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ABSTRACT
Since the brain is the human body’s primary command and control center, brain cancer is one of
the most dangerous cancers. Automatic segmentation of brain tumors from multi-modal images is
important in diagnosis and treatment. Due to the difficulties in obtaining multi-modal paired images
in clinical practice, recent studies segment brain tumors solely relying on unpaired images and
discarding the available paired images. Although thesemodels solve the dependence on paired images,
they cannot fully exploit the complementary information from different modalities, resulting in low
unimodal segmentation accuracy. Hence, this work studies the unimodal segmentation with privileged
semi-paired images, i.e., limited paired images are introduced to the training phase. Specifically, we
present a novel two-step (intra-modality and inter-modality) curriculum disentanglement learning
framework. The modality-specific style codes describe the attenuation of tissue features and im-
age contrast, and modality-invariant content codes contain anatomical and functional information
extracted from the input images. Besides, we address the problem of unthorough decoupling by
introducing constraints on the style and content spaces. Experiments on the BraTS2020 dataset
highlight that our model outperforms the competing models on unimodal segmentation, achieving
average dice scores of 82.91%, 72.62%, and 54.80% for WT (the whole tumor), TC (the tumor
core), and ET (the enhancing tumor), respectively. Finally, we further evaluate our model’s variable
multi-modal brain tumor segmentation performance by introducing a fusion block (TFusion). The
experimental results reveal that our model achieves the best WT segmentation performance for
all 15 possible modality combinations with 87.31% average accuracy. In summary, we propose a
curriculum disentanglement learning framework for unimodal segmentation with privileged semi-
paired images. Moreover, the benefits of the improved unimodal segmentation extend to variable
multi-modal segmentation, demonstrating that improving the unimodal segmentation performance
is significant for brain tumor segmentation with missing modalities. Our code is available at https:
//github.com/scut-cszcl/SpBTS.

1. Introduction
Biomedical technology is crucial to human health and

life. Extensive research and application using Deep Learning
(DL) in the biomedical domain have significantly improved
big medical data analysis, disease diagnosis, and prognostic
programs, such as Alzheimer’s Disease (AD) [20], Coron-
avirus (Covid-19) [4, 5], and various tumors [15]. The brain,
the most complex human organ, is the primary command
and control center. Brain tumor incidence is an important
contributor to global mortality. According to the National
Brain Tumor Foundation (NBTF) report, in the USA, 29,000
people were diagnosed with primary intracranial tumors, of
which 13,000 died [31]. In addition, one in four childhood
cancer deaths is caused by brain tumors.

Automatic and accurate segmentation of brain tumors
is essential for diagnosis, treatment planning, and follow-up
evaluations. [19, 27]. Such a segmentation process requires
precisely detecting a tumor’s location and extent. However,
the tumorous shape, size, and location uncertainty pose
a unique challenge, especially in infiltrative tumors like

∗Corresponding author
scutzcliu@gmail.com (Z. Liu); csjwei@scut.edu.cn (J. Wei);

rxlics@rit.edu (R. Li); jianlong.zhou@uts.edu.au (J. Zhou)

Label T1 T1ce Flair T2

Figure 1: Different brain tumor information of the same subject
can be detected from different sequences of brain MRI. In the
Label image, the green area indicates the whole peritumoral
edema, red and blue area indicate the necrotic tumor core and
the enhancing tumor, respectively.

gliomas [10, 32]. A common solution is integrating informa-
tion acquired from multi-modal paired MRI since different
MRI pulse sequences (modalities) provide complementary
information on brain tumors from multiple perspectives [37,
40]. As illustrated in Figure 1, T1ce (contrast-enhanced
T1-weighted) highlights tumors without peritumoral, but
the image contrast of the whole peritumoral edema is en-
hanced in T2 (native T2-weighted), and Flair (T2 Fluid
Attenuated Inversion Recovery) [33, 43]. Although these
methods demonstrate a promising performance, they require
paired data in training and testing (Figure 2(a)). This hinders
their applicability in clinical practice when only unpaired or
missing modality images are available.
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(a) (b)Figure 2: Illustration of (a) Paired learning, (b) Unpaired
learning, and (c) Privileged semi-paired learning frameworks.

Spurred by the abovementioned problems, amulti-modal
unpaired learning method is proposed for medical image
segmentation [34, 39] (Figure 2(b)). For instance, Yuan et
al. [39] propose a two-stream translation and segmenta-
tion unified attentional generative adversarial network. The
model is trainedwith unpaired data and performs predictions
on unpaired images by capturing and calibrating comple-
mentary information from translation to improve segmenta-
tion. However, the image translation quality is poor without
supervising the paired images, especially for brain tumor
areas. This is because the method cannot effectively exploit
the complementary information from different modalities,
such as varying shapes of brain tumors. Therefore, such
a strategy leads to unsatisfactory unimodal segmentation
performance.

In this work, we propose a privileged semi-paired learn-
ing framework, with Figure 2(c) revealing that limited paired
images are introduced in training data. Unlike unpaired
learning methods, we exploit the complementary informa-
tion from paired images to improve unimodal segmenta-
tion performance. Specifically, we extract modality-specific
style codes and modality-invariant content codes from the
input images with a multi-task disentanglement model. For
a complete decoupling, we propose a two-step curriculum
disentanglement learning strategy that adds constraints on
the content and style spaces. Finally, we extend our model’s
application for variable multi-modal brain tumor segmenta-
tion through a designed fusion block.

The contributions of this paper are as follows:
• We propose a privileged semi-paired learning frame-

work for brain tumor segmentation. Introducing lim-
ited paired images enhances our model’s ability to
capture and exploit complementary information be-
tween the modalities.

• We propose a two-step (intra-modality and inter-
modality) curriculum disentanglement learning strat-
egy to effectively separate the input images’ style and
content.

• Wequalitatively and quantitatively evaluate ourmethod
on brain tumor segmentation tasks on the BraTS2020 [2]
and BraTS2018 [3] datasets. The results demonstrate

our method’s superiority over current state-of-the-art
unpaired medical image segmentation methods.

• We further demonstrate the superior performance of
our model on variable multi-modal brain tumor seg-
mentation, demonstrating that unimodal segmentation
performance is significant for brain tumor segmenta-
tion with missing modalities.

2. Related work
The methods for multi-modal brain tumor segmentation

can be broadly separated into two categories: segmentation
through paired learning and segmentation through unpaired
learning. Table 1 shows a comparison overview between
these works, including a summary of strengths and weak-
nesses.
2.1. Segmentation through paired learning

Multiple imaging modalities have been widely used in
medical image segmentation due to its ability to provide
complementary information to reduce information uncer-
tainty. During the past few years, most researches focused on
the multi-modal fusion strategies, such as input-level fusion
and layer-level fusion. These methods either concatenate
multi-modality images as multi-channel inputs [18, 36, 41]
or fuse the features from different networks trained by dif-
ferent modalities [12, 9]. The improvement in the accuracy
of brain tumor segmentation relies on the exploitation of
complementary information. However, these methods rely
on paired data in both training and test, and it hinders their
applicability in clinical practice, where only unpaired or
missing modality images are available.

Recently, to mitigate performance degradation when in-
ferencing, medical image segmentation with missing modal-
ity has been extensively studied [1]. The most popular
approach is to fuse the available modalities in a latent space
to learn a shared feature representation for segmentation.
A variable number of input modalities are mapped to a
unified representation by computing the first and second
moments [14], mean function [23], or fusion block [7, 42].
Moreover, Shen et al. [30] utilize synthesizd images as
multi-channel inputs to obtain shared representation for
segmentation with a multi-modal image completion and
segmentation disentanglement network called ReMIC. Fur-
thermore, Chen et al. [8] propose a privileged knowledge
learning framework with the “Teacher Student” architecture.
Privileged information is transferred from a multi-modal
teacher network to a unimodal student network for unpair
images. However, the method also requires a large amount
of paired images for multi-modal teacher network training.
Our method, instead, utilizes privileged semi-paired images,
where only limited paired images are available for training.
2.2. Segmentation through unpaired learning

For medical image segmentation, in order to utilize
all available data for training even when the images are
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Table 1
A comparative overview between different networks.

Strategy Networks Strength Weakness
Segmentation
through
paired
learning

“Cascaded Anisotropic Convolutional
Neural Network” [36]
OM-Net [41]
HyperDenseNet [12]
“Modality-Pairing Network” [37]
“Cross-modality deep feature learning
for brain tumor segmentation” [40]
nnU-Net [17]

Fully exploit the complementary
information provided by different
modalities.

Relye on paired images
in both training and
test, which aggravates the
problem of data scarcity
and leads to limited
application scenarios.

Segmentation
with
missing
modality

HeMIS [14]
“Robust multimodal brain tumor
segmentation via feature
disentanglement and gated fusion” [7]
“Latent correlation representation
learning for brain tumor segmentation
with missing mri modalities” [42]
ReMIC [30]

Wide applicability.
Having the ability to deal with
any combinatorial subset of
available modalities with a
unified model.

Utilize paired images in
training. Uniform training
on all missing scenarios
indiscriminately makes it
hard to learn the most
difficult unimodal
segmentation.

Segmentation
through
unpaired
learning

“Multi-modal learning from unpaired
images” [34]
UAGAN [39]

Reduce data usage requirements,
which alleviates data scarcity.
Improve unimodal segmentation
performance. It is critical for
expanding to missing modality
scenarios.

Use only unpaired data
for training. Correlations
between different
modalities cannot be
learned directly.

unpaired, an X-shaped multiple encoder-decoder network
is proposed [34]. The model extracts modality-independent
features to improve segmentation accuracy by sharing the
last layers of the encoders. Information from one modality is
captured in the shared network to improve the performance
of segmentation task on another modality. Furthermore,
Yuan et al. [39] propose a two-stream translation and seg-
mentation network called UAGAN. The network captures
inferred complementary information from modality transla-
tion task to improve segmentation performance. The above
methods do not require any paired images, and utilize easily
accessible unpaired images for training, instead. However,
these methods cannot integrate complementary information
without paired images. On the contrary, our method can
effectively leverage complenentary information of limited
number of paired images by encoding them into a modality-
invariant content space through content consistency con-
straint and supervised translation for brain tumor segmen-
tation.

3. Methodology
3.1. Proposed model

The suggested model considers a multi-task disentangle-
ment framework that effectively extracts modality-invariant
content codes for brain tumor segmentation by fully ex-
ploiting multi-modal complementary information from priv-
ileged semi-paired images. Content and style codes are
decoupled for the unpaired images through image recon-
struction andmodality translation task learning. Considering
limited paired images containing complementary informa-
tion, the model’s ability to learn multi-modal correlations is

enhanced by converting the modality translation task from
unsupervised to supervised and applying content consis-
tency constraints.

As shown in Figure 3, we use paired images as an exam-
ple to illustrate our framework. Given images xa, xb fromthe same subject and different modalities. We adopt one-hot
vectors to represent their modality label and expands them to
the same image size, denoted asma andmb. Given the depth-wise concatenation (xa, ma) and (xb, mb), our goal is to triana single generator G that can simultaneously accomplish
the following tasks: (1) Reconstructing the input images xaand xb as xa→a and xb→b, respectively. (2) Translating xaof modality ma to the corresponding output image xa→b ofmodality mb, and xb of modality mb to xb→a of modality ma.(3) Generating brain tumor segmentation masks xsega and
xsegb of the input images xa and xb, respectively. We denote
it as G((xa, ma), (xb, mb))→(xa→a, xa→b, x

seg
a , xb→b, xb→a,

xsegb ). The architecture of our model is composed of two
modules described below.

We design the generator G with four shared networks
(Es,Ec ,Ds,Dt) based on feature disentanglement. Given
the input concatenation (xa, ma), the network Es gener-
ates its style code sxa which is a vector with dimension
ns, and the network Ec generates its content code cxawhich is a feature map, denoted as Es((xa, ma))→sxa and
Ec((xa, ma))→cxa . Similarly, sxb and cxb are also obtained
from the input (xb, mb), denoted as Es((xb, mb))→sxb and
Ec((xb, mb))→cxb . Then, we perform image reconstruction,
translation, and segmentation based on these disentangled
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Figure 3: Illustration of the proposed framework. Paired images for the inter-modality learning scheme are depicted in this example.
All the networks are unified, including the content and style encoders (Ec , Es), the translation and segmentation decoders (Dt, Ds),
and the discriminator D. The data stream of images xa and xb are drawn as solid orange arrows and dotted blue arrows, respectively.
Losses are computed by the corresponding generated images and segmentation maps (orange solid box for xa, blue dotted box
for xb). Note that image modality translation loss Ltraninter and content consistency loss Lconinter are only applied to paired images in
the inter-modality learning scheme.

representations. For image reconstruction, given the con-
tent code and the style code obtained from the same in-
put image, the decoder Dt generates the corresponding
reconstruction image, denoted as Dt(cxa , sxa )→xa→a and
Dt(cxb , sxb )→xb→b. For image translation, given the content
code and the style code obtained from different input images,
the decoder Dt translates the source image of one modality
(corresponding to the content code) to the target image of
the other modality (corresponding to the style code). We
denoted it asDt(cxa , sxb )→xa→b andDt(cxb , sxa )→xb→a. Forimage segmentation, given the content code, the decoder
Ds generates a binary mask to identify and highlight the
tumor area of the corresponding input image, denoted as
Ds(cxa )→x

seg
a and Ds(cxb )→x

seg
b .

The probability distributions produced by the discrim-
inator D distinguish whether the generated images from G
are real or fake, and determine whichmodality they are from.
3.2. Curriculum Disentanglement Learning

We propose a novel two-step curriculum disentangle-
ment learning method to leverage privileged semi-paired
images for brain tumor segmentation, as shown in Fig-
ure 2(c), when limited paired images are only available
in training. Compared to previous feature disentanglement

learning models (DRIT [24], MUNIT [16]), the proposed
model focuses on effective separation of style and content.
As shown in Figure 4(c), the previous models only use un-
paired inter-modality learning scheme for training. Unpaired
images xa (from subject x of modality a) and yb (from sub-
ject y of modality b) are mapped into the same content space
but different style spaces. However, there are no specific
constraints for these spaces, so the disentanglement mapping
tends to incur large variations, which results in the problem
of ambiguous separation between style and content. Ouyang
et al. [26] investigate the problem. They require that the
content representations from the same patient with different
modalities should be as similar as possible. However, under
the constraint, the style and other task-unrelated compo-
nents (e.g., noise and artifacts) tend to corrupt the content
representations, which fails to reduce the ambiguity of the
content and style. On the contrary, we contend that different
modalities of a given patient essentially reflect the inherent
anatomy of the patient, which is consistent even though
its appearance may be diverse across different modalities.
Therefore, to solve this problem, we propose a curriculum
disentanglement learning strategy with two steps:

(1) In the first step, as shown in Figure 4(a), we generate
two style-consistent images x1a and x2a from the same original
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Figure 4: Different feature disentanglement learning schemes. (a) Style-consistent learning scheme. Style-consistent images
obtained by horizontal flip (x1a) and elastic deformation (x2a) are given in this example. (b) Paired inter-modality learning scheme.
(c) Unpaired inter-modality learning scheme.

image xa with different image processing methods (such as
horizontal flip and elastic deformation). We then define a
style consistency loss to map the images to the same point
sxa in the style space Sa.(2) The second step consists of reconstruction, unsu-
pervised/supervised translation, and segmentation based on
unpaired and paired inter-modality learning schemes. The
unpaired inter-modality learning scheme, as shown in Fig-
ure 4(c), maps unpaired images xa and yb obtained from
different subjects to different points in the content space
C . The paired inter-modality learning scheme, as shown in
Figure 4(b), maps paired images xa and xb obtained from the
same subject x to the same point cx in the content space C
with a content consistency loss.

Through the two steps, our proposed method can sep-
arate modality-specific style codes and modality-invariant
content codes from the input images. In particular, the
modality-specific style codes describe attenuation of tissue
features and image contrast, and the modality-invariant
content codes contain consistent inherent anatomical and
functional information. The effective disentanglement of the
two codes is critical for brain tumor segmentation.
3.3. Constructing the objective function

Our loss function consists of three parts: (1) common
losses for both curriculum disentanglement learning steps;
(2) losses for intra-modality disentanglement step; (3) losses
for inter-modality disentanglement step. For simplicity, we
only describe the losses for image xa, since the loss functionfor xb is the same. Alg. 1 summarizes the overall procedure
of the curriculum disentanglement learning.
3.3.1. Common losses

Losses for both curriculum disentanglement learning
steps include an adversarial loss, a modality classification
loss, a reconstruction loss, and a segmentation loss.

Adversarial loss: Tominimize the difference between the
distributions of generated images and real images, we define

Algorithm 1 The curriculum disentanglement learning
Training input: intra-modality augmented style-consistent
images (x1a, x2a)1,…, (x1a, x2a)i, paired inter-modality images
(xa, xb)1, …, (xa, xb)j , and unpaired inter-modality images
(xa, yb)1,…, (xa, yb)k
Training output: generator G
1: while not converged do // In the first step
2: // Style-consistent pattern
3: Updata G and D using Eq. (9) and Eq. (6)
4: end while
5: while not converged do // In the second step
6: // Paired inter-modality pattern
7: Updata G and D using Eq. (12) and Eq. (6)
8: // Unpaired inter-modality pattern
9: Updata G and D using Eq. (7) and Eq. (6)
10: end while
Test input: unpaired images x1,…, xn
Test output: segmentation results xseg1 ,…, xsegn
1: Calculate ∀r, xsegr ← G((xr, mr))
2: // mr is the modality label of xr

the adversarial loss as:

Ladv =Exa [logDsrc(xa)] +
1
2
Exa→a [log(1 −Dsrc(xa→a))]

+ 1
2
Exa→b [log(1 −Dsrc(xa→b))]

(1)
where Dsrc denotes probability distributions, given by dis-
criminatorD, of real or fake images [11]. The discriminator
D maximizes this objective to distinguish between real and
fake images, while the generator G tries to generate more
realistic images to fool the discriminator.

Modality classification loss: To allocate the generated
image to correct modality, the modality classification loss
is imposed to G and D. It contains two terms: modality
classification loss of real images which is used to optimize
D, denoted as Lrcls, and the loss of fake images used to
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optimize G, denoted as Lfcls.
Lrcls = Exa [− logDcls(ma|xa)] (2)

Lfcls =
1
2
Exa→a [− log(Dcls(ma|xa→a))]

+1
2
Exa→b [− log(Dcls(mb|xa→b))]

(3)

where Dcls represents the probability distributions over
modality labels and input images [11].

Reconstruction loss: To prevent the omission of detailed
information, we employ the reconstruction loss to constrain
the recovered images:

Lrec = Exa,xa→a [‖xa→a − xa‖1] (4)
Segmentation loss: The segmentation loss is a dice loss:

Lseg = −
2
∑N
i=1 l

i
xx

i
seg

∑N
i=1(lixlix + xisegxiseg) + �

(5)

Here, lix, xiseg denote ground truth and prediction of voxel
i, respectively. The � = 1e−7 is a constant for numerical
stability.

Objective functions: By combining the above losses
together, our common objective functions are as follows:

LD = −Ladv + Lrcls (6)

LG = Ladv + L
f
cls + �recLrec + �segLseg (7)

where �rec and �seg are hyperparameters to control the
relative importance of reconstruction loss and segmentation
loss. In addition, we use L2 norm regularization to constrain
the style codes to encourage a smooth space and minimise
the encoded information [22].
3.3.2. Curriculum losses for the first step

In the first intra-modality disentanglement step, we train
the model with style-consistent learning scheme shown in
Figure 4(a). The augmented images are created by the fol-
lowing six image processing methods: (1) horizontal flip, (2)
vertical flip, (3) rotate random angle (0°∼360°), (4) zoom
in to random ratios (0.8∼1.2), (5) elastic deformation [29],
and (6) shift a random distance (0px∼20px) in all directions.
For each original image xa in training data (both paired andunpaired image), we randomly use two methods to obtain
two style-consistent images denoted as x1a and x2a. Note thatoriginal image can belong to any modality. Let a indexes a
modality, and sx1a and sx2a denote the style codes of x1a and x2a,respectively. We define a style consistency loss to constrain
sx1a and sx2a to be similar:

Lstyintra = E(sx1a
,sx2a

)[‖sx1a − sx2a‖1] (8)

In the intra-modality step, the objective function to optimize
D is as in Eq. (6), while the objective function to optimize
G is defined as:

LGintra = LG + �styL
sty
intra (9)

Here, LG is as in Eq. (7) and the �sty is the hyperparameter
to control the contribution of Lstyintra.
3.3.3. Curriculum losses for the second step

In the second inter-modality disentanglement step, the
training data include both paired and unpaired images from
different modalities.

The objective function forD in Eq. (6) and the objective
function forG in Eq. (7) generate different content codes and
different style codes for unpaired image (xa, yb).For paired images (xa, xb), they have the same content
codes and different style codes, so we construct a content
consistency loss to constrain their content codes:

Lconinter = E(cxa ,cxb )
[‖cxa − cxb‖1] (10)

In addition, the image xa→b generated from the translation
task Dt(cxa , sxb ) is expected to be consistent with the image
xb→b generated from the reconstruction task Dt(cxb , sxb ),since that xa and xb are paired. Meanwhile, xb→b is the
reconstrcuted image of xb, xa→b is expected to be consistentwith xb. Thus, we introduce a translation loss to further
constrain cxa and cxb as:

Ltraninter = Exa→b,xb [‖xa→b − xb‖1] (11)
Therefore, the objective function to optimize D is the same
as in Eq. (6), while the objective function to optimize G is
defined as:

LGinter = LG + �conLconinter + �tranL
tran
inter (12)

where, LG is as in Eq. (7) and the �con and �tran are
hyperparameters to control the contributions of Lconinter and
Ltraninter, respectively.

4. Experiments and results
In this section, we first introduce the experimental set-

tings, including datasets, baseline methods, evaluaion met-
rics, and implementation details. Then, we present and dis-
cuss quantitative and qualitative results of our method, in-
cluding brain tumor segmentation, image translation, abla-
tion study, influence of paired subjects, and disentanglement
evaluation.
4.1. Experimental settings
4.1.1. Datasets

To validate the proposedmodel, we conduct experiments
on two widely used benchmark datasets of BraTS2020 [2]
and BraTS2018 [3] that consist of 369 and 285 subjects, re-
spectively. Each subject consists of one segmentation mask
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Table 2
Performance evaluation for the segmentation task of WT, TC and ET on BraTS2020. A better method has higher Dice (Best
highlighted in bold).

Metric Dice(%)↑
Modality T1ce T1 T2 Flair Aver

WT

nnU-Net [17] 78.36±2.23 74.52±0.25 84.18±1.39 88.22±0.29 81.31±0.21
UAGAN [39] 75.56±1.36 75.05±2.40 82.62±0.60 84.53±0.23 79.44±0.06
ReMIC [30] 72.18±1.05 74.63±0.18 76.96±0.04 75.37±3.59 74.78±0.67
Ours 79.58±1.13 77.80±2.16 85.66±0.35 88.58±0.08 82.91±0.36

TC

nnU-Net [17] 84.78±1.88 53.35±1.33 66.59±2.70 66.63±0.97 67.84±0.78
UAGAN [39] 80.76±0.65 58.53±0.67 67.99±0.65 70.13±0.90 69.35±0.71
ReMIC [30] 80.68±3.17 53.86±4.72 62.19±3.16 55.14±0.86 62.96±2.98
Ours 85.37±2.05 62.18±0.71 71.68±1.44 71.27±2.80 72.62±0.37

ET

nnU-Net [17] 82.09±1.07 28.17±0.30 45.08±2.17 40.03±5.30 48.84±2.06
UAGAN [39] 75.30±3.01 33.64±2.74 47.19±3.56 46.24±5.53 50.64±3.63
ReMIC [30] 74.98±0.33 32.16±2.26 39.22±3.44 34.68±0.16 45.29±1.34
Ours 82.33±1.04 37.47±0.80 51.61±3.41 47.78±6.36 54.80±2.50

Table 3
The dataset distribution.

Dataset
Training

(paired+unpaired) Validation Test All

BraTS2020 240 (40+200) 60 69 369
BraTS2018 180 (32+148) 50 55 285

and four modality scans: T1, T1ce, T2, Flair. The seg-
mentation mask contains four labels, namely NCR (label
1: the necrotic tumor core), ED (label 2: the peritumoral
edematous/invaded tissue), NET (label 3: the non-enhancing
tumor core), and ET (label 4: the enhancing tumor). To better
represent the clinical application tasks, different structures
have been grouped into three mutually inclusive tumor re-
gions: ET: the enhancing tumor, TC (Union of labels 1,
3 and 4): the tumor core, and WT (Union of all labels):
the whole tumor. In BraTS2020, we utilize 240 subjects as
semi-paired training data, 60 subjects as unpaired validation
data, and 69 subjects as unpaired test data. For semi-paired
training data, we use 40 of 240 subjects as paired data,
while the rest as unpaired data. In BraTS2018, we utilize 180
subjects as semi-paired training data, 50 subjects as unpaired
validation data and 55 subjects as unpaired test data. For
semi-paired training data, we use 32 of 180 subjects as paired
data, while the rest as unpaired data. The specific number of
subjects in the training set, validation set, and test set are
shown in Table 3. The subjects are evenly divided between
four modalities. For all images, we resize them to 128×128
uniformly.
4.1.2. Baseline methods

Segmentation results are evaluated by comparing with
the following methods: (1) nnU-Net [17], which achieves
the best performance in the BraTS2020 competition. Since
only limited paired images are available in the training

Table 4
Performance evaluation of WT segmentation on BraTS2018.

Metric Dice(%)↑
Modality T1ce T1 T2 Flair Aver

nnU-Net [17] 84.10 76.12 85.91 86.16 83.18
UAGAN [39] 78.14 75.61 80.86 80.89 78.95
ReMIC [30] 77.97 72.69 76.75 72.23 74.89
Ours 86.56 82.65 84.93 87.86 85.51

Table 5
The parameters of different model for tumor segmentation.

nnU-Net UAGAN ReMIC Ours Ours-test
18.67M 44.73M 89.43M 173.97M 31.03M

data and all the test data are unpaired, we implement it as
unpaired learning (Figure 2(b)). The model is trained and
tested on four mixed modalities where images are unpaired.
(2) UAGAN [39], a recently proposed unpaired brain tu-
mor segmentation model, is a two-stream trainslation and
segmentation network. Inferred complementary information
are captured in the modality translation task to improve
segmentation performance. Since the model is unpaired, we
take semi-paired training data as unpaired data for training.
(3) ReMIC [30], a recently proposed image completion and
segmentation model for random missing modalities, first
achieve image completion, and then concatenate the syn-
thesized modalities as multi-channel inputs to obtain shared
representation for segmentation. Table 5 presents parameters
of different models. Our model is based on disentanglement
framework, so the number of parameters (173.97M) is larger
than others. Please note that, in the segmentation test, we
only need to load part of our network (the content encoder
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T1ce Flair T1ce Flair T1ce Flair T1ce Flair

Flair T1ce Flair T1ce Flair T1ce Flair T1ce

72-101

295-112

 Source  Target UAGAN ReMIC Ours

Figure 5: Image translation results (from source to target) between T1ce and Flair. Yellow boxes highlight the failed translation
of brain tumors. In each image, reconstructed images are in the left column, and translated images are in the right column.

Table 6
Quantitative evaluations on translated images.

Metric SSIM↑

Modality T1ce T1 T2 Flair Aver
UAGAN [39] 0.5153 0.4193 0.3850 0.4328 0.4382
ReMIC [30] 0.7205 0.7748 0.7579 0.7061 0.7398
Ours 0.7741 0.7701 0.7905 0.7671 0.7754

Ec and segmentation decoderDs), and its parameter amount
is 31.03M.
4.1.3. Evaluation metrics

We evaluate segmentation performance with dice score
(Dice). We compute the metric on each modality, and report
average values. In the translation tasks, we use structural
similarity (SSIM) as an evaluation metric.
4.1.4. Implementation details

The content encoder Ec and the segmentation decoder
Ds in the segmentation generator is similar to theU-Net [29].
The style encoder Es and image generation decoder Dt areadapted from [24]. In our experiments, we set �rec = 50
, �tran = 100, �con = 10, �sty = 10, and �seg = 100.
The batch size and training epoch are 8 and 50 respectively.
We train the model with 20 epochs in the first step and 30
epochs in the second step, which leads to convergence in
practice. The dimensionality of the style code is set to ns = 8.
All models are optimized with Adam [21], and the initial
learning rates are 1e−4, �1 = 0.9, and �2 = 0.999. The
learning rate is fixed in the first 40 epochs, and then linearly
declines to 1e−6. All images are normalized to [−1, 1] prior
to the training and testing. Our implementation is on an
NVIDIA RTX 3090 (24G) with PyTorch 1.8.1.
4.2. Results and analyses
4.2.1. Brain tumor segmentation

We first evaluate the brain tumor segmentation perfor-
mance of our model on BraTS2020 segmentation tasks (WT:
the while tumor, TC: the tumor core, and ET: the enhancing
tumor). Quantitative results are shown in Table 2. Our model
achieves the best overall performance and outperforms the
others in all cases. Compared with the best performer of the

state-of-the-art methods, our method improves the average
dice score from 81.31% to 82.91%, 69.35% to 72.62% and
50.64% to 54.80% on WT, TC and ET segmentation tasks,
respectively. In addition, we further evaluate our model on
BraTS2018 WT segmentation task. The dice score results
are shown in Table 4, our method achieves superior per-
formance in most cases, and improves the average dice
score from 83.18% to 85.51% compared with nnU-Net. The
segmentation results indicate that our method can effectively
exploit complementary information by leveraging privileged
semi-paired images through the curriculum disentanglement
learning model.
4.2.2. Image translation

Since the Flair is the most informative modality for
the segmentation of WT, and T1ce is for the segmentation
of TC and ET [14, 42], we discuss the results of image
translation between these two modalities in Figure 5. Note
that the translation performances are only evaluated against
UAGAN and ReMIC, since there is no translation for nnU-
Net. For the translation between modalities T1ce and Flair
that convey different biological information (Figure 1, for
example) of brain tumors, our model is superior to others,
particularly for the tumor areas translation. Furthermore, as
shown in Table 6, our model outperforms other methods
on translation task in terms of SSIM, which suggests that
our model can produce more realistic images, and more
effectively exploit accurate complementary information to
improve segmentation.
4.2.3. Ablation study

In this section, we assess the contribution of different
components in WT segmentation on BraTS2020. We denote
the Content consistency loss (Eq. (10)), the inter-modality
Translation loss (Eq. (11)), Feature disentanglement frame-
work and Curriculum disentanglement learning as Cc, T, F
and Cd, respectively. As shown in Table 7, we describe the
ablation experiments as follows: (1) Ours w/o Cc denotes
that our model is trained without the content consistency
loss. (2) Ours w/o T denotes that our model is trained
without the inter-modality translation loss. (3) Ours w/o
F denotes that the style encoder Es and image generation
decoder Dt are deactivated. In this experment, our model

Zecheng Liu et al: Preprint submitted to Elsevier Page 8 of 15



Privileged Semi-Paired Brain Tumor Segmentation

Table 7
Performance evaluation of the WT segmentation for ablation study on components. w/o means without.

Metric Dice(%)↑
Modality T1ce T1 T2 Flair Aver

Ours w/o Cc, T, Cd, F 1 76.09 72.53 80.04 84.78 78.36
Ours w/o Cc, T, Cd 75.78 74.35 84.04 87.32 80.38
Ours w/o Cc, T 77.88 76.68 85.06 87.97 81.90
Ours w/o Cd 77.25 74.69 84.46 87.29 80.93
Ours w/o T 78.50 77.66 85.16 87.95 82.32
Ours w/o Cc 78.76 77.81 85.21 88.15 82.47
Ours end-to-end 78.27 78.44 84.62 87.85 82.30
Ours 79.58 77.80 85.66 88.58 82.91

1 Cc, T, F and Cd denote the Content consistency loss (Eq. (10)), the inter-modality Translation loss (Eq. (11)), Feature
disentanglement framework and Curriculum disentanglement learning, respectively.

is trained without feature disentanglement. Since Cc, T and
Cd are based on feature disentanglement framework, these
components cannot be applied in Ours w/o F, and we denote
it as Ours w/o Cc, T, Cd, F in Table 7. (4) Ours w/o Cd
denotes that we train our model only at inter-modality step
for all 50 epochs. Table 7 shows that the best results are
achieved with all components. The performance is signif-
icantly improved from 78.36% (Ours w/o Cc, T, Cd, F)
to 82.91%. Compared to the Dice scores of 78.36% (Ours
w/o Cc, T, Cd, F) and 80.38% (Ours w/o Cc, T, Cd), the
performance improvement is due to using F reduces the dis-
turbance of modality-specific information. By utilizing Cd,
the segmentation accuracy increased from 80.38% (Ours
w/o Cc, T, Cd) to 81.90% (Ours w/o Cc, T), which shows
the importance of thorough decoupling. The performance
degradation, from 82.91% (Ours) to 80.93% (Ours w/o
Cd), can also reflect this. Compared to the Dice scores of
82.91% (Ours), 82.32% (Ours w/o T), 82.47% (Ours w/o
Cc), and 81.90% (Ours w/o Cc, T), introducing T and Cc,
which is work only for paired images, benifits the model to
fully exploit information between modalities. In addition,
the model can also be trained with both style-consistent
learning and inter-modality learning for 50 epochs in an end-
to-end manner (Ours end-to-end). Compared with the two-
step training scheme, the average Dice score dropped from
82.91% to 82.30%.
4.2.4. Influence of paired subjects

We conduct a ratio test to investigate the effect of the
paired subjects. We keep the number of training subjects
fixed, and assign different numbers of subjects as paired data.
As shown in Figure 6, introducing paired data in training
does improve the performance of our model. Note that our
model is still better than the state-of-the-art methods when
the Number of Paired Subjects (NPS) equals to 0, and can
get satisfactory results when NPS is relatively small (40, for
example), which is a good news for clinical practice.
4.2.5. Disentanglement evaluation

We qualitatively examine the effect of each dimension
of style code s with latent space arithmetics [6] on 10
subjects. We set the style code size to ns = 8 as suggested
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Figure 6: The ratio test for the WT segmentation task on
BraTS2020. Only the header and tail values as well as the best
values are displayed. NPS: the Number of Paired Subjects.

by related work [6, 24]. We conduct statistical analysis
on style codes obtained from all the test images, and the
max, min and avearge values are 0.189, -0.678 and -0.014,
respectively. Note that, we use L2 norm regularization to
constrain the style codes. Therefore, interpolating in the
range [-0.7, 0.2] covers the possible space. We discover
that image style are controlled by the 3rd dimension. As
shown in Figure 7, images of each column are generated by
interpolating the values of the 3rd dimension with the rest
fixed. In addition, we change the value of the 3rd dimension
with others fixed, and compare the synthetic images with
the corresponding four real images. The SSIM values for
T1ce, T1, T2 and Flair get the maximum of 0.7203, 0.7017,
0.6668 and 0.6963 when the value of the 3rd dimension is
set to 0.1, -0.3, 0.0 and -0.1, respectively. The anatomy of the
brain is clearer in T1ce and T1, while the lesioned tissue is
more prominent in T2 and Flair. The former SSIM value is
more affected by structural similarity, while the latter is more
affected by image brightness and contrast. We think that the
reason for generating more similar T1ce and T1 images is
that the model can accurately extract modality-independent
brain anatomical information. However, it is hard to generate
images with the same brightness and contrast as real images.
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Table 8
Variable multi-modal brain tumor segmentation results of WT task on BraTS2020 [2]. The table shows the Dice score for different
MRI modalities being either absent (◦) or present (∙), in order of T1ce, T1, T2, Flair. A better method has higher Dice (Best
highlighted in bold)

Modalities Dice(%)↑

T 1ce T 1 T 2 F lair U_hemis Rmbts Lmcr ReMIC Ours Ours nnU-Net
[14] [7] [42] [30] _TF _TF_UB _Oracle[17]

∙ ◦ ◦ ◦ 72.23 74.04 52.67 72.18 79.58 81.46 –
◦ ∙ ◦ ◦ 71.03 74.22 56.70 74.63 77.80 80.47 –
◦ ◦ ∙ ◦ 82.84 78.16 79.59 76.96 85.66 86.85 –
◦ ◦ ◦ ∙ 85.07 86.24 79.26 75.37 88.58 89.52 –
∙ ∙ ◦ ◦ 76.80 78.14 69.10 71.87 82.94 83.73 –
∙ ◦ ∙ ◦ 85.33 85.24 81.99 75.80 88.47 88.98 –
∙ ◦ ◦ ∙ 87.53 88.59 83.98 71.75 90.36 90.76 –
◦ ∙ ∙ ◦ 84.84 84.05 77.37 68.48 87.69 88.23 –
◦ ∙ ◦ ∙ 86.42 87.78 84.03 70.16 89.75 90.32 –
◦ ◦ ∙ ∙ 86.64 87.94 83.74 73.32 89.16 90.32 –
∙ ∙ ∙ ◦ 85.92 85.82 80.40 73.83 88.39 89.14 –
∙ ∙ ◦ ∙ 88.10 88.84 86.79 73.56 90.28 90.78 –
∙ ◦ ∙ ∙ 88.81 89.51 86.40 74.51 90.46 90.94 –
◦ ∙ ∙ ∙ 88.40 87.30 85.90 74.53 89.94 90.39 –
∙ ∙ ∙ ∙ 88.92 89.20 87.29 76.41 90.65 90.99 92.86

Average 83.92 84.34 78.35 73.56 87.31 88.19 –
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Figure 7: Evaluation of the effect of the style codes. Images of each column are generated by interpolating the values of 3rd
dimension with the rest fixed.

4.2.6. Variable multi-modal brain tumor segmentation
We further evaluate the variable multi-modal brain tu-

mor segmentation performance of our model by introudcing
a Transformer [35] based fusion block, called TFusion (de-
tails can be found in B). The content codes extracted from
available modalities are fused into a common content code
for prediction. As shown in Table 8, U_hemis [14] (3D U-
Net version), Rmbts [7] and Lmcr [42] are the networks for
variable multi-modal brain tumor segmentation. Ours_TF
denotes the proposed model integrated with TFusion block.
The results demonstrate that our proposed model performs
well on variable multi-modal brain tumor segmentation by
integrating the fusion block and achieves significant im-
provement when somemodalities are missing during testing.
In addition, we evaluate the performance of Ours_TF_UB
and nnU-Net_Oracle, which are trained without missing
modality as upper bound and oracle respectively. Com-
pared with Ours_TF_UB, Ours_TF achieves competitive
results when the paired images are limited (40 paired im-
ages for training in the experiments). Compared with nnU-
Net_Oracle, Ours_TF can handle any situations with miss-
ing modalities while nnU-net_Oracle, which is an ad-hoc
method, fails to do that.

5. Discussion
Most automatic brain tumor segmentation methods use

paired multi-modal images because images of different
modalities provide complementary brain tumor informa-
tion for more accurate segmentation. However, high-quality
multi-modal public datasets, such as BraTS [2], force current
research to ignore the scarcity of paired images, which is
a practical problem in the real-world clinical environment.
To address this problem, the unimodal methods propose
solely relying on unpaired images for segmentation. How-
ever, these methods ignore the complementary information
the available paired images provide. Therefore, this work
studies brain tumor segmentation from privileged semi-
paired images, where limited paired images are introduced
during training. Specifically, we focus on improving the
accuracy of unimodal segmentation by fully exploring the
complementary information between multiple modalities
with limited paired images. Table 2 compares our method
with other unimodal methods and reveals that the developed
scheme achieves a higher unimodal segmentation accuracy
than state-of-the-art methods across different segmentation
tasks and modalities.

Zecheng Liu et al: Preprint submitted to Elsevier Page 10 of 15



Privileged Semi-Paired Brain Tumor Segmentation

NnU-Net [17] is the champion of the BraTS2020 chal-
lenge, demonstrating its ability to adequately capture com-
plementary information when the full set of modalities is
available. However, in the unimodal segmentation tasks,
its segmentation accuracy decreases due to the absence
of paired images. UAGAN [39] is the state-of-the-art uni-
modal method, which captures the modal-invariant infor-
mation with only unpaired images by introducing the trans-
lation task. However, its segmentation performance is lim-
ited because the available paired images are not exploited.
ReMIC [30] is a classic image completion and segmentation
model for missing modalities. This method predicts missing
modalities and segments the brain tumors by exploiting the
completed modalities. However, the quality of the recovered
images directly affects the performance, especially if a single
modality is available. Therefore, Table 2 highlights that
ReMIC has the worst performance in unimodal segmenta-
tion.

The modality-missing scenarios involve 15 image com-
binations of four modalities that may be provided in ac-
tual applications. Considering these situations, we propose
a fusion block, TFusion, which fuses the missing multi-
modal features. By integrating this block, we obtain the
fused content codes for segmentation under different miss-
ing scenarios. Table 8 presents our method’s segmentation
performance on 15 possible cases, achieving higher ac-
curacy than the missing modality methods. U_hemis [14]
achieves 83.92% average accuracy, extracts the features of
each available modality, and fuses them by computing the
first and second moments for segmentation. All available
modalities contribute equally, and their latent correlations
are neglected. The Dice score of Rmbts [7] is 84.34%, which
employs a gated feature fusion block. The features extracted
from the available modalities are fused automatically to
exploit the correlation between multiple modalities. How-
ever, they simulate the features of missing modalities with
zero values, inevitably introducing a computation bias and
degrading the performance. Furthermore, the segmentation
performance of these methods, when trained directly for
missing modalities, is unsatisfactory in unimodal cases. In
particular, Lmcr [42] attains only 52.67% and 56.70% accu-
racy with only T1ce and T1, respectively. We argue that this
may be because it focuses on fusing information from multi-
modal images while neglecting to extract more beneficial
information from a single modality.

In modality-missing scenarios, unimodal segmentation
performance is significant, and therefore our approach starts
with improving the performance of unimodal segmentation.
By integrating the designed fusion block, we improve the
segmentation performance in different multi-modal segmen-
tation cases while retaining the superiority of unimodal seg-
mentation. Therefore, we increase the average Dice score of
the 15 possible combinations from 84.34% to 87.31%. This
result shows the importance of improving the performance
of unimodal segmentation.

6. Conclusion
This paper proposes a novel framework that leverages

privileged semi-paired images for multi-modal brain tumor
segmentation. Specifically, we develop a two-step curricu-
lum disentanglement learning model that can be trained
with semi-paired images andmake predictionswith unpaired
images as inputs. The two steps extract the style and content
of the input images separately. Furthermore, with limited
paired images, we incorporate the supervised translation and
content consistency loss to enhance the exploitation of the
encoded complementary information. The quantitative and
qualitative evaluations show the superiority of our proposed
model compared to the state-of-the-art methods.

Our work presents some limitations that inspire future
research directions. Specifically, the provided medical data
is 3D. Compared to 2D, it can include richer semantic
information, such as hierarchical information. Therefore, ex-
tending themodel to the 3D data domain can further promote
the need for automatic brain tumor segmentation. The fusion
block (TFusion) is also based on Swin Transformer [25],
which uses a self-attentionmechanism.Hence, the highGPU
memory requirements pose a limitation. Therefore, design-
ing a more lightweight and efficient fusion block is a future
research direction. For example, using PoolFormer [38] to
replace the Swin Transformer can be appealing. It reduces
the computational complexity by replacing the self-attention
module with an embarrassingly simple spatial pooling oper-
ator. Its effectiveness is verified in vision tasks. Finally, our
work is based on supervised learning, while obtaining high-
quality annotated data requires professionals and is time-
consuming. Given that the scarcity of annotation data is
a common problem in medical image processing, we will
further study brain tumor segmentation in a semi-supervised
and privileged semi-paired learning setting to alleviate the
scarcity of labeled data.
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A. Dataset parameters
In BraTS2020 [2] and BraTS2018 dataset [3], all modal-

ities (T1ce, T1, T2 and Flair) from the same subject are
co-registered to a common anatomical template SRI [28],
resampled to isotropic 1mm3 and skull-stripped following
manual revision. Each modality volume contains 155 slices
with the size of 240×240.

Zecheng Liu et al: Preprint submitted to Elsevier Page 11 of 15



Privileged Semi-Paired Brain Tumor Segmentation

...

Sw
in W

-M
SA Block

...
...

...

 Reshape 
PE

Reshape

...
...

...

M
odal-w

ise Softm
ax

... ...





...  ��

��

�|�|

��

�|�|

��

�|�|
Transformer

 Encoder

��

. . . ��

 Element-wise Addition

Element-wise Multiplication

PE Position Embeddings

Concatenation

TFusion

��

�|�|

Sw
in SW

-M
SA Block

��

�|�|

Figure 8: The illustration of the proposed TFusion. Ec and Ds are the content encoder and segmentation decoder of our model,
respectively.

B. Details of TFusion block
As shown in Figure 8, we propose a TFusion block for

variable multi-modal brain tumor segmentation, which is a
transformer based N-to-One fusion block at the voxel level.

Let K ⊆ {1, 2,… , S} denotes the available modality
set of K , where S is the number of all possible modalities.
The content codes (c1,… , c
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, |K| denotes the number of
available modalities) extracted from available modalities are
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Figure 9: The illustration of modal-wise and voxel-level soft-
max function.
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Figure 10: Visualization of WT segmentation results and the
corresponding Dice scores. Rows: different input modalities.
Columns: all the methods.

fused into a common content code cf for prediction. In the
TFusion block, inspired by ViT [13], the input content codes
are reshaped as a sequence of token embeddings (t1,… , t

|K|

)
by flattening their spatial dimensions into one dimension and
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Figure 11: Visualization of TC segmentation results and the
corresponding Dice scores. Rows: different input modalities.
Columns: all the methods.
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Figure 12: Visualization of ET segmentation results and the
corresponding Dice scores. Rows: different input modalities.
Columns: all the methods.
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Table 9
Performance evaluation for the segmentation task of WT, TC and ET on BraTS2020. A better method has lower ASSD (Best
highlighted in bold).

Metric ASSD(mm)↓
Modality T1ce T1 T2 Flair Aver

WT

nnU-Net [17] 2.90±0.52 3.18±0.21 2.10±0.27 1.50±0.06 2.42±0.01
UAGAN [39] 3.83±0.08 3.84±0.58 2.77±0.09 2.40±0.15 3.21±0.07
ReMIC [30] 3.87±0.18 3.77±0.09 3.48±0.09 3.81±0.03 3.74±0.08
Ours 2.65±0.04 3.00±0.49 1.96±0.11 1.42±0.06 2.26±0.08

TC

nnU-Net [17] 1.98±0.63 4.72±0.36 3.70±0.64 3.33±0.02 3.43±0.08
UAGAN [39] 2.66±0.20 5.13±0.34 3.53±0.13 3.44±0.04 3.69±0.06
ReMIC [30] 2.67±0.36 5.71±0.91 4.77±0.40 5.04±0.17 4.54±0.46
Ours 2.03±0.66 4.88±0.16 3.15±0.33 3.25±0.64 3.33±0.11

ET

nnU-Net [17] 1.12±0.48 4.33±0.30 3.07±0.59 3.15±0.57 2.92±0.49
UAGAN [39] 1.64±0.29 4.52±0.78 3.15±0.28 3.61±0.88 3.22±0.55
ReMIC [30] 2.01±0.27 4.99±0.45 4.25±0.37 4.40±0.16 3.92±0.13
Ours 1.02±0.28 3.71±0.53 2.98±0.41 3.73±1.51 2.86±0.68

Table 10
Performance evaluation of WT segmentation on BraTS2020 with different values of ns.

Dice(%)↑
ns T1ce T1 T2 Flair Aver
1 77.99±2.70 78.30±1.00 85.83±0.71 88.88±0.64 82.75±1.26
2 78.00±4.02 77.47±0.93 85.44±0.22 88.56±0.37 82.37±1.39
4 79.07±4.33 78.34±1.42 85.08±0.35 88.34±0.74 82.70±1.70
8 79.58±1.13 77.80±2.16 85.66±0.35 88.58±0.08 82.91±0.36
16 78.43±4.52 77.73±1.06 85.79±0.57 88.42±0.11 82.59±1.56

combining with the sinusoidal position embeddings [35].
Then, the token embeddings are fed into the transformer en-
coder, which consists of blocks W-MSA and SW-MSA [25],
to learn latent multi-modal correlations (u1,… , u

|K|

). By
reshaping the correlations, we get the transformed feature
maps (f1,… , f

|K|

), which have the same size as the input
content codes. As shown in Figure 9, we denote the i-th
voxel of fk and mk as f ik and mik (k ∈ K), respectively. e is
the natural logarithm. Through amodal-wise and voxel-level
softmax function, we obtain weight maps (m1,… , m

|K|

) for
fusion. By element-wise multiplying input content codes
with the corresponding weight maps and summing all of
them, we can obtain a fused content code cf for prediction.

Since the sum of mi1,… , mi
|K|

is 1, the value range of
fused content code cf remains stable to improve the robust-
ness of the model for variable input modalities. Moreover,
the relative sizes of f i1,… , f i

|K|

are retained in the corre-
sponding weights, which contain the latent multi-modal cor-
relation learned from transformered encoder. In particular,
when only one modality is available, all the values of the
weight map is 1, which means cf = ck(k ∈ K, |K| = 1). In
this case, the input content code remains unchanged, which
maintains the performance of the model for brain tumor
segmentation with single modalitiy.

It is worth noting that, TFusion block is a flexible data-
dependent fusion strategy. It does not need to simulate miss-
ing modalities (e.g. zero-padding and synthetic modality).

C. Other metrics on segmentation results
We further use average symmetric surface distance

(ASSD) for evaluation. The ASSD metric is introduced to
evaluate the average symmetric surface distance.

ASSD =
∑

a∈A minb∈Bd(a, b) +
∑

b∈B mina∈Ad(a, b)
NA +NB

(13)
Here, A and B denote the boundary voxel set of prediction
and ground truth volumes, and d(a, b) represents the Eu-
clidean distance between voxel a and b.NA andNB denote
the number of voxels in A and B. A better method has
lower ASSD. The results of WT, TC and ET segmentation
on BraTS2020 are shown in Table 9. We obtain the best
average results (WT: 2.26mm, TC: 3.33mm, ET: 2.86mm),
i.e., lowest ASSD values, in all three segmentation tasks,
while ReMIC performs worst (WT: 3.74mm, TC: 4.54mm,
ET: 3.92mm). It is consistent with the Dice score. Although
nnU-Net outperforms our model in some cases, our results
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are also competitive. For example, in the TC segmentation
with T1ce, the ASSD value of nnU-Net is 1.98mm, while
the value of our method (2.03mm) is slightly higher. Visu-
alization of segmentation results are shown in Figure 10,
Figure 11 and Figure 12, it illustrates that our model can
identify more accurate details of irregular shape brain tu-
mors to achieve high dice scores.

D. Extra experiments for ns
We experimented with different values of ns on WT

segmentation of BraTS2020. As shown in Table 10, best
average dice are achieved when the dimensionality of the
style code is set to ns = 8.
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