for (a)

MPC, (b)RPC-I, (c) RPC-II, (d) RPC-IIL, (¢) RPC-IV, and (f) RPC-V.
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Fig. 4.7. Simulation start-up performances with mismatching PMSM parameters for

(a) MPC, (b)RPC-I, (c) RPC-IL, (d) RPC-IIL, (¢) RPC-IV, and (f) RPC-V.
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4.6.2 Quantitative Analysis

To further assess the performance against changes in operating conditions and
parameter uncertainties, the above control methods are evaluated numerically by measuring
the torque and current tracking performances at the steady state. At different operating

conditions and several parameters variation, the current and torque ripples are computed

using (3.52) and (3.53)[4.29].

In this evaluation, two cases are considered. In the first case, MPC and the five RPC
methods are evaluated with different speeds and load torques at nominal machine parameters.
Under no load, 1 Nm, and 2 Nm load torque conditions, five different speeds
(200,400,600,800 and 1000 rpm) are applied. At each test, the torque ripples and stator
current ripples are computed. Fig. 4.10 shows the torque ripples of MPC and RPC methods
atno load, 1 Nm, and 2 Nm loads, and five different speeds. Similarly, the current ripples are

presented in Fig. 4.11 under no load, 1 Nm, and 2 Nm load torque.

In the second case, the motor operates at 1000 rpm and under 2 Nm load torque, and
then the machine parameters vary in ranges according to Table 4.1. The torque and current
ripples are computed with PMSM parameters changing in the range from -A% to A% of their
nominal values. The torque and current ripples of MPC and RPC methods with variations of
Lq,Lq.Rs and W, are presented in Figs 4.12- 4.15. L, and L, are varied from -70% to 40%
of the nominal value, while other PMSM parameters are kept at their nominal values. Ry is
varied from -20% to 80% of the nominal value, while other PMSM parameters are kept at

their nominal values. W,

pm 18 varied from -30% to 20% of the nominal value, while other

PMSM parameters are kept at their nominal values.
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From the obtained data of torque and current ripples at different torque and speed
conditions, it can be observed that MPC has the highest torque and current ripples under
different load conditions and at different speed operations. RPC methods vary in their
response to load and speed variation. RPC-IV achieved the best torque ripples compared to
other RPC methods. Compared to MPC and at 1000 rpm, RPC-IV reduced the torque ripples
by 61.1%, 58.4 %, and 58.7% under no load, half load, and full load conditions, respectively.
Conversely, RPC-V achieved the smallest current ripples compared to MPC and other RPC
methods. At 1000 rpm and no load, half load, and full load conditions, RPC-V reduced the

current ripples by 55.4%, 53.2 %, and 63%, respectively, compared to MPC.

With different parameters variation, higher effects are produced with the variation of
inductances (Lg, L) particularly at low values, where very high ripples are recorded. While
the variation of permanent magnet flux linkage (W,,,) has less effect compared to the
variations of inductance, and the high ripples are recorded with high values of (Wy,,). The
variation of stator resistance (R) does not have much effect on the current and torque ripples.
The highest torque and current ripples are recorded when Ly and L, are decreased by 70%.
When L, is reduced by 70%, the torque and current ripples respectively increased by 321.8%
and 179% for MPC, 280.1% and 205% for RPC-I, 243.9% and 91.4% for RPC-II, 190.1%
and 120.8% for RPC-III, 160.1% and 127.2% for RPC-IV, and 153.7% and 100.1% for RPC-
V higher than the values recorded at nominal (L,). However, compared to MPC, the torque
and current ripples respectively reduced by 17.6% and 20.8% for RPC-I, 35.2% and 44.6%
for RPC-II, 49.5% and 56.8% for RPC-III, 55.9% and 39.5% for RPC-1V, and 57.4% and
61.7% for RPC-V. Similarly, with -70% mismatch in the d-axis inductance (L,), the torque

and current ripples respectively increased by 244.5% and 230% for MPC, 155% and 236.5%
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for RPC-1, 141.8% and 128.8% for RPC-II, 137.4% and 156.1% for RPC-III, 132.6% and
110.9% for RPC-1V, and 123.7% and 121.7% for RPC-V higher than the values recorded at
nominal (L,). Compared to MPC, the torque and current ripples respectively reduced by
16.5% and 26.1% for RPC-I, 35.8% and 63.2% for RPC-II, 41.6% and 57.6% for RPC-III,
44.5% and 52.5% for RPC-IV, and 47.4% and 65.1% for RPC-V. The torque and current
ripples significantly increase as the machine inductances (L4, Lg) decrease from their
nominal values. The torque and current ripples are slightly affected as the inductances

increase from their nominal values.

In addition, the torque ripples of all controllers increase steadily as the value of W,
increases. The highest values are generated at 20% increase in W, , in which increments
from the values generated at nominal W, are recorded as 22.9%, 21%, 19.5%, 18.3%,
19.8%, and 19.6% for MPC, RPC-I, RPC-II, RPC-III, RPC-1V, and RPC-IV, respectively.
The current ripples vary non-linearly with the variation of ¥,,;, MPC produces the worst
current ripples, and RPC-V and RPC-III recorded the lowest ones. At 20% increase in W,
, RPC-V and RPC-III recorded 46.2% and 44.7% less current ripples than MPC. Moreover,
the torque and current ripples are slightly influenced by the variation of stator resistance (Ry).
MPC produced the worst torque and current ripples with the variation of Rg. While RPC-IV
showed the best torque ripples and RPC-V showed the best current ripples. Overall, all RPC
methods showed good response compared to MPC at different operating conditions (load,
speed). RPC-V has the best response regarding current ripples and maintaining a trade-off

between torque and current ripples.
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Fig. 4.12. Comparison of different control methods under the variation of machine

inductance (L), (a) Torque ripples, (b) stator current (i,) ripples.
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Fig. 4.14. Comparison of different control methods under the variation of stator
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4.6.3 Parameter Sensitivity Analysis

Sensitivity analysis is the study of how uncertainty in the output of a model can be
attributed to different sources of uncertainty in the model input[4.30]. In other words,
sensitivity analysis is a technique used to assess the influence of changes in input parameters
on the output of a system or model [4.31]. In the case of PMSM control, it aims to evaluate
how variations in specific motor parameters affect its performance characteristics. There are
two main types of sensitivity analysis: local and global. In the context of PMSM control,
sensitivity analysis can be used to study how variations in the control parameters affect the
motor's performance. Local sensitivity analysis involves varying one machine parameter at a
time while keeping all other parameters constant. Local sensitivity analysis is relatively easy
to perform and can provide insights into the relative importance of different control
parameters. However, it does not account for interactions between parameters and may miss

significant effects that arise from simultaneous variations of multiple parameters.

In contrast, global sensitivity analysis involves varying multiple control parameters
simultaneously over their entire range of possible values. For example, one could vary all the
machine parameters over a range of values and then study how the motor's performance
varies across this range. Global sensitivity analysis can account for interactions between
parameters and identify critical nonlinear effects that may be missed by local sensitivity
analysis. This section presents the global sensitivity analysis using Monte Carlo techniques
to study the effect of varying machine parameters on the machine drive performance.
Various performance indicators are evaluated across a global set of samples to explore the

design space.
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Various machine parameters are used for this analysis, including the stator resistance

R, d- and g-axes inductances Ly, L,, permanent magnet flux in the rotor W, the

momentum of inertia J, and viscous friction coefficient B. These parameters are varied
simultaneously over a range of values a specific range, and then various performance
indicators are evaluated, including settling time (Ts), overshoot (0S), root mean square error
(RMSE) of speed, torque ripples, and current ripples. The sensitivity analysis is carried out
based on MPCC of PMSM drives with nominal parameters presented in Table 3.1 and their
variation range of possible values at maximum operating conditions in Table 4.1. The

workflow of sensitivity analysis of PMSM drives is described as follows:

1. Sample the machine parameters using experimental design principles. For each
parameter, generate multiple values (1000 values) based on the parameter's possible
range (Table 4.1). The parameter sample space is defined based on normal
probability distributions for each parameter.

i1. Performance indicators are defined by creating a design requirement on the model
signals for each indicator.

11i. The performance indicators (design requirement) are evaluated using Monte Carlo
simulations at each combination of parameter values. The indicator outputs and
parameters are normalized in a range [0 1], then plotted to analyze trends visually.

1v. The relation between the evaluated requirement and the samples is evaluated based

on correlation and standardized regression.

Parameter sample space (normal probability distribution) is created by generating
random samples of each machine's parameters (1000 samples) based on their maximum

possible variation range (Table 4.1), as presented in Fig. 4.16. Each performance indicator is
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evaluated, normalized, and visually plotted against the parameter samples (normalized) to
identify trends. Scatter plot (Fig. 4.17) displaying the evaluated performance indicator
normalized values as a function of each parameter in the parameter sample space. This plot
provides visual intuition about how the various parameters affect the performance indicators.
A linear fit line is added to the scatter plot to identify the effect of each parameter in the
indicators. The best-fit line indicates that the parameter has a lot of influence on the
indicators. Furthermore, the parameters and indicators data are normalized to [0, 1] range for
better and more meaningful visual representation. By normalizing data to the [0, 1] range,
the minimum value in the dataset is mapped to 0, and the maximum value is mapped to 1.
The values in between are linearly scaled based on their relative positions within the
minimum and maximum values. Normalizing the data brings them to a uniform scale, which

simplifies the process of comparing values and recognizing patterns or trends.

NPD of B

Machine parameter sample space

NPD: Normal Probability Distribution

NPD of 1,

NPD of L

NPD of R

sl
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Fig. 4.16. Machine parameter sample space.
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The plot in Fig. 4.17 shows that the settling time is directly proportional to the
variation of machine inertia (J); as the inertia increases, the settling time increase. The
maximum settling time is 24.5% higher than the mean value of the settling time data. No
other proper trends can be found to show how the settling time changes with the variations
of other parameters. Furthermore, no specific appropriate trends can be found to show how

machine parameter variation affects the overshoot and RMSE speed.

The torque ripples increase monotonically with the decrease in the values of d-axis
inductance (L;). No other trends between changes in torque ripples and variations of other
machine parameters. The highest torque ripple is 34.9% higher than the mean value of the
torque ripple. The current ripples are found to be inversely proportional to the variation of d-
axis and g-axis inductances (Lq4, Lg) as the values of L, and L, decrease, higher current
ripples are obtained. The highest current ripple is 29.6% higher than the mean value of the

current ripples.

In addition to visually analyzing the effect of machine parameter variations on the
performance indicators, the relation between varying parameters and indicators can be
statistically quantified by computing the correlation and standardized regression. Parameter
influences in each indicator are obtained based on correlation and regression coefficients, as
illustrated by the tornado plot shown in Fig. 4.18. The coefficients are plotted in order of the
influence of parameters on the performance indicator. The parameter with the most
significant influence on the indicator is displayed on the top, giving the plot a tornado shape.
A negative coefficient indicates an inversely proportional relationship between the
performance indicator and the parameter, while a positive coefficient implies a directly

proportional relationship between them.
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close to 1 imply a (direct) linear relation between the performance indicator and the respected

parameter. While values close to -1 mean an (inverse) linear relation between them.
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Fig. 4.18. Tornado plot of parameter influences on performance indicators.

The parameter influences presented in Fig. 4.18 indicate that settling time and
overshoot indicators are highly sensitive to the variation of machine inertia (/). RMSE of
speed is sensitive to d-axis inductance (Ly). Torque ripple is significantly influenced by the
g-axis inductance (Lg) variation. The current ripple is highly sensitive to the variation in the

d-axis inductance (Lg), followed by the variation of g-axis inductance (Ly).

In summary, the machine inductances (L4, L) and inertia (J) are the most parameters

that influence the performance indicators. Transient performance indicators are significantly
affected by the variation in machine inertia, while steady-state indicators are highly affected

by the variation in machine inductance. However, the impact in transient indicators (e.g.,
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settling time and overshoot) is relatively small compared to that in steady-state indicators
(e.g., torque and current ripples). For instance, the highest settling time and overshoot values
are 30.5% and 37.45% than those obtained at nominal parameters. In contrast, the highest
torque and current ripples are 269.2% and 325.5% higher than those obtained at nominal

parameters.

4.6.4 Robustness Evaluation

While sensitivity analysis provides valuable insights into the impact of parameter
variations on a PMSM control method's performance, it alone is insufficient to indicate the
control system's robustness to motor parameter variations. Sensitivity analysis focuses on
quantifying the influence of parameters on the system's performance indicators and
identifying the parameters with significant impact. Thus, the simulation, experimental,
quantitative, and sensitivity analyses of MPC and RPC methods give a general overview of
the robustness of these controllers. However, the simulation, experimental, and quantitative
analyses only consider single uncertainties cases (deterministic approach), and sensitivity
analysis only shows which parameters highly influence the performance. These analyses do
not precisely determine how well (robustness level) a drive system performed (compared to
other methods) in the presence of uncertainties. Hence, the proposed robustness evaluation

method based on Six Sigma numerically identifies the drive system's robustness.

PMSM drive robustness can be divided into two types: stability and performance.
Stability is necessary for performance robustness, meaning the stability robustness level is
much larger than the performance robustness level. Therefore, only performance robustness
is considered in this evaluation. To evaluate the performance robustness of PMSM drives,

indicators that essentially indicate the performance are to be identified. Some of these
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indicators are the transient response characteristics such as settling time (Ts) and overshoot
(0S), and steady-state characteristics such as root mean square error (RMSE) of speed,
torque, and current ripples. Then, each indicator's robustness acceptance level (USL) needs
to be defined. For instance, a torque ripple indicator with USL of 0.4 means the torque ripples
of a controller must not exceed 0.4 Nm over different uncertainties to be considered robust.
To select appropriate USLs for all indicators, the performance requirement of a specific

PMSM drive application is considered.

PMSM drives can be used in several applications, such as water-pumping systems,
EVs, aircraft flight control, radar systems, and satellites. Each application has different
performance requirements; for example, water pumping can operate with low PMSM drive
performance, EVs may require moderate drive performance, and applications like radar
systems require high drive performance. Thus, the performance indicators K; with
specification limits considering applications with low requirements (Application-I),
moderate requirements (Application-II), and high requirements (Application-III) are listed in
Table 4.6. Therefore, a robustness evaluation model of PMSM drive with K; performance

indicators and their USL; can be defined as follows:

K [ Ts(Xc)

K,| | 0S(Xo) |

K =|K;| = |RMSE,(X.)| < USL (4.29)
K4 Trip(XC)
Ks lrip(XC)

where X. = [Rs, ,Lqg,,Lq,,¥pm,, Ji, Bi] represent the machine parameters with( i =

1....N) variation samples. From Table 4.6, USLs are:
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for Application-I,

[ 0.15 1
| 0.03 |
USL = 0.002]
l 0.6 J

0.7

for Application-II, and

[ 0.1 1
| 0.02 |
USL =10.001!
l 0.4 J

0.5

for Application-III.

(4.30)

(4.31)

(4.32)

Table 4.6 Performance requirements of different PMSM drive applications.

Indicator Specification limits (USL)
(K) Application-1 | Application-II | Application-III
Ts <0.z2 < 0.15 <0.1
oS <5% < 3% <2%
RMSE,, < 0.003 < 0.002 < 0.001
Trip <0.8 <0.6 <04
Lrip <12 <0.7 <05
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The conventional MPC and the five RPC methods are evaluated for performance
robustness based on the proposed six-sigma robustness evaluation method. The evaluation is
done based on the PMSM drive with nominal parameters (Table 3.1) and their uncertainties
ranges (Table 4.1) with 10000 (N) samples of parameter variations and based on three
different application requirements (Table 4.6). First, machine parameter variation samples
are generated for two ranges (rated and maximum conditions). The machine operates from a
standstill to 1000 rpm (rated speed), and then 2 Nm load torque is applied during steady-
state. The six control methods (MPC, RPC-I, RPC-II, RPC-III, RPC-IV, and RPC-V) are
evaluated by computing the settling time (7y), overshoot (0S), RMSE of speed (RMSE ),
torque ripples (T;), and stator current i, ripples (i, ) at every parameter variation sample.
The robustness evaluation process is illustrated by the flowchart presented in Fig. 4.19.

The Z values of settling time (Z7,), overshoot (Zys), RMSE of speed (Z,,), torque

ripple (ZTn.p), and current ripple (Z irip) performance indicators, and the sigma level (1, )

and the probability of failure of system performance (POF,s ) are computed as in Table 4.7.
As can be seen from the obtained ng,s in Table 4.7, at the rated parameter uncertainty
(variation) ranges and application with low requirement (Application-I), both controllers,
including MPC, achieved 60. With a moderate application requirement (Application-II),
MPC and RPC-I only achieved 2.20 and 3.60, respectively, while other RPC methods
achieved 60. As for applications with high requirements (Application-III), no controller
achieved 60, and the highest system sigma level is 2.80 achieved by RPC-V compared to
00,2.00 ,2.20 2.10 and 2.50 achieved by MPC, RPC-I, RPC-II, RPC-III, and RPC-IV,

respectively.
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Define the system indicators K; and their
acceptance levels USL;.

A 4

Generate (N=10000) normally distributed samples
of machine parameters.

\ 4

Simulate RPC method and compute indicators
K; for all parameters samples.

\ 4

Compute the mean u; and standard deviation g;
for each indicator K; Yes

Defect samples (ND)

\ 4

Obtain the Z-Value Z; of each indicator using

Compute POE,,; and ng, . usin
equation (4.23) P sys sys USIng

equations (4.24) and (4.25)

Display the performance indicators Z-value Z;
and the system POF;,; and ng,ys.

v

End

Fig. 4.19. Flow chart of robustness evaluation process.
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Table 4.7 Robustness evaluations of MPC, RPC-1, RPC-II, RPC-III, RPC-IV, and

RPC-V with two uncertainty ranges based on three applications' requirements.

Indicator Zr, Zos Zy Tripp Z iripp | Msys POF
Controller Rated condition uncertainties (Application-I)

MPC 633 | 662 | 54.6 | 16.7 | 9.1 6.0 0
RPC-I 734 | 207.8 | 1739 | 18.6 | 14.7 6.0 0
RPC-1I 73.7 | 1623 | 1222 | 28.8 | 24.6 6.0 0

RPC-III 73.7 | 424 | 1133 | 275 | 238 6.0 0

RPC-IV 499 | 127 | 1328 | 37.7 | 184 6.0 0

RPC-V 822 | 53.6 | 509 | 355 | 259 6.0 0
Maximum condition uncertainties (Application-I)

MPC 46.8 | 544 | 30.7 | 102 | 49 3.1 0.19%
RPC-1I 55.6 | 1633 | 111.0 | 11.5 | 8.1 3.6 0.03%
RPC-1I 55.8 | 105.7 | 83.0 | 18.6 | 15.6 6.0 0
RPC-III 55.8 | 363 71.7 | 17.3 | 14.6 6.0 0
RPC-1V 352 | 122 | 94.0 | 229 | 118 6.0 0
RPC-V 61.4 | 52.1 439 | 21.0 | 143 6.0 0

Rated condition uncertainties (Application-II)

MPC 44.4 | 385 351 | 114 | 22 2.2 2.78%
RPC-1I 519 | 1209 | 113.7 | 127 | 5.5 3.6 0.03%
RPC-1I 52.1 | 95.8 792 | 17.0 | 85 6.0 0
RPC-1IT 52.1 25 73.1 | 162 | 8.2 6.0 0

RPC-1V 35.2 6.9 86.7 | 266 | 7.1 6.0 0
RPC-V 58.7 | 31.6 314 | 248 | 10.0 6.0 0

Maximum condition uncertainties (Application II)

MPC 32.7 | 31.6 19.6 6.9 0.9 1.5 13.36%
RPC-I 39.2 | 95.0 72.6 7.8 2.8 24 1.64%
RPC-1I 394 | 623 538 | 109 | 52 33 0.10%
RPC-III 364 | 214 | 462 | 100 | 4.8 3.2 0.14%

RPC-1V 24.8 6.7 613 | 16.0 | 43 3.1 0.19%
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RPC-V 43.8 | 30.7 27.0 | 146 | 53 3.8 0.01%
Rated condition uncertainties (Application-III)

MPC 25.6 | 24.7 15.7 6.1 -0.6 0.4 | 70.85%
RPC-I 304 | 775 53.6 6.8 1.8 2.0 4.55%
RPC-II 30.5 | 62.5 36.1 5.1 2.1 2.2 2.78%
RPC-III 304 | 16.2 32.8 4.8 2.0 2.1 3.573%
RPC-1V 20.5 4.1 40.6 | 155 | 25 2.5 1.24%
RPC-V 352 | 20.6 11.9 | 141 | 3.7 2.8 0.51%

Maximum condition uncertainties (Application-III)

MPC 18.7 | 20.2 8.6 3.6 | -0.7 0.3 76.65%
RPC-1I 22.8 | 60.8 34.1 4.4 0.7 1.4 16.15%
RPC-II 229 | 40.6 24.4 3.1 1.0 1.5 13.36%
RPC-IIT 229 | 13.8 20.6 2.8 0.9 1.5 13.36%
RPC-IV 14.4 4.0 28.6 93 1.3 1.7 8.91%
RPC-V 26.1 | 20.0 10.2 8.2 1.7 2.0 4.55%

At the maximum parameter uncertainty ranges, MPC and RPC-I only achieved 3.1
and 3.60, respectively, and other RPCs achieved 60 for Application-I. No controller
achieved 60 at maximum parameter uncertainty ranges for moderate and high application
requirements, and RPC-V achieved the highest sigma level with 3.80 and 2.00 for
Application-II and Application-III, respectively. The increase in uncertainty ranges critically
influences the robustness, especially for applications with high requirements. For instance,
for Application-III, at the maximum uncertainty ranges, low system performance robustness
was recorded for MPC, RPC-I, RPC-II, and RPC-III with 100%, 16.15%,13.36%, and
13.36% POF, respectively. RPC-V achieved the best sigma level and low POF at various
uncertainty ranges and for different application requirements.

The current and torque ripples are the most critical performance indicators and the
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main factor for dropping no for the overall system. In other words, although some controllers
have good robustness for most of the performance indicators, their low robustness levels of
torque and/or current ripples result in low no for overall system performance. In contrast,
controllers which maintain trade-offs among torque and current ripples and other
performance indicators achieved a good overall system sigma level.

In addition, the Z-value of individual performance indicators is used to show the
robustness difference for different controllers, especially when multiple controllers achieve
a similar system's sigma level. The Z-value describes how far the specification limits of each
application are from the average value of the N-sample data of each performance indicator.
The Z values of torque and current ripples are the most critical indicators for a controller's
robustness. Thus, to illustrate the concept of Z-value, the process capability of the torque and
current ripple indicators with rated and maximum uncertainty ranges are shown in Figs 4.20
and 4.21. USL-I, USL-II, and USL-III, and Z.USL-I, Z.USL-II, and Z.USL-III are the
specification limits (Table 4.6) and Z-values for applications I, II, and III, respectively.

The process capability plots show how far the specification limits positions of
different applications from the mean (u) of torque and current ripples of each controller. The
dispersion of torque and current ripples around the mean (1) shows how good each controller
1s in maintaining minimum torque or current ripples with parameter variations. For example,
the process capability plots of torque ripples show RPC-IV's effectiveness in minimizing
torque ripples. Similarly, the current ripple capability plots illustrate how good RPC-V is in
maintaining low current ripples over different parameter variations. Thus, RPC-IV produced
the highest Z-values of torque ripples, and RPC-V produced the highest Z-values of current

ripples at all parameter variation ranges.
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Fig. 4.20. Process capability plot with rated parameters uncertainties range for MPC,
RPC-I, RPC-II, RPC-IIL, RPC-IV, and RPC-V, (a) torque ripple( Ty ), (b) current ripple
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Fig. 4.21. Process capability plot with maximum parameters uncertainties range for MPC,

RPC-I, RPC-II, RPC-IIL, RPC-IV, and RPC-V, (a) torque ripple( Ty ), (b) current ripple
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The Z values of different performance indicators show the strengths and weaknesses
of different controllers to specific indicators and which controller can maintain a robustness
trade-off among all the indicators. For instance, RPC-I has the highest Z-values of overshoot
(Zps) and RMSE of speed (Z,,), but their Z-values of torque and current ripples decrease
significantly as the uncertainties increase. RPC-IV also has the best Z-values of torque
ripples, but their Z-values of overshoot are the worst. Hence, achieving good robustness for
all performance indicators is essential to obtain good overall system robustness. For example,
MPC and RPC-I have achieved good speed performance robustness (T, 0S, RMSE ), but
they were unable to maintain good torque and current (T, i,;,) Tobustness over different
parameter uncertainty ranges. On the other hand, RPC-IV and RPC-V may have achieved
less overshoot robustness than MPC and RPC-I, but they maintained a robustness trade-off
with other indicators, thus achieving higher system sigma levels.

The proposed six-sigma robustness evaluation method offers a simple and reliable
robustness evaluation tool, which can be used to assess any system's robustness to
uncertainties. This means the robustness level of a control system can be determined by
evaluating its quality indicators against defined acceptance levels (specification limits) for N
samples of uncertainties. Therefore, when considering a specific application requirement
(e.g., EV), the best controller that is more robust to uncertainties can be selected effectively.
The control methods and the application requirements used in this research are just examples
to illustrate the proposed six-sigma robustness evaluation method. However, other control
methods for PMSM drives, systems, and application performance requirements can be used.
Hence, the proposed method is a quality measure of a control system that can be used to

numerically assess the robustness of any control system to uncertainties.
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4.7 Summary

Various robust PMSM drive methods, including RPC, have been introduced to deal
with the different drive uncertainties. Most of these methods lack discussion on uncertainties
modelling, robustness definition, and evaluations. Thus, in this research, a novel robustness
evaluation method based on the Six Sigma concept is proposed and used to evaluate control
system robustness numerically. Based on the proposed method, five RPC methods of PMSM
drive and conventional MPC are assessed at two uncertainty ranges and considering three
different application requirements. Different robustness levels are obtained for each method
in the presence of uncertainties. Besides, considering different application requirements, the
robustness levels of RPC methods differ accordingly. With such robustness evaluations,

selecting the best RPC method that fits the required applications is more accessible.
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CHAPTER 5

ADAPTIVE MODEL-FREE PREDICTIVE CURRENT
CONTROL OF PMSM DRIVES

51 Introduction

Model-free predictive current control (MFPCC) has recently emerged as a promising
alternative to robust MPC methods. MFPCC eliminates the prediction dependency on a
simplified parametric machine model by developing a prediction model independent of the
machine model and parameters [5.1]. MFPCC can be achieved using an ultra-local model
[5.2], where an ultra-local model replaces a complex system model with one or two
unknowns that can be estimated based on the system’s measured data [5.3-5.4].

On the other hand, MFPCC can be achieved by solely using the system's measured
input and/or output data and their variations. In such methods, the current differences due to
the possible voltage vectors are stored and employed for predicting the future current. The
current differences due to the applied voltages over the past one, two, or three control cycles
are typically used to predict the current in the next control cycle. These current differences
are updated continuously as new voltage vectors are applied [5.5-5.7]. However, when the
same voltage vector is applied for an extended control period, the update mechanism is
corrupted, and stagnation can occur, resulting in an inaccurate prediction and performance
degradation.

Most existing MFPCCs utilize the measured current and applied voltage variations to
compensate for the effect of parameter variations. However, parameter inaccuracies

influence the reference current when a speed control loop is used. This results in suboptimal
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tracking performance and high current ripple. Thus, the tracking error must be considered in
the prediction stage to account for the effect of parameter variations in the speed control loop.

This research proposes an adaptive MFPCC (A-MFPCC) with a modified current
difference updating technique for PMSM drives. First, an incremental prediction model with
two lumped parameters is derived. Then, using the recursive least square (RLS) algorithm to
estimate these parameters, a model-free current prediction can be achieved in a similar
manner to MFPCC based ultra-local model. To avoid the additional RLS computation
requirement and account for tracking error, the derived incremental prediction model and
tracking error variations are used to establish a prediction model independent of the machine
model and parameters. Thus, the measured and reference currents deviations due to
parameter mismatching can be eliminated. With a reference voltage vector generated based
on the reference current vector position and the tracking error, the current difference is
obtained due to the applied and reference voltage vector. Using a reference voltage vector
accounts for the tracking error in each control cycle and avoids stagnation by constantly
updating the current differences.

In comparison to existing methods, the proposed A-MFPCC does not require two or
three successive applied voltage vectors to be different. Thanks to the generated reference
voltage vector, which adaptively updates the current differences despite the successively
applied voltage vectors being similar. With the proposed A-MFPCC, the stagnation effect is
eliminated, and tracking error is considered in the prediction stage. Thus, effective current
prediction and better tracking performance can be achieved. The effectiveness of the
proposed method is validated by comparison with two other MFPCC schemes based on

simulation, experimental results, and robustness evaluation.
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5.2 The Proposed Adaptive Model-Free Predictive Current Control (A-MFPCC)
The currents dynamic equations of PMSM in dq-frame are presented in Chapter 3

and rewritten here as follows:

ﬂz—&i +L—qwi +lv (5.1)
dt Ly * Ly 1L, ¢ '
diq RS Ld (U?Ipm 1

—a_ _ sy d — 5.2
T R e A S (5-2)

The currents i4, at time step (k + 1) can be predicted by discretizing (3) and (4) at

sampling time T as follows:

RT; L, T
ig(k+1)= ( - ) iq(k) + T w(k)ig (k) + dvd(k) (5.3)

RsTs

iq(k+1)=<1— >

i) =T, 00100 ~ Ty (0 22+ Zu, k) (54)

The accuracy of the prediction model in (5.3) and (5.4) is highly dependent on both
the machine parameters and the mathematical model of PMSM. However, machine
parameters vary due to machine structure and changes in operating conditions. To account
for parameters variation, the prediction model is rewritten considering parameters
mismatching as follows:

R, + AR,

, Ly + AL,
ld(k + 1) = (1 - T m) ld(k) + T H—Al,w(k)lq(k) + H—Al,vd(k) (55)
_ B R, + AR, 4+ ALy
gk +1) = (1 TSLq +ALq) iq(k) L, + AL, T w(k)iz(k)
Yom + AP, T
~Tew()— 3 va (k) (5.6)

Ly+AL, Ly +AL,
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Based on (5.5) and (5.6), it is evident the machine parameters and their deviations
(ARg ,ALgy, ALy, and A ¥,,) play a significant part in deciding the accuracy of the predicted
currents. A mismatch or uncertainty in one of the machine parameters leads to prediction
inaccuracy and degrades the control performance. The conventional prediction model in (5.3)
and (5.4) achieve current prediction using a one-time step kT, data. With two-time steps data
(k — DT, and kT, an incremental prediction model can be obtained [5.8]. Based on the

predicted currents at time step k-1 in (5.3) and (5.4), the current at step k is predicted as

follows:

. sis\ -« L . s

iy(k) = (1 - RLZ)ld(k ~ D+ 2T 0k = Dig(k— 1) +LT—dvd(k —1) (5.7)
. sTs\ - . Ypm s
iy () = (1 - RL:) fq(= 1) = 24T, @k = Digle = D) = o 22+ Evy (k= 1) (58)

The mechanical speed w can be assumed constant over a few control cycles because

the mechanical time constant 7,,, is much larger than the electrical time constants 7, =

;—d, Tq = ;—q. Thus, by subtracting (5.7) and (5.8) from (5.3) and (5.4), the current incremental

prediction model at k+/ can be expressed as:

R¢Ty\ .. .
i+ 1) = ig(k) + (1 - )(ld(k) — iy — D)
12700 (i (0) = i (k = 1)) + 2 wa(k) —va(k=1)) (5.9)
. . RsTs\ /. .
ig(k +1) = ig(k) + (1 - >(lq(k) — ik — 1))
q

—i—dew(id(k) — ig(k—1))+ LT—S(vq(k) —v,(k — 1)) (5.10)
q q

With a short enough sampling time T, much smaller than electrical time constants 7,4
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and 74, the current difference deviations Adi; and Aig , as shown in [5.7] and [5.9], can be

approximated by:
T, .
A&d] [ (5.11)
ASiy) | s '
q Iy 6 vq_

(5.12)

(ialk + 1) = ig(0)) = (ia(k) —igle—1)] [ (wal) = valk = D)
[(iq(k+1>—iq<k>) —(iq(k)—iq(k—l))]‘ E (00 = vy (= D)

Based on (5.11) and (5.12), the incremental prediction model in (5.9) and (5.10) can

be simplified as follows:

R Ty . . T
i+ 1) = ig(k) + (1 - ) (10 = i = D) + 7 (va () = va(k = D) (513)

: , RsTs\ (. .
ik +1) = i (k) + (1 -1 )(lq(k) —ig(k = 1)

T
+ L—q(vq (k) = v,k — 1)) (5.14)

For simplicity, (5.13) and (5.14) can be rewritten as:
is(k +1) = ig(k) + a(is(k) — is(k — 1) + B(vs(k) —vs(k = 1))  (5.15)

where  ig(k +1) = [iq(k + 1) iglk+ D] . is(k) = [ia(k) ig(K)]

vs(k) _ [vd(k) vd(k)]T, o = [1 __ RTs 1— RsTs ]T’ and g = [T—; Is

Lq Lq L

5.2.1 MFPCC Based on Recursive Least Square (MFPCC-I)
Based on (5.15), an incremental prediction model is established with two unknown

parameters « and . The currents i;(k + 1) can be predicted by estimating a and 8 at every
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time step kT based on the system input and output data. Different methods can be used to
estimate « and f, such as sliding mode observer, extended state observer, and other
estimation techniques. However, these methods are computationally intensive and
incorporate various coefficients to be tuned, and their selections influence the estimation
accuracy. Here, an effective and less computational recursive least square (RLS) algorithm
is used to estimate a and [ based on the current and past measurement of currents and
voltages. At every time step k, the RLS algorithm estimates @ and f which are used to predict

the current in the next step is(k + 1). In general, the RLS algorithm is defined as follows:

y(k) = xT (k)6 (k) (5.16)

where y(k) is the observed output, 8 (k) the vector of unknown parameters, and x7 (k) the
input vector. Based on (5.16), the prediction model in (5.15) is rewritten in linear regression
form as follows:

a
is(k+ 1) —is(k) = [is(k) —is(k=1) v —w(k=D] [g] (G517

y(k) xT (k) 97’,;’)

The unknown parameter estimation, A(k), is computed for every time step & based
on observed output data y(k) and measured input data xT (k) as follows:

B(k),= 0(k —1),+ K(k) [y(k) — x"(k) Bk — 1)] (5.18)

Pk — 1)x(k)

KU = T 0Ptk = Dx (o)

(5.19)

P(k) = % [P(k—1) — K(K)xT (k)P(k — 1)] (5.20)

where A is the forgetting factor (a value between 0 and 1 determining how much weight to
give to the older data); K (k) is the gain matrix, and P(k) the covariance matrix. The

estimation of the unknown @ using the RLS can be summarized in Algorithm 5.1.
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Algorithm 5.1: Recursive Least Square
Initialization
6(k —1) = 8(0)
P(k—1)=P(0)
For each time step £=1,2....
- obtain input xT (k),and estimate output y (k)
- Compute the estimation error:
e(k) = y(k) — x"(l)(k - 1)
- Compute the gain vector (5.19).
- Update 8(k)(5.18), and P (k) (5.20).
- Predict the output for next time step k+/
End For

The current at time step k+2 can be predicted as follows:
is(k+2)=is(k+ 1 +atk+ D(is(k + 1) — is(k))
+B(k + 1) (vs(k + 1) — v5(k)) (5.21)
The optimum switching vector is selected by minimizing a cost function as follows:
g = (i — ik+2)° (5.22)
where i;ef is the reference current obtained from the speed control loop. The overall working
principle of the MFPCC-I-based PMSM drive is illustrated by the block diagram shown in

Fig. 5.1 and the flow chart presented in Fig. 5.2.

- N PI speed Iy -
© controller i Cost function
p R evaluation

RLS estimation
afk+1) and fk+1)

vi(k) i(R-1) i(K)

PMSM

— M

T

Sa
Switching pulses 3-phase
generation inverter
Se

Currents
prediction at
(k+1)

vy(k+1)

vi(k)

is(k)

v (k1) B(k+D)

\
.

v\V=0,1...7 Candidate

oofs

Voltage vectors is(k-1)

vi(k-1)
| vi(k)
RLS estimation i(k)
afk) and [Fk) i(k-1)

* iy(k-2)

Speed(@) and Position (69

calculation

Fig. 5.1. A block diagram of MFPCC-based RLS (MFPCC-I).
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Update the covariance P(k) and gain
K (k) matrices. estimate [?dq (k+1)

A 4
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Fig. 5.2. Flow chart of MFPCC based RLS (MFPCC-I).
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5.2.2 MFPCC-Based current difference update (MFPCC-II)
The current difference variation due to two successive applied voltage vectors can be

expressed based on (5.15) as follows[5.7]:
(is() =ik = 1)) = (is(k = 1) = ig(k = 2)) = B(ws(k) —vs(k = 1)) (5.23)
For the possible voltage vectors Us)» j €{0,1,2..7}, (5.23) can be written as:
(it —iste = 1), = (k=D —is(k—2)) = (ve(); vk = 1) (5.24)

With a short enough sampling time (7), the machine inductance can be assumed
constant over two adjacent sampling instants. Thus, £ can be eliminated by combining (5.23)

and (5.24) as follows:

(is00) = isCe = D), = (isCe = D) = is(c=2)  (ws(k); — vk = 1))
(is(k) —is(k — 1)) — (istk =D —is(k=2))  (vs(k) — vs(k — 1))

(5.25)

Then, the current difference for the possible voltage vector Us)» j €{0,1,2..7} can be

estimated by constantly updating two successive current differences in each control cycle as

follows:
(is(k) - is(k - 1))] = (is(k -1) - is(k - 2))

N (vs(k) j=vs (k=1 ) (15 (R) =i (k= 1))~ (is (k—1)= 15 (k=2)) )

vs(k)—vs(k—1) (5.26)
Then, the current at step time k+/ is predicted as follows:
is(k +1); = is(k) + (i5(k) — ig(k — 1))}, (5.27)

179



Chapter 5. Adaptive Model-Free Predictive Current Control of PMSM Drives

where ig(k) is the measured current at kTy; is(k + 1); is the estimated current at (k + 1)T

under the possible voltage vector vs(k); applied in kT, and (is(k) —i.(k— 1))}, the

current difference caused by the Vs Then, the current at (k + 2)T; is predicted as follows:
is(k +2); = is(k + 1) + (is(k + 1) — i5(K)), (5.28)

where is(k + 2); is the predicted current at(k + 2)T due to the applied voltage vector

vs (k+1);, and (is(k +1)— is(k))j is the current difference caused by vs(k + 1);.

Based on (5.27), (5.28), and Fig. 5.3, it can be seen that the current differences due
to the applied voltage vectors are essential for MFPCC-II, as their accuracy can directly affect
the current estimations and current predictions. However, for this method to work, two
successive voltage vectors cannot be the same. Thus, the update process can be corrupted

when only two vectors are applied for a few control cycles, and stagnation may occur.

Two succesive current differences ~ Estimate the remaining differences ¢y -ent estimation  Current Prediction

() |
gl .
| /I
|
SIIIIERIIIiiiiia-- ’::::“":::—‘ I
e T |
L
(k+ 1)1, (k+2)T;

Fig. 5.3. Current difference update technique in MFPCC-II.
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5.2.3 MFPCC-Based Adaptive Reference Vector (A-MFPCC)

The measured current and applied voltage variations over two successive control
cycles can be used to estimate the effect of parameter variations on the measured currents.
However, parameter inaccuracies influence the reference current when a speed control loop
is used. Thus, high parameter variations and speed measurement errors produce suboptimal
tracking performance and high current ripple. Therefore, it is important to consider current
tracking improvement within the prediction stage so that the predicted switching vector

minimizes the tracking error.

The tracking performance improvements are not considered in MFPCC-I and
MFPCC-II. This may result in high current ripples for these methods with parameter
mismatching. Additionally, MFPCC-I utilizes the RLS algorithm, which includes some
estimation errors and can be computationally intensive. In MFPCC-II, the current difference
estimation requires the last two successive applied voltage vectors to be different, which may
activate only two vectors for an extended control interval, resulting in stagnation. Long

stagnation significantly produces inaccurate predictions and degrades performance.

In this research, a reference voltage vector is generated based on the reference current
vector position and the tracking error and used to obtain the current difference due to the
applied and reference voltage vector. Then, the current difference due to the possible voltage
vector is estimated without using any machine parameter. The tracking performance is
improved by considering the tracking error in the prediction stage, and the reference vector
adaptively updates the current difference to avoid stagnation. A block diagram of the

proposed A-MFPCC is presented in Fig. 5.4.
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Fig. 5.4. A block diagram of the proposed A-MFPCC for PMSM drives.

A. Adaptive current difference estimation
During each control cycle kT, the current is evaluated for eight possible voltage

vectors Vg, j € {0,1,2..7}. Each possible voltage vector, when applied, results in different

current variations and tracking error variations. Thus, it is essential to investigate the
relationship between the applied voltage vector and corresponding current and tracking error
variations. From (5.15), the relationship between two applied voltage vectors and the current

variation over two consecutive control cycles can be expressed as:

a(Ais(k) — Ais(k — 1)) = B (vs(k) — vs(k — 1)) (5.29)
where Aig(k) = is(k) — is(k — 1) and Aig(k — 1) =ig(k — 1) — is(k — 2).

From (5.24), the current difference variation between two successive control cycles

is equivalent to the corresponding voltage deviation. To consider the relationship between
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tracking error and applied voltage, the current tracking error is first defined as follows:

ei (k) = is(k) — is(k) (5.30)

Based on (5.29), the tracking error variation over two consecutive control cycles can
be represented by the difference between a reference voltage vector vy and input voltage

vector vs, as follows:

Ae; (k) — ey (k — 1) = B(v; (k) — vs(k)) (5.31)
where Ae; (k) = e; (k) —e; (k—1), Ae; (k—1) =¢; (k—1) —e; (k—2), and vy is
the reference voltage vector.

Initially, the reference vector, v, can be obtained using the deadbeat solution, where
the current iz(k + 2) is considered the reference current ig (k) to achieve fast tracking

at the start of k+2. By solving is(k + 2) = i5 (k), the reference voltage vector at & can be

obtained as:

1

vi() =5 (i 00~ i) ~ (s ~ sk = D)) 4wk =) (532)

However, in this research, v¢ is determined based on the current reference vector
position and the current error e; . A detailed explanation of the generation of the reference

vector v; is presented in the following section.

From (5.29) and (5.31), the relationship between tracking error and current difference

variations is expressed as follows:
(Aeis(k) — he; (k — 1)) — a(Big(k) — Aig(k — 1))
= B((ws (k) — vs (k) — (vg(k) — vs(k — 1)) (5.33)
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At steady state, the current reference, ig, is constant between two successive control

cycles, and thus:

(Aeis(k) — he; (k — 1)) — (is(k) — Aig(k — 1)) = 2(Aig(k) — Aig(k — 1)) (5.34)

(81, 06) — Ais(k — ) = 5 (5 () = 5 (k) — (k) ~ vl ~ 1)) (535)

During each control cycle kT, the voltage vector vg(k) can be one of the possible

vectors, Vs = Vs, j € [0,1,2 ....7]. Considering the eight possible vectors, (5.35) is updated

as follows:

N

a (Big(k); = Aig(k = 1) = 2 (v (k) = v(k);) — (vs(k); — vs(k — 1)) (5.36)

Hence, by using the current variation and voltage deviation over the past two

successive control cycles, the current difference due to each possible voltage vector, Aig(k);,

can be estimated by combining (5.35) and (5.36) as follows:

Bis() j—Ais(k—1) _ (w300 —vs() ;) —(vs (k) j—vs(k=1))
Bis()=Bis(k=1) — (@5(k)=vs(k)) = (s (k) ~vs(k=1))

(5.37)

((300-v5000;) = (w500 ;=5 he=1)) ) 85 ()= A1 (e =1))

Ais (k) = Aig(k — 1) + e (k)—v5 (k) — (w5 (k) —vs (k—1))

(5.38)

Based on (5.38), the parameters a and f are eliminated, and the current at time steps

(k+1) and (k+2) can be predicted as follows:
is(k+1) =is(k) + Ais(k); (5.39)

is(k +2) = ig(k + 1) + Aig(k + 1); (5.40)
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Fig. 5.5. The proposed A-MFPCC, (a) Current prediction and current differences

estimation, and (b) stagnation elimination compared to MFPCC-IL

Thus, the current prediction is accomplished in a model-free approach without using
the machine model, parameter, or any estimation method. In addition, the prediction process
account for the tracking error during each sampling instant kT, by adaptively improving the

prediction accuracy based on a reference voltage vector v, . Unlike MFPCC-II, the proposed
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A-MFPCC does not require two successive voltage vectors to be different, which avoids
applying only two vectors for an extended period. The adaptive reference vector constantly

forces updating the applied voltage to minimize tracking error and prevent stagnation.

Fig. 5.5 shows the current difference estimation, prediction, and stagnation
elimination of the proposed A-MFPCC. The reference voltage vector improves the selection
of an optimum switching vector, reducing the tracking error. In addition, it eliminates

stagnation by constantly updating the current differences, improving the prediction accuracy.

B. Reference Vector Generation
The reference voltage vector vg is determined based on the reference current vector

position. The reference current vector, 1%, is expressed as:
=1 +jig = 1" 285, (5.41)

where I is the reference current magnitude, 8, the reference angle that defines which sector

the reference current vector 1} is in.

The reference current trajectory in the space phasor is shown in Fig. 5.6. Based on
the obtained 6y,., the sector of the reference current vector 1f can be determined. To force
the measured currents i to follow the reference current ig, a reference voltage vector v;, (j =
0,1,2,...7) can be obtained based on the current tracking deviation (Aig = iz — ig). The
current deviation, Aig, direction and magnitude are used to select an appropriate vector (vs)

that can minimize the tracking error.
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Fig. 5.6. Reference current trajectory and current error sign sequence.

Considering the difference between the three-phase currents, and reference currents
(igpe — lapc ) and obtained sector from the position of the reference current vector, the

reference vector vg can be determined as depicted in Fig. 5.6. Based on the error sign, the

state is determined as:

1, Aiz>0

sign(Ais) = {O, otherwise (5.42)

where Aiy = i3, — lape -
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5.3 Numerical Simulation

Numerical simulations using Matlab/Simulink are performed to demonstrate the
effectiveness of the proposed A-MFPCC for PMSM drive at different operating conditions.
Two MFPCC schemes are considered for comparison, namely, MFPCC-I and MFPCC-II,
discussed in Sections 5.2.1 and 5.2.2. MFPCC-I uses the ultra-local model with two
unknowns estimated by using RLS. MFPCC-II considers the current differences due to two
successive voltage vectors to estimate the differences for the remaining vectors. The PMSM
drive system is designed with a proportional-integral (PI) controller for the outer speed
control loop and MFPCC-I, MFPCC-II, or the proposed A-MFPCC for the inner current
control loop. The same drive parameters listed in Table 3.1 are used for evaluating the three

controllers.

To assess the effectiveness of MFPCC-I, MFPCC-II, and the proposed A-MFPCC under
various operating conditions, simulations are conducted at three different speeds (1000, 600,
and 200 rpm) and with the rated load torque (2 Nm). In addition, the controllers are evaluated
against parameter variations by testing them with both nominal and mismatched machine
parameters, expressly set as: 0.8R, 0.3L4,0.3Lg,and 0.7p). The simulation results
capture the controllers' transient and steady-state responses from O rpm up to the desired
speed, with a load torque of 2 Nm, applied at 0.3s. At the rated speed (1000 rpm), the
performance of MFPCC-I, MFPCC-II, and the proposed A-MFPCC with both nominal and
mismatched parameters are presented in Fig. 5.7. Similarly, the performance comparison at
600 and 200 rpm with nominal and mismatched parameters are presented in Figs 5.8 and 5.9,

respectively.
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With nominal machine parameters, all controllers exhibit satisfactory performance
with a fast dynamic response and good steady-state tracking capability. Notably, the
proposed A-MFPCC demonstrates better current performance than the other controllers,
producing smoother and less ripple current signals. With mismatched machine parameters,
MFPCC-I and MFPCC-II show significant performance deterioration. Conversely, the
proposed A-MFPCC, despite being affected by parameter mismatching, maintained an
excellent current performance with low distortion and fluctuations compared to the other
controllers. This can be attributed to the adaptive reference voltage vector employed by A-
MFPCC, which continuously updates the current difference based on the tracking error,
thereby maintaining good tracking performance even in the presence of parametric

uncertainties.

To gain a deeper insight into the impact of parametric uncertainties on current
performance, the total harmonic distortion (THD) of stator current i, is calculated up to 5000
Hz. Fig. 5.10 shows the harmonic spectra of the steady state stator currents i, at 1000 rpm
with a 2 Nm load for MFPCC-I, MFPCC-II, and the proposed A-MFPCC with the nominal
and mismatched parameters. The results indicate that the proposed A-MFPCC achieves the
lowest stator current THDs of 3.64% and 8.83% for nominal and mismatched machine
parameters, respectively. In contrast, MFPCC-I and MFPCC-II record higher stator current
THDs of 6.28% and 8.51% for nominal parameters and 16.68% and 17.08% for mismatched
parameters, respectively. These findings demonstrate the superior performance of the
proposed A-MFPCC in maintaining low THD levels even in the presence of parametric

uncertainties.
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5.4 Experimental Validation

The proposed A-MFPCC is experimentally validated based on a PMSM drive system
with a two-level inverter, as shown in Fig. 3.10. The control and motor parameters used in
the experiment are the same as those presented in Table 3.1. Matlab/Simulink software
interfaced with a dSPACE DS1104 PPC/DSP control board is employed for the real-time
implementation of the control algorithm. This board serves as the platform for executing the
algorithm. As for the inverter, an Insulated-Gate Bipolar Transistor (IGBT) integrated with
a three-phase intelligent power module is utilized. The gating pulses required by the inverter
are generated by the algorithm and subsequently transmitted through DS1104. To apply the
load during the experiment, a programmable dynamometer controller DSP6000 is employed.
Furthermore, the motor speed is measured using an interior 2500-pulse incremental encoder.
To facilitate the monitoring, real-time control, and recording of all experimental results,

ControlDesk is utilized.

In line with the simulation analysis, the performance of the A-MFPCC is evaluated
experimentally and compared against MFPCC-1 and MFPCC-II. The experimental results
encompass a comparative analysis of the three controllers under various operating conditions,
including start-up, load disturbance, and steady-state operations. Specifically, during the
start-up tests, the controller performances are assessed as the motor speed progressively
accelerated from a standstill to the rated speed of 1000 rpm with a slight overshoot. The
corresponding responses of the controllers to the load disturbance are obtained by subjecting

the motor, operating at a steady state of 1000 rpm, to a load torque of 2 Nm.
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The experimental results, presented in Figs 5.11 and 5.12, correspond to the stator
current i,, g-axis current, d-axis current, estimated torque, and motor speed. All controllers
exhibited exceptional dynamic performance during the start-up tests, with minimal overshot
and rapid reference tracking. Additionally, the controllers displayed excellent disturbance
rejection capabilities during the load disturbance tests. All controllers recovered from the
load disturbance and resumed their steady-state conditions. However, the proposed A-
MFPCC exhibits superior performance under certain circumstances. For instance, the current
fluctuations observed during start-up and load disturbance tests are significantly lower than
MFPCC-I and MFPCC-II. Furthermore, A-MFPCC exhibits faster recovery, within 0.3125s,
from the load disturbance with a marginal speed drop of 113 rpm compared to MFPCC-I,
which takes 0.35s with a speed drop of 150 rpm, and MFPCC-II, which takes 0.375s with a

speed drop of 175 rpm.

In this research, the controllers' steady state current tracking responses are assessed
at 1000, 600, and 200 rpm with a 2 Nm load applied to the motor shaft. The responses of
measured stator current i,, g-axis current iy, the d-axis current iy, and their respective
reference signals are captured for MPCC-I, MPCC-II, and A-MFPCC. Fig. 5.13 shows the
steady state stator current i, g-axis current i,, d-axis current iy, and their corresponding
reference signals at the rated speed (1000 rpm), while the responses at 600 rpm and 200 rpm
are presented in Figs 5.14 and 5.15, respectively. The experimental results demonstrate the
superiority of the proposed A-MFPCC compared to MPCC-I and MPCC-II regarding the
steady state current tracking performance. This is attributed to the adaptive reference voltage
vector employed by A-MFPCC. The current difference is updated based on the tracking error

between measured and reference currents.
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5.5 Quantitative Analysis and Comparison

This section presents a quantitative analysis of MFPCC-I, MFPCC-II, and proposed
A-MFPCC at different operating conditions and against parameter mismatching. The three
controllers are parameter-free control, which makes it challenging to evaluate their
performance against parametric uncertainties in real-time experiments where actual machine
parameters are unavailable. Nonetheless, the controllers' performances are evaluated under
various operating conditions. Therefore, the controllers are quantitatively evaluated against
parameter variations based on numerical simulations and against speed and load torque

variation based on experimental tests.

5.5.1 Variation of Machine Parameters

Parameter variations are the most severe uncertainties for PMSM drive, significantly
degrading the drive system performance. The ability of a control to maintain a good drive
performance in the presence of parameter uncertainties is a critical indicator of its robustness.
In this section, the motor parameters (Rs, Lq, Lg, Ypp) are varied to their permissible range
(£A) of the nominal values based on Table 4.1, then the proposed A-MFPCC, MFPCC-I, and
MFPCC-II are tested with these variations accordingly. For instance, the value of stator
resistance R; varied between —20% and 80% of the nominal R; and other motor parameters
are kept as nominal values. The same process is repeated with the variations of other
parameters. For each parameter variation, the three control methods are tested, and the

numerical values of the settling time T, overshoot 0S, torque ripples T4, and current ripples

i, . are recorded.
rip

The performance of MFPCC-I, MFPCC-II, and A-MFPCC in terms of settling time,

overshoot, torque, and current ripples with the variations of stator resistance R are shown in

200



Chapter 5. Adaptive Model-Free Predictive Current Control of PMSM Drives

Fig. 5.16. The performances are slightly affected by the variations of R;. A-MFPCC recorded
the best torque and current ripple robustness, and MFPCC-I recorded the best settling time

robustness. For the overshoot, both controllers recorded inconsistent performance.
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Fig. 5.16. Performance comparisons of three controllers with the variation of (Ry), (a)

settling time (Ts), (b) Overshoot (OS), (c¢) Torque ripple, and (d) current ripple.

The performances of MFPCC-I, MFPCC-II, and A-MFPCC in terms of settling time,
overshoot, torque, and current ripples with the variations of d-axis machine inductance L,
are shown in Fig. 5.17. The variations of L, significantly influence the drive performance,
especially at low values (—%A) below the nominal value, while at high values (+%A) above

the nominal value, the performance is almost the same as the nominal value. MFPCC-II
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records the best settling time robustness, while A-MFPCC records the best torque and current
ripple robustness. It is worth noting that A-MFPCC showed better robustness only in terms
of torque and current ripples. However, its robustness to other indicators is comparable to the

other controllers.
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Fig. 5.17. Performance comparisons of the three controllers with the variation of
inductance (L,), (a) settling time (Ts), (b) Overshoot (OS), (¢) Torque ripple, and (d)

current ripple.
The performances of MFPCC-1, MFPCC-II, and A-MFPCC in terms of settling time,
overshoot, torque, and current ripples with the variations of g-axis machine inductance L,

are shown in Fig. 5.18. Similar to Lg, the variations of L, significantly influence the drive
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performance, especially at low values. The proposed A-MFPCC has shown the best
robustness regarding current ripples and comparable and almost similar robustness with
MFPCC-II regarding torque ripples. MFPCC-I has shown the best robustness in terms of
settling time and overshoot. Overall, the proposed A-MFPCC showed good robustness with
the variation of Lg, and maintained a trade-off between a good transient response (settling
time, overshoot) and a steady state response (torque and current ripples), leading to good

overall system robustness.
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Fig. 5.18. Performance comparisons of the three controllers with the variation of
inductance (L), (a) settling time (Ts), (b) Overshoot (OS), (¢) Torque ripple, and (d)

current ripple.
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The performances of MFPCC-1, MFPCC-II, and A-MFPCC in terms of settling time,
overshoot, torque, and current ripples with the variations of permanent magnet flux Wp,, are
shown in Fig. 5.19. Unlike L4 and Lg, Wpy, affects the drive performance with high values
(+%A) above the nominal value, particularly for torque ripples. The proposed A-MFPCC
has shown the best robustness with the variation of Wp,, in terms of overshoot, torque ripples,
and current ripples. In contrast, the best settling time robustness is achieved by MFPCC-I but

at the cost of the lowest torque and current ripple robustness.
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Fig. 5.19. Performance comparisons of the three controllers with the variation of
permanent magnet flux (Wpy, ), (a) settling time (Ts), (b) Overshoot (OS), (c) Torque
ripple, and (d) current ripple.
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The variations of machine parameters significantly impact the drive performance
reflected by high torque and current ripples, high overshot, and longer settling times. The
variations of stator resistance Ry and permanent magnet flux Wp,, have slight impacts on the

performance compared to the variations of machine inductances Lg and L. For instance, the

worst current ripples with the variation of R are 0.5%, 1.6%, and 1.2% higher than the values
recorded at nominal Rg for A-MFPCC, MFPCC-I, and MFPCCH-II, respectively. Similarly,
the worst current ripples with the variation of Wpy, are 10.4%,19%, and 15% higher than the
values recorded at nominal Wp), for A-MFPCC, MFPCC-I, and MFPCC-II, respectively. On

the other hand, variations of L4 and L, the worst current ripple values are higher than the
values at nominal Ly and L, by 108% and 94.2% for A-MFPCC, 122.4% and 93% for

MFPCC-II, and 126.7% and 101.4% for MFPCC-I.

In summary, the variations of machine inductances of Ly and L, have the highest
impact on the drive performance with all three controllers. The proposed A-MFPCC has
shown good robustness to parameter uncertainties, particularly in terms of torque and current
ripples. The proposed A-MFPCC may have sacrificed some of its robustness in the transient
state (settling time and overshoot) but showed strong robustness in the steady state (torque
and current ripples), thus, maintaining good overall robustness of the drive system. The
excellent tracking performance of A-MFPCC is attributed to the adaptive reference vector
generated based on the position reference current and tracking error. This vector is applied
each control cycle in the prediction stage; thus, the switching vector that minimizes the
current tracking error is selected. Moreover, the reference vector constantly updates the

current difference, preventing switching stagnation as in MFPCC-II.
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5.5.2 Variations of Operating Conditions (Speed and Load Torque)

MFPCC-I, MFPCC-II, and A-MFPCC are optimized for optimal performance.
Therefore, it is difficult to differentiate their performance solely based on graphical results.
Hence, a quantitative comparison is conducted between them based on torque and stator
current i, ripples at different speed operations and load conditions. The torque and stator
current I, ripples for the three controllers are computed at a steady state for 0.5s. The motor
operates at a desired speed, and a desired load torque is applied, after which the ripples are
calculated for 5000 sampling instants (0.5s). For instance, the motor operates from a standstill
to the desired speed (1000 rpm), and when it reaches the desired speed, a desired load torque
(2 Nm) is applied, and the ripples are computed for a duration of 0.5s. This test is repeated
with different load torque values ranging from 0 to 2 Nm and for various speed operations
(200, 400, 600, and 800 rpm). The torque ripples of MFPCC-I, MFPCC-II, and A-MFPCC
at different speed operations and load conditions are presented in Tables 5.1-5.3. Similarly,
the stator current i, ripples are presented in Tables 5.4-5.6. Torque and current ripples are
significant measures that indicate the controller performance, showing how well a controller

tracks the desired performance in various operating conditions. The torque ripples T.; and

current ripples iarip are computed using (3.52) and (3.53).
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Table 5.1 Torque ripples of MFPCC-I at different speeds and load conditions (Unit: Nm).

T,p(Nm) Speed (rpm)
200 400 600 800 1000
0 0.152 0.155 0.158 0.153 0.157
0.25 0.147 0.153 0.151 0.16 0.157
0.5 0.155 0.164 0.158 0.16 0.15
0.75 0.156 0.159 0.158 0.157 0.156
Torque 1 0.152 0.153 0.159 0.154 0.157
(Nm) 1.25 0.152 0.157 0.157 0.158 0.165
1.5 0.158 0.156 0.162 0.157 0.16
1.75 0.154 0.154 0.156 0.156 0.163
2 0.159 0.158 0.162 0.16 0.162

Table 5.2 Torque ripples of MFPCC-II at different speeds and load conditions

(Unit: Nm).
T,iyp(Nm) Speed (rpm)

200 400 600 800 1000

0 0.115 0.116 0.117 0.119 0.119

0.25 0.116 0.116 0.12 0.12 0.12

0.5 0.116 0.113 0.12 0.117 0.118

0.75 0.116 0.115 0.118 0.117 0.12

Torque 1 0.115 0.115 0.119 0.117 0.119
(Nm) 1.25 0.115 0.117 0.117 0.117 0.12
1.5 0.116 0.117 0.12 0.12 0.121

1.75 0.116 0.116 0.116 0.119 0.12

2 0.114 0.116 0.118 0.116 0.122
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Table 5.3 Torque ripples of proposed A-MFPCC at different speeds and load conditions

(Unit: Nm).

T,ip(Nm) Speed (rpm)
200 400 600 800 1000
0 0.097 0.089 0.09 0.104 0.11
0.25 0.123 0.123 0.123 0.123 0.124
0.5 0.06 0.076 0.081 0.086 0.084
0.75 0.058 0.058 0.065 0.07 0.074
Torque 1 0.057 0.065 0.066 0.071 0.075
(Nm) 1.25 0.06 0.061 0.069 0.071 0.077
1.5 0.059 0.065 0.068 0.073 0.077
1.75 0.06 0.065 0.07 0.075 0.077
2 0.061 0.068 0.074 0.076 0.08

Table 5.4 Current ripples of MFPCC-I at different speeds and load conditions (Unit: A).

Lrip(A) Speed (rpm)
200 400 600 800 1000
0 0.371 0.355 0.353 0.354 0.365
0.25 0.362 0.372 0.364 0.369 0.379
0.5 0.377 0.378 0.385 0.383 0.39
0.75 0.387 0.397 0.401 0.405 0.414
Torque 1 0.403 0.416 0.417 0.437 0.44
(Nm) 1.25 0.435 0.444 0.444 0.455 0.467
1.5 0.461 0.465 0.478 0.491 0.498
1.75 0.491 0.506 0.502 0.523 0.527
2 0.533 0.515 0.524 0.55 0.552
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Table 5.5 Current ripples of MFPCC-II at different speeds and load conditions (Unit: A).

irip(A) Speed (rpm)
200 400 600 800 1000
0 0.334 0.337 0.383 0.377 0.425
0.25 0.325 0.332 0.361 0.37 0.37
0.5 0.326 0.322 0.322 0.339 0.36
0.75 0.314 0.316 0.314 0.336 0.351
Torque 1 0.302 0.327 0.302 0.34 0.323
(Nm) 1.25 0.31 0.31 0.3 0.309 0.326
1.5 0.321 0.307 0.335 0.339 0.345
1.75 0.32 0.334 0.332 0.329 0.36
2 0.341 0.336 0.337 0.322 0.364

Table 5.6 Current ripples of proposed A-MFPCC at different speeds and load conditions

(Unit: A).

brip(A) Speed (rpm)
200 400 600 800 1000
0 0.272 0.258 0.265 0.325 0.349
0.25 0.299 0.317 0.315 0.325 0.331
0.5 0.216 0.242 0.257 0.266 0.243
0.75 0.189 0.213 0.216 0.227 0.216
Torque 1 0.186 0.206 0.215 0.22 0.22
(Nm) 1.25 0.177 0.209 0.213 0.226 0.229
1.5 0.19 0.209 0.218 0.226 0.228
1.75 0.189 0.216 0.223 0.235 0.235
2 0.184 0.215 0.231 0.24 0.239
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To visualize the differences in torque and current ripples among the three controllers,
Figs. 5.20 and 5.21 present graphical representations of torque and current ripples for
MFPCC-I, MFPCC-II, and A-MFPCC at different speeds (200, 400, 600, 800, and 1000 rpm)
and load conditions (no-load, half-load, and full-load). These figures provide a clear

overview of the variations in torque and current ripples.

The proposed A-MFPCC has demonstrated superior torque and current ripples
performance among the three controllers (MFPCC-I, MFPCC-II, and A-MFPCC), revealing
that the A-MFPCC consistently outperforms the other two controllers in terms of torque and
current ripples at all operating conditions. For instance, at 1000 rpm with 2 Nm, the A-
MFPCC recorded 0.08 Nm torque ripples and 0.239 A current ripples, while the MFPCC-II
and MFPCC-I recorded 0.122 Nm and 0.162 Nm torque ripples and 0.364 A and 0.552 A
current ripples, respectively. This demonstrates a significant improvement in torque ripples
by 34.4% and 50.6% and current ripples by 34.3% and 56.7% for the A-MFPCC,

respectively, compared to MFPCC-1 and MFPCC-II.

The quantitative analysis of torque and current ripples at various operating conditions
provides strong evidence supporting the superiority of the proposed A-MFPCC over
MFPCC-I and MFPCC-II. Additionally, the comparison between MFPCC-I and MFPCC-II
demonstrates that MFPCC-II performs better, particularly in terms of current ripples, where
MFPCC-I shows higher values. In conclusion, the A-MFPCC outperforms MFPCC-I and
MFPCC-II in terms of torque and current ripples across different operating conditions, with

MFPCC-II performing better than MFPCC-I.
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Fig. 5.20. Torque ripples for different control methods under various speed operations, (a)

no load, (b) half-load, and (c) full load.
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Current Ripples (No-Load)
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Fig. 5.21. Stator current i, ripples for different control methods various speed operations,

(a) no load, (b) half-load, and (c) full-load.
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5.6 Robustness Evaluation

The simulation, experimental, and quantitative evaluations provide an initial
assessment of the proposed A-MFPCC, MFPCC-I, and MFPCC-II controllers' performance
robustness under varying operating conditions and parametric uncertainties. The results show
that both controllers perform satisfactorily across a specific range of speed operations, torque
conditions, and parameter mismatches. However, it is essential to note that these evaluations
only test the controllers' performance under specific operating conditions and deterministic
sets of single-parameter uncertainties. In practice, a broader range of parametric uncertainties
can affect the controllers' robustness, and it is essential to consider stochastic sets of bounded
range uncertainties to perform a comprehensive robustness evaluation. To this end, the Six
Sigma robustness evaluation method introduced in Chapter 4 is used to numerically
determine the controllers' robustness indexes (sigma level). This approach involves the use
of large parameter sets and encompasses multiple performance indicators to ensure a

comprehensive assessment.

A set of performance indicators K; that can reflect the system's robustness to
parameter variations are defined. This includes both transient and steady-state response
characteristics, such as settling time (T§), overshoot (0S), root mean square error of speed
(RMSE,,), torque ripples (Ty;), and current ripples (i.;). Each indicator is crucial in
designing a PMSM drive for a specific application. Depending on the application
requirements, each performance indicator (K;) has a corresponding USL. For example, a
racing car would necessitate a faster settling time (e.g., Ty < 0.1s), whereas a passenger car
might allow for a slower settling time (e.g., T; < 0.2s). Therefore, the upper specification

limit for each performance indicator (K;) varies based on the intended application.
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The evaluation considers low, medium, and high-performance applications to cater
to various performance requirements. Low-performance applications like water pumping
systems have relatively lenient specification limits. Medium-performance applications, such
as electric vehicles, have moderate limits. On the other hand, high-performance applications,
such as radar systems and CNC machines, demand stringent and precise limits. Table 5.7
presents the performance indicators (K;) and their respective USL for each application
category (low, medium, and high performance).

Table 5.7 PMSM drive Performance indicators and limits considering three different

applications requirements.

Performance Indicator upper Specification limits (USL)
(K;) Application-I | Application-II Application-III
Ts <0.2 < 0.15 <0.1
0S <5% < 3% < 2%
RMSE,, <0.1 < 0.08 < 0.06
Trip <0.8 <0.6 <04
iarip <09 <0.7 <05

With the changes in operating conditions, PMSM parameters vary within a specific
range [-%, +%] of their nominal values. Therefore, the possible variation ranges of PMSM
electrical parameters considering rated and maximum operating conditions are presented in
Table 4.1. The evaluation process involves generating 10,000 samples of normally
distributed data of machine parameters (R, Lg, Lq, Wpy,J, B) between a bounded range

(Table 4.1). The controllers are then simulated, and the resulting performance indicators, K;,
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are computed for each sample. Specifically, the motor runs from a standstill to the rated speed
of 1000 rpm, with a steady state load torque of 2 Nm. The resulting 10,000 data points of
each K; are used to calculate the mean y; and standard deviation o; . The Z-value Z; of each
performance indicator, the system sigma level, ngy,s and system probability of failure PO F,,

are computed as discussed in Chapter 4.

The robustness evaluation process based on Six Sigma involves a few steps. The first
step is to define a set of performance indicators, K;, which can reflect the system's
performance robustness. Then, set a robustness limit for each indicator USLs such that any
values exceeding this limit are non-robust. The machine parameters are generated based on
two bounded ranges (Table 4.1) with (N=10000) normally distributed samples. Using
Matlab/Simulink environment, each controller is simulated with all the samples, and the
indicators are computed, resulting in 10000 data for each indicator. The indicators are
computed by running the motor from a standstill to the rated speed (1000 rpm) and applying
2 Nm load torque at a steady state. The settling time Ty and overshoot OS performance

indicators are computed during the transient state, while RMSE,,, Ty.; and T;;;, are computed

during a steady state for a duration of 0.5 s.

Table 5.8 presents the results of the robustness evaluation for the proposed A-
MFPCC, MFPCC-I, and MFPCC-II controllers, including their Z-values, system sigma
levels, and POFs for three different application requirements and two parameter-variation
ranges. The obtained system sigma levels ng,; clearly demonstrate the superiority of the
proposed A-MFPCC, which achieved 6¢ for four out of six cases. Under maximum condition
uncertainties, A-MFPCC achieved 4.60 and 3.90 for Applications II and III, respectively,

while for the other cases, it achieved 60. In comparison, MFPCC-I and MFPCC-II only
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achieved 60 in three cases. At the rated condition uncertainties, MFPCC-I and MFPCC-II
achieved 2.50 and 2.80 for Application III, respectively. Under maximum condition
uncertainties, MFPCC-I achieved 3.10 and 1.7¢ for Applications II and III, while MFPCC-

IT achieved 3.80 and 20, respectively.

The Z-values of the performance indicators show the strengths and weaknesses of
each control method and their ability to maintain a trade-off between all indicators. For
instance, MFPCC-I showed good robustness in terms of overshot and RMSE speed but at the
cost of torque and current ripples. Specifically, MFPCC-I showed low torque and current
ripples Z-values under high uncertainties and application requirements, resulting in low
system sigma levels despite their high Z-values of overshoot and RMSE. On the other hand,
MFPCC-II's weakness is current ripples, but it showed strengths in terms of torque ripples
and settling time. The proposed A-MFPCC, it may have sacrificed some robustness for
specific indicators but maintained a trade-off between all performance indicators, resulting
in a higher system sigma level. For example, the proposed A-MFPCC exhibits lower Z-values
for overshoot Z,gcompared to MFPCC-I and lower Z-values for RMSE of speed
Zcompared to MFPCC-II. This suggests that the A-MFPCC controller prioritizes a trade-
off between torque and current ripple indicators, potentially at the expense of overshoot and

RMSE performance indicators.
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Table 5.8 Robustness evaluations of MFPCC-I, MFPCC-II, and A-MFPCC with two

parameter uncertainty ranges based on three applications' requirements.

Indicator Zr, Zos Zy 2ty | Lirip Ngys POF
Controller Rated condition uncertainties (application-I)

MFPCC-I 61.5 192.5 593.5 18.6 12.7 6.0 0
MFPCC-II 82.2 26.1 349.6 35.5 16.4 6.0 0
A-MFPCC 68.6 51.6 3314 27.3 29.4 6.0 0

Maximum condition uncertainties (application I)

MFPCC-I 46.2 170.2 312.6 11.5 7.0 6.0 0
MFPCC-II 61.4 25.4 234.1 21.0 8.9 6.0 0
A-MFPCC 50.2 44.1 167.1 13.9 22.0 6.0 0

Rated condition uncertainties (application-II)

MFPCC-1 43.0 113.0 366.2 12.6 8.2 6.0 0

MFPCC-II 58.7 15.1 3214 24.8 10 6.0 0

A-MFPCC 493 28.6 264.8 19.5 20.1 6.0 0
Maximum condition uncertainties (application II)

MFPCC-1 32.2 99.7 261.3 7.8 4.4 3.1 0.1935%

MFPCC-II 43.8 14.7 212.4 14.6 53 3.8 0.0144%

A-MFPCC 353 243 133.4 9.8 14.9 4.6 ~ 0

Rated condition uncertainties (application-III)

MFPCC-I 24.4 73.2 138.7 6.5 3.7 2.5 1.2419%
MFPCC-1I 35.2 9.6 70.3 14.1 3.6 2.8 0.5110%
A-MFPCC 28.2 17.1 63.2 11.7 10.8 6.0 0

Maximum condition uncertainties (application-III)

MFPCC-1 18.2 64.5 79.3 3.9 1.7 1.7 8.9130%
MFPCC-1I 26.1 9.4 61.0 8.2 1.7 2.0 4.5500%
A-MFPCC 20.5 14.5 51.8 5.7 7.9 3.9 0.0096%

217



Chapter 5. Adaptive Model-Free Predictive Current Control of PMSM Drives

To illustrate the concept of the Z-value, capability plots of performance indicators,

K; (settling time, overshoot, torque, and current ripples), are presented for MFPCC-I,

MFPCC-II, and the proposed A-MFPCC in Figs 5.22-5.35. These plots depict the position of

specification limits (USL-I, USL-II, and USL-III) relative to each indicator's mean (y;) for

the three controllers, considering two uncertainty ranges. The capability plots provide

insights into the data distribution of each performance indicator and their proximity to the

application's specification limits. These plots are particularly useful in evaluating the distance

between the performance indicators and the specified limits for different applications (I, I,

and III). The number of data samples exceeding the specification limits can impact the

achieved sigma levels. For example, under maximum condition uncertainties, MFPCC-I

surpasses the limits of application-III in 891 samples, resulting in an overall system sigma

level of 1.75.
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Fig. 5.22. Capability plot of settling time (T) at two uncertainty ranges for
MFPCC-I, MFPCC-II, and the proposed A-MFPCC.
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Fig. 5.23. Capability plot overshoot at two uncertainty ranges for MFPCC-I, MFPCC-II,
and the proposed A-MFPCC.
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Fig. 5.24. Capability plot torque ripple at two uncertainty ranges for MFPCC-I, MFPCC-
I1, and the proposed A-MFPCC.
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Fig. 5.25. Capability plot of current ripple at two uncertainties ranges for MFPCC-I,
MFPCC-II, and the proposed A-MFPCC.

5.7 Summary
The proposed A-MFPCC eliminates the prediction based on a simplified parametric
machine model by developing a model-free prediction model utilizing a modified current
difference updating technique with the inclusion of the reference tracking error. The work

presented in this chapter can be summarized into the following:

e An incremental prediction model with two lumped parameters is derived and used to

develop two conventional MFPCC methods (MFPCC-1, MFPCC-II).
e A reference voltage vector was generated based on the reference current vector position

and the tracking error and used to obtain the current difference due to the applied and
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reference voltage vector. Then, the current difference due to the possible voltage vector

was derived without using any machine parameter (A-MFPCC).

e The proposed A-MFPCC effectiveness was validated by comparison with two MFPCC
methods (MFPCC-I, MFPCC-II) based on simulation and experimental results.

e The proposed A-MFPCC showed superior performance in terms of different measures
with various parameter variations and operating conditions.

e The robustness evaluation showed that the proposed A-MFPCC achieved a sigma level
much higher than the other two methods.

Apart from that, model-free approaches including MFPCC-LMFPCC-II and A-MFPCC
are data-driven controllers that rely on the measured current and voltage to predict the future
behavior of the motor current. Sensor noise can introduce errors in these measurements,
leading to inaccuracies in the predicted current. This can result in suboptimal control
performance. However, the proposed A-MFPCC generate the switching pulses based on
measured current differences, voltage deviation and a generated reference voltage. This
reference voltage is generated based on the error between the measured current and the
reference current. Theferoe, the sensor noise impact on the prediction accuracy is minimized,
because the the swithcing pulse are selected such that minimum current error is produced.

Furthermore, the proposed A-MFPCC require the calculation of a reference voltage
vector and need the current difference and voltage deviation over two concective sampling
cycles to perform current prediction. This require faster sampling frequency for better
performance . The various calculation algorithms and faster sampling requirement can be a

limitation in terms of computational resources and real-time processing.
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CHAPTER 6

ROBUST MODEL-FREE REINFORCEMENT LEARNING-
BASED CURRENT CONTROL OF PMSM DRIVES UNDER
MULTIPLE UNCERTAINTY SETS

6.1 Introduction

Model uncertainties and parameter mismatching are unavoidable in PMSM
drives, and they significantly affect the performance and robustness of model-dependent
control approaches [6.1]. In response to this challenge, data-driven control approaches
are utilized to eliminate the dependency on machine models and parameters. Model-free
predictive control (MFPC) is a well-known data-driven control in PMSM drives.
However, inaccurate estimation and stagnation can occur depending on the technique
used to achieve MFPC (such as current difference and ultra-local model), and higher

computational effort may be required [6.2-6.3].

Recently, reinforcement learning (RL) has emerged as a promising approach for
achieving data-driven control in PMSM drives. An optimal control action can be obtained
by training an RL agent with appropriate rewards based on measured PMSM data. This
results in a computationally efficient controller optimized offline during training [6.4-
6.5]. Unlike MFPC, which requires continuous optimization during online control and
can be computationally intensive, RL-based controllers offer the advantage of reduced

computational effort.

The effectiveness of RL-based controllers depends on the amount and quality of

the data used for training. In the standard RL-based controller, an agent learns an optimal
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policy that maximizes its expected cumulative reward over a single training task with
specific operating conditions and a single parameter set. Thus, new operating conditions
and different parameter sets (due to parameter mismatching) can lead to poor
performance, robustness, or instability in the controlled system [6.6]. A robust RL-based
controller is often employed to deal with this issue, in which an agent learns an optimal
policy that can perform well with worst-case uncertainty [6.7]. However, it may limit the
flexibility of the learned policy or result in an overly conservative policy that performs

poorly with all other cases, including nominal cases.

This research proposes a multi-set robust RL (MSR-RL) based current control of
PMSM drive. The MSR-RL aims to learn a single optimal policy robust to several
different parameter sets. This is done by leveraging the multi-task RL setting to optimize
a policy that can generalize to and provide good worst-case performance with respect to
new parameter sets. Instead of learning a policy over a single training task with a single
parameter set, the proposed MSR-RL learns a single policy over multiple training tasks
with various parameter sets. The resultant policy can be robust to new parameter sets and

generalized to the remaining ones.

6.2 Reinforcement Learning Basics
RL is a machine learning technique where an agent learns to make decisions in an
environment to maximize a reward signal. The agent interacts with the environment by
taking action and receiving feedback through rewards or punishments. RL aims to learn

a policy that maps states to actions, maximizing the expected cumulative reward [6.8].

RL can be applied in control systems to learn control policies that optimize

objectives, such as minimizing energy consumption or maximizing performance. It can
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also be used to learn control policies for systems that are challenging to model or have
complex dynamics, such as robots or autonomous vehicles [6.9]. Incorporating RL into
control enables more flexible and adaptive control systems that can improve their
performance through experiential learning. However, using RL in control presents
challenges such as balancing exploration and exploitation, addressing partial

observability, and managing environmental uncertainty [6.10].

The learning process relies on a set of decisions aimed at maximizing the
cumulative reward, which is predetermined. The agent's input signals consist of
observations and rewards. Observations encompass a predefined set of signals that
characterize the process, while rewards measure the success of the resulting action signal.
The control quantities of the controlled process represent the actions, while observations
encompass the signals visible to the agent and take the form of measured signals, their

rate of change, and associated errors [6.11].

Fig. 6.3 shows the RL process's general block diagram, which includes an agent,
environment, action, observations, and rewards. At each time step k, the agent executes
an action, a, and receives observations O; and rewards R;. The environment receives an
action, ay , and emits observation Oy, and scalar reward R; .. A reward R}, is a scalar
feedback signal which indicates how well the agent is doing at time step £. RL is based
on the reward hypothesis, which is defined such that the maximization of expected
cumulative reward can describe all goals: max E[Y};2o Rx4i+1]- The agent's job is to

maximize the return g, which is the discounted future rewards:

9= ) V' Revinn (6.1)
i=0

Another essential part of the RL process is the history and state. History is the

sequence of observations, actions, and rewards expressed as the following:
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Hk ES Ol)Rl' al,...,ak_l, Ok ,Rk (6.2)

The state is the information used to determine what happens next; formally, it is

a function of history: S, = f (Hy). There are two types of states, the environmental state,
Sk, whatever data the environment uses to pick the next observation/reward. Agent state

S¢ , whatever information the agent uses to pick the next action.

Agent
DNN Policy
.\. e \\7/- (s,
State |~ % i Action ay,
Sk A -
i u I. Y

Reward R,

Observation Oy,
%

Fig. 6.1. General block diagram reinforcement learning process.

The main components of an RL agent include the policy and the value function.
The policy represents the agent's behaviour as a mapping from the state to the action. The
value function is a prediction of future rewards, which is used to evaluate the goodness
or badness of states and, therefore, to select actions. RL agents can be further categorized
into model-based and model-free RL. In model-based RL, the agent uses a model to
represent the environment, predict the next observations, and execute an action,
regardless of the consequences. On the other hand, in model-free RL (MFRL), the agent
does not use a model but learns through experience, taking into account the consequences

of applying an action [6.12].

In general, RL is a fundamental machine learning paradigm typically formulated
as a Markov decision process (MDP), represented by a tuple (S,4,P,R,y). In this

formulation, the environment defines the state space (§), while the agent holds the action
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space (A). The agent interacts with the environment to update its policy (), which maps
environment states to actions. During each iteration, the agent selects an action (a;, € A)
based on its policy (m). Subsequently, the environment generates the next state (Si41)
according to its transition probability (P). This probability function takes the current state
and action as inputs and produces a distribution over the possible next states. The
environment also provides instantaneous feedback to the agent in the form of a reward
(R). This iteration continues until the agent discovers the optimal policy (rr*) that
maximizes the infinite horizon discounted reward /(). The optimization problem for

finding the optimal policy can be expressed as follows:

m* € argmax J(m) = Ez ¥* R (s, ax) (6.3)
s
k=1

where y represents the discounting factor, and J(z) denotes the infinite horizon discounted
reward, £ denotes the expectation over possible sequences of states and rewards generated
by following policy m. The optimal policy ensures that the agent accumulates the

maximum possible reward from the environment.

In the context of Model-Free RL (MFRL), both the action space (4) and state
space () can be either continuous or discrete. MFRL can be categorized into two main
types: value-based and policy-based agents. Policy-based agents estimate the desirability
of a state s by using a state value function V(s). Examples of such agents include deep
deterministic policy gradient (DDPG) and actor-critic (AC) algorithms. On the other
hand, value-based agents estimate the quality of state s by utilizing the state-action value
function Q (s, a), as demonstrated in the deep O-learning network (DQN) agent. Initially,
O-values in Q-learning were stored in a Q-table [6.13]. However, due to the inefficiency
of the table-based approach, a deep neural network (DNN) with powerful approximation

capabilities was introduced [6.14]. This neural network maps states to O-values more
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efficiently, effectively replacing the O-table. Consequently, this approach became known

as DQN RL.

DQN RL agents are well-suited for discrete control tasks such as an inverter
(on/off control). Thus, in this research, a model-free DQN RL algorithm is employed.
The state-action value function of DQN Q. (s, a) defines the value of being in state s,
taking an action a, and subsequently following a policy m. The Bellman optimality

equation for Q* is expressed as follows:
Q" (sp,a) = r(sp, ax) + y max Q" (Sk+1, A1) (6.4)
+1

In DQN RL, a learning rate  is utilized to fine-tune the optimization process and
regulate the adjustment of neural network weights to minimize the loss function. The
learning rate is a parameter that falls within the range of 0 to 1 and plays a crucial role in
determining the step size for each episode. The new Q-value for a specific state-action

pair, Q™" (sy, ay) is expressed as follows:

learned value

old
Q" (spar) = (1 —a) Qs ar) + (r(sk: ai) +vy g}cax Q*(Sk+1, ak+1)> (6.5)
+1
Thus, the new Q-value is equal to a weighted sum of our old value and the learned
value. Based on the obtained new Q-value , the policy m is improved by computing a

better policy as follows:

Tye41(Sk, ax) = argrg}caxQ,’f(sk, ax) (6.6)
+1

This process is repeated until convergence, i.e., when the policy cannot be
improved anymore. The goal of the DQN is to meet the convergence of Q-value; thus,

(6.4) can be further expressed as the cost function J(6):
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J(0) = (Q(sk, ax; 0) — r(s, ax) + y max Q(Sk41, Agr1; 6))* (6.7)

where Q(sy,ay; 0) represents approximation function, r(sy, a;) represents previous
rewards, y max Q(Sk41,ax4+1;0) denotes the immediate and future rewards, and 6
represents the network weights for training. The lower the cost function, the lower the

difference between the predicted and target Q values.

6.3 Multi-Set Robust RL-Based Current Control of PMSM Drives

In standard RL, an agent learns an optimal policy that maximizes its expected
cumulative reward over a single training task with specific operating conditions and a
single parameter set. Thus, new operating conditions and different parameter sets (due to
parameter mismatching) can lead to poor performance, robustness, or instability in the
controlled system. A common solution to this issue is using a robust RL-based controller
in which an agent learns an optimal policy that can perform well with worst-case
uncertainty [6.7]. However, the worst case incorporates a single parameter set applied for
a single training task which may limit the flexibility of the learned policy. Using a large
uncertainty case can result in an overly conservative policy that performs poorly with all

other cases, including nominal cases.

The optimal learned policy varies for different parameter sets, making it difficult
to generalize and adapt a learned policy to new operating conditions with new parameter
sets. To generate a policy that can adapt to new tasks (e.g., new motors), meta-RL [6.15]
is used to learn a policy that can adapt to new tasks more efficiently and quickly by
leveraging prior experience on similar tasks. With a data set of different motor
parameters, the environment of each motor data was pictured as a partially observable

Markov decision process (POMDP), where the environment state is not fully available to
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the agent. Then, additional contexts (variables) containing information about the
momentary environment are included in the environment state. However, these contexts
can be static within each measurement, and incorporating them into the state creates a

larger COMDP and reduces the learned policy's generalizing power [6.16].

Furthermore, Meta-RL can be computationally intensive since it requires much
data to learn the meta-policy and adapt to new tasks efficiently. Additionally, there is a
risk of overfitting to the training tasks, where the agent memorizes the training tasks and
cannot adequately generalize to test tasks. This can lead to poor performance on unseen

tasks or tasks significantly different from the training tasks [6.17].

This research proposes a multi-set robust RL (MSR-RL) based current control of
PMSM drive. The MSR-RL aims to learn a single optimal policy robust to several
different parameter sets. This is done by leveraging the multi-task RL setting to optimize
a policy that can generalize to and provide good worst-case performance with respect to
new parameter sets. Instead of learning a policy over a single training task with a single
parameter set, the proposed MSR-RL learns a single policy over multiple training tasks
with various parameter sets. The resultant policy can be robust to new parameter sets and

generalized to the remaining ones.

The parameter sets are referred to as contexts, and each context's environment is
represented as a Contextual Markov decision process (CMDP). The objective is to learn
a policy that maximizes the accumulated reward over all contexts. Each CMDP represents
a training task during the training, and tasks with shared information are clustered into
models. These models are exploited to create a robust unified policy for all the clustered

models and new unseen models. To illustrate the concept of the proposed MSR-RL and
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how it is different from standard single-task RL and meta-RL, their general frameworks

are presented in Fig. 6.2.
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Fig. 6.2. Reinforcement learning frameworks, (a) single task RL,

(b) meta-RL, and (c) multi-set robust RL.

6.3.1 Controller Design

The environment in MSR-RL is represented by CMDP with C context space
(parameter sets). The CMDP is defined by a tuple (C; S; A; M(c)) where C is the context
space; S and A are the state and action space, and M is function mapping any context ¢ €

C toan MDP M(c) = (S,A,p(s,a),r(s, a)).

With H = {hy, h; ..... h,} training episodes, the environment applies a context
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(set of PMSM parameters) ¢ € C at the beginning of each training episode. Then, an initial
state is generated based on the initial policy, ), and the agent interacts with the
environment as in the standard RL. With a finite context space C, the goal is maximizing
cumulative rewards for all contexts. To learn a policy that is robust to all context space C
(uncertainty sets) and can be generalized to a new uncertainty set, the regret concept R is
used. Regret measures the difference between cumulative rewards generated with the
current policy and the best possible policy in hindsight. Mathematically, the regret R is
expressed as the difference between the rewards of potential action and the action that has

been taken as the following:

K
Ry = Qrsn @) = ) 15, @) (68)
k=1

where Q. (sp, ap) is expected discounted rewards for applying optimal policy m* and

r(sk, ai) is the reward at time step £ in a training episode 4 with context ¢ € C.

The goal is to learn a policy that bounds the cumulative regret, R, i.e., the sum
of the regrets for the number of training episodes, n, converges to a small value €, as the

following:

R, = zn: Qrn(sn,an) — Zn: ZK: r(Sk, ar) (6.9)
h=1 h=1k=1

A good policy is expected to strike a balance between the exploration of unvisited
action spaces and the exploitation of visited action spaces. In standard RL training,
exploration is typically performed within a single context. However, in the proposed
MSR-RL, multiple contexts need to be explored. To achieve this, a finite context space C
is considered, where each context ¢ € C corresponds to a distinct parameter set and is

referred to as a task. Each task is represented by MDP model, thus with C tasks, multiple
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models (M, M,, ..., M) are created. The model's information (M, (c), M5(c),..., Mc(c))
are partitioned into mini-batches. Then, in each training episode, previously observed
models are clustered together to form a single representative model, facilitating
information consolidation. Concurrently, new models are explored to acquire additional

knowledge and expand the context space.

Let M; and M, to be represented by two MDPs with the same action and state
space, and the same context ¢ € C, the e-approximated model relationship can be

defined as follows:
M;(c) = (S, A, p.(s,a),r(s, a)) (6.10)

My(c) = (S,4,p.(s,a),7(s,a)) (6.11)

M, is said to be e-approximated model of M, if the state action pairs (s, a) meet:

Ip1(s,a) —p2(s,a)| <€ (6.12)

Through the clustering and exploration process, a set of N models are identified,
encompassing a diverse range of contexts. These models are then employed for
exploitation, wherein a unified policy is generated to accommodate all the formed models
and adapt to new ones. By leveraging the identified models, the policy aims to maximize
performance across different contexts, minimizing regret during learning. The proposed
MSR-RL learning framework shown in Fig. 6.3 utilizes an additional DNN for clustering,
maximizing the generalization power of the learned policy and avoiding the creation of
large models. In contrast to meta-RL approaches based on POMDPs, which incorporate
a hidden context into each model state S regardless of previous models. By avoiding the
creation of large models with distinct and unrelated dynamics, the learned policy can be

effectively generalized to diverse models.
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Fig. 6.3. The Proposed MSR-RL learning frameworks.

6.3.2 The RL Environment

The RL environment serves as a platform for the interaction between an RL agent
and its surroundings, enabling the agent to learn and optimize its decision-making
process. In the case of PMSMs, the RL environment represents the operational context in
which the motor operates. It encompasses various components and factors that influence
motor behaviour, including the physical characteristics of the motor, such as electrical
and mechanical parameters, as well as its internal dynamics and external factors affecting
performance. These factors include load torque, rotor position, stator current, and
electrical and mechanical constraints. In general, RL-based current control of PMSM
drives is trained offline using a simulation model of the PMSM drive. This model is a
mathematical representation that describes the dynamics of the PMSM and is expressed

in the dg- coordinates as follows:
Vg = RSid + Ld E - (I.)qu:q (613)

234



Chapter 6. Robust Model-Free Reinforcement Learning-Based Current Control of
Pmsm Drives Under Multiple Uncertainty Sets

] di,
Vg = Rslg + Lg——

e 1 wlLgig + w Py (6.14)
dig R, L, 1
S+ i+ — 6.15
P L, ig+ L, wig + » Vg ( )
dicz, Ry, Ly Yom N 1 616
at - LT T, Ot (6.16)

However, this model is a simplified representation that neglects several real-world
PMSM dynamics. Additionally, the model heavily relies on machine parameters, which
can vary due to machine structure and changes in operating conditions. Training an RL
agent solely based on this model using a single parameter set, such as nominal or worst-
case parameters, can limit the flexibility of the learned policy. Consequently, parameter
mismatching can lead to poor performance, lack of robustness, or instability in the
controlled system. The proposed MSR-RL method addresses this challenge, which trains
the RL agent based on multiple parameter sets. By considering various parameter sets,
the agent learns a single optimal policy that is robust to these sets and adaptive to new
ones. This approach aims to mitigate the adverse effects of parameter mismatching and

enhance the performance, robustness, and stability of the controlled PMSM system.

6.3.3 Observations, Rewards, and Action

The selection of appropriate observations, rewards, and actions is a crucial factor
in determining the effectiveness of the RL-based controller. For current control of PMSM
drives, standard observations are measured and reference dg currents, measured and

reference speed, measured position, and dg voltages, expressed as:
= [w*, w, 0,15,k i, ik, vE, ] (6.17)

In various MFPCs, the effect of parameter variations is compensated for by

estimating the current gradient. Thus, to help the RL agent learn better and account for
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parameter mismatching, the current gradient is included in the observation space as

follows:

k _ © ik oack—1 2k Ask—1 k=1 o k—11T
0" = [w",w,0,i4 g Alg ", igiq,Alg ", vg v "] (6.18)

where Ai§™1 = ik — k™1 and Aik~? = ik — ik~ are the dg current gradients.

Rewards are an essential part of the RL learning process; it tells the agent how
good or bad the selected action is. Therefore, rewards must be appropriately calculated to
help the agent learn an optimal policy. In current control, the objective is to minimize the

current error, and the quadric objective function can be written as:
ko (V2 L (re k)2 6.19
g = (ia—if)" + (55— i§) (6.19)

The objective function g*, along with constraint violation penalty and past action,

are employed as a reward signal for RL agent as follows:

rk = — wig* + wyP* + wy Zu}‘_l X uft (6.20)

J
where w;, w, and w; are the reward gains, and u]'-‘_1 is the past control action; P is a

penalty term to ensure safe operation and discourage overcurrent region during the

.. .. , AY .\ 2
training by penalizing the agent when the measured current iy = ’ (l’é) + (lg ) exceeds

the nominal current i,,, and can be calculated as the following:

. .k 2 .k .
Pk — {(ln - ls) ) Lls > ln 6.21
0 ,otherwise ( )

The PMSM drive is characterized by a discrete action space (switching vectors.

sj); the DQN RL agent is utilized in this research. Based on the observation's signals ok,

and rewards ¥, the RL agent will select an action a®. The action is a switching vector to
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operate the inverter. With a two-level three-phase inverter, eight possible vectors can be

applied. Thus, the RL action can be expressed as:
a¥=s5;€{012.... 7} (6.18)

RL algorithms use function approximators, such as neural networks, to estimate
the values or policies. These networks can be sensitive to the scale of the input data, and
significant differences in scales may lead to difficulties in training. Normalizing the
observations can mitigate issues such as vanishing or exploding gradients, which can
hinder learning and slow down convergence. Therefore, the observations are normalized

to a range of [-1, 1].

The working principle of the proposed MSR-RL-based current control of PMSM
drives can be illustrated as follows. First, finite parameter sets (context) are created.
Second, at the beginning of each training episode, a context ¢ € C is randomly selected
by the environment, where each context is represented by MDP (M.). Afterwards, an
initial state is chosen according to an initial state distribution, 1. Finally, the agent
interacts with the chosen M, for K time steps (k=1,2, 3,...,K) as in the standard RL. In
the next training episode, new contexts are selected, similar models are clustered, and
new models are explored. Thus, N-clustered models are identified, and then a single
policy is generated to accommodate all the formed models and adapt to new ones. The
principle and workflow of the proposed MSR-RL-based current control of PMSM drive

is illustrated by Algorithm 6.1 and the block diagram in Fig. 6.4.
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Fig. 6.4. The proposed MSR-RL-based current control of PMSM drives.

6.4 Training and Simulation Analysis
This section outlines the methodology employed to develop, train, and validate
the proposed MSR-RL approach for the PMSM drive system using Matlab/Simulink.
MSR-RL aims to train the agent with a finite set of parameter contexts, enabling the
acquisition of an optimal policy that can be applied to new parameter sets. The training
process utilizes the nominal machine parameters specified in Table 3.1 and their

respective ranges of potential variations.

Subsequently, the learned policy obtained from the MSR-RL training is tested
using different parameter sets, and its performance is evaluated under various operating
conditions. A comparative analysis is conducted against standard RL, represented by a
single-task DQN-RL agent trained using a single parameter set. This comparison
encompasses numerical performance investigations that evaluate the system performance

with nominal and mismatched machine parameters across diverse operating conditions.
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6.4.1 Uncertainties and Safety Considerations

PMSM drive systems inherently contend with a multitude of uncertainties,
encompassing load variations, noise, and sensor errors. These uncertainties present a
formidable challenge when applying standard RL algorithms, often leading to difficulties
in achieving effective policy adaptation in response to real-world environmental changes.
Moreover, the utilization of RL algorithms, primarily trained on simulation data, is
constrained by practical system limitations and safety considerations, which may impede
their capacity for large-scale data sampling, thereby affecting algorithm efficiency and

overall performance.

However, the proposed MSR-RL offers a novel approach to address these
challenges. Unlike conventional RL methods that learn policies from single training tasks
with specific parameter sets, MSR-RL endeavors to cultivate a single comprehensive
policy over multiple training tasks characterized by diverse parameter sets. The outcome
of this approach is a policy endowed with robustness, capable of adapting to new
parameter sets and exhibiting generalization to a broader spectrum of operating

conditions.

The MSR-RL framework is designed to be resilient against uncertainties,
specifically calibrated to handle variations in parameter sets and load conditions. In
practice, MSR-RL is subjected to extensive training episodes, totaling 10,000 or more, to
ensure comprehensive exploration of potential operating conditions within the system.
This rigorous training regime, coupled with the application of clustering techniques,
empowers MSR-RL to acquire a unified policy that deftly navigates through diverse
operating conditions, effectively addressing the practical uncertainties inherent in PMSM

drives.
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Furthermore, to ensure the proposed MSR-RL can safely operate in real-time
application after training using simulation data, various safety measures are considered

during the design and training of MSR-RL. These safety measures include:

Safety Constraints: Safety constraints are implemented and incorporated into the reward
functions, such as current and voltage limit, to guide the RL agent to learn a safe control
policy. These constraints, exemplified by current and voltage limits, play a pivotal role in
guiding the RL agent towards the acquisition of safe control policies. Actions that
transgress these predefined safety limits are met with substantial penalties, emphasizing

the importance of compliance with safety boundaries.

Reward Function Augmentation: The reward function within MSR-RL is augmented
to penalize deviations from desired system behavior stemming from uncertainties. This
reinforcement encourages the agent to prioritize safety and robustness in its learned

policies, thereby enhancing its capacity to navigate uncertain environments.

Safe Exploration Strategies: MSR-RL incorporates safe exploration strategies, such as
epsilon-greedy with adaptive exploration rates. These strategies are instrumental in
ensuring that the RL agent refrains from exploring actions that could potentially lead to
hazardous conditions during the learning process. By implementing these safe exploration

methods, MSR-RL further enhance its ability to operate safely in real-time applications.

In summary, the incorporation of safety considerations and the strategic handling
of uncertainties within the MSR-RL framework provdes a solid foundation for the
practical deployment of this innovative control strategy in PMSM drive systems. Through
rigorous training, safety-conscious reward structures, and safe exploration strategies,
MSR-RL emerges as a robust and adaptable solution capable of addressing the various

challenges posed by real-world applications.
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6.4.2 RL Hyperparameters Tuning

RL algorithms come with a set of critical settings called hyperparameters, including
the learning rate, discount factor, and exploration strategy. These hyperparameters
significantly impact the algorithm's performance, particularly in motor control tasks.
However, finding the optimal combination of these settings often involves time-
consuming trial-and-error processes, introducing complexity during algorithm design and
debugging. To address this challenge, several methods are available to optimize

hyperparameters effectively:

1. Automated Hyperparameter Optimization

To simplfiy the hyperparameter tuning process and alleviate the burden of manual

adjustment, automated hyperparameter optimization tools can be used,including :

Bayesian Optimization: This technique employs probabilistic models to predict which
hyperparameter configurations are most likely to lead to improved RL performance. It
iteratively evaluates different hyperparameter settings, focusing on promising areas of the
configuration space. Bayesian optimization efficiently narrows down the search for

optimal hyperparameters.

Grid Search: Grid search systematically explores a predefined range of hyperparameter
values, evaluating the performance of the RL algorithm for each combination. While it is
more computationally expensive than Bayesian optimization, grid search provides a

comprehensive view of the hyperparameter landscape.

2. Online Hyperparameter Adaptation

Online hyperparameter adaptation is a dynamic approach that adjusts
hyperparameters during RL training based on the agent's real-time performance. This

adaptation helps reduce the reliance on manual tuning and enhances algorithm efficiency.
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It begins with the initialization of the RL algorithm with initial hyperparameter values.
As training unfolds, the algorithm continuously monitors the agent's interactions with the
environment, assessing its learning progress and overall performance. Periodic
performance evaluations are conducted, employing predefined criteria to gauge the
agent's efficiency. Based on these evaluations, the algorithm adjusts hyperparameters on
the fly to enhance the learning process. This iterative approach repeats until the RL
algorithm achieves its desired performance or meets predefined convergence criteria. By
adapting hyperparameters to the agent's real-time experience, Online Hyperparameter
Adaptation improves efficiency and robustness, making RL algorithms more adaptable in

dynamic environments while reducing the need for manual intervention.

3. Parameter Sweeping Technique

Parameter sweeping is a systematic method that involves varying hyperparameters
within predetermined ranges. This technique explores a set of hyperparameter values to
assess their impact on RL performance. Parameter sweeping provides valuable insights
into the influence of different hyperparameter settings on the algorithm's behavior and

allows for the identification of optimal configurations.

In summary, tuning hyperparameters in RL algorithms is crucial for achieving optimal
performance in motor control and other applications. To streamline this process and
reduce the complexity of manual tuning, automated optimization methods like Bayesian
optimization and grid search are employed. Online hyperparameter adaptation further
enhances efficiency by adjusting settings based on real-time performance. Additionally,
the parameter sweeping technique systematically explores the effects of different
hyperparameter values to fine-tune the RL algorithm. These methods collectively

contribute to the refinement and effectiveness of RL in practical applications.
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6.4.3 Training and Parameter Sets (Contexts)

Through a trial-and-error process, RL training empowers agents to acquire
intelligent decision-making capabilities in complex and dynamic environments. The
agent explores the environment, learns from its experiences, and gradually enhances its
decision-making skills. In general, the training process of the RL agent involves several
key steps. Initially, the agent is initialized to set up its initial state. Then, the environment
is reset for each episode to prepare for the interaction. The agent observes the environment
and computes an action using its current policy. This action is applied to the environment,
leading to the next observation and a corresponding reward. The agent learns from this
experience, updating its knowledge based on the observed state-action-reward transitions.
Subsequently, the agent computes the next action based on the updated policy and repeats
the process, iteratively interacting with the environment and refining its decision-making
strategy. The training continues until a specific termination condition is met, indicating
the completion of the training process. Throughout this process, the agent explores
different actions, receives feedback from the environment, and adjusts its policy to

optimize its decision-making capabilities.

However, conventional RL methods treat each training task independently
without considering potential relations between tasks. In the proposed MSR-RL, a multi-
task RL training framework is employed to simultaneously learn related tasks by
extracting and utilizing shared information across them. Shared representations can be
used effectively by creating models for tasks with similar structures based on the
underlying task structure. In MSR-RL, tasks with similar information are clustered
together, forming models that accommodate these tasks while exploring unseen tasks.
The agent interacts with each task within a cluster, partitioning the information into mini-

batches, and the process iterates to generate multiple clustered models. These models are
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then exploited, enabling the agent to generate a policy that adapts to the formed models

and new, unseen tasks, thereby enhancing overall performance.

MSR-RL-based current control of PMSM drives incorporates finite parameter
sets, known as contexts, to enhance training. At the start of each training episode, a task
with a random parameter set is selected from the available sets. Tasks with similar
parameters or approximately close structures are clustered and learned simultaneously.
The parameter sets are generated such that PMSM parameters vary within a specific range
of their nominal values. Table 6.1 presents the possible variation ranges of PMSM

parameters considering maximum operating conditions.

Table 6.1 PMSM parameter variation ranges

Parameter Unit Increase (+) Decrease (-)
R, Q 80% -20%
Ly mH 40% -70%
Lq mH 40% -70%
Yrm Wb 20% -30%
J kgm? 32% -19%
B Nm/rad/s 20% -10%

Using Matlab/Simulink, the proposed MSR-RL with DQN for the current control
of the PMSM drive is implemented and trained using 100 parameter sets obtained from
Table 6.1, each representing six different parameters. The training process involves a
maximum of 10,000 episodes, each with a maximum of 10,000 steps. The termination
condition for training is based on the average rewards obtained, while the reference g-
axis current determines episode termination. To ensure sufficient training episodes and
convergence of the episode reward to the long-term reward, the termination average
reward value is set at -50. In each episode, a random parameter set is selected from the

100 sets, and with the help of an additional DNN, episodes with similar parameter sets or
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structures are clustered into models. The number of clustered models can be equal to or

less than the number of parameter sets.

The training process incorporates various operating conditions, such as different

speed operations and load conditions, to ensure robustness. Performance metrics like

cumulative, average, and discounted long-term rewards are recorded throughout the

training process to monitor training progress. Over the course of 10,000 episodes, N-

clustered models are identified and utilized to learn a policy that maximizes cumulative

rewards while minimizing accumulated regret. The training statistics presented in Fig. 6.5

indicate that the cumulative reward reached a maximum value of -59, closely approaching

the discounted long-term reward with a slight offset due to the discount factor.
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Fig. 6.5. Training stats of the proposed MSR-RL-based current control of PMSM

drives.

The RL agent interacts with the environment, gathering knowledge through these

interactions. Initially, the agent's actions may lead to suboptimal performance, but as it

receives rewards, it learns to avoid actions with low rewards and improves the
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performance of the PMSM drive system. The performance of the PMSM drive system is
analyzed at different stages of training, specifically during the early training (episode 1)

and mid-training (episode 5000), as shown in Fig. 6.6.
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Fig. 6.6. PMSM drives performance during (a) early training (episode 1) and (b) mid-
training (episode 5000).

The agent's progressive improvement in performance over the training episodes

can be seen through the training stats in Fig. 6.5. This improvement is achieved by
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leveraging the relationships shared among the training episodes to form N-clustered
models, each encompassing a set of related tasks. Across the 10,000 training episodes,
these models are effectively utilized to learn a unified optimal policy capable of
generalizing across all clustered and new, unseen models. This approach enhances the
agent's decision-making abilities and enables it to achieve high performance across

various task scenarios.

To validate the robustness of the learned policy, it is tested with 1000 different
parameter sets, combining sets used in training with new, unseen sets. For each parameter
set (iteration), the accumulated and average rewards are computed over 10,000-time steps
and compared with the rewards obtained using the optimal policy. The results of these
iterations and average rewards, shown in Fig. 6.7, demonstrate the learned policy's ability
to maintain rewards that closely align with the final optimal training rewards depicted in
Fig. 6.5. This indicates the effectiveness of the learned policy in maintaining performance

across diverse parameter sets.
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Fig. 6.7. Average and cumulative rewards for testing the learned policy of

MSR-RL over 1000 iterations.
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6.4.4 Deployment and Numerical Validation

The evaluation of the learned policy demonstrates the agent's impressive ability
to adapt to new, unseen tasks and paves the way for its practical deployment. With the
knowledge gained through extensive training, the trained MSR-RL agent can be
effectively utilized by generating a policy function that can be employed for both
simulation and experimental validation purposes. The deployment of the trained agent
represents the final stage in the RL workflow, marking the transition from the training
setup to the actual utilization of the learned policy. This deployment process involves
replacing the RL training framework with a dedicated policy block, which takes
observations from the environment and generates corresponding actions. Fig. 6.8 visually
represents the learning and deployment stages, illustrating the seamless transition from
training to deployment. Notably, the deployed policy operates without the need for
explicit rewards. Instead, it solely relies on incoming observations to inform its decision-

making process and generate optimal actions.

Training Deployment

Policy
(s a)

State s, Action ay

Fig. 6.8. RL agent learning and deployment.

To demonstrate the effectiveness of the proposed MSR-DQN RL approach, a
comprehensive performance comparison with the standard DQN RL method is

conducted. The standard RL agent is trained using a single parameter set and subsequently
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deployed for validation and comparison against the proposed MSR-RL. The performance
comparison is made through numerical simulations under various operating conditions,
considering nominal and mismatched machine parameters. Firstly, the performances of
the MSR-RL and standard RL are evaluated at the rated speed of 1000 rpm and torque of
2 Nm, using both the nominal machine parameters (Table 3.1) and the mismatched
parameters, specifically 0.8Rg, 0.3L4, 0.3Lg4, and 0.7%¥p),. The corresponding results are
illustrated in Fig. 6.9. Moreover, the performances at 600 rpm and 200 rpm under a 2 Nm
load are also examined to analyze the agent's capabilities comprehensively. These results
are presented in Figs. 6.10 and 6.11, respectively. The top-to-bottom curves in these

figures represent the phase a stator current, d- and g-axis currents, and motor speed.

The performance comparison between the proposed MSR-RL and the standard
RL across various operating conditions and machine parameters unequivocally
demonstrates the superior effectiveness of the proposed MSR-RL. Notably, the standard
RL exhibits significant performance degradation, particularly when faced with
mismatched machine parameters, while the MSR-RL consistently performs well across
diverse operating conditions. Examining the behaviour of stator currents and motor speed
reveals that the MSR-RL exhibits rapid dynamic response and exceptional tracking

performance, regardless of whether the nominal or mismatched parameters are used.

On the other hand, the standard RL delivers acceptable performance with the
nominal parameters but experiences high current distortion and poor tracking when
subjected to mismatched parameters. Unlike the proposed MSR-RL, which sustains an
excellent performance of the drive system due to its robust policy optimized through

various parameter sets.
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Moreover, the performances of the proposed MSR-RL and the standard RL are
numerically compared based on the total harmonic distortion (THD) spectrum of the
phase a current under nominal and mismatched parameters. The current signals are
captured during the steady state of 1000 rpm with a torque of 2 Nm applied. The captured
current signals are subsequently analyzed to extract the THD spectrum, which enables
the computation of the THD up to a frequency of 5 kHz, encompassing a broad range of

harmonics.
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Fig. 6.9. Performance comparison of proposed MSR-RL and standard RL at 1000 rpm

and 2 Nm load torque, (a) nominal and (b) mismatched parameters.
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Fig. 6.12 visually presents the outcomes of this comparison, illustrating the THD
spectra for the proposed MSR-RL and the standard RL under nominal and mismatched
parameters. Remarkably, the THD achieved by the MSR-RL is substantially lower than
that of the standard RL, irrespective of whether nominal or mismatched parameters are
considered. Specifically, the MSR-RL records THD values of 4.38% and 9.33%
compared to 7.61% and 15.6% for the standard RL under nominal and mismatched

parameters, respectively.
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This comprehensive assessment, encompassing motor performance and harmonic
analysis, facilitates a comprehensive understanding of the effectiveness and superiority
of the proposed MSR-RL approach in controlling PMSM drives, particularly in the
presence of uncertainties. The results obtained from these evaluations provide compelling
evidence of the MSR-RL's potential to adapt to new environments, maintain exceptional
tracking performance, and effectively mitigate undesired harmonic components in the

current waveform.

To further validate the robustness of the proposed MSR-RL against parameter
mismatching, a quantitative analysis is conducted to evaluate the tracking performance
of MSR-RL and standard RL against parameter variations. The proposed MSR-RL and
standard RL tracking capabilities are evaluated by computing the current ripples with the

variations of L4 and L, as shown in Fig. 6.13. Different values of L, and L are generated

within a bounded range according to Table 6.1, and the current ripples are computed.

The quantitative analyses demonstrate MSR-RL's superior performance compared
to the standard RL, mainly with variations in Ly and Lg. The standard RL, trained with a
single parameter set, exhibited substantial performance degradation with mismatched
parameters. In contrast, MSR-RL shows consistent and robust performance with
mismatched parameters. This difference highlights the adaptability and generalizability
of the learned policy within the MSR-RL framework, enabling it to handle diverse

environmental conditions effectively.
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6.5 Experimental Validation
To validate the workability and assess the effectiveness of MSR-RL, experimental
tests are conducted on a PMSM drive system utilizing a two-level inverter and a dSSPACE
DS1104 PPC/DSP controller, as shown in Fig. 6.14. The experimental setup can be

divided into two main components: the software part, which encompasses
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Matlab/Simulink and dSPACE ControlDesk, and the hardware part, consisting of the
motor, inverter, and DC supply. The software and hardware components are seamlessly
integrated through the DS1104 controller. Various measurements, including motor speed,
position, and currents, are acquired and fed back to the software for the inverter's

processing and generating suitable switching pulses.

Dynamometer

T S

o 5=
Tl Y e . i i  em——

3-phase Inverter Lo i ) =2 dSPACE DS 1104

Fig. 6.14. Experimental setup of PMSM drive system.

While the proposed MSR-RL and standard RL have been rigorously tested and
validated through numerical simulations across diverse operating conditions, verifying
their performance in real-time experiments under different scenarios is crucial. This
validation is carried out by subjecting the drive system to start-up, load disturbance, and
steady-state tests. In the start-up tests, MSR-RL and standard RL are evaluated by
initiating the motor from a standstill and gradually accelerating it to the rated speed of
1000 rpm. The corresponding measurements, including stator current (i,), dg-currents,
and motor speed are recorded and presented in Fig. 6.15. On the other hand, load
disturbance tests involve operating the motor at a steady-state speed of 1000 rpm and then
applying a 2 Nm load torque to the motor shaft. The resulting motor currents and speed

responses are captured and illustrated in Fig. 6.16. In both Figs. 6.15 and 6.16, the plotted
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curves, from top to bottom, represent the stator current (i,), dg-axis measured and

reference current (44, i44), and measured rotor speed (w;.).
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The proposed MSR-RL demonstrates a superior dynamic response compared to
the standard RL approach. In the start-up phase, where the motor initiates from a standstill
and accelerates to its rated speed, the MSR-RL rapidly accelerates with a slight overshoot,
swiftly reaching the steady-state speed of 1000 rpm. Conversely, the standard RL exhibits
a comparatively slower acceleration profile. Moreover, the proposed MSR-RL exhibits
robust load disturbance rejection capabilities. When a load disturbance of 2 Nm is applied
to the motor shaft at 0.25s, the MSR-RL experiences a modest speed drop of 108 rpm,
promptly recovering its steady-state condition within 0.35 s. In contrast, the standard RL
encounters a more pronounced speed drop of 171.8 rpm and takes 0.45 s to restore its
steady-state condition. Additionally, the steady-state current responses of the MSR-RL

exhibit smoother profiles with reduced ripple compared to the standard RL.

Both the MSR-RL and standard RL models are trained under diverse load
conditions. However, it is essential to note that the actual parameters of a real-world
PMSM may deviate from the nominal parameters employed during the training process
of the standard RL. Consequently, the improved performance of the MSR-RL can be
attributed to its training using multiple parameter sets, adapting more effectively to

uncertainties inherent in real-world PMSM.

Further experimental investigations are conducted to evaluate the performance of
the proposed MSR-RL and the standard RL under steady-state conditions. These
investigations focus on observing the motor's measured currents, including i4, {4, and ig,
along with their corresponding reference signals, i4, i7, and iz. The steady-state current

responses of both the MSR-RL and the standard RL are captured during three different
speed operations, namely 200 rpm, 600 rpm, and 1000 rpm. A load of 2 Nm is applied to

the motor shaft during these operations.
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Figs. 6.17 (a) and (b) depict the captured steady-state current responses of the
MSR-RL and the standard RL, respectively. The results demonstrate the exceptional
tracking performance of the proposed MSR-RL, surpassing that of the standard RL across
low, medium, and high-speed operations. Notably, the steady-state current ripples of the
MSR-RL are significantly reduced compared to those of the standard RL. This reduction
in ripples highlights the robustness of the learned policy of the MSR-RL in adapting to

different operating conditions, further affirming its superior performance.

In addition to speed variations, the performance of the MSR-RL is being assessed
under varying load conditions, as illustrated in Fig. 6.18. The motor is operated at a steady
state of 1000 rpm, and the responses of the estimated torque, stator current, and dg-axis
currents are observed under three load conditions: no-load, half-load (I Nm), and full-
load (2 Nm). The results showcase the ability of the MSR-RL to effectively handle
different load conditions, maintaining stable and accurate torque estimation and

consistent stator and dg-axis current responses.

Quantitative analyses are conducted at various operating conditions to further
analyze the performance numerically since real-time access to machine parameters is
unavailable. The evaluation focuses on computing the steady-state stator current ripples,
considering different speed and load conditions. Eight load torques are applied at a steady
state of 1000 rpm, ranging from minimal to maximum values. Five different speeds are
examined while maintaining a fixed load torque of 2 Nm. The current ripples are
calculated for each operating condition, yielding valuable insights into the controller's

performance, as presented in Fig. 6.19.
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The experimental testing conducted across different operating conditions provides
compelling evidence supporting the superiority of the proposed MSR-RL compared to
the standard RL. The MSR-RL exhibits faster transient responses and less distortion in
the steady-state compared to the standard RL, as validated through the start-up, load
disturbance, and steady-state tests. These findings highlight the optimality of the learned
policy within the MSR-RL framework, enabling robust adaptation to new environments.
Moreover, the quantitative analysis considering variations in speed and load further
reinforces the superiority of the MSR-RL over the standard RL. The MSR-RL
consistently outperforms the standard RL regarding its ability to mitigate steady-state
current ripples, indicating its superior control performance and enhanced robustness

across different operating conditions.

6.6 Robustness Evaluation

The robustness of the proposed MFR-RL has been demonstrated through
simulation and experimental evaluations, which have shown good performance under
specific operating conditions and parameter sets. However, it is essential to note that these
evaluations do not comprehensively assess the controller's robustness, as they have not
considered various other conditions and parameter sets. Additionally, these evaluations
do not provide information about the robustness index or how robust the proposed
controller compares to other controllers. Therefore, this research employs a six-sigma
design robustness evaluation presented in Chapter 4 to thoroughly evaluate the proposed
MSR-RL and standard RL. This approach uses large parameter sets and encompasses

multiple performance indicators to ensure a comprehensive assessment.
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The performance indicators used in the evaluation include both transient and
steady-state response characteristics, such as settling time (T5), overshoot (0S), root mean
square error of speed (RMSE,,), torque ripples (Ty;), and current ripples (i,;,). Each
indicator is crucial in designing a PMSM drive for a specific application. Depending on
the application requirements, each performance indicator (K;) has a corresponding upper
USL. For example, a racing car would necessitate a faster settling time (e.g., Ty < 0.1s),
whereas a passenger car might allow for a slower settling time (e.g., Ty < 0.3s).
Therefore, the USL for each performance indicator (K;) varies based on the intended

application.

The evaluation considers low, medium, and high-performance applications to
cater to a wide range of performance requirements. Low-performance applications like
water pumping systems have relatively lenient specification limits. Medium-performance
applications, such as electric vehicles, have moderate limits. On the other hand, high-
performance applications, such as radar systems and CNC machines, demand stringent
and precise limits. Table 6.2 presents the performance indicators and their respective

USLs for each application category (low, medium, and high performance).

Table 6.2 Performance indicators and their respective upper specification limits

Indicator Upper Specification limits (USL)
(Ky) Application-I Application-II Application-III
Ts <0.2 <0.15 <0.1
0S <5% < 3% < 2%
RMSE,, < 0.03 < 0.02 < 0.01
Trip <0.8 <0.6 <04
lrip <09 <0.7 <0.5
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The evaluation process involves generating 10,000 normally distributed samples
of machine parameter variation with a specific range (Table 6.1). The proposed MSR-RL
and standard RL are then simulated, and the resulting performance indicators are
computed for each sample. Specifically, the motor runs from a standstill to the rated speed
of 1000 rpm, with a steady-state load torque of 2 Nm. The resulting 10,000 data points of
each K; are used to calculate the mean y; and standard deviation g;. The Z-value Z; of

each performance indicator, the system sigma level n,,; and system probability of failure

POF;,,¢ are computed as discussed in Chapter 4.

The Z-values, system sigma levels and POF are calculated for MSR-RL and
standard RL based on a dataset of 10,000 samples, as shown in Table 6.3. MSR-RL
demonstrates strong robustness compared to standard RL across all performance
indicators for the three application requirements. In the case of low requirements
(Application-I), standard RL achieves a sigma level of 2.7c and a POF of 0.73%.
However, for medium and high requirements (Applications-1I and III), standard RL only
achieves sigma levels of 1.90 (POF of 5.51%) and 1.26 (POF of 21.51%)), respectively.
In contrast, MSR-RL achieves a 6c sigma level for Application-I, while sigma levels of
3.90(POF of 0.01%) and 3.2 (POF of 0.16%) are achieved for Applications-II and III

requirements, respectively.

The Z-values of the performance indicators provide insights into the strengths and
weaknesses of each control method, as well as their ability to strike a balance among all
indicators. For instance, the Z-values of overshoot and root mean square error (RMSE)
for standard RL adequately meet the requirements of all three applications. However, the
Z-values of torque and current ripples are considerably low, particularly for medium and

low-requirement applications. As a result, standard RL yields lower sigma levels and

265



Chapter 6. Robust Model-Free Reinforcement Learning-Based Current Control of
Pmsm Drives Under Multiple Uncertainty Sets

higher POFs. On the other hand, the proposed MSR-RL maintains a trade-off across all

indicators, leading to higher sigma levels for all application requirements.

Table 6.3 Robustness evaluation results of MSR-RL and standard RL.

Indicator Z7, Zos Zgy Z Tripp Z iripp | Tsys POF
Controller (Application-I)
S-RL 20.1 44.7 53.0 7.6 3.6 2.7 0.73%
MSR-RL 33.4 61.9 146.5 23.7 17.9 6.0 0
(Application-II)
S-RL 13.5 25.9 33.9 52 1.9 1.9 5.51%
MSR-RL 22.5 36.2 94.0 17.5 12.3 3.9 0.01%
(Application-III)
S-RL 6.7 16.5 21.2 2.8 0.3 1.2 21.51%
MSR-RL 11.7 23.4 59.0 11.3 6.6 3.2 0.16%

It is worth noting that sigma levels below 66 do not necessarily render a control
system unacceptable. In the industry, a sigma level of 36 is considered acceptable, and
66 is introduced to account for the long-term shift (approximately 1.50) in the mean. In
some cases, achieving 6c is not feasible for specific control methods or application
requirements. Consequently, controllers with sigma levels below 66 can still be reliable.
For instance, a sigma level of 3.2c of MSR-RL for Application-III implies that only 16
parameter combinations out of the total samples (1000) result in any performance

indicator exceeding the specification limits of Application-III.

The Z-value is a measure of the distance between USL and the mean (y;) of a
performance indicator's data. In other words, it is a measure of the number of standard
deviations (o) between USL and the mean (y;). This can be illustrated by the capability
plots of torque and current ripple performance indicators presented in Figs. 6.20 and 6.21

for standard RL and MSR-RL. The capability plots provide insights into the data
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distribution of torque and current ripple performance indicators and their proximity to the
application's specification limits (USL-I, USL-II, USL-III). The torque ripple capability
plot shows that the standard RL data are widely dispersed around the mean (u = 0.1643),
exceeding Application-III requirements (USL-I11=0.4) and a Z-value of 2.8. In contrast,
MSR-RL data are narrowly around the mean (¢ = 0.0334) with no values exceeding any

of the three applications USLs (USL-I, USL-II, USL-III).

Furthermore, the capability plots of current ripples of standard RL and MSR-RL
show that the standard RL data has exceeded the USLs of all applications, resulting in
low Z-values. Particularly, 2151 samples (out of 10000) of standard RL current ripple
data are recorded beyond USL-III. In contrast, MSR-RL current ripples capability plot
shows a few data exceeding the USLs of Applications-II and III. Thus, MSR-RL achieves

high Z-values of current ripples for three application requirements.
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Fig. 6.20. Capability plot of torque ripples for standard RL and proposed MSR-RL.
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Fig. 6.21. Capability plot of current ripples for standard RL and proposed MSR-RL.

6.7 Comparison of MSR-RL and A-MFPCC

Data-driven MSR-RL based current control of PMSM drives is achieved based on
a pre-trained policy, resulting in less computational online control. In contrast, A-MFPCC
(Chapter 5) controls the PMSM drives through online optimization, requiring additional
computational capacity compared to MSR-RL. Therefore, it is essential to conduct a
performance comparison between MSR-RL and A-MFPCC based on PMSM drives to
see if a computationally efficient MSR-RL can achieve good performance as A-MFPCC
at different operating conditions. MSR-RL and A-MFPCC were evaluated at different
operating conditions and showed excellent performance compared to their corresponding
conventional methods. MSR-RL and A-MFPCC were optimized to achieve the best
performance possible; thus, it can be challenging to differentiate their performance
difference based on graphical results. This section presents a quantitative analysis and

robustness evaluation of MSR-RL and A-MFPCC.
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6.7.1 Quantitative Analysis

Torque and current ripples are essential performance indicators to judge the
performance of a PMSM control method. MSR-RL and A-MFPCC are quantitatively
compared against parameter mismatching and changes in operating conditions. Higher
performance effects are experienced with the variations of machine inductances (Lg, Lg);

thus, both controllers are simulated at different values of Ly and L, according to Table

6.2. The corresponding numerical data of torque and current ripples with the variation of

Lg and L, are plotted in Figs. 6.22 and 6.23, respectively.

Furthermore, MSR-RL and A-MFPCC are quantitatively evaluated at different
speeds and load conditions. Experimental tests are conducted for both controllers based
on PMSM drives at five speeds (200, 400, 600, 800, and 1000 rpm) and under load
conditions between 0.25 Nm and 2 Nm. The current ripples are computed for each
operating condition, and the resulting quantitative data of MSR-RL and A-MFPCC are

presented in Fig. 6.24.

The quantitative analysis against parameter variations and changes in operating
conditions has shown that the proposed MSR-RL based current control of PMSM drive
can achieve comparable performance to A-MFPCC. Notably, an offset difference in the
performance, with A-MFPCC achieving better performance. This suggests that MSR-RL
was not trained in all possible conditions or that the parameter sets used for training were
not large enough to cover the whole parameter variations range. Furthermore, MSR-RL
may have reduced the computational cost compared to A-MFPCC. However, with the
availability of a high computation capacity processor (i.e., dSPACE), even a high

computational controller can be implemented with a smaller sampling size.

269



Chapter 6. Robust Model-Free Reinforcement Learning-Based Current Control of

Pmsm Drives Under Multiple Uncertainty Sets

Torque ripple

«=@=\[SR-RL

"r"'T"'1"'ﬂ""r"'T"'1"'ﬂ""r"'T"'1"'ﬁ"
1
1

a@= A-MFPCC

mmbcccdeccdeaccdecccbaaala

0.35
0.3

5 .
N s
=

(wiN)9rddrx anbuog,

0.1
0.05

ALd

(2)

Current Ripples

«@=[SR-RL. «=@=A-MFPCC

LTttt TT T Tt T T T YT rUT T TTTTTTTTITT T

o e g e e e -

1
1
1
1
1
1
1
|
1
1
1
1
-
1

L LT LT ST Tars e

--r---r---T---1---1---1----r---r---r---1---1---1--
1
1
1
Q

0.6
0.2
0.1

(v)sorddrr yuaain)

ALd

(b)

Fig. 6.22. Quantitative comparison of MSR-RL and A

MFPCC with the variation of

inductance (Lg), (a) torque ripples, and (b) current ripples.

270



Chapter 6. Robust Model-Free Reinforcement Learning-Based Current Control of

Pmsm Drives Under Multiple Uncertainty Sets

Torque ripple

«@= A-MFPCC

«=@=VISR-RL

e 1
T 1

=== == === = -+

. I )
N | 1 7%
N | 1

| IR NS [P IO N N i — P
Ty T -
1 1 1 1 1 1 1 1 1 Qn?
N | 1

S T T T S N i oy
oo 1 (e
mlllmlllmlllmlllmlllmlllulllul Imlll ed
1 1 1 1 1 1 1 1 1 Q\
N | 1

“I||“I||“I||“I||“I||“I||“||— |“||| P
[ e | 1 %9
N | 1

[T T O T T 1

R T T T S B i “a,.
1 1 1 1 1 1 1 1 N
[ S T N SO S E A o
TTTT T VIR T %
T | 1 A\
T 1

R s S
[ | o «
Ll L L L. R I R o
T o oy,
[T T T R B [ T A
[ Poon

b= = = e = - 0
R N °g,
T N T oo ©
Pt T
o [ I &0,
1 T T |

i TTTTTTTTTTTTT 2
[T A T T T S T S T | /)

A

0.5
0.45
0

(wiN)9rddrx oanbuoyg,

ALq

(2)

Current Ripples

«@=[SR-RL «=@=A-MFPCC

Tt T T AT T T T T re T It T TTTI ro| T T

——p———
1
1
1

----l.----|----|----.|.---4----:—---.—----l----l—---l-----l.--
1
1
1
Q

\e

S

=
S

0.3

-
o

0.2

(v)sopddur juaaan))

AlLq

(b)

Fig. 6.23. Quantitative comparison of MSR-RL and A-MFPCC with the variation of

inductance (L), (a) torque ripples, and (b) current ripples.

271



Chapter 6. Robust Model-Free Reinforcement Learning-Based Current Control of

Pmsm Drives Under Multiple Uncertainty Sets

Current Ripples

a@=A-MFPCC

e Bty b mh R B e e

e$=MFR-RL

0.4

1 1

1 1
- [N P — [ R —

1 1

1 1

1 1

1 1

1 1

1 1
|||||||| L

1 1

1 1

1 1

1 1

1 1
IIIIIIII ] —

1 1

1 1

1 1

1 1

1 1
IIIIIIII -IIIIII -IIIIII

T 1

1 1

1 1

1 1

1 1

1 1
llllllll e ———— ] ——— — ——

1 1

1 1

1 1

1 1

1 1
IIIII R S -

1 1

1 1

1 1 1

1 1 1

1 1 1

1 1 1
|||||| (19~ N N

) 1 1

1 1

1 1 1

1 1 1

1 1 1
- = L Ll ol

1 1 1

1 1 1

1 1 1

e N -

= < =

(v)9rddrr judaan)

1.75

1.5

0.5 0.75

0.25

Torque (Nm)

(a)

Current Ripples

«@®=\|FR-RL

e e I e e B

e A-MFPCC

0.35

o e e e e ] e

0.3

o ] ] ] = —— o - —— -

w o\ wn —

L S — e B

o )
(V)arddrr yusrm)

(RSRIRS EEpyS Ny Syt Sy Sy S U Py S —

0.05

1000

Speed (rpm)

)

b
Fig. 6.24. Current ripple comparison of MSR-RL and A-MFPCC with (a) different

(

load torques at rated speed (1000 rpm) and (b) various speeds under torque (2 Nm).

272



Chapter 6. Robust Model-Free Reinforcement Learning-Based Current Control of
Pmsm Drives Under Multiple Uncertainty Sets

6.7.2 Robustness Evaluation

Robustness to uncertainties is a primary goal of both MSR-RL and A-MFPCC.
Therefore, their robustness is evaluated using the proposed method (Chapter 4). Based on
the maximum parameter variations (Table 6.1), the robustness evaluation of MSR-RL and

A-MFPCC is conducted, and the corresponding sigma levels and Z-Values are presented

in Table 6.5.

Table 6.5: Robustness evaluation results of the MSR-RL and A-MFPCC.

Indicator Zr, Zos Zy Tripp | Ziripy | Msys POF
Controller (Application-I)
A-MFPCC 50.2 44.1 167.1 13.9 220 | 6.0 0
MSR-RL 334 61.9 146.5 23.7 179 | 6.0 0

(Application-II)
A-MFPCC 353 243 133.4 9.8 149 | 4.6 ~

MSR-RL 22.5 36.2 94.0 17.5 123 | 39 0.01%
(Application-III)

A-MFPCC 20.5 14.5 51.8 5.7 7.9 3.9 0.01%

MSR-RL 11.7 234 43.0 11.3 6.6 32 0.16%

The robustness evaluation in Table 6.5 shows that both controllers achieved good
robustness regarding three application requirements. A sigma level of 60 was achieved
for both controllers for low requirements (application-I). For Application-1I, MSR-RL
achieved 3.90, while A-MFPCC achieved 4.60. As for Application-11I, A-MFPCC
achieved 3.90, while MSR-RL achieved only 3.20. MSR-RL achieved sigma levels
lower than A-MFPCC even though the Z-values of MSR-RL are higher for the overshoot
and torque ripple performance indicators. This is because the sigma levels are computed

based on the number of defects, while Z-values are computed based on the mean (u) and
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standard deviation (o). This means MSR-RL may have achieved effective performance
for most of the data samples, maintaining low values of the performance indicators far
away from the specification limits. However, it exceeds the limit for a few samples,
resulting in a low sigma level and high Z-values (because the mean is small compared to
the specification limit). This can be illustrated by the capability plot of torque and current

ripples of A-MFPCC and MSR-RL presented in Fig. 6.25.

Furthermore, the Z-Values of performance indicators show the weakness of MSR-
RL is the settling time robustness. This means MSR-RL dynamic robustness is the main
factor affecting overall system robustness. Thus, it is essential to improve the dynamic
response of MSR-RL, including the optimization of the speed controller for better settling

time robustness and achieving 60 for all three application requirements.

MSR-RL and A-MFPCC have shown excellent robustness over maximum
parameter variations (Table 6.1) with three application requirements (Table 6.3). This
indicates the effectiveness of MSR-RL and its ability to perform as the online optimized

controller (A-MFPCC).
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6.8 Summary
This chapter introduced an MSR-RL-based current control of PMSM drives.
Standard RL methods often struggle to adapt to new operating conditions and parameter
sets, reducing system performance and robustness. To overcome these limitations, the
proposed MSR-RL leveraged multi-task RL to train a single policy that can generalize

and perform well across a wide range of parameter sets.

MSR-RL achieved strong robustness and improved adaptability to new parameter
sets by utilizing multiple training tasks with varying parameters. The parameter sets,
represented as contexts in the form of Contextual Markov decision processes (CMDPs),
allow for optimizing a policy that maximizes the cumulative reward over all contexts. By
clustering tasks with shared information into models, a unified policy is generated,

ensuring robustness not only to the clustered models but also to unseen models.

The proposed MSR-RL approach presented several advantages compared to
standard RL methods. The need to train separate policies for different parameter sets was
eliminated, reducing computational effort and enhancing efficiency. Additionally, the
learned policy can adapt to new operating conditions and parameter sets, thereby

improving the overall performance and robustness of the system.

The performance comparisons based on simulation, experiments, quantitative,
and robustness evaluation have validated the superiority of MSR-RL over standard RL in
different operating conditions. Additionally, the comparison of MSR-RL with A-MFPCC
indicates the ability of MSR-RL to achieve similar performance with fewer online

computational requirements.

276



Chapter 6. Robust Model-Free Reinforcement Learning-Based Current Control of
Pmsm Drives Under Multiple Uncertainty Sets

REFERENCES

[6.1] J. Yang, W.-H. Chen, S. Li, L. Guo, and Y. Yan, "Disturbance/Uncertainty Estimation and
Attenuation Techniques in PMSM Drives—A Survey," IEEE Transactions on Industrial
Electronics, vol. 64, no. 4, pp. 3273-3285, 2017, doi: 10.1109/tie.2016.2583412.

[6.2] C.Lin, T. Liu, J. Yu, L. Fu, and C. Hsiao, "Model-Free Predictive Current Control for Interior
Permanent-Magnet Synchronous Motor Drives Based on Current Difference Detection
Technique," IEEE Transactions on Industrial Electronics, vol. 61, no. 2, pp. 667-681, 2014.

[6.3] Y. Zhou, H. Li, and H. Zhang, "Model-free deadbeat predictive current control of a surface-
mounted permanent magnet synchronous motor drive system," Journal of Power Electronics,
vol. 18, no. 1, pp. 103-115, 2018.

[6.4] A. Traue, G. Book, W. Kirchgéssner, and O. Wallscheid, "Toward a Reinforcement Learning
Environment Toolbox for Intelligent Electric Motor Control," IEEE Transactions on Neural
Networks and Learning Systems, vol. 33, mno. 3, pp. 919-928, 2022, doi:
10.1109/TNNLS.2020.3029573.

[6.5] G. Book et al., "Transferring Online Reinforcement Learning for Electric Motor Control From
Simulation to Real-World Experiments," IEEE Open Journal of Power Electronics, vol. 2, pp.
187-201, 2021, doi: 10.1109/0JPEL.2021.3065877.

[6.6] A. Ez-zizi, S. Farrell, D. Leslie, G. Malhotra, and C. J. H. Ludwig, "Reinforcement Learning
Under Uncertainty: Expected Versus Unexpected Uncertainty and State Versus Reward
Uncertainty," Computational Brain & Behavior, 2023/03/20 2023, doi: 10.1007/s42113-022-
00165-y.

[6.7] D. Liu, X. Yang, D. Wang, and Q. Wei, "Reinforcement-Learning-Based Robust Controller
Design for Continuous-Time Uncertain Nonlinear Systems Subject to Input Constraints," /EEE
Transactions on  Cybernetics, vol. 45, mno. 7, pp. 1372-1385, 2015, doi:
10.1109/TCYB.2015.2417170.

[6.8] K. Nussenbaum and C. A. Hartley, "Reinforcement learning across development: What
insights can we draw from a decade of research?," Developmental cognitive neuroscience, vol.
40, p. 100733, 2019.

[6.9] S. Meyn, Control systems and reinforcement learning. Cambridge University Press, 2022.

[6.10] Z. Ding and H. Dong, "Challenges of reinforcement learning," Deep Reinforcement Learning:
Fundamentals, Research and Applications, pp. 249-272, 2020.

[6.11] M. A. Wiering and M. Van Otterlo, "Reinforcement learning," Adaptation, learning, and
optimization, vol. 12, no. 3, p. 729, 2012.

[6.12] A. massoud Farahmand, A. Shademan, M. Jagersand, and C. Szepesvari, "Model-based and
model-free reinforcement learning for visual servoing," in 2009 IEEE International
Conference on Robotics and Automation, 2009: IEEE, pp. 2917-2924.

[6.13] J. N. Tsitsiklis, "Asynchronous stochastic approximation and Q-learning," Machine learning,
vol. 16, pp. 185-202, 1994.

[6.14] V. Mnih et al, "Playing atari with deep reinforcement learning," arXiv preprint
arXiv:1312.5602, 2013.

[6.15] D. Jakobeit, M. Schenke, and O. Wallscheid, "Meta-Reinforcement-Learning-Based Current
Control of Permanent Magnet Synchronous Motor Drives for a Wide Range of Power Classes,"
IEEE Transactions on Power Electronics, vol. 38, no. 7, pp. 8062-8074, 2023, doi:
10.1109/tpel.2023.3256424.

277



Chapter 6. Robust Model-Free Reinforcement Learning-Based Current Control of
Pmsm Drives Under Multiple Uncertainty Sets

[6.16] A. Modi, N. Jiang, S. Singh, and A. Tewari, "Markov decision processes with continuous side
information," in Algorithmic Learning Theory, PMLR, pp. 597-618, 2018.

[6.17] T. Yu et al., "Meta-world: A benchmark and evaluation for multi-task and meta reinforcement
learning," in Conference on robot learning, PMLR, pp. 1094-1100, 2020.

278



Chapter 7. Conclusion and Future Works

CHAPTER 7

7.1

' CONCLUSION AND FUTURE WORKS

Conclusion

The main findings and achievements presented in this thesis are summarized as

follows:

A comprehensive literature survey was conducted about PMSMs and their control
methods. PMSM drive uncertainties, robust control methods, and data-driven control
methods were critically investigated.

Improved two-vector MPCs were proposed to eliminate the shortcomings of
conventional MPC. Fuzzy decision-making criteria were used to eliminate the
weighting factors and select an additional switching vector. The proposed methods
were validated by simulation, experiment, and quantitative analysis and performed
better than the conventional MPC.

A novel robustness evaluation method was introduced based on the Six Sigma design
methodology. Five RPC methods and conventional MPC were numerically evaluated
based on the proposed method, and their robustness levels (sigma levels) were
obtained. This method was also used to evaluate the robustness of the proposed
controllers in the subsequent chapters.

An adaptive model-free predictive current control (A-MFPCC) with an adaptive
current difference updating mechanism was proposed. A reference vector was

generated based on the position of the current reference and current error, then was
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used to update the current difference and prevent stagnation. The effectiveness of this
method was validated by conducting a comparison with two other MFPCC schemes
based on simulation, experiment, and robustness evaluation. The proposed method
performed better than other methods over different operating conditions.

e Robust data-driven RL-based control was proposed for PMSM drives. The proposed
method was trained using multiple parameter sets to obtain a robust policy for all
parameter variations. Considering finite parameter sets, the proposed MSR-RL was
trained and validated based on PMSM drives. Compared to standard RL, the proposed
MSR-RL showed strong robustness to parameter variations and changes in operating
conditions. The controller was validated through a comparison with standard RL based
on simulation, experimental, and robustness evaluations.

e The proposed MSR-RL and A-MFPCC were evaluated and compared over different
operating conditions and parameter variations. The quantitative and robustness
analyses have shown the ability of MSR-RL to achieve comparable performance to A-

MFPCC with fewer online computational requirements.

7.2 Future Works
This project has investigated various robust control methods for PMSM drives,
including model-free and data-driven RL robust control methods. However, there is always
room for future improvements. The potential improvements and future perspective of this

research are presented as follows:

e Robustness evaluation with other uncertainties, e.g., unmodelled dynamics. Currently,

robustness evaluation is performed with parameter variations only. Thus, evaluating
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the robustness by considering parameter variations and unmodelled dynamics is
essential.

Considering the stability robustness evaluation and more performance indicators like
switching frequency.

Robust optimization can be implemented to enhance the performance of the proposed
controllers. Speed control and other system parameters can be optimized through this
technique in the future.

Exploration of novel methods for reducing the sample size in robustness evaluation,
particularly through stratified sampling, bootstrapping, machine learning techniques,
statistical methods, Bayesian inference, meta-analysis, sequential testing, simulation
and modeling, expert knowledge, and data preprocessing, can enable more efficient
evaluations while maintaining data quality.

Integrating the robust optimization of control systems with the robust optimization of
electrical machines.

Large-scale machine drive setup to be considered, e.g., high-power rating machines
suitable for EVs to validate the controller performance.

Using real-time measurement data for RL training. Currently, RL is trained based on
simulation data; thus, in the future, it is essential to collect extensive measurement data
of the drive system at various operating conditions and use it for RL training.
Considering different machine learning algorithms, including different RL agents than
the one currently used

Exploring the possibility of merging different control methods will be considered. his

includes combining data-driven control methods such as A-MFPCC and MSR-RL to
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generate robust adaptive and computationally efficient control methods. Additionally,
six-sigma robust optimization can be used to optimize the proposed A-MFPCC

parameters and RL hyperparameters.
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APPENDICES

APPENDIX A

Appendix A.1 Impact of Covid-19 on Research Progress
The COVID-19 pandemic significantly influenced the progression of this doctoral
research project. Commencing in January 2020, the project was swiftly confronted with the
Australian government's travel ban, preventing me from entering the country until late
December 2021. My supervisors and I had to adapt our approach throughout this prolonged

period, shifting our focus toward theoretical and simulation-based investigations.

By April 2022, when access to the UTS labs was finally reinstated, we commenced
building the experimental setup. By the end of that year, experimental results were obtained,
leading to the publication of one research article. However, due to the limited time available
(only six months) to complete the Ph.D., 1 had to prioritize writing my thesis while
simultaneously working on three additional papers for publication. One of these papers has
been successfully completed and submitted for publication, which is now under revision.
However, recognizing the extended review process often associated with esteemed journals,
we prioritized the thesis's completion before dedicating our efforts to finalizing the remaining

papers.

The challenges posed by the COVID-19 pandemic necessitated adaptability and
resilience, requiring us to reframe our research approach and maximize available resources.
While the initial experimental phase experienced delays, the shift towards comprehensive

theoretical and simulation-based investigations ensured that progress was maintained.

283



Appendices

Despite the constrained timeframe, completing the Ph.D. thesis became a focal point,
underscoring the significance and novelty of this comprehensive body of work, which we

believe holds potential for publication in high-quality journals.

Appendix A.2 List of Publication

Published Articles

[1] N. Farah, G. Lei, J. Zhu, and Y. Guo, "Two-vector Dimensionless Model
Predictive Control of PMSM Drives Based on Fuzzy Decision Making," in CES

Transactions on Electrical Machines and Systems, vol. 6, no. 4, pp. 393-403,

December 2022, doi: 10.30941/CESTEMS.2022.00051.

Articles Under Revision

[1] N. Farah, G. Lei, J. Zhu, and Y. Guo, "A Novel Robustness Evaluation Method
for Predictive Control of PMSM Drives," under revision, " IEEE Transactions

on Energy Conversion.

[2] N. Farah, G. Lei, J. Zhu, and Y. Guo, " Robust Model-Free Reinforcement
Learning Based Current Control of PMSM Drives," under revision,, [EEE

Transactions on Transportation Electrification.

Articles Under Review

[1] N.Farah, G. Lei, J. Zhu, and Y. Guo, "Adaptive Model-Free Predictive Current
Control of PMSM Drives," under review, IEEE Transactions on Industrial

electronics.
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Appendix B. Quantitative Analysis of the Literature

The various RPC methods of PMSM drives in the literature are divided into categories
depending on the type of robust control used. RPC -based prediction error correction,
observers, optimized cost function, model-free, and combined or hybrid techniques are some
of these categories. A quantitative comparison of several methods of each category is
conducted by considering a set of performance measures based on PMSM drives
applications. These applications required /preferred PMSM drive performance can be used
as indicators to perform the comparison. Different performance indicators can be identified
as essential measures to determine how effective a control method of PMSM drive is for a
specific application. These indicators include dynamic response, steady-state response,
control robustness, and drive efficiency. The level of each indicator for the various RPC
methods is determined by considering a quantitative scale (0-5) depending on the
effectiveness of each control method. Table B.1 presents four essential performance
indicators of the control method of PMSM drive, along with explanations of the quantitative

scales for each indicator.

Based on these indicators, several RPC methods of PMSM drives have been
quantitatively analysed by rating their effectiveness regarding each indicator with an
appropriate scale. Then, the total sum of the scales is calculated to show which robust method
has the highest scale and perfectly matches the essential requirements for a specific
application. Depending on each application, the above indicators differ in importance. For
example, efficiency is more critical in certain applications than dynamic response, while

other applications require high dynamic response no matter the efficiency. Therefore, it is
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essential to include a weighting factor for each indicator depending on its significance to the

application.
Table B.1: Performance indicators of PMSM control methods
scale Indicator
Dynamic Response (DR)
0 (worst) The system response cannot track the reference at all
1(bad) The system response takes a very long time to track the reference

2(average )

The system response is slow and has a long settling time

3(good ) The system response tracks the reference with a moderate settling time
4( very good) | The system tracks the reference with a quite good settling time
S(excellent) | The system response is fast, with a faster settling time
Steady-state response (SSR)
0 (worst) The steady-state response fluctuates with high ripples.
I(bad ) The response is not tracking the reference properly and has high ripples.

2(average )

The response is tracking the reference but has high ripples.

3(good ) The response is tracking the reference but has moderate ripples.
4( very good) | The response is tracking the reference but has low ripples.
S(excellent) | The response is precisely tracking the reference and has minimum
ripples.
Control Robustness (CR)
0 (worst) No robustness, and with any uncertainty, system loses performance

tracking
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1(bad )

Low robustness and high uncertainties, the system loses performance

tracking.

2(average )

The system can withstand uncertainties but with very poor performance.

3(good ) The system can withstand uncertainties with acceptable performance.
4( very good) | The system can withstand uncertainties with very good performance but
has no robust method for all uncertainties.
S(excellent) | The system has a robust mechanism for all uncertainties and has perfect
performance under any uncertainties.
Efficiency ()
0 (worst) The system losses are maximum with the lowest efficiency.
1(bad) The system has high losses with lower efficiency

2(average )

The system losses are moderate with moderate efficiency.

3(good ) The system losses are low with good efficiency
4( very good) | The system has a loss minimization technique with high efficiency.
S(excellent) | The system has minimum losses with the highest efficiency.

The four indicators are equally crucial for washing machine applications, but the
dynamic response is more critical than the efficiency for servo-drive applications. Thus, the
importance of these indicators can be weighted with an appropriate weighting factor. For
example, if the significance of the efficiency for the servo drive is 80%, a weighting factor
of 0.8 is used for the switching frequency with a servo drive application. Using weighting
factors for certain indicators will produce different total scores of a specific PMSM drive

method. Servo-drives, EVs, and washing machine PMSM applications with the
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corresponding weighting factor (y) for the dynamic response, steady-state response, control
robustness, and efficiency performance indicators are presented in Table B.2. Several RPC
methods of PMSM drives have been quantitatively analysed based on four performance

indicators with three application weighting factors, as shown in Table B.3.

Table B.2 The weighting factor (y) for performance indicators of three PMSM drive

applications
y Dynamic Steady-state Control efficiency ()
Application response response robustness
(DR) (SSR) (CR)
Servo drives 1 0.8 0.8 0.75
EV 0.7 1 0.8 0.9
Washing 1 1 1 1
machine
Table B.1: Quantitative analysis of RPC studies for PMSM drive
Study RPC based on: DR |SSR|CR | Total
Servo EVs Washing
drive machine
[B.1] Optimized cost
3 4 3 132
function 11 11.38 13.2
[B.2] Observer 3 4 4 |32 11.8 12.18 142

288



Appendices

[B.3] Optimized cost
2 124

function 9.8 9.56 11.4
[B.4] | Hybrid techniques 4 | 4 12.4 12.9 15
[B.5] Observer 4 | 4 12.4 12.9 15
[B.6] Prediction error 4 | 4 12.4 12.9 15
[B.7] Observer 4 | 4 12.6 12.6 15
[B.8] | Hybrid techniques 3| 4 13.6 13.5 16
[B.9] Observer 51 4 13.2 13.7 16
[B.10] Observer 4 |3 12.65 12.7 15
[B.11] | Hybrid techniques 51 4 15.2 15.1 18
[B.12] Observer 4 |3 12.65 12.7 15
[B.13] | Hybrid techniques 51 4 14.2 14.4 17
[B.14] Observer 4 | 4 13.4 13.6 16
[B.15] Optimized cost

4 | 3

function 10.85 11 13
[B.16] Prediction error 4 | 4 13.4 13.6 16
[B.17] Prediction error 4 | 3 11.85 11.7 14
[B.18] Prediction error 4 | 3 11.85 11.7 14
[B.19] | Hybrid techniques 4 | 4 13.4 13.6 16
[B.20] Model-free 51 4 14.2 14.4 17
[B.21] Model-free 5| 4 15.2 15.1 18
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