
Citation: Xu, H.; He, X.; Shan, F.; Niu,

G.; Sheng, D. Machine Learning in

the Stochastic Analysis of Slope

Stability: A State-of-the-Art Review.

Modelling 2023, 4, 426–453.

https://doi.org/10.3390/

modelling4040025

Academic Editor: Luca Lenti and

Salvatore Martino

Received: 14 August 2023

Revised: 26 September 2023

Accepted: 29 September 2023

Published: 1 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Review

Machine Learning in the Stochastic Analysis of Slope Stability:
A State-of-the-Art Review
Haoding Xu , Xuzhen He * , Feng Shan, Gang Niu and Daichao Sheng

School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia;
haoding.xu@student.uts.edu.au (H.X.); feng.shan@student.uts.edu.au (F.S.); gang.niu@student.uts.edu.au (G.N.);
daichao.sheng@uts.edu.au (D.S.)
* Correspondence: xuzhen.he@uts.edu.au

Abstract: In traditional slope stability analysis, it is assumed that some “average” or appropriately
“conservative” properties operate over the entire region of interest. This kind of deterministic conser-
vative analysis often results in higher costs, and thus, a stochastic analysis considering uncertainty
and spatial variability was developed to reduce costs. In the past few decades, machine learning has
been greatly developed and extensively used in stochastic slope stability analysis, particularly used as
surrogate models to improve computational efficiency. To better summarize the current application of
machine learning and future research, this paper reviews 159 studies of supervised learning published
in the past 20 years. The achievements of machine learning methods are summarized from two
aspects—safety factor prediction and slope stability classification. Four potential research challenges
and suggestions are also given.

Keywords: slope stability; factor of safety; slope stability classification; machine learning; geotechnical
engineering; uncertainty; reliability analysis

1. Introduction

Landslides are sudden and serious disasters that can cause significant damage to
nearby facilities, resulting in economic and casualty losses. Therefore, the evaluation
of slope stability is a critical prerequisite for disaster prevention and mitigation. In
numerical simulations, slope stability is presented as a factor of safety (FOS), which
is obtained using deterministic analyses such as limit analysis [1], finite element limit
analysis [2], displacement-based finite element analysis combined with the strength reduc-
tion method [3,4], or finite element analysis with the gravity increasing method [5,6]. In site
investigation and analysis, slope stability is typically classified using empirical formulas or
expert judgments.

Slope stability analysis concerns earth materials such as soil, rock, and other materials.
Soil is one of the engineering materials that has the most complex physical, mechanical,
and chemical behaviors and is made of three phases. Due to geological action and stress
history, soils exhibit complex spatial variability and anisotropy, which makes studying soils
and predicting their behavior difficult. In geotechnical engineering, two main approaches
have traditionally been used to study the mechanical behavior of geotechnical materials:
(1) empirical methods, such as laboratory tests and site investigations, and (2) numerical and
analytical methods. The cost of experiments and field tests tends to rise with the number of
tests conducted, which directly impacts the precision of these assessments. Consequently,
significant engineering expertise is necessary to gauge slope stability based on a limited
set of experiments. Traditional analytical techniques often make simplifications, such as
assuming uniform soil conditions, and thereby overlook the inherent spatial variability in
real-world soil [7].

The stability of a slope depends on the material strength and geometric and hydraulic
parameters associated with it [8–10]. Some studies use the deterministic inversion method
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to estimate soil parameters and study slope stability, and the key to this method is to find a
set of parameters that will lead to slope failure [11,12]. However, considering uncertainty
in soil parameters, the parameters deduced using the deterministic method may not
necessarily represent the real situation, and there may be multiple critical combinations of
these parameters [9]. Therefore, it is necessary to consider the use of probabilistic methods
for inversion (probabilistic back analysis).

With the development of statistical methods, geotechnical academics started to con-
sider the use of random field theory to represent the spatial variability in soil [13] and
quantify the safety margin of slopes using failure probability or the equivalent reliability
index from a probabilistic perspective. The brute-force Monte Carlo simulation (MCS)
method has gained popularity in reliability analysis due to its simplicity, flexibility, and
ease of use. Theoretically, the Monte Carlo method can handle all problems. For example,
Monte Carlo-based probabilistic back analysis can be used to perform parameter inver-
sion, risk assessments, and sensitivity analyses [9,14]. However, when the sample size is
large (i.e., for small probability events or when the probability density function (PDF) is
needed), the brute-force Monte Carlo approach is time-consuming and computationally in-
tensive [15–17]. The response surface method was then proposed and widely used [18–21].
It approximates the limit state function with a polynomial expression using the function
value at a specific point. This type of analytic function replaces the exact limit state function
in Monte Carlo simulations. As a result, the number of calculations required to assess the
reliability of structural systems can be significantly reduced. However, RSM requires a prior
specification of a suitable fitting function (usually a polynomial function) to be specified
in advance [22]. Since real-world problems are often very complex, polynomial estimates
may not perform well in providing a good representation of the objective function [23].

On the other hand, technological developments have made site investigation data more
readily available to engineers. It is necessary to take into account these actual measured
parameters in the estimation of parameters. When prior knowledge about parameters such
as geometry, strength, and hydraulics is obtained, Bayesian inference can combine this
prior knowledge to obtain the posterior probability distribution of parameters, which can
be used for risk assessment, such as calculating the probability of slope instability [24].
The Bayesian method can also be used for time prediction of slope stability by combining
historical data and new observational data, thereby reducing the uncertainty in parameters
and predicting slope stability at a certain point in the future [25]. However, the high
non-linearity of the model and the exponentially increased calculation and sample number
prevent rapid FOS prediction and accurate classification [24].

In recent years, the machine learning (ML) method has gained increasing attention
from geotechnical researchers as a promising approach for studying slope stability. ML-
aided stochastic analyses have been successfully applied in many cases [26–32]. Research
using machine learning to aid in slope stability assessment has been conducted in various
countries. These studies often focus on predicting safety factors or categorizing slope safety
based on data gathered from field tests. A large number of slope classifications have been
conducted using field data collected globally. For instance, the data in a study by Zhang
originate from Yunyang County, Chongqing, China [10], while the data in a study by Zhu
are sourced from the South Pars Special Zone, Assalouyeh, Southwest Iran [32]. ML models
in geotechnical reliability analysis can capture complex relationships between input and
output data and construct high-dimensional nonlinear functions to directly predict the
target output. Machine learning-generated surrogate models work well with variability.
They can take into account the variability in data, that is, the parameter variability in soil
and slopes, the variability in the model, such as different initialization values or model
structures or hyperparameters, and the variability in evaluation and verification, that is,
different evaluation indicators. For slope stability problems, the inputs are usually slope
boundary parameters and soil mechanical parameters, and the output is the FOS or slope
stability classification. Compared with traditional probabilistic or analytical methods (such
as the brute-force Monte Carlo simulations or polynomial fitting), ML methods have several
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advantages, such as high accuracy, not requiring any initial assumptions between input
and output (the relationship between input and output is a high-order nonlinear function),
being able to handle large datasets, and being capable of handling incomplete data [33].
By using ML techniques, geotechnical engineers can avoid the limitations of traditional
methods, such as the need for prior assumptions or high computational requirements, and
can accurately predict slope stability.

This paper examines 159 publications in the past 20 years that have used supervised
ML methods in slope stability problems. The stability analysis method is briefly introduced
in Section 2. Section 3 provides an overview of several commonly used ML algorithms.
Section 4 outlines the different applications of ML in slope stability. Additionally, Section 5
offers some future research perspectives, and the main conclusion from this review is
summarized in Section 6.

2. Brief Overview of Methods for Slope Stability Analysis

This section provides an overview of methods for slope stability analysis. These meth-
ods can be broadly categorized into four groups: empirical methods, the limit equilibrium
method (LEM), the finite element method (FEM), and other numerical methods. Figure 1
illustrates the distribution of different methods within the papers examined in this review.
The LEM is used in approximately 50% of all studies, which is much more than other meth-
ods and largely due to its early development, ease of use, and high computing speed. The
LEM is followed by the FEM and empirical methods. Due to its powerful calculation ability
and wide applicability, the FEM has gradually become the most popular numerical method.
Compared with the LEM, the FEM not only considers the constitutive model of soil but
can also represent stress and deformation outside the sliding surface. However, numerical
methods are simplified solutions to practical problems and are sometimes unable to explain
complex practical situations. Therefore, empirical methods are essential for slope stability
problems as they can directly obtain the FOS or slope stability classification, which can be
used as independent and dependent variables in reliability analysis. In addition, some other
numerical methods are also used in slope stability analysis, such as the finite difference
method, the limit analysis method, and mesh-free methods such as the smoothed-particle
hydrodynamics (SPH) method [34–37]. The LEM and the FEM will be briefly introduced in
the following subsection.

Modelling 2023, 4, FOR PEER REVIEW  3 
 

 

slope boundary parameters and soil mechanical parameters, and the output is the FOS or 

slope stability classification. Compared with traditional probabilistic or analytical meth‐

ods (such as the brute‐force Monte Carlo simulations or polynomial fitting), ML methods 

have several advantages, such as high accuracy, not requiring any initial assumptions be‐

tween input and output (the relationship between input and output is a high‐order non‐

linear function), being able to handle large datasets, and being capable of handling incom‐

plete data [33]. By using ML techniques, geotechnical engineers can avoid the limitations 

of traditional methods, such as the need for prior assumptions or high computational re‐

quirements, and can accurately predict slope stability. 

This paper examines 159 publications in the past 20 years that have used supervised 

ML methods  in slope stability problems. The stability analysis method  is briefly  intro‐

duced in Section 2. Section 3 provides an overview of several commonly used ML algo‐

rithms. Section 4 outlines the different applications of ML in slope stability. Additionally, 

Section 5 offers some future research perspectives, and the main conclusion from this re‐

view is summarized in Section 6. 

2. Brief Overview of Methods for Slope Stability Analysis 

This  section provides  an  overview  of methods  for  slope  stability  analysis. These 

methods can be broadly categorized into four groups: empirical methods, the limit equi‐

librium method (LEM), the finite element method (FEM), and other numerical methods. 

Figure 1 illustrates the distribution of different methods within the papers examined in 

this review. The LEM is used in approximately 50% of all studies, which is much more 

than other methods and largely due to its early development, ease of use, and high com‐

puting speed. The LEM is followed by the FEM and empirical methods. Due to its power‐

ful calculation ability and wide applicability,  the FEM has gradually become  the most 

popular numerical method. Compared with the LEM, the FEM not only considers the con‐

stitutive model of soil but can also represent stress and deformation outside the sliding 

surface. However, numerical methods are simplified solutions to practical problems and 

are sometimes unable to explain complex practical situations. Therefore, empirical meth‐

ods are essential for slope stability problems as they can directly obtain the FOS or slope 

stability classification, which can be used as independent and dependent variables in re‐

liability analysis. In addition, some other numerical methods are also used in slope stabil‐

ity analysis, such as the finite difference method, the limit analysis method, and mesh‐free 

methods such as the smoothed‐particle hydrodynamics (SPH) method [34–37]. The LEM 

and the FEM will be briefly introduced in the following subsection. 

 

Figure 1. Proportion of different methods in slope stability (LEM: limit equilibrium method; FEM: 

finite element method). 

   

Figure 1. Proportion of different methods in slope stability (LEM: limit equilibrium method; FEM:
finite element method).



Modelling 2023, 4 429

2.1. The Limit Equilibrium Method (LEM)

A failure surface is required to be assumed in the LEM when solving a problem, which
is a sliding line in the 2D case, usually a plane, circular, or logarithmic spiral. Based on this
assumption, the stability problem is transformed into finding the most dangerous positions
for the failure surface. In addition, assumptions are made about the stress distribution on
the failure surface to obtain the overall equilibrium equation, which can then be solved
using simple statics. Since the LEM assumes static conditions for the failure of slopes,
constitutive behaviors and the related deformation are ignored in the calculations [38].
The FOS is defined as the ratio of soil resisting shear strength (τ) and the shear stress
on the assumed failure surface (τf ) [39]. If the plastic behavior of the soil follows the
Mohr-coulomb failure criterion, the FOS is:

FOS =
τf

τ
=

σ′tanϕ′ + c′

τ
(1)

where σ′ is the effective stress, ϕ′ is the effective friction angle, and c′ is the effective
cohesion. The minimum FOS on the assumed failure surface is obtained using iterative
calculations [40].

The direction, which is perpendicular to the cross-section, is usually considered in-
significant for the calculation of FOS [6]. The commonly used two-dimensional LEMs are
the Bishop simplified method and the ordinary method of slices (Swedish circle method,
Petterson, Fellenius, Spencer, Sarma, etc.). These methods primarily differ in the inter-stripe
force assumptions and whether all three equilibrium conditions are satisfied (e.g., force
equilibrium in the horizontal and vertical direction and moment equilibrium condition).
The Spencer and Sarma methods satisfy all requirements and therefore are called rigorous
methods, which give more accurate calculations than other non-rigorous methods [41,42].

2.2. The Finite Element Method (FEM)

The FEM is a representative of the mesh-based method and is probably the most widely
used numerical method [43–45] in geotechnical problems. Compared with LEMs, FEMs
can consider the constitutive behavior of soil and are not required to assume the specific
failure surface. Two methods were presented for slope stability analysis combined with
FEM: the strength reduction method (SRM) and the gravity increasing method (GIM) [5,6].

In the SRM, the parameters of the soil are reduced using a reduction factor until the
failure happens, and the FOS is calculated as the reciprocal of this factor using iterations.
Taking the Mohr–Coulomb model as an example, in the ith iteration, the reduced strength
parameters are:

ci =
c

FOSi
(2)

tanϕi =
tanϕ

FOSi
(3)

The SRM and the LEM usually give very similar results for homogenous slopes [46].
However, the SRM is sometimes sensitive to nonlinear algorithms and flow rules. In
addition, the SRM cannot determine failure surfaces, which may be only slightly less
critical than the SRM failure surface [47].

In the GIM, the calculated gravity increases gradually until the slope becomes unsta-
ble. Therefore, the GIM aims to obtain the limit of gravity, which is represented by the
acceleration of gravity [48]. The FOS is defined as the ratio between the failure gravity (g f )
and the real-world gravity (gi):

FOS =
g f

gi
(4)
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3. Brief Overview of Machine Learning (ML) Methods

The applications of ML methods in slope stability analysis in the last two decades
(2003–2022) are shown in Figure 2. The bars represent the annual number of studies, and the
black dashed line is the trendline. The statistical data were obtained from the Web of Science
database. Using ‘machine learning’ and ‘slope stability analyses’ as search keywords, and
after checking the relevance between papers and the topic, a total of 159 publications from
2002 to 2022 were obtained. The number of publications has grown dramatically from 2019
to 2022. This shows that in recent years, researchers have paid more attention to the use
of ML in slope stability problems. It is important to note that a single publication can use
multiple ML methods, resulting in a larger number of methods used than the number of
publications reporting those studies.
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3.1. Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference Systems (ANFISs), and
Deep Neural Networks (DNNs)

Artificial neural networks (ANNs) are a commonly used ML method to study and
approximate highly non-linear relationships between inputs and outputs without any
assumptions or mathematical functions [49]. A large number of artificial neurons make up
an ANN, each of which can receive and process ‘signals’ and transmit them to adjacent
neurons. ‘Signals’ are real numbers transmitted between neurons with a specific activation
function. Neurons adjust their weights with network learning and training. The ANN
structure contains an input layer, hidden layers, and an output layer [31]. The different
structures and connections among neurons determine the form of an ANN. The two ANN
structures used in most of the examined studies include multilayer perceptron [50–52] and
extreme learning machine [53,54]. ANNs have been widely used in the field of machine
learning and can perform a wide variety of tasks, such as classification [32] and regres-
sion tasks [31]. Multilayer feedforward networks are typical universal approximators [55].
ANNs can also handle time series forecasting [56,57] and collaborative information fil-
ters [58]. In this review, the term ANN primarily denotes the conventional neural network
architectures encompassing the most basic structure. These networks are characterized as
having only fully connected layers (also known as ‘Dense layers’) as their hidden layers.
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They operate without loops, lack inherent memory, and consider only the current input for
any given operation.

Adaptive neuro-fuzzy inference systems (ANFISs) are a machine learning method
that combines ANNs with Takagi–Sugeno fuzzy inference systems [59–61]. The key feature
is a set of fuzzy rules, which are conditional statements of the form ‘if x is A then y is B’,
used to approximate the input–output relationship of a system. An ANFIS trains a model
with gradient descent and backpropagation algorithms with roughly five steps [59]:

(1) The input data are transformed into fuzzy sets using membership functions.
(2) The firing strength of each rule is generated from the input and rules.
(3) Normalized firing strengths are calculated using weighted averaging.
(4) Consequent parameters are adjusted to optimize the parameters and weights.
(5) All incoming signals are summed up to obtain the overall output.

The primary advantage of ANFIS is the ability to represent nonlinearity and structured
knowledge [59]. However, ANFIS requires a large dataset to train the model, and selecting
appropriate input–output data is much more crucial. Moreover, the number of fuzzy
rules increases exponentially with the amount of input data, which greatly increases the
computation cost and may affect the performance of a model [62].

Deep neural networks (DNNs) are extended from the concept of ANNs, and DNNs
are probably the most successful deep learning method. The term ‘deep’ can refer to
a structure of more than one hidden layer in NNs. A convolutional neural network
(CNN) is a commonly used deep learning model, which is widely used in image and
pattern recognition [63] in the computer field, and has been extended to other fields, such
as foundation bearing capacity problems [15,64] and slope stability problems [65–67] in
geotechnical engineering. Hidden layers in CNNs usually contain convolutional layers,
pooling layers, and fully connected layers. CNNs effectively capture the topology of
images and build features that automatically link features to image classification. Also,
there are some variants of CNNs, such as locally connected networks [15,66]. Classic DNN
structures also include recurrent neural networks (RNNs), transformers, etc. RNNs can be
used to process language models [68] and speech recognition [69]. Long short-term memory
(LSTM) is a popular variant of RNNs. The recently very popular ChatGPT from OpenAI is
based on the transformer architecture [70]. DNNs usually have many layers and millions of
parameters, which can help models fit the training data closely. However, overcomplicated
model structures can lead to overfitting problems (the generalization of the trained model
is poor). This problem is usually avoided using regularization or trimming connectivity
(dropout, etc.). In this review, the term DNN pertains to more complex neural architectures.
These can comprise hidden layers of varying structures, such as convolutional or pooling
layers, and they may possess functionalities beyond those of basic ANNs. It is crucial to
note that not all hidden layers in DNNs are fully connected.

3.2. Support Vector Machine (SVM)

Support vector machine (SVM) was initially developed to finish the binary classifica-
tion task [71]. This method is now developed as a supervised learning method and can deal
with classification and regression problems [31]. The key to SVM lies in the concept of iden-
tifying an optimal hyperplane. In classification tasks for linearly separable data, SVM maps
training samples into an n-dimensional space and seeks to maximize the margin between
the two categories. For regression tasks, SVM aims to find the most fitting hyperplane that
contains the most data points. The ε-insensitive loss function is introduced to consider
an acceptable error range ε. This loss function defines a region of width of 2ε, where the
difference between the predicted and true values is ignored. Specifically, if the difference
between the predicted and actual values is less than ε, the loss is 0; otherwise, the loss is the
difference between the difference and ε. Quadratic programming methods are used to solve
hyperplanes both in classification and regression problems. When handling non-linear
data, SVM uses the kernel trick to map data into a higher-dimensional space, facilitating
the determination of an optimal hyperplane in this newly transformed feature domain [31].
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Popular kernel methods include the radial basis function, periodic kernel, polynomial
kernel, exponential squares kernel, etc. SVM has been widely used in many fields, such as
text and hypertext classification [72], bioinformatics [73], and anomaly detection [74].

3.3. Gaussian Process Regression (GPR)

Gaussian process regression (GPR) is a non-parametric supervised learning Bayesian
approach that models the relationship between input variables and output variables [75,76].
It is used for both regression and classification problems.

The Gaussian distribution can be used to describe the distribution of random variables,
while the Gaussian process is a generalization of Gaussian distribution, which is used
to describe the distribution of functions. A Gaussian process can be defined by its mean
function m(x) and the covariance function k(x, x′) in the function space:

m(x) = E( f (x)) (5)

k
(
x, x′

)
= E

(
( f (x)−m(x))

(
f
(
x′
)
−m

(
x′
)))

(6)

The Gaussian process then can be represented as:

f (x) = GP ∼
(
m(x), k

(
x, x′

))
(7)

Usually, for notation simplicity, we treat the mean function as zero at this time [77,78].
Consider a dataset A with n observations (A = {(xi, yi)|i = 1, 2, 3, . . . , n}), where xi is

an M-dimensional input vector and yi is the output scalar. The relationship between input
data and output data is assumed to be [75,77,79]:

y = f (x) + ε (8)

where f (x) represents the arbitrary regression function and ε represents the Gaussian
noise that follows an independent, identically distributed Gaussian distribution with
zero mean and variance of σ2

n ( ε ∼ N
(
0, σ2

n
)
). The input and output data are defined

as two matrices X = [x1, x2, . . . , xn] and Y = [y1, y2, . . . , yn]. The function collection
f = [ f (x1), f (x2), . . . f (xn)]

T is assumed to follow a Gaussian process (p( f |X) = N(0, K)),
where K is the matrix of covariance function k(x, x′):

K(X, X) =

k(x1, x1) · · · k(x1, xn)
...

. . .
...

k(xn, x1) · · · k(xn, xn)

 (9)

The prediction outputs (training outputs y and test outputs y∗) are jointly distributed
as a multivariate normal distribution [78]. The joint distribution of the observed target
value y and the predicted value y∗ at the test location under a priori conditions can be
written as: [

y
y∗

]
∼ N

(
0,
[

K(X, X) K(X, X∗)
K(X∗, X) K(X∗, X∗)

])
(10)

GRP is then used to compute the predictive distribution of the function values y∗ at
test points X∗ =

[
x∗1 , x∗2 , . . . , x∗n

]
:

p(y∗|X∗, X, y) ∼ N
(

f ∗, cov( f ∗)
)

(11)

f ∗ = K(X∗, X)K(X, X)−1y (12)

cov( f ∗) = K(X∗, X∗)− K(X∗, X)K(X, X)−1K(X, X∗) (13)
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Bayesian optimization is one of the most famous applications of Gaussian process
regression [80,81]. When evaluating the objective function is very expensive (such as
tuning deep learning hyperparameters), Bayesian optimization methods efficiently find the
optimal value by building a Gaussian process model of the objective function to select the
next evaluation point.

3.4. Decision Tree (DT), Random Forest (RF), and Gradient Boosting (GB)

A decision tree (DT) is a supervised learning method utilized in statistics, data mining,
and machine learning. It uses a tree-like structure for both regression and classification
problems [82,83]. Nodes in a DT that have outgoing edges are referred to as internal nodes,
while others are known as leaf nodes (leaves), and branches connect the nodes in DT
models. DTs can be categorized into two types: classification trees and regression trees.
Classification trees split data into two subsets based on class labels, repeating this process
until a stopping criterion is met. Regression trees are another type of DT used in machine
learning to solve regression problems. They are used to predict continuous output variables,
unlike classification trees, which are used to predict a discrete set of values. Regression trees
split data into two subsets based on output data and repeat this process until a stopping
criterion is met. DTs have many advantages, including simplicity in understanding and
explanation [84]. However, DTs can be highly sensitive. Small changes in the input data
can lead to significant effects on trees and final predictions [84]. Due to its reliance on
the greedy algorithm, DTs may sometimes fail to return a globally optimal result [85].
The DT method can also build over-complex trees for specific problems, leading to poor
generalization from training data (overfitting).

A random forest (RF) is an ensemble learning method used for solving classification,
regression problems, and other tasks. During training, the RF builds a large number
of DTs, which are then used to make predictions [86,87]. In classification tasks, the RF
output is the class selected by most of the DTs, while in regression problems, the mean
or average prediction value from each DT is returned as the RF result. One of the main
advantages of RFs is the ability to overcome the overfitting problem that often occurs in
DTs. As the number of trees in an RF increases, the generalization error decreases and
stabilizes at a limit value. This means that the performance of an RF will not decrease
due to overfitting [86]. However, one of the disadvantages of RFs is losing the intrinsic
interpretability of decision trees [88]. Additionally, RFs may not accurately predict the
extreme values in continuous variables [89,90].

Gradient boosting (GB) is a popular machine learning algorithm for solving classifi-
cation and regression problems using a series of weak prediction models, usually in the
form of decision trees [91,92]. GB iteratively adds new weak learners to the previous model.
At each iteration, the model calculates the negative gradient of the loss function from the
prediction values of previous learners. It then trains a new learner with this information
to focus on the low-accuracy samples from previous learners. Typically, GB uses mean
squared error (MSE) as the loss function [93]. Compared with the RF method, which is
also built from DTs, GB is often found to perform better [91,92,94]. This is because GB can
effectively reduce bias and variance in the model, leading to better accuracy in prediction.
However, GB can be computationally expensive and prone to overfitting if the number of
iterations is too high.

Decision trees have demonstrated high accuracy in disease prediction, especially heart
disease prediction [95]. Random forest and gradient-boosting classifiers perform very well
in a credit-scoring context and are able to cope comparatively well with pronounced class
imbalances in these data sets [96].

3.5. K-Nearest Neighbor (k-NN)

The k-nearest neighbor (k-NN) method is a popular machine learning algorithm used
for regression and classification problems. It assumes that similar samples are often located
close to each other in the feature space [97]. For each sample point, the k-NN algorithm
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finds the k nearest samples in the dataset and calculates the distances between them and the
previous sample points. The input data consist of the samples with the smallest distances
satisfying k. In classification problems, the output is the class membership (labels). A
sample is classified based on the majority class among the k nearest samples. If k = 1,
the sample is classified to the nearest class. In regression problems, the output value is
the average value of the k nearest samples [98]. One advantage of the k-NN method is its
simplicity and fast training process. Additionally, the k-NN algorithm can eliminate noise to
some extent [99]. However, the value of k is a sensitive parameter, and a smaller k may lead
to overfitting, while a larger k may lead to underfitting. Additionally, the computational
cost can be expensive, especially for large datasets [99]. Therefore, it is necessary to
carefully select hyperparameters to ensure performance. The application scenarios for
the k-NN method include image recognition [100,101], text classification [102,103], and
recommendation system [104].

3.6. Multilinear Regression (MLR) and Multivariate Adaptive Regression Splines (MARS)

Multilinear regression (MLR), also known simply as multiple regression, is a simple
machine learning method used to model the relationship between two or more predictor
variables and a response variable. The model is shown in Equation (14) [105]:

y = α0 + α1 × x1 + α2 × x2 + . . . ++αn × xn + ε (14)

where y is the dependent variable (output data), α0 is the intercept or constant term, and α1
to αn are the coefficients of the independent variables (input data) x1 to xn, respectively. The
aim of MLR is to estimate the values of the α coefficients to minimize the sum of squared
errors between the predicted values and the actual values of the dependent variable. The
disadvantage of MLR is that this method can only consider the linear relationship between
the input and output data.

Multivariate adaptive regression splines (MARS) is a nonlinear regression algorithm
used for classification and regression problems. MARS models the relationship between
multiple inputs and one output using a series of piecewise linear functions called basis
functions [106,107]. Taking the linear basis function as an example, other basis functions
are similar. The linear basis function Bi(x) can be defined as three types:

(1) Constant values T (the intercept).
(2) A hinge function:

Bi(x) = max(0, x− T) (15)

(3) A function of two or more hinge functions.

MARS model M can be expressed as a sum of basis functions:

M =
n

∑
i=1

tiBi(x) (16)

where ti is the constant coefficient. The model starts with a single basis function and adds
new functions iteratively. The algorithm selects the optimal location for each hinge in a
greedy forward stage-wise manner [108]. MARS has the advantage of generating a simple
model that captures complex relationships between inputs and outputs using a small
number of basis functions. However, MARS may be sensitive to the choice of the initial
basis function and the stopping criteria. MARS is often used in credit scoring [109,110], and
species distribution models [111] and also has applications in time series analysis [112].

3.7. Some Other Machine Learning Methods

Sparse polynomial chaos expansion (SPCE) is based on polynomial chaos expansion
and does not require assumptions of the performance function [113–115]. Polynomial
chaos expansion in the random FEM uses a series of coefficients to present the response
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of the system. However, the computation costs for high-dimensional problems are very
prohibitive. A step-wised regression technique is used in SPCE to eliminate the non-
significant polynomials [114]. There are some variants of SPCE, such as adaptive sparse
polynomial chaos [113,115].

A Bayesian network (BN) is a probabilistic graphical model that represents a set of
random variables and their conditional dependencies using a directed acyclic graph and the
probability distribution for each node [116,117]. BNs combine the knowledge of graphs and
probability statistics and can be used to solve uncertainty problems with logical reasoning.
BNs can implement sequential reasoning (such as estimating the probability of failure)
and also allow reversal inference (such as evaluating the sensitivity of factors). Bayesian
inference can be used to estimate or update the probability of certain nodes in the network
when other nodes are observed. In addition, BNs also show better prediction accuracy on
small samples.

3.8. The Hyperparameter Optimization (HPO) Algorithm in Machine Learning

In machine learning, hyperparameters (such as learning rates in ANNs) must be set
before training the ML model [118]. Hyperparameter optimization (HPO) is an automated
hyperparameter tuning technique aimed at obtaining the best model structure. Grid search
is an easy-to-understand HPO method [119]. However, its efficiency is greatly affected
by the number of hyperparameters to optimize and the values chosen on the grid. The
random search method was proposed as an alternative method to speed up the search
process [120]. More advanced HPO methods have also been proposed, which can be called
metaheuristic-based optimization algorithms [89]. These algorithms optimize a problem
based on a given heuristic function or a cost measure and find a good or acceptable solution
within a reasonable amount of time and memory (e.g., particle swarm optimization and
ant colony optimization).

4. Application of ML Methods in Slope Stability

As the global population continues to grow, mountainous regions are becoming
increasingly densely populated. As a result, more and more infrastructures are being built
in close proximity to slopes, which are highly susceptible to landslides. These landslides not
only pose a significant risk to human life but also result in significant economic losses [31].
Although analytical and numerical methods have been developed and applied in recent
years, most of them focus on deterministic analysis, such as the aforementioned LEM
and FEM. Due to geological effects such as weathering, transportation, and stress history,
geotechnical engineering materials are not homogeneous but subject to certain spatial
variability [121,122].

To improve the accuracy of slope stability analysis, random field theory is used to
represent the spatial variability in geotechnical engineering materials [123]. In the early
stage, brute-force MCSs were used to estimate slope stability. However, this method re-
quires a large number of samples for the estimation of small probability events. Therefore,
some advanced methods were proposed to approximate numerical simulations, such as
the response surface method [19,124–126]. These methods essentially fit independent and
dependent variables, such as material parameters and the slope FOS, to polynomial func-
tions and quickly estimate large numbers of samples [125,127]. Recently, machine learning
methods were gradually applied to slope stability problems due to better performance in
handling complex problems.

Figure 3 shows the distribution of slope stability problems analyzed in 159 works from
the literature retrieved from the Web of Science database. The machine-learning-aided
slope stability analysis mainly concerns two problems—prediction of the FOS and slope
stability classification. Other problems include searching for limit failure surface, slope
deformation prediction, establishing failure criterion, and so on.
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4.1. Performance Evaluation Metrics in Regression Problems Using Machine Learning

Evaluation metrics are required to assess the performance of ML models. For the use
of machine learning surrogate models, it is common to think of all evaluation data points as
interpolations. Common evaluation metrics for regression problems can be roughly divided
into two categories: the first category reflects the overall fitting degree of the model, such as
the coefficient of determination (R2), while the second category, known as error parameters,
directly expresses the difference between the predicted and observed values. The second
category can be further divided into relative and absolute differences, such as the mean
absolute percentage error (MAPE) and root mean square error (RMSE), respectively.

The coefficient of determination R2 is a statistical measure that represents the pro-
portion of the variance in the dependent variable that can be explained by the independent
variable(s) included in the model. In other words, it reflects the overall fit of the model. R2

can be defined as:

R2 = 1− SSres

SStot
= 1− ∑n

i=1
(
yi − y∗i

)2

∑n
i=1(yi − y)2 (17)

where yi represents the ith observed value, y*
i represents the ith predicted value, and y

represents the mean value of the observed values. R2 increases with an improvement in
model performance. If the predicted value exactly matches the observed value, R2 = 1.
However, it is important to note that R2 can be misleading if used alone, as it does not
provide information about the predictive ability or accuracy of the model.

Three metrics are introduced for evaluating the absolute difference between the pre-
dicted values and the observed values: mean squared error (MSE), root mean square error
(RMSE), and mean absolute error (MAE).

Mean squared error (MSE) is a widely used evaluation metric in machine learning
to measure the performance of a regression model. It is calculated as the average of the
squares of the differences between the predicted and observed values, and it is always
a non-negative value that decreases as the model performance improves. MSE can be
defined as:

MSE =
1
n

n

∑
i=1

(yi − y∗i )
2 (18)
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Root mean square error (RMSE) is calculated as the square root of the average of
the squared differences between predicted values and actual values. RMSE is preferred
over MSE when the output values have different dimensions, as RMSE maintains the same
dimension as the output values. RMSE is always a positive value that decreases as the
model performance improves. RMSE can be defined as:

RMSE =
√

MSE =

√
1
n

n

∑
i=1

(
yi − y∗i

)2 (19)

Mean absolute error (MAE) reflects the mean magnitude of the errors without con-
sidering their direction. RMSE and MAE have the same dimension, but RMSE is typically
larger than MAE due to the squaring of errors in the calculation of RMSE. The squaring
of errors in RMSE places greater emphasis on large errors and can lead to a larger overall
value. Additionally, unlike RMSE, MAE is directly proportional to the absolute value of the
error, meaning that each error influences MAE in proportion to its magnitude, regardless
of its direction [128]. MAE can be defined as:

MAE =
1
n

n

∑
i=1
|y∗i − yi| (20)

Mean absolute percentage error (MAPE) is one of the relative errors between the
predicted values and the observed values. As a dimensionless evaluation metric, MAPE
can simply compare the performance of different models on different datasets, and it is
intuitive and easy to understand. Compared with RMSE, MAPE is less susceptible to
outliers and is more robust. However, MAPE is not suitable for cases where the observed
values are zero or close to zero because MAPE tends to infinity. MAPE can be defined as:

MAPE =
100%

n

n

∑
i=1

∣∣∣∣y∗i − yi

yi

∣∣∣∣ (21)

Figure 4 illustrates the impact of the coefficient of determination and error parameters
on the evaluation of ML models. Several simple functions are chosen to represent observed
and predicted values in four particular cases. These four cases are presented in Figure 4,
respectively:

(a) Low coefficient of determination and high error parameters. In this case, both the
overall prediction and the individual predictions are unreliable, which may be due
to outliers, such as wrong predictions of boundary values. In addition, non-linear
relationships, heteroscedasticity, high noise, and overfitting/underfitting can also
lead to this situation.

(b) Low coefficient of determination and low error parameters. In this case, individual
predictions are accurate, but the overall prediction is poor. One reason can be a
low slope of the fitting function. Limited by the definition of R2, when the slope of
the linear fitting function is low (the function value is close to the average value),
even if the prediction accuracy is high, the calculation result of R2 tends to be 0.
The model fails to account for the variability in these data. Similarly, non-linear
relationships, heteroscedasticity, high noise, and overfitting/underfitting can also
lead to this situation.

(c) High coefficient of determination and high error parameters. In this case, the over-
all prediction is accurate, but the individual predictions are unreliable. This may
be due to the use of a linear relationship to fit a non-linear function (incorrect fit-
ting relationships). Uncertainty in the data, heteroscedasticity, outliers, and overfit-
ting/underfitting can also lead to this situation. For example, if the data have large
uncertainties, even if the model can explain some of the variance, the MSE may still
be large due to the inherent uncertainty of the data.
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(d) High coefficient of determination and low error parameters. In this case, both the
overall prediction and the individual predictions are good.
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of determination and high error parameters, (b) Low coefficient of determination and low error
parameters, (c) High coefficient of determination and high error parameters (d) High coefficient of
determination and low error parameters.

Cases (a)–(c) indicate poor performance of ML models in either overall or individual
predictions, while Case (d) shows high accuracy in both overall and individual predicted
values. Therefore, only one type of metric can lead to biased estimations of the ML model.
It is recommended to consider both the coefficient of determination and error parameters
together to accurately evaluate the performance of a model. Outliers and high noise are
often eliminated during data processing and detailed information can be found in Shan’s
work [129]. Overfitting/underfitting are also common problems in machine learning. Data
augmentation, regularization, cross-validation, and early stopping help reduce overfitting
problems, while increased model complexity and tuning hyperparameters can fix the
underfitting problem.
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4.2. Failure Probability of Slopes

In slope stability analysis, the safety margin of slopes is usually represented by the
failure probability Pf from the perspective of probability. The limit state function can
describe slope stability theoretically. A failure happens when the condition of G(Ψ) ≤ 0
is satisfied, where Ψ represents the material parameters commonly regarded as random
variables or random fields. The failure probability can be expressed as [130,131]:

Pf = P[G(Ψ) ≤ 0] =
∫

G(Ψ)≤0
f (Ψ)dΨ (22)

where f (Ψ) represents the joint probability density function of Ψ. In slope stability analysis,
an FOS smaller than 1 usually represents an unstable state. So, G(Ψ) can be expressed as:

G(Ψ) = FOS(Ψ)− 1 ≤ 0 (23)

However, the failure probability cannot be evaluated using the multiple integral in
Equation (22) since f (Ψ) is usually unavailable due to the spatial variability in materials
in geotechnical problems. Therefore, approximation or simulation methods are needed to
replace f (Ψ). MCS is often used to approximate failure probability because it is easy to
understand and operate. The failure probability can be obtained using:

Pf =
1

NMCS

NMCS

∑
i=1

[FOSi < 1] (24)

where FOSi represents the ith realization of the FOS. [FOSi < 1] is the Iverson bracket
used to judge the state of slopes. [FOSi < 1] = 1 when the FOSi is less than 1; otherwise,
[FOSi < 1] = 0.

The reliability index β is used to evaluate the system reliability without an exact
probability distribution function [132]:

β =
µz

σz
=

E[G(Ψ)]

σ[G(Ψ)]
(25)

where µz = E[g(x)] and σz = σ[G(Ψ)] are the mean and standard deviation of the perfor-
mance function, respectively. It represents the distance between mean values of G(Ψ) and
0 (assumed as the failure point) with standard deviations. G(Ψ) is assumed to be normally
distributed in Equation (25).

The relationship between failure probability and the reliability index is [77]:

Pf = Φ(−β) = 1−Φ(β) (26)

where Φ is the standard normal cumulative distribution function.
In slope stability analysis, uncertainty is caused by many factors, including the nature

of the geological material, soil parameters, the water table, seismic intensity, etc. Because
there are certain errors or uncertainties in the measurement and estimation of these param-
eters, the calculation results of slope stability will also be affected by these uncertainties,
which makes the stability uncertain. MCSs are widely used in stochastic analysis to esti-
mate the propagation of uncertainty. With the development of computer science, a large
number of machine learning methods (such as random forests and neural networks) are
proposed and applied to build surrogate models to replace time-consuming numerical
evaluations. These algorithms can directly fit the mathematical relationship between input
and output, reduce the need for complex and time-consuming calculations, and directly
obtain the system response. For slope stability analysis, using machine learning methods as
surrogate models to evaluate the FOS can obtain highly accurate results and greatly reduce
computation effort.
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4.3. Prediction of the Factor of Safety

A total of 159 slope stability studies were collected from the Web of Science that were
published in the last two decades, 89 of which focused on the FOS. This kind of machine
learning-aided slope stability method has similarities to the so-called surrogate model
methods. The key is the use of machine learning to establish high-dimensional nonlinear
functions between input and output variables. These nonlinear functions can obtain a large
number of predictions for reliability analysis with high efficiency and accuracy.

Taking the research of [31] as an example, a typical machine learning-aided slope
stability analysis is presented in Figure 5:
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(1) Data generation: A large number of samples of random variables or random fields
are generated to represent the uncertainty and spatial variability in the soil. Karhunen–
Loève expansion is a common method to generate random variables or random
fields [133,134].

(2) Data collection and preprocessing: Random variables or random fields are mapped
into numerical models, such as the LEM and FEM, and the associated FOS is calculated
using the numerical models. All simulation results are required to be checked to
ensure the correct FOS is obtained.

(3) Model selection and training: One or more appropriate machine learning models
are chosen based on the nature of the problem. A specific machine learning method is
used to train and validate models with random variables or random fields as input and
the FOS as output data. Trained models represent the nonlinear relationship between
samples and the FOS. The conceptual function captured with machine learning is
expressed as:

FOS = f (x1, x2, . . . , xn) (27)

where xi represents the ith input variables, such as the cohesion and friction angle in the
Mohr–Coulomb model.

(1) Model validation and tuning: The trained models are evaluated using either a vali-
dation or test dataset to assess their performance. Model parameters may be adjusted,
or alternative models may be explored as necessary to attain the optimal model or a
model that closely approaches optimality.

(2) Model deployment: Based on the well-trained models, a large number of predicted
FOS values can be quickly obtained, and the failure probability can be counted
according to the predicted results.

According to step (3) above, the implicit Equation (27) captured with machine learning
is also an application of the response surface method (RSM). The RSM has been proven
to be an efficient tool for slope stability analysis [127]. The classic RSM uses polynomial
regression (usually quadratic regression) to approximate the actual response. The classic
RSM may fail to detect the most critical slip surface if multiple failure surfaces are present.
The RSM based on machine learning is more powerful when dealing with complex, nonlin-
ear responses or large amounts of data and can perform a global search to find the most
dangerous failure surface. For example, a Kriging-based RSM was proposed to conduct the
system slope stability study [135]. The undrained shear strain of the soil is the input of the
equations. The method performs a global approximation that allows for a more accurate
assessment of the system reliability of soil slopes. Even with the same calibration samples,
second-order polynomial-based RSMs are less accurate than Kriging-based RSMs.

For the problem of predicting the FOS, ANNs were used up to 45 times, accounting for
about 50% of the reviewed studies, followed by SVM, which was used 20 times. Table 1 lists
some information about the studies on the prediction of the FOS and gives the notations
of input variables. The rest of this section describes some studies of machine learning
methods for predicting the FOS of slopes, including high dimensional or highly nonlinear
regression [136–138].

Kang et al. [138] proposed a so-called ν-support vector machine (ν-SVM) method to
build a surrogate model for predicting the FOS and evaluating the system failure probability.
Mu’azu [61] combined the teaching–learning-based optimization (TLBO) method and two
machine learning algorithms (ANNs and ANFISs) to predict the FOS of slopes. Their
results indicate that the ANN-TLBO is the best model and has the lowest error. Ji et al. [139]
trained surrogate models based on the least-squares support vector machine (LS-SVM)
and accurately estimated the stability for spatially variable slopes. Ahangari Nanehkaran
et al. [140] compared five different machine learning models for FOS predictions and
verified the models using a confusion matrix and errors table to confirm the accuracy
evaluation indexes. Hsiao et al. [65] proposed a pre-trained model using an ANN and
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CNN to directly estimate the safety factor, the trace of the slope slip surface, and finally
quickly predict the probability of failure. Jiang et al. [141] trained a surrogate model with
a gradient-boosting regression tree to predict the FOS under the effect of heavy rainfall.
This model accurately evaluated the bench slope FOS under the rainfall intensity of the
“20-year rainstorm recurrence period”, and its error was smaller than that calculated using a
numerical simulation analysis. Lin et al. [142] compared the FOS prediction ability of eleven
machine learning methods and suggested that SVM, GBR, and Bagging are considered to be
the best among these eleven regression methods. Meng et al. [136] used an ANN to evaluate
the slope stability of 3D homogeneous dry slopes with different shapes of slope surfaces. A
graphical user interface (SlopeLab) was developed based on the pre-trained ANN models.
Suman et al. [143] studied both FOS predictions and slope stability classifications with three
different machine learning methods: functional networks (FNs), MARS, and multigene
genetic programming (MGGP). Two surrogate models for predictions and classifications
were trained using the same input and output dataset, and prediction model equations
were provided. Their results indicate that MARS has better prediction capabilities than FN
and MGGP models.

Table 1. Studies of slope stability concerning the prediction of FOS with ML.

Reference Method to
Obtain FOS ML Method Input

Variables Dimension Training
Sample Size Advantages Limitations

Kang et al.
(2016) [138] LEM ν-SVM

Case 1: Su,
γ

Case 2,3,4:
c, ϕ, γ

2D 20

Good generalization
capability;

adaptable for
high-dimensional

problems

Single-prediction
outputs

Ji et al. (2017)
[139] LEM LS-SVM c, ϕ 2D 50–500

Computationally
efficient.

good generalization
capability;

adaptable for
high-dimensional

problems

Single-prediction
outputs

Mu’azu (2022)
[61] FEM ANFIS,

ANN Su, β, q, D 2D 504

High accuracy;
optimization methods

for tuning
hyperparameter

Time-consuming

Ahangari
Nanehkaran
et al. (2022)

[140]

LEM
ANN, DT,
k-NN, RF,

SVM

θ, Gs, ρd,
H, β, c, ϕ

2D 49

Comparison of
different

machine-learning
methods

Unable to
determine

generalization
ability;

requires large
training sample

size
Pandey et al.
(2022) [105] FDM ANN, MLR H, β, c, ϕ 2D 148 High accuracy Unreliable samples

are not excluded

Hsiao et al.
(2022) [65] FEM ANN, CNN c, ϕ, γ 2D Case1: 200

Case2: 400

High accuracy;
consideration of spatial

variability;
prediction of failure

surface

Requires large
training sample

size

Jiang et al.
(2022) [141] LEM GB H, β, Ri , Rd 2D 37

High accuracy;
good generalization

capability

Requires large
memory;

high sensitivity of
hyperparameters

Lin et al. (2021)
[142] LEM, empirical

ABR,
Bagging, BR,
ENR, ET, DT,
k-NN, MLR,

RF, SVM

H, β, c, ϕ,
γ, uw

2D 314

Comparison of
different

machine-learning
methods

Limited accuracy;
no consideration of
external or trigger

factors
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Table 1. Cont.

Reference Method to
Obtain FOS ML Method Input

Variables Dimension Training
Sample Size Advantages Limitations

Falae et al.
(2021) [106] FEM MARS c, ϕ, ν, E 2D

Section X-X′:
128, 256

Section Y-Y′:
512, 512

Consideration of
spatial variability

Requires known
prior information;
only considers R2

metric

Cho (2009)
[144] FDM ANN c, ϕ 2D

Case1: 15–25
Case 2:
50–200

High accuracy;
parallel distributed

processing;
strong robustness

Requires a large
number of initial

parameters;
consumes a lot of

time during model
training

Meng et al.
(2021) [136] FEM ANN β, Dr , Wr , Dg 3D

Purely
cohesive soil:
168 Cohesive-

frictional
soil:1254

High accuracy;
consideration of 3D

geometries;
consideration of

concave slopes surface

Only valid for
homogeneous dry

slopes without
pore pressure

He et al. (2020)
[31] FEM ANN, SVM c, ϕ, γ 2D 300

High accuracy;
consideration of spatial

variability

Separate samples
and training are
required for each

case

Ray et al.
(2020) [145] FEM, empirical ANN Es, cs, ϕs, Er , cr , ϕr , cj, ϕj2D 320 Consideration of

weathering effects

Limited
generalization

capability;
large number of

input parameters

Liu et al. (2019)
[146] LEM, FEM MARS c, ϕ 2D Case1: 280

Case1: 210

No need to deal with a
large amount of data
and high-dimension

data

Unable to provide
sequential
prediction;

single-prediction
outputs

Wang et al.
(2021) [67] FEM CNN c, ϕ 2D 5000

Adaptable for
high-dimensional

problems;
high performance in
feature classification;

efficiently handles large
samples

Large number of
samples required

Suman et al.
(2016) [143] LEM FN, MARS,

MGGP
c, ϕ, γ, H,

β, ru
2D 75 Prediction model

equations are provided

No consideration
of spatial

variability

4.4. Slope Stability Classification

Compared with the prediction of FOS, the classification of slope stability has been
extensively studied, with a total of 47 publications identified in our review using the
Web of Science. Slope stability classification is significant in landslide disaster prevention
and mitigation [10]. Directly classifying the state of a slope can intuitively identify the
slope stability. Generally, numerical simulations and analytical methods can rationally and
explicitly quantify the state of a specific slope. However, when faced with many landslides
or a complex situation, performing a slope stability analysis on all landslides in practice
would be time-consuming, computationally expensive, or even impossible. Therefore, the
classification of slope stability based on known information is necessary.

Slope stability classification can be roughly divided into two categories. The first type
classifies the state of real slopes [10,32]. Researchers obtain terrain conditions, stress history,
environmental and meteorological factors, and other conditions that affect slope stability using
site investigation and laboratory measurements or from literature or databases [49,52,147].
These conditions and slope stability classifications are used as input and output in the
ML training process. The obtained models can accurately predict slope stability under
specific conditions.

The second type classifies the stability of slopes using a numerical model [27,98],
which is further used to accelerate stochastic analyses. The FOS obtained using numerical
calculations or analytical solutions can be used to judge slope stability. Most of the reviewed
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studies performed a binary classification of slope stability [10,52]. FOS = 1 is often defined
as the critical state of stability and failure. Therefore, FOS > 1 is stable and FOS < 1
represents failure. Therefore, some studies directly define the output as stable and unstable
states. However, some studies reported that some slopes may have intermediate states or
are unstable when FOS is greater than 1 and stable when FOS is less than 1 [49], so a more
detailed classification of slope states is needed. In addition, a binary classification method
is proposed to directly judge the relationship between FOS values and 1 without accurate
calculations of the FOS [26].

A typical machine learning-aided slope stability classification is similar to the process
of predicting the FOS, while the outputs are the slope stability classifications. Among the
studies on slope stability classification, the most common machine learning algorithms
were ANNs, which were used in twenty-two studies, followed by SVM in eighteen studies.

Table 2 presents some information about the studies on slope stability classification.
Some of these studies are introduced below.

Table 2. Studies of slope stability analysis concerning classification with ML (output are slope state
classifications).

Reference Method
Classification ML Method Input

Variables
Training

Sample Size Advantages Limitations

Zhang et al.
(2022) [10]

Empirical
method

RF, XGboost,
SVM, LR E f b, H, β, βin, Ddip, Vl , Cv628

High accuracy;
good generalization

capability

Requires large memory;
large number of samples

required

Zhu et al. (2022)
[32]

Empirical
method

ANN, BNB,
CNN, DT,
GNB, RF,

SVM

High-
resolution

images
868

High accuracy;
comparison of different

machine-learning
methods

Only valid for slopes
without shade and

vegetation;
affected by image quality

Hanandeh (2022)
[27] LEM GEP c, ϕ, γ, H, β, uw 253 High accuracy

Difficulty in choosing
appropriate fitness

function;
limited ability to handle
high-dimensional data

Zhang et al.
(2022) [148]

LEM Ensemble
learning

c, ϕ, γ, H, β,
uw

338
High accuracy;

good generalization
capability

Time-consuming;
relies on individual

learners

Lin et al. (2022)
[149] FEM, LEM Ensemble

learning c, ϕ, γ, H, β, uw 400
High accuracy;

good generalization
capability

Time-consuming;
relies on individual

learners

Azmoon et al.
(2021) [150] LEM CNN Photos 95,400

High accuracy;
efficiently handles large

samples

Requires a large training
sample size;

affected by image quality

Pham et al. (2021)
[30] LEM Ensemble

learning c, ϕ, γ, H, β 122
High accuracy;

good generalization
capability

Time-consuming;
relies on individual

learners

Yuan & Moayedi.
(2020) [52] FEM ANN Su, β, q, D 504

High accuracy;
optimization methods for
tuning hyperparameter

Unable to determine
generalization ability;

time-consuming

Yuan & Moayedi.
(2020) [151] FEM ANN Su, β, q, D 630

High accuracy;
optimization methods for
tuning hyperparameter

Unable to determine
generalization ability;
hard to determine the

parameters of the
optimization algorithm

Zhou et al. (2019)
[29] LEM GB c, ϕ, γ, H, β,

uw
177 High accuracy

Complexity of
hyperparameter tuning;

time-consuming; requires
large training sample size

Lin et al. (2018)
[28] LEM RF, SVM,

GSA, NB c, ϕ, γ, H, β, uw 86
Comparison of different

machine learning
methods

Time-consuming

Huang et al.
(2020) [152]

Empirical
method k-NN c, ϕ, γ, H, β,

Ri , Ei , GWL 50 Robust algorithm;
small sample dependence More validation required
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Table 2. Cont.

Reference Method
Classification ML Method Input

Variables
Training

Sample Size Advantages Limitations

Ospina-Dávila
et al. (2020) [153]

Empirical
method

LDC, QDC,
k-NN, ANN

21
parameters:
soil strength;

slope
geometry;
hydraulic

and environ-
mental

parameters

165 Significant separability of
the classes can be found

Large number of
parameters required

Suman et al.
(2016) [143] LEM FN, MARS,

MGGP
c, ϕ, γ, H, β,

uw
75 Prediction model

equations are provided
No consideration of

spatial variability

Zhang et al. [10] considered an ensemble learning-based method that combined RF
and XGBoost methods to conduct a slope stability classification and explore the importance
of 12 influencing variables. Zhu et al. [32] proposed a classification framework to categorize
rock blocks based on the principles of block theory using the CNN method. The surrogate
model can classify three types of rocks (key blocks, trapped blocks, and stable blocks)
using high-resolution images. Yuan & Moayedi [52] used six metaheuristic algorithms to
optimize the classification ability of machine learning methods. Their results show that
metaheuristic algorithms could greatly improve the accuracy of classification models from
2% to 27%, among which the genetic algorithm performed best.

Ensemble learning technology is also popular in slope stability classification. Zhang
et al. [148] built a margin distance minimization selective ensemble (MDMSE) method to
deal with slope stability classification. This ensemble learning is established using four
individual learners (k-NN, SVM, DT, and ANN). Compared with common single-machine
learning models and ensemble models, MDMSE shows better generalization ability, better
recognition accuracy, and faster identification speed. Lin et al. [149] developed an ensemble
learning model with eight individual learners for classification problems. A parameter
analysis was conducted with three types of slope parameters: material parameters, geom-
etry parameters, and hydraulic parameters. Their results show that material parameters
were the most sensitive factors to slope stability, followed by geometry and hydraulic
parameters. They suggested that the cohesive force of geomaterials and the internal friction
angle should be improved for treating landslides.

5. Future Research Perspective

The number of papers published in the past two decades shows that more and more
machine learning methods, including several commonly used machine learning methods
and some of the latest advanced machine learning methods (such as CNNs), are applied
to solve slope stability problems. In addition, machine learning has greatly promoted the
implementation of reliability analysis in geotechnical engineering practice. However, there
are still some challenges in the current literature, including:

(1) The spatial variation in shear strength parameters and hydraulic parameters is com-
monly considered in slope reliability and risk analysis. However, research on the
hydro-mechanical coupling between these parameters is still limited. This means that
the impact of rainfall or the groundwater table on slope stability is often not fully
accounted for, as both hydraulic and shear strength parameters can have a significant
influence.

(2) Previous studies have mainly focused on simplified models, and there is a lack of real-
istic geotechnical engineering case applications. Moreover, most studies were limited
to 2D slope simulations. Although 2D slope stability analysis has been extensively
investigated, it neglects the effect of 3D spatial variation, which is a crucial factor in
real-world applications. Despite being a technical challenge due to the larger compu-
tational efforts involved, several studies have demonstrated that 3D slope stability
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analysis results can significantly differ from those obtained using 2D models [136].
Therefore, future research should focus on analyzing existing 3D slope stability data
using ML to provide more accurate and reliable results.

(3) A site investigation often captures only one or two properties of material spatial
variability, which can make it challenging to accurately estimate fluctuation scales
and autocorrelations. The generation of random fields currently relies on selecting
a theoretical autocorrelation function, which may not accurately represent the true
fluctuation scale and autocorrelation in soil parameters. In the future, machine learn-
ing could potentially be utilized in field surveys to capture more realistic estimates of
these parameters, leading to improved reliability in slope stability analysis.

(4) Due to the ease of establishing and connecting databases, as well as the advances
in monitoring technologies, it is anticipated that more comprehensive and detailed
input data can be obtained for the slope stability classification problem, including
environmental factors, meteorological information, and hydrogeological conditions.
This will lead to more precise predictions of slope conditions.

6. Conclusions

This paper reviews the application of ML to slope stability analysis problems in the
past two decades. Slope stability has always been an important branch of geotechnical
engineering. The limit equilibrium method and the finite element method are commonly
used to calculate the FOS. Random field theory is used to simulate the spatial variability
in soil.

Early use of the brute-force Monte Carlo method for reliability analysis is time-
consuming and inefficient. With the development of machine learning techniques, a
large number of applications have contributed to the assessment of slope stability. Some
common machine learning algorithms are introduced in Section 3. ANNs and SVM occupy
a mainstream position in a large number of the reviewed studies, but we can also see
that various advanced methods are gradually emerging, such as ANFIS (Figure 2). Each
machine learning algorithm has advantages and disadvantages. The selection of machine
learning algorithms should not blindly pursue ‘complexity’ and an ‘advanced’ method but
should be suitable for the research problem.

Slope stability problems can be broadly categorized into two groups: those predicting
the FOS and those classifying slope stability. In addition, a few studies focused on searching
for the most critical sliding surfaces, designing failure criteria, and other related issues.
Considering that machine learning is a “black box” technology, it is critical to select eval-
uation metrics judiciously for studying these problems. The coefficient of determination
characterizes the overall fitting level of the model, while error parameters represent the
individual prediction performance of the model. Ignoring any of them may lead to a
biased evaluation of the model. Therefore, it is recommended to use both the coefficient
of determination and error parameters to ensure a reasonable assessment of a model’s
performance.

While machine learning has been applied extensively to slope stability problems,
several issues require further attention in future research. The hydraulic parameters and
shear strength parameters have a significant influence on slope stability, and the problem
of hydro-mechanical coupling remains a challenge in slope stability analysis. The analysis
of 3D slope stability with the assistance of machine learning is important for geotechnical
engineers and researchers, given the impact of 3D spatial variation on the stability of
slopes. To enhance the reliability of slope stability analysis, it is important to explore
how to use machine learning methods to capture more accurate fluctuation scales and
autocorrelations. Additionally, the proper use of monitoring data and databases can
contribute to an improvement in machine learning model performance.

In general, machine learning has been widely used in slope stability analysis and
shows significant potential. With the availability of various open-source machine learning
libraries, it has become more accessible to researchers. In the future, machine learning is
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expected to contribute to a more accurate analysis of slope stability problems and prevent
disasters caused by landslides.
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Abbreviations

ANFIS adaptive neuro-fuzzy inference system ANN artificial neural network
BN Bayesian network CNN convolutional neural network
DNN deep neural network DT decision tree
FDM finite difference method FEM finite element method
FOS factor of safety FN functional network
GB gradient boosting GIM gravity increasing method
GPR Gaussian process regression HPO hyperparameter optimization
k-NN k-nearest neighbor LDC linear discriminant classifier
LEM limit equilibrium method LS-SVM least squares support vector machine
MAE mean absolute error MAPE mean absolute percentage error
MARS multivariate adaptive regression splines MCS Monte Carlo simulation
MDMSE margin distance minimization selective ensemble MGGP multigene genetic programming
ML machine learning MLR multilinear regression
MSE mean squared error PDF probability density function
QDC quadratic discriminant classifier R2 coefficient of determination
RF random forest RMSE root mean square error
RSM response surface method SPCE sparse polynomial chaos expansion
SPH smoothed-particle hydrodynamics SRM strength reduction method
SVM support vector machine TLBO teaching–learning-based optimization
ν-SVM ν-support vector machine

Notations

Su Undrained shear strength uw Pore pressure ratio
β Slope angle ν Poisson’s ratio
q External force on the footing E Elastic modulus
D Ratio of setback distance Wr Width ratio
θ Water content Dg = cγHtanϕ Dimensionless group
Gs Specific gravity Es Young’s modulus of residual soil
ρd Dry density cs Cohesion of residual soil
H Slope height ϕs Friction of residual soil
c Cohesion Er Young’s modulus of rock mass
ϕ Friction angle cr Cohesion of rock mass
γ Unit weight ϕr Friction of rock mass
Ri Rainfall intensity cj Cohesion of joint interface
Rd Rainfall duration ϕj Friction of joint interface
Dr Depth ratio E f b Front and back edge elevations
βin Inclination angle Ddip Dip direction
Vl Landslide volume Cv Categorical variables
Ei Earthquake intensity GWL Ground water level
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