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Tunnel boring machines (TBMs) have been widely utilised in tunnel construction due to their high ef-
ficiency and reliability. Accurately predicting TBM performance can improve project time management,
cost control, and risk management. This study aims to use deep learning to develop real-time models for
predicting the penetration rate (PR). The models are built using data from the Changsha metro project,
and their performances are evaluated using unseen data from the Zhengzhou Metro project. In one-step
forecast, the predicted penetration rate follows the trend of the measured penetration rate in both
training and testing. The autoregressive integrated moving average (ARIMA) model is compared with the
recurrent neural network (RNN) model. The results show that univariate models, which only consider
historical penetration rate itself, perform better than multivariate models that take into account multiple
geological and operational parameters (GEO and OP). Next, an RNN variant combining time series of
penetration rate with the last-step geological and operational parameters is developed, and it performs
better than other models. A sensitivity analysis shows that the penetration rate is the most important
parameter, while other parameters have a smaller impact on time series forecasting. It is also found that
smoothed data are easier to predict with high accuracy. Nevertheless, over-simplified data can lose real
characteristics in time series. In conclusion, the RNN variant can accurately predict the next-step
penetration rate, and data smoothing is crucial in time series forecasting. This study provides practical
guidance for TBM performance forecasting in practical engineering.
© 2023 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by
Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

1. Introduction

challenges in complex geotechnical conditions. The penetration
rate (PR), an indicator of TBM performance, is calculated as the

Mechanised tunnelling is widely used in underground projects,
e.g. subways, railways, water conveyance systems, gas transmission
pipelines, underground mines. Tunnel boring machines (TBMs),
including earth pressure balance shields, refer to as machines for
excavating tunnels with a circular full-face cutterhead equipped
with disc cutters. TBMs have many advantages over conventional
drill-and-blast method, including higher efficiency, safer work-
places, minimal environmental disturbance, and reduced project
costs (Rostami, 1997). The continuous cutting, mucking, and lining
installation processes of TBM tunnelling greatly increases efficiency
compared to conventional methods. However, tunnel collapse,
rockburst, water inrush, and machine jamming remain major
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boring distance divided by the working time and is crucial for
project time management and cost control. Forecasting the pene-
tration rate ahead of a cutterhead in real time can also help onsite
engineers to adjust TBM operational parameters promptly. The
prediction of TBM penetration rate is challenging as it depends on
various factors, including geological and operational parameters
(GEO and OP) and machine specifications.

Over the years, many researchers have proposed various theo-
retical and empirical methods to study the relationship between
TBM performance and other related parameters. Ozdemir (1977),
Rostami et al. (1996), Yagiz (2002) and Hassanpour et al. (2010)
developed theoretical methods to provide a fundamental under-
standing of the mechanics of TBM cutting. Nevertheless, they have
limitations in accurately representing real rock mass conditions in
field. On the other hand, empirical methods are generally proposed
based on field performance and rock properties (Rostami et al.,
1996; Bruland, 1998; Barton, 1999; Sapigni et al., 2002; Yagiz,
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2008; Hassanpour et al., 2010; Rostami, 2016). Empirical methods
study regressive correlations between various parameters, e.g.
uniaxial compressive strength, Brazilian tensile strength, rock
quality designation, rock mass rating, thrust force (TH), cutterhead
torque (TO), revolutions per minute (RPM). It is challenging to
develop sophisticated empirical equations that consider several
simulation parameters, particularly considering uncertain factors.
The accuracy of theoretical and empirical methods is acceptable but
not high. Therefore, they have been useful in scheduling TBM
projects before the start of construction.

Machine learning techniques are highly effective and versatile in
capturing complex, nonlinear relationships, and have been suc-
cessfully applied to TBM tunnelling, e.g. surface settlement (Zhang
et al., 2020a, 2021a; Kannangara et al., 2022), rock mass classifi-
cation (Sousa and Einstein, 2012; Wu et al., 2021; Hou et al., 2022),
and others (Hasanpour et al., 2020; Liu et al., 2021). Researchers
attempted to predict TBM performance using machine learning
algorithms, e.g. artificial neural network, fuzzy logic, support vector
regression, random forest, adaptive neuro-fuzzy inference system,
and classification and regression tree (Grima et al., 2000; Benardos
and Kaliampakos, 2004; Mahdevari et al., 2014; Salimi et al., 2016;
Sun et al, 2018; Bardhan et al,, 2021; Parsajoo et al., 2021). As
various hyperparameters result in diverse models, optimisation
technologies are employed to find a near-optimal model. Particle
swarm optimisation, Bayesian optimisation, and grey wolf opti-
miser are used to predict TBM performance (Yagiz and Karahan,
2011, 2015; Armaghani et al., 2017, 2019; Zhang et al., 2020b; Lin
et al, 2022a; Yang et al, 2022; Lin et al. (2021), Huang et al.
(2022), and Lin et al., 2022a, b) began incorporating both current
and historical values to predict TBM performance, which is essen-
tially a regression analysis than time series forecasting. These
models are generally more accurate, and are considered black boxes
between TBM performance and related parameters. They are highly
flexible in adding or filtering related parameters and implicitly
capturing the impact of uncertain parameters. However, they are
limited in their applicability, as they are specific to one or a few
similar tunnel projects, and cannot be generalised to different types
of TBMs and geological conditions (Zhang et al., 2021b). Another
obstacle to TBM tunnelling research is the challenge of data sharing
due to commercial confidentiality. Additionally, TBM performance
belongs to operational parameters that are collected in real time by
the TBM acquisition system and cannot be obtained prior to the
start of a project. TBM performance models by Armaghani et al.
(2017), Sun et al. (2018), Lin et al. (2021) and Yang et al. (2022)
are not feasible to apply in practice because the inputs of opera-
tional parameters are still unknown. Data from completed tunnel
projects can only be utilised for the training of models in practical
applications.

As TBM performance is determined by current inputs without
the help of historical values, the aforementioned models are not
ideal for real-time prediction (Gao et al., 2019; Xu et al., 2021). A
more feasible and preferred outcome for TBM operation is the ca-
pacity of forecasting future values using both current and historical
data, also known as time series forecasting (Bontempi et al., 2012;
Pavlyshenko, 2019). Time series forecasting of TBM performance is
a real-time prediction to predict unknown TBM performance in the
future. This real-time prediction is not intended for overall project
time management, but rather for a short-term forecast ahead of the
cutterhead. It is crucial to make necessary adjustments when po-
tential issues are detected based on predicted TBM performance
ahead of the cutterhead.

High-frequency data are collected directly from the data
acquisition system every few seconds or minutes. Predicting next-
step TBM performance in high frequency can be achieved with high
accuracy, and recurrent neural networks (RNNs) and long short-

term memory, which incorporate current and historical inputs,
have been shown to perform better than other machine learning
algorithms (Gao et al., 2019; Qin et al., 2021; Shi et al., 2021; Wang
et al., 2021). However, it is less meaningful to know TBM perfor-
mance just a few seconds or centimetres in advance. Subsequently,
multi-step forecasts were explored, and it was found that errors
increase significantly with increasing forecast horizon (Shi et al.,
2021). Erharter and Marcher (2021) were unable to make a long-
term forecast of cutterhead torque beyond the next 100 steps,
corresponding to a distance of 5.5 m ahead of the cutterhead.

High-frequency data can be preprocessed into low-frequency
data where each data point represents a fixed segment or work-
ing cycle, typically spanning 1—2 m. For example, the Yingsong
Water Diversion Project is a low-frequency dataset divided into
working cycles, including start-up, ascending, steady-state, and end
stages. Li et al. (2021) and Xu et al. (2021) used the time series from
the first 2-min ascending stage to forecast the average operational
parameters at the steady-state stage. Feng et al. (2021) developed
three models to predict next-step TBM performance in similar
geological conditions for diorite, granite, and limestone. The pre-
diction involved averaging data points corresponding to one
working cycle or tunnel segment, providing ample time for engi-
neers to make adjustments between two data points. Shan et al.
(2022) successfully trained time series forecasting models on the
dataset from Changsha metro and evaluated the models on the
dataset from Zhengzhou metro, which had different geological
conditions. However, as the models predicted further into the
future, the accuracy decreased due to the reduced impact of pa-
rameters farther away from the TBM cutterhead on TBM perfor-
mance (Shan et al., 2022, 2023).

Forecasting TBM performance has generated much anticipation
but with little success to date. Fig. 1 is a technical roadmap for time
series forecasting of TBM performance. On the one hand, high-
frequency forecasts rely solely on historical TBM performance
(Erharter and Marcher, 2021; Shi et al.,, 2021) or historical TBM
performance and operational parameters (Gao et al., 2019; Qin
et al,, 2021; Wang et al., 2021). Such forecasts overlook geological
conditions ahead of the cutterhead and have limited success in
predicting TBM performance a few seconds or centimetres ahead.
On the other hand, low-frequency forecasts can predict a few me-
tres in advance but have a limited number of samples after pre-
processing (Shan et al.,, 2022), which in turn affects the model
robustness. As tunnelling data become more accessible, it may be
possible to interrogate TBM specification, e.g. TBM type, TBM
diameter, and the number of cutters.

This study aims to build models using low-frequency data to
predict next-step penetration rate, while considering current and
historical penetration rates and other geological and operational
parameters. Two datasets with different geological conditions are
used to examine the generalisability of the models. Most impor-
tantly, this study also conducts sensitivity analysis and investigates
the effects of data smoothing.

2. Methodology
2.1. data smoothing technique

Smoothing is a technique used to eliminate the fine-grained
variation in time series to remove noise and better expose the
signal of underlying information. A moving average can be used to
create a smoothed version, where values are obtained by taking the
average of observations in the original time series. Note that a
moving average can also be used to predict future values. Never-
theless, model performance is unsatisfied, as it fails to account for
complex relationships and respond adequately to rapid changes.
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Fig. 1. Technical roadmap for time series forecasting of TBM performance.

There are two main types of moving average methods, i.e. simple
moving average (SMA) and exponential moving average (EMA).
EMA places greater weight and significance on the most recent data
points (Roberts, 2000) than SMA, which applies an equal weight to
all observations within the period. These moving averages can be
expressed as

St

(Xe+Xe 1+ +X k1) /K (1)

St axe + (1 —a)se_q (2)
where s; is the smoothed datum, x; is the original datum, t is time, k
is sliding window size, « is the smoothing factor between 0 and 1.

In Eq. (1), the SMA is the unweighted mean of the past k data
points. In Eq. (2), the EMA is determined by a smoothing factor a.
The smoothed statistic s; is a weighted average of the recent
observation x; and the previous smoothed statistic s;_;. Values of «
closer to 1 correspond to less smoothing and are more sensitive to
recent changes in the data. Conversely, values of « closer to
0 correspond to a higher degree of smoothing and are less
responsive to recent changes.

2.2. Autoregressive integrated moving average (ARIMA)

An ARIMA model is a widely used statistical method to predict
future values based on historical values (Box and Pierce, 1970). The
ARIMA model is characterised by three parameters: p for the
number of autoregressive lags, d for the degree of differencing, and

Output layer

Hidden layer

Sequential input

Fig. 2. Schematic diagram of RNN architecture.

q for the size of moving average window. It is formulated in Eq. (3)
as

p q
Xt = M+ e + Zf:l QiXe_j + Zi:l 0i€t—i (3)

where x;, ¢; are the output and error at time t, and u is the mean
value of the time series. Autoregression involves a sigma summa-
tion of p terms, where each term is the product of coefficients ¢;
and outputs of the respective lags x;_;. Moving average involves a
sigma summation of g terms, where each term is the product of
coefficients 6; and errors of the respective time ¢,_;. An important
requirement for an ARIMA model is that the time series is sta-
tionary and not depend on time. Differencing is a common tech-
nique used to transform a non-stationary series into a stationary
one, which can remove trend and seasonal structures but does not
address non-stationary in the variance or autocovariance.
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2.3. Recurrent neural network (RNN)

The RNN is a leading algorithm that employs an internal state to
solve sequential data problems, e.g. speech recognition, language
translation, or time series forecasting (Schuster and Paliwal, 1997;
Graves et al., 2013). The RNN architecture is illustrated in Fig. 2,
transferring information from former neurons to latter ones. For
example, the last hidden state h;_; and recent inputs x; contribute
to the recent hidden state h; in Eq. (4). The recent output y; extracts
temporal features from h; in a linear transformation in Eq. (5).

h: = tanh(Ux; + Vh,_1 + bp,) (4)

0[ = Wh[“l‘bo (5)

where U, V, W are the shared weights, and b, and b, are the shared
biases across the sequence.

To determine the importance of the input to the network, acti-
vation functions are applied, e.g. sigmoid, ReLU, and tanh functions.
In RNN, the tanh(x) function returns the hyperbolic tangent of the
input. RNN can be prone to the issue of vanishing or exploding
gradients when the input sequences are too long (Bengio et al.,
1994). This issue is not apparent in this study as the length of
input sequences is limited to only 20 data points.

2.4. An RNN variant

In addition to the time series data, there are parameters that are
not time-dependent but have an impact on future values. These
inputs can be categorized into two types: sequential and non-
sequential. While RNN is adept at handling sequential data owing
to its loop architecture, it cannot process non-sequential data.
Therefore, we propose a modified version of RNN with a fully
connected layer for non-sequential data, as shown in Fig. 3.

The inherent of algorithms is to extract relevant features from
input data. RNN extracts temporal features from the time series
X2, X¢_1 and x; through Eq. (4) with a result of the recent hidden
state h;. Non-sequential inputs X; are fully connected to extract
hidden features h; followed by a ReLU function. After feature
extraction, h; and h; are obtained, each with a length corresponding
to their respective hidden size. A fully connected layer FC is
concatenated by copying the elements of two hidden arrays, with a
total length of h¢ and h;. Finally, y;, 1 is fully connected with FC as a
final output layer. By leveraging both sequential and non-
sequential inputs, the proposed method deeply exploited and uti-
lised the available information to predict future values.

2.5. Sensitivity analysis

A model can be decomposed using Eq. (6), and the variance of
the output Var(y) can be decomposed using Eq. (7) under orthog-
onality constraints (Hoeffding, 1992). To analyse how much the
variance of each parameter affects the output variance, Sobol
(1990) introduced the variance-based sensitivity analysis, also
known as the Sobol method. The direct effect of each parameter is
measured by the first-order Sobol index S; in Eq. (8). The total-effect
Sobol index Sy; takes into account the sensitivity of first-order effect
and the sensitivity due to interactions between a given parameter
and all other parameters in Eq. (9). If a parameter has a low Sobol
index, then variations in the parameter lead to comparatively small
variations in the model output, and vice versa.

y =fo+2f:lf,-(x,-)+Zf<. i (X0,X;) o 12,0 p (X1, X2, Xp)

(6)

Var(y) = >0 Vi+ >t Vit +Via.p 7)
Vi

Si = Var(y) ®)

Spi=1- Vary_; [Ex,(¥|1X~i)] ©)

Var(y)

where fy is a constant, f; is a function of x;, f; is a function of x; and x;,
Vi = Vary[Ex_,(y|x;)] and Vi = Vary, [Ex_;(y|x;, Xj)] — V; — V; are the
expanded forms of the expected value, and x.; indicates all pa-
rameters except x;.

3. Case study
3.1. Project preview

Changsha metro line 4, a rapid transit line located in Changsha,
China, was excavated and opened for use in May 2019. The line
spans approximately 33.5 km in the northwest-southeast direction,
between Guanziling and Dujiaping. Five sections between six sta-
tions were investigated in this study: Liugoulong, Wangyuehu,
Yingwanzhen, Hunan Normal University, Hunan University, and
Fubuhe. The tunnel was excavated using an earth pressure balance
shield with a cutterhead diameter and length of 6.28 m and
8.735 m, respectively. The cutterhead has an open ratio of 35%. To
provide structural support, segmental lining was used to form a
tube along the tunnel alignment. The segments were prefabricated
in manufacturing plants with a width of 1.5 m and outer and inner
diameters of 6 m and 5.4 m, respectively. Operational parameters
were recorded by the data acquisition system at 1-min intervals.
Geological conditions along the five sections were obtained by site
investigation and experiments. The machine excavated the tunnel
in rocks, e.g. slate, limestone, mudstone, and sandstone, and in
soils, e.g. silty clay, gravel, and marlite (Zhang et al., 2019, 2021c).
Fig. 4 shows the geographical location and typical geological profile
of Changsha metro.

Zhengzhou metro line 3 is a rapid transit line that runs from
northwest to southeast in Zhengzhou, China, covering a total length
of 24.5 km and 23 stations. The tunnel project was completed by
earth pressure balance shields from December 2016 to December
2020. We investigated a section between Jinshuilu and Taikanglu
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Fig. 4. Geographical locations and typical geological profiles of Changsha and Zhengzhou metros.

stations. The segment width in Zhengzhou is the same as that in
Changsha, but the outer and inner diameters are 3.1 m and 2.75 m,
respectively. Unlike the geological conditions of the Changsha
section, the Zhengzhou section was excavated in soil strata con-
sisting of fine sand and silty clay, with top layers of backfills and silt
in Fig. 4 (Zhang et al., 2020a).

3.2. Statistical analysis

Operational parameters are collected every minute by the data
acquisition system at high frequency, while geological parameters
are measured per segment at low frequency. Zhang et al. (2020a)
preprocessed the operational data to match the geological data in
five steps.

(1) Removal of empty data due to TBM maintenance, cutters
change, breakdowns, or tunnel collapses;

(2) Removal of the first and last 2.5% of operational data at one
segment;

(3) Detection and deletion of outliers based on the Mahalanobis
distance;

(4) Utilising wavelet transform to eliminate noise in time series
data; and

(5) Averaging operational data at one segment as one sample.

Penetration rate (PR), thrust force (TH), cutterhead torque (TO),
face pressure (FP), and revolutions per minute (RPM) are the
operational parameters, reflecting TBM performance in tunnel
construction. Concerning geological parameters, cover depth (CD)
is the depth over the tunnel crown, water table (WT) is tunnel
depth below the water table, ground condition (GC) at the tunnel
face can be classified into four types, i.e. soil, gravel, rock and
mixed-face ground, which are marked as 1, 2, 3 and 4, respectively.
Modified standard penetration test (mSPT) is expressed by

Table 1

Statistical details of geological and operational parameters.
Parameter Symbol Unit Minimum Maximum Average

value
Penetration rate PR m/h 0.24 4.56 2.1
Thrust force TH MN 4.08 23.8 11.56
Cutterhead torque TO MNm 0.63 4.82 2.53
Face pressure FP 100 kPa O 2.1 0.95
Revolutions per minute RPM  rev/min 0.46 2.16 141
Cover depth cD m 9.09 31.65 17.86
Water table WT m 0 25.11 8.7
Ground condition GC - 1 4 2.69
Modified standard mSPT  — 0 39.92 6.03
penetration test
n t;h;
Ngs5 = Zi:]ﬁl FIN63.5 (10)

where N, - is the modified standard penetration test, Ng3 5 is the
blow count of standard penetration test, h is the cover depth over
the tunnel crown, ¢; is the thickness of each layer, and h; is the cover
depth of each layer. The basic statistical details of these parameters
are presented in Table 1.

In Fig. 5, the time series of geological and operational parame-
ters along the tunnel alignment is displayed, with blue lines pre-
senting data from Changsha metro and orange lines presenting
data from Zhengzhou metro. The horizontal coordinate includes a
total of 550 time series data points, with each data point repre-
senting a segment of length 1.5 m. It was assumed that the two
datasets are equally spaced in the sequence, despite samples being
removed or missing. GC from Changsha is mainly of rock at the
tunnel face with a value of 3, while that from Zhengzhou is soil with
a value of 1. It is observed that mSPT is quite different between
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Fig. 6. Framework for one-step forecasts of penetration rate.

Changsha and Zhengzhou. Therefore, it is challenging to check the
generalisability that a trained model based on data from Changsha
adapts properly to unseen data from Zhengzhou.

3.3. Step-by-step procedure

In this study, a framework for one-step forecast is presented in
Fig. 6, categorising input parameters into PR, geological parameters,
and operational parameters. The focus of the study is on one-step
PR forecast, where univariate models use historical PR value to
predict PR value in the next segment, while multivariate models
combine historical PR, GEO, and OP. A sensitivity analysis is con-
ducted to study the impacts of input parameters on future pene-
tration rate. Additionally, the study examines the effects of data
smoothing and discusses the dilemma of balancing noise reduction
and real data preservation in the original time series.

4. Forecasting modelling
4.1. Data processing

Fig. 7 depicts a modelling flowchart consisting of three phases,
i.e. data processing, training, and evaluation. Noise can affect the
intrinsic characteristics of a time series, introduced by sensor errors
or document digitalisation. Shan et al. (2022) used SMA to remove

noise by applying an equal weight to the past five data points. In
this study, EMA is applied to creating smoothed data, which places
a greater weight and significance on the most recent data points.
Fig. 8a illustrates the original data in blue and the smoothed data
with a smoothing factor of 0.67 in orange. A strong correlation of
0.9456 exists between them, and sharp changes in the time series
are especially smooth. The residuals between the original and
smoothed penetration rate are normally distributed with a mean
near 0 and a standard deviation of 0.2068 in Fig. 8b. The effects of
data smoothing will be discussed later in Section 5.4.

The parameters are scaled to a standard, dimensionless scale
because they have different units and magnitudes. Min-max nor-
malisation performs a linear transformation in Eq. (11), scaling the
data between 0 and 1. Normalisation can help stabilise the gradient
descent for faster model convergence. However, while inputs are
normalised, outputs are not. Finally, the normalised inputs and
outputs are configured sequentially into different array shapes
corresponding to different methods.

X — Xmin (]])

Xnor =
Xmax — Xmin

where x and xor are the original and scaled data; and xmax and X,

correspond to the maximum and minimum in the data,

respectively.
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4.2. Training

During the training process, the data from Changsha are
randomly split into training and validation subsets, with a per-
centage of 80% and 20%, respectively. Hyperparameters, e.g. hidden
size, learning rate, and batch size, can affect model performance but
are not trained in the learning process. We initialise or assign
hyperparameters and then use different methods to build a model
based on training and validation data. An Adam optimiser is used to
iteratively update weights and biases until the loss function of the
mean squared error converges. To reduce computation cost and
prevent possible over-fitting, early stopping is applied, which stops
the learning process when validation loss does not decrease over a
given number of epochs.

At this point, the learning process has resulted in a converged
model with assigned hyperparameters, rather than a near-optimal
model. Hyperparameter tuning is then applied to identifying the
best combination of hyperparameters by calculating the lowest
validation loss. To accomplish this, a grid search exhaustively
searches through the hyperparameter space, updating hyper-
parameters and replacing the near-optimal model at the same time.
Besides, Bayesian optimisation can be applied to geotechnical

problems (Zhang et al., 2021d, 2022a), which enables to balance
exploration and exploitation to converge to the optimum of ma-
chine learning models quickly.

4.3. Evaluation

Overfitting occurs when a model perfectly fits its training data
(i.e. extremely good model performance in training). Nevertheless,
its performance is poor when evaluated with unseen data (i.e. low
model performance in testing). As a result, the model performance
in testing is an indicator of the quality of the trained model. The
near-optimal model is evaluated using the test data from Zhengz-
hou, where evaluation metrics include the root mean squared error
(RMSE) and coefficient of determination (R?) defined as

T—n ~
RMSE = [ > 2 vi = 9)* (12)

R2:]_Z?:1(yi*j/\i)2 (13)
S0 -9’
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where y; and y; are the measured and predicted values, and ¥ is the
mean of measured value. RMSE represents the difference between
the measured and predicted values, and has the same magnitude as
targets. R? is a performance metric between 0 and 1, where a larger
value indicates a higher accuracy between predicted and measured
values, and vice versa.

5. Results and discussion

The focus of this study is to predict the next penetration rate
(1.5 m ahead) using historical data. Time series forecasting models
are trained by the dataset from Changsha metro, and their model
performance is evaluated by RMSE and R? on the dataset from
Zhengzhou metro, as summarised in Table 2. The hyperparameters
for the near-optimal models are presented in Table 3. In the table,
{PR;} refers to as time series data up to recent penetration rate, and
PR;,1 represents penetration rate in the next step. Hidden size 1
refers to the hidden size derived from time series data of pene-
tration rate, while hidden size 2 refers to the hidden size derived
from the last step of geological and operational parameters in the
RNN variant model.

5.1. Univariate models

5.1.1. ARIMA

In statistics, Model #1 uses historical penetration rates to pre-
dict the next-step penetration rate (0—1.5 m) by ARIMA. The pa-
rameters of p, d, and q are autoregression, differencing, and moving
average, which are determined with the help of an auto-ARIMA
package from the Pmdarima library in Python. On this basis, a
near-optimal ARIMA model is built withp=1,d =1, g = 1, and the
equation can be expressed as DIFF(PR;) = u+ e+ @DIFF(PR,_1) +
Oe,_1, where DIFF(PR) is the first difference in penetration rate.
Fig. 9 shows the training and test results, where the predicted
values closely follow the trend of the measured values. The statis-
tical ARIMA model is evaluated with RMSE of 0.4176 and R? of
0.6864.

5.1.2. RNN

In Model # 2, the best combination of hyperparameters consists
of a window size of 3, a hidden size of 20, a learning rate of 0.005, a
number of layers of 1, and a batch size of 32. In Fig. 10, both training
and validation losses decrease dramatically at the beginning and
then slightly decrease after the epoch of 10. The embedded Fig. 10
provides a detailed view of the changes in the loss function be-
tween epochs 4 and 14. To prevent overfitting, the early stopping
saves a converged model at the epoch of 62, which yields the
minimum validation loss. During the last 20 epochs (62—82), the

Table 2
Model performance for time series forecasting of penetration rate.

Model Smoothing Method  Input Output RMSE R?

factor
#1 0.67 ARIMA {PR:} PR;,1 0.4176 0.6864
#2 0.67 RNN {PR¢} 0.4034 0.6741
#3 0.67 RNN {PR¢},{GEO:} 0.4046 0.6718
#4 0.67 RNN {PR¢},{OP:} 0.4117 0.6593
#5 0.67 RNN {PR:},{GEO¢}, 0.4053 0.6638
{OP}
#6 0.67 RNN {PR:},GEO;,OP; 0.3952 0.6913
variant
#7 1 RNN {PR¢} 0.6164 0.4061
#3 0.5 RNN 0.3092 0.7916
#9 0.33 RNN 0.2026 0.9004
#10 0.2 RNN 0.1239 0.9610

Table 3
Hyperparameters in the near-optimal models.

ARIMA  Autoregression Moving Differencing

model average

#1 1 1 1

RNN Batch size Time Hidden Hidden Number Learning
model step size 1 size 2 of layers rate

#2 32 3 20 - 1 0.005

#3 64 3 50 - 1 0.01

#4 64 5 100 — 1 0.01

#5 32 5 100 - 1 0.01

#6 32 3 100 50 1 0.01

validation loss no longer decreases, showing that the saved model
is subjected to validation data without overfitting.

Fig. 11 shows the penetration rate from Changsha, where a full
blue line represents measured values, and a dotted orange line
represents predicted values. The univariate RNN model perfectly
fits the next-step penetration rate in the training data. The trained
model is evaluated using unseen data from Zhengzhou. The test
results closely follow the trend of measured data with RMSE of
0.4034. The value of R? is equal to 0.6741, indicating a correlation
between measured and predicted values in Fig. 12. It is worth
noting that data points changing rapidly are hard to predict, and in
comparison, the RNN algorithm proves to be more powerful than
the statistical ARIMA method.

5.2. Multivariate models

5.2.1. Effects of input parameters

Apart from univariate models, multivariate models take into
account the impact of other geological and operational parameters
on TBM performance. Model #3 incorporates GEO, Model #4 in-
corporates OP, and Model #5 incorporates both GEO and OP. Model
#3 and Model #4 are shown in Fig. 13a and b, in which good
agreements between the measured and predicted values are
shown. When geological parameters are added to the Model #3, the
results are with RMSE of 0.4046 and R? of 0.6718. In contrast, Model
#4 with operational parameters has a lower performance with
RMSE of 0.4147 and R? of 0.6593. Model #5, in Fig. 13c, shows the
measured penetration rate and the predicted values, resulting in
RMSE of 0.4053 and R? of 0.6638.

However, the multivariate models do not perform much better
than the univariate RNN model in Model #2. It is counter-intuitive
that incorporating other parameters does not improve the accuracy
of time series forecasting, probably due to the additional parame-
ters increasing model complexity with both helpful and irrelevant
information. This irrelevant information negatively affects feature
extraction and degrades model performance.

5.2.2. RNN variants

Alternatively, the RNN variant reconfigures the inputs into two
components: A time series of PR and the last-step GEO and OP. The
time series of penetration rate PR;_;, PR;_1, PR; are fed into RNN
one by one, producing current hidden state h¢, as shown in Fig. 3. At
the same time, the last-step geological and operational parameters
GEO;, OP; are fully connected to extract hidden features h;. The
output PR, is then fully connected with h; and h; in a linear
transformation.

Fig. 14 illustrates measured and predicted values by the RNN
variant. Among these models, Model #6 has the lowest RMSE at
0.3952 and the highest R? at 0.6913. Therefore, the proposed
method successfully improves the model performance because the
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last-step geological and operational parameters are closer to the
future penetration rate.

5.3. Sensitivity analysis

Good generalisability is observed as the predicted values closely
follow the trends of the measured values in both training and
testing. Machine learning models are highly nonlinear, so the
relationship between the input and output is usually poorly un-
derstood. The Sobol method is widely used to study the impacts of
independent inputs on the output. For example, in Model #6, the
input includes the last-three-step penetration rate and last-step
geological and operational parameters. There are four steps in the
method.

(1) Defining the range of parameters from O to 1 because all
inputs are min-max normalised;

(2) Generating 1024 samples from the pseudo-random Sobol
sequence to create 24,576 (= 2 x (11 +1) x 1024) parameter
sets in total;

5.4. Effects of data smoothing

Noise in a time series can obscure its intrinsic characteristics.
After data smoothing by EMA, the kernel density estimations of
residuals are in normal distributions with a mean of 0, as shown in
Fig. 8b. However, the standard deviation of residuals increases as
the smoothing factor decreases. Although a time series of noise is in
a normal distribution, the normally distributed residuals are not
necessarily noise. There is no clear distinction between noise and
clean data, as both are vibrations in the sequence. A reasonable
assumption is that normally distributed residuals represent
different levels of noise, and the smoothed data remain clean data
to varying extents.

Concerning the effects of data smoothing, additional models are
conducted in time series forecasting. The original data (¢ = 1) are
processed by EMA with various smoothing factors ranging from
0.67 to 0.2. In Fig. 16, the correlation of determination R? between
the original and smoothed data gradually decreases from 0.9456 to
0.8807, 0.7858, and 0.6718 with decreasing smoothing factor.
Notably, the smoothing factor of 0.67 has the least smoothing effect,
while a value of 0.2 results in the most significant smoothing effect.

We use RNN to predict next penetration rate, in order to exclude
the effects of other parameters and focus solely on changes in the
time series. Fig. 17 shows the results of Models #7—10 on evaluation
metrics against varying smoothing factors, where the algorithm
architecture and learning process are the same with that of Model
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#2. As the smoothing factor decreases, RMSE decreases from 0.6164
to 0.4034, 0.3092, 0.2026, and 0.1239. The value of R? is 0.4061 in
original data and becomes 0.961 when « = 0.2 in smoothed data.

On the one hand, the next-step penetration rate is easier to
predict when the time series is smoother. For example, Model #10
(a = 0.2) removes the largest extent of noise by EMA, resulting in
the best model performance with RMSE of 0.1239 and R? of 0.961.
On the other hand, over-simplified data can also eliminate under-
lying characteristics, raising a question about whether smoothed
data can represent real characteristics of the data.

It is a dilemma that the original data can contain too much noise
and be difficult in predicting the next-step penetration rate, while
over-simplified data can lose important characteristics in the time
series. In order to balance these factors, we conservatively choose a
smoothing factor of 0.67 in the tests mentioned above. This allowed
us to remove some of the noise while preserving the important
features of the data as much as possible. In practical engineering,

6. Limitation and further work

We have developed RNN variants that accurately predict pene-
tration rate of the near future. Nevertheless, some limitations
warrant further research.

(1) It is difficult to predict the future TBM performance of any
meaningful time horizon using high-frequency data.

(2) Data smoothing can improve the forecast accuracy and in-
crease the time horizon to the future, but risks over-
smoothing that can lead to loss of data characteristics

The machine specifications, similar to cutterhead diameter and
cutter arrangement, are neglected because they remain unchanged
in the two tunnelling projects. We plan to continue this work when
more reliable datasets become publicly available. It would be
worthwhile to test other advanced algorithms, e.g. gated recurrent
unit (Zhang et al., 2022b), WaveNet (Oord et al., 2016), DeepAR
(Salinas et al., 2020) and Transformer (Vaswani et al., 2017), which
have proven to be versatile and robust for time series problems.
Because deep learning models are black boxes lacking interpret-
ability, theory-guided machine learning (Karpatne et al., 2017) and
physics-informed machine learning (Chen et al., 2021) are prom-
ising to provide physical meanings in time series forecasting.

7. Conclusions

This paper studies time series forecasting of TBM penetration
rate, which is crucial for project time management, cost control,
and risk mitigation. The modelling framework includes data pro-
cessing, training and evaluation using various methods, e.g. ARIMA,
RNN, and RNN variants.
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(1) In time series forecasting, univariate models are built for
predicting the next-step penetration rate using ARIMA and
RNN. Both models exhibit good performance in training and
testing, with the RNN algorithm performing better than the
statistical method of ARIMA. However, multivariate RNN
models, incorporating the time series of geological and
operational parameters, perform slightly worse than the
univariate RNN model. This study develops an RNN variant
that splits the inputs into a time series of penetration rate
and last-step other parameters, which successfully improves
model accuracy.

(2) Good generalisability is found even when the geological
conditions in testing are different from those in training.
According to the sensitivity analysis, time series of penetra-
tion rate is the most important parameter, while other pa-
rameters, including geological conditions, have little impact
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on the time series forecast. Geological conditions can become
relevant if they do not vary much from training to test data.

(3) Data smoothing can effectively removes noise in the time
series. It is found that smoothed data are easier to predict
than original data. However, over-simplified data can lose
real characteristics in the time series. It is a balance between
noise reduction and real data preservation in time series
forecasting.
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