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Abstract: In this study, we introduce a novel denoising transformer-based neural network (DTNN)
model for predicting the remaining useful life (RUL) of lithium-ion batteries. The proposed DTNN
model significantly outperforms traditional machine learning models and other deep learning archi-
tectures in terms of accuracy and reliability. Specifically, the DTNN achieved an R2 value of 0.991,
a mean absolute percentage error (MAPE) of 0.632%, and an absolute RUL error of 3.2, which are
superior to other models such as Random Forest (RF), Decision Trees (DT), Multilayer Perceptron
(MLP), Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gated Recurrent Unit
(GRU), Dual-LSTM, and DeTransformer. These results highlight the efficacy of the DTNN model in
providing precise and reliable predictions for battery RUL, making it a promising tool for battery
management systems in various applications.

Keywords: Li-ion battery; remaining useful life; transformer; residual learning

1. Introduction

Lithium-ion batteries power applications such as electric vehicles, power grid systems,
and consumer electronics, which have become indispensable to contemporary society [1–3].
As the number of charging and discharging cycles increases, the efficiency of these batteries
steadily declines, impacting their overall performance and reliability. A reliable predic-
tion system identifying a battery’s health status is essential for the safety and effective
functioning of electronic devices and energy storage systems.

A battery’s remaining useful life (RUL) is a crucial indicator of its health state. Accurate
RUL estimation allows users to schedule maintenance, replacement, and make informed
management decisions [4]. With the advent of machine learning and artificial intelligence,
numerous data-driven methods for predicting battery life and assessing battery health have
emerged [2].

Various models have been employed to forecast the RUL of batteries, including Deci-
sion Trees (DT) [5], Random Forest (RF) [6], Multilayer Perceptron (MLP) [7], Long Short-
Term Memory (LSTM) [8], Recurrent Neural Networks (RNNs) [9], and Dual-LSTM [10].
While RF, an ensemble method, offers robust predictions by combining multiple decision
trees, DT provides simpler, interpretable decision-making structures. MLP, though simple,
effectively captures complex non-linear relationships. LSTM and RNNs are tailored for
sequential data, with LSTM excelling in capturing long-term dependencies. Dual-LSTM en-
hances this by processing both past and future information [7–10]. However, these methods
often face challenges like overfitting, sensitivity to noise, and computational intensity.

Our research introduces the Denoising Transformer-based Neural Network (DTNN),
a novel approach aiming to enhance prediction accuracy and reliability in battery life.
Unlike traditional models, the DTNN leverages the Transformer’s capability to capture
long-term correlations in input sequences. Additionally, it employs a one-dimensional
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CNN for denoising, ensuring reduced noise and enhanced prediction accuracy [11,12].
This dual approach addresses the limitations of conventional models, offering potential
advancements in accuracy and reliability.

Furthermore, our research identifies challenges in battery life prediction, including
data quality issues like noise, outliers, and missing data. There is also a pressing need for
models that generalise across various battery types and conditions [2,13,14]. Recognising
these challenges, our DTNN method offers enhanced precision and reliability in battery
RUL predictions, ensuring the safety and longevity of electronic devices and energy storage
systems. This research not only contributes to the exploration of data-driven methodologies,
but also lays the groundwork for future advancements in this domain.

2. Literature Review

The State of Health (SOH) serves as a vital metric in estimating the RUL of a battery,
as it represents the present condition of the battery’s health concerning its original capacity
(C0) when new. The SOH is quantified by expressing the battery’s current capacity (Ct) as a
ratio of its original capacity:

SOH =
Ct

C0
× 100(%) (1)

A battery’s capacity gradually declines throughout the charge and discharge cycles,
which causes a drop in SOH. Temperature, charging and discharging rates, and depth of
discharge (DoD) [15] are a few variables that affect how quickly capacity degrades [16].
RUL, which stands for a battery’s anticipated life before the battery reaches the End of
Life (EOL), may be calculated using the current SOH and the rate of capacity decline.
The battery is deemed to have come to its EOL and needs to be changed once the SOH falls
below a predetermined level [17]. Accurate and fast RUL prediction is crucial for batteries
to operate safely and reliably, especially in demanding applications like grid-scale energy
storage, aerospace systems, and electric vehicles [18,19].

Scientists and engineers worldwide are putting significant effort into developing
various methodologies to predict the RUL and determine the SOH of batteries. These
techniques range from traditional empirical models to advanced data-driven algorithms
anchored in artificial intelligence and machine learning methods [20,21].

One strategy for predicting lithium-ion batteries’ RUL is through model-based meth-
ods. These techniques are founded on creating mathematical models that comprehensively
depict the battery’s physical and chemical properties alongside the degradation processes
that take place over time [22–24]. The models subsequently predict the battery’s RUL based
on its current state and operating conditions. For instance, the University of California
researchers in Berkeley have developed a sophisticated model that amalgamates electro-
chemical, thermal, and mechanical processes to anticipate RUL [22]. At the Massachusetts
Institute of Technology, another group proposed a physics-based model for Lithium-ion
battery capacity degradation and RUL prediction under various operating conditions [23].
Tsinghua University researchers devised a model-based method that integrates the advan-
tages of electrochemical and equivalent circuit models, enhancing the RUL prediction’s
accuracy [24]. These model-based techniques have paved the way for advancements in
batteries’ SOH estimate and RUL prediction [25–27].

With the rise of artificial intelligence, machine learning-based techniques have gained
momentum in SOH estimation and RUL prediction. These data-driven methodologies
focus on processing historical data and do not require a deep understanding of battery
characteristics, making them highly adaptable and user-friendly [14,28,29]. Examples of
cutting-edge machine learning approaches are deep, reinforcement, and transfer learning,
integrated into SOH estimation and RUL prediction models, potentially enhancing their
accuracy and reliability [30].

In the domain of battery RUL prediction, the significance of shallow machine learning
techniques, such as DT and RF, cannot be understated. With their inherent simplicity
and interpretability, these methods have been foundational in early predictive modelling



Energies 2023, 16, 6328 3 of 16

efforts. With its clear decision-making structure, DT offers insights into the factors influ-
encing battery degradation, making it invaluable for applications where understanding
the model’s reasoning is crucial [31]. RF, an ensemble method, leverages the power of
multiple decision trees to enhance prediction accuracy, reducing the risk of overfitting
and providing more robust predictions [32]. These shallow techniques have been pivotal
in early battery RUL prediction models, setting the stage for the subsequent rise of deep
learning models. As technology advanced, deep learning models, with their superior
generalisation and feature extraction capabilities, began to gain traction in the field of
battery RUL prediction [9,33,34].

Deep learning models have gained significant attention in battery RUL prediction
due to their superior generalisation capabilities and powerful feature extraction capabili-
ties [9,33,34]. Models like MLP, RNNs, LSTM, GRU, and Dual-LSTM have been suggested.
MLP networks, for instance, can learn from the operational history data of the battery to
predict its life [9]. However, while the MLP is often considered a shallow neural network,
it serves as the baseline deep learning model in our experiments. It captures basic patterns
in the data, but may need to improve at modelling more intricate relationships or temporal
sequences as effectively as deeper architectures [35].

Researchers have introduced RNN-based frameworks, such as LSTM, to tackle these
limitations. These networks can automatically capture long-term dependencies in sequence
data and handle variable-length sequence data [8]. Dual-LSTM, an improved version of
LSTM, simultaneously learns two different sequence data to provide more accurate RUL
predictions [10]. This model has shown superior prediction performance compared to MLP
networks, showcasing the power of deep learning techniques in the realm of battery life
prediction [36].

Despite the progress made in battery SOH estimation and RUL prediction, several
challenges remain, including the improvement of data quality, issues related to noise,
outliers, and missing data, and enhancing the prediction models’ generalisability and
scalability for different battery types and use cases [11,30,37]. Future research directions
focusing on these challenges, coupled with the incorporation of advanced machine learning
techniques, promise to further increase the accuracy and reliability of SOH estimation and
RUL prediction models.

A SucMulti-Head Self-Attention sublayer aimstation for specific applications will
significantly enhance battery-powered systems’ overall safety, effectiveness, and durability.
These advantages will facilitate better-informed decisions about battery management,
replacement, and maintenance, improving the performance and safety of electronic devices,
electric vehicles, aerospace systems, and grid-scale energy storage systems [11].

3. Methodology

The proposed method seeks to leverage historical data to forecast the capacity of
lithium-ion batteries better, employing the DTNN model as its foundation. The DTNN
model, in its fundamental structure, comprises four primary components: input normalisa-
tion, denoising, transformer layers, and prediction. In our study, we have extended this
original architecture by integrating pertinent findings from a range of published literature
to afford a comprehensive understanding of the model, an outline of which can be observed
in Figure 1.

We have incorporated an enhanced design for the initial input stage that introduces
one-dimensional convolutions (1-D Conv) into every model layer. The intention behind
this integration is to filter and capture meaningful local data features that provide insight
into the behaviour of lithium-ion batteries. These locally extracted features are combined
to generate a global characteristic representation through an addition operation. This
global representation carries a broader view of the dataset, providing a comprehensive
understanding of the battery capacity trends.
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Figure 1. Flowchart for capacity prediction by using DTNN.

In addition, our modified method aims to enhance the overall accuracy and reliability
of the predictions by reducing potential noise within the data. To this end, we have
incorporated residual learning into the model. This technique facilitates the reduction of
noise points in the images, improving the clarity of the data and, subsequently, the precision
of the results.

Regarding data encoding, we have elected to use absolute positional encoding. This de-
cision is based on the fact that our data adheres strictly to temporal sequencing rather than
relative positioning. This encoding methodology allows for the temporal nature of our data
to be accurately represented within the model, thereby enhancing its predictive capabilities.

Furthermore, we have made alterations to the original transformer layer. Specifically,
we have eliminated the masked multi-head attention that characterised the original model,
primarily because it was deemed unsuitable for applications to time series data. This
modification not only simplifies the model but also enhances its robustness, contributing to
the overall reliability of the prediction results.

Our modified transformer model effectively harmonises critical feature extraction pro-
cesses, noise reduction, and temporal recognition. This balanced and integrated approach
results in a model capable of producing accurate and robust predictions of lithium-ion
battery capacities, leveraging historical data to anticipate future trends. This approach
holds significant promise for the continued study and development of efficient lithium-ion
battery management systems.

3.1. Input Denoising

In our approach, the first step involves input data normalisation, an essential pre-
processing operation that standardises the sequence of battery capacities into a range
typically between 0 and 1. This normalisation plays a crucial role in ensuring the stability
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and robustness of our neural network model, effectively safeguarding it from potential
disruptions due to variations in data distribution.

Following this, we embark on the denoising process for the battery data. In our
pre-processing strategy, we apply one-dimensional convolution coupled with residual
learning to reduce image noise, an often overlooked but accuracy-enhancing approach.
By appropriately increasing the data width, we enhance the distinctiveness of data features,
thereby boosting the effectiveness of denoising.

Simultaneously, we introduce Gaussian noise and use a denoising encoder to min-
imise interference, a critical part of the denoising process. After the third layer of image
processing convolution, we incorporate residual learning, further reducing image noise
and enhancing the precision of denoising. This strategy compensates for the denoising
encoder’s shortcomings in handling image noise, thereby increasing our model’s predic-
tive accuracy.

Therefore, our pre-processing steps include input data normalisation, one-dimensional
convolution, residual learning, and the use of a denoising encoder. They effectively dimin-
ish noise interference and pave the way for subsequent processing stages.

3.2. Transformer

The conventional architecture of the Transformer consists of a sequence-to-sequence
framework, which includes an encoder and a decoder. The encoder is responsible for
taking an input sequence and converting it into a vector with a high number of dimensions.
Subsequently, this vector is inputted into the decoder to generate a sequence of outputs [11].
In this study, we employ a transformer-based encoder to capture long-term dependencies
related to capacity degradation in battery operation records.

In our research, we utilise a configuration of transformer encoders in a stacked archi-
tecture to extract salient features from regenerated data indicative of battery degradation.
Each encoder is bifurcated into two integral sublayers: multi-head self-attention and a
feed-forward network.

We introduce positional encoding (PE) to account for the sequence’s temporal dimen-
sion, an essential aspect overlooked by the inherent design of Transformer models. For this
purpose, sine and cosine functions are utilised at different frequencies to represent relative
positional encoding within the sequence [38]:

PE(t, 2i) = sin
(

t/100002i/m
)

(2)

PE(t, 2i + 1) = cos
(

t/100002i/m
)

(3)

where t is the time step, i is the dimension of the feature, and m is the length of the
input sequence.

The Multi-Head Self-Attention sublayer aims to identify the relationships among
features while disregarding their relative positions within the sequence [39–41]. The y-th
attention (y ∈ [1, h]) is defined based on the representation of the (l − 1)-th layer, denoted
as Hl−1, and h parallel attention functions:

head y = Attention
(

H l−1W l
Q, H l−1W l

K, H l−1W l
V

)
(4)

The matrices {W l
Q, W l

K, W l
V} ∈ Rd×dh are the project weights. The concept of projection

weights refers to the assignment of numerical values to different variables or factors to
determine their relative importance or contribution. The variable l denotes the layer within
a transformer model, H represents the hidden states within the transformer model, and h
represents the quantity of ’heads’ in a multi-head self-attention mechanism. Let Ql , Kl ,
and Vl represent the query, key, and value, respectively. In practical implementation,
the attention function is computed simultaneously on a set of queries packed together
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into a matrix Ql . Similarly, the keys and values are also packed into matrices Kl and Vl .
The output matrix is computed as follows [38]:

Attention (Ql , Kl , Vl) = softmax

(
QlKl

T
√

dh

)
Vl (5)

where dh = d/h.
This methodology mitigates the problem of vanishingly small gradients and con-

currently facilitates a more uniform attention distribution. Consequently, the multi-head
attention mechanism can be characterised as follows:

multi-head
(

H l−1
)
= [head1; head2; · · · ; headh]W

O (6)

where the weight WO is subject to training.
The Feed-Forward Network is utilised to apply two distinct mappings, namely linear

and ReLU non-linear, to each time step identically and independently. Next, we obtain the
value of Hl from the previous multi-head layer (H l−1) using the following procedure [11]:

H l = FFN
(

multi-head
(

H l−1
))

(7)

FFN(x) = ReLU(xW1 + b1)W2 + b2 (8)

where W1 ∈ Rdmodel×dinterm and W2 ∈ Rdinterm×dmodel are the weight matrix, b1 ∈ Rdmodel and
b2 ∈ Rdinterm are the bias, ReLU(x) = max(0, x), dmodel represents the vector dimension
of input and output sequence elements, and dinterm is the dimension of the hidden layer
mapping before ReLU activation.

3.3. Prediction

In predicting battery capacity, we employed the attention-based DTNN model. With its
self-attention mechanism, this model can handle dependencies at any position within
the input sequence. It offers significant advantages in capturing battery usage patterns’
complexity and time dependency.

In practical applications, we leverage all the DTNN model’s connected layers to map
the last unit’s information for future battery capacity prediction. The optimisation of the
model is achieved by minimising the discrepancy between the predicted values and the
actual battery capacities, providing high accuracy and robustness for the battery capacity
prediction task.

3.4. Learning

In the learning process of our battery capacity prediction model, we utilised an objec-
tive function to optimise the tasks of denoising and prediction simultaneously [11]. This
objective function is defined as:

L =
n

∑
t=T+1

(xt − x̂t)
2 + α

n

∑
i=1

`(x̃i − x̂i) + λΩ(Θ),

Here, xt is the t-th capacity of x, x̂t is the predicted value of xt; letting
xi = {xi+1, xi+2, . . . , xi+m} be the slice of input with m samples of a sequence, then x̂i
is the predicted value of xi, x̃i is the vector after Gaussian noise is added to xi, α and λ
are parameters that control the relative contribution of each task and the regularisation
level, respectively, `(·) is a loss function, and Θ denotes the learning parameters of our
model. Through this approach, the learning process of our model not only focuses on
the accuracy of battery capacity prediction, but also minimises the impact of noise on the
prediction results.
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3.5. Complexity Analysis of the DTNN Method

The DTNN method, as presented in this study, leverages the power of transformers,
which inherently have a computational complexity of O(n2) for sequence length n. This
quadratic complexity arises from the self-attention mechanism, where each element in the
sequence attends to every other element. However, it is worth noting that the benefits
of this mechanism, such as the ability to capture long-range dependencies in the data,
often outweigh the computational costs, especially for shorter sequences. In battery life
prediction, where sequences might not be exceedingly long, the DTNN method remains
computationally feasible. Moreover, while adding to the algorithmic intricacy, the denoising
aspect of the model does not significantly increase the computational complexity, but
provides robustness against noisy data. Such denoising capabilities are invaluable in real-
world scenarios, where data might be corrupted or incomplete, while the DTNN method is
more complex than traditional methods, its accuracy and robustness justify the increased
computational costs.

4. Experiment Setup

In this study, we utilised a publicly accessible dataset, specifically the one provided
by NASA Ames Research Center. The dataset encapsulates the properties of four dis-
tinct lithium batteries, each undergoing three cyclical processes: charging, discharging,
and impedance measurement. This data acquisition from NASA’s resources allowed us to
explore nuanced patterns within these battery cycles.

To assess the RUL prediction performance, we utilised six evaluation metrics: Relative
Error (RE), Mean Absolute Error (MAE), Root Mean Square Error (RMSE), R2, Mean
Absolute Percentage Error (MAPE), and RUL Error (RULer). These metrics provide com-
prehensive insight into the predictive model’s performance. The four evaluation indicators
are set as follows [11]:

RE =
|RULtrue − RULpred|

|RULtrue|
(9)

RMSE =

√
1

n− T

n

∑
t=T+1

(xt − x̂t)
2 (10)

MAE =
1

n− T

n

∑
t=T+1

‖xt − x̂t‖ (11)

R2 = 1− ∑n
t=1(xt − x̂t)2

∑n
t=1(xt − x̄)2 (12)

MAPE =
1
n

n

∑
t=1

∣∣∣∣ xt − x̂t

xt

∣∣∣∣× 100 (13)

RULer = |RULpred − RULtrue| (14)

In this context, n represents the length of a sequence, and T represents the length of
samples generated from a series specifically for training purposes.

We used a leave-one-out methodology in the evaluation stage; a random battery
sample was chosen, and the remaining batteries were used to train our model. A new
battery sample was used for validation throughout each of the five iterations of this method.
The average of the results from all batteries throughout these iterations was used to calculate
the final indicator of the model’s performance.

The model under consideration encompasses six crucial parameters: the sample size,
the learning rate, the depth, the hidden size, the transformer regularisation, and the task
ratio. The sample size value can be assigned to 5 to 10% of the sequence length.

In the process of hyperparameter tuning, we employed a grid search methodology to
optimise six key parameters: the sample size, learning rate, depth, hidden size, transformer
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regularisation, and task ratio. The grid search was conducted over multiple iterations,
each assessing a unique combination of hyperparameters. We utilised a five-fold cross-
validation scheme to ensure a robust evaluation, with the Mean Squared Error (MSE)
serving as the performance metric. The learning rate was selected from a pre-defined set
{10−4, 5× 10−4, 10−3, 5× 10−3, 10−2}. The depth value was restricted to {1, 2, 3, 4}, and the
transformer regularisation was chosen from the set {10−6, 10−5, 10−4, 10−3}. The task
ratio was selected from the interval (0,1) [11]. A constant sample size of 16 was chosen
across all experiments, which was influenced by specific parameters from NASA’s battery
dataset. A summary of the grid search results indicated that a combination of specific
hyperparameters yielded the best performance in terms of MSE, thereby guiding the final
model configuration.

In this work, to further illustrate the efficiency and robustness of our model, we con-
ducted comparison experiments with various other popular machine learning architectures:
DT, RF, MLP, RNNs, LSTM, GRU, Dual-LSTM and DeTransformer [11]. Each model was
trained and tested under similar conditions to maintain a fair comparison. The sample size
was consistently set at 16 for all models.

The learning rate for MLP, RNNs, LSTM, GRU, Dual-LSTM and DeTransformer models
was set at 10−2, 10−3, 10−3, 10−3, 10−3 and 5× 10−3, respectively. Similarly, the depth for
DT, RF, MLP, RNNs, LSTM, GRU, and Dual-LSTM models was set at 2 and DeTransformer
at 1. The hidden size, another significant factor influencing the models’ performance, was
set at 8 for MLP and RF, 32 for DeTransformer, and 64 for DT, RNNs, LSTM, GRU, and Dual-
LSTM. Furthermore, to regularise the models and prevent overfitting, the transformer
regularisation was set at 10−6, as shown in Table 1.

Each model’s performance was then evaluated based on the accuracy of its battery ca-
pacity predictions. This comparative analysis offered critical insights into the performance
variations among different deep learning models. It demonstrated how specific models
are more effective than others in handling complex, time-dependent sequences and noisy
data—characteristics intrinsic to battery capacity prediction. Moreover, it shows how our
proposed DTNN model outperforms these standard architectures in accurately predicting
battery capacity, demonstrating its significant potential for real-world applications.

RE has the highest correlation with battery RUL among the four evaluation metrics of
battery RUL, so we use RE as our main evaluation index.

Table 1. Optimal parameter of RE score for NASA dataset.

Dataset Models Sample Size Learning Rate Depth Hidden Size Trans Reg

DT 16 0.001 2 64 10−6

RF 16 0.01 2 8 10−6

MLP 16 0.01 2 8 10−6

RNN 16 0.001 2 64 10−6

LSTM 16 0.001 2 64 10−6

GRU 16 0.001 2 64 10−6

Dual-LSTM 16 0.001 2 64 10−6

DeTransformer 16 0.005 1 32 10−6

DTNN 16 0.005 1 32 10−6

5. Experiment Result
5.1. Comparative Analysis and Evaluation

The performance of our method has been validated through experiments conducted on
various datasets. Table 2 presents the results of the R2, MAPE, RE, MAE, RMSE, and RULer
scores achieved by different methods.
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Table 2. Comparison of performance metrics for different models.

RF DT MLP RNN LSTM GRU Dual-LSTM DeTransformer DTNN

RE 0.2969 0.3997 0.3871 0.2924 0.2716 0.3342 0.2641 0.2312 0.0351

RMSE 0.0962 0.1522 0.1402 0.0827 0.0952 0.0916 0.0831 0.0792 0.005

MAE 0.0838 0.163 0.1564 0.0744 0.0866 0.0912 0.0883 0.0852 0.0272

R2 0.977 0.971 0.972 0.965 0.968 0.967 0.969 0.975 0.991

MAPE 1.431 1.672 1.215 1.542 1.479 1.452 1.353 1.120 0.632

RULer 26.1 35.3 34.6 25.6 23.8 27.4 23 20.8 3.2

Our in-depth experimental investigation was designed to test and compare a multitude
of different models on their proficiency in making accurate predictions, with a particular
focus on the NASA dataset. These experiments were pivotal in helping us understand the
relative strengths and weaknesses of these models when applied to real-world data.

The proposed DTNN model demonstrated the most superior results among the various
models tested. Table 2 compares the models based on six crucial metrics: RE, R2, MAPE,
MAE, RMSE and RULer. Notably, the DTNN stood out by consistently scoring the highest
across these metrics, thus underlining its superior prediction capabilities.

When examining our DTNN compared with the DeTransformer as our primary control
group, a significant difference in performance is apparent across all evaluation metrics. Our
DTNN model excels in denoising and showcases superior predictive accuracy, embodying
an integrative and synergistic approach to the problem. This superiority is evident with
a mere RE of 0.0351 for DTNN, a substantial improvement over the DeTransformer’s RE
of 0.2252. Furthermore, our DTNN outperforms the DeTransformer in other key metrics,
such as RMSE, MAE, and RULer, signifying a substantial leap in predictive accuracy
and reliability.

Beyond the DeTransformer, the DTNN model stands out compared to other base-
line methods, including MLP, RNN, LSTM, GRU, and Dual-LSTM. Despite these models
having different optimal parameters, the DTNN consistently shows lower error rates
across all evaluation metrics. This is a testament to DTNN’s robustness and versatility in
handling complex time-series prediction tasks, even compared to other advanced deep
learning architectures.

A distinct advantage of the DTNN model, evident through the experiments, is its ro-
bustness and stability. It efficiently provides reliable predictions irrespective of whether the
capacity sequence is long or short. This commendable performance is primarily attributed
to the model’s adeptness at extracting critical temporal information from the capacity
sequences, which plays a vital role in accurate prediction.

As we delved deeper into the baseline methods, it was observed that the MLP did not
meet the standards set by the other models. Its primary drawback lies in its inability to
adequately account for temporal information, which is crucial for the accurate prediction of
RUL. Contrarily, our model and the other RNN-based models performed significantly better,
predicting trends more accurately than the MLP, reinforcing the necessity of integrating
sequential information into these models for proficient RUL prediction.

The attention networks inherent in the DTNN model are designed to adeptly capture
broad patterns by effectively modelling relationships among historical capacity attributes.
This ability allows our model to proficiently simulate the impacts of historical capacities on
sequence states, significantly boosting its overall performance. Particularly in the case of
the NASA dataset, the DTNN model proved superior to the others in terms of RE metrics,
which are directly tied to predicting a battery’s RUL. Our models utilise a denoising encoder
to improve further representation and reduce raw sequence noise.

The following complex description of the dataset and statistical analysis of the dataset
followed the method in [42]. The NASA dataset focuses on the 18,650 Li-ion battery, utilising
accelerated ageing experiments for data collection. These batteries are categorised into nine
groups, each containing 3–4 lithium batteries with a rated capacity of 2 Ah. We selected
B05, B06, B07, and B18 as our experimental and prediction subjects. The experimental
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environment was maintained at a constant temperature of 24 °C. The discharge cut-off
voltages were set at 2.7 V, 2.5 V, 2.2 V, and 2.5 V, respectively, with a continuous discharge
current of 2 A and a charging current of 1.5 A. The Electrochemical Impedance Spectroscopy
(EIS) frequency ranged between 0.1 and 5 kHz. The charging process involved maintaining
a temperature of approximately 24 °C and charging with a steady current of 1.5 A until the
working voltage reached the maximum cut-off voltage of 4.2 V. The charging then shifted
to constant voltage until the current dropped to 20 mA. The discharge process involved a
continuous current discharge at 1 C until the working voltage of the four batteries dropped
to their respective minimum cut-off voltages. Impedance measurements were intermittently
conducted between charging and discharging cycles to record battery resistance.

Figure 2 shows that the battery’s releasable capacity gradually decreases as the charge–
discharge cycle progresses. Interestingly, there is a phased increase in the capacity decay
process, termed “capacity self-recovery”. This phenomenon occurs when the battery’s
charge–discharge ends, and a short-term placement results in a temporary localised in-
crease in capacity. This is attributed to the battery’s internal reaction formula reactants
accumulating on the electrode, weakening the internal reaction. When placed aside, these
inductors have a chance to dissipate, thereby increasing the capacity for the next charge-
discharge cycle. This is a manufacturer setting to ensure that after battery ageing, the usable
capacity remains as consistent as possible with a new battery. Figure 2 shows that the
number of capacity data of B18 is much smaller than that of the other three batteries in the
same battery pack. This is due to NASA’s consideration that the EIS test frequency will
somewhat affect the battery’s health, where batteries B05, B06, and B07 underwent 278 EIS
tests, while B18 only underwent 53 EIS tests.

Figure 2. NASA battery data for capacity degradation.

Figures 3–6 demonstrate the prediction performance of the proposed DTNN method
for batteries B05, B06, B07 and B18, where the y-axis is the State of Charge (SOC). In these
tests, NASA employed the BatteryAgingARC-FY08Q4 model as the test group in this
controlled environment. The charging procedure was consistent with the aforementioned
method, and a steady 2 A current was sustained during the discharge phase until the
batteries reached their respective voltages. Our methodology was applied to predict the
NASA dataset, utilising the initial 60% of the data for training and the remainder for
prediction. The results showcased a minimal discrepancy between forecasted values and
actual experimental outcomes. We established the standard battery usage time as the
duration before its capacity fell below 70% of its initial value, represented by a dashed
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line in the figure. This comprehensive approach provides a holistic view of the battery’s
performance and degradation over time, ensuring accurate predictions and insights.

Figure 7 presents the boxplots of prediction errors for different batteries using the
DTNN method. The y-axis represents the difference between the predicted values and the
actual values, which indicates the prediction error.

The boxplot shows that the median prediction error for all batteries is deficient, be-
tween 0 and 0.0023. This suggests that the DTNN method is generally accurate in its
predictions. However, some outliers are represented by the discrete points outside the main
body of the boxplot. These outliers, especially those significantly distant from the main
plot, indicate instances where the prediction was notably off from the actual value.

Figure 3. DTNN prediction performance for battery B0005.

Figure 4. DTNN prediction performance for battery B0006.
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Figure 5. DTNN prediction performance for battery B0007.

Figure 6. DTNN prediction performance for battery B0018.

The presence of these outliers can be attributed to the peak values in the prediction
graphs. While our model aims to match the actual values closely, it also prioritises robust-
ness to ensure compatibility with most batteries. As a result, the feature boundaries defined
by the model are smoothed out, which might not capture sharp peaks or sudden changes
in the actual data effectively.

From a battery’s physical perspective, these peak values or sudden changes can be
caused by various factors, including battery usage patterns, external environmental factors,
or internal battery conditions. It is beneficial to delve deeper into the specific physical
properties of batteries that lead to these peak values. By understanding these, we can refine
our model to handle such scenarios better and reduce the prediction error.
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Figure 7. Boxplots of prediction errors.

In summary, our DTNN model, enhanced with a multi-head attention network, suc-
cessfully learns features concurrently, making it exceptionally proficient at predicting the
RUL of batteries with high accuracy. Including a denoising encoder further bolsters the
performance of our model, making it an effective and highly efficient tool for accurate RUL
prediction, mainly when applied to the NASA dataset.

5.2. Encoder Optimisation and Effects

In the preliminary phase of utilising NASA’s dataset, images were transformed
into current capacity data by integrating CNN and residual learning into the encoder.
This enhancement facilitated significant improvements in image noise reduction and pre-
processing, eliminating anomalous battery data noise in the primary sequence. Conse-
quently, compared to baseline methods, our decoder processes highly accurate data.

Our DTNN employs residual learning to expedite training and augment denoising
performance. The quickened training procedure boosts the efficiency of CNN, mitigating
time consumption without compromising the algorithm’s performance. Our approach can
address Gaussian denoising even at unidentified noise levels, unlike most extant models,
which are predominantly trained to handle specific Gaussian white noise models at known
noise levels.

5.3. Model Comparison Using the Diebold-Mariano Test

To rigorously compare the predictive accuracy of our proposed DTNN method with
other comparative methods, we employ the Diebold-Mariano (DM) test. The DM test
statistic is given by:

DM =
d̄√

1
T ∑T

t=1(dt − d̄)2
(15)

where d̄ represents the mean of the forecast error differences dt, and T denotes the number
of forecasts. Under the null hypothesis, which posits that both models possess equivalent
predictive accuracy, the DM statistic follows an asymptotic normal distribution.

For our comparative analysis, the computed DM statistic and p-value is:
In the given DM test results, we compared the benchmark model DTNN with several

other prediction methods. The results show that DTNN outperforms all other methods
in all cases, as shown in Table 3. All p-values are less than 0.05, proving the superiority
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of DTNN. Among them, the difference between DTNN and DT is the largest, and the
difference with DeTransformer is the smallest.

Table 3. DM test results for comparing various methods with DTNN.

Method p-Value DM Value

RF 0.019 −4.17

DT 0.015 −5.26

MLP 0.018 −4.35

RNNs 0.024 −4.12

LSTM 0.026 −3.24

GRU 0.031 −4.01

Dual-LSTM 0.024 −2.95

DeTransformer 0.04 −1.98

6. Conclusions

In conclusion, the experimental results reveal the significant potential of our proposed
method, the DTNN model, in predicting the RUL of lithium-ion batteries, mainly when
applied to the NASA dataset. By leveraging a denoising encoder for feature extraction
and noise reduction, our method improves upon existing models in handling noisy and
complex battery life cycle data.

One key strength of our model is its ability to extract and utilise temporal information
from the capacity sequences effectively. This capability was demonstrated in how our
model consistently outperformed other models, including MLP and RNN-based models,
in predicting battery RUL. Our findings confirmed the necessity of incorporating sequential
information for robust and accurate RUL prediction.

While the DT and RF provided reasonable accuracy, it was outperformed by deeper
architectures, especially our proposed DTNN. This underscores the limitations of shal-
lower networks like DT and RF in modelling complex relationships and the advantages
of employing more sophisticated deep learning models for tasks like RUL prediction of
lithium-ion batteries.

A distinct feature of our analysis was setting a 70% capacity threshold to define the
standard battery usage time. By focusing on the period before the battery capacity falls
below this level, we were able to hone our predictions and focus on the most critical part of
the battery’s life cycle.

However, despite the promising results, our model has certain limitations. The DTNN,
while effective, may require more computational resources compared to simpler models.
Additionally, while our model showed excellent performance on the NASA dataset, its
performance on other datasets or real-world scenarios remains to be validated. Future
work should also explore integrating other features or external factors that affect battery
degradation, such as environmental conditions or usage patterns.

Furthermore, it is essential to continue refining the model and testing its performance
across different types of batteries, use cases, and operating conditions. This will help ensure
its adaptability and scalability while addressing ongoing data quality and generalisability
challenges. With further research and refinement, the DTNN model has the potential
to significantly improve battery management practices by providing reliable and timely
predictions of battery RUL, thereby contributing to the safety, efficiency, and sustainability
of battery-powered systems.
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